
                     - 1 - 

Exception Handling for Modelica 
Adrian Pop, Kristian Stavåker, Peter Fritzson 

PELAB – Programming Environment Lab, Dept. Computer Science 
Linköping University, SE-581 83 Linköping, Sweden 

{adrpo, krsta, petfr}@ida.liu.se 

Abstract 
Any mature modeling and simulation language should 
provide support for error recovery. Errors might always 
appear in the runtime of such languages and the devel-
oper should be able to specify alternatives when fail-
ures happen. In this paper we present the design and 
implementation of exception handling in Modelica. To 
our knowledge this is the first approach of integrating 
equation-based object-oriented languages (EOO) with 
exception handling.  
 
Keywords: Exception handling, Modelica. 

1 Introduction 
According to the terminology defined in IEEE Standard 
100 [9], we define an error to be something that is 
made by humans. Caused by an error, a fault (also bug 
or defect) exists in an artifact, e.g. a model. If a fault is 
executed, this results in a failure, making it possible to 
detect that something has gone wrong.  

Approaches to statically prevent and localize faults 
in equation-based object-oriented modeling languages 
are presented in [16] and [17]. However, in this paper 
we focus on language mechanisms for dynamically 
handling certain classes of faults and exceptional condi-
tions within the application itself. This is known as ex-
ception handling. An exception is a condition that 
changes the normal flow of control in a program. 

Language features for exception handling are avail-
able for most modern programming languages, e.g. 
object oriented languages such as Java [15], C++ [14], 
and functional languages such as Haskell [3], OCaml 
[12], and Standard ML [13]. 

However, exception handling is currently missing 
from Object-Oriented Equation-Based (EOO) Lan-
guages like Modelica [2][6], VHDL-AMS [10], 
gPROMS [11]. 

A short sketch of the syntax of exception handling 
for Modelica was presented in a paper on Modelica 
Metaprogramming extensions [5], but the design was 

incomplete, not implemented, and no further work was 
done at that time. 

The design of exception handling capabilities in 
Modelica is currently work in progress. The following 
constructs are being proposed: 

• A try...catch statement or expression. 
• A throw (...) call for raising exceptions. 

We have tried to keep the design of syntax and seman-
tics of exception handling in Modelica as close as pos-
sible to existing language constructs from C++ and 
Java, while being consistent with Modelica syntax 
style. 

2 Applications of Exceptions 
In this section we provide examples of exception han-
dling usefulness. There are three contexts in which ex-
ceptions can be thrown and caught: expression level, 
algorithm level and equation level. 
import Modelica.Exceptions=Exn; 

function log 
 input Real x; 
 output Real y; 
algorithm 
 y :=  
 if x <= 0  
 then  
  throw (Exn.InvalidArgumentException( 
         message="Logarithm is undefined  
                  for ...")) 
 else  
   Modelica.Math.log(x); 
end log; 

Function log defined above will throw an exception if 
it is provided with an invalid argument. This is not only 
useful for mathematical functions, but also for func-
tions (i.e. like the ones in Modelica.Utilities 
package) that deal with errors due to the operating sys-
tem. A common for all tools standard hierarchy of ex-
ceptions could be defined in the Modelica Standard 
Library for all the exceptions categories needed. De-
pending on the simulation runtime implementation (i.e. 
language of choice) of the Modelica tool exceptions 

Exception Handling for Modelica

The Modelica Association 409 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 2 - 

could be translated from Modelica to the runtime and 
back.  

A model that uses the try-catch construct in the ex-
pression and equation contexts is presented below: 
 
model Test 
 // try to read a value from file 
 // and if it fails just give it 
 // a default value. 
 parameter Real p= 
       try  
        readRealParameter("file.txt","p")  
       catch(Exn.IOException e) 
        0 
       end try; 
 Real x; 
 Real y; 
equation 
  try 
    y = log(x); 
  catch(Exn.InvalidArgumentException e) 
    // terminate the simulation with  
    // a message on what went wrong 
    terminate(e.message); 
  end try;     
end Test; 

In this model exception handling in expressions and 
equations are shown. In the case of exception handling 
in equations the example just terminates the simulation 
with an exception.  

As one may have noticed the exceptions can be 
thrown during: 

• Compilation time for expressions or functions that 
are evaluated at compile time 

• Simulation time, due to exceptions raised into the 
solver, functions, expressions or equations.  

All the exceptions raised during compile time are re-
ported to the user. The exceptions which are caught are 
reported as warnings and the un-caught ones are re-
ported as errors. 

3 Exception Handling 
In this section we present the design of the exception 
handling constructs. The grammar of the try-catch con-
structs is given below. The grammar follows the style 
from the Modelica Specification [6] and uses constructs 
defined there. Different try clauses for each of the ex-
pression, statements and equations contexts are defined. 

exception_declaration: 
  type_specifier IDENT  
  ["(" exception_arguments ")"] 
 
exception_arguments: 
   expression  
   [ "," exception_arguments ] 
 | named_arguments 
 

named_arguments:  
  named_argument [ "," named_arguments ] 
 
named_argument:  
  IDENT "=" expression 
 
name: 
  IDENT [ "." name ] 
 
throw_clause: 
  throw ["(" name  
  [ "(" exception_arguments ")"] ")" ] 

try_clause_expression: 
  try  
    expression 
  ( else_catch_clause_expression 
    | catch_clause_expression  
      { catch_clause_expresion }  
      [ else_catch_clause_expression ] ) 
  end try 
 
catch_clause_expression: 
  catch "(" exception declaration ")" 
    expression   
 
else_catch_clause_expression: 
  elsecatch  
    expression 

try_clause_algorithm: 
  try  
    { statement ";" } 
    ( else_catch_clause_algorithm 
      | catch_clause_algorithm  
        { catch_clause_algorithm }  
        [ else_catch_clause_algorithm ] ) 
  end try 
 
catch_clause_algorithm: 
  catch "(" exception declaration ")" 
    { statement ";" } 
 
else_catch_clause_algorithm 
  elsecatch  
    { statement ";" } 

try_clause_equation 
  try  
    { equation ";" } 
  ( else_catch_clause_equation  
    | catch_clause_equation  
      { catch_clause_equation }  
      [ else_catch_clause_equation ] ) 
  end try 
 
catch_clause_equation: 
  catch "(" exception_declaration ")" 
    { equation ";" } 
 
else_catch_clause_expression: 
  elsecatch  
    { equation ";" } 

Throwing via throw; without any parameter can only 
appear inside the catch clause and will throw the cur-
rently caught exception. This constraint is not specified 

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 410 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 3 - 

in the above grammar to keep it simple. Of course, it 
could be also checked by the semantics phase.  

The try-catch clauses shown here are part of the 
various contexts rules in Modelica grammar: expres-
sions, algorithm and equation.  

3.1 Exception Handling for Statements 

The statement variant has approximately the following 
syntax: 
try  
  <statements1> 
catch(<exception_declaration>)  
  <statements2> 
end try; 

The semantics of a try-catch for statements is as fol-
lows: An exception generated from a failure during the 
execution of statements1 will lead to the execution 
of statements2 if the exception matches the catch 
clause. 

3.2 Exception Handling for Expressions 

The syntax of the expression variant is as follows: 
try  
  <expression1> 
catch(<exception_declaration>) 
  <expression2> 
end try; 

The semantics of a try-catch for expressions is as fol-
lows: An exception generated from a failure while exe-
cuting expression1 will lead to the execution of ex-
pression2 if the exception matches the catch clause. 

3.3 Exception Handling for EOO 

What does it mean to have exception handling for equa-
tion-based models? For example, if an uncaught excep-
tion, e.g. division by zero, occurs in any of the expres-
sions or statements executed during the solution of the 
equation-system generated from the model, the catch 
could handle this, e.g. by simulating an alternative 
model (providing alternate equations), or stopping the 
simulation in a graceful way, e.g. by an error-message 
to the user. The number of equations within the try con-
struct must be the same as the number of equations in 
the catch part. This restriction is needed because mod-
els must be balanced. Of course, the restriction does 
not apply for the catch parts that only terminates the 
simulation and reports an error. 

The syntax of the equation variant is as follows: 
try  
  <equations1> 
catch(<exception_declaration>)  
  <equations2> | <terminate(...)> 
end try; 

The semantics of a try-catch for equations is as follows: 
If a failure generating an exception occurs during the 
solution of the equations in the set of equations denoted 
equations1, then if the catch matches the raised ex-
ception, then instead the equations2 set is solved. 

The source of the exception can be in the expres-
sions and functions called in equations1, which are 
evaluated during the solving process. Certain excep-
tions might originate from the solver. In that case, a 
few selected solver exceptions need to be standardized 
and predefined. 

The semantics of try-catch for equations is similar 
to the one for if-equations, with the difference that the 
event triggering the catch block is when an exception is 
thrown. 

There could be several semantics for try-catch in 
equation section and they are discussed in Section 8. 

3.4 Exception Handling and external functions 

The compiler should be able to check the exceptions in 
order to: 

• Report an error if the catch part tries to catch an ex-
ception that will never be thrown. 

• Report exceptions that are not caught anywhere 
• Generate efficient code for exceptions 

The compiler can find automatically at compilation 
time what exceptions are thrown from models and 
functions defined in Modelica. However, the compiler 
must be provided with additional help when it comes to 
external functions. Therefore, when declaring external 
functions, the exceptions that might be thrown by them 
have to be declared too. 

We could model this additional information in two 
ways: directly in the grammar or as annotations. 

Directly in the grammar as part of the ele-
ment_list (check the Modelica grammar for the ele-
ment list specification) of the function or model: 

throws_declaration: 
   throws name { "," name } ";" 

Is not really needed to specify in the grammar the pos-
sible exceptions to be thrown, we could use annotations 
instead: 
annotation(throws={name1, name2, ... }; 

Names used above are constructed according to name 
grammar rule specified in the beginning of this section. 

In the literature this feature of the compiler (or the 
language) is called Checked exceptions [18]. 

Exception Handling for Modelica

The Modelica Association 411 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 4 - 

4 Transforming matchcontinue Fail 
Semantics 

The current MetaModelica language extension has a 
simple fail semantics: fail exceptions can be thrown 
explicitly (via a fail() call) or implicitly (e.g., via a 
failure due to no patterns matching in a called func-
tion), and be caught/handled within the subsequent 
case(s) in the matchcontinue construct matching the 
same pattern. 

The matchcontinue construct can be transformed 
into a match-expression that does not have the continue 
semantics after a failure, however requiring that the fail 
exception is caught in the same case branch. 

Example: 

matchcontinue x local ... 
case Plus(a,b) equation   // raise 
    ...generateFailureException... 
case Plus(a,b) equation   // Catch 
    handleFailure(a,b) 
case _ handle_All_Inclusive_case(); 
end matchcontinue 

can be transformed into the following: 

match x local ... 
case Plus(a,b) equation 
  try  
    ...generateFailureException... 
  catch(Fail fail)  
    handleFailure(a,b)       
  end try; 
case _ handle_All_Inclusive_case(); 
end match; 

This transformation will be supported by a refactoring 
tool to transform existing code based on matchcon-
tinue constructs into faster and clenrer code based on 
the match construct combined with exception han-
dling. Such transformation will speed up the Open-
Modelica compiler, by removing many uses of match-
continue with repeated matching due to overlapping 
patterns. 

5 Exception Values 
In this section we discuss different ways of represent-
ing exception values in Modelica. In general exceptions 
are values of a user defined type. Certain exceptions, 
such as  DivisionByZero or ArrayIndexOutOf-
Bounds are predefined. The user should be able to de-
fine exceptions hierarchically (i.e. packages of excep-
tions) and use inheritance to add extra information 
(components) to existing exceptions, thus creating spe-
cialized exceptions.  

5.1 Exceptions as Types  
We can model exceptions as a built-in Modelica type 
Exception.  A pseudo-class declaration of such a type 
and its usage would look like: 
type Exception  
  // the value of the exception is  
  // a string, accessed directly  
  StringType ’value’    
end Exception; 

// Defining a new exception 
type E1  
  extends Exception; 
end E1; 

// Instantiate new exception 
E1 e1 = "exception E1";  
// Raise new exception 
throw e1;  

// Adding more information to an exception 
type E2 
  extends E1; 
  parameter String moreInfo; 

 end E2; 

// Instantiate the exception 
 E2 e2(moreInfo="E2 add") = "exception E2"; 

 // Throw exception 
throw(e2); 

 
try  
  ... 
catch(E2 e2)  
  // here you can access the  
  // e2 value directly 
  // but you cannot access e2.moreInfo 

catch(E1 e1) 
  // here you can access the  
  // value of e1 directly 
end try; 

Because we extend a basic type, it is possible to add 
more information to the exception, but this information 
cannot be accessed via dot notation.  

5.2 Exceptions as Records 

Another way to model exceptions is as Modelica re-
cords.   
record Exception  
  parameter String message; 
end Exception; 

// defining a new exception 
record E1  
  extends Exception(message="E1"); 
  parameter String moreInfo; 
end E1; 

// instantiate new exception 
E1 e1(moreInfo="More Info");  

// raise new exception 
throw(e1);  

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 412 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 5 - 

// Try and catch 
try  
  ... 
catch (E1 e1) 
  // here you can access e.message 
  // and e.moreInfo 
catch (Exception e) 
  // here you can access e.message 
end try; 

Modeling exceptions as records has many of the de-
sired properties that a user might want. The problems 
we see here are that: 

• Is not very intuitive to throw and catch arbitrary re-
cords.  

• The hierarchical structure is partly lost during flat-
tening, which means that for the records used in the 
throw/try-catch constructs this information should 
be preserved.  

• The inheritance hierarchy is flattened for records 
and one would like to keep it intact to be able to 
catch exceptions starting from very specific (at the 
bottom of the inheritance hierarchy) to more general 
(at the top of the inheritance hierarchy)  

We think that a better approach is with a new restricted 
Modelica class called exception.  

5.3 New Restricted Class: exception 

We believe that the best way to model exceptions in 
Modelica is by extending the language with a new re-
stricted class called exception. Moreover, similar de-
sign choices have been made in Java or Standard ML, 
with their predefined exception types. In Java one can 
only throw objects of the java.lang.Throwable and 
its superclass java.lang.Exception.  The C++ lan-
guage allows throwing of values of any type. In Stan-
dard ML and OCaml exceptions values and their type 
need to be defined using a special syntax. 

Exceptions can be represented in Modelica as a new 
restricted class in the following way: 
exception E1 
  parameter String message; 
end E1; 

E1 e1(message="More Info");  
 throw(e1); // raise new exception 

// defining a new exception 
exception E2  
  extends E1(message="E2"); 
  parameter String moreInfo; 
end E2; 

// instantiate new exception 
E2 e2(moreInfo="More Info");  
throw(e2); // raise new exception 
 
try  
  ... 

catch(E2 e2) 
  // here you can access e.message 
  // and e.moreInfo 
catch(E1 e1) 
  // here you can access e.message 
end try; 

Having a specific restricted class for exceptions would 
have the following advantages: 

• Throwing and catching only values of restricted 
class exception is more intuitive than using records.  

• Both the structural hierarchy and the inheritance hi-
erarchy of the exceptions can be kept during flatten-
ing and translated to C++, Java, Standard ML or 
OCaml code more easily.  

• The type checking of throw and try-catch constructs 
would be more specific and straightforward.  

6 Typing Exceptions 
Modelica features a structural type system, which 
means that two structures can be in the subtype rela-
tionship even if they have no explicit inheritance speci-
fied between them.  

The type checking procedure for exceptions has to 
be different than for all the other constructs, namely: 

• Only restricted classes of type exception can be 
thrown. 

• When elaborating declarations of restricted class 
exception the subtype relationship applies only if 
there is specific inheritance relation between excep-
tions. This is needed because the exceptions have to 
be matched by name and have to be ordered so that 
the most specific case (supertype) is first and the 
least specific (subtype) is last in a catch clause. 

• When translation declarations of restricted class ex-
ception there will be no flattening of the inheritance 
hierarchy. 

• When elaborating catch clauses the compiler has to: 
i) match the exception by name, ii) reorder the catch 
clauses in the inverse order of the inheritance rela-
tion between exceptions or give an error if the less 
specific exceptions are matched before the more 
specific ones. 

• The compiler has to check if an exception specified 
in the catch clause will actually be thrown from the 
try body or not. If such exception is not thrown the 
compiler can either discard the catch clause or issue 
a warning/error at that specific point. 

With these new rules the typing of exception declara-
tions, exception values and catch clauses can be 
achieved. After the translation, the runtime system and 
the language in which was implemented (C++, Java, 

Exception Handling for Modelica

The Modelica Association 413 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 6 - 

Standard ML) will provide the rest of the checking for 
exceptions. 

7 Implementation 
In this section we briefly present the OpenModelica 
implementation of exception handling. When referring 
to Exception Hierarchy we mean both the structural 
hierarchy and the inheritance hierarchy. 

 
Figure 1. Exception handling translation strategy. 

7.1 Overview 

The general translation of Modelica with exception 
handling follows the path described in Error! Refer-
ence source not found.. The exception handler and the 
exception hierarchy are passed through the compiler via 
the intermediate representations of each phase until the 
C++ code is generated (or any other language code 
used in the backends of different Modelica compilers).  

The specific OpenModelica translation path for 
Modelica code with exception handling is presented in 
Figure 2. 

Exception handling in OpenModelica required the fol-
lowing extensions: 

• The parser was extended with the proposed excep-
tion handling grammar. 

• Each intermediate representation of the OpenMode-
lica compiler was augmented with support for ex-
ceptions. 

Both the structural and the inheritance hierarchy of the 
exceptions are passed through the OpenModelica com-
piler until C++ code is generated.  

 

C++ Code and
C++ Exception handling and

C++ Exception Hierarchy

SCode

Inst

DAELow

Parse

CodeGen

SimCodeGen

Absyn

SCode

DAE Functions DAE Eq/Alg

DAELowC++ Functions

C++ Simulation Code

Modelica Code
with Exceptions

 
Figure 2. OpenModelica implementation. 

7.2 Translation of Exception values 

The translation from the internal representation to C++ 
code is straightforward: a Modelica exception maps to 
a C++ class. For example, the following Modelica code 
with exceptions: 
exception E 
  parameter String message; 
end E; 
 
exception E1 
  extends E(message="E1"); 
  parameter Integer id = 1; 
end E1; 

is translated into the following C++ code: 
class E  
{ 
  public: 
  modelica_string message; 
  E(modelica_string message_modification) 
  { 
    message = message_modification; 
  } 
  E()  
  { message = ""; } 
} 

Modelica Code 
with Exception handling and 

Exception Hierarchy 

FlatModelica Code 
with Exception handling and 

the Exception Hierarchy 

DAE with Exception handling 
and the Exception Hierarchy 

C++ Code and 
C++ Exception handling and 

C++ Exception Hierarchy 

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 414 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 7 - 

 
class E1 : public E  
{ 
  public: 
  modelica_integer id; 
  E1(modelica_string message_modification, 
     modelica_integer id_modification)  
  { 
    message = message_modification; 
    id = id_modification; 
  } 
  E1()  
  { 
    message = "E1"; 
    id = 1; 
  } 
} 

The following Modelica code for exception instantia-
tion and exception throwing: 
 
E  e;  throw(e);  
E1 e1; throw(e1); 
 
E1 e2(message="E2", id=2);  
throw(e2); 
 
E1 e3(message="E3");  
throw(e3); 

is translated to the following C++ code: 
E  *e  = new E();  throw e;  
E1 *e1 = new E1(); throw e1; 
 
E1 *e2 = new E1("E2", 2);  
throw e2; 
 
E1 *e3 = new E1();  
e3->message = "E3”; 
throw e3; 

Is also possible to represent exception values in C++ as 
objects allocated on the stack, i.e.: E1 e2("E2", 2);. 

7.3 Translation of Exception handling 

The C++ exception handling code follows the Modelica 
code. The table below defines the translation procedure 
for Modelica including the MetaModelica extensions. 

Modelica 
Expressions 
 

C++ 

x :=  
try  
  exp1  
catch(E e) 
  exp2 
end try; 

modelica_type temp; 
 

try  
{  
  temp = exp1;  
} 
catch(E *e) 
{ 
  temp = exp2; 
} 
x = temp; 
 

Modelica 
Statements 

C++ 

try  
 <statements> 

catch(E e) 
 <statements> 

end try; 

try  
{  
// Modelica  
// corresponding  
// C++ statements 

} 
catch(E *e) 
{ 
// Modelica  
// corresponding  

 // C++ statements 
} 

Modelica 
Equations 

C++ 

 

try  
 <eqnsA> 

catch (Ex1 e1) 
 <eqnsB> 

end try; 
 
 
 
 

try  
 <eqnsC> 

catch (Ex2 e2) 
 <eqnsD> 

end try; 
 

event1=false; 
event2=false; 

while time < stopTime 
{ 
try{  
 call SOLVER for problem:  
 if event1 
 then 
   eqnsB; 
 else 
   eqnsA 
 end if;   

 if event2 
   eqnsD; 
 else 
   eqnsC; 
 end if; 
} 
catch(Ex1 *e1) 
{ 
 discard posible 
 calculated current  
 step values; 
 reinit the solver  
 with previous step 
 values; 
 event1 = true; 
} 
catch(Ex2 *e2) 
{ 
 discard posible  
 calculated current  
 step values; 
 reinit the solver  
 with previous step  
 values; 
 event2 = true; 
} 
} 

8 Further Discussion 
During the design and implementation of exception 
handling we have encountered various issues which we 
will present in this section. The exception handling in 

Exception Handling for Modelica

The Modelica Association 415 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 8 - 

expressions and algorithm sections are straightforward. 
However when extending exception handling for equa-
tion sections there are several questions which influ-
ence the design choices that come to mind: 
 
Questions: Is the exception handling necessary for 
equation sections? If yes, what are the semantics that 
would bring the most usefulness to the language? 

Answers: We believe that exception handling is neces-
sary in the equation sections at least to give more useful 
errors to the user (i.e. with terminate(message) in 
the catch clause) or to provide an alternative for grace-
fully continuing the simulation. Right now in Modelica 
there is no way to tell where a simulation failed. There 
are assert statements that provide some kind of lower 
level checking but they do not function very well in the 
context of external functions. As example where alter-
native equations for simulation might be needed we can 
think of the same system in different level of detail. 
Where the detailed system can fail due to complexity 
and numerical problem the simulation can be continued 
with the less complex system.  

Semantics of try-catch in equation sections 

Several semantics can be employed to deal with try- 
catch clauses in equation sections: 
1. Terminate the simulation with a message (as we 

show in application section) 
2. Continue the simulation with the alternative equa-

tions from the catch clause activated and the ones 
from the try-body disabled. When the exception 
occurs the calculated values in that solver step are 
discarded and the solver is called again with previ-
ous values and the alternative from the catch 
clause. 

3. Signal the user that an exception occurred and re-
start the simulation from the beginning with the 
catch-clause equations activated. 

4. When an exception occurs, discard the values cal-
culated in the current step and activate the alterna-
tive equations from catch-clause. However, at the 
next step try again the equations from the try-body. 
This will make the catch-clause equation active 
only for the steps where an error might occur. 

We think that the most useful design for exception 
handling in equation section is the one that has both 
features 1 and 2 active. 

9 Conclusions 
We have presented the design and the implementation 
of exception handling for Modelica. We strongly be-

lieve in the need for a well designed exception handling 
in Modelica. By adding exception handling constructs 
to the language we get a more complete language and 
provide the developer with means to better control ex-
ceptions. There are several issues that have to be con-
sidered when designing and implementing these con-
structs which we have discussed in this paper. 

10 Acknowledgements 
This work has been supported by Swedish Foundation 
for Strategic Research (SSF), in the RISE and VISI-
MOD projects, by Vinnova in the Safe and Secure 
Modeling and Simulation project. 

References 
[1] Peter Fritzson, Peter Aronsson, Håkan Lundvall, 

Kaj Nyström, Adrian Pop, Levon Saldamli, and 
David Broman. The OpenModelica Modeling, 
Simulation, and Software Development Envi-
ronment. Simulation News Europe, 44/45, Dec 
2005.  
http://ww.ida.liu.se/projects/OpenModelica  

[2] Peter Fritzson. Principles of Object-Oriented 
Modeling and Simulation with Modelica 2.1, 940 
pp., Wiley-IEEE Press, 2004. See also: 
http://www.mathcore.com/drmodelica 

[3] Paul Hudak. The Haskell School of Expression. 
Cambridge University Press, 2000. 

[4] Kenneth C. Louden: Programming Languages, 
Principles and Practice. 2:nd edition, Thomson 
Brooks/Cole, 2003, (ISBN 0-534-95341-7)  

[5] Peter Fritzson, Adrian Pop, and Peter Aronsson. 
Towards Comprehensive Meta-Modeling and 
Meta-Programming Capabilities in Modelica.  In 
Proceedings of the 4th International Modelica 
Conference, Hamburg, Germany, March 7-8, 
2005. 

[6] The Modelica Association. The Modelica Lan-
guage Specification Version 3.0, September 
2007. http://www.modelica.org. 

[7] Mikael Pettersson. Compiling Natural Semantics. 
PhD thesis, Linköping Studies in Science and 
Technology, 1995. 

[8] Peter van Roy and Seif Haridi. Concepts, Tech-
niques, and Models of Computer Programming. 
MIT Press, 2004. 

[9] IEEE Standards Information Network. IEEE 100 
The Authoritative Dictionary of IEEE Standards 
Terms. IEEE Press, New York, USA, 2000. 

A. Pop, K. Stav̊aker, P. Fritzson

The Modelica Association 416 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck



                     - 9 - 

[10] Christen E. and K. Bakalar. VHDL-AMS-a 
hardware description language for analog and-
mixed-signal applications, In 36th Design Auto-
mation Conference,  June 1999 

[11] Oh Min and C.C. Pantelides (1996) "A Modeling 
and Simulation Language for Combined Lumped 
and Distributed Parameter System." Computers 
& Chemical Engineering, vol 20: 6-7. pp. 611-
633 1996. 

[12] Xavier Leroy et al., The Objective Caml system. 
Documentation and user’s manual, 2007, 
http://caml.inria.fr/pub/docs/manual-ocaml 

[13] Robin Milner, Mads Tofte, Robert Harper and 
David MacQueen, The Definition of Standard 
ML, Revised Edition, MIT University Press, May 
1997, ISBN: 0-262-63181-4 

[14] Bjarne Stroustrup: The C++ Programming Lan-
guage (Special Edition). Addison Wesley. Read-
ing Mass. USA. 2000. ISBN 0-201-70073-5. 
1029 pages. Hardcover. 

[15] James Gosling, Bill Joy, Guy Steele, and Gilad 
Bracha. The Java™ Language Specification, 
Third Edition,  ISBN-13: 978-0321246783, Pren-
tice Hall, June 2005. 

[16] Peter Bunus. Debugging Techniques for Equa-
tion-Based Languages. Ph.D. Thesis No. 873, 
Linköping University, 2004 

[17] David Broman. Safety, Security, and Semantic 
Aspects of Equation-Based Object-Oriented Lan-
guages and Environments. Licentiate Thesis, 
Thesis No. 1337, Linköping University, Decem-
ber, 2007. 

[18] Exception Handling:  
http://en.wikipedia.org/wiki/Exception_handling 

 

Exception Handling for Modelica

The Modelica Association 417 Modelica 2008, March 3rd − 4th, 2008

rderdau
Rechteck




