Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

Modelica as a host language

for process/control co-simulation and co-design

Filippo Donida, Alberto Leva
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio, 34/5 — 20133 Milano, Italy
{donida, leva}@elet,polimi.it

Abstract
The manuscript describes a project, currently under development at the Politecnico di Milano,

the aim of which is to create an integrated environment for the modelling and simulation of

process control systems, where the plant(s) are described according to the Modelica object-

oriented paradigm, while the control systems are specified in an IEC 61131.3-compliant

language, and automatically translated into algorithmic Modelica. Preliminary results will be

reported, given the vast scope of the project, but even at the present stage, interesting

discussions are possible on the potentialities and pitfalls of Modelica (and even of object-

oriented modelling at large) when it comes to describe control algorithms of realistic

complexity and size.

1. Introduction

A significant experience is nowadays available on
the use of Modelica to model, simulate and assess
control systems in the process domain [15, 16, 12,
13]. As witnessed by many references (samples
will be given in the final manuscript, including
some directly related to the authors' experience)
there is a correspondingly vast corpus of
libraries, models, and system studies [7, 6, 15, 16,
14, 4].

Based on that experience, a critical point when
dealing with applications of realistic size is
invariantly the “correct” representation of the
control system. The object-oriented paradigm can
be suitably exploited to allow for various,
of

such a

interchangeable control
different,

possibility is definitely a plus of Modelica.

representations

scalable complexity, and

However, when it comes the time to describe the

control system in full detail, the most effective
way to do so is not only algorithmic, but
compliant with the industrial standard accepted in
that domain, the IEC 61131-3 being the most
important one [8, 18, 17, 9, 5, 2, 11]. Adhering to
an industry standard is beneficial not only in
terms of acceptability of the developed simulators
on the part of people who know much more about
their processes than about simulation (a problem
worth addressing in any case, however) but also
in terms of reduced ambiguity in the realisation
of controller models [3, 4].

After several years of experience on the matter,
the authors are strongly convinced that Modelica
is very well suited as a host language for the
representation of realistic-scale process controls,
but that to do so it is highly desirable to allow for
the specification of such controls in IEC-
compliant languages.

The Modelica Association

401

Modelica 2008, March 3¢ — 4t 2008

F. Donida, A. Leva

Based on the above idea, the AutoEdit (the name
may change in the future) project was started.
The aim of the project is to set up a tool
composed of

e a graphical Modelica editor, aimed at
writing the “plant model”,

e an editor for IEC 61131.3 languages (at
present the Ladder Diagram, Sequential
Functional Chart and the Functional
Block Diagram are being considered),
aimed at writing the “control model”,

e a “compiler” capable of translating both
the “plant” and “control” model in a
single Modelica file, to be fed to any
Modelica translator for simulation (the
term ‘“compiler” being used here for
analogy and compatibility with the IEC
terminology, albeit the Modelica jargon
would most likely advise something like
“pre-translator”),

e and a simulation output browser.

To the best of the authors' knowledge, such a tool
is the only one allowing to couple Modelica
process modelling with IEC (i.e., industry
standard) control system representation, greatly
facilitating the creation of simulators of process
control systems.

AutoEdit is fully written in java (hence cross-
platform), uses the XML language as internal
for and

data format maximum openness

transparency, and is entirely free software,
released under the terms of the GPL license. It is
the authors' intention to allow AutoEdit to operate
with any Modelica translator, so as to maximise
its use and to have the maximum amount of
feedback for improvement. At present, the
AutoEdit hosted the URL
http://home.dei.polimi.it/donida/projects.php?proj

ect=AutoEdit

site 1S at

The paper organised as follows. First a minimal
review of the background. Then, a discussion is
carried out on the opportunity of generating
event-driven Modelica code with an ad hoc tool,
instead of describing control system components,
as already attempted, with Modelica (continuous
time based) models. The outcome of such
discussion, as can be guessed, is that the “best”
approach depends on the size of the considered
application, direct generation of algorithmic code
being preferable in the case of large (control)
systems. The AutoEdit project is then described,
illustrating its goals, structure, organisation,
present state, and future developments.

2. Background

Recent advances in object-oriented modelling
allow to tackle the simulation and the computer-
aided control system design of industrial plants in
a unified framework. Traditionally, however, the
plant study and design, the following design
assessment simulations, the control system
design, the overall system validation, and the
operator training, are not developed in a
coordinate way within a single environment. By
vastly acknowledged opinion, doing so is a waste
of time and resources, not to say a possible source
of errors, because the involved environments are
frequently not compatible each other, requiring
manual intervention to transfer information from
one tool to another..

The Modelica multi-physics approach allows per
se to perform a first integration of two of the
involved frameworks: the plant model and its
control are defined with an equation section for
the plant and an algorithm section for the control
code, and then the two sections are unified in a
single model and simulated simultaneously.

In the present software engineering arena,

translators and cross-compilers are well diffused,

The Modelica Association

402

Modelica 2008, March 3¢ — 4t 2008

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

but basically such tools are available for the
software development only. To the best of the
authors' knowledge there are no similar examples
in simulation for control area, except for some
ad hoc solutions pertaining to the micro-
controller real-time applications.

The AutoEdit is an attempt to fill the gap
sketched above. It is in the first place an
integrated IEC61131.3 compliant environment for
of
programs, having (algorithmic) Modelica as the

the graphical development the control
target language. Moreover, it proposes new
standard for the Ladder Diagram (LD) and
Chart (SFC) file
representations, using the XML language and

Sequential ~ Function
DTD validation. AutoEdit also encompasses a
converter from the SFC XML to LD XML
format, managing different level of variables'
scope, as required to be compatible with the way
IEC-compliant projects are organised. In one
word, AutoEdit is an attempt to allow developing
the model of a complete control application
(process and control system) in a single
environment, and having as final output a

complete simulator of the overall application.

3. Modelling control code in Modelica
Consider the way a control application is
typically developed in an IEC-compliant
environment. The application is composed of
programs, written in one or more of the
supported languages, and linked together by the
development tool. The programs of an application
are organised into sub-applications, that in turn
are deployed to one or more CPUs and arranged
into threads, each one composed of programs that
share the cycle time. i.e., the temporal cadence
for the update of inputs and outputs.

The goal of AutoEdit is to take as inputs

e a model of the plant written in standard
Modelica

e and some description of the control
application (the term “application” being
intended in the IEC sense summarised
above,

producing as output a single Modelica model, to
be fed to any Modelica translator for subsequent
simulation.

The question, then, is how to describe the control
application.

Basically, one can follow two strategies. One is to
the IEC
Modelica models: this is somehow tempting

describe languages' elements as
especially if one considers the graphical IEC
languages (FBD, LD, and SFC). Doing so allows
to take profit from the manipulation capabilities
of the adopted translator, to the apparent
advantage of simulation efficiency.

The other strategy is to translate the IEC
to be

assembled conveniently in blocks, and connected

programs into Modelica algorithms,
to the plant model in the usual way.

AutoEdit takes the second way, for the reasons
summarised in the following. First, especially
large can easily lead symbolic manipulator to
deal with thousands and thousands of variables:
many of them are managed trivially, but the
overhead remains. Then, many problems in IEC-
specified control systems reside in the incorrect
of threads
applications, and therefore — for a credible

synchronisation control and
validation of the control system — representing
that timing (e.g., and typically, with when
clauses) is very important; if this is done, given
the limitations of when-equations, describing the
code as algorithms starts looking advisable. In
addition, the organisation of the code in threads
and sub-applications is typically functional, thus

better reflected in algorithms than in equations.

The Modelica Association

403

Modelica 2008, March 3¢ — 4t 2008

F. Donida, A. Leva

Finally, and in some sense as a by-product, if a
tool like AutoEdit
Modelica code starting from an IEC source, then

generates algorithmic
the same tool can easily be extended to generate —
from the same source — code in virtually any
procedural programming languages. Exploiting
that possibility is in the future plans of the
AutoEdit project, and will lead to a single tool for
the simulation of a complete system (avoiding the
problem of IEC
development environments) and also for the

“how-to-close-the-loop”

generation of the control code to be actually
deployed to the system's CPU(s).

4. An example

A very simple example is now reported to better
illustrate the ideas of section 3. In this example, a
home irrigation plant is introduced. The plant has
an accumulating tank, a pump, two level sensors,
and three valves, each one connected to an
irrigation line. A schematic figure of the plant is
reported as figure 1.

Tank

Vi

PUMP —@ V2

Figure 1: the example plant.

The pump starts pumping water in the tank when
the level of the water is lesser than a OK_LEVEL
(boolean sensor that returns true if covered by
water) level since the water reaches the level
FULL_LEVEL
Everyday, say at 20:00 (event launched by a

(similar boolean sensor).

START _CYCLE variable, assumed here to be
managed by some clock external to the program),
each of the valves (V1 to V3) has to be opened.
Each valve, one for each zone, remains opened
for 10 minutes and then is closed. There is also a
ON/OFF command: if ON is true then the plant
works as described below, otherwise all the
valves are opened, and the pump is stopped.

Figure 2 shows the overall control program,
written in the SFC language, as is appears in the
AutoEdit window. It is possible to recognise the
various elements of the (very simple) control
logic, and to appreciate the similarity of the user
interface to that of the typical IEC-compliant
environments (to the advantage of acceptability
on the part of control system developers). We do
not report simulations here since the plant and
control operation in this example are very simple,
and would not contribute to the purpose of this

paper.

[Autoedit Plant.xml =020

|

[START_CYCL| LON
JAND ON;
IR 2-2:1D: 5

[l D

’5—- 3(SET); b
T

4] 1l | D

[4]

Figure 2: the example plant control in SFC.

In the example the translation was very simple
but, when considering industrial applications of
realistic size, the number and length of the lines

The Modelica Association

Modelica 2008, March 3¢ — 4t 2008

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

of control code would increase dramatically, and
automatic generation of the algorithmic code
would prove necessary. In addition to this if we
consider the possibility to have heterogeneous
IEC-compliant programs a mixture of ST, LD and
SFC implementation, the complexity further
increases.

Thanks to the AutoEdit conversion utility, it is
possible to translate the SFC programs into LD
and then, automatically, to Modelica algorithm-

based models. The translation of an

E] € Applicazioni Risorse Desktop (@ [

File Edit View Tools Window Help
Q|O® 0 |

AutoEdit 2004

heterogeneous IEC control program is perfectly
transparent to the AutoEdit user.

4. The AutoEdit project

The project started in the 2004 with the intent to
realise a Java graphical application to support
graphical programming for the LD, SFC and
Structured Text (ST) languages.

From 2004 to 2006 a graphical application was
therefore developed to graphically support the
SFC and LD programming.

= Modelica = mEi
9 [Library

JEdit - Modelica Mechanics Rotational ConstantSpeed17661 mot =72 7ioi

o [Blocks :
&[] Constants Mlof ble g
e 7 Electrical E & Mol

o [Jlcons : ~Tood &

earch Markers Folding Vi

Macros Flugin Helg

o 3 Math ' o)
¢ 9 Mechanics : =
9 3 Rotational -
[Accelerats E M
[BearingFriction E <
[Brake K
[ciuten
[Constantspeed
[constamTorque
[pamper E M
[} ElastoBacklash E

[
T
2

o [Examples
[Fixed
[Gear

[Gearz

[GearEfficiency
[1dealGear E
[1deaiGearr2T [
[1dealflanetary

[Inertia 1

rotation axis

1= fan ‘v
15 nodeled with elaa]

pring constant (c

[o - |

o CJ Imerfaces : —
[LinearSpeedbependentTorque : Ul
[LossyGear : </HTHL>.

[} onewayClutch E
[Position (]
[} quacrraticspeedDependentTorque end Flnernfiasi aehe

equation .
w_rel=der(phi_re1);.

[wove E | "3, Icangeoordinatesysten(extent={{-100.0,-100.0},{100.0,100.0}}), graphics={Lije(points={{-80.0,32.0},{-58]

— Tau=if b2 > b_win then 1f phi_rel = b2 then c*(phi_rel - phi_rel0 - b2) + d*wlrel else i phi_rel < -b2 th

1

[RelativeStates lul

Dl

) 3T

Z] [& fiippo@filippo-Beng: ~/Desktopttl || 2 AutoEdit 2004

[7 Fieautoedit (~Desktop) - gedit

bl
[JCGET

Figure 3: The AutoEdit main window.

Starting from 2006, the target was widened as
illustrated in section 3, so as to integrate the
AutoEdit environment with a Modelica editor,
and then (starting in 2007) to create a converter
from SFC, LD XML and Modelica algorithmic-
based .mo files. This is — more or less — the
present state of the project. Notice that a high
development effort is being spent on AutoEdit, so
that the mentioned state 1is continuously
changing. The reader is referred to the project site

for up-to-date information.

Here, just some samples of the AutoEdit
operation are given. Space limitations prevent
from reporting here any technical detail, that can
anyway be figured out from the site, and will also
be available in the system documentation.

Figure 3 shows the main window of AutoEdit
with a Modelica model open for editing. It is

The Modelica Association

Modelica 2008, March 3¢ — 4t 2008

F. Donida, A. Leva

possible to see the multiple subwindows scheme,
allowing simultaneous editing of multiple
(process and/or control) models. The AutoEdit
text editor, thanks to the integration of the JEdit
software, offers many functionalities, among
which syntax highlighting, bracket highlighting,
text folding (also for annotations), word auto-
completion, auto-indentation and many others
utilities. of multiple models.

E] & Applicazioni Risorse Desktop @@

— AutoEdit 2004

File Edit ¥iew Tools Window Help

Figure 4, on the other hand, shows the conversion
from SFC to LD, namely of the pump control
program in the example introduced above. It is
possible to appreciate the usefulness of having
simultaneous views of the same code with
different representations, a facility offered by
several IEC-compliant environments, and of high
usefulness according to the opinions of the
industrial community.

S MO <% s 2

PER|

QOREAR | «B | | il | b | B |
e o el | o | e maa el | e | el mig | @
Cd Modlelica 4 t
. = —
J Liorary : — 5] Autoedit Pump_LD.xm| i
&] Blacks I =

o [Blocks
o~ Constants

Diction] PUMP(RST) :
0-1:10:1

InitDone

&] Modelica model
& 9 Modelica result
[CIIECA1131-2

¢ [Constants : ——— Iniziofrog
o 7 Electrical N oca g
& [Electrical : E—— 1OK_LEVEL
- g Icons : Dictionar + ;ND on InitDone
p 1-1;10:2
o [lcons J| @ Boolean O Integer F—(s)——
o I Math E
M O Timer O Message T] puwecET;
o Emath E | steplnitiall trans2
& 3 Mechanics Declared Variables p-1:10:3 mizioProgr.: 1 | L :
o 2] Mechanics AT ot 1T 1 L
& CISlunits A vz FULL_LEVEL]
o [Slunits vz ismia |RHON step3 trans4
¢ [UsersGuide Al va | A PN }
o 3 UsersGuide : urnp, I 1 | {) |

ULL_LEVEL d/
K_LEVEL 4-1;10:18
M

trans2 steplnitiall

9 I Sequential Function Chart |-
[Pump.sxemi
[Plant xmi

R |
step3
S

%] Ladder
[Pump_LD. xmi
=g Dictionary

rans4 step3

[connections

[=J Unknown M selected variables
[T Project E

I 1| (R) |
steps
L5

i N
O Error g N

Types
Q Input (o]
Q Internal C

Initial value

Figure 4: the pump control program converted from SFC to LD by AutoEdit.

S. Future developments

Many interesting “future works” arise for the
AutoEdit project from the scenario synthetically
described possible
developments, those that seem more promising,

above. Among those
and are therefore scheduled as work to be done in
the near future, are

e the development of a 3d viewer for the
simulation data,
e the addition of other advanced editing

functionalities,

e the exploitation of interaction/integration
possibilities with other IEC-compliant
tools,

e the output of ad hoc real-time code in
several languages, the C languages being
for obvious reasons the first to be
considered,

e the addition of multitasking support.

6. Conclusions

A Java-based integrated environment for the

The Modelica Association

Modelica 2008, March 3¢ — 4t 2008

Modelica as a Host Language for Process/Control Co-Simulation and Co-Design

of
simulation models of controlled plants, namely

development complete object-oriented
the AutoEdit project, was presented.

The goal of AutoEdit is to allow the user to create
both the plant model, using the power of the
Modelica language, and an algorithmic model of
the control program, adhering to the IEC61131.3
industry standard,

As such, AutoEdit not only proposes a software
solution, but also tries to suggest new standards
and ideas for unifying two of the most important
activities of the computer-aided engineering
tasks: model and control co-simulation.

References

[1] T. Sato, E. Yoshida, Y. Kakebayashi, J.
N. Komoda,
IEC61131-3 For Semiconductor Processing

Asakura, Application of

Equipment, Emerging Technologies and
Factory Automation. Proceedings. 2001 8th
IEEE Intemational Conference on, 2001.

J. Huang, Y. Li, W. Luo, X. Liu, K. Nan, The
Design of New-Type PLC based on
IEC61131-3, Proceeding of the

International

(2]

Second
Machine
Xi, 2-5,

Conference on
Learning and Cybermnetics,
November 2003.
A. Leva, A. M. Colombo, Method for
optimising set-point weights in ISA-PID
autotuners, IEE Proc-Control The09
Appl., Vol. 146, No. 2, March 1999 .

H. Takada, H. Nakata, S. Horiike, A
Reusable Object Model for Integrating
Phases of Plant

Engineering, Proceedings of the Fourth

[3]

[4]

Design Systems
International Conference on Computer and
Information Technology (CIT’04).

H. Taruishil, S. Kajiharal, J. Kawamotol, M.
Ono, H. Ohtani, Development of Industrial

[5]

Control Environment
Enhanced by Extensible Graphic Symbols,
SICE-ICASE International Joint Conference
2006 in Bexco, Busan, Korea, Oct. 18-2 1,
2006.

Y. Qiliang, X. Jianchun, W. Ping, Water
Level Control of Boiler Drum Using One
IEC61131-3-Based DCS, Proceedings of the
26th Chinese Control
Zhangjiajie, Hunan, China,
2007.

M. Bonfe', C. Fantuzzi, L. Poretti,
programming

Programming

(6]
Conference,
July 26-31,

PLC
using

(71
Object-oriented
IEC61131-3 norm languages: an application
to manufacture machinery, in Proc. of
[EEE/ASME Int. Conf.
Intelligent Mechatronics, vol. 2, pp. 787-792,
2001.

[Online]. Available http://www.plcopen.org.
J. Roger Folch, J. Pérez, M. Pineda, R.
Puche, Graphical Development of Software

on Advanced

[8]
[9]

for Programmable Logic Controllers, 12th
International Power Electronics and Motion
Control Conference.

[10] [Misc]. DeltaV: Monitor
software.

[11] [Misc].
http://www.ni.com/labview.

and control

Labview:

[12] [Online]. Dymola: http://www.dynasim.se

[13] [Online]. Openmodelica:
http://www.ida.liu.se/labs/pelab/modelica/O
penModelica.html

[14] A. Nobuo, 1. Kenichi, Y. Eiji, Application
portfolios for stardom, 12th International

Power Electronics and Motion Control

Conference.

[15] M. Otter, K. E. Arzén, I. Dressler,
StateGraph-A Modelica Library for
Hierarchical State Machines, 4th

International Modelica Conference, March
7-8, 2005.

The Modelica Association

407

Modelica 2008, March 3¢ — 4t 2008

F. Donida, A. Leva

[16] O. Johansson, A. Pop, P. Fritzson,
Engineering Design Tool Standards and
Interfacing Possibilities to Modelica

Simulation Tools, 5th International Modelica
Conference, September 4-5, 2006.
[17] E. Tisserant, L. Bessard, M. de Sousa, An

Open Source IEC 61131-3 Integrated

Development Environment, Industrial
Informatics, 5th IEEE International
Conference on, 2007.

[18] [Online]. ISaGRAF:

http://www.icpdas.com/products/PAC/i-
8000/isagraf.htm

The Modelica Association

408

Modelica 2008, March 3¢ — 4t 2008

