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Abstract 

In addition to time-domain simulation methods, en-
gineers from different application fields require fur-
ther types of analysis to be performed on their sys-
tems. In particular results from frequency domain 
analysis play an important role – this includes the 
calculation of natural frequencies and vibration 
modes, but also the computation of transfer functions 
or the simulation of steady-state behaviour. 
If the system equations are formulated using the 
Modelica language, there is the potential to use one 
and the same model for time-domain as well as fre-
quency-domain computations. 
In this paper we will show, how the different meth-
ods can be applied to a Modelica model, what kind 
of prerequisites and adjustments are required in order 
to perform the different types of analysis and how 
these methods can be seamlessly integrated into a 
Modelica simulation environment. 
 
Keywords: Modelica, Steady State Simulation, 
Transfer Function Analysis, Natural Frequency 
Analysis 

1 Introduction 

In many engineering disciplines frequency-domain 
methods play an important role. Powertrain engi-
neers for instance not only exploit transient simula-
tions, but to a large extend assess the behaviour of 
their systems based on the natural frequencies, the 
resulting vibration models, and also in terms of 
steady state results, which show vibrations under 
stationary conditions resulting from the uneven and 
multi-order excitation of the driveline by the engine. 
Other engineering domains and tasks also require 
frequency-domain approaches. 

However, all these tasks would typically be assigned 
to different software tools, which is not really neces-
sary. 
Modelica forms the ideal base also for frequency-
domain analyses, since it provides complete system 
descriptions in an analytic form. However, so far 
Modelica is used almost exclusively for transient 
time-domain simulation. 
In this paper we will show, how Modelica models 
are used in order to compute frequency-domain re-
sults and how these processes are integrated into the 
Modelica simulation environment SimulationX. 
The paper will treat the following topics: 

• Nonlinear periodic steady-state simulation 
and generation of spectral results based on 
harmonic balance 

• Natural frequencies, vibration modes and 
energy distributions based on models lin-
earized in an operating point 

• Computation of transfer functions based on 
models linearized in an operating point 

We focus on the periodic steady-state simulation 
since this is the most recent innovation in 
SimulationX. 

2 Periodic Steady-State Simulation 

2.1 Application to Modelica Models 

The main area of application for the nonlinear peri-
odic steady-state simulation in SimulationX is the 
vibration analysis of powertrains. 
The example Modelica model in Fig. 1 is an adaption 
from [4] p. 246 with some added damping and cylin-
ders including oscillating masses and driven by some 
typical combustion engine cylinder pressure. 
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The steady-state for a range of mean rotational 
speeds of the engine has to be computed. The oscilla-
tion time period is determined by the engine speed 
and the periodicity of the excitation over the crank 
angle. 

Engine Damper

4-Cylinder Engine

Fly Wheel

Gear Box and Shaft

Differential Gear, Side Shaft

Tyre, and Car Load Torque

tau   
Fig. 1: Example of a Modelica model of a powertrain 
analyzed with the periodic steady-state simulation 
But the method is also applicable to driven systems 
in other physical domains. For non-linear electronic 
amplifiers and filters most often the frequency or 
amplitude of the driving generator is swept and the 
period is measured at its phase. Therefore, a general 
approach is needed. In SimulationX the following 
procedure has been implemented: The user chooses 
the varying reference quantity (e.g. mean engine 
speed or generator frequency) and the period vari-
able (e.g. crank angle or generator phase) from Mod-
elica model trees containing all variables and pa-
rameters. For powertrains (or more general whenever 
the reference quantity is not a parameter but the 
mean value of a variable) the user also distinguishes 
some model parameter as compensation parameter - 
such as the load torque of the powertrain. The algo-
rithm adjusts the compensation parameter for the 
steady-state, i.e. the mean engine torque and the load 
torque are balanced out by the algorithm. No special 
preparation of the Modelica model is needed to en-
able the steady-state simulation. The same model 
may be used for a simulation in time-domain too. 
During the simulation the computed spectra of the 
Modelica variables are written to special steady-state 
protocols. Those results can be visualized in several 
different representations (amplitudes, phases, fluc-
tuations, spectral powers and so on). For the power-
train example from Fig. 1 some of the amplitudes of 

the calculated harmonic torque components in the 
mass-damper spring are shown in Fig. 2.  
In SimulationX the initial conditions corresponding 
to the results of the periodic steady-state simulation 
can be calculated and used to initialize a successive 
transient simulation. 

 
Fig. 2: Spectral results for the torque of the spring in 
the engine damper; the sum curve and the amplitudes 
of the first harmonic components are shown, the larg-
est amplitudes are labelled with the oscillation orders 
In this way the periodic solution can be recalculated 
with a transient simulation and the steady-state re-
sults can easily be checked. Fig. 3 shows a very good 
match of the steady-state simulation result with the 
transient simulation result. 
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Fig. 3: Torque in the spring of the engine damper (full 
line: steady-state simulation, dashed line: transient 
simulation); the results are almost identical 
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2.2 Computational Background 

In this subsection we give some insight in the com-
putational background specific to the periodic 
steady-state simulation. If the reader is only inter-
ested in applications he may safely skip to subsec-
tion 2.3.  
For the periodic steady-state simulation the harmonic 
balance method is employed. This method gives a 
high spectral precision of the results and prepares the 
numerical base for behavioural modelling in the fre-
quency domain. 

2.2.1 System Equations 
The symbolic analysis compiles from the Modelica 
model a system of equations for the stationary simu-
lation. If the simulation time appears explicitly in the 
model equations (for instance in a driven system) it 
is replaced by a state timex with 1/ =dtdxtime  which 
leaves us with an autonomous algebraic differential 
equation system 

( ) 0),(),( =Cxtxtxf &     (1) 

where x is the nR -valued state vector with corre-
sponding time-derivative x& , and R∈Cx  is the com-
pensation parameter (see section 2.1). It is conven-
ient to represent oscillations not over time but over 
the phase angle tωϕ =:  for which the period length 
keeps constant at π2  independent of the period du-
ration (ω  is the phase velocity of the oscillation). 
Substituting the derivative w.r.t. time through the 
derivative w.r.t. phase )(')( ϕω xtx =&  in eq. (1) 
gives  
( ) 0),('),( =Cxxxf ϕωϕ .   (2) 

Throughout the remainder of this section we repre-
sent x  in dependence of the phase angle. 
The system is assumed to be freely displaceable in 
one direction of the state space. Therefore, we chose 
a combination of a π2 -periodic function x~  and a 
component linearly dependent on the phase angle as 
a solution ansatz 

( ) ( )ϕ
π
ϕϕ xxx ~

2
+= P     (3) 

for the system equation (2) with a constant vector 
nx R∈P , called period vector in the sequel. 

This setup is rather general. It includes freely rotat-
ing powertrains and periodically driven systems. 
Solving (2) can now be divided into the two tasks 

• computation of the period vector Px  

• computation of the periodic function x~  
which will be described in the following two sec-
tions. 

2.2.2 Period Vector Computation 
The user selects one model variable as the period 
variable (cf. section 2.1). We denote the index of that 
variable as Pi . For this variable the user specifies 
the period length p . The model equations (2) are 
then solved for the static case (i.e. 0=ω ) once with 

0=ϕ  and once with πϕ 2= . Because of the π2 -
periodicity of x~  the difference of these two solu-
tions just gives the period vector 

( ) ( )02 xxx −= πP .    (4) 

At 0=ϕ  the displacement of the system (e.g. the 
rotational position of a powertrain) is determined by 
the additional condition ( ) 00 =Pix . This together 
with (2) and (3) results in the overall system  

( )( ) ( ) 00;0,0,0 == PC ixxxf    (5) 

for the case 0=ϕ  which consists of 1+n  equations 
for the 1+n  unknowns composed of the n  
states )0(x  and the compensation quantity Cx  (e.g. 
the load torque of a powertrain). 
For πϕ 2=  we use the user-defined periodicity of 
the state vector component Pi  and solve 

( )( ) ( ) pxxxf i == ππ 2;0,0,2 PC .  (6) 

The condition that Cx  is the same in (5) and (6) of-
fers a possibility to check the computed solutions. 
For driven systems the equations in (5), (6) may not 
be simultaneously solvable. In that case in each of 
these systems the static equation 
( ) ;0,0, =Cxxf  

is replaced by the condition 

( ) min;0,,
2
→= vxvxf C  

where 
2

v  denotes the Euclidian norm of v . 

In practice it has proven sufficient to solve the result-
ing restricted minimization problems by a modified 
Gauss-Newton algorithm. 

2.2.3 Harmonic Balance 
For the computation of the periodical part x~  in the 
ansatz (3) equation (2) is reformulated as the varia-
tional equation 
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( ) ( )∫ =⋅
π

ϕϕϕψ
π

2

0
0

2
1 dy     (7) 

with ψ  varying over all continuous nR -valued 
functions fulfilling the condition ( ) ( )πψψ 20 =  and 
with 

( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++= C

PP

2
xx

x
x

x
fy ,'~,~

2
: ϕ

π
ωϕ

π
ϕ

ϕ . (8) 

For a fixed phase velocity ω  the solution x~  is only 
determined up to a multiple of Px  and a correspond-
ing phase shift (e.g. for a powertrain the arbitrary 
initial angular position). To formally fix the initial 
disposition, additionally the mean value of the period 
variable is balanced to zero: 

( )∫ =
2

π
ϕϕ

π
2

0
0~1 dxiP .    (9) 

In some cases the user does not want to prescribe the 
phase velocity ω  directly (e.g. for powertrains it is 
usual to prescribe the mean rotational speed of the 
engine instead). For that reason the user-chosen ref-
erence quantity was introduced in section 2.1. Let 
Ri  be the index of the reference quantity and r  the 

wanted mean value for that variable. Then instead of 
a direct assignment to ω  the equation  

( )∫ =
2

π
ϕϕ

π
2

0
~1 rdxiR     (10) 

is added to the variational system. 
Following Galerkin for the numerical treatment 
of (7,8) the function space for ψ  and x~  is restricted 
to the finite-dimensional space spanned by the har-
monic orthogonal system of base functions 

( )ϕψ kk jexp:][ =  with NNk ,,K−= . (11) 

In the following we keep using lower indexes for the 
state vector components but we use Modelica index 
notation to organize the frequency components (as 
we have already done so by defining ][kψ  above). 
Using the base (11) for the periodical part x~  in (3) 
the ansatz becomes 

( ) ( )∑
−=

=
N

Nk

kxkx ][ˆjexp~ ϕϕ    (12) 

where ][ˆ kx  is the k -th frequency component of the 

state space vector (we use a hat x̂  or ( )^x  to denote 
complex amplitudes). Since x~  is real ][ˆ kx  is the 
complex conjugate of ][ˆ kx − . Thus, the values of x̂  
are determined by ( )12 +Nn  real numbers. With ψ  
replaced by ][kψ  for NNk ,,K−=  the resulting 

12 +N  left-hand sides of (7) become the 
first 12 +N  Fourier coefficients ( ) ][,,ˆˆ kxxf cω  of 
the left-hand side of (2), i.e. Fourier coefficients of 
the time-domain residuals. Equations (7,8,9,10) to-
gether then give the harmonic balance equation sys-
tem 

( )

rx
x

xxf

i

i

=
=
=

]0[ˆ
0]0[ˆ
0,,ˆˆ

R

P

Cω
    (13) 

of ( ) 212 ++Nn  scalar equations for the 
( )12 +Nn  unknowns in x̂  and the additional two 

unknowns Cx,ω . The fast Fourier transformation 
(FFT) is used to approximate the Fourier-coeffi-
cients of y . Because of the nonlinearities in f  the 
spectrum of y  is wider than that one of x  and some 
oversampling is needed for the FFT to keep the alias-
ing error low. 
For solving system (13) Newton's algorithm is ap-
plied. Deriving the Newton corrector equation in 
time-domain and then transforming it into frequency-
domain gives good insight into the structure of the 
resulting system of equations. A first order Taylor 
approximation of (2) in the current numerical ap-
proximation of ( )Cxx ,,~ ω  yields the equation 

( )
0

''
3

21

=⋅∂+
++⋅∂+⋅∂+

Cxf
xxfxff
δ
δωωδδ  (14) 

which determines with (3) the Newton correc-
tion ( )Cxx δδωδ ,,~  (note: (i) here fk∂  stands for 
the derivative of f  w.r.t. the k th argument, and 
(ii) for clarity we have omitted the arguments 
( )Cxxx ,',ω  of f , (iii) xxx ~,, δδ  are functions 
of ϕ ). The time-domain products in (14) correspond 
to frequency-domain convolutions. E.g., the FFT 
transforms xf δ⋅∂1 into 

( )( ) ( ) ][ˆ][][ˆ* ^
1

^
1 lxlkfkxf

N

Nl

δδ ∑
−=

−∂=∂ . (15) 

With ( ) ][ˆ:][ˆ: kxkkxII =  the spectrum of the de-

rivative x&  can be written as ( ) xIx ˆj' ^ = . So, after 
shifting f  to the right-hand side (14) is transformed 
by the FFT into the equation 

( )( ) ( ) ( )( )
( ) ( ) fxfxf

xIfxf
ˆ'

ˆ*jˆ*
^

3
^

2

^
2

^
1

−=∂+⋅∂+
+∂+∂

Cδδω
δωδ

 (16) 
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for the unknown Newton correction ( )Cxx δδωδ ,,ˆ  
in the frequency domain. Together with (9) and (10) 
written as 

0]0[ˆ;0]0[ˆ == RP ii xx δδ    (17) 

this system formally determines the Newton correc-
tion in the frequency domain completely. 
With the number of ( ) 212 ++Nn  real unknowns 
the system is rather large and the convolution opera-
tor in (16) causes large fill-in of the system matrix 
making direct solving infeasible in real-world appli-
cations. Therefore, the iterative GMRES algorithm is 
used instead (see e.g. [5]). This method only requires 
the evaluation of the left-hand side of (16) for 
known ( )Cxx δδωδ ,,ˆ . This also makes it possible 
to replace the frequency-domain convolutions in (16) 
by the cheaper corresponding time-domain products 
in (14) (together with the therefore needed FFT-
operations). GMRES only works well with an appro-
priate pre-conditioner. Thus, one must be able to 
roughly solve systems with the left-hand side of (16) 
fast. For this end the block-diagonal preconditioner 
is used (see e.g. [6]). This approximates the convolu-
tions by only retaining the mean value component 
of ( )^fk∂ : 

( )( ) ( )
( )( ) ( ) ][ˆ]0[][)ˆ(*

][ˆ]0[][ˆ*
^

2
^

2

^
1

^
1

kxkfkxIf
kxfkxf

δδ
δδ
⋅∂≈∂
⋅∂≈∂

 (18) 

The so approximated system (16) can be solved fre-
quency-component wise. 
If the dynamical system is linear then the Jacobi-
ans ff 21 ,∂∂  are constant in time and the corre-
sponding higher spectral components in the convolu-
tions (e.g. ( ) ][^

1 lkf −∂  with 0≠− lk  in (15)) are 
zero. In this case `≈ ´ in (18) can be replaced by `=´ 
and the approximations are exact. For increasing 
nonlinearities the higher spectral components of 

ff 21 ,∂∂  omitted in the preconditioner gain influ-
ence, the approximations become more coarse. In 
general one can say that with stronger nonlinearities 
the number of GMRES iterations per Newton step 
and the number of Newton-iterations increase. 
If the local Newton method does not converge fast 
enough then the Newton-algorithm with backward-
error minimization via backtracking (see [1] and [7]) 
is applied. For a better numerical condition the states 
are automatically scaled during the computation. 
In section 2.3 we will give an example of a nonlinear 
system with a turning point in its frequency re-
sponse. To make the computation of such points pos-
sible a curve tracing algorithm with variable step-

size is implemented in SimulationX. A short outline 
of this algorithm shall conclude this subsection. 
Only at the starting value Startr  and the end 
value Stopr  of the interval for the reference quan-

tity Rix  the full system (13) is solved. At intermedi-
ate points for Rix  the last equation determining the 
value of the reference quantity is removed resulting 
in  

 
Fig. 4: Curve tracing algorithm (see text for details) 

( ) 0=XF  with ( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

]0[ˆ
,,ˆˆ

:
P

C

ix
xxfXF ω

 (19) 

and with the unknowns collected in ( )CxxX ,,ˆ: ω= . 

Since (19) has one scalar equation less than un-
knowns it formally defines a solution curve (see also 
upper branch in Fig. 4) instead of a single point. 

Given the last solution point ( )1−kX  on the solution 
curve and the tangent direction ( )1|| −kXδ  of the solu-
tion curve in that point a prediction   

( ) ( ) ( )1|| −+= kkk XsXX δP  

for the new solution point is computed. Thereby, the 
step size s  is chosen in dependence of the estimated 
curvature of the solution path, the estimated distance 
of  ( )kX P  to the solution path, and the local conver-
gence behaviour of Newton's algorithm (for details 
see [2]). In the predicted point a new estima-
tion ( )kX ⊥δ  for the tangent vector is computed as 
the solution of the system 

( )( )
( )( ) ( ) .1

,0D
1||

)(

=⋅
=

⊥−

⊥

kTk

kk

XX
XXF

δδ
δP

 

This is not the tangent direction to the solution curve 
but to the curve defined by ( ) ( )( )kXFXF P=  (see 
Fig. 4). Nevertheless, these curves and their tangents 
are supposed to be close to each other. The Newton 
correction for the computation of the next solu-
tion ( )kX  of (19) is then carried out in the affine 
plane with ( )kX P  as origin and ( )kX ⊥δ  as normal 

)1( −kX  

X  0)( =XF  

( ))()( kXFXF P=  
)(kX P  ( )kX  

( )1|| −kXδ  

( )kX ⊥δ  

Startr  Stopr  
Rix  
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direction. The point ( ) ( )kk XX P=:0,  is used as an 
initial guess and the Newton corrections ( )ikX ,δ  as 
well as the iterated solution approximations ( )ikX ,  
( )K,1,0=i  are defined by the system 

( )( ) ( ) ( )( )
( )( ) ( )

( ) ( ) ( ).
,0

,

,,1,

,

,,,

ikikik

ikTk

ikikik

XXX
XX

XFXXDF

δ
δδ
δ

+=
=⋅
−=⋅

+

⊥   (20) 

As Fig. 4 suggests ( )kX ⊥  is a better approximation 
of the tangent to the solution curve at the new solu-
tion point ( )kX  than ( )1|| −kX . Using ( )kX ⊥  lets the 
Newton iterations run on nearly the shortest path to 
the solution curve, gives (20) a better numerical con-
dition, and avoids jumping between different solu-
tion branches at sharp turning points of the solution 
path. 

2.3 Example: Nonlinear Spring-Mass-System 
with Turning-Point in Frequency Response 

Unlike linear systems nonlinear systems may exhibit 
turning points in the frequency characteristic. The 
curve tracing algorithm implemented in SimulationX 
makes the computation of such kind of frequency 
characteristics possible. 
The simple mechanical system of Fig. 5 is a torque 
excited spring-mass-oscillator. The frequency of the 
sinusoidal torque source is chosen as the reference 
quantity and swept between Hz2.0  and Hz7.0 . 
Since this reference quantity is a parameter and not a 
variable SimulationX chooses it automatically as 
compensation parameter as well. The phase of the 
sine oscillator is the period variable with period π2 . 
The quadratic term  added to the spring characteristic 
makes the system nonlinear in such a way that it 
shows a turning point in the frequency characteristic 
(see Fig. 6). 

torque1

tau

torque2

p

angleSensor1

d=0.1

SD1=8inertia1

J=1

fix
ed

1=
0

sqrsqr

sineOsc

amplitude=1  
Fig. 5: Nonlinear Spring-Mass-system 
In the interval from Hz397.0  to Hz426.0  the fre-
quency characteristic is multi-valued. That corre-
sponds to multiple periodic limit cycles at those exci-
tation frequencies. 

 
Fig. 6: Frequency response with turning-point for the 
angular speed of inertia1 in the nonlinear spring-mass-
system; the sum curve and the first three harmonic 
components are distinguishable in this diagram 
As an example in Fig. 7 the limit cycles from the two 
stable branches (lowest and highest) of the frequency 
characteristic at Hz405.0  are shown. 
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Fig. 7: Angular speed curves for the two possible stable 
limit cycles of the nonlinear spring-mass-system at 
excitation frequency Hz405.0  represented over  
phase. 
We kept this example simple to demonstrate that 
even very basic nonlinear systems may have fre-
quency responses with turning-points. More compli-
cated examples can be found in [8], and [9]. 

2.4 Example: Active Electronic Filter 

The periodic steady state simulation is not restricted 
to mechanical systems. As an example the periodic 
steady state simulation is applied to a Modelica 
model for an active electronic pass-band filter (see 
Fig. 8). The reference and compensation quantity in 
this example is the frequency of the sinusoidal 
source vin and its phase is the phase variable. 
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Fig. 8: Modelica model of the active electronical filter  
At resonance frequency the transistor amplifier of 
the pass-band filter is overdriven which causes 
nonlinear harmonic distortions. The nonlinear fre-
quency response of the collector voltage of transis-
tor q1 is shown in Fig. 9.  
 

 

 
Fig. 9: Frequency response of the collector voltage of 
q1 in the active electronic filter; top: sum signal and 
first harmonic, bottom: zoomed view of the other har-
monics in the resonance region where the amplifier is 
overdriven; the harmonics are decreasing with order, 
only the 2nd and 3rd harmonic are labelled 
In Fig. 10 the periodic steady state result and the 
time domain result of this voltage over phase angle 
for an excitation frequency of kHz15.1 are com-
pared. At about °75  the base-emitter diode of q2 
blocks and the voltage amplification of q1 grows 
which causes the spike in the collector voltage of q1. 
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Fig. 10: Collector voltage of q1 in the active electronic 
filter at excitation frequency kHz15.1 represented over 
phase; full line: periodic steady state simulation, 
dashed line: transient simulation; 
The results are in good accordance. Nevertheless, a 
slight difference of the results from the periodic 
steady state simulation and the transient simulation is 
visible at about °75 . The steep slopes of the spike 
are somewhat smoothened by the limited number of 
equidistant sample-points for the steady state simula-
tion (256 sample points per period were used). 

3 Transfer Function Analysis and 
Natural Frequencies 

3.1 Linear System Analysis 

Beside the nonlinear algorithm for the steady-state 
simulation also linear frequency-domain analysis 
methods are applicable to Modelica models and are 
implemented in SimulationX. Those are based on the 
linear system which results from the linearization of 
the nonlinear system equations for the Modelica-
model in the current operating point. The operating 
point may be determined by a previous transient 
simulation or an equilibrium computation (in elec-
tronics also called DC-analysis). Some of the algo-
rithms may be applied to any Modelica model with-
out changes by the user. This includes the computa-
tion of the eigensystems, the Campell diagram, and 
methods for the animation of the eigenmodes. 
Other frequency-domain results such as the devia-
tions in mechanical quantities (vibration modes) and 
the distribution of vibration energies and losses re-
quire special internal blocks that can be included into 
the Modelica-model. The following Modelica source 
code shows how the inertia from the standard Mode-
lica library can be supplemented with an internal 
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energy calculation block which SimulationX uses in 
order to compute the energy distribution. 
 
model RotInertiaEnergyBlock 
 import M=Modelica.Mechanics; 
 extends M.Rotational.Inertia; 
 Mechanics.Rotation.CalcEnergyBlock eb; 
 equation 
   eb.dom = w; 
   eb.T = J*a; 
end RotInertiaEnergyBlock; 

The modification of the Type SpringDamper is 
similar. For a demonstration the (rotational and 
translational) masses and spring-dampers in the 
powertrain from Fig. 1 have been substituted by the 
modified types. The distribution of energy calculated 
by SimulationX for the eigenmode at Hz66641. is 
shown in Fig. 12. In practical applications such rep-
resentations show the engineer which masses, 
springs, and dampers dominate the behaviour in cer-
tain eigenmodes of the system, so he can take sys-
tematic countermeasures to avoid unwanted oscilla-
tions. 
Up to now these blocks are not documented and only 
used for the internal element libraries of Simula-
tionX. But this may change in future. 

 
Fig. 11: Distribution of energy for the powertrain ex-
ample from Fig. 1 

3.2 Input-Output Analysis 

For the analysis of the input-output-behaviour the 
user must select the input and the output of the lin-

earized system. Any result variable of the model may 
be used as the system output. SimulationX has a spe-
cial class of signal inputs that may be open even for 
the top-level model. Those inputs may be used for 
the input-output-analysis. In Fig. 11 a cut-out of the 
powertrain from Fig. 1 is shown where a torque 
source with such an input has been added. The input-
output behaviour is described by the frequency re-
sponse function and the pole-zero diagram of the 
system. 

 
Fig. 12: Element linSysAnaOpenInput in the example 
from Fig. 1 with open input for the input-output-
analysis 
Fig. 13 and Fig. 14   show the pole-zero plot and the 
frequency characteristic, resp., for the powertrain 
from Fig. 1 with the torque at the first cylinder as 
input (Fig. 12) and the torque in the engine damper 
as output.  

 
Fig. 13: Pole-zero plot of the system in Fig. 1; crosses: 
poles, circles: zeros 
For further analysis in external tools the linearized 
system matrices may be exported in Modelica or 
MATLAB syntax. 

4 Conclusions and Outlook 

Periodic steady state simulation proves useful for the 
vibration analysis of nonlinear systems. SimulationX 
allows its application to Modelica models, in particu-
lar to powertrains, without the decomposition into 
nonlinear exciter and linear drivetrain. Furthermore, 
the method is applicable to driven systems of other 
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physical domains since it is purely equation-based. 
Only very little knowledge of the system is required 
from the user. Two mechanical examples and one 
from electronics were given in the paper. 

 
Fig. 14: Frequency response of the system in Fig. 1; 
top: amplitude, bottom: phase 
Furthermore, we discussed methods for the small-
signal analysis in the current operating point (result-
ing from a transient or equilibrium computation). 
Beside pole-zero plots and frequency response func-
tions also some remarks about the deviation- and 
energy distribution analysis for oscillation modes 
were given. They are especially useful for the me-
chanical engineer to detect the powertrain elements 
which participate in selected oscillation modes. 
• Behaviour Description In Frequency Domain: 
In future it is planned to include a behavioural de-
scription in frequency domain (e.g., for modeling of 
dynamic stiffness) for the periodic steady state simu-
lation as well as for the frequency response computa-
tion, which was one main argument for the harmonic 
balance method to be preferred over the shooting 
method (see e.g. [11] for a short introduction and 
further references). One major reason for the fre-
quency domain description not yet being imple-
mented in SimulationX is that Modelica currently 
still lacks a standardized way for computations with 
complex numbers (even if some steps in this direc-
tion have already been taken, see e.g. [10]). 
• Event Iterations: Event iterations are already em-
bedded into the harmonic balance algorithm. But 
there remains still some work for the treatment of 
time-discrete variables in special cases. 
• Improved Convergence for Strongly Nonlinear 
Systems: As long-term objective the convergence 
speed of the harmonic balance for strongly nonlinear 
systems can be improved by time domain precondi-
tioners (see [6]). 

• Autonomous Systems: The ansatz used for the 
harmonic balance also bears the potential for the 
simulation of autonomous systems. The required 
randomization of the start values for the harmonic 
balance could be implemented. 
• Detection of Stable/Unstable Limit Cycles: Up to 
now there is no automatic discrimination of the sta-
ble and unstable branches in the nonlinear frequency 
response computed via harmonic balance. This can 
be implemented by an eigenvalue analysis of the 
monodromy matrix of the computed limit cycles. 
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