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Abstract

The  tight  interaction  among  an  ever  increasing 
amount  of  software  functions  and  hardware 
subsystems (mechanics, hydraulics, electronics, etc.) 
leads to a new kind of complexity that is difficult to 
manage  during  mechatronic  design.  System  tests 
have to consider huge amounts of relevant test cases. 
Validation with limited resources (time and costs) is 
a challenge for the development teams. We present a 
new instrument that should help engineers in dealing 
with  the  complexity  of  test  and  validation. 
TestWeaver is based on a novel approach that aims 
at maximizing test coverage with minimal work load 
for  the test  engineer  for  specifying  test  cases.  The 
method  integrates  simulation  (MiL/SiL)  with  auto-
matic test generation and evaluation, and has found 
successful  applications  in  the  automotive  industry. 
We illustrate the approach using a 6-speed automatic 
transmission for passenger cars. We present also the 
way TestWeaver and Modelica simulators can work 
together.
Keywords: test automation, mechatronic systems

1 Introduction

When  developing  complex  mechatronic  systems, 
like a hybrid drive train or an automatic transmission 
for  a  vehicle,  contributions  from  different 
engineering  disciplines,  design  teams,  departments, 
and organizations have to be integrated, resulting in 
a  complex  design  process.  Consequently,  during 
development,  design  flaws  and  coding  errors  are 
unavoidable.  For an OEM, it is then crucial that all 
those bugs and weak points are found and eliminated 
in time, i.e. before the system is produced and deliv-
ered to customers. Failing to do so may result in ex-
pensive  recalls,  high warranty costs,  and  customer 
dissatisfaction.  OEMs  have  long  realized  this  and 
spend up to 40% of their  development  budgets for 
test related activities. Software offers great flexibility 
to implement  new functions, but also many hidden 
opportunities  to  introduce  bugs  that  are  hard  to 

discover.  Moreover,  the  complex  behaviour  that 
results from the interaction of software and physical 
systems cannot be formally and completely analysed 
and validated. Most often, it can only be evaluated in 
a limited amount of points with physical  or virtual 
experiments. The development teams are often faced 
with  a  dilemma:  on  the  one  side,  the  system test 
should cover a huge space of relevant test cases, on 
the  other,  there  is  only  a  very  limited  amount  of 
available resources (time and costs) for this purpose. 
This paper presents a novel test method that has the 
potential  to  dramatically  increase  the  coverage  of 
testing without increasing the work load for test en-
gineers. We achieve this by generating and executing 
thousands of tests automatically, including an initial, 
automated assessment of test results. The test genera-
tion can be focused on certain state spaces using con-
straints and coverage goals.
This paper is structured as follows: In section 2, we 
take  a  bird's-eye  view on testing  mechatronic  sys-
tems. In section 3, we survey the main test methods 
used  in  the  automotive  industry  today.  Section  4 
presents the proposed test  method. Section 5 illus-
trates the proposed method using a 6-speed automat-
ic transmission for passenger cars. Section 6 discuss-
es  our  approach  to  automated  test  evaluation.  We 
conclude the paper with a summary of the benefits of 
our test method, and discuss its applicability to other 
engineering domains.

2 The challenge of testing

When testing a mechatronic system, it is usually not 
sufficient to test the system under laboratory condi-
tions for a couple of idealized use cases. Instead, to 
increase the chance to discover all hidden bugs and 
design flaws, the system should be tested in as many 
different relevant conditions as possible. Consider as 
an example an assembly such as an automatic trans-
mission used in a passenger car. 
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In this case, the space of working conditions extends 
at least along the following dimensions:

− weather: for  example,  temperatures  range 
from - 40°C to 40°C, with significant impact 
on oil properties of hydraulic subsystems

− street: different road profiles,  uphill,  down 
hill, curves, different friction laws for road-
wheel contact

− driver: variations of attitude and behavior of 
the  human  driver,  including  unforeseen 
(strange) ways of driving the car

− spontaneous component faults: during opera-
tion, components of the assembly may spon-
taneously fail  at  any time; the control soft-
ware of the assembly must detect and react 
appropriately to these situations, in order to 
guarantee  passenger  safety  and  to  avoid 
more serious damage

− production tolerances: mechanical, electrical 
and other physical properties of the involved 
components  vary  within  certain  ranges 
depending on the manufacturing process

− aging:  parameter  values  drift  for  certain 
components  during  the  life  time  of  the 
assembly

− interaction  with  other  assemblies: a  trans-
mission communicates with other assemblies 
(engine,  brake  system)  through  a  network 
that  implements  distributed  functions;  for 
example, during gear shifts, the transmission 
might ask the engine to reduce the torque in 
order to protect the switching components.

These dimensions span a huge space of possible op-
erational conditions for an assembly.  The possibili-
ties along each dimension multiply to form a huge 
cross-product. The ultimate goal of testing is to veri-
fy that the system performs adequately at every sin-
gle  point  of  that  space.  It  would be great  to  have 
techniques to  mathematically prove certain  proper-
ties of the system (such as the absence of unwanted 
behavior),  which  would  enable  a  test  engineer  to 
cover  infinitely  many  cases  within  a  single  work 
step.  However,  such  proof  techniques  (e.g.  model 
checking, cf. [1]) are by far too limited to deal with 
the  complexity of  the  system level  test  considered 
here. 
In practice, the goal of covering the entire state space 
is  approximated by considering a finite  number of 
test cases of that space.

3 A critical view on some test meth-
ods in use

Testing at different functional integration levels (e.g. 
component, module, system, vehicle) and in different 
setups (e.g.  MiL,  SiL,  HiL, physical  prototypes)  is 
nowadays an important, integral part of the develop-
ment  process.  The  earlier  problems are  discovered 
and eliminated, the better. Very often, however:

(a) relevant  tests  can  only  be  formulated,  or 
have to be repeated, at higher levels of func-
tional integration (e.g. at system level) - con-
sider,  for  instance,  the  system  reaction  in 
case of component faults

(b) system-level  tests  are  only performed in  a 
HiL or physical prototype setup1.

Let us briefly review some of the limitations of the 
HiL- / physical prototype based testing:

− time,  costs,  safety: physical  prototypes  and 
HiL setups are quite expensive and busy re-
sources; testing takes place late in the devel-
opment cycle; not too many tests can be con-
ducted;  the  reaction  to  certain  component 
faults cannot be tested with physical proto-
types due to safety hazards

− lack of agility: it usually takes a long time 
between the change of a software  function 
and the test of its effects

− limited  precision  or  visibility: due  to  real-
time requirements the physical system mod-
els  used in HiL setups are often extremely 
simplified  and  therefore  extremely  impre-
cise;  debugging  and  inspection  of  hidden 
system properties is difficult if not impossi-
ble for these setups.

Note, the above limitations are not present in MiL / 
SiL setups.  While  the importance of  the HiL tests 
and of the tests based on physical prototypes should 
not be underestimated, our argument here is that they 
must be complemented by a more significant role of 
MiL and SiL tests at system level. See also [4], [5].
Irrespective of the setup used, the main limitation of 
common system-level test practices is the limited test 
coverage that can be achieved with reasonable effort. 
For example, test automation in a MiL / HiL setup is 
typically based on hand-coded test scripts for stimu-

1 There are several reasons why this  is  very often the 
case. An important one stems from the complexity of 
the mechatronic development processes: several disci-
plines, several teams, several tools, several suppliers – 
together with lacking standards and practices for ex-
changing and integrating executable  functional  mod-
els.
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lating  the  partially  simulated  assembly  with  a  se-
quence of test inputs, including code for validating 
the measured response. Coding and debugging such 
test  scripts  is  a  labor intensive  task.  Given typical 
time  frames  and  man  power  available  for  testing, 
only  few  (say  a  few  dozen)  cases  from the  huge 
space  of  possible  use  cases  can  be  effectively ad-
dressed by such a script-based approach. For testing 
using a test rig or by driving a car on the road, this 
figure is even worse.  For example, it  is practically 
impossible to systematically explore the assembly's 
response in the case of single component faults in a 
setup that involves dozens of physical (not simulat-
ed) components.
When testing for the presence (or absence) of a cer-
tain system property, script-based tests verify such a 
condition  only during  a  few,  specifically  designed 
scenarios and not throughout all tests.
In practice this means that many scenarios are never 
explored during system test and that for those sce-
narios explored, usually only a few of the relevant 
system properties are tested. Consequently, bugs and 
design flaws may survive all  tests.  These are risks 
the method presented here can help to reduce, adding 
additional robustness to the design process.

4 Exploring  system  behavior  with 
TestWeaver

TestWeaver is a tool supporting the systematic test 
of complex systems in an autonomous, exploratory 
manner. Although the method could, in principle, be 
applied to HiL setups as well, it is primarily geared 
towards  supporting  the  MiL  and  SiL  setups.  The 
overall design objectives of TestWeaver were to:

(a) dramatically increase the test coverage, with 
respect to system behavior, while

(b) keeping  the  workload for  the  test  engineer 
low.

To achieve this, we wanted to remove the necessity 
of  exclusively  relying  on  hand-coded  test  scripts, 
since we had identified script production as the main 
hindrance on the way towards broad test coverage. 

4.1 The “chess” principle

The key idea was: Testing a system under test (SUT) 
is like playing chess against the SUT and trying to 
drive it into a state where it violates its specification. 
If  the  tester  has  found  a  sequence  of  moves  that 
drives  the SUT in such an unwanted state,  he  has 

won a game, and the sequence of moves represents a 
failed test. 
There are more analogies: To decide for a next best 
move,  chess  computers  just  explore  recursively all 
legal  moves  possible  in  the  current  state  and  test 
whether these lead to a goal state. This search pro-
cess generates a huge tree of alternative (branching) 
games.  In  TestWeaver,  the  automated  search  for 
bugs and design flaws is organized quite similarly. 
Our method assumes that the SUT is available as an 
executable simulation (MiL) or as a co-simulation of 
several modules (SiL). As usually done, the SUT is 
augmented with a few components that communicate 
with  the  test  driver.  These  communication  compo-
nents, called  instruments, implicitly carry the “rules 
of the game” that TestWeaver is “playing” with the 
instrumented SUT. Namely, they carry information 
about: the control actions that are legal in a certain 
situation, the interesting qualitative states reached by 
the  SUT,  and,  eventually,  the  violation  of  certain 
system  requirements.  Each  instrument  specifies  a 
(relevant)  dimension  of  the  SUT  state  space.  The 
value domain along each dimension has to be split 
into  a  finite  set  of  partitions.  Each SUT, or  SUT-
module, has to be configured individually by placing 
and parameterizing the instruments inside the SUT. 
The “game” is played in this multi-dimensional par-
titioned system space.

Figure 1: The chess principle

4.2 Instruments

An  instrument  is  basically  a  small  piece  of  code 
added to the un-instrumented version of the SUT us-
ing the native language of the executable, e.g. Mod-
elica, Matlab/Simulink, or C. The instruments com-
municate  with  TestWeaver  during  test  execution, 
which enables TestWeaver to drive the test, to keep 
track of reached states, and to decide during test exe-
cution whether an undesired state (failure) has been 
reached. TestWeaver supports basically two kinds of 
instruments, action choosers and state reporters, that 
can come in several flavors:
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1. state reporter: this instrument monitors a discrete 
or a continuous variable (e.g. a double) of the SUT, 
and maps its value onto a small set of partitions or 
discrete values (e.g. low, medium, high). During test, 
this instrument reports each partition change of the 
monitored  variable to TestWeaver.  This is used by 
TestWeaver  to keep track of reached states  and to 
maximize the coverage of the partitioned / discrete 
state space.
2. alarm reporter: this is actually a state change re-
porter. In addition the partitions are associated with 
severity  levels,  such  as  nominal,  warning, 
alarm,  and  error.  The  reachability  of  a  “bad” 
state corresponds to a failure of the test currently ex-
ecuted.  Note:  these  failure  conditions  are  verified 
throughout all the tests run by TestWeaver.
3. action chooser: this instrument is associated with 
an input variable of the SUT. In an automotive appli-
cation, an input variable may represent the accelera-
tion pedal or the brake pedal of a car. Depending on 
the  details  of  the  instrumentation,  this  instrument 
asks TestWeaver either periodically or when a trig-
ger condition becomes true to choose a discrete input 
value for its input variable from the partitioned value 
domain of the variable.
4.  fault  chooser:  this  is  a  special  case  of  action 
chooser. The value domain is partitioned into nomi-
nal and fault partitions and can can be used to repre-
sent alternative fault  modes of a component of the 
SUT. For example, a shift valve model may have be-
havior  modes  such  as:  ok,  stuckClosed,  and 
stuckOpen.  Instruments  like  these  are  used  by 
TestWeaver to inject (activate) a component fault oc-
curring spontaneously during test execution. 

Figure 2: Instruments connect SUT to TestWeaver
Engineers like to work with their favorite modeling 
environment.  Therefore  we have implemented  ver-
sions of the above instruments for alternative model-
ing environments, including Matlab/Simulink, Mod-
elica, and C. The idea is to allow the test engineers to 

instrument  a  SUT  in  their  favorite  modeling  lan-
guage, i.e. using the native implementation language 
of  the  SUT,  or  of  the  SUT-module  that  they  are 
working on.
In addition to the explicit  instruments, TestWeaver 
monitors  the  process  of  executing  the  SUT  and 
records problems, such as divisions by zero, memory 
access violations, or timeouts in the communication.

4.3 Experiments, scenarios and reports

In  TestWeaver,  an  experiment is  the  process  of 
exploring and documenting the states reached by the 
SUT during a certain period of time, possibly taking 
into consideration additional  search constraints  and 
coverage  goals.  An  experiment  usually  runs 
completely autonomously for a long time, typically 
several  hours,  and  without  requiring  any  user 
interaction. 

When running an experiment, TestWeaver generates 
many  differing  scenarios,  by  generating  differing 
sequences  of  answers  for  the  action  choosers.  A 
scenario is the trace (or protocol) of a simulation run 
of  the  given  SUT  in  the  partitioned  state  space. 
TestWeaver combines several strategies in order to 
maximize the coverage of the reached system states 
and  to  increase  the  probability  of  finding  failures. 
The results are stored in a scenario data base of the 
experiment,  i.e.  a  tree  of  scenarios  (actually  a 
directed graph), as shown in Fig. 3.

Figure 3: Scenarios generated by an experiment

The  user  can  investigate  the  states  reached  in  an 
experiment using a high level query language similar 
to SQL. Results are displayed in reports. A report is 
basically a table that displays selected properties of 
the scenarios stored in the scenario data base.  The 
user specifies the structure and layout of a table by 
templates, while the content  of  a table depends on 
the content  of the scenario data base – see Fig.  9. 
There are two kinds of reports: overview reports, that 
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document  state  reachability,  and  scenario  reports, 
that document details of individual scenarios.

A user may specify,  start,  and stop an experiment, 
reset the experiment's data base and investigate the 
reports  generated  by the  experiment,  the  last  even 
while the experiment is running. Individual scenarios 
can be replayed: i.e. the SUT is restarted and is fed 
with the same sequence of inputs as the one recorded 
in order to allow detailed debugging of a problem, 
e.g. by plotting signals and other means.

4.4 The experiment focus

The dimensions and the partitions of the state space 
are configured by the instruments of the SUT. Apart 
of these there are also other means that can constrain 
the  exploration,  either  as  part  of  the  instrumented 
SUT, or as explicitely defined in the specification of 
the experiment focus in TestWeaver. The focus of an 
experiment specifies which region of the state space 
should be investigated when running the experiment. 
During an experiment, TestWeaver tries to drive the 
SUT into  those  states  that  are  in  the  experiment's 
focus.  The  experiment  focus  is  currently  specified 
using two means:

– constraints: the constraints limit the size of 
the considered state space of an experiment. 
They can limit, for instance, the duration of a 
scenario,  or  the  allowed  combinations  of 
inputs  and  states.  A  high  level  constraint 
language is provided for this purpose. In an 
automotive  application,  a  user  could,  for 
example,  exlude  all  scenarios  where  brake 
pedal  and  acceleration  pedal  are  engaged 
simultaneously.  For  a  fault  analysis,  a 
constraint  could be used to exclude certain 
fault  modes  from investigation,  or  to  limit 
the number of faults inserted in a scenario: 
typical  values  are  0,  1  and  2.  Higher 
numbers  are  reasonable  when investigating 
fault-tolerant  systems,  e.g.  systems  with 
complex fault detection and reconfiguration 
mechanisms

– coverage: the  user  can  tell  TestWeaver  to 
use some of the reports of the experiment as 
defining  the  coverage  goals  of  the 
experiment.  A  report  used  in  this  way  is 
called coverage report.

Experiments  with  different  SUT versions  and with 
different focus specifications can be created, run and 
compared with each other.

4.5 Analyzing and debugging problems

The alarm and error states of the SUT are reported in 
the overview reports. For each problem one or more 
scenarios that reach that state can be recalled from 
the  scenario  database.  The  scenarios  can  be  once 
again  replayed and  additional  investigation  means 
can be connected. Depending on the SUT simulation 
environment these can be, for instance: plotting addi-
tional  signals,  connecting  additional  visualization 
means  such  as  animation,  setting  breakpoints,  and 
even  connecting  to  step-by-step  evaluation  with 
source code debuggers – for instance for SUT mod-
ules developed in C.

4.6 The Modelica instrumentation library

In this  section we briefly present  the Modelica  in-
strumentation library of TestWeaver, cf. Fig. 4.

Figure 4: The Modelica Instruments library
The  package  Instruments contains  ready  to  use 
components  for  instrumenting  Modelica  models. 
Each  instrument  is  a  Modelica  component  that 
communicates  with  TestWeaver  through  an  outer 
WeaverConnection.  Instruments  extend  the  partial 
base  class  Instruments.Interfaces.Instrument, which 
is a model with the following parameters:

− variable: the name of the SUT variable de-
fined by the instrument

− comment: a description of the instrument 
− unit: of  the  classified  real  value,  e.g. 

"km/h", "kg", or "%"
− intervals: an  array of number pairs defining 

the numeric partitions of the real value, e.g. 
[0,100; 100,150; 150,1e10]

− labels: an array with the partition names, e.g. 
{"ok", "hot", "damaged"}

− weaverConnection: outer reference.
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Furthermore,  the  Instruments package  provides  the 
following instruments as Modelica components:

− Reporter: an instrument that adds a severity 
rating to each interval and reports the value 
of a SUT variable when triggered; whether 
the reported value represents an alarm or a 
nominal  state  depends  on  the  associated 
severity

− Chooser: an  instrument  that  adds  an 
occurence rating to each interval and allows 
TestWeaver to control a variable of the SUT, 
when  triggered;  whether  the  control  value 
represents a fault to be injected or a nominal 
value  depends  on  the  corresponding 
occurence rating

− Parameter: a  Chooser whose  control 
variable  is  a  model  parameter  to  be 
initialized by TestWeaver at simulation start; 
this is  used to model  parameter deviations, 
for  instance,  due  to  aging,  or  due  to 
production tolerances.

Fig. 5 shows how to use a Reporter in a model. 

Figure 5: Reporting a temperature
The  reporter  is  connected  to  the  output  of  a  heat 
model, and to a boolean trigger signal. Whenever the 
trigger  signal  becomes  true,  the  reporter  classifies 
the  temperature  w.r.t  the  partition  margins and re-
ports  the  result  through  the  WeaverConnection to 
TestWeaver.

Figure 6: Controlling two pedals in a car

Likewise,  Fig.  6  shows  two  Choosers called 
chooseBrakePedal,  chooseAccelPedal. 
Both accept a default value at the left side, output the 
signal chosen by TestWeaver and accept a boolean 
trigger signal as input, which defines the time points 
when new values can be changed by TestWeaver.

5 Example: automatic transmission

As an application example for TestWeaver, consider 
the development of the control software for an auto-
matic transmission. An instrumented Modelica mod-
el of an entire car, including the transmission and a 
WeaverConnection is shown in Fig. 7.

Figure 7: An instrumented car model
The control software is developed using a SiL devel-
opment environment. The executable SUT is hence 
co-simulating  two  modules:  the  compiled  control 
software,  and the compiled Modelica model  of the 
car. Since the Modelica model has been instrument-
ed, the SUT also contains functions to communicate 
with TestWeaver. When TestWeaver starts the SUT 
to perform a system test,  all  contained instruments 
register themselves at TestWeaver with all their de-
clared  static  properties  (intervals,  labels,  severities 
etc.). TestWeaver then displays a list of these instru-
ments, see tree in Fig. 9. Selecting an instrument in 
the tree displays all its properties. Fig. 8. shows how 
TestWeaver displays the heat reporter of Fig. 5.

Figure 8: Reporter (Fig. 5) displayed by TestWeaver
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The tree shown in Fig. 9 also contains an item for 
each report  of the experiment.  Selecting such a re-
port displays the report as table. Fig. 9. shows a re-
port that shows which gear shifts have already been 
reached during the experiment, and whether critical 
temperatures at the clutches A and B have been re-
ported. For each state, up to two scenarios are refer-
enced in the right most column. Clicking on such a 
reference displays that scenario as a sequence of dis-
crete states. It is possible to reproduce the entire sce-
nario with an identical simulation such that the test 
engineer can access all its details. For example, run-
time exceptions of the control software (such as divi-
sion  by zero)  can  be  reproduced  this  way and  in-
spected using the usual software debugging tools.

Figure 9: TestWeaver displaying a coverage report

6 The  instrumentation  process  and 
quality watchers

If  an executable SUT exists it  is  relatively easy to 
add the instrumentation for the action choosers and 
the pure state reporters – those reporters that do not 
attempt to classify the states as “good” or “bad”. A 
good understanding of the system functionality is re-
quired, in order to select the relevant system features 
and the relevant qualitative partitions. This activity 
in  not  completely  new  for  the  test  engineers:  the 
commonly  used  “Classification  Tree  Method”  for 

specifying tests relies exactly on this kind of system 
analysis [2].
For  the  automatic  test  evaluation  TestWeaver  uses 
alarm reporters. The alarm reporters monitor correct-
ness or quality conditions of the SUT. Some of these 
conditions  are  easy to  define,  others  might  require 
quite sophisticated watchers.  Let us begin with the 
easier cases:

(a)  often physical components have well known 
functional or safety ranges of operation that 
should not be exceeded; examples: maximal 
power dissipated by a component, maximal 
temperature, maximal pressure in a contain-
er,  maximal  allowed rotational  speed of an 
engine or gear, etc.

(b)  similar “local” correctness conditions exist 
for software functions; in the software indus-
try such assertions are widely used today for 
detecting,  diagnosing  and  classifying  pro-
gramming errors during test; examples here: 
maximum  number  of  allowed  objects  in  a 
buffer,  access  indices  within  array bounds, 
assumed domains  for  input  parameters,  as-
sertions about function pre-conditions, post-
conditions  and other  invariants  that  can be 
easily declared and monitored – see also [3].

The above quality conditions can be locally imple-
mented, e.g. in a component type library. In such a 
case, each component instantiation will also instanti-
ate the check of the quality condition and the instru-
mentation required.
In addition, the run time exceptions of the SUT pro-
cess  (e.g.  divisions  by zero,  memory access  viola-
tions, etc.) and the communication timeouts (possi-
bly produced by infinite loops, non-converging nu-
merical solvers, etc.) are anyway monitored and re-
ported by TestWeaver.
An important class of quality conditions can be rela-
tively easily defined when the SUT includes a con-
troller and a model of the controlled system. Often 
controllers have in some form (at least a simplified) 
inverse model of the controlled system. This makes 
it  easier  to  formulate  system invariants  or  quality 
conditions. For instance: when not shifting, the con-
troller gear should match the gear from the transmis-
sion model; if no fault is set in the hardware model, 
the on-board diagnosis should not detect any fault; if 
a fault code is generated, then the fault should coin-
cide with a fault set in the hardware model. In gener-
al, the assumptions made by the control system about 
the  state  of  the  controlled  system  should  match 
(within certain acceptable delays and tolerances) the 
state of the model.
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The more we migrate from checking correctness to 
checking quality,  the more  complex and subtle the 
watchers  can  become.  For  TestWeaver  arbitrarily 
complex quality watchers can be implemented with 
Modelica,  Matlab/Simulink or  C.  In  principle,  any 
conventional  test  case can be turned into a quality 
watcher, although it might be sometimes difficult to 
generalize the specific conditions checked in a test 
case. The effort will be rewarded because:

(a) the  quality  condition  will  be  checked  not 
only for  one input  sequence,  but  for  many 
differing scenarios, and

(b) a more general formulated condition is likely 
to  survive  unchanged,  or  with  only  small 
changes,  when new SUT versions are pro-
duced later on, during development.

The tuning of some complex quality watchers can be 
quite laborious. In practice, there will always be cas-
es when false alarms are generated. Therefore, after 
each experiment, also a detailed manual analysis and 
diagnosis of the problems found is prescribed by our 
test method.

7 Summary and conclusions

The increasing pressure to shorten and cheapen de-
velopment for more and more complex products re-
quires new test strategies. Today we see early mod-
ule  tests  and  late  system-level  tests,  like  HiL  and 
test-rigs, as state of the art. The importance of early 
system-level  testing  increases  with  the  increasing 
complexity of  module  interaction because  bugs on 
system-level are more likely, more costly to fix and 
harder to find. Testing before physical prototypes ex-
ist, for both controllers and hardware, is one neces-
sary step towards early system-level testing.
As long as the behavior of a system can be described 
easily using stimuli-response sets, script-based test-
ing  is  a  feasible  strategy.  With  increasing  system 
complexity,  this method fails to provide the neces-
sary coverage at reasonable cost. On the other side, 
our test method allows to:

(a) systematically investigate large state spaces 
with low specification costs:  only the rules 
of the “game” have to be specified, not the 
individual scenarios

(b) discover new problems that do not show up 
when using only the predefined test scenar-
ios  prescribed  by  traditional  test  methods; 
TestWeaver can generate thousands of new, 
qualitatively  differing  tests,  depending  on 
the time allocated to an experiment

(c) increase  the  confidence  that  no hidden de-
sign flaws exist.

In  chapter  5,  we  have  sketched  the  application  of 
TestWeaver to a SiL-based system test of an auto-
matic transmission. We have several years of experi-
ence with this kind of applications. However, the ap-
plication  of  TestWeaver  to  other  domains  seems 
promising as well, especially for those cases where a 
complex  interaction  between  the  software  and  the 
physical world exists. For instance:

− driver  assistance  systems: in  car  systems 
such as ABS, ESP, etc. we meet a complex 
interaction among the control software,  the 
vehicle dynamics and the human driver; this 
leads  to  myriads  of  relevant  scenarios  that 
should be investigated during design

− plant control systems: in plants for chemical 
processes, power plants etc. we meet the in-
teraction  of  the  control  software,  plant 
physics  and  the  actions  of  the  operators; 
again, the same kind of complexity that calls 
for a systematic investigation during design.

TestWeaver runs on Windows platforms. It is a pow-
erful, yet easy to use tool: users can use their native 
specification  or  modeling  environment  and  don't 
have to learn yet another test-specification language.
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