
TestWeaver
A Tool for Simulation-based Test of Mechatronic Designs

Andreas Junghanns, Jakob Mauss, Mugur Tatar
QTronic GmbH, Alt-Moabit 91d, D-10559 Berlin

{andreas.junghanns, jakob.mauss, mugur.tatar}@qtronic.de

Abstract

The tight interaction among an ever increasing
amount of software functions and hardware
subsystems (mechanics, hydraulics, electronics, etc.)
leads to a new kind of complexity that is difficult to
manage during mechatronic design. System tests
have to consider huge amounts of relevant test cases.
Validation with limited resources (time and costs) is
a challenge for the development teams. We present a
new instrument that should help engineers in dealing
with the complexity of test and validation.
TestWeaver is based on a novel approach that aims
at maximizing test coverage with minimal work load
for the test engineer for specifying test cases. The
method integrates simulation (MiL/SiL) with auto-
matic test generation and evaluation, and has found
successful applications in the automotive industry.
We illustrate the approach using a 6-speed automatic
transmission for passenger cars. We present also the
way TestWeaver and Modelica simulators can work
together.
Keywords: test automation, mechatronic systems

1 Introduction

When developing complex mechatronic systems,
like a hybrid drive train or an automatic transmission
for a vehicle, contributions from different
engineering disciplines, design teams, departments,
and organizations have to be integrated, resulting in
a complex design process. Consequently, during
development, design flaws and coding errors are
unavoidable. For an OEM, it is then crucial that all
those bugs and weak points are found and eliminated
in time, i.e. before the system is produced and deliv-
ered to customers. Failing to do so may result in ex-
pensive recalls, high warranty costs, and customer
dissatisfaction. OEMs have long realized this and
spend up to 40% of their development budgets for
test related activities. Software offers great flexibility
to implement new functions, but also many hidden
opportunities to introduce bugs that are hard to

discover. Moreover, the complex behaviour that
results from the interaction of software and physical
systems cannot be formally and completely analysed
and validated. Most often, it can only be evaluated in
a limited amount of points with physical or virtual
experiments. The development teams are often faced
with a dilemma: on the one side, the system test
should cover a huge space of relevant test cases, on
the other, there is only a very limited amount of
available resources (time and costs) for this purpose.
This paper presents a novel test method that has the
potential to dramatically increase the coverage of
testing without increasing the work load for test en-
gineers. We achieve this by generating and executing
thousands of tests automatically, including an initial,
automated assessment of test results. The test genera-
tion can be focused on certain state spaces using con-
straints and coverage goals.
This paper is structured as follows: In section 2, we
take a bird's-eye view on testing mechatronic sys-
tems. In section 3, we survey the main test methods
used in the automotive industry today. Section 4
presents the proposed test method. Section 5 illus-
trates the proposed method using a 6-speed automat-
ic transmission for passenger cars. Section 6 discuss-
es our approach to automated test evaluation. We
conclude the paper with a summary of the benefits of
our test method, and discuss its applicability to other
engineering domains.

2 The challenge of testing

When testing a mechatronic system, it is usually not
sufficient to test the system under laboratory condi-
tions for a couple of idealized use cases. Instead, to
increase the chance to discover all hidden bugs and
design flaws, the system should be tested in as many
different relevant conditions as possible. Consider as
an example an assembly such as an automatic trans-
mission used in a passenger car.

TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs

The Modelica Association 341 Modelica 2008, March 3rd − 4th, 2008

In this case, the space of working conditions extends
at least along the following dimensions:

− weather: for example, temperatures range
from - 40°C to 40°C, with significant impact
on oil properties of hydraulic subsystems

− street: different road profiles, uphill, down
hill, curves, different friction laws for road-
wheel contact

− driver: variations of attitude and behavior of
the human driver, including unforeseen
(strange) ways of driving the car

− spontaneous component faults: during opera-
tion, components of the assembly may spon-
taneously fail at any time; the control soft-
ware of the assembly must detect and react
appropriately to these situations, in order to
guarantee passenger safety and to avoid
more serious damage

− production tolerances: mechanical, electrical
and other physical properties of the involved
components vary within certain ranges
depending on the manufacturing process

− aging: parameter values drift for certain
components during the life time of the
assembly

− interaction with other assemblies: a trans-
mission communicates with other assemblies
(engine, brake system) through a network
that implements distributed functions; for
example, during gear shifts, the transmission
might ask the engine to reduce the torque in
order to protect the switching components.

These dimensions span a huge space of possible op-
erational conditions for an assembly. The possibili-
ties along each dimension multiply to form a huge
cross-product. The ultimate goal of testing is to veri-
fy that the system performs adequately at every sin-
gle point of that space. It would be great to have
techniques to mathematically prove certain proper-
ties of the system (such as the absence of unwanted
behavior), which would enable a test engineer to
cover infinitely many cases within a single work
step. However, such proof techniques (e.g. model
checking, cf. [1]) are by far too limited to deal with
the complexity of the system level test considered
here.
In practice, the goal of covering the entire state space
is approximated by considering a finite number of
test cases of that space.

3 A critical view on some test meth-
ods in use

Testing at different functional integration levels (e.g.
component, module, system, vehicle) and in different
setups (e.g. MiL, SiL, HiL, physical prototypes) is
nowadays an important, integral part of the develop-
ment process. The earlier problems are discovered
and eliminated, the better. Very often, however:

(a) relevant tests can only be formulated, or
have to be repeated, at higher levels of func-
tional integration (e.g. at system level) - con-
sider, for instance, the system reaction in
case of component faults

(b) system-level tests are only performed in a
HiL or physical prototype setup1.

Let us briefly review some of the limitations of the
HiL- / physical prototype based testing:

− time, costs, safety: physical prototypes and
HiL setups are quite expensive and busy re-
sources; testing takes place late in the devel-
opment cycle; not too many tests can be con-
ducted; the reaction to certain component
faults cannot be tested with physical proto-
types due to safety hazards

− lack of agility: it usually takes a long time
between the change of a software function
and the test of its effects

− limited precision or visibility: due to real-
time requirements the physical system mod-
els used in HiL setups are often extremely
simplified and therefore extremely impre-
cise; debugging and inspection of hidden
system properties is difficult if not impossi-
ble for these setups.

Note, the above limitations are not present in MiL /
SiL setups. While the importance of the HiL tests
and of the tests based on physical prototypes should
not be underestimated, our argument here is that they
must be complemented by a more significant role of
MiL and SiL tests at system level. See also [4], [5].
Irrespective of the setup used, the main limitation of
common system-level test practices is the limited test
coverage that can be achieved with reasonable effort.
For example, test automation in a MiL / HiL setup is
typically based on hand-coded test scripts for stimu-

1 There are several reasons why this is very often the
case. An important one stems from the complexity of
the mechatronic development processes: several disci-
plines, several teams, several tools, several suppliers –
together with lacking standards and practices for ex-
changing and integrating executable functional mod-
els.

A. Junghanns, J. Mauss, M. Tatar

The Modelica Association 342 Modelica 2008, March 3rd − 4th, 2008

lating the partially simulated assembly with a se-
quence of test inputs, including code for validating
the measured response. Coding and debugging such
test scripts is a labor intensive task. Given typical
time frames and man power available for testing,
only few (say a few dozen) cases from the huge
space of possible use cases can be effectively ad-
dressed by such a script-based approach. For testing
using a test rig or by driving a car on the road, this
figure is even worse. For example, it is practically
impossible to systematically explore the assembly's
response in the case of single component faults in a
setup that involves dozens of physical (not simulat-
ed) components.
When testing for the presence (or absence) of a cer-
tain system property, script-based tests verify such a
condition only during a few, specifically designed
scenarios and not throughout all tests.
In practice this means that many scenarios are never
explored during system test and that for those sce-
narios explored, usually only a few of the relevant
system properties are tested. Consequently, bugs and
design flaws may survive all tests. These are risks
the method presented here can help to reduce, adding
additional robustness to the design process.

4 Exploring system behavior with
TestWeaver

TestWeaver is a tool supporting the systematic test
of complex systems in an autonomous, exploratory
manner. Although the method could, in principle, be
applied to HiL setups as well, it is primarily geared
towards supporting the MiL and SiL setups. The
overall design objectives of TestWeaver were to:

(a) dramatically increase the test coverage, with
respect to system behavior, while

(b) keeping the workload for the test engineer
low.

To achieve this, we wanted to remove the necessity
of exclusively relying on hand-coded test scripts,
since we had identified script production as the main
hindrance on the way towards broad test coverage.

4.1 The “chess” principle

The key idea was: Testing a system under test (SUT)
is like playing chess against the SUT and trying to
drive it into a state where it violates its specification.
If the tester has found a sequence of moves that
drives the SUT in such an unwanted state, he has

won a game, and the sequence of moves represents a
failed test.
There are more analogies: To decide for a next best
move, chess computers just explore recursively all
legal moves possible in the current state and test
whether these lead to a goal state. This search pro-
cess generates a huge tree of alternative (branching)
games. In TestWeaver, the automated search for
bugs and design flaws is organized quite similarly.
Our method assumes that the SUT is available as an
executable simulation (MiL) or as a co-simulation of
several modules (SiL). As usually done, the SUT is
augmented with a few components that communicate
with the test driver. These communication compo-
nents, called instruments, implicitly carry the “rules
of the game” that TestWeaver is “playing” with the
instrumented SUT. Namely, they carry information
about: the control actions that are legal in a certain
situation, the interesting qualitative states reached by
the SUT, and, eventually, the violation of certain
system requirements. Each instrument specifies a
(relevant) dimension of the SUT state space. The
value domain along each dimension has to be split
into a finite set of partitions. Each SUT, or SUT-
module, has to be configured individually by placing
and parameterizing the instruments inside the SUT.
The “game” is played in this multi-dimensional par-
titioned system space.

Figure 1: The chess principle

4.2 Instruments

An instrument is basically a small piece of code
added to the un-instrumented version of the SUT us-
ing the native language of the executable, e.g. Mod-
elica, Matlab/Simulink, or C. The instruments com-
municate with TestWeaver during test execution,
which enables TestWeaver to drive the test, to keep
track of reached states, and to decide during test exe-
cution whether an undesired state (failure) has been
reached. TestWeaver supports basically two kinds of
instruments, action choosers and state reporters, that
can come in several flavors:

TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs

The Modelica Association 343 Modelica 2008, March 3rd − 4th, 2008

1. state reporter: this instrument monitors a discrete
or a continuous variable (e.g. a double) of the SUT,
and maps its value onto a small set of partitions or
discrete values (e.g. low, medium, high). During test,
this instrument reports each partition change of the
monitored variable to TestWeaver. This is used by
TestWeaver to keep track of reached states and to
maximize the coverage of the partitioned / discrete
state space.
2. alarm reporter: this is actually a state change re-
porter. In addition the partitions are associated with
severity levels, such as nominal, warning,
alarm, and error. The reachability of a “bad”
state corresponds to a failure of the test currently ex-
ecuted. Note: these failure conditions are verified
throughout all the tests run by TestWeaver.
3. action chooser: this instrument is associated with
an input variable of the SUT. In an automotive appli-
cation, an input variable may represent the accelera-
tion pedal or the brake pedal of a car. Depending on
the details of the instrumentation, this instrument
asks TestWeaver either periodically or when a trig-
ger condition becomes true to choose a discrete input
value for its input variable from the partitioned value
domain of the variable.
4. fault chooser: this is a special case of action
chooser. The value domain is partitioned into nomi-
nal and fault partitions and can can be used to repre-
sent alternative fault modes of a component of the
SUT. For example, a shift valve model may have be-
havior modes such as: ok, stuckClosed, and
stuckOpen. Instruments like these are used by
TestWeaver to inject (activate) a component fault oc-
curring spontaneously during test execution.

Figure 2: Instruments connect SUT to TestWeaver
Engineers like to work with their favorite modeling
environment. Therefore we have implemented ver-
sions of the above instruments for alternative model-
ing environments, including Matlab/Simulink, Mod-
elica, and C. The idea is to allow the test engineers to

instrument a SUT in their favorite modeling lan-
guage, i.e. using the native implementation language
of the SUT, or of the SUT-module that they are
working on.
In addition to the explicit instruments, TestWeaver
monitors the process of executing the SUT and
records problems, such as divisions by zero, memory
access violations, or timeouts in the communication.

4.3 Experiments, scenarios and reports

In TestWeaver, an experiment is the process of
exploring and documenting the states reached by the
SUT during a certain period of time, possibly taking
into consideration additional search constraints and
coverage goals. An experiment usually runs
completely autonomously for a long time, typically
several hours, and without requiring any user
interaction.

When running an experiment, TestWeaver generates
many differing scenarios, by generating differing
sequences of answers for the action choosers. A
scenario is the trace (or protocol) of a simulation run
of the given SUT in the partitioned state space.
TestWeaver combines several strategies in order to
maximize the coverage of the reached system states
and to increase the probability of finding failures.
The results are stored in a scenario data base of the
experiment, i.e. a tree of scenarios (actually a
directed graph), as shown in Fig. 3.

Figure 3: Scenarios generated by an experiment

The user can investigate the states reached in an
experiment using a high level query language similar
to SQL. Results are displayed in reports. A report is
basically a table that displays selected properties of
the scenarios stored in the scenario data base. The
user specifies the structure and layout of a table by
templates, while the content of a table depends on
the content of the scenario data base – see Fig. 9.
There are two kinds of reports: overview reports, that

A. Junghanns, J. Mauss, M. Tatar

The Modelica Association 344 Modelica 2008, March 3rd − 4th, 2008

document state reachability, and scenario reports,
that document details of individual scenarios.

A user may specify, start, and stop an experiment,
reset the experiment's data base and investigate the
reports generated by the experiment, the last even
while the experiment is running. Individual scenarios
can be replayed: i.e. the SUT is restarted and is fed
with the same sequence of inputs as the one recorded
in order to allow detailed debugging of a problem,
e.g. by plotting signals and other means.

4.4 The experiment focus

The dimensions and the partitions of the state space
are configured by the instruments of the SUT. Apart
of these there are also other means that can constrain
the exploration, either as part of the instrumented
SUT, or as explicitely defined in the specification of
the experiment focus in TestWeaver. The focus of an
experiment specifies which region of the state space
should be investigated when running the experiment.
During an experiment, TestWeaver tries to drive the
SUT into those states that are in the experiment's
focus. The experiment focus is currently specified
using two means:

– constraints: the constraints limit the size of
the considered state space of an experiment.
They can limit, for instance, the duration of a
scenario, or the allowed combinations of
inputs and states. A high level constraint
language is provided for this purpose. In an
automotive application, a user could, for
example, exlude all scenarios where brake
pedal and acceleration pedal are engaged
simultaneously. For a fault analysis, a
constraint could be used to exclude certain
fault modes from investigation, or to limit
the number of faults inserted in a scenario:
typical values are 0, 1 and 2. Higher
numbers are reasonable when investigating
fault-tolerant systems, e.g. systems with
complex fault detection and reconfiguration
mechanisms

– coverage: the user can tell TestWeaver to
use some of the reports of the experiment as
defining the coverage goals of the
experiment. A report used in this way is
called coverage report.

Experiments with different SUT versions and with
different focus specifications can be created, run and
compared with each other.

4.5 Analyzing and debugging problems

The alarm and error states of the SUT are reported in
the overview reports. For each problem one or more
scenarios that reach that state can be recalled from
the scenario database. The scenarios can be once
again replayed and additional investigation means
can be connected. Depending on the SUT simulation
environment these can be, for instance: plotting addi-
tional signals, connecting additional visualization
means such as animation, setting breakpoints, and
even connecting to step-by-step evaluation with
source code debuggers – for instance for SUT mod-
ules developed in C.

4.6 The Modelica instrumentation library

In this section we briefly present the Modelica in-
strumentation library of TestWeaver, cf. Fig. 4.

Figure 4: The Modelica Instruments library
The package Instruments contains ready to use
components for instrumenting Modelica models.
Each instrument is a Modelica component that
communicates with TestWeaver through an outer
WeaverConnection. Instruments extend the partial
base class Instruments.Interfaces.Instrument, which
is a model with the following parameters:

− variable: the name of the SUT variable de-
fined by the instrument

− comment: a description of the instrument
− unit: of the classified real value, e.g.

"km/h", "kg", or "%"
− intervals: an array of number pairs defining

the numeric partitions of the real value, e.g.
[0,100; 100,150; 150,1e10]

− labels: an array with the partition names, e.g.
{"ok", "hot", "damaged"}

− weaverConnection: outer reference.

TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs

The Modelica Association 345 Modelica 2008, March 3rd − 4th, 2008

Furthermore, the Instruments package provides the
following instruments as Modelica components:

− Reporter: an instrument that adds a severity
rating to each interval and reports the value
of a SUT variable when triggered; whether
the reported value represents an alarm or a
nominal state depends on the associated
severity

− Chooser: an instrument that adds an
occurence rating to each interval and allows
TestWeaver to control a variable of the SUT,
when triggered; whether the control value
represents a fault to be injected or a nominal
value depends on the corresponding
occurence rating

− Parameter: a Chooser whose control
variable is a model parameter to be
initialized by TestWeaver at simulation start;
this is used to model parameter deviations,
for instance, due to aging, or due to
production tolerances.

Fig. 5 shows how to use a Reporter in a model.

Figure 5: Reporting a temperature
The reporter is connected to the output of a heat
model, and to a boolean trigger signal. Whenever the
trigger signal becomes true, the reporter classifies
the temperature w.r.t the partition margins and re-
ports the result through the WeaverConnection to
TestWeaver.

Figure 6: Controlling two pedals in a car

Likewise, Fig. 6 shows two Choosers called
chooseBrakePedal, chooseAccelPedal.
Both accept a default value at the left side, output the
signal chosen by TestWeaver and accept a boolean
trigger signal as input, which defines the time points
when new values can be changed by TestWeaver.

5 Example: automatic transmission

As an application example for TestWeaver, consider
the development of the control software for an auto-
matic transmission. An instrumented Modelica mod-
el of an entire car, including the transmission and a
WeaverConnection is shown in Fig. 7.

Figure 7: An instrumented car model
The control software is developed using a SiL devel-
opment environment. The executable SUT is hence
co-simulating two modules: the compiled control
software, and the compiled Modelica model of the
car. Since the Modelica model has been instrument-
ed, the SUT also contains functions to communicate
with TestWeaver. When TestWeaver starts the SUT
to perform a system test, all contained instruments
register themselves at TestWeaver with all their de-
clared static properties (intervals, labels, severities
etc.). TestWeaver then displays a list of these instru-
ments, see tree in Fig. 9. Selecting an instrument in
the tree displays all its properties. Fig. 8. shows how
TestWeaver displays the heat reporter of Fig. 5.

Figure 8: Reporter (Fig. 5) displayed by TestWeaver

A. Junghanns, J. Mauss, M. Tatar

The Modelica Association 346 Modelica 2008, March 3rd − 4th, 2008

The tree shown in Fig. 9 also contains an item for
each report of the experiment. Selecting such a re-
port displays the report as table. Fig. 9. shows a re-
port that shows which gear shifts have already been
reached during the experiment, and whether critical
temperatures at the clutches A and B have been re-
ported. For each state, up to two scenarios are refer-
enced in the right most column. Clicking on such a
reference displays that scenario as a sequence of dis-
crete states. It is possible to reproduce the entire sce-
nario with an identical simulation such that the test
engineer can access all its details. For example, run-
time exceptions of the control software (such as divi-
sion by zero) can be reproduced this way and in-
spected using the usual software debugging tools.

Figure 9: TestWeaver displaying a coverage report

6 The instrumentation process and
quality watchers

If an executable SUT exists it is relatively easy to
add the instrumentation for the action choosers and
the pure state reporters – those reporters that do not
attempt to classify the states as “good” or “bad”. A
good understanding of the system functionality is re-
quired, in order to select the relevant system features
and the relevant qualitative partitions. This activity
in not completely new for the test engineers: the
commonly used “Classification Tree Method” for

specifying tests relies exactly on this kind of system
analysis [2].
For the automatic test evaluation TestWeaver uses
alarm reporters. The alarm reporters monitor correct-
ness or quality conditions of the SUT. Some of these
conditions are easy to define, others might require
quite sophisticated watchers. Let us begin with the
easier cases:

(a) often physical components have well known
functional or safety ranges of operation that
should not be exceeded; examples: maximal
power dissipated by a component, maximal
temperature, maximal pressure in a contain-
er, maximal allowed rotational speed of an
engine or gear, etc.

(b) similar “local” correctness conditions exist
for software functions; in the software indus-
try such assertions are widely used today for
detecting, diagnosing and classifying pro-
gramming errors during test; examples here:
maximum number of allowed objects in a
buffer, access indices within array bounds,
assumed domains for input parameters, as-
sertions about function pre-conditions, post-
conditions and other invariants that can be
easily declared and monitored – see also [3].

The above quality conditions can be locally imple-
mented, e.g. in a component type library. In such a
case, each component instantiation will also instanti-
ate the check of the quality condition and the instru-
mentation required.
In addition, the run time exceptions of the SUT pro-
cess (e.g. divisions by zero, memory access viola-
tions, etc.) and the communication timeouts (possi-
bly produced by infinite loops, non-converging nu-
merical solvers, etc.) are anyway monitored and re-
ported by TestWeaver.
An important class of quality conditions can be rela-
tively easily defined when the SUT includes a con-
troller and a model of the controlled system. Often
controllers have in some form (at least a simplified)
inverse model of the controlled system. This makes
it easier to formulate system invariants or quality
conditions. For instance: when not shifting, the con-
troller gear should match the gear from the transmis-
sion model; if no fault is set in the hardware model,
the on-board diagnosis should not detect any fault; if
a fault code is generated, then the fault should coin-
cide with a fault set in the hardware model. In gener-
al, the assumptions made by the control system about
the state of the controlled system should match
(within certain acceptable delays and tolerances) the
state of the model.

TestWeaver - A Tool for Simulation-Based Test of Mechatronic Designs

The Modelica Association 347 Modelica 2008, March 3rd − 4th, 2008

The more we migrate from checking correctness to
checking quality, the more complex and subtle the
watchers can become. For TestWeaver arbitrarily
complex quality watchers can be implemented with
Modelica, Matlab/Simulink or C. In principle, any
conventional test case can be turned into a quality
watcher, although it might be sometimes difficult to
generalize the specific conditions checked in a test
case. The effort will be rewarded because:

(a) the quality condition will be checked not
only for one input sequence, but for many
differing scenarios, and

(b) a more general formulated condition is likely
to survive unchanged, or with only small
changes, when new SUT versions are pro-
duced later on, during development.

The tuning of some complex quality watchers can be
quite laborious. In practice, there will always be cas-
es when false alarms are generated. Therefore, after
each experiment, also a detailed manual analysis and
diagnosis of the problems found is prescribed by our
test method.

7 Summary and conclusions

The increasing pressure to shorten and cheapen de-
velopment for more and more complex products re-
quires new test strategies. Today we see early mod-
ule tests and late system-level tests, like HiL and
test-rigs, as state of the art. The importance of early
system-level testing increases with the increasing
complexity of module interaction because bugs on
system-level are more likely, more costly to fix and
harder to find. Testing before physical prototypes ex-
ist, for both controllers and hardware, is one neces-
sary step towards early system-level testing.
As long as the behavior of a system can be described
easily using stimuli-response sets, script-based test-
ing is a feasible strategy. With increasing system
complexity, this method fails to provide the neces-
sary coverage at reasonable cost. On the other side,
our test method allows to:

(a) systematically investigate large state spaces
with low specification costs: only the rules
of the “game” have to be specified, not the
individual scenarios

(b) discover new problems that do not show up
when using only the predefined test scenar-
ios prescribed by traditional test methods;
TestWeaver can generate thousands of new,
qualitatively differing tests, depending on
the time allocated to an experiment

(c) increase the confidence that no hidden de-
sign flaws exist.

In chapter 5, we have sketched the application of
TestWeaver to a SiL-based system test of an auto-
matic transmission. We have several years of experi-
ence with this kind of applications. However, the ap-
plication of TestWeaver to other domains seems
promising as well, especially for those cases where a
complex interaction between the software and the
physical world exists. For instance:

− driver assistance systems: in car systems
such as ABS, ESP, etc. we meet a complex
interaction among the control software, the
vehicle dynamics and the human driver; this
leads to myriads of relevant scenarios that
should be investigated during design

− plant control systems: in plants for chemical
processes, power plants etc. we meet the in-
teraction of the control software, plant
physics and the actions of the operators;
again, the same kind of complexity that calls
for a systematic investigation during design.

TestWeaver runs on Windows platforms. It is a pow-
erful, yet easy to use tool: users can use their native
specification or modeling environment and don't
have to learn yet another test-specification language.

Acknowledgments
Special thanks to Volker May who initiated the re-
search that finally led to TestWeaver.

References

[1] Berard et. al.: Systems and Software Verifica-
tion: Model-Checking Techniques and Tools,
Springer Verlag, 2001.

[2] Grochtmann, M., Grimm, K.: Classification
Trees for Partition Testing. Software Testing,
Verification & Reliability, Volume 3, No 2,
pp. 63-82, 1993.

[3] Meyer, Bertrand: Applying "Design by Con-
tract", in Computer (IEEE), 25, 10, October,
pages 40-51, 1992.

[4] Rebeschieß, S., Liebezeit, Th., Bazarsuren, U.,
Gühmann, C.: Automatisierter Closed-Loop-
Testprozess für Steuergerätefunktionen.
ATZ elektronik, 1/2007 (in German).

[5] Thomke, Stefan: Experimentation Matters: Un-
locking the Potential of New Technologies,
Harvard Business School Press, 2003.

A. Junghanns, J. Mauss, M. Tatar

The Modelica Association 348 Modelica 2008, March 3rd − 4th, 2008

