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Abstract

This paper reports on experiences from case studies in
using Modelica/Dymola models interfaced to control
and optimization software, as process models in real
time process control applications. Possible applica-
tions of the integrated models are in state- and parame-
ter estimation and nonlinear model predictive control.
It was found that this approach is clearly possible, pro-
viding many advantages over modeling in low-level
programming languages. However, some effort is re-
quired in making the Modelica models accessible to
NMPC software.
Keywords: Nonlinear Model Predictive Control, On-
line optimization, process control, offshore oil and gas
production

1 Introduction

Model Predictive Control (MPC) has becomethe ad-
vanced control strategy in the process industries [11].
MPC refers to control strategies which optimize future
performance as predicted by a process model, and im-
plement the first part of the calculated control inputs.
The optimization/implementation is repeated at regu-
lar intervals to achieve robustness through feedback.
Although linear MPC (based on linear, typically em-
pirical, process models) is prevalent, it is seen that in
many cases, MPC based on nonlinear process models
(NMPC), with models derived from first principles and
process knowledge, is advantageous or even necessary
to achieve better control performance over varying op-
erating conditions (due, for example, to varying prod-
uct specifications or large process disturbances). In
addition to the use of nonlinear process models, an-
other important aspect with NMPC based on models
from first principles, is that nonlinear state estimation
is an essential part of the control system.
NMPC has received considerable attention in
academia, especially in terms of optimization methods

[1] and requirements for stability of the resulting
closed loop [7]. However, when it comes to in-
dustrial application, use of NMPC clearly has an
unfulfilled potential, although some applications
are being reported, especially in polymerization
processes [8, 11].
One important reason for the limited practical use of
NMPC, is the substantial time and effort required for
developing, validating and maintaining nonlinear pro-
cess models that are valid over a wide operating range.
Importantly, but sometimes overlooked, these models
should at the same time be suitable for optimization,
in terms of issues such as complexity and smoothness.
An important step towards less costly model develop-
ment is the use of advanced modeling environments,
which promotes model structure, model reuse and
model maintenance through equation-oriented mod-
eling languages, object orientation and hierarchical
composition of sub-models.
Literature reveals some effort towards using advanced
process modeling environments in a practical dynam-
ical optimization setting, e.g. [9], where gPROMS are
connected to a software environment for dynamic op-
timization. However, the impression remains that this
is very much a developing area.
The use of such models is not limited to NMPC
in real-time process control settings. One can en-
vision many types of real-time model-based applica-
tions using such models, ranging from data reconcilia-
tion, estimation (states, parameters, disturbances, soft-
sensing) for monitoring and control, to advisory op-
erator support systems and finally to NMPC. One can
argue that a complete NMPC installation involves the
other applications mentioned, such that if Modelica
models can be used for NMPC, the other applications
follows naturally.
The aim of this paper is to discuss requirements, chal-
lenges, opportunities, and experiences from using an
advanced modeling environment, in particular Dy-
mola/Modelica, for developing models that are used
in model-based process control applications.
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Figure 1: Illustration of model component software structure

The paper is structured as follows: First, we give some
remarks on how we have integrated Modelica models
(developed using the Dymola tool) into the NMPC tool
CYBERNETICA CENIT (for state estimation and opti-
mization). Next, we give some comments on model-
ing and model types, and give a brief overview over
the modeling used in the case examples. In Section 4
we discuss using the Modelica models for state esti-
mation, and give briefly some results obtained using
real process data. In Section 5 we discuss optimization
in Nonlinear Model Predictive Control, and illustrates
with results from a simulation study.

2 Interfacing Modelica/Dymola mod-
els with NMPC estimation and op-
timization software

In this section, we discuss the integration of Modelica
models withCYBERNETICA CENIT, a software pack-
age for NMPC developed by Cybernetica.
The CYBERNETICA CENIT kernel consists of three
components: The NMPC optimization component, the
state estimation component, and the model compo-
nent. The components communicate (with each other
and externally) using prespecified interfaces. The two
first components are general, while the model com-
ponent of course is specific for each project. Other
CYBERNETICA CENIT modules, for example for of-
fline parameter estimation/optimization for fitting the
model to data, also exist and make use of the kernel,
but are not considered part of the kernel.
The model component includes discretization (simula-
tion of the model between sample intervals), such that
the model is discrete time as seen from the state esti-
mation and NMPC module.
Traditionally, the model component has been coded in
C. This has served the purposes well, but for a number
of reasons it is desirable to have a more user-friendly

way of implementing models, using a high-level mod-
eling language. The overall goal is to reduce the cost
of modeling, which is a significant cost factor in a
NMPC implementation project. Reasons for the cost
reduction include
• Promote reuse of models, also through building

of model libraries.
• Better overview of models, ease of implementa-

tion and modifications.
• Easier exploitation of modeling effort in other

contexts.
• Possibly easier integration of external models

(external libraries, customer models, thermody-
namics, etc.).

After an investigation of the available alternatives,
evaluated against a range of criteria including the is-
sues in the list above, it was found that Modelica was
an excellent possible choice for an alternative mod-
eling language. Moreover, the software tool Dymola
provided a good Modelica modeling environment, and
the opportunity to integrate the models in other soft-
ware, through the Dymola C-code export option.
With the C-code export, the Modelica model is avail-
able in a C-file,dsmodel.c, along with interface func-
tions. Figure 1 illustrates how this C-file can be inte-
grated to form a model component ready to use with
CYBERNETICA CENIT.
A distinct advantage of the C-code export offered
by Dymola, is that it allows compilation of the total
control system including model on any target system
equipped with an ANSI C compiler. This is in con-
trast to systems which base the interface on software
component interfaces such as CORBA, and requires (a
version of) the modeling environment to run simulta-
neously.
On the other hand, it might be conceived as a disad-
vantage that the interface is Dymola specific, and not
based on any standard.
Presently, the developed interface only allows obtain-
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ing sensitivity information by finite differences, but
with the availability of analytical Jacobian from Dy-
mola models, a natural next step, subject for current
development, is to include integration of sensitivities
in the model component. This can be an advantage
both for simulation of the model (see next section), but
perhaps more importantly, also for solving the NMPC
optimization problem (see Section 5).

3 Modeling and simulation

As mentioned in the previous section, the mod-
els developed in Modelica/Dymola must be
solved/simulated in the model component. In
this section we first give some general remarks on
modeling and simulation for NMPC, and thereafter
we briefly present the modeling that is done for the
case examples in Section 4 and 5.

3.1 Simulating the model

Using equation-based modeling environments such as
those based on Modelica, one generally ends up with
differential-algebraic equation systems (DAEs). In
Dymola, there are implemented algorithms for refor-
mulation (symbolic transformation) of the DAE sys-
tem such that it from the outside looks like an ODE
system,

ẋ(t) = f (t,x(t),u(t), p),
y(t) = g(t,x(t),u(t), p),

(1)

but where the evaluation of the right hand side in gen-
eral requires the solution of some nonlinear equation
systems. The reformulation ensures that these equa-
tion systems are as small, and hence as efficiently
solved, as possible. However, the solution is based
on iterative, local methods, such that it can in general
take many iterations to find an acceptable solution, and
worse, one is not always guaranteed to find a solution
at all. (Although for well-behaved models, one nor-
mally finds a solution in few iterations.)
Another issue is that the right hand side might be dis-
continuous in its arguments. If this is the case, the
solvers used to solve the (apparent) ODE above, must
be able to handle discontinuities. Moreover, the sys-
tem will often be stiff, calling for implicit methods
with variable step lengths.
Apart from any possible discontinuities, the above
issues (DAEs, stiffness, variable step lengths) do
not in principle imply any problems using Model-
ica/Dymola models with an NMPC tool likeCYBER-
NETICA CENIT.
Nevertheless, efficiency and robustness issues may
change the picture. Simulation in a NMPC system

involves frequent resetting of system parameters (ini-
tial states, inputs and estimated parameters), which for
DAEs in general requires online re-solving of the non-
linear equation set. For the ODEs exported by Dy-
mola, it leads to frequent re-solving of the ’hidden’
nonlinear equation sets.
If we can ensure that the model is a ’real’ ODE (with-
out nonlinear equation sets), this is avoided, resulting
in increased speed and robustness.
There are no direct help in Dymola to avoid the non-
linear equation sets leading to a DAE system, but the
reporting when translating models helps to identify
where these nonlinear equations are.
Additionally, ensuring that the model is continuous,
means that we can use more efficient solvers that do
not have to handle discontinuities.
These issues require more effort during the modeling,
and also imply that one often cannot apply other (li-
brary, customer) models directly. Nevertheless, the is-
sues are important: In our experience, it is a key aspect
of a successful implementation of a NMPC system to
find the correct balance between computational com-
plexity of the model/simulation and required model
accuracy. Required model accuracy is not easily de-
fined in general, but relates to the specific control ob-
jectives of the particular process. In this respect, more
complex models are not necessarily more accurate.
When building models from physics, one typically
ends up with stiff equation systems, which require im-
plicit solvers with variable step sizes to be solved effi-
ciently. If one chooses to exploit analytical Jacobians
in connection with optimization (see also Section 5),
this can in principle also be used in the implicit solvers
to speed up computation.

3.2 Control-relevant modeling of an offshore
oil and gas processing plant

In the North Sea (and on other continental shelfs), oil
and gas are produced by drilling wells into the ocean
bed. From the wells, a stream of typically oil, gas
and water arrive at a surface production facility which
main task is to separate the components and make oil
and gas ready for export, either through pipelines or by
ship. A schematic picture of such an offshore oil and
gas processing plant placed on an offshore platform is
given in Figure 2. In this case, we have to some ex-
tent disregarded water, to concentrate on the oil and
gas streams.
In Figure 2, we see that oil and gas enter from two dif-
ferent main sources (each main source is represented
by one oil and one gas source) into three separators
(the grey ovals). The separators are large tanks which
split oil, water and gas. The produced oil is leaving in

Model-Based Optimizing Control and Estimation using Modelica Models

The Modelica Association 303 Modelica 2008, March 3rd − 4th, 2008



the lower right corner of the figure, while the gas en-
ters a compression train from the second and third sep-
arator. The compressor train, consisting of five com-
pressors (five stages) compresses the natural gas for
re-injection or to export through a pipeline (upper right
corner). At the top, there is an additional gas import
(from another production platform) with an additional
gas compressor. Some of the gas is taken out (top left)
as fuel for on board generators.

As can be seen, this is a fairly complex system in
terms of numbers of components, however, many of
the components are of the same type (mainly separa-
tors, compressors, valves, PID controllers, in addition
to minor components such as sources, sink, splitter,
sensors, etc.), which simplifies overall modeling.

A brief description of some unit models is given be-
low:

• Separators: Separators are large tanks which due
to their construction, and the different densities
of the components, separate water, oil and gas
into different process streams. The dynamics of
the separator model is based on a mass balance
and flash calculations to calculate the split of oil
and gas. Based on the separator geometry (and
thermodynamics), water and oil levels and gas
pressure can be calculated from the component
masses.

• Compressors: The centrifugal compressor mod-
els are static models based on compressor maps
(specified by the compressor vendor) of poly-
tropic head vs. volumetric rate, parameterized in
compressor speed. The compressor maps are
interpolated to yield continuous relations. The
compressors are strongly nonlinear, that is, the
gain from compressor speed (input) to pressure
and volumetric rate are strongly dependent on op-
erating point.

• Valves: There are different valve models for liq-
uid and gas flow, both based on basic valve equa-
tions. Critical and sub-critical flow are handled.
The valve characteristics can be chosen to be ei-
ther linear or equal percentage via a drop-down
menu.

For real-time efficiency reasons, we have made an ef-
fort to ensure that we end up with an ODE model.
The main manifestation of this, is that we cannot have
more than one unit that determines flow between each
volume in the model. Therefore, we have introduced
semi-physical ’nodes’ (the grey round units in Fig-
ure 2), and tuned the volumes of these to retain good
transient response (for example, by tuning them to be
faster than the sample frequency, the exact value is not
important in terms of simulation accuracy vs. measure-

ments).
Thermodynamics are important in order to calculate
phase transitions between oil and gas. It is also essen-
tial to be able to describe the gas’ properties over a
large span in pressure. Furthermore, the model should
have real time capabilities, favoring simple/explicit re-
lations.
For phase equilibrium calculations, correlations of
k-values (as function of temperature, pressure and
molecular weight) were used together with a simpli-
fied representation of the many chemical species found
in the real process. Gas density was described by a
second-order virial equation, where the model coef-
ficients were fitted to an SRK-equation for the rel-
evant gas composition evaluated for the temperature
and pressure range of current interest.
The thermodynamic models have been implemented in
the style of the Modelica.Media library in the Model-
ica Standard Library.

4 State estimation

4.1 State estimation background

Nonlinear state-, disturbance- and parameter estima-
tion are essential for NMPC implementations, but are
also important in other settings than purely control-
related, such as monitoring and surveillance, and static
optimization/RTOs.
Estimation based on Kalman filter algorithms has be-
come tremendously widespread over the last almost 50
years. Other types of estimation algorithms also ex-
ist, but are much less used. For nonlinear state esti-
mation, Extended Kalman Filtering (EKF) algorithms
should be used. Traditionally, these are based on ana-
lytical linearizations, but over the last years, it is seen
that using divided differences (or similarly, Unscented
Kalman Filtering (UKF) approaches) in many cases
provides better performance than linearization-based
EKF.
Importantly, the perturbation schemes used in con-
nection with covariance update by divided difference-
approaches (including UKFs) obtain information be-
yond linearization. Thus, for these cases, availability
of analytical Jacobians from the model is not necessar-
ily an advantage (unless it speeds up simulation). On
the other hand, for estimation schemes based on lin-
earizations (e.g. traditional EKF), or estimation based
on numerical optimization (e.g. Moving Horizon Es-
timation (MHE)-approaches, taking inequality con-
straints into consideration), analytical Jacobians can
be exploited.
CYBERNETICA CENIT has implemented EKFs based
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Figure 2: Overview of an offshore oil and gas processing plant, as implemented in Dymola.

on divided differences (both DD1 [13] and DD2 [10],
in the notation of [10]), in addition to MHE [12]. For
further information and discussion, see also [14].

4.2 Example: State estimation of offshore
processing plant

The state and parameter estimation capabilities ofCY-
BERNETICA CENIT (extended Kalman filtering based
on finite differences in this case) was used to estimate
states and model parameters in a Modelica model of
the offshore oil and gas processing plant illustrated in
Figure 2. The Modelica model was integrated as aCY-
BERNETICA CENIT model component as explained in
Section 2. Logged data from real operation was used
in the test.
The process is fairly well instrumented (a subset of the
instrumentation is included in the Modelica model, see
Figure 2), but there is no overall reconciliation of the
individual measurements nor any overall measurement
of key figures. From the individual measurements,
most often in engineering units, it is hard to get an
overview of the state of the process. With a complete
process overview by the help of the model, it is pos-
sible to identify the current process state, being an es-

sential basis for taking the correct corrective actions
in case of abnormal incidents, and also essential as a
starting point for optimization of process operation.

The resulting ODE model of the system was fairly
stiff, with modes ranging from around 0.1 seconds to
hours, while the sampling time of the process was 1
minute. Therefore, it was absolutely necessary to use
an (implicit) ODE solver with varying step lengths. In
this case, the CVODE ODE solver1 was used, with Ja-
cobians found by finite differences. For this model,
with 38 states and 35 estimated parameters, the state
estimation ran more than 10 times faster than real time.

The state and parameter estimation was successfully
tuned and tested on data from several days of opera-
tion. An excerpt is shown in Figure 3, where the model
initially is simulated ’open loop’, and the state estima-
tion is turned on after 60 minutes. The figure demon-
strates, for a single compressor stage, how the com-
pressor parameters converge such that the estimated
variables match the measured ones.

1From the SUNDIALS package, seehttp://www.llnl.
gov/CASC/sundials/.
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Figure 3: State and parameter estimation of one of the compressor stages. Red lines are real process data, and
blue lines are estimated results.

5 Nonlinear Model Predictive Con-
trol

5.1 NMPC background

The NMPC optimization problem is a dynamic opti-
mization problem, usually discretized to have a finite
number of optimization variables (manipulated vari-
ables), that must be solved at regular (sampling) in-
stants. The first part of the optimal solution – the first
sample interval, is implemented to the process, before
the dynamic optimization problem is resolved before
the next sample instant. The optimization problem is
using updated process information from a state estima-
tion algorithm.
The optimization problem to be solved at timet, with
available state estimate ˆx(t), may look something like
this, after a piecewise constant parameterization of fu-
ture manipulated variables (u) over an horizonL:

min
u0,u1,...,uL−1

L−1

∑
k=0

F(xk+1,uk) subject to





xk+1− f (xk,uk) = 0, k = 0, . . . ,L−1,

x0 = x̂(t),
hx(xk) ≥ 0, k = 1, . . . ,L,

hu(uk) ≥ 0, k = 0, . . . ,L−1.

(2)

The discrete-time systemxk+1 = f (xk,uk) is in gen-

eral obtained by simulation of an ODE (1) over the
sample intervals. The functionshx and hu represent
constraints on states (or controlled variables) and ma-
nipulated variables.

In most cases, the (discretized) dynamic optimization
problem is solved using numerical algorithms based
on sequential quadratic programming (SQP). A SQP
method is an iterative method which at each iteration
makes a quadratic approximation to the objective func-
tion and a linear approximation to the constraints, and
solves a QP to find the search direction. Then a line-
search is performed along this search direction to find
the next iterate. General SQP solvers may be applied
to NMPC optimization, but it is in general very advan-
tageous to use tailor-made SQP algorithms for NMPC
applications.

Although a very crucial step in SQP algorithms tai-
lored for NMPC optimization is the linesearch, the
main approaches found in the literature are usually
categorized by the way they specify the QP for find-
ing the search direction. Arguably, the most common
method is thesequentialapproach [5], which at each
iteration simulate the model using the current value of
the optimization variables (u0,u1, . . . ,uL−1) to obtain
the gradient of the objective function (and possibly the
Hessian), thus effectively removing the model equal-
ity constraints and the statesx1,x2, . . . ,xL as optimiza-
tion variables. Thereafter a reduced space QP prob-
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lem is solved to find the search direction. Conversely,
in thesimultaneous[4, 2] approach, the model is im-
plemented as explicit equality constraints, meaning
that the optimization variables are bothu0,u1, . . . ,uL−1

andx1,x2, . . . ,xL. The third approach,multiple shoot-
ing [3, 6], can be viewed as a combination of the two
other approaches, where, loosely speaking, the control
horizon is divided into some ’sub-horizons’ which are
solved in a sequential fashion, and equality constraints
link the sub-horizons.

There is no general consensus as to which of the above
methods is best – probably, it is problem dependent.
Note that the two latter approaches allow closer coop-
eration between the ODE/DAE solvers and SQP opti-
mization than is revealed by the formulation (2).

A sequential approach to dynamic optimization is im-
plemented inCYBERNETICA CENIT. A central is-
sue is how to obtain the necessary sensitivity infor-
mation for solving the NMPC optimization problem.
The two main routes are either by finite differences
directly on the objective function, or by integrating
ODE/DAE sensitivities along with the model, and cal-
culate NMPC sensitivities based on this. For the latter
case, one can exploit the possibility of using analytical
Jacobians in Dymola.

Calculating the gradient by finite differences means
that many (depending on number of optimization vari-
ables) simulations over the control horizon has to be
done, which can be time-consuming. Calculating the
gradient based on sensitivity integration has the poten-
tial to be significantly more efficient, at least for some
problems.

A possible problem with forming the NMPC objec-
tive function gradient (and possibly Hessian) based on
ODE/DAE sensitivities, is that the resulting gradient
(and Hessian) is not necessarily a very good approxi-
mation to the NMPC objective function to be solved
numerically. Consider the following argument: By
using finite differences directly on the NMPC objec-
tive function (which includes solving the ODE/DAE),
we obtain a direct approximation to the gradient of the
“numerical” NMPC objective function, which is what
we are minimizing numerically. However, by com-
puting the gradient based on ODE/DAE sensitivities,
discretization errors will make the computed gradient
different from the gradient of the numerical objective
function.

Such errors may be important since one for computa-
tional complexity reasons is likely to push the accu-
racy limits for the ODE/DAE solvers.

5.2 Simulation example: NMPC of offshore
processing plant

The case used in this section is similar to the one used
in the previous section, but is based on (another) pro-
duction platform. In this case, the focus is on the
separation, and the gas compression is not modeled.
The process has five different streams of oil and gas,
that are to be separated in four separators (a separator
train). In contrast to Section 4, the water phase is now
explicitly modeled in the separators. The model was
tuned to fit data from the real process, but all results
shown in this paper are based on simulations.
The process is controlled by level controllers for water
and oil, and gas pressure controllers for each separa-
tor. This is a standard solution, which works well in
many/normal cases. However, in some cases, distur-
bances in the inlet flows from the inlet pipelines/wells
can cause problems for the control of the separators.
The levels in the separators will vary, which may cause
bad separation and may be detrimental for equipment
downstream the separators, due to uneven flow out of
the separator train. The purpose for this study is to see
if NMPC with state and disturbance estimation, using
the level controller setpoints as manipulated variables
(MVs), can exploit the buffer capacity in the separa-
tors to smooth out the outlet flows of water and oil.
The oil is in this particular case entering a distillation
column, and the water is entering a glycol regenerator,
for regeneration of glycol that is added in the process.
Smoother inflow to these units may allow more regu-
lar/increased production of the overall process.
There are six manipulated variables: The setpoints for
water and oil level controllers in the separators (two of
the separators does not separate water, and hence does
not have a water level controller). The controlled vari-
ables (CVs) are pressures, levels and valve openings
for all separators, and rate of change of glycol concen-
tration in one separator.
The resulting model, with 29 states, was not partic-
ularly stiff. Therefore, a simple forward Euler ODE
solver was used. The NMPC system, including state
and disturbance estimation based on finite differences,
and NMPC optimization with gradients found by fi-
nite differences, ran considerably faster than real time,
using a sample interval of 6 s.
Some simulation results with a disturbance, a time-
limited increased flow in one of the inflowing
pipelines, are shown in Figures 4–6. Figure 4 shows
how the NMPC reduces the level controller setpoints
in the inlet separator (resulting in increased outflow
valve openings, see Figure 6), to let the increased in-
let flow (detected by the state and disturbance estima-
tion) be smoothed out over all the separators. Figure 5
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demonstrates how the NMPC achieves smoother out-
flow from the last separator, and that the glycol frac-
tion in the water varies less.
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Figure 4: Oil and water levels in the inlet separator,
with MPC (solid) and without MPC (dashed).

0 20 40 60 80 100 120
50

55

60

65

70
Glycol fraction in water from last separator

minutes

%

0 20 40 60 80 100 120
70

80

90

100
Condensate flow rate from last separator

minutes

%

Figure 5: Glycol concentration in glycol/water mix-
ture (top) and oil flow rate (bottom) from the last
stage separator, with MPC (solid) and without MPC
(dashed).

6 Experiences with using Modelica
and Dymola for real time process
control applications

In this section, we summarize some of our experiences
with using Modelica and Dymola for process control
applications.
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Figure 6: Level controller setpoints (MVs, top) and
level and valve openings (CVs, bottom) in inlet sepa-
rator. Red line is oil, blue line is water, magenta is oil
valve opening, cyan is water valve opening.

6.1 Modelica modeling in Dymola

When it comes to modeling, Modelica and Dymola has
much to offer over implementing the models in C. Due
to the object orientation and the graphical interface it
is easy to work on details and at the same time have
an overview over the whole model. Using a tool such
as Dymola, tasks like manipulation, testing and simu-
lation of the model are convenient.
In this paper, we have used two cases from offshore oil
and gas production. We saw some advantages in terms
of reuse between these projects, but as we probably
will work more in this area, we expect to see further
advances at later stages. Using an object-oriented en-
vironment like Modelica, makes it easier to develop
unit models with more general interfaces, such that
they are easier reused. For some of the simple model
units, we could use units from the Modelica Stan-
dard Library, although in most cases, some modifica-
tions were done. By drawing inspiration from Mod-
elica.Media, we had a convenient structure for imple-
mentating the thermodynamics.
As with other equation-based modeling systems, de-
bugging models during model development is a chal-
lenge in Dymola, and tools to help model debugging
would be a benefit. However, by testing unit models
thoroughly before aggregating them, many problems
can be avoided.
When we have models with nonlinear equations sys-
tems (DAEs), we had in some cases problems with
initialization of the equation systems, and identifying
which variables that were part of the equation system.
Of course, when making sure the model was an ODE,
these problems were avoided.
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6.2 Integration of Modelica/Dymola models
in NMPC software

Using the C-code export option of Dymola, it was
fairly straightforward to integrate the Modelica mod-
els asCYBERNETICA CENIT model components as
described in Section 2. However, some modifications
must be done to the Modelica model before it is ex-
ported, and some information, not directly available
from the exported C-code interface functions, must
currently be hand-coded into the model component.
These issues are discussed below.
A significant part of the effort in constructing the
model component based on the structure illustrated in
Figure 1, is to generate and keep up to date the ref-
erencing/indexing variables in the filemodel.c. This
information is necessary in the NMPC user interface,
for instance for tuning of the EKF and the NMPC con-
troller. This is presently coded by hand, but in the-
ory, it should be possible to auto-generate at least large
parts of this file based on the model information in the
file dsmodel.c. Another possibility might be if Dy-
mola added interface functions/functionality for this.
A NMPC system must exchange the following infor-
mation dynamically with the model (in addition to
states and state derivatives):
• Model inputs: The NMPC must (at least) be able

to set the manipulated variables (MVs), the mea-
sured disturbances (DVs) and the parameters that
are estimated by the EKF.

• Model outputs: Measured variables (for state es-
timation), and controlled variables (for NMPC).

We have (naturally) chosen to have the MVs and DVs
as Modelica inputs. For estimated parameters, there is
a choice involving some trade-offs:
• The estimated parameters could be part of the

Modelica inputs. The advantages with this is that
it is simple to manage in the model component,
and that it is possible to calculate analytical Ja-
cobians with respect to these parameters (for use
for instance in state estimation using MHE, or in
offline parameter estimation). The drawback is
that the Modelica unit models must be modified
to have these parameters as inputs, which makes
it cumbersome to use the same model both for
simulation and testing in Dymola, and as model
for generating the model component.

• We can access the estimated parameters the same
way as all other parameters2. This makes ’book-
keeping’ of the parameters in the model compo-
nent (model.c) more involved, and we cannot ex-

2Note that the estimated parameters will be constant in all sim-
ulations made, for instance over one sample interval in the EKF,
or over the control horizon in the NMPC.

ploit analytical Jacobians with respect to these
parameters. On the other hand, this choice sim-
plifies model maintenance, since we do not have
to make new models for estimating parameters.

Presently, our implementation is based on the first
choice, which in practice means we must maintain
two Modelica models with identical behavior – one
for simulation, and one for integration in the model
component. This situation is not ideal. One possibility
which might rectify the situation, is if Modelica had a
variable type that is both parameter and input, and a
kind of a ’master switch’ that switches the interpreta-
tion.
In some cases, it would be an advantage to be able
to debug the model code. Due to the structure of the
auto-generated code, this is hard.

6.3 Running Modelica/Dymola models in
NMPC software

There are some further interesting findings from the
case study in Section 5.2. We had this model imple-
mented as a model component in C before we im-
plemented it in Modelica. By using profiling tools,
we found that running NMPC with the model compo-
nent based on the Modelica model, used less than 20%
additional time compared to using the pure C model
component, where most of the difference must be at-
tributed to Modelica overhead since the models were
practically mathematically identical.
However, to get the Modelica-based model to run this
fast, we had to implement the Modelica functions used
in the Modelica-model in C. Not surprisingly, there is
considerable overhead in the implementation of Mod-
elica functions, especially related to indexing of ar-
rays. The possibility to implement Modelica functions
in C is supported by the Modelica specification, and
implemented in Dymola, and is a considerable practi-
cal advantage for real time applications.

7 Conclusions

It is possible to use Modelica/Dymola for modeling
for NMPC purposes, with many of the advantages
promised by such advanced modeling environments
fulfilled. Such environments are helpful in developing
complex process models, towards reuse of unit mod-
els, and we see potential for increased model value (by
extending the application area of the model) and easier
customer participation in model development.
However, using Modelica/Dymola models for NMPC
has some hurdles. Some effort is required to make
a Modelica simulation model ready to be used with

Model-Based Optimizing Control and Estimation using Modelica Models

The Modelica Association 309 Modelica 2008, March 3rd − 4th, 2008



NMPC software. In our experience, two main issues
are a) making Modelica model parameters accessible
to the NMPC through Modelica inputs and outputs,
and b) specifying the structure of state-, input-, output-
and parameter vectors (e.g. for NMPC and state esti-
mation tuning).
Finally, we emphasize that process models for NMPC
should be developed with the specific task in mind,
in terms of issues such as complexity, accuracy and
smoothness. In some cases, this means that the model
should be an ODE, while models from component-
based modeling languages such as Modelica naturally
translates into DAEs. It will in general require some
effort and compromises for Modelica models to trans-
late into ODEs.
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editors,Nonlinear Predictive Control, pages 219–245.
Birkhauser, Basel, 2000.

[2] L. T. Biegler, A. M. Cervantes, and A. Wächter. Ad-
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F. Allgöwer and A. Zheng, editors,Nonlinear Predic-
tive Control, volume 26 ofProgress in Systems The-
ory, pages 246–267, Basel, 2000. Birkhäuser.
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iteration scheme for nonlinear optimization in optimal
feedback control.SIAM J. Contr. Optim., 43(5):1714–
1736, 2005.

[7] R. Findeisen, L. Imsland, F. Allgöwer, and B. A. Foss.
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