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Abstract

Bioethanol production from fermentation of a sub-
strate using biomass as catalyst is considered.
Four alternative reaction rate models with di¤er-
ent levels of details are derived and implemented
in Modelica. The problem of parameter estima-
tion of models using state/parameter estimation
techniques in a Modelica-Dymola/Matlab setup is
discussed. Practical aspects concerning the di¤er-
ent implementations of nonlinear estimators are
analyzed (EKF, UKF, and EnKF). The use of
Modelica-Dymola for �on-line� applications such
as state estimation poses the additional problem
of the e¢ ciency of the code; this will also be dis-
cussed. The four reaction rate models are �tted
using �ctitious experimental data generated from
one of the models to illustrate the parameter esti-
mation procedure.
Keywords: bioethanol fermentation, parameter es-
timation, nonlinear estimators

1 Introduction

Alcoholic fermentation is an important bio-
chemical process which has been known for some
5000 years. Ethyl alcohol, or more commonly
ethanol, has chemical formulae C2H5OH, and
�nds uses as (i) alcoholic beverage (beer, wine,
spirits), (ii) solvent, (iii) raw material in chemical
synthesis, and (iv) fuel.
With the current focus on CO2 release and global
warming, there is a considerable interest in pro-
ducing fuel from biomass. Production of ethanol
from fermentation typically involves a two step
process: (a) the main process where substrate
(glucose) is converted to ethanol and non-fossil
CO2 in an enzymatic process, and (b) the aero-

bic yeast growth through the consumption of sub-
strate and oxygen.

In continuous reactors, yeast is contiuously
washed out, leading to a less e¢ cient use of the
yeast. The use of immobilized yeast increases
the e¢ ciency of the process, as less substrate is
�wasted� for yeast production. In fermentation,
salts are involved as co-enzymes. The resulting
ions a¤ect the oxygen uptake in the reaction mix-
ture.

The produced (bio-) ethanol can be used as fuel
after some additional processing ��lter yeast, re-
move water by distillation, etc. Alternatively, the
ethanol can be converted to methane by microor-
ganism.

The e¢ cient production of ethanol in a fermenta-
tion reactor requires quantitative analysis of how
raw materials are converted to products. Static
models are often used for design purposes for con-
tinuous reactors, while dynamic models are re-
quired for batch reactors (e.g. beer production)
and for control analysis and design in continuous
reactors. A simple numeric dynamic model for
the continuous fermentation of glucose using the
yeast saccharomyces cerevisae is given in [1]. The
model is somewhat simpli�ed in that the dynam-
ics of the overall reactor volume is neglected, the
role of the salts as co-enzymes is neglected, and
somewhat simple kinetic reaction rates are used.
A more systematic development of reaction rates
for the continuous ethanol fermentation process is
presented in [2]. In [1], the e¤ect of ions on the
oxygen uptake in the reactor mixture is included,
but the e¤ect of glucose is neglected; expressions
for the e¤ect of ions and sugars are given in [3].
Most of the parameters of the model of [1] are
given in their publication; however there is one
or two typos, and the e¤ect of salt ions on the
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oxygen uptake is as if the salinity of the reaction
mixture was similar to that of sea water (due to
some mole-to-gram conversion problem).

It is of interest to study the parameter estima-
tion problem of the fermentation model for the
di¤erent rates of reaction models with the pur-
poses of control and identi�cation. Online pa-
rameter identi�cation can be achieved using re-
cursive state/parameter estimators. For linear
systems with normally distributed process and
measurement noise, the optimal recursive estima-
tor is the Kalman �lter. Estimation for non-
linear systems is considerably more di¢ cult and
admits a wider variety of suboptimal solutions.
The extended Kalman �lter (EKF), unscented
Kalman �lter (UKF), and the ensemble Kalman
�lter (EnKF) are implemented using Modelica-
Dymosim and Matlab. The fermentation with the
di¤erent reaction rates is implemented in Model-
ica and compiled into Dymosim. The parameters
are directly estimated using the parameter state-
augmented approach and the discrete version of
the estimators are implemented in Matlab.

The paper is organized as follows. In the next
section, an overview of the fermentation process
and its implementation is given. Di¤erent kinetic
reaction rates for the fermentation process are pre-
sented in accordance with biochemical engineering
principles. We give a brief introduction of the im-
plementation of the proposed models in Modelica.
In section 3, we discuss the problem of parame-
ter estimation of models using recursive nonlinear
state/parameter estimation techniques in a Mod-
elica/Matlab setup. The traditional use of the
Extended Kalman Filter poses some questions re-
garding the computation of the Jacobians of the
system. In more modern techniques such as the
Unscented Kalman Filter, and Monte Carlo tech-
niques such as the Ensemble Kalman Filter, the
computation of Jacobians is avoided. Also, these
more modern techniques handle nonlinearities in a
better way than the Extended Kalman Filter. In
particular when these estimation techniques are
used for parameter estimation, some of the �l-
ter constants need to be carefully tuned, and we
discuss this problem. Also, the use of Modelica
for �on-line�application such as state estimation
poses some particular problems with regards to
the e¢ ciency of Modelica implementations; this
will be discussed. Finally, we assume that the
model of [1] has been �tted well to experimen-

tal data. We then generate �ctitious experimental
data from the model of Agachi et al., and we illus-
trate the parameter estimation procedure by �t-
ting the new models to the generated experimental
data.

2 Fermentation model

2.1 Description

The nutrients in biochemical reactions are known
as substrates. The substrate for the ethanol pro-
duction process is thus glucose. For the yeast
growth process, the substrates are glucose and
oxygen. In the sequel we will use symbol S do de-
note glucose. Since oxygen has a relatively simple
chemical formulae, we will not introduce a partic-
ular notation for oxygen. Furthermore, we will use
symbol P for the main product, which is ethanol,
and symbol X for the yeast.
The original reaction kinetics given by [1] can be
seen in Table 3 with the superscript o for every
specie roj :
The fermentation reactor for the production of
ethanol is sketched in Fig. 1. Glucose (substrate
S, sugar) in a water solution is continuously fed
to the well stirred reactor; the volumetric feed
�ow is _Vi [volume/time] : The reactor contains
yeast (microorganisms X), which reacts with sub-
strate to produce ethanol (product P). We con-
sider this reaction 1, with kinetic reaction rate
r1 [mass/(volume time)] 1.

S
E1! P (1)

Simultaneously, in a second reaction (2), the mi-
croorganism breed under the consumption of oxy-
gen to produce more yeast; the kinetic reaction
rate is r2 [mass/(volume time)].

S+O2
E2! X (2)

The relationships between the rates of generation
rj [mass/(volume time)] with j 2 fP;X;S;O2g
can be seen in Table 3. All reaction rates have
dimension mass/(volume time). It follows that
r1 = rP is the mass of ethanol produced per vol-
ume and time, etc. Factor YSP has the meaning
of mass of ethanol (product) produced per mass of
glucose (substrate) consumed. Similar interpreta-
tions are valid for YSX and YOX.

1The CO2 specie is not considered in the expression.
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Fig. 1: Sketch of fermentation reactor.

Both in the inlet stream and in the reaction
medium, water is dominant such that the density
� of the mixture can be assumed to be constant.
For oxygen, there is an input �ow _mO2;a in that
oxygen is transported from air to dissolved oxygen
in the reaction medium,

_mO2;a = k`a
�
��O2 � �O2

�
V; (3)

where k`a [1/time] depends on the temperature,
V is the volume of the reaction medium, �O2 is
the mass based concentration [mass/volume], and
��O2 is the equilibrium concentration of oxygen in
water. ��O2 depends on salts in the mixture. It
is assumed that there is no O2 in the feed water
stream. In both reactions 1 and 2, CO2 is released
as a byproduct; here we do not model the carbon
dioxide production.
The total mass, species balances, and energy bal-
ance for the reactor and the water jacket models
are presented in Table 1. The fermentation bound-
ary conditions de�ned as inputs and outputs are
de�ned in this table. The fermentation model pa-
rameters of the original model developed in [1] are
shown in Table 2.

2.1.1 Fermentation reaction and rates

The elementary reaction rate re1 for the ethanol
production is developed considering the substrate-
enzyme interactions, the resulting rate is given by
the Michaelis-Menten kinetics. Additionally, the
presence of ethanol inhibits the ethanol produc-

Tab. 1: Fermentation model.
Reactor total mass and species balances:
d
dtm = _mi � _mo

d
dtmj = _mj;i � _mj;o + _mk

j;g with j 2 fP;X;S;O2g
Reactor rates of generation:

_mj;g = r
k
j V with j 2 fP;X;S;O2g

Reactor outputs:

_mo = k
p
V

_mj;o = _Vo�j with j 2 fP;X;S;O2g
Reactor inputs:

_mi = � _Vi

_mP;i � 0
_mX;i � 0
_mS;i = �S;i

_Vi

_mO2
= _mO2;a

Oxygen interface transport:

_mO2;a = k`a
�
��O2

� �O2

�
V

��O2
= ��O2;0

(T ) exp (�
P

n In �
P

m Sm)

with n 2 fNa+;Cl�;Ca+2;CO�23 ;Mg+2;H+;OH
�g

In =
1
2Hjz

2
j cjP

m Sm = SS = KScS
��O2;0

(T ) = �0 + �1T + �2T
2 + �3T

3

Reactor energy balance:

�ĉpV
dT
d = �ĉp _Vi (Ti � T ) + �Hr;2V rjO2

� _Qheatex

Water jacket mass balance:

_mJ;i + _mJ;o = 0

Water jacket energy balance:

�J ĉp;JVJ
dTJ
dt = �J ĉp;J

_VJ (TJ;i � TJ) + _Qheatex

Water jacket-reactor heat transfer:

Qheatex = UxAx (T � TJ)

tion rate (inactive enzymes), this e¤ect is also in-
cluded in this reaction rate. The combined e¤ect
is shown in Table 3.
A common simpli�ed model for the e¤ect of com-
petition for active sites yields the simpli�ed rate
rs1; where a specie that competes for an active
site and participate in the reaction has the form
�S=(KS;1+�S), while a specie that competes for an
active site and does not participate in the reaction
has the form 1=(1 + kP;1�P):

Another possible model for ethanol produc-
tion with ethanol inhibition is to notice that
exp

�
�kP;1�P

�
� 1=

�
1 + kP;1�P

�
: This exponen-

tial term can be explained by assuming inhibition
by ethanol may be caused by intracellular mech-
anisms.
A similar analysis can be done for the reaction
rate for the yeast production for the di¤erent ap-
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Tab. 2: Parameters for the fermentation reactor with
original reaction rates.
Reactor/Water jacket parameters:

� = 1080 g= l � ~Hr;O2
= �518 kJ=molO2

�J= 1000 g= l VJ= 50 l

ĉp= 4:18 J=( g
�C) UxAx= 3:6E5 J= ( h

�C)

ĉp;J= 4:18 J=( g
�C) (kla)0= 38h

�1

Rate of generation parameters:

�1= 1:79 h
�1 KS;2= 1:03 g= l

�O2
= 0:5 h�1 KO2

= 8:86mg= l

A1= 9:5E8 h
�1 kP;1= 0:070 l= g

A2= 2:55E33 h
�1 kP;2= 0:139 l= g

Ea1=R = 6:6185E3 K YSX= 0:607 gX= gS
Ea2=R = 26:474E3 K YSP= 0:435 gP= gS
KS;1= 1:68 g= l YOX= 0:970 gX= gO2

Oxygen interface transport parameters:

zNa+= +1 HMg+2= �0:314 l=mol
zCl�= �1 HCa+2= �0:303 l=mol
zCa+2= +2 KS= 0:119 l=mol

zCO�2
3
= �2 MNaCl= 58:44 g

zMg+2= +2 MMgCl2= 95:21 g=mol

zH+= +1 MCaCO3
= 100:09 g=mol

zOH�= �1 MO2
= 32 g=mol

HNa+= �0:55 l=mol MS= 180:15 g=mol

HCl�= 0:84 l=mol �0= 14:16mg= l

HOH�= 0:94 l=mol �1= �0:394mg=( l �C)
HCO�2

3
= 0:48 l=mol �2= 7:71E�3mg=( l �C2)

HH+= �0:77 l=mol �3= �6:4E�5mg=( l �C3)

proximations.
The original rates are closely related to the devel-
oped rates where product inhibition is explained
via intracellular transport. The original model
neglects the oxygen dependence of the intracellu-
lar model and neglects the substrate dependence
and the product inhibition. Clearly, when the ki-
netic rates change their functional form, the para-
meter/temperature functions change. The di¤er-
ent rate reaction rates are shown in Table 3.

2.2 Implementation

In Modelica it is important to implement a good
structure to enable easy modi�cation of the mod-
els. The core model of the fermentation reactor is
the basic volume model, there is where the total
mass, species mass balances, and energy balance
are de�ned. This model exchanges heat with the
water jacket model through an MSL heat port. It

Tab. 3: Parameters for the fermentation reactor with
original reaction rates.
Reaction rates 1:

ro1= �1�X
�S

KS;1+�S
exp

�
�kP;1�P

�
re1= �1�X

�S
KS;1+(1+kP;1�P)+�S

rs1= �1�X
�S

KS;1+�S

1
1+kP;1�P

ri1= �1�X
�S

KS;1+�S
exp

�
�kP;1�P

�
Reaction rates 2:

ro2= �2�X
�S

KS;2+�S
exp

�
�kP;2�P

�
re2= �2�X

�S�O2
KS;2KO2

+(1+kP;2�P)+KO2
�S+�S�O2

rs2= �2�X
�S

KS;2+�S

�O2
KO2

+�O2

1
1+kP;2�P

ri2= �2�X
�S

KS;2+�S

�O2
KO2

+�O2
exp

�
�kP;2�P

�
Rates of reactions for P;X;S;O2
rkP= r

k
1 , k = fo; e; s; ig

rkX= r
k
2 , k = fo; e; s; ig

rkS= � 1
YSP
rk1� 1

YSX
rk2 , k = fo; e; s; ig

rk
�

O2
= � 1

YOX
rk

�

2 , k�= fe; s; ig
roO2

= � 1
YOX

�O2
�X

�O2
KO2

+�O2

also has a chemical port (i.e. intensive variables:
temperature and mass concentration vector; and
extensive variables: mass �ow rates vector and
heat �ow rate) that connects with the rate of gen-
eration replaceable model and the oxygen trans-
port model, and two thermo�uid ports (i.e. in-
tensive variables: pressure, speci�c enthalpy, and
mass fraction vector; and extensive variables: en-
thalpy �ow rate vector, mass �ow rate vector, and
total mass �ow rate) to connect the basic volume
with the incoming mass �ow rate in and the out-
coming mass �ow rate out of the model. The ba-
sic volume is then connected to the water jacket
model, to the oxygen transport model, to the rate
of generation replaceable model as shown in Fig.
2.

The four di¤erent reaction kinetic rates (i.e. orig-
inal, elementary, simpli�ed, and intracellular) are
implemented using a replaceable component. A
common set of parameters and equations are de-
�ned in a partial model called rate of generation.
Speci�cs of every reaction rate model are de�ned
separately in each model that inherits the rate of
generation partial model. The heat of reaction is
also de�ned in these models. The water jacket
model uses two MSL �ow ports.
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O2 transport
interface model

Water Jacket
model

Mass and
energy balance
control volume

replaceable
rate of

generation
models

Fig. 2: Dymola diagram layout of the fermentation re-
actor component.

3 Nonlinear estimators

3.1 Description

The ethanol fermentation reactor model can be
written in the general discrete nonlinear state
space form:

xk = fk�1 (xk�1; uk�1; wk�1)

yk = hk (xk; vk) (4)

where fk�1 : Rnx+nu+nw ! Rnx is the discrete
state function, xk 2 Rnx is the discrete state vec-
tor, uk�1 2 Rnu is the discrete input, wk�1 2 Rnw
is the discrete process noise vector, hk : Rnx+nv !
Rnx is the discrete output function, vk 2 Rnv is the
discrete measurement noise vector, yk 2 Rny is the
output vector, and k is the time index. The noise
vector sequences fwk�1g and fvkg are assumed
Gaussian, white, zero-mean, uncorrelated, and
have the known covariance matrices Qk 2 Rnx�nw
and Rk 2 Rny�nv .

3.2 Augmented states

The augmented state space approach can be di-
rectly used to simultaneously solve the state and
the parameter estimation problem (e.g. see [4]).
An augmented state space representation is for-
mulated by adding the vector of parameters to be
estimated �k 2 Rn��1 as new states:

Tab. 4: EKF algorithm.

Initialization:
x̂0j0 � N (�x0; P0)
P0j0 = P0

for k = 1; 2; : : :

Propagation step:
( a priori covariance estimate)

Fk�1 =
@fk�1
@xk�1

���
x̂k�1jk�1

Lk�1 =
@fk�1
@wk�1

���
x̂k�1jk�1

Pkjk�1 = Fk�1Pk�1jk�1F
T
k�1 + Lk�1Qk�1L

T
k�1

( a priori state-output estimate)

x̂kjk�1 = fk�1(x̂k�1jk�1; uk�1; 0)

ŷkjk�1 = hk(x̂kjk�1; 0)

Measurement update:
(Kalman gain calculation)

Hk =
@hk
@uk

���
x̂kjk�1

Mk =
@hk
@vk

���
x̂kjk�1

Kk = Pkjk�1H
T
k (HkPkjk�1H

T
k +MkRkM

T
k )

�1

( a posteriori state-covariance estimate)

x̂kjk = x̂kjk�1 +Kk(yk � ŷkjk�1)
Pkjk = (I �KkHk)Pkjk�1

"
xk

�k

#
=

"
fk�1

�
xk�1; uk�1; w

(x)
k�1

�
�k�1 + Tsw

(�)
k�1

#
(5)

yk = hk (xk; vk) (6)

where Ts is the sampling time step, w
(x)
k�1 2 Rn

(x)
w

is the process noise vector that a¤ects the original

states; and w(�)k�1 2 Rn
(�)
w is the process noise vec-

tor that a¤ects the added parameter states. The
noise vector sequences fwk�1g and fvkg are as-
sumed Gaussian, white, zero-mean, uncorrelated,
and have the known covariance matrices Qk 2
R(nx+n�)�(n

(x)
w +n

(�)
w ) and Rk 2 Rny�nv

wk � N (0;blkdg(Q(x)k ; Q
(�)
k ))

vk � N (0; Rk)

During the propagation step, the augmented
states corresponding to parameters �k are consid-
ered equal to the previous time step �k�1 with
some additive process noise w(�)k�1. If it is assumed
that the parameters do not change at all, then
there is no process noise vector w(�)k�1, but for the
more general case of time-varying parameters (e.g.
fouling, etc.), the value of Q(�)k will be given by
the admissible range of variation of �k: During
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the measurement update step the parameter val-
ues are corrected.
For notational simplicity in the estimators algo-

rithms that follow, the augmented state vector is
referred to as xk, the state augmented function (5)
is referred to as fk�1, and the augmented process
noise vector is referred to as wk�1.

Tab. 5: UKF algorithm.

Initialization:
L = nx + nw + nv; � = �

2(L+ �)� L
 = 2

p
L+ �; �0m = �=(�+ L)

�0c = �=(�+ L) + (1� �2 + �)
for i = 1; 2; : : : ; 2L

�im = (2(�+ L))
�1; �ic = �

i
m

x̂0j0 � N (�x0; P0)
P0j0 = P0

for k = 1; 2; : : :

Propagation step:
(sigma points propagation)
~Pk�1jk�1 = blkdiag(Pk�1jk�1; Qk; Rk)

~x0k�1jk�1 = [(x̂k�1jk�1)
T ; 01�nW ; 01�nv ]

T

for i = 1; 2; : : : ; L

~xik�1jk�1 = ~x
0
k�1jk�1 +  chol(

~Pk�1jk�1; i)

~xi+Lk�1jk�1 = ~x
0
k�1jk�1 �  chol( ~Pk�1jk�1; i+ L)

~x
(x)i
kjk�1 = fk�1(~x

(x)i
k�1jk�1; uk�1; ~x

(w)i
k�1jk�1)

~yikjk�1 = hk(~x
(x)i
kjk�1; ~x

(v)i
k�1jk�1)

( a priori state-output estimate)

x̂kjk�1 =
P2L

i=0 �
i
m~x

(x)i
kjk�1

ŷkjk�1 =
P2L

i=0 �
i
m~y

i
kjk�1

( a priori state covariance estimate)

~eix;kjk�1 = (~x
(x)i
kjk�1 � x̂kjk�1)

Pkjk�1 =
P2L

i=0 �
i
c(~e

i
x;kjk�1)(~e

i
x;kjk�1)

T

Measurement update:
(Kalman gain calculation)

~eiy;kjk�1 = (~y
i
kjk�1 � ŷkjk�1)

Py =
P2L

i=0 �
i
c(~e

i
y;kjk�1)(~e

i
y;kjk�1)

T

Pxy =
P2L

i=0 �
i
c(~e

i
x;kjk�1)(~e

i
y;kjk�1)

T

Kk = PxyP
�1
y

( a posteriori state-covariance estimate)

x̂kjk = x̂kjk�1 +Kk(yk � ŷkjk�1)
Pkjk = Pkjk�1 �KkPyK

T
k

3.3 Nonlinear Recursive Estimators

The nonlinear estimation problem can be formu-
lated as a recursive Bayesian estimation problem
with a propagation and a measurement update

step. This is the optimal way of predicting a state
probability density function (pdf) p (xk) for any
system in state space representation with process
and measurement noise2.

Tab. 6: EnKF algorithm.

Initialization:
(initial ensemble)

for i = 1; 2; : : : ; N

xi0j0 � N (�x0; P0)
for k = 1; 2; : : :

Propagation step:
(ensemble propagation)

for i = 1; 2; : : : ; N

xikjk�1 = fk�1(x
i
k�1jk�1; uk�1; w

i
k�1)

yikjk�1 = hk(x
i
kjk�1; v

i
k�1)

(estimated state-output propagation)

x̂kjk�1 = (N)
�1PN

i=1 x
i
kjk�1

ŷkjk�1 = (N)
�1PN

i=1 y
i
kjk�1

(covariance calculation)

eix;kjk�1 = (x
i
kjk�1 � x̂kjk�1)

Pkjk�1 = (N � 1)�1
PN

i=1(e
i
x;kjk�1)(e

i
x;kjk�1)

T

Measurement update:
(Kalman gain calculation)

eiy;kjk�1 = (y
i
kjk�1 � ŷkjk�1)

Py = (N � 1)�1
PN

i=0(e
i
y;kjk�1)(e

i
y;kjk�1)

T

Pxy = (N � 1)�1
PN

i=0(e
i
x;kjk�1)(e

i
y;kjk�1)

T

Kk = PxyPy
�1

(state-out-covariance update)

xikjk = x
i
kjk�1 +Kk((yk + v

i
k)� yikjk�1)

x̂kjk = (N)
�1PN

i=1 x
i
kjk

Pkjk = Pkjk�1 �KkPyK
T
k

Assuming that the initial state pdf p (x0), the
process noise pdf p (wk�1) ; and the measurement
noise pdf p (vk) are known, a recursive solution of
the estimation problem can be found using �rst
the Chapman-Kolmogorov equation to calculate
the a priori pdf for the state xk based on the pre-
vious measurement yk�1 (propagation step)

p(xkjyk�1)=
R
p(xkjxk�1)p(xk�1jyk�1)dxk�1 (7)

where p (xkjxk�1) can be calculated from the state
function fk�1 and the pdf of the process noise wk.
Secondly, the Bayes rule to update the pdf of

the state xk with the new measurement yk (mea-
surement update) is

2Markov process of order one.
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p (xkjyk)=
p (ykjxk) p (xkjyk�1)R
p (ykjxk) p (xkjyk�1) dxk

(8)

where p (ykjxk) is available from our knowledge
of the output function hk and the pdf of vk, and
p (xkjyk�1) is known from (7). Although the initial
state pdf p (x0), the process noise pdf p (wk�1) ;
and the measurement noise pdf p (vk) are needed
to solve the recursive Bayesian estimation, no spe-
ci�c statistical distribution is required.
The recursive relations (7) and (8) used to cal-

culate the a posteriori pdf p (xkjyk) are a con-
ceptual solution and only for very speci�c cases
can these be solved analytically. In general, ap-
proximations are required for practical problems.
Three main groups of suboptimal techniques with
signi�cant performance and computational cost
di¤erences are used to approximate the recursive
Bayesian estimation problem: the classical non-
linear extension of the Kalman �lter (EKF), the
Unscented Kalman �lter (UKF), and the Ensem-
ble Kalman �lter (EnKF) approaches.

3.4 Extended Kalman Filter (EKF)

The discrete EKF is probably the most used se-
quential nonlinear estimator nowadays. It was
originally developed as a nonlinear extension by
Schmidt [5] of the seminal work of Kalman [6].
Based on the Kalman �lter, it assumes that the
statistical distribution of the state vector remains
Gaussian after every time step3 so it is only nec-
essary to propagate and update the mean and co-
variance of the state random variable xk. The
main concept is that the estimated state (i.e. es-
timated mean of xk) is su¢ ciently close to the
true state (i.e. true mean of xk) so the nonlinear
state/output model equations can be linearized
by a truncated �rst-order Taylor series expansion
around the previously estimated state.
The discrete algorithm is given in table 4. In

general, this algorithm works for many practical
problems, but no general convergence or stability
conditions can be established4 and its �nal per-
formance will depend on the speci�c case study.
For highly nonlinear models with unknown initial
conditions, the EKF assumptions may prove to
be poor and the �lter may fail or have a poor per-

3 this assumption is in general not true for nonlinear sys-
tems.

4except for some special cases [7].
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Fig. 3: Dymosim and related input and output �les.

formance. The main tuning parameters are the
estimator covariance matrices Qk and Rk:

3.5 Unscented Kalman Filter (UKF)

The unscented Kalman �lter was originally devel-
oped by Julier and Uhlman [8, 9, 10, 11].
In the unscented Kalman �lters, instead of ap-

proximating the nonlinear state/output functions,
it is the probability distribution that is approx-
imated. Basically, a set of points, called sigma
points, are generated to match the state mean and
state covariance of the probability distribution of
the previously estimated state, then they are prop-
agated through the nonlinear function. The pro-
jected points are used to approximate the �rst two
moments (i.e. the a priori estimated state and
state covariance) that are necessary during the
measurement update step. This �lter normally
outperforms the previously presented EKF. Its
more general form has a higher computational cost
but it does not require the calculation of any Ja-
cobian matrices (i.e. derivatives). The algorithm
is given in table 5.
The tuning parameters of the UKF are also the

estimator process and measurement noise covari-
ance matrices, and the scalar parameters f�; �; �g:
� determines the spread of the sigma points
around the previous estimate, and the � value
depends on the type of distribution assumed (for
more details about their values see [11]).

3.6 Ensemble Kalman Filter (EnKF)

The EnKF uses an ensemble (i.e. particle set) dur-
ing the propagation step, but the classical Kalman
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measurement update equations (instead of using
the resampling with replacement approach of the
particle �lters) during the measurement update
step. The covariances matrices Pxy and Py ob-
tained from the propagation of the ensemble ele-
ments through the nonlinear state-space are used
to calculate the Kalman gain Kk: The a posteri-
ori ensemble is calculated from the Kalman gain
matrix and an arti�cially generated measurement
particle set that is normally distributed with mean
equal to the current measurement yk and covari-
ance equal to Rk. The a posteriori ensemble is
used to calculate the a posteriori state and co-
variance estimate, and it is used for the next �lter
iteration of the algorithm. For details about the
algorithm, see table 6. The EnKF was originally
developed in [12] to overcome the curse of dimen-
sionality in large scale problems (i.e. weather data
assimilation). It is suggested in the literature [13]
that ensembles (i.e. particle sets) of 50 to 100
are often adequate for systems with thousands of
states, but no conclusive work has been done on
this.

Besides the estimator process and measurement
noise covariance matrices, the other tuning para-
meter for this �lter is the number of ensemble el-
ements.

3.7 Implementation

The fermentation model is written in Modelica
and compiled in Dymola into a stand-alone ex-
ecutable �le called Dymosim. The di¤erent es-
timators are implemented in Matlab from where
Dymosim is sequentially called during the prop-
agation step to project the state vector (i.e. in-
tegrate over the sampling time) in the estimator
algorithms. The parameter state vector �k is di-
rectly propagated within the Matlab code so the
original model does not need to be modi�ed to
include the parameter dynamic equations.

Within the Modelica model the input vector uk,
the process noise input vector wk, and the para-
meter input vector �k must be de�ned. This can
be done in the following way at the top level of
the model:

model fermentation
...
input Real u_u1; // define model inputs
input Real u_w1; // define noise inputs
input Real u_p1; // define param. inputs
...
parameter Real p_u1;
parameter Real p_w1;
parameter Real p_p1;
parameter Real p_i1;
equation
fluidBCv.u[1]=u_u1+p_u1;
reactor.basicVol.w[1]=u_w1+p_w1;
reactor.RG.p_mu1=u_p1+p_p1;
reactor.i_rho[1]=p_i1;

end fermentation;

Additionaly, the discrete EKF estimator re-
quires the calculation of the discrete Jacobians
Fk�1; Lk�1;Hk;Mk. This can be done calculat-
ing a linearized model around the previous state
estimate de�ned by the operating point op =
[xTk�1; u

T
k�1; 0; �

T
k�1]

T with the following Matlab
code:

eval( ['! dymosim ', 'l ','dsin.txt'] );

In the �le �dsin.txt� (see Fig. 3) the operating
point is de�ned using parameters and the initial
state for every iteration. The calculated linearized
model is written in the �le �dslin.mat�and then it
can be loaded into Matlab using the Dymola add-
on function tloadlin which loads the matrices
A,B,C,D and the string vectors uname, yname, and
xname. These matrices correspond to
A = @f(x;u;w)

@x

���
op

B =
�
@f(x;u;w)

@u

���
op
; @f(x;u;w)@w ;

���
op
; @f(x;u;w)@�

���
op

�
C = @h(x;u)

@x

���
op

D = @h(x;u)
@u

���
op

The parameter augmented state space discrete ja-
cobians are approximated from the A;B;C;D ma-
trices

Ae =

"
A B(:;nu+nw+1:end)

0np�nx 0np�np

#
Fk�1 = @fk�1

@xk�1

���
op
� exp (Ae�t)

Be =

"
B(:;nu+1:end) 0nx�np
0np�nx 1np�np

#
Lk�1 = @fk�1

@wk�1

���
op

� [I�t+ 1
2!A

e�t2 + 1
3!A

e2�t3 + : : :]Be

Hk =
�
C 0ny�nx

�
Mk = D
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where nu is the input vector dimension, nw is the
process noise vector dimension, and so on. For
notation simplicity, the matrices in the previous
equations use Matlab notation.

4 Results

Due to the lack of experimental measurements,
simulated data sets from the model with the orig-
inal kinetic reaction rates are generated. The sys-
tem model is simulated for 1000 h and data sam-
ples are collected every 1 h. Because the transient
response is relevant to parameter identi�cation,
step-like input sequences with high frequency con-
tent are used (see Fig.4). The initial state vector
for the fermentation model is
x0 =

h
_V ; �P; �X; �S; �O2

; T; TJ

iT 0
= [1000; 12:9; 0:9; 28:6; 3:9; 30:4; 26:9]

T

The system model process and measurement noise
vector sequences fwk�1g and fvkg are Gaussian,
white, zero-mean, uncorrelated, and have constant
covariance matrices
Qk = blkdiag

�
Q
(x)
k ; Q

(�)
k

�
Q
(x)
k = diag ([1000; 15; 2; 100; 5; 35; 30]) � 1E�7

Q
(�)
k = diag ([1; 1; 1; 1; 1; 1; 1; 1]) � 1E�7

Rk = diag ([15; 2; 100; 5; 35; 30]) � 2E�3
A subset of 8 parameters � =
[�1;KS;1;KS;2; kP;1; kP;2; YSP; YSX; YOX]

T is
estimated for every estimator (i.e., the EKF,
the UKF, and the EnKF) using every reaction
rate model (i.e., the original, the elementary,
the simple, and the intracellular reaction kinetic
models). The initial parameter values for every
reaction rate model are adjusted to ensure that
all simulation results give the same steady state
values at initial time t = 0. The estimators
inputs are equal to the system model inputs
u = [ _VJ;i; �S;i]

T , and the measured outputs are
y = [�P; �X; �S; �O2 ; T; TJ ]

T (see Fig.4). The esti-
mators are simulated for 1000 h with a sampling
time of 1 h.
The estimators� initial state vectors are drawn
from a normal distribution with mean and covari-
ance equal to
x̂0j0 � N ([�xT0 ; ��

T
0 ]
T ;blkdiag

�
P
(x)
0 ; P

(�)
0

�
)

�x0 = [990; 13:9; 0:8; 27:6; 4:9; 27:4; 24:9]T

��0 = [1:49; 1:48; 1:23; 7:3; 1:19; 5:07; 4:55; 9:3]T

P
(x)
0 = diag(

�
0:125 � �x0j0

�
:^2)

P
(�)
0 = diag(

�
0:125 � ��0j0

�
:^2)

The UKF parameters are f�; �; �g =

f1E�3; 0; 0g, and the EnKF is evaluated
for an ensemble of N = 100 elements. The esti-
mators process and measurement noise sequences
are Gaussian, white, zero-mean, uncorrelated,
and have constant covariance matrices equal to
the system model.
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Fig. 4: Process inputs ( _VJ;i; �S;i), and measured out-
puts (�P; �X; �S; �O2

; T; TJ) with measurement noise
(grey line) and without it (black line).

Every di¤erent reaction rate is evaluated for
every estimator using 50 Monte Carlo simula-
tions. As a general notation, consider an ensem-
ble {xij (k)g where i indicates the realization, j the
state/parameter, and k the time index. The en-
semble average (over the realizations) is denoted
hxij (k)i:

hxij (k)i ,
P

i x
i
j(k)

nsimul

where nsimul is the number of realizations.
For every estimator with the di¤erent reaction
rates two performance values (averaged over the
number of Monte Carlo simulations) are calcu-
lated for each estimated parameter j: the averaged
estimated parameter for every time index k that
is used to evaluate the parameter estimation bias

wrt. the true parameter value h�̂ij (k)i, and the
averaged absolute estimated parameter error de-
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�ned as hjei�j (k) ji , hj�̂
i

j-h�̂
i

j (k)iji for every time
index k. This second performance value is used to
evaluate the convergence and consistency of every
estimator.

The Monte Carlo averaged performance of the es-
timators using the original reaction rate model is
shown in Fig. 5. The averaged estimated parame-
ters h�̂j (k)i converge to the true parameters for
all the parameters except for the slightly biased
ŶSP estimate and the more biased ŶSX estimate.
In Fig. 5 column (b), the averaged estimated pa-
rameter errors for the parameters fk̂P;2; ŶSP; ŶO2g
converge at a faster rate than for the other esti-
mated parameters f�̂1; K̂S;1; K̂S;2; k̂P;1; ŶSXg: The
EKF and the UKF have comparable averaged es-
timated parameters, while the EnKF has slightly
biased averaged estimated parameters. The best
performance wrt. the averaged absolute estimated
parameter error hjei�j (k) ji is achieved for the EKF
followed by the UKF and the EnKF.

The Monte Carlo averaged performance of the es-
timators using the elementary reaction rate model
is shown in Fig. 6. It can be seen that the av-
eraged estimated parameters no longer converge
to the true parameters of the original rate model
used in the system model simulations. It is to
be expected that some of the parameters will be
time-varying to compensate for the di¤erent ki-
netic rates (between the system and the estimator
kinetic rate models) and, in this way, keep a good
state estimation performance besides their di¤er-
ences. For this case, the averaged estimated para-
meters h�̂j (k)i are considered as an unbiased esti-
mate of the true (possibly time-varying) parame-
ters. The averaged estimated parameters h�̂j (k)i
take di¤erent shapes over time depending on the
speci�c estimator evaluated. In Fig. 6 column (b),
the averaged absolute estimated parameter errors
hjei�j (k) ji for the parameters fk̂P;1; k̂P;2; ŶSX; ŶSPg
and the EKF diverge while the UKF achieves the
best performance followed by the EnKF. It is then
reasonable to consider that the averaged estimated
parameters h�̂j (k)i that correspond to the UKF
are the best estimate of the true parameters �j (k)
for this estimator reaction rate model.

The Monte Carlo averaged performance of the es-
timators using the simpli�ed reaction rate model
is shown in Fig. 7. As for the elementary case, the
averaged estimated parameters h�̂j (k)i are con-
sidered as an unbiased estimate of the true (possi-
bly time-varying) parameters. The averaged es-

timated parameters h�̂j (k)i have similar values
for the EKF and the UKF and slightly di¤erent
for the EnKF. In Fig. 7 column (b), the low-
est averaged absolute estimated parameter errors
hjei�j (k) ji are achieved for the EKF, closely fol-
lowed by the UKF performance. For all the esti-
mators the averaged absolute estimated parameter
errors decrease over time.
The Monte Carlo averaged performance of the
estimators using the intracellular reaction rate
model is shown in Fig. 8. As for the elementary
and simpli�ed cases, the averaged estimated para-
meters h�̂j (k)i are considered as an unbiased esti-
mate of the true (possibly time-varying) parame-
ters. The averaged estimated parameters h�̂j (k)i
have similar values for the EKF and the UKF and
slightly di¤erent for the EnKF. In Fig. 8 column
(b), the averaged absolute estimated parameter
errors hjei�j (k) ji decrease over time for all the pa-
rameters and estimators, except for the estimated
parameter ŶSX with the EnKF.
In Table 7 the di¤erent reaction rate models are
evaluated for each �lter using the normalized
mean RMSE de�ned as

RMSE (x) =
Pnx

j

Pnsimul
i

2

sPnt
k (x̂j(k)�xtruej

(k))
2

nt

max(xtruej )�min(xtruej )

Tab. 7: Normalized mean RMSE for the estimated
state x and parameter � vectors .The best results for
every case is indicated by parentheses.

RMSE (:) EKF UKF EnKF
Original x 9.11E-2 9.13E-2 (8.44E-2)

� (1.22) 1.74 1.95

Elementary x 2.09E-1 1.00E-1 (9.35E-2)
� 5.57E-1 (2.73E-1) 7.54E-1

Simpli�ed x 8.36E-2 (8.05E-2) 8.77E-2
� (3.21E-1) 3.56E-1 3.28E-1

Intracellular x 8.94E-2 1.05E-1 (8.60E-2)
� (3.98E-1) 5.69E-1 4.71E-1

5 Conclusions

The recursive parameter estimation problem is an-
alyzed for an ethanol fermentation process with
di¤erent reaction rate models. The model is im-
plemented in Modelica and three nonlinear esti-
mators are evaluated using the compiled Modelica
model (Dymosim) with Matlab. Implementation
details (e.g. how to calculate Jacobians, de�ned
noise inputs, etc.) are presented.
Some relevant model parameters are estimated us-
ing the EKF, the UKF, and the EnKF from sim-
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Fig. 5: Original kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations for
the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter
estimates h�̂j(k)i for every time index k and true parameters �j (grey solid line); (b) mean absolute estimated
parameter error, hjei�j ji = hj�̂

i

j � h�̂j(k)iji for every time index k.
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Fig. 6: Elementary kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations
for the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter

estimates h�̂j(k)i for every time index k; (b) mean absolute estimated parameter error, hjei�j ji = hj�̂
i

j �h�̂j(k)iji
for every time index k.
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Fig. 7: Simpli�ed kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations for
the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter

estimates h�̂j(k)i for every time index k; (b) mean absolute estimated parameter error, hjei�j ji = hj�̂
i

j �h�̂j(k)iji
for every time index k.
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Fig. 8: Intracellular kinetic rate model parameter estimation results, averaged over 50 Monte Carlo simulations
for the EKF (black solid line), the UKF (black dash line), and the EnKF (black dotted line): (a) mean parameter

estimates h�̂j(k)i for every time index k; (b) mean absolute estimated parameter error, hjei�j ji = hj�̂
i

j �h�̂j(k)iji
for every time index k.
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ulated data sets over 50 Monte Carlo simulations.
Four di¤erent reaction rate models are used by the
estimators while the simulated data sets are gen-
erated assuming that the original reaction rate
parameters have been estimated experimentally.
When using the original reaction rate model in
the estimator, the best parameter estimation is
achieved by the EKF with slightly poorer perfor-
mances for the UKF and the EnKF. The lower
performance of the UKF can be explained by the
lack of tunig of its parameters. For the estimator
using the elementary reaction rate model, the best
parameter estimation corresponds to the UKF,
while the EnKF has a poorer performance and the
EKF diverges for some of the parameters. For the
estimator with the simpli�ed reaction rate model
similar performances are achieved for the 3 esti-
mators; the UKF slightly outperforms the other
two. For the estimator with the intracellular re-
action rate model, the best parameter estimation
performance corresponds to the EKF.
The EnKF has a poor parameter estimation per-
formance for most of the cases but when consid-
ering the mean RMSE of the estimated states it
outperforms the other estimators for three of the
four cases (see Table 7).
The computational cost of the estimators increases
considerably from the EKF to the EnKF because
of the number of projections required for every
estimator iteration. The fermentation model is
run from a Dymosim executable �le and this slows
down the computational performance of the esti-
mators (i.e. the computational time required for
every estimator interation) mainly because Dy-
mosim uses a slow �le input/output interface. De-
spite this practical disadvantage, nonlinear esti-
mators can be evaluated with complex Modelica
models in a simple way. Our future work will focus
on the parameter identi�ability of the complete
model.
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