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Abstract 

The paper presents the use of a subset of UML State-
charts to model discrete control components together 
with the physical model within a Modelica simula-
tion environment. In addition, we show how state-
charts can also be used to describe assertions charts 
for checking the compliance of user defined model 
properties and model behaviour during simulation. 
As the main difference to other approaches, neither 
Modelica language enhancements nor special librar-
ies are necessary. The statechart model is automati-
cally mapped onto standard Modelica constructs and 
can be simulated with any common Modelica stan-
dard simulator. Controlled by the user, the Modelica 
model can be automatically instrumented by addi-
tional Modelica code to examine the state coverage 
and transition coverage during simulation. 
Keywords: state machine; statechart; control system, 
assertions, state coverage, transition coverage 

1 Introduction 

The modelling of discrete and hybrid control algo-
rithms [1] is not a novel application area for Mode-
lica. In the last years, Modelica libraries for Petri 
Nets [2] [4], Statecharts [3] or StateGraph [5] were 
introduced. Furthermore, the extension of Modelica 
with a new statechart section is discussed in [6].  
In this paper, we present a new approach for model-
ing and verification of discrete control components 
within a Modelica environment. In contrast to the 
solutions mentioned above, we create the control 
component models of the physical system outside 
Modelica. The other modules of the physical system 

are modeled as usual in the Modelica environment. 
In a second step, Modelica standard code is gener-
ated for the control components automatically. The 
insertion of the generated code into the Modelica 
physical model completes the system model (Fig. 1).  
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Fig. 1: Using UML Statecharts in SimulationX [9] 

As modeling language for the control components 
we use a subset of UML Statecharts [7]. We derived 
the subset from an analysis of typical control algo-
rithms in the domains mechanical and automotive 
engineering. 
Besides control components, UML Statecharts 
proves to be suitable for robust modeling of physical 
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effects or technical sub-systems with discrete states 
(friction, hysteresis, valves, switches, etc.).  
For our approach we see following advantages: 
• UML Statecharts are well established for model-

ing of control algorithms, especially for reactive 
systems. 

• The statechart creation outside Modelica allows 
the use of off-the-shelf UML development tools. 

• The approach provides not only an interface to 
Modelica. The approach is also open to interface 
specialized verification tools esp. formal verifi-
cation tools. 

• In the sense of model based design, the approach 
is expandable for generation of production code 
for different targets such as PLCs or embedded 
controllers.  

• The generated Modelica code can be simulated 
with any common Modelica simulator. 

For UML Statechart entry, an additional Graphical 
User Interface (GUI) containing a UML Statechart 
editor is necessary which comes usually with the 
UML development tool. The UML tool should meet 
following requirements: 
• The GUI as well as the UML tool code generator 

needs the ability to be customized. 
• The UML tool should support the interaction 

between GUI and generated code to establish a 
comfortable visualization and animation. 

In section 5 we present an UML Statechart editor 
which is completely integrated into the GUI of Simu-
lationX [9]. 
The paper is organized as follows. Section 2 gives an 
overview on the supported UML Statechart subset. 
In section 3 some techniques are introduced which 
allow an efficient verification of the statechart mod-
els. Section 4 presents a prototypic implementation 
of our approach. An outlook on future work is given 
in section 5. 

2 UML Statechart Subset 

In this section we present the subset of UML State-
charts which is implemented in our prototype (see 
section 4). The subset contains the minimum of 
UML Statechart constructs to model a control com-
ponent in a comfortable way:  
• States: Simple States, Non-Concurrent Compo-

site States, Pseudo States.  
• Transitions: Signal Triggers, Change Triggers, 

Time Triggers, Guards.  

• Activities: Modelica text. 
The UML Statechart subset as well as the resulting 
Modelica code is illustrated with a linear drive as an 
example.  

2.1 Example 

The linear drive (Fig. 2) is controlled by the Control-
ler module. Inputs for the Controller are the operator 
commands Run and Halt as well as the position x of 
the linear drive. As output, the controller delivers the 
DC motor supply voltage U=-10V for left run, 
U=+10V for right run and U=0V for stop. 
The specification of the controller is such as follows: 
• Start after Run is given and drive to left 
• Run 10 times between left and right end position 
• Pause 3 seconds, afterwards continue 
• Stop immediately after command Halt was given 
• Restart with the action which was suspended after 

Halt, when Run is given again. 

The physical system model of the linear drive exam-
ple depicted in Fig. 2 is a simplification of the more 
complex model shown in Fig. 1. 
 

 
 

Fig. 2: Over-all structure of the linear drive 

2.2 States 

The control program (Fig. 3) is divided into the 
states Stop and Go. Stop is a simple state, whereas 
Go is a composite state with the nested simple states 
GoLeft, GoRight, and Pause. In consideration of hi-
erarchy, the graph with the states Stop and Go is the 
top-level graph, implicit denoted as Main. The sub-
jacent graph comprises the sub-states of Go. 
For Modelica representation of state activities and 
state transitions, a state variable is declared for each 
hierarchy level. Their type declarations contain the 
enumerations of the state names. Each composite 
state is added with the enumeration InActive to indi-
cate the inactivity of the composite state. 
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2.2.1 Simple States 
In our subset, simple states may optionally have en-
try-activities, exit-activities, and activities which are 
initiated by internal transitions. These activities are 
simple Modelica algorithms. Modelica when-clauses 
are not allowed here. 
 

 

Fig. 3: Statechart model of the control program 

2.2.2 Composite States 
In comparison to simple states, composite states are 
extended each with a composition compartment. In 
our approach, this compartment comprises only one 
region of sub-states – this means, concurrency of 
activities can not occur within one statechart in-
stance. Concurrency is only possible between multi-
ple statechart instances. 
In the generated Modelica code, all entry-activities 
of the nested sub-states are gathered in a 
when-clause separately (see 2.4 Entry-activities of 
Go). All other activities are included in an if-clause 
which describes the transitions of the composite 
state. 

2.2.3 Pseudo States 
We support following pseudo states: initial state, 
junction, and shallow history. An initial state indi-
cates the default starting point of processing the 
statechart or a composite state. A junction merges 
multiple incoming transitions into a single outgoing 
transition, or conversely, split an incoming transition 

into multiple outgoing transitions. A shallow history 
stores the most recent active sub-state of a composite 
state after leaving it. When the composite state is 
newly entered via shallow history this sub-state be-
comes active again. 

2.3 Transitions 

Following kinds of transitions may be used: simple 
transitions (connecting two states), self-transitions 
(the same state acts as both the source and the desti-
nation), compound transitions (connecting many 
states via junction pseudo states), group transitions 
(originating from composite states), and internal 
transitions of simple states. A trigger, a guard, and a 
transition-activity may label a transition. 
The triggering of a group transition implies the exit-
ing of all the sub-states of the composite state and 
executing their exit-activities starting with the in-
nermost states. An internal transition executes with-
out exiting or re-entering the state in which it is de-
fined. 
In our approach, each transition is triggered with a 
single trigger as described below. 

2.3.1 Signal Trigger 
Generally, a signal trigger represents the receipt of 
an asynchronous signal instance [7]. In our interpre-
tation, a signal is either a record typed message with 
e.g. one integer and real component or a boolean 
typed variable, typically a controller input command. 
Every new signal is notified by toggling a flag which 
is an additional component of the message. In case of 
a boolean variable, Run and Halt in the example, the 
variable itself is toggled.  
Signals are produced either by modules of the physi-
cal system or inside the statechart instance. 
 
Signal type definition: 

 type SignalT = record SIGNAL 
    Boolean  flag; 
    Integer  int_val; 
    Real     real_val; 
 end SIGNAL; 

 
Signal assignment in physical system module: 

 SignalT Run; 
 when ( time >= 1 ) then 
   Run.flag := not Run.flag; 
   Run.int_val := 100; 
 end when; 

 
A toggled signal is detected by the Modelica change-
function, for instance change (Run.flag). 
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In addition to UML, signals can be also defined in a 
Signal Definition Table (Fig. 4). In the table, signal 
events are derived from the achievements of prede-
fined thresholds of physical system quantities or of 
internal statechart variables.  
 

 
Fig. 4: Example of the Signal Definition Table 
 

2.3.2 Change Trigger 
A change trigger specifies an event that occurs when 
a boolean-valued expression becomes true as a result 
of a change in value of one or more attributes [7]. In 
UML the life time of the change event is a semantic 
variation point. Related to control tasks, in our ap-
proach the change event remains true as long as the 
evaluation of the change expression results in true. In 
our linear drive example, change triggers are 
x < LimitLeft, x > LimitRight, and count > N_Max.  
The Modelica representation of this behavior is 
given by an if-clause in the transition block (see 2.4 
Transitions of Go). 

2.3.3 Time Trigger 
A time trigger specifies a time event, which models 
the expiration of a specific deadline [7]. We restrict 
the deadline to a relative expression. The expression 
is relative to the time of entry into the source state of 
the transition triggered by the event, e.g. after 
(t_Pause). The time event is generated only if the 
state machine is still in that state when the deadline 
expires.  
In Modelica this behavior is reflected in following 
steps: Firstly, if the source state entry is detected in a 
when-clause, a time variable is set to the time limit 
(see 2.4 Entry-activities of Go). Secondly, a when-
clause checks if the simulation time exceeds the time 
limit. If true, a timeout signal is toggled. This when-
clause belongs to the event generation block of the 
module (see 2.4 Event generations). Thirdly, if the 
source state will inactive due to another transition, 
the time variable is reset. 

2.3.4 Guards 
A guard is a Boolean expression written in terms of 
parameters of the triggering event or attributes of the 
context object [7]. It is evaluated only once when-
ever it’s associated event fires. If it is false, then the 

transition does not fire and the event is lost. In the 
linear drive example, the guards [dir==DirT.Left], 
[dir==DirT.Right] determine the target sub-states of 
Go after the Run command is given. 

2.3.5 Firing Priorities 
It is possible that more than one transition could be 
concurrently fired to change the state, e.g., they have 
the same trigger event and their guard expressions 
results in true. Then, in UML, an implicit priority 
rule is applied based on the relative position of the 
source state in the state hierarchy [7]. In addition, we 
allow the user to assign the transition priorities ex-
plicitly. A transition priority is denoted by a number 
1, 2, 3… where 1 symbolizes the highest priority. 
These priorities are depicted near the start points of 
the transition arrow lines. Chosen by the user, the 
priorities of group transitions are either higher or 
lower than priorities of inner transitions of composite 
states.  
The resulting priority number determines the posi-
tion of the transition in the check for firing. In the 
linear drive example, Halt shall have the highest pri-
ority to stop the machine, especially in case of an 
emergency. 

2.4 Over-all Modelica Code Structure 

The Modelica representation of a statechart consists 
of following sections: 
• Declaration of state variables, input/output sig-

nals, internal signals, system variables, auxiliary 
variables, parameters. 

• Initialization of state variables and auxiliary 
variables, execution of initial transition activities 
(when-clause). 

• Event generation block: generation of signal 
events according to signal event definition table, 
generation of timeout events (when-clauses). 

• Entry-activity block: detection of state entries, 
execution of entry-activities, assignment of time 
limits to time variables, generation of completion 
events of composite states (when-clauses). 

• Transition block: event detection, assignment of 
next state, execution of exit-activities and transi-
tion-activities, reset of time variables (if-
clauses). 

 
For the linear drive example the Modelica code is 
given below. To shorten, the declaration section is 
omitted.  
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 Module Controller 

Initialization: 

when initial()then 
   mainState:=MainStateT.Stop; 
   ontoMainState:=MainStateT.Stop; 
   goState:=GoStateT.InActive; 
   entryGoState:=GoStateT.InActive; 
   LimitLeft:=-0.4; LimitRight:=0.4; 
   t_Pause:=3;  
   t_PauseFinished:=0; 
   count:=0; N_Max:=10; 
   dir:=DirT.Left; 
   timeout:=false; 
   completeGo:=false; 
end when; 

Event generations: 

when (time>=t_PauseFinished) then 
   timeout:=not timeout; 
end when; 

Entry-activities of Main: 

when (mainState==MainStateT.Stop) then 
   U:=0; count:=0; 
elsewhen (mainState==MainStateT.Go) then 
   goState:=entryGoState; 
end when; 

Entry-activities of Go: 

when (goState==GoStateT.GoLeft) then 
   U:=-10; count:=count+1; 
   dir:=DirT.Left;  
elsewhen (goState==GoStateT.GoRight) then 
   U:=10; count:=count+1; 
   dir:=DirT.Right;  
elsewhen (goState==GoStateT.Pause) then 
   U:=0; count:=0; 
   t_PauseFinished:=time+t_Pause;  
elsewhen (goState==GoStateT.InActive) then 
   completeGo:=not completeGo; 
end when; 

Transitions of Main: 
if (pre(mainState)==MainStateT.Stop) then 
   if (change(Run)) then 
      if (dir==DirT.Left) then   
         mainState:= MainStateT.Go; 
         entryGoState:=GoStateT.GoLeft; 
      elseif (dir==DirT.Right) then 
         mainState:= MainStateT.Go; 
         entryGoState:=GoStateT.GoRight; 
      end if; 
   end if; 
elseif(pre(mainState)==MainStateT.Go)then 
   if (change(completeGo)) then 
      mainState:=ontoMainState; 
   end if; 
end if; 

 

Transitions of Go: 

 if (pre(goState)==GoStateT.GoLeft) then 
    if (change(Halt)) then 
       goState:=GoStateT.InActive; 
       ontoMainState:=MainStateT.Stop; 
    elseif (x<LimitLeft) then 
       goState:=GoStateT.GoRight; 
    end if; 
 elseif(pre(goState)==GoStateT.GoRight)then 
    if (change(Halt)) then 
       goState:=GoStateT.InActive; 
       ontoMainState:=MainStateT.Stop; 
    elseif (count>N_Max) then 
       goState:=GoStateT.Pause; 
    elseif (x>LimitRight) then 
       goState:=GoStateT.GoLeft; 
    end if; 
 elseif (pre(goState)==GoStateT.Pause)then 
    if (change(Halt)) then 
       t_PauseFinished:=time; 
       goState:=GoStateT.InActive; 
       ontoMainState:=MainStateT.Stop; 
    elseif (change(timeout) then 
       goState:=GoStateT.GoRight; 
    end if; 
 end if; 

end Controller; 

 

3 Verification 

The main tool for the verification of the Modelica 
model is the simulator. In this section we describe 
techniques to increase the efficiency of the simula-
tion based verification: Design Rule Check, State 
Coverage Analysis and Transition Coverage Analy-
sis, and Assertion Charts. 

3.1 Design Rule Check 

During graphical entry and compilation of statecharts 
the following design rules are currently checked: 
• Only one initial state is allowed on each hierar-

chy level. 
• An initial state has exactly one outgoing transi-

tion. Trigger and guards are not allowed. 
• Pseudo states must not connected by transitions. 
• A split junction has only one incoming transi-

tion. Only this transition has a trigger. 
• A merge junction has only one outgoing transi-

tion. Only this transition has a trigger. 
• Self-transitions are not allowed for composite 

states. 
• Each state, except initial state, has at least one 

incoming transition. 
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• Isolated sub-graphs are not allowed. 
• A warning is given when some outgoing transi-

tions of one state have the same priority number. 

3.2 State and Transition Coverage 

The analysis of both state activations and transition 
activations are measures for the achieved functional 
coverage during the simulation run.  
To measure the activation of states and transitions, 
additional Modelica code is automatically inserted 
into generated Modelica code (described in section 
2.4) by the Modelica code generator (see section 
4.2). The additional code basically consists of a set 
of counters. A unique counter is associated with any 
entry-activity block and any transition block. The 
counters are implemented as integer vectors. Every 
state or transition activation leads to an increment of 
the associated counter component. 
For comfortable use, the actual achieved counting 
results may continuously back-annotated into the 
UML Statechart schematic.  

3.3 Assertion Charts 

Our Assertion Chart approach is derived from [10]. 
Assertion Charts aim for watching the behavior of 
the system in respect of specified properties. With 
the help of Assertion Charts, we describe both non-
temporal and temporal system properties which have 
to be examined. 
For the linear drive, e.g., an assertion may be: If the 
DC motor supply voltage U alters to U > 0, then 
drive position x will exceed its limit within T sec-
onds, otherwise a fault will be reported (Fig. 5). 
 

  

Fig. 5: Assertion Chart example of the linear drive 

In our case, the charts are composed like ordinary 
statecharts and run simultaneously to them. We de-
liver a set of typical Assertion Charts concerning 
dedicated event sequences and time limits. The pre-
defined Assertion Charts are parameterized. 

4 Implementation Prototype 

The section introduces the first implementation of 
our approach into the SimulationX Modelica envi-
ronment [8][9]. The implementation consists of the 
components Statechart Editor, Modelica Code Gen-
erator, Run Time Visualization (simulation driven 
statechart animation, association of the State Cover-
age and Transition Coverage Analysis results). All 
additional functionality can be controlled by the user 
within the SimulationX GUI.  For easy use, a set of 
typical control domain Assertion Charts comes with 
the implementation. 

4.1 Statechart Editor 

The Statechart Editor (Fig. 6) is seamlessly inte-
grated into the SimulationX framework. The State-
chart Editor has the following features: 
• Schematic entry of the statecharts, 
• Definition of statechart activities as Modelica 

code, 
• Definition of triggers, 
• Definition of local types, variables and parame-

ters, 
• Definition of the interface to the physical sys-

tem. 
 

                 
 

 
 

Fig. 6: Statechart Editor window 
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Pressing the compile button starts the Modelica Code 
Generator. The structure of code is outlined in sec-
tion 2.4. 

4.2 Modelica Code Generator 

The Modelica Code Generator generates standard 
Modelica code from the UML Statechart model. The 
code is user-driven instrumented with additional 
code to perform the State Coverage Analysis and 
Transition Coverage Analysis and to associate Asser-
tion Charts with selected signals. In addition, the 
Modelica Code Generator accomplishes the Design 
Rule Check. Besides Modelica code the generator 
architecture is open to generate code for various tar-
gets such as formal verification tools or production 
code for PLCs or embedded controllers. 

4.3 Runtime Visualization 

SimulationX supports the visualization of statecharts 
at runtime by a specialized view. During simulation 
the active state and the latest transition are high-
lighted if a time step or time interval is completed 
(Fig. 7). Controlled by the user, state and transition 
coverage are also displayed.  The actual state and 
transition counter readings are annotated on the 
states and on the end points of transitions, respec-
tively.  
 

 

Fig. 7: Back-annotation of active states 

For checking the functionality of whole system, the 
common view of internal controller variables and 
variables of the equipment are essential. Therefore 
all variables of the statechart, inclusive the state 
variables, may be accessed by the user.  
In case of the linear drive example the causality of 
the system behavior (Fig. 8) is reflected by the sig-
nals Run and Halt of the operator, the variables 
goState and count of the controller, its output U, and 
the position x of the drive. The correlations between 
these quantities may be checked by assertion charts 
during the simulation. 

 
Fig. 8: Wave-forms of the linear drive example 

5 Conclusions 

We have applied our methodology to control systems 
in the area of automotive, robotics and manufactur-
ing systems engineering. The approach introduced in 
the paper proves to be very comfortable for modeling 
of control components and physical system within 
the SimulationX environment. Especially the inte-
grated verification support decreases modeling and 
simulation cycles and leads to robust control compo-
nents with high test coverage in relative short time. 
Our next steps are the successive extension of the 
approach to a Modelica model based design envi-
ronment for control algorithms.  
Next steps are: 
• Enhancements in code generation 

Right now, we generate Modelica code to validate 
the control component behavior within the physi-
cal system. For the implementation of the control 
component models, target code has to be derived 
from the models according to the target hardware 
platform, e.g. for PLC systems or embedded sys-
tems. 

• Enhancements in formal verification 
In the recent years, considerable progress has 
been achieved in the field of formal verification 
tools for model checking especially for digital in-
tegrated circuit verification. Therefore, we are en-
couraged to interface our modeling approach to 
selected model checker tools by transformation of 
our statechart models to the model checker input 
description.  

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica
Environment

The Modelica Association 275 Modelica 2008, March 3rd − 4th, 2008



 

References 

[1] Donath, U.; Haufe, J.; Schwarz, P.: Mehr-
Ebenen-Simulation automatisierungstechni-
scher Prozesse und Steuerungen (in German). 
4. Fachtagung Entwurf komplexer Automati-
sierungssysteme, Braunschweig, pp. 543-
553, June 7-9, 1995 

[2] Mosterman, P.J., Otter, M., Elmqvist, H.: 
Modeling Petri Nets as Local Constraint 
Equations for Hybrid Systems Using Mode-
lica. Summer Computer Simulation Confer-
ence '98, Reno, Nevada, USA, pp. 314-319, 
July 19-22, 1998 

[3] Ferreira, J.A., de Oliveira, J.E.: Modeling 
Hybrid Systems Using Statecharts and 
Modelica. 7th IEEE International Conference 
on Emerging Technologies and Factory 
Automation, Barcelona, Spain, 18-21 Oct., 
1999. 

[4] Fabricius, St.: Extensions to the Petri Net Li-
brary in Modelica. http://www.modelica.org, 
2001 

[5] Otter, M.; Årzén, K.-E.; Dressler, I.: 
StateGraph - A Modelica Library for Hierar-
chical State Machines. Proc. 4th Int. Modelica 
Conf., Hamburg, Germany, March 7-8, 2005, 
pp. 569-578. 

[6] Nytsch-Geusen, Ch: The use of the UML 
within the modeling process of Modelica-
models. Proc. ECOOP, Berlin, Germany, 
July 30, 2007. 

[7] UML Superstructure Specification, v2.0. 
http://www.omg.org 

[8] Neidhold, Th. et al:  Modeling of State Ma-
chines in SimulationX.  10th ITI Simulation 
Workshop, Dresden, Germany, September 
20-21, 2007. 

[9] http://www.simulationx.com 
[10] Drusinsky, D: Modeling and Verification Us-

ing UML Statecharts. Elsevier Inc., Oxford, 
2006 

                                                      
1 The project was founded by the European Regional Development 
Fund (ERDF) and by the Free State of Saxony in the framework of 
technology promotion. 

 

U. Donath, J. Haufe, T. Blochwitz, T. Neidhold

The Modelica Association 276 Modelica 2008, March 3rd − 4th, 2008


