
A new Approach for Modeling and Verification of Discrete Control
Components within a Modelica Environment1

Ulrich Donath Jürgen Haufe
Fraunhofer-Institute for Integrated Circuits, Design Automation Division

Zeunerstraße 38, 01069 Dresden, Germany
ulrich.donath@eas.iis.fraunhofer.de juergen.haufe@eas.iss.fraunhofer.de

Torsten Blochwitz Thomas Neidhold
ITI GmbH

Webergasse 1, 01067 Dresden, Germany
torsten.blochwitz@iti.de thomas.neidhold@iti.de

Abstract

The paper presents the use of a subset of UML State-
charts to model discrete control components together
with the physical model within a Modelica simula-
tion environment. In addition, we show how state-
charts can also be used to describe assertions charts
for checking the compliance of user defined model
properties and model behaviour during simulation.
As the main difference to other approaches, neither
Modelica language enhancements nor special librar-
ies are necessary. The statechart model is automati-
cally mapped onto standard Modelica constructs and
can be simulated with any common Modelica stan-
dard simulator. Controlled by the user, the Modelica
model can be automatically instrumented by addi-
tional Modelica code to examine the state coverage
and transition coverage during simulation.
Keywords: state machine; statechart; control system,
assertions, state coverage, transition coverage

1 Introduction

The modelling of discrete and hybrid control algo-
rithms [1] is not a novel application area for Mode-
lica. In the last years, Modelica libraries for Petri
Nets [2] [4], Statecharts [3] or StateGraph [5] were
introduced. Furthermore, the extension of Modelica
with a new statechart section is discussed in [6].
In this paper, we present a new approach for model-
ing and verification of discrete control components
within a Modelica environment. In contrast to the
solutions mentioned above, we create the control
component models of the physical system outside
Modelica. The other modules of the physical system

are modeled as usual in the Modelica environment.
In a second step, Modelica standard code is gener-
ated for the control components automatically. The
insertion of the generated code into the Modelica
physical model completes the system model (Fig. 1).

Physical System Model

Controller as
UML Statechart Model

Logic

DC_MotorDC_Motor

screw

J=0.001

ballScrewDrive…
GND

VD
C

=1
2 +

-

Vt
=0

.0
4

v1

Vt
=0

.0
4

v2

Vt
=0

.0
4

v4

mass

s

se
ns

or

sP
lu

s1

Vt
=0

.0
4

v3

sPlus2

sM
in

us
1

sM
inus2

lR_ControllerlR_Commands

Modelica Code Generation

Fig. 1: Using UML Statecharts in SimulationX [9]

As modeling language for the control components
we use a subset of UML Statecharts [7]. We derived
the subset from an analysis of typical control algo-
rithms in the domains mechanical and automotive
engineering.
Besides control components, UML Statecharts
proves to be suitable for robust modeling of physical

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica
Environment

The Modelica Association 269 Modelica 2008, March 3rd − 4th, 2008

effects or technical sub-systems with discrete states
(friction, hysteresis, valves, switches, etc.).
For our approach we see following advantages:
• UML Statecharts are well established for model-

ing of control algorithms, especially for reactive
systems.

• The statechart creation outside Modelica allows
the use of off-the-shelf UML development tools.

• The approach provides not only an interface to
Modelica. The approach is also open to interface
specialized verification tools esp. formal verifi-
cation tools.

• In the sense of model based design, the approach
is expandable for generation of production code
for different targets such as PLCs or embedded
controllers.

• The generated Modelica code can be simulated
with any common Modelica simulator.

For UML Statechart entry, an additional Graphical
User Interface (GUI) containing a UML Statechart
editor is necessary which comes usually with the
UML development tool. The UML tool should meet
following requirements:
• The GUI as well as the UML tool code generator

needs the ability to be customized.
• The UML tool should support the interaction

between GUI and generated code to establish a
comfortable visualization and animation.

In section 5 we present an UML Statechart editor
which is completely integrated into the GUI of Simu-
lationX [9].
The paper is organized as follows. Section 2 gives an
overview on the supported UML Statechart subset.
In section 3 some techniques are introduced which
allow an efficient verification of the statechart mod-
els. Section 4 presents a prototypic implementation
of our approach. An outlook on future work is given
in section 5.

2 UML Statechart Subset

In this section we present the subset of UML State-
charts which is implemented in our prototype (see
section 4). The subset contains the minimum of
UML Statechart constructs to model a control com-
ponent in a comfortable way:
• States: Simple States, Non-Concurrent Compo-

site States, Pseudo States.
• Transitions: Signal Triggers, Change Triggers,

Time Triggers, Guards.

• Activities: Modelica text.
The UML Statechart subset as well as the resulting
Modelica code is illustrated with a linear drive as an
example.

2.1 Example

The linear drive (Fig. 2) is controlled by the Control-
ler module. Inputs for the Controller are the operator
commands Run and Halt as well as the position x of
the linear drive. As output, the controller delivers the
DC motor supply voltage U=-10V for left run,
U=+10V for right run and U=0V for stop.
The specification of the controller is such as follows:
• Start after Run is given and drive to left
• Run 10 times between left and right end position
• Pause 3 seconds, afterwards continue
• Stop immediately after command Halt was given
• Restart with the action which was suspended after

Halt, when Run is given again.

The physical system model of the linear drive exam-
ple depicted in Fig. 2 is a simplification of the more
complex model shown in Fig. 1.

Fig. 2: Over-all structure of the linear drive

2.2 States

The control program (Fig. 3) is divided into the
states Stop and Go. Stop is a simple state, whereas
Go is a composite state with the nested simple states
GoLeft, GoRight, and Pause. In consideration of hi-
erarchy, the graph with the states Stop and Go is the
top-level graph, implicit denoted as Main. The sub-
jacent graph comprises the sub-states of Go.
For Modelica representation of state activities and
state transitions, a state variable is declared for each
hierarchy level. Their type declarations contain the
enumerations of the state names. Each composite
state is added with the enumeration InActive to indi-
cate the inactivity of the composite state.

U. Donath, J. Haufe, T. Blochwitz, T. Neidhold

The Modelica Association 270 Modelica 2008, March 3rd − 4th, 2008

2.2.1 Simple States
In our subset, simple states may optionally have en-
try-activities, exit-activities, and activities which are
initiated by internal transitions. These activities are
simple Modelica algorithms. Modelica when-clauses
are not allowed here.

Fig. 3: Statechart model of the control program

2.2.2 Composite States
In comparison to simple states, composite states are
extended each with a composition compartment. In
our approach, this compartment comprises only one
region of sub-states – this means, concurrency of
activities can not occur within one statechart in-
stance. Concurrency is only possible between multi-
ple statechart instances.
In the generated Modelica code, all entry-activities
of the nested sub-states are gathered in a
when-clause separately (see 2.4 Entry-activities of
Go). All other activities are included in an if-clause
which describes the transitions of the composite
state.

2.2.3 Pseudo States
We support following pseudo states: initial state,
junction, and shallow history. An initial state indi-
cates the default starting point of processing the
statechart or a composite state. A junction merges
multiple incoming transitions into a single outgoing
transition, or conversely, split an incoming transition

into multiple outgoing transitions. A shallow history
stores the most recent active sub-state of a composite
state after leaving it. When the composite state is
newly entered via shallow history this sub-state be-
comes active again.

2.3 Transitions

Following kinds of transitions may be used: simple
transitions (connecting two states), self-transitions
(the same state acts as both the source and the desti-
nation), compound transitions (connecting many
states via junction pseudo states), group transitions
(originating from composite states), and internal
transitions of simple states. A trigger, a guard, and a
transition-activity may label a transition.
The triggering of a group transition implies the exit-
ing of all the sub-states of the composite state and
executing their exit-activities starting with the in-
nermost states. An internal transition executes with-
out exiting or re-entering the state in which it is de-
fined.
In our approach, each transition is triggered with a
single trigger as described below.

2.3.1 Signal Trigger
Generally, a signal trigger represents the receipt of
an asynchronous signal instance [7]. In our interpre-
tation, a signal is either a record typed message with
e.g. one integer and real component or a boolean
typed variable, typically a controller input command.
Every new signal is notified by toggling a flag which
is an additional component of the message. In case of
a boolean variable, Run and Halt in the example, the
variable itself is toggled.
Signals are produced either by modules of the physi-
cal system or inside the statechart instance.

Signal type definition:

 type SignalT = record SIGNAL
 Boolean flag;
 Integer int_val;
 Real real_val;
 end SIGNAL;

Signal assignment in physical system module:

 SignalT Run;
 when (time >= 1) then
 Run.flag := not Run.flag;
 Run.int_val := 100;
 end when;

A toggled signal is detected by the Modelica change-
function, for instance change (Run.flag).

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica
Environment

The Modelica Association 271 Modelica 2008, March 3rd − 4th, 2008

In addition to UML, signals can be also defined in a
Signal Definition Table (Fig. 4). In the table, signal
events are derived from the achievements of prede-
fined thresholds of physical system quantities or of
internal statechart variables.

Fig. 4: Example of the Signal Definition Table

2.3.2 Change Trigger
A change trigger specifies an event that occurs when
a boolean-valued expression becomes true as a result
of a change in value of one or more attributes [7]. In
UML the life time of the change event is a semantic
variation point. Related to control tasks, in our ap-
proach the change event remains true as long as the
evaluation of the change expression results in true. In
our linear drive example, change triggers are
x < LimitLeft, x > LimitRight, and count > N_Max.
The Modelica representation of this behavior is
given by an if-clause in the transition block (see 2.4
Transitions of Go).

2.3.3 Time Trigger
A time trigger specifies a time event, which models
the expiration of a specific deadline [7]. We restrict
the deadline to a relative expression. The expression
is relative to the time of entry into the source state of
the transition triggered by the event, e.g. after
(t_Pause). The time event is generated only if the
state machine is still in that state when the deadline
expires.
In Modelica this behavior is reflected in following
steps: Firstly, if the source state entry is detected in a
when-clause, a time variable is set to the time limit
(see 2.4 Entry-activities of Go). Secondly, a when-
clause checks if the simulation time exceeds the time
limit. If true, a timeout signal is toggled. This when-
clause belongs to the event generation block of the
module (see 2.4 Event generations). Thirdly, if the
source state will inactive due to another transition,
the time variable is reset.

2.3.4 Guards
A guard is a Boolean expression written in terms of
parameters of the triggering event or attributes of the
context object [7]. It is evaluated only once when-
ever it’s associated event fires. If it is false, then the

transition does not fire and the event is lost. In the
linear drive example, the guards [dir==DirT.Left],
[dir==DirT.Right] determine the target sub-states of
Go after the Run command is given.

2.3.5 Firing Priorities
It is possible that more than one transition could be
concurrently fired to change the state, e.g., they have
the same trigger event and their guard expressions
results in true. Then, in UML, an implicit priority
rule is applied based on the relative position of the
source state in the state hierarchy [7]. In addition, we
allow the user to assign the transition priorities ex-
plicitly. A transition priority is denoted by a number
1, 2, 3… where 1 symbolizes the highest priority.
These priorities are depicted near the start points of
the transition arrow lines. Chosen by the user, the
priorities of group transitions are either higher or
lower than priorities of inner transitions of composite
states.
The resulting priority number determines the posi-
tion of the transition in the check for firing. In the
linear drive example, Halt shall have the highest pri-
ority to stop the machine, especially in case of an
emergency.

2.4 Over-all Modelica Code Structure

The Modelica representation of a statechart consists
of following sections:
• Declaration of state variables, input/output sig-

nals, internal signals, system variables, auxiliary
variables, parameters.

• Initialization of state variables and auxiliary
variables, execution of initial transition activities
(when-clause).

• Event generation block: generation of signal
events according to signal event definition table,
generation of timeout events (when-clauses).

• Entry-activity block: detection of state entries,
execution of entry-activities, assignment of time
limits to time variables, generation of completion
events of composite states (when-clauses).

• Transition block: event detection, assignment of
next state, execution of exit-activities and transi-
tion-activities, reset of time variables (if-
clauses).

For the linear drive example the Modelica code is
given below. To shorten, the declaration section is
omitted.

U. Donath, J. Haufe, T. Blochwitz, T. Neidhold

The Modelica Association 272 Modelica 2008, March 3rd − 4th, 2008

 Module Controller

Initialization:

when initial()then
 mainState:=MainStateT.Stop;
 ontoMainState:=MainStateT.Stop;
 goState:=GoStateT.InActive;
 entryGoState:=GoStateT.InActive;
 LimitLeft:=-0.4; LimitRight:=0.4;
 t_Pause:=3;
 t_PauseFinished:=0;
 count:=0; N_Max:=10;
 dir:=DirT.Left;
 timeout:=false;
 completeGo:=false;
end when;

Event generations:

when (time>=t_PauseFinished) then
 timeout:=not timeout;
end when;

Entry-activities of Main:

when (mainState==MainStateT.Stop) then
 U:=0; count:=0;
elsewhen (mainState==MainStateT.Go) then
 goState:=entryGoState;
end when;

Entry-activities of Go:

when (goState==GoStateT.GoLeft) then
 U:=-10; count:=count+1;
 dir:=DirT.Left;
elsewhen (goState==GoStateT.GoRight) then
 U:=10; count:=count+1;
 dir:=DirT.Right;
elsewhen (goState==GoStateT.Pause) then
 U:=0; count:=0;
 t_PauseFinished:=time+t_Pause;
elsewhen (goState==GoStateT.InActive) then
 completeGo:=not completeGo;
end when;

Transitions of Main:
if (pre(mainState)==MainStateT.Stop) then
 if (change(Run)) then
 if (dir==DirT.Left) then
 mainState:= MainStateT.Go;
 entryGoState:=GoStateT.GoLeft;
 elseif (dir==DirT.Right) then
 mainState:= MainStateT.Go;
 entryGoState:=GoStateT.GoRight;
 end if;
 end if;
elseif(pre(mainState)==MainStateT.Go)then
 if (change(completeGo)) then
 mainState:=ontoMainState;
 end if;
end if;

Transitions of Go:

 if (pre(goState)==GoStateT.GoLeft) then
 if (change(Halt)) then
 goState:=GoStateT.InActive;
 ontoMainState:=MainStateT.Stop;
 elseif (x<LimitLeft) then
 goState:=GoStateT.GoRight;
 end if;
 elseif(pre(goState)==GoStateT.GoRight)then
 if (change(Halt)) then
 goState:=GoStateT.InActive;
 ontoMainState:=MainStateT.Stop;
 elseif (count>N_Max) then
 goState:=GoStateT.Pause;
 elseif (x>LimitRight) then
 goState:=GoStateT.GoLeft;
 end if;
 elseif (pre(goState)==GoStateT.Pause)then
 if (change(Halt)) then
 t_PauseFinished:=time;
 goState:=GoStateT.InActive;
 ontoMainState:=MainStateT.Stop;
 elseif (change(timeout) then
 goState:=GoStateT.GoRight;
 end if;
 end if;

end Controller;

3 Verification

The main tool for the verification of the Modelica
model is the simulator. In this section we describe
techniques to increase the efficiency of the simula-
tion based verification: Design Rule Check, State
Coverage Analysis and Transition Coverage Analy-
sis, and Assertion Charts.

3.1 Design Rule Check

During graphical entry and compilation of statecharts
the following design rules are currently checked:
• Only one initial state is allowed on each hierar-

chy level.
• An initial state has exactly one outgoing transi-

tion. Trigger and guards are not allowed.
• Pseudo states must not connected by transitions.
• A split junction has only one incoming transi-

tion. Only this transition has a trigger.
• A merge junction has only one outgoing transi-

tion. Only this transition has a trigger.
• Self-transitions are not allowed for composite

states.
• Each state, except initial state, has at least one

incoming transition.

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica
Environment

The Modelica Association 273 Modelica 2008, March 3rd − 4th, 2008

• Isolated sub-graphs are not allowed.
• A warning is given when some outgoing transi-

tions of one state have the same priority number.

3.2 State and Transition Coverage

The analysis of both state activations and transition
activations are measures for the achieved functional
coverage during the simulation run.
To measure the activation of states and transitions,
additional Modelica code is automatically inserted
into generated Modelica code (described in section
2.4) by the Modelica code generator (see section
4.2). The additional code basically consists of a set
of counters. A unique counter is associated with any
entry-activity block and any transition block. The
counters are implemented as integer vectors. Every
state or transition activation leads to an increment of
the associated counter component.
For comfortable use, the actual achieved counting
results may continuously back-annotated into the
UML Statechart schematic.

3.3 Assertion Charts

Our Assertion Chart approach is derived from [10].
Assertion Charts aim for watching the behavior of
the system in respect of specified properties. With
the help of Assertion Charts, we describe both non-
temporal and temporal system properties which have
to be examined.
For the linear drive, e.g., an assertion may be: If the
DC motor supply voltage U alters to U > 0, then
drive position x will exceed its limit within T sec-
onds, otherwise a fault will be reported (Fig. 5).

Fig. 5: Assertion Chart example of the linear drive

In our case, the charts are composed like ordinary
statecharts and run simultaneously to them. We de-
liver a set of typical Assertion Charts concerning
dedicated event sequences and time limits. The pre-
defined Assertion Charts are parameterized.

4 Implementation Prototype

The section introduces the first implementation of
our approach into the SimulationX Modelica envi-
ronment [8][9]. The implementation consists of the
components Statechart Editor, Modelica Code Gen-
erator, Run Time Visualization (simulation driven
statechart animation, association of the State Cover-
age and Transition Coverage Analysis results). All
additional functionality can be controlled by the user
within the SimulationX GUI. For easy use, a set of
typical control domain Assertion Charts comes with
the implementation.

4.1 Statechart Editor

The Statechart Editor (Fig. 6) is seamlessly inte-
grated into the SimulationX framework. The State-
chart Editor has the following features:
• Schematic entry of the statecharts,
• Definition of statechart activities as Modelica

code,
• Definition of triggers,
• Definition of local types, variables and parame-

ters,
• Definition of the interface to the physical sys-

tem.

Fig. 6: Statechart Editor window

U. Donath, J. Haufe, T. Blochwitz, T. Neidhold

The Modelica Association 274 Modelica 2008, March 3rd − 4th, 2008

Pressing the compile button starts the Modelica Code
Generator. The structure of code is outlined in sec-
tion 2.4.

4.2 Modelica Code Generator

The Modelica Code Generator generates standard
Modelica code from the UML Statechart model. The
code is user-driven instrumented with additional
code to perform the State Coverage Analysis and
Transition Coverage Analysis and to associate Asser-
tion Charts with selected signals. In addition, the
Modelica Code Generator accomplishes the Design
Rule Check. Besides Modelica code the generator
architecture is open to generate code for various tar-
gets such as formal verification tools or production
code for PLCs or embedded controllers.

4.3 Runtime Visualization

SimulationX supports the visualization of statecharts
at runtime by a specialized view. During simulation
the active state and the latest transition are high-
lighted if a time step or time interval is completed
(Fig. 7). Controlled by the user, state and transition
coverage are also displayed. The actual state and
transition counter readings are annotated on the
states and on the end points of transitions, respec-
tively.

Fig. 7: Back-annotation of active states

For checking the functionality of whole system, the
common view of internal controller variables and
variables of the equipment are essential. Therefore
all variables of the statechart, inclusive the state
variables, may be accessed by the user.
In case of the linear drive example the causality of
the system behavior (Fig. 8) is reflected by the sig-
nals Run and Halt of the operator, the variables
goState and count of the controller, its output U, and
the position x of the drive. The correlations between
these quantities may be checked by assertion charts
during the simulation.

Fig. 8: Wave-forms of the linear drive example

5 Conclusions

We have applied our methodology to control systems
in the area of automotive, robotics and manufactur-
ing systems engineering. The approach introduced in
the paper proves to be very comfortable for modeling
of control components and physical system within
the SimulationX environment. Especially the inte-
grated verification support decreases modeling and
simulation cycles and leads to robust control compo-
nents with high test coverage in relative short time.
Our next steps are the successive extension of the
approach to a Modelica model based design envi-
ronment for control algorithms.
Next steps are:
• Enhancements in code generation

Right now, we generate Modelica code to validate
the control component behavior within the physi-
cal system. For the implementation of the control
component models, target code has to be derived
from the models according to the target hardware
platform, e.g. for PLC systems or embedded sys-
tems.

• Enhancements in formal verification
In the recent years, considerable progress has
been achieved in the field of formal verification
tools for model checking especially for digital in-
tegrated circuit verification. Therefore, we are en-
couraged to interface our modeling approach to
selected model checker tools by transformation of
our statechart models to the model checker input
description.

A new Approach for Modeling and Verification of Discrete Control Components within a Modelica
Environment

The Modelica Association 275 Modelica 2008, March 3rd − 4th, 2008

References

[1] Donath, U.; Haufe, J.; Schwarz, P.: Mehr-
Ebenen-Simulation automatisierungstechni-
scher Prozesse und Steuerungen (in German).
4. Fachtagung Entwurf komplexer Automati-
sierungssysteme, Braunschweig, pp. 543-
553, June 7-9, 1995

[2] Mosterman, P.J., Otter, M., Elmqvist, H.:
Modeling Petri Nets as Local Constraint
Equations for Hybrid Systems Using Mode-
lica. Summer Computer Simulation Confer-
ence '98, Reno, Nevada, USA, pp. 314-319,
July 19-22, 1998

[3] Ferreira, J.A., de Oliveira, J.E.: Modeling
Hybrid Systems Using Statecharts and
Modelica. 7th IEEE International Conference
on Emerging Technologies and Factory
Automation, Barcelona, Spain, 18-21 Oct.,
1999.

[4] Fabricius, St.: Extensions to the Petri Net Li-
brary in Modelica. http://www.modelica.org,
2001

[5] Otter, M.; Årzén, K.-E.; Dressler, I.:
StateGraph - A Modelica Library for Hierar-
chical State Machines. Proc. 4th Int. Modelica
Conf., Hamburg, Germany, March 7-8, 2005,
pp. 569-578.

[6] Nytsch-Geusen, Ch: The use of the UML
within the modeling process of Modelica-
models. Proc. ECOOP, Berlin, Germany,
July 30, 2007.

[7] UML Superstructure Specification, v2.0.
http://www.omg.org

[8] Neidhold, Th. et al: Modeling of State Ma-
chines in SimulationX. 10th ITI Simulation
Workshop, Dresden, Germany, September
20-21, 2007.

[9] http://www.simulationx.com
[10] Drusinsky, D: Modeling and Verification Us-

ing UML Statecharts. Elsevier Inc., Oxford,
2006

1 The project was founded by the European Regional Development
Fund (ERDF) and by the Free State of Saxony in the framework of
technology promotion.

U. Donath, J. Haufe, T. Blochwitz, T. Neidhold

The Modelica Association 276 Modelica 2008, March 3rd − 4th, 2008

