
ModeGraph -

A Modelica Library for Embedded Control Based on Mode-Automata
Martin Malmheden1, Hilding Elmqvist1, Sven Erik Mattsson1, Dan Henriksson1, and Martin Otter2

1Dynasim AB (A Dassault Systèmes Company), Ideon Science Park, SE-223 70 Lund, Sweden
2German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen,

82234 Weßling, Germany
{Martin.Malmheden, Hilding.Elmqvist, SvenErik.Mattsson, Dan.Henriksson}@3ds.com ,

 Martin.Otter@dlr.de

Abstract

The ModeGraph library is a new Modelica library
for modeling of hybrid and embedded control sys-
tems based on Mode-Automata semantics. Actions
can be associated with discrete states in a way that
makes sure that the single-assignment rule is ful-
filled. Consequently, non-deterministic variable as-
signment is impossible, which is usual in nearly all
other state machine formalisms. Besides Mode-
Automata, concepts from Sequential Function Charts
(SFC)/Grafcet, Statecharts, and Safe State Machines
(SSM) are utilized to provide a flexible modeling
environment for safe, hierarchical state machines
where Modelica is used as action language. Mode-
Graph shall replace the existing Mode-
lica.StateGraph library. The implementation of
ModeGraph requires extensions to the Modelica lan-
guage, in order to support the Mode-Automata se-
mantics and to drastically reduce code overhead and
improve performance of modeled graphs.
Keywords: Statechart, Mode-Automata, Finite State
Machines, Hybrid Control, StateGraph, Modelica

1 Introduction
The StateGraph library [5] is a sublibrary in the
Modelica Standard Library 2.1 (from 2004) and later
versions, providing components to model hierarchi-
cal state machines using Modelica as an action lan-
guage. The StateGraph library has several significant
drawbacks that are mainly due to the underlying im-
plementation language Modelica 2, where some spe-
cial features needed for hierarchical state machine
modeling and for Mode-Automata are missing.
A new Modelica library for modeling hierarchical
state machines is proposed in this paper. It is a more
Statechart [2] oriented approach compared to State-
Graph, but avoids several deficiencies of the State-

chart formalism in order to arrive at safe state ma-
chines. The library is capable of handling extended
state machine properties, such as hierarchy (meta
states), orthogonality (parallel substates), synchroni-
zation, and preemption. All StateGraph functionality
is available, but with a new simplified implementa-
tion. The ModeGraph library ensures safe state ma-
chines, especially with respect to
1. upper limit on execution time of one cycle,
2. guaranteed deterministic variable assignment.
The library is based on extensions to the Modelica
language, e.g., ensuring mutual exclusivity between
states. Usage of the new Modelica 3.0 graphical an-
notations provides a more modern look and feel.
In the following sections the ModeGraph library will
be explained and excerpts of the implementation will
be presented. A ModeGraph is defined in Modelica
using Boolean equations. As a result, the exact se-
mantics of ModeGraph is formally defined with the
Modelica semantics (equations are sorted and itera-
tion takes place, if pre(x) ≠ x). General concepts
taken from Finite State Machines (FSM), Statecharts
 [2], Sequential Function Charts (SFC) [7], and Safe
State Machines (SSM) [1] will be used as references
and benchmarks to demonstrate the feasibility and
applicability of ModeGraph.

2 Steps and Transitions
An FSM describes a behavior by decomposing it into
a distinct finite set of states visualized by state-
transition diagrams. States are usually illustrated by
rectangles with rounded corners. An FSM is often
used to model reactive systems, which means it re-
acts to certain stimuli, usually called inputs. A transi-
tion is depicted with an arrow between two states
and a transition condition written next to the arrow.
When the condition evaluates to true, the transition is
taken, and a change of state is performed. As an ex-

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 255 Modelica 2008, March 3rd − 4th, 2008

ample, see Figure 1, where the system initially is in
state A. When input α occurs, the state will change
from A to B. The arrow originating in a small black
dot is used to mark the initial state of the system.

Figure 1: Simple state machine with two states

and two transitions.

Inheriting much of the semantics from StateGraph,
the basic components of ModeGraph are Steps and

Transitions that are both
similar to the correspond-
ing StateGraph objects.
Figure 2 shows the
ModeGraph equivalent of
Figure 1. We will proceed
to describe the Steps and
Transitions in more detail.

2.1 Steps

There are two types of
Steps: a regular Step and
a StepWithSignal. The
state of a regular Step is
represented by a Boolean,
active. In the case of
the StepWithSignal, ac-
tive is instead a Boo-
leanOutput that can be
graphically connected to
other components, typi-
cally to logical blocks:

newActive =(anyTrue(inPort.fire) or
 pre(newActive)) and not
 anyTrue(outPort.fire);
active = pre(newActive);

For a Step with one inport and one outport avail-
able is defined as:
available = active;

The function anyTrue iterates through its argument
array of connectors and returns true if any of them is
true. The state of the Step in the next iteration is
called newActive, hence active is set to
pre(newActive). A Step is said to be available to
the successor Transition when active is true.
Several transitions can lead to and from a Step, re-
spectively. This is implemented with two vectors of
connectors, called inPort and outPort. The Step
component is said to be a mode, hence only one Step

at each hierarchical level is allowed to be active at a
given time instant. This requires restrictions on the
outPort fire mechanisms, which will be explained in
detail below.

2.2 Transitions

Transitions are used to decide when a change of state
should be performed. A basic Transition will check
if its predecessor Step is available and evaluate if its
transition condition is true (visualised by the condi-
tion being colored green). If this is the case, it will
send a signal, fire, to its surrounding Steps. Hence,
the previous Step will turn inactive and the following
will turn active.
inPort.fire = condition and
 inPort.available;
outPort.fire = inPort.fire;

The signal flow between Steps and Transitions is
viewed in Figure 3.

Figure 3: Signal flow between Steps

and Transitions.

2.3 Delayed Transitions to Break Loops

Consider the sequence of Steps and Transitions with
true conditions in Figure 4. A graph like this is said
to be unstable. At a given time instant, the active
Step is undefined, because all Transitions will evalu-
ate to true at all times. The code below represents the
evaluation of the chain in Figure 4.

Figure 2: A ModeGraph

comprised of two Steps and
two Transitions. s1.newActive = (pre(s1.newActive)

 and not t1.fire)
 or t2.fire or entry.fire;
t2.fire = condition and
 pre(s2.newActive);
s2.newActive = (pre(s2.newActive)
 and not t2.fire)
 or t1.fire;
t1.fire = condition and
 pre(s1.newActive);

Examining this code, it is clear that there is no de-
fined active Step at a given time instant, since it
would immediately fire and activate the next Step.
Loops like this illustrate the need for a Transition
that requires the preceding Step to be available and
its condition to be true for a certain period of time
before it fires. This is shown by t2 in Figure 5. This
type of Transition is called delayed Transition and
requires additional equations to decide how long a
transition is delayed until it can fire.

M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter

The Modelica Association 256 Modelica 2008, March 3rd − 4th, 2008

Figure 4: An infinite loop of

true transitions.

Figure 5: A loop broken by

a delayed Transition t2.

In the present ModeGraph prototype, a parameter
waitTime > 0 defines the duration for which the
fire conditions need to be true before the transition
can fire. The release version will alternatively allow
definition of the delay by the number of sample peri-
ods (with a default of one period), if the ModeGraph
is used in a sampled data system. A delayed Transi-
tion is currently defined as:
enableFire = condition and
 inPort.available;
when enableFire then
 t_start = time;
end when;
fire = enableFire and
 time >= t_start + waitTime;
inPort.fire = fire;
outPort.fire = fire;

The concept of delayed transitions is a generalization
of the SFC semantics, where every transition from
“bottom” to “top” is delayed by one cycle. Introduc-
ing delayed transitions explicitly allows drawing
state machines arbitrarily without the restriction to
always draw it from “top” to “bottom” which is not
practical for Statechart-type state machines. Delayed
transitions are, e.g., also present in SSM [1], where
transitions are by default delayed by one cycle. In
SSM “immediate transitions” (denoted with the “#”
symbol) are “immediate” and equivalent to the nor-
mal Transitions in ModeGraph.
ModeGraph has the essential requirement, that every
loop must have at least one delayed transition. In the
next section it is described how a violation is de-
tected during translation. This gives both a guarantee
that infinite looping is not possible, and it gives an

upper limit on the evaluation time of a ModeGraph
at any time instant. Both properties are important for
safe embedded control systems.
As mentioned above, Steps can have multiple input
and output transitions, and only one Step is allowed
to be simultaneously active at every level. This re-
quires priorities among the output transitions. The
most intuitive way is to use the index of the port ar-
ray as priority. A lower index represents higher pri-
ority.
The available flag needs to take priority into account
and a port is available if the Step is active and if no
port with higher priority fires:
for i in 1:size(outPort,1) loop
 outPort[i].available =
 if i == 1 then
 active
 else
 active and not
 outPort[i-1].fire;
end for;

2.4 Graphs with Infinite Loops

Assume that a user creates a graph containing a loop
where the conditions of all Transitions are true, as in
Figure 4. With the current Step and Transition defi-
nitions, the graph will translate, but the solver will
not be able to converge towards a single active Step.
This kind of undefined behavior is obviously dan-
gerous and is not allowed. To identify cases like this
during translation, the signal flow can be slightly
changed by introducing a Boolean, loopTest. The
new signal flow between Steps and Transitions is
depicted in Figure 6.

Figure 6: New signal flow with added loop checking.

The idea is to let Steps and undelayed Transitions
just pass the signal on, while a delayed Transition
and all entry points will set loopTest to true. If
only Steps and undelayed Transitions are present in a
loop, the translator will recognize an algebraic loop
of Boolean equations, and will print an error mes-
sage because Boolean algebraic loops cannot be
solved. If a delayed Transition is included, the alge-
braic loop will be broken, and the graph will safely
translate. The code for the loop testing is simple:

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 257 Modelica 2008, March 3rd − 4th, 2008

In a Step:
for i in 1:size(outPort,1) loop
 outPort[i].loopTest =
 anyTrue(inPort.loopTest);
end for;

In a Transition:
outPort.loopTest = inPort.loopTest;

In a delayed Transition
outPort.loopTest = true;

This “brute force” method has the slight drawback
that no better loop breaking check can be provided.
In principal, it might be possible to have only unde-
layed transitions and if the transition conditions are
restricted, it might be possible to prove that infinite
looping is not possible.

3 Encapsulation and Aggregation
The FSM formalism is adequate as long as the mod-
eled behavior remains reasonably simple. When the
number of states and transitions increases, the com-
plexity of the FSM grows exponentially. This is fatal
to readability and strongly confines the viability of
the graph. Thus, when a state machine grows in
complexity, a strong formalism should support ob-
ject-orientation and proper encapsulation of isolated
parts of the behavior to ensure well-defined inter-
faces.
Some remedies for the mentioned problems were
introduced by David Harel in Statecharts [2], where
several new properties were presented to extend
FSM. Being able to cluster states into a superstate
makes it possible to identify similarities between a
number of states and draw advantages from common
properties among them. Clustering of states enables
reuse of larger parts of a behavior than just a single
state. The superstate has a default entry point, which
is connected to the initial state with the same nota-
tion as the initial state arrow. In Figure 7, B and C
share the common property of transition β leading to
state A.

Figure 7: Three states of which two share common prop-

erties.

Thus, B and C can be clustered together into state D
in Figure 8. Note the improved visual appearance in

Figure 8 compared to Figure 7, despite the exact
same behavior of states A, B, and C.

Figure 8: Two states clustered together in a superstate.

Refinement of a state involves identification of a
number of child states with unique properties within
a particular state. In Figure 8, states B and C can be
said to be a refinement of state D. Hence, state D is
said to be the superstate of state B and C. Being in
one of the substates implicitly means also being in
the superstate. The superstate D in Figure 8 is said to
be the XOR-decomposition of its substates.

3.1 ModeGraph Composite

ModeGraph allows aggregation of states into super-
states. A Composite component inherits from
ModeGraph.Composite and has inPort and outPort
connectors defined, like a regular Step, but also sus-
pend ports and resume ports - like in StateGraph.
Figure 9 shows a ModeGraph corresponding to the
chart in Figure 8.

Figure 9: ModeGraph containing two Steps clustered
inside a Composite. State D is a Modelica mode block

where the diagram layer is visible in the icon. Compare
with Figure 8.

M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter

The Modelica Association 258 Modelica 2008, March 3rd − 4th, 2008

The initial Step, B, of the Composite is connected to
the entry port, depicted with a black dot. Similarly,
there is an optional exit port, illustrated with two
circles at the bottom of the Composite. This notation
is inspired by the semantics of SSM, but is slightly
modified to provide a more consistent look. In SSM,
a specific 'final step' indicates when the superstate
may be exited through the outPort, and is depicted
with two circles. To prevent misuse, there is an exit
port in the Composite and Parallel ModeGraph com-
ponents that the 'final step' should be connected to.
When this step is active, the outPort of the Compos-
ite becomes available.
The difference between entry/exit and the existing
StateGraph approach extends beyond the mere
graphical deviation. The entry model contains a state
connected to the black connector dot that is initially
true. Having an entry state, no specific InitialStep
component is required. This prevents the user from
making mistakes by, for example, placing two Ini-
tialStep components in a graph. The code below de-
fining the entry point ensures that the state remains
true for one iteration, when the Composite turns ac-
tive, and then switches to false.
 Entry entry(fire(start = false,
 fixed = true));
protected
 Boolean active(start = true);
 fixed = true));
equation
 active = pre(active) and not
 pre(entry.fire);
 entry.fire = pre(active);

When the Step connected to the exit port is active,
the Transition connected to the outPort of the Com-
posite may fire (if its condition is fulfilled). This
calls for a definition of how the state of a Composite
is evaluated:
available = exit.exit.available and
 allSubBlocksFinished and active;

newActive = (active and not
 anyTrue(outPort.fire) and not
 anyTrue(suspend.fire)) or
 anyTrue(inPort.fire) or
 anyTrue(resume.fire);

active = pre(newActive);

In the code above, the state of the Composite, ac-
tive is set to pre(newActive) to avoid an alge-
braic loop involving mode conditions that will be
introduced later in this paper.
An important feature of ModeGraph is conditional
execution. This applies for the Composite compo-
nent, whose associated code is only executed when
the composite is active. This will be further ex-
plained in Section 6.

4 Preemption and Exception
Aggregation of states introduces new possibilities.
Being an own entity, it is possible to have a transi-
tion drawn directly from the superstate. This will
result in a preemption, and the superstate is left re-
gardless of which of the substates is active, see, e.g.,
transition β in Figure 8. Of course, normal exit is
possible by having a transition originating in an inner
state and targeting an outer. Notice how state D in
Figure 10 is only left through transition β if state C is
active.

Figure 10: Superstate D can only be left when in

substate C.

4.1 ModeGraph Exit and Preemption

To exit a Composite, the final step is connected to
the mentioned exit port. When the final step is ac-
tive, exit.exit.available = true, and a tran-
sition connected to the Composite outport becomes
enabled. The ModeGraph realization of Figure 10 is
shown in Figure 11.

Figure 11: Composite D can only be left if Step C is ac-
tive, compare with Figure 10.
A ModeGraph Composite has an array of suspend
connectors. Recalling the active condition of the
Composite, it is clear that after a suspend port fires,

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 259 Modelica 2008, March 3rd − 4th, 2008

the Composite is no longer active. This behavior is
used to preempt a Composite without necessarily
having reached the final Step, i.e., the one connected
to the exit port. The condition of sus-

pend.available needs to equal the state of the
Composite, since it should be preempted only when
it is active. The same kind of prioritization as for
Steps is performed here:
for i in 1:nSuspend loop
 suspend[i].available =
 if i == 1 then
 active
 else
 active and not
 suspend[i-1].fire;
end for;

The suspend port can be compared to the Statechart
equivalence of drawing a transition directly from the
superstate to an outer state, compare for example
transition β in Figure 8 and its equivalent in Figure 9.
The deactivation of the Composite does not, explic-
itly, influence the internal states of the Composite.
The state of the subblocks will be kept, but all inter-
nal interaction will be frozen.

4.2 History and CLH

The concept of preemption introduces an additional
way of entering a superstate. Normally, entry is per-
formed through the default entry point, as mentioned
above. This behavior can be compared to a subrou-
tine that has only one entry point. There is an obvi-
ous advantage of offering additional ways of enter-
ing an aggregation, similarly to the ways a co-routine
may be entered. Hence, re-entering a superstate, it is
also reasonable to be able to enter the most recently
visited substate.
Memory of the internal state of a superstate is called
“entry by history” in Statecharts, and depicted with
an encircled H to which transitions can be connected.
The H-entry will make the previously visited state
before preemption at the current level active. If the
superstate is entered for the first time, the default
entry arrow is used. Assume for example that state C
is active and transition β is taken in Figure 12. If
subsequently transition α is taken, state C (and of
course also state D) will once again be entered.

Figure 12: Superstate D is entered through an H-entry.

To handle history of several nested superstates, the
H-entry can be extended to be applied all the way to
the lowest level. This is in Statecharts called an H*-
entry. Assume that state C in Figure 13 is active, and
transition β is taken (leaving superstate F). If later
transition α is taken, state C will be active, since α is
connected to an H*-entry.

Figure 13: Superstate D is entered through an

H*-entry.

Having the possibility to utilize history functionality,
an obvious requirement is to also clear this memory
and enter an aggregation as normal. We will intro-
duce the concept of actions and activities before this
property is defined.

4.3 Actions and Activities

A transition action in FSM can be performed when a
transition fires, which is denoted at the transition
condition after a '/' character. An action is assumed
to be performed instantaneously in ideally zero time.
Statecharts also defines activities that, opposed to
actions, are performed in non-zero time, and are used
to carry out tasks of some sort. For each activity ∂,
the following two actions are defined: start(∂) and
stop(∂) which are true when an activity starts and
stops, respectively. Also, a new condition is defined:
active(∂), which is true when ∂ is active.
In SFC, actions are associated with a state instead of
being executed upon a transition being fired. Actions
in SFC are not instantaneous as in Statecharts and
may also be conditional.

M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter

The Modelica Association 260 Modelica 2008, March 3rd − 4th, 2008

4.4 CLH

With the definition above, a special action called
clear-history(state), clh(state), can now be defined.
When clh is performed, the history at the level of the
state is reset. Just as with the H-entry, it is possible
to perform a clear-history down to the deepest level.
This action is consequently called clh(state*). Con-
sider the graph in Figure 14 and assume that state C
is active when transition β is taken and clh(F) is per-
formed.

Figure 14: The history of superstate F is reset when tran-

sition β is taken.

If transition α is subsequently taken, the choice
stands between state D or E, and since clh(F) has
been performed at this level, the default arrow, and
consequently, state E will be active. Note that if now
transition ε is taken, state C will be active, since no
clh occurred at this level.

Figure 15: The history of superstate F and all descending

substates are reset when transition β is taken.

In Figure 15 clh(F*) is performed instead. If now
transition α is taken, state E would be entered. If
transition ε is taken, it would result in state B being
active, since all superstates are entered through their
respective default arrows on all descending levels
due to the earlier performed recursive clh.

4.5 ModeGraph History and CLH

The ModeGraph equivalence of the History junction
is the resume port. When the resume port fires, the
Composite is simply activated. This means that a
superstate that is always entered through a history

junction, like the one in Figure 12, is directly imple-
mentable in ModeGraph by always entering through
the resume port, like in Figure 16.

Figure 16: ModeGraph Composite being entered only

through the resume port, compare with Figure 12.

Note that when a Composite is suspended, all states
all the way down the hierarchy keep their current
state, which actually corresponds to the H*-entry.
Figure 17 is the ModeGraph implementation of
Figure 13. Clear History is performed in ModeGraph
upon normal entry through the inPort of a Compos-
ite.

Figure 17: Two nested ModeGraph Composites that are
both entered through their resume ports, compare with

Figure 13.

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 261 Modelica 2008, March 3rd − 4th, 2008

5 Parallelism
Parallelism and synchronization are important prop-
erties of a state machine to prevent exponential
blow-up of the number of states as complexity
grows. Assume, for example, two subsystems having
x and y states, respectively. When executing in paral-
lel, the number of states would obviously be x + y.
However, realizing the system without the parallel
states would require x·y states.
Orthogonality provides the possibility to have sev-
eral superstates executing in parallel. Assume state D
being the orthogonal product of states B and C, D = B
× C, then D is said to be the AND-decomposition of B
and C, see Figure 18.

Figure 18: Superstate D is the orthogonal product

of B and C.

In practice, it is common to graphically omit the sur-
rounding orthogonal product state, and in this case
instead connect transitions directly to the B × C state.
Another important aspect of subsystems running in
parallel is synchronization. An orthogonal product of
states should provide the possibility of only being
left if a particular set of states is active. In State-
charts, this is performed by using guards on a pre-
emptive transition originating in the orthogonal
product state. This can successfully be used to let
sequences synchronize before continuing further
execution.
Being a sequence-control-oriented formalism,
SFC/Grafcet implements parallelism somewhat dif-
ferently compared to the illustrated example. In SFC,
a transition can be split up in parallel paths. Conse-
quently, several paths can be joined by an AND-
junction. This sequential approach suits its sequence
control purposes very well, and supports synchroni-
zation in a natural way.

5.1 ModeGraph Parallelism

The existing StateGraph Parallel component follows
the Grafcet/SFC tradition by dividing one connection

into a new given number of subpaths that are later
joined to a single connection. Hence, synchroniza-
tion is implicitly demanded of parallel branches.
However, it is sometimes useful to have subsystems
working independently of each other that never syn-
chronize, as is the case for states B and C in Figure
18. Those two systems will run concurrently until
they are preempted by transition β. Hence, no syn-
chronization will ever occur in this case.
Implementing this in StateGraph will result in a
rather messy graph with an unconnected Parallel join
component, see Figure 19. This use of unsynchro-
nized subsystems is common in Statecharts, and a
more flexible way of implementing orthogonality is
thus desirable.

Figure 19: A StateGraph containing two

unsynchronized subsystems.

In ModeGraph, a more Statechart-oriented design is
introduced without compromising existing possibili-
ties of synchronization. A Parallel component inher-
its from ModeGraph.Parallel and is placed within a
Composite to enable preemption. Figure 20 shows a
ModeGraph implementation of Figure 18.

Figure 20: A ModeGraph Composite that contains two

independent Parallel subsystems.

M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter

The Modelica Association 262 Modelica 2008, March 3rd − 4th, 2008

As can be seen, ModeGraph incorporates an ap-
proach to orthogonality that is very similar to State-
charts. Note, that one or more Parallels are placed in
a Composite to provide the possibility of preemption
and synchronization of the Parallel children. As
shown in the code below, the active flag of a Parallel
component is always true. The reason for this is that
its activeness should always be decided by the parent
Composite. Alternatively, if the Parallel is the root of
the graph, it should indeed always be active.
output Boolean active
 "= true if parallel step is
 active, otherwise the
 parallel step is not active";
equation
 active = true;

One important feature of the ModeGraph Parallel
component is that synchronization is still available.
Each Parallel block also contains a Boolean variable,
finished, which is true when the Step connected to
the exit port is active.
Assume the scenario in Figure 18 with the modifica-
tion that transition β can be taken only if Step F and
Step H are simultaneously active. This would result
in a ModeGraph implementation shown in Figure 21.

Figure 21: A ModeGraph Composite with two parallel

subsystems that must synchronize to allow the Composite
to exit. Note that the exit ports of the Parallel components

are now connected.

To utilize exit connectors of the Parallel component,
it is required to set the parameter withExit to true.
If withExit is false, finished will be set to true.
This becomes useful when synchronizing Parallel
states with exits when there are additional Parallel
states without exits present in the same Composite.
The new approach of parallelism supports safe
graphs in a natural way. As stated in [5] the Parallel
and Alternative components in StateGraph are vul-
nerable to misuse. The problem is that the Alterna-

tive/Parallel components are instantiated at the same
level as their branches. This makes it possible for a
user to freely connect a branch outside the compo-
nent without properly synchronizing it, see Figure 22
for an example. Analysis to identify such cases
forces unnecessary code overhead.

Figure 22: Example of unsafe StateGraph.

In ModeGraph, this kind of misuse is not possible.
Since the user is forced to inherit from Mode-
Graph.Parallel and build the parallel branches within
a model, i.e., on a different level, there is no way of
connecting to outer Steps or Transitions, since the
icon layer is closed.

6 Modelica Mode
To implement Mode-Automata in Modelica, a
mechanism for enabling/disabling a block is needed.
There must be a way to conditionally evaluate code
within a Composite and enable/disable its children.
The Modelica mode comprises five variables that
define the behavior of the inheriting block. The vari-
ables define under what conditions equations within
the block and its children will be evaluated and when
to reset states and outputs. The proposed built-in
base class mode is defined as:
partial block mode
 input Boolean finished = false
 "The execution of the mode
 block is finished";
protected
 Boolean enable = true
 "Enable/disable block and all
 children";
 Boolean enableSubBlocks = true
 "Enable/disable children";
 Boolean resetStates = false
 "Reset all continuous and
 discrete states of this block
 and all its children";

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 263 Modelica 2008, March 3rd − 4th, 2008

Boolean resetOutputs = false
 "When a block is disabled, set
 all its outputs to their start
 values";
end mode;

The translator will assert that only one block inherit-
ing from mode at every level is enabled at the same
time instant. This will make it possible to ensure
consistency of the single assignment rule in the
Mode-Automata context.
Naturally, the ModeGraph Step component extends
mode, and only one of Steps A and B in Figure 2 can
thus be enabled at a given time instant. A proposed
Modelica extension would make it possible to assign
a variable y as:
Step A equation
 y = expr1;
end equation;

Step B equation
 y = expr2;
end equation;

The same restriction as in a when-clause applies, i.e.,
there must be a variable reference on the left hand
side of the equal sign (here: y). This code will be
transformed by the translator and will result in the
following single equation:
y = if A.enable or
 A.enableSubBlocks then
 expr1
 elseif B.enable or
 B.enableSubBlocks then
 expr2
 else pre(y);

The expressions expr1 and expr2 are thus defined
within A and B, respectively, and the equation above
is generated by the translator to ensure that the single
assignment rule is not violated.
As a consequence this means that in the generated
code every variable is only defined at one place. For
example, it will not be possible to assign the same
variable in two parallel branches of a Composite step
with two Parallel modes. If this is attempted, an error
occurs, since the number of equations and unknowns
is not the same. Nearly all other formalisms lack
such a property and therefore it is possible to assign
to the same variable several times and then non-
intuitive rules are used to determine which assign-
ment takes priority. Stated differently, ModeGraph
guarantees deterministic variable assignment,
whereas most other state machine formalisms have
non-deterministic variable assignment.

6.1 Composite Mode

Just like the Step, the Composite component inherits
from the mode base class. It is by purpose that a
Composite and a Step on the same level are mutually
exclusive. All components inside the Composite will
in turn be gathered and evaluated in the same man-
ner.
The modifiers of the mode block need to be config-
ured according to the desired behavior of the Com-
posite. When the inPort fires, resetStates is set to
re-initialise all the states of the Composite and its
children to behave exactly like if it was indeed the
first time it was entered. The attribute enableSub-
Blocks will be true when the Composite is active,
enabling children as long as the Composite stays ac-
tive. When the block is not enabled, all outputs of the
Composite and all children should be reset, hence
resetOutputs is set to true. The mode modifier is
shown below.
partial block Composite
 extends mode(
 enableSubBlocks = active,
 enable = true,
 resetStates = inport_fire,
 resetOutputs = true,
 finished = allSubBlocksFinished);

The proposed built-in operator allSubBlocks-

Finished expands to a check if all children of the
mode have their finished variable set to true. Hence,
if allSubBlocksFinished is true, the Composite
may be left through the outPort, since its finished
flag becomes true.

6.2 Parallel Mode

The final discussion relates to the Parallel Compo-
nent. Since we think in terms of an orthogonal prod-
uct, A×B, several Parallel components will indeed be
simultaneously active. To avoid violation of the
Mode-Automata semantics, the Parallel component
is not itself a mode, but contains sets of modes. Since
the sub-components are not instantiated at the same
level as the Parallel components this does not con-
flict with the Mode-Automata theory.
Since the Parallel component is not a mode, it is not
conditional. There is, however, no need for this,
since Parallels are placed inside Composites, and
thus ‘inherit’ the conditional behavior of the parent
Composite. Note that a Parallel can be placed at the
top level. In fact, this is the intended way to define a
top level ModeGraph, since the top component of a
graph should always be active.

M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter

The Modelica Association 264 Modelica 2008, March 3rd − 4th, 2008

7 Application Example –
Harel’s wristwatch

When David Harel introduced Statecharts in [2], he
identified and mapped the behavior of a Citizen
Quartz Multi-Alarm III wristwatch using the new
semantics. This complex, yet comprehensible graph
has been realized in ModeGraph as a case study. Se-
lected parts of the ModeGraph implementation of
Harel’s wristwatch [2] will be used to illustrate the
functionality of the mode concept. The main inter-
face of the ModeGraph implementation is shown in
Figure 23. It is comprised of a main display, buttons
for interaction, and indicator lamps to show the
status of the alarms.

Figure 23: ModeGraph Wristwatch main window.

More information about this implementation of
Harel’s wristwatch can be found in [3].
An example where the mode semantics becomes
very convenient can be found in the time update
mechanism of Harel’s wristwatch. In update mode,
different time quantities can be traversed by pressing
a button, c. When another button, d, is subsequently
pressed, the quantity defined by the active state is
incremented, see Figure 24.

Figure 24: Update mechanism of wristwatch.

The ModeGraph realization of Update is shown in
Figure 25.

Figure 25: ModeGraph realization of Update.

Declaration of the Step components should accord-
ing to the proposed mode declaration look like:
Step second equation
 inc_time_second = 1;
end equation;

Step minute equation
 inc_time_second = 60;
end equation;

Step day equation
 inc_time_day = 1;
end equation;
Hence, inc_time_second would, e.g., be auto-
matically gathered into a single if-statement like:
inc_time_second =
 if second.enable
 or second.enableSubBlocks then
 1
 elseif minute.enable
 or minute.enableSubBlocks then
 60
 ...
 else pre(inc_time_second);
...

Harel’s wristwatch contains a state, chime-status,
shown in Figure 26. This state controls the chime
function that is an alarm that sounds every whole
hour that may be either enabled or disabled. Addi-
tionally, when enabled, it can be either quiet (the
default) or beeping every time the clock reaches a
whole hour. Notice that when chime-status is
active, it can be left regardless of which of the inter-
nal states is active. The ModeGraph realization of
chime-status is shown in Figure 27. Recall that
every time a ModeGraph Composite turns inactive,

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 265 Modelica 2008, March 3rd − 4th, 2008

Figure 28: Stopwatch.

When the states display and run are entered, the
stopwatch starts running (state on) and displays
regular time (state reg). Pressing button b, the user
can turn the stopwatch on/off. Pressing button d has
different meanings depending on the current active
state of run. If the stopwatch is running, pressing
button d switches between display modes regular
and lap. If instead the stopwatch is in state off,
button d is used to exit to state zero, thus resetting
the time of the stopwatch. The ModeGraph realiza-
tion of the stopwatch is shown in

Figure 26: Chime – Status.

interactions between all child states are frozen and
no code within the block is evaluated. Hence, if the
Composite is activated anew, the last active sub-
blocks will once again be active. When entering state
enabled, sub-state quiet should be activated by
default. In the ModeGraph realization, the step rep-
resenting state quiet is connected to the entry point.
Hence, entering enabled through the inport, re-
setStates becomes true, and the Step connected to
the entry point will be active.

Figure 29.

Figure 29: ModeGraph realization of Stopwatch.

An additional Composite displayrun is introduced
to encapsulate the two parallel states display and
run, see Figure 30. The transition condition d(in on)
in

Figure 27: ModeGraph realization of Chime-Status.
Figure 28 becomes true when button d is pressed

and state on is active. It is realized in ModeGraph by
the state on (in Parallel run) sending its state out on
the bus, which is read by the transition
reg_d_in_on located in the Parallel display. This
is a good example of how inter-mode

The state stopwatch in Harel’s wristwatch is a
good example of the need of flexible parallel states
that support easy synchronization. The Stopwatch
can either display zeros or the running/frozen time,
depending on the context of the parallel states dis-
play and run, see Figure 28.

M. Malmheden, H. Elmqvist, S. E. Mattsson, D. Henriksson, M. Otter

The Modelica Association 266 Modelica 2008, March 3rd − 4th, 2008

Figure 30: Contents of the ModeGraph Composite

displayrun.

communication can be performed with expandable
connectors, often called buses. This is an important
difference in ModeGraph compared to other types of
state machines. Since ModeGraph is implemented in
Modelica and modes are basic blocks, the variables
in a mode block are local variables. In other formal-
isms, variables are usually available as global entities
on all levels. For embedded systems the ModeGraph
approach is safer, since variables of composites are
encapsulated.
Also note, in Figure 30, how Steps off and reg are
connected to the exit points of their respective Paral-
lel parent. When both these Steps are active, Paral-
lels run and display both declare themselves fin-
ished, which enables transition dis-

playrun_d_in_off in Figure 29 to fire, since its
allSubBlocksFinished attribute will return true.
What has just been discussed is the core functionality
of the ModeGraph library. The possibility of simply
ignoring equations within a disabled mode, that also
are guaranteed to be mutually exclusive with respect
to other modes on the same level, reduces code and
introduces powerful properties allowing equations to
be associated with modes.

8 Conclusions
In this paper the ModeGraph library has been intro-
duced. The motivation for ModeGraph originates in
the inadequacy of StateGraph in terms of implement-
ing Statechart-oriented state machines. ModeGraph
offers improved flexibility of graphical modelling of
state machines, regardless if they are SFC/Grafcet-

or Statechart-oriented. Graphically, ModeGraph pro-
vides a modern look and feel with components based
on Modelica 3.0 graphical annotations. Furthermore,
the Mode-Automata semantics offers a convenient
way of managing complex conditional structures for
the user. Large-scale systems will successfully draw
advantage of the fact that only relevant parts of the
code (i.e., the code of the current active modes) are
evaluated. The conditional structure also prevents the
user from unintentionally abusing the available com-
ponents in dangerous ways without having extensive
code overhead.

9 Acknowledgement
This work was in parts supported by the
ITEA2 EUROSYSLIB project
(http://www.itea2.org/public/project_leaflets/EURO
SYSLIB_profile_oct-07.pdf).

References
[1] André, C. (2003): Semantics of S.S.M (Safe State

Machine). I3S Laboratory – UMR 6070 University
of Nice-Sophia Antipolis / CNRS.
http://www.i3s.unice.fr/~map/WEBSPORTS/Docu
ments/2003a2005/SSMsemantics.pdf

[2] Harel, D. (1987): Statecharts: A Visual Formal-
ism for Complex Systems. Science of Computer
Programming 8, 231-274. Department of Applied
Mathematics, The Weizmann Institute of Science,
Rehovot, Israel.
http://www.inf.ed.ac.uk/teaching/courses/seoc1/20
05_2006/resources/statecharts.pdf

[3] Malmheden, M. (2007): ModeGraph – A Mode-
Automata-Based Modelica Library for Embed-
ded Control. Master’s thesis, Department of
Automatic Control, Lund University,Sweden.
http://www.control.lth.se/database/publications/arti
cle.pike?artkey=5808

[4] Maraninchi, F. and Rémond, Y. (2002): Mode-
Automata: a New Domain-Specific Construct
for the Development of Safe Critical Systems.
http://www-
verimag.imag.fr/~maraninx/SCP2002.html

[5] Otter, M., Årzén, K.-E., Dressler, I. (2005): State-
Graph - A Modelica Library for Hierarchical
State Machines. Proceedings of the 4th Interna-
tional Modelica Conference. TU-Hamburg-
Harburg, Germany.
http://www.modelica.org/events/Conference2005/o
nline_proceedings/Session7/Session7b2.pdf

[6] AFCET. (1997): Normalisation de la representa-
tion du cahier des charges d’un automatisme lo-
gique. J. Automatique et Informatique Industrielle.

[7] IEC Standard 61131-1 http://www.iec.ch/

ModeGraph - A Modelica Library for Embedded Control Based on Mode-Automata

The Modelica Association 267 Modelica 2008, March 3rd − 4th, 2008

