
Application of neural networks to model catamaran type powerboats

Garron Fish Mike Dempsey
Claytex Services Ltd

Edmund House, Rugby Road, Leamington Spa, UK
garron.fish@claytex.com

Abstract

Powerboats in operation represent a system consist-
ing of a number of complex components such as:
surface propellers, aerodynamics and hydrodynam-
ics; which interact with each other and with the wind
and water surface conditions. By measuring the be-
haviour of the powerboat it is possible to create a
mathematical model using system identification
methods. A neural network model has been gener-
ated which can be used to predict how the powerboat
will perform under different driver inputs for the
purpose of optimizing performance.

Keywords: neural networks; system identification;
powerboats

1 Introduction

There are many different approaches to mathematical
modelling and the decision about the most appropri-
ate method to use is based on what a priori knowl-
edge is known about the system. Modelica is typi-
cally used for white box modelling, which is based
on the application of the universal laws and princi-
ples. This paper discusses the use of black box mod-
elling techniques that are entirely based on the use of
measurement data to generate the mathematical
model [1].

In black box modelling, the inputs and outputs of an
unknown system are used to create a model that pro-
duces an output “close” to that of the actual system,
when supplied with the same inputs. Neural network
system identification is one method that can be used
to create black box models.

In the case of a powerboat, it is convenient to model
the system as a black box, as it is not feasible to
model the behaviour of the system as a white box
model. Figure 1 shows a class 1 powerboat under
race conditions. To create a white box model we
would need to create models of the aerodynamic and
hydrodynamic effects, and their interaction with the

surface propellers and environmental conditions
(such as the water surface and wind speed and direc-
tion).

The aim of generating a mathematical model of the
system was to be able to investigate the effect on the
boat performance of variations in driver input and
boat setup. A neural network system identification
method was selected as the most appropriate way to
model the system. Neural network techniques can be
very effective at identifying complex nonlinear sys-
tems when complete model information cannot be
obtained [2].

A Modelica library called ANN_SID has been de-
veloped to facilitate system identification using neu-
ral networks. The library contains different types of
neural network and several training methods and has
been applied to study the powerboat system.

Figure 1. View of a powerboat during operation.
Image courtesy of Victory Team

2 Neural networks

2.1 An artificial neural network

An artificial neural network is a network of functions
called neurons, which are connected by weighted
signals (see Figure 2). This architecture is loosely
based on a biological neural network. Neural net-
works can be used for a variety of tasks such as sys-
tem identification and classification. The ANN_SID
library provides neural networks appropriate for sys-
tem identification tasks.

Application of Neural Networks to model Catamaran Type Powerboats

The Modelica Association 247 Modelica 2008, March 3rd − 4th, 2008

Figure 2 shows a simple diagram of a typical neural
network, commonly called a feedforward neural
network, which consists of an input layer, a hidden
layer and an output layer. In both the hidden and
output layers, the weighted sum of the inputs to the
layer and the bias, are applied to neuron functions.

The formulae that describe the feedforward neural
network in Figure 2 are shown below. Equation (1)
calculates the outputs of the hidden layer and equa-
tion (2) calculates the output of the neural network.

∑ +⋅+=
i

jnijijj vvtuOto)1)(()(1 (1)

∑ +⋅+=
j

kmjkjkk wwtoYty)1)(()(1 (2)

where:

oj is the output of the hidden layer

Oj is the hidden neuron function

ui is the input

vn+1j is the bias weight for the j neuron (there are n
inputs)

yk is the output of the neural network

Yk is the output neuron function

wm+1k is the bias weight for the k neuron (there are m
hidden neurons)

t is the current sample

Within the ANN_SID library the most common neu-
ron functions such as linear, sigmoid and tanh are
available. The user can also easily add their own
neuron function by extending from the neuron func-
tion base class and implementing the required func-
tion.

2.2 Types of neural networks implemented in
the ANN_SID library

The ANN_SID library provides pre-defined neural
network models for feedforward neural networks and
a form of dynamic recursive neural networks called
Neural Network Output Error. Within each type of
neural network there can be any number of inputs,
hidden neurons, neuron layers and output neurons.

In the dynamic recursive neural network, the output
of the neural network can be used as an input to the
neural network, as shown in Figure 3. This type of
recursive network is used for modelling dynamic
systems where the next output is affected by the pre-
vious output values and previous input values.

2.3 Training of the neural network

The weights and biases in a neural network have to
be trained so that the output of the neural network
approximates the actual system well. The mean
square error between the actual output and predicted
output is the cost function determining the measure
of the closeness of the approximation of the neural
network to the actual system, as in equation (3).

∑
=

−=
N

t

tytz
N

MSE
1

2))()((
2

1
 (3)

where:

MSE is the mean square error

z is the target value (output from the actual system)

y is the output of the neural network

N is the total number of target values

The process of minimising the cost function of the
neural network is called training. In the ANN_SID
library both backpropagation and the Levenberg-

delay

delay

Figure 3. Dynamic recursive neural network

Input layer Hidden layer Output Layer

neurons

1

1 bias

weight
function

1

1

bias

Figure 2. Feedforward neural network

G. Fish, M. Dempsey

The Modelica Association 248 Modelica 2008, March 3rd − 4th, 2008

Marquardt training methods are available. These
methods have been implemented in Modelica in both
continuous and discrete forms. The choice of method
to train a neural network is influenced by the size of
the neural network and the amount of data being
used to train the network.

The continuous training methods have the advantage
that the gradient, which is the rate of change of the
weights, is accurate everywhere, not only at the lin-
earization points as with discrete methods. This can
result in the search method travelling along the bot-
tom of valleys of the cost function and not oscillating
along valley walls.

The continuous method interacts with the variable
step solvers to determine the step-size. If the gradient
changes suddenly then the solver will reduce the step
size to deal with this efficiently. The disadvantage
of the continuous method is that it generates huge
numbers of equations due to the way that Dymola
expands the for loops used in the model. By using
Modelica functions and external C functions these
problems can be minimized through the reuse of
code sections.

Data storage and the manipulation of large matrices
in Dymola can also generate problems with large
neural networks if the continuous training methods
are used. The discrete methods have been imple-
mented to overcome these issues.

2.3.1 Backpropagation
It is possible to train a neural network by calculating
the gradient of the cost function with respect to the
weights, and to then adjust the weights in the appro-
priate direction to reduce the cost function. This
method is called backpropagation and can be slow to
converge to a solution. Appendix A has further in-
formation about how the gradient is calculated.

2.3.2 Levenberg-Marquardt
The Levenberg-Marquardt training method generally
requires fewer iterations than the backpropagation
method to train a neural network. However the LM
method is more complex and requires more compu-
tation and memory to perform each iteration.

The rules used to calculate the weights are described
in Appendix B.

2.3.3 Recursive method
In this method the partial derivative of the neural
network with respect to the weights is required.
From this partial derivative the gradient and Hessian
matrices can be calculated. Once we have deter-
mined these matrices either the backpropagation or

Levenberg-Marquardt training methods can be used
to minimise the cost function.

Modelica provides semantics to define partial deriva-
tives and Dymola is able to utilise these semantics to
generate the symbolic derivative of functions. Ex-
ample 1 shows how the partial derivatives are de-
fined in Modelica. This method was used to help
define a function to calculate the partial derivatives
of the neural network with respect to the weights.

[Example: The specific enthalphy can
be computed from a Gibbs-function as
follows:
function Gibbs
input Real p,T;
output Real g;
algorithm
...
end Gibbs;

function Gibbs_T=der(Gibbs, T);

function specificEnthalpy
input Real p,T;
output Real h;
algorithm
h:=Gibbs(p,T)-T*Gibbs_T(p,T);
end specificEnthalpy;

]

Example 1. An example of Modelica code for the gen-
eration of the partial derivative of a function. Quoted
from Modelica 3.0 Specification [4]

2.3.4 ANN_SID Implementation
An example of training a neural network using the
ANN_SID library is shown in Figure 4. The training
methods are implemented in the replaceable training
component and the user simply selects the required
method.

Figure 4. ANN_SID training performed in a model

Training
component

Application of Neural Networks to model Catamaran Type Powerboats

The Modelica Association 249 Modelica 2008, March 3rd − 4th, 2008

2.4 Improving the neural network training

When training a neural network it is important to
have confidence that the neural network will ap-
proximate well with inputs that are not part of the
training data. This ability is known as generalisation
[5]. One way to investigate this is to divide the data
into two sets, one that is used to train the neural net-
work (training data), and one that is used to test the
generalisation of the neural network (test data).

Generalisation is likely to be improved by reducing
the number of weights used in the neural network
[3]. The ANN_SID library supports both weight
decay and pruning methods to reduce the number of
weights and improve generalisation.

Two pruning methods are available in the library and
these are known as Optimal Brain Surgery and Op-
timal Brain Damage. These algorithms determine
which weights to remove from the neural network.
The remaining weights are then updated to reduce
the errors introduced by removing the weights (for
further details refer to [3]).

Weight decay is another approach to removing
weights from a neural network. In this method a
penalty proportional to the magnitude of the weights
is added to the cost function (see [3] for further de-
tails). All cost functions should contain a measure of
the closeness of the neural network outputs to the
desired output. Adding a weight penalty to the cost
function generates a trade off between reducing the
magnitude of the weights and reducing the closeness
measure. As a result of this the weights that have
little effect on improving the closeness measure will
now be reduced in magnitude.

3 Powerboat operation

The type of powerboat that has been modelled using
the ANN_SID library is a Victory Team class 1 off-
shore powerboat as shown in Figures 1 and 5. These
boats have a catamaran hull with two engines and a
central rudder. Each engine drives a height adjust-
able, steerable propeller. The boats are operated by
two crewmembers: a throttle man and a driver. Be-
tween them they have 5 controls, which are:

• A steering wheel that directly controls the
rudder angle. The steered angle for the pro-
pellers is also controlled by the steering
wheel angle.

• The propeller heights are set using two
rocker switches. These control the trim pis-
tons that move the propellers vertically.

• Throttle position is set using the throttle lev-
ers for the left and right engine.

Figure 5. Rear view of a powerboat. Image cour-
tesy of Victory Team

As the boat accelerates it begins to plane and travels
higher above the water, i.e. less of the hull is below
the water line. As the boat lifts out of the water, the
propellers are lowered (trimmed down) to control
their depth in the water.

The trim height (or propeller depth) also affects the
pitch angle at which the boat travels. In general, the
lower the depth of the propellers, the lower the pitch.
If the boat is travelling at a pitch angle that is too
high for the speed it is doing, it will flip over (a
blowover). If the pitch angle of the boat is too low
the result will be a larger surface area of the boat in
the water and thus an increase in drag.

When cornering, the catamaran powerboat rolls to
the inside of the corner (due to the asymmetrical hull
design). If the cornering is too severe for the current
speed, the boat will begin to roll to the outside of the
corner, and will roll over if the drivers do not take
correcting action. A typical cornering manoeuvre
requires the throttle man to reduce the throttle to
slow the boat to a controllable speed before the cor-
ner, and the driver to steer the boat along the course,
ensuring that the steering angle is not too steep for
the current speed.

trim
piston rudder

G. Fish, M. Dempsey

The Modelica Association 250 Modelica 2008, March 3rd − 4th, 2008

Figure 6. A Racecourse. The powerboats must
travel along a course defined by buoys. There are
three different types of laps. The start lap in red, the
short lap in black and the long lap in green. Supplied
courtesy of IOTA.

A race involves the boats travelling around a course
defined by buoys laid out in the water (see Figure 6).
The drivers try to select good trim height to maxi-
mize acceleration while maintaining stability. The
drivers also try to find good throttle, rudder and trim
positions for cornering that result in fast and stable
cornering. The neural network can investigate dif-
ferent possible driver inputs and predict their effects
on boat performance over a lap.

4 Powerboat model

4.1 Defining the neural network

To model the powerboat using neural network tech-
niques, a significant amount of data is used to char-
acterise the system. During races and testing ses-
sions the boats are fitted with a data logger that re-
cords the data required to train the neural network.

The input data required is:

• The engine throttle positions

• The rudder angle

• The trim height of both propellers

 The target output data required is:

• The engine speed of both engines

• The boat speed

• The yaw rate of the boat

Using this input and output data we can train a neural
network to represent the powerboat system and then

use the neural network to investigate the system per-
formance with different inputs.

As the boat is an example of a dynamic system, the
dynamic recursive neural network was chosen. The
model has been generated from data recorded by
Victory Team from their racing boat number 77 dur-
ing the 2007 Arendal race. During this race the boat
completed 12 laps of the course.

The measured data was filtered using Basel and
Chebyshev filters to reduce the amount of noise and
high frequency components in the data. The filtered
data was then re-sampled from 100Hz to 1.7Hz to
reduce the number of duplicate data points and to
decrease the amount of time required to train the
neural network. Finally the data was divided into
training and test data sets.

4.2 Training the neural network

Training a neural network for such a complex system
is done in a number of steps. When first training a
dynamic recursive neural network it is not known
how many past outputs and inputs will result in the
model giving a good representation of the powerboat
system. It is also not known how many neurons will
be required, or which neuron functions should be
used. These can only be determined by trying differ-
ent configurations to find the best setup.

The first step in training this type of neural network
is to train it to only predict the next output value
from the previous data value. The weights from this
training are then used as the initial weights for the
recursive training. The recursive training algorithm
described in 2.4.3 was used with the Levenberg-
Marquardt method to train the neural network. To
improve the generalization, weight decay was used.

4.3 Correlation results

After training, the MSE for the neural network using
the training data set was 0.0035 and the MSE for the
test data set was 0.0064. This means that the neural
network has been trained successfully and is able to
accurately predict the performance of the powerboat,
as shown in Figure 7.

In Figure 7, the recorded driver inputs have been fed
in to the trained neural network and the outputs for
boat speed, engine speed and the yaw rate of the boat
are compared to the measured data. Overall the re-
sults show that there is very good correlation be-
tween the neural network and the real powerboat.

There are some small deviations which could be due
to a number of different factors, such as swell and

Application of Neural Networks to model Catamaran Type Powerboats

The Modelica Association 251 Modelica 2008, March 3rd − 4th, 2008

wind conditions along the course, that are not ac-
counted for in the neural network.

Figure 7. Comparison of simulated neural network
with recorded data for a single lap of the course.

4.4 Optimisation of the trim strategy

Section 3 describes how the propeller height (trim
height) affects the performance of the powerboat.
By using the neural network it is possible to deter-
mine what the optimum trimming strategy is for the
powerboat.

The model shown in Figure 8 uses the trained neural
network to simulate the powerboat accelerating from
an initial speed up to its maximum speed.

Figure 8. Acceleration model test. The throttle po-
sition is set to 100% and the boat is travelling in a
straight line.

Figure 9 compares an example trimming strategy
extracted from the race data and the optimized trim
strategy that has been determined with the use of the

neural network. Using the optimised trimming strat-
egy the powerboat would take 1s less to travel along
a 2km straight than using the example trim strategy.

Figure 9. Comparison of a simulated trim strategy
with a real trim strategy. The simulated optimal re-
sults (Simulated Speed and Simulated Trim) assume
the boat is travelling perfectly straight. The Example
Trim strategy was taken from the race data and ap-
plied to the simulator.

The neural network used in the model can only be
expected to accurately model an operating region if
this region was sufficiently excited during the data
recording stage. In Figure 10 the histogram data
identifies what trim position data is available for the
operating region of the simulated result. The opti-
mum trim strategy is limited by the availability of
data (see Figure 10). The upper bound on the trim
data is probably due to driver caution because of the
risk of a blowover in this operating region.

Figure 10. Histogram plot of recorded trim position
at the operating state. The optimised trim position is
plotted over the histogram as white circles

G. Fish, M. Dempsey

The Modelica Association 252 Modelica 2008, March 3rd − 4th, 2008

5 Conclusions

A library called ANN_SID has been developed for
the development and training of neural networks for
system identification. This library was used to gen-
erate a black box model of a powerboat, and this
model was then used to determine an improved
trimming strategy that should deliver improvements
in boat performance.

Acknowledgments

Victory Team have kindly provided the photographs
used in this paper and the powerboat data used to
carry out this study.

IOTA have kindly provided the course map used in
Figure 9.

References

[1] Estrada-Flores S., et-al. Develop-
ment and validation of “grey-box”
models for refrigeration applications:
a review of key concepts. Interna-
tional Journal of Refrigeration, pages
931-946, July 2006.

[2] Wen Yu, Nonlinear system identifi-
cation using discrete-time recurrent
neural networks with stable learning
algorithms. Information Sciences,
pages 131-147, 2004.

[3] M. Nørgaard, O. Ravn, N.K.Poulsen
and L.K.Hansen, Neural Networks
for Modelling and Control of Dy-
namic Systems

[4] Modelica 3.0 Specifications

http://www.modelica.org/release_of_
modelica_3_0/view

[5] Neural Network FAQ, part 3 of 7,
ftp://ftp.sas.com/pub/neural/FAQ3.ht
ml

APPENDIX A: Backpropagation al-
gorithm

By calculating the gradient of the cost function (see
Section 2.3) it is possible to update the weights in a
way that will reduce the cost function. The example
below is how backpropagation would be used to up-

date a feedforward neural network using the MSE as
the cost function.

The following equations describe a neural network.

∑ +⋅+=
i

jnijijj vvuOo)1(1 (1)

∑ +⋅+=
j

kmjkjkk wwoYy)1(1 (2)

The cost function is the mean square error (i.e.
MSE):

∑
=

−=
N

t

tytz
N

V
1

2))()((
2

1
 (3)

The calculation of the partial derivative of MSE with
respect to output weight wjk follows:

∑
=

−
∂

∂=
∂
∂ N

tjkjk

tytz
Nww

V

1

2)))()((
2

1
(

∑
= ∂

∂−=
∂
∂ N

t jk

k
k

jk w

ty
t

Nw

V

1

)(
)(

1 ε (let ε = z(t)-y(t))

Substituting in (2):

∑
∑

=

+

∂

⋅+∂
−=

∂
∂ N

t jk

j
kmjkjk

k
jk w

wwtoY

t
Nw

V

1

1)1)((

)(
1 ε

∑
=

⋅
∂
∂−=

∂
∂ N

t
j

k

k
k

jk

to
a

y
t

Nw

V

1

)()(
1 ε

(where ak=)1)(1kmjkj wwto +⋅+

The calculation of the partial derivative of the cost
function with respect to hidden weight follows:

 ∑
=

−
∂
∂=

∂
∂ N

tijij

tytz
Nvv

V

1

2)))()((
2

1
(

∑
= ∂

∂−=
∂
∂ N

t ijij v

ty
t

Nv

V

1

)(
)(

1 ε

(note that ε and y are vectors)

∑ ∑
=

+

∂
⋅+∂

∂
∂−=

∂
∂ N

t ij

jmjkj

k k

k
k

ij v

wwto

ta

ty
t

Nv

V

1

1)1)((
)

)(

)(
)((

1 ε

∑ ∑
= ∂

∂
∂
∂−=

∂
∂ N

t
i

ij

j
i

k k

k
k

ij

tu
tb

to
w

ta

ty
t

Nv

V

1

)(
)(

)(
)

)(

)(
)((

1 ε

where: bij(t) = ∑ ⋅+
i

njijij vvtuO)1)((

The discrete weight update method is:

Application of Neural Networks to model Catamaran Type Powerboats

The Modelica Association 253 Modelica 2008, March 3rd − 4th, 2008

∆wjk = -η
ijv

V

∂
∂

By choosing η sufficiently small, the cost function
can be decreased at each iterate.

The continuous method uses the gradient calculated
above to update the existing weights continuously.

APPENDIX B: Levenberg-Marquardt
algorithm

In the backpropagation algorithm the search direc-
tion is calculated from the first order Talyor ap-
proximation of the cost function. The Levenberg-
Marquardt algorithm makes use of the second order
Talyor approximation of the cost function to update
the weights. The second order approximation of the
cost function follows:

)(
^

θV = V(θ*) + (θ -θ*)V′(θ*) +

 ½(θ -θ*)V(θ*)′′(θ -θ*)

)(
^

θV = V(θ*) + (θ -θ*)G + ½(θ -θ*) H(θ -θ*)

where:

θ represents all the weights in the neural network

θ* are the weights at which the Taylor approxima-
tion is made.

V′ is dV/dθ and equal to the gradient G

V′′ is d2V/dθ2 and equal to the Hessian H

In the Levenberg-Marquardt method a further ap-
proximation is made; the Hessian is approximated by
the following equation:

∑
=

=
N

t d

tdy

d

tdy

N
R

1

)()(1
)(

θθ
θ

This is valid when the MSE is the cost function.

Let the approximation of the cost function be:

L(θ)= V(θ*) + (θ -θ*)G + ½(θ -θ*) R(θ -θ*) (4)

This cost function is minimised using an iterative
process; where the next weights are limited to a re-
gion around the current weights (see (5)). Limiting
the range of the search is often effective as “If the

minimum of L is far from the current iterate, θ(i)
, a

poor search direction may be obtained.” [3].

)(minarg)()1(θθ
θ

ii L=+

subject to |θ(i+1) - θ(i)| ≤ δ(i) (5)

where:

λ
(i) has a monotonic relationship with δ(i) [3]. Where

increasing λ(i) decreases δ(i) and visa versa.

The weights are updated using the following rule:

[R(θ(i)) + λ(i)I]∆θ = -G(θ)

where:

∆θ = θ(i+1) - θ(i)

The update rule for the λ value follows:

1. If the L(i) value approximates MSE well, then

 λ
(i+1) = λ(i)/2 and thus increasing the search re-

gion.

2. If the L(i) value does not approximates MSE well,
then λ(i+1) = λ(i)*2 and thus decreasing the search
region.

3. Leave λ* if neither the 1 or 2 thresholds are true.

To get a more detailed explanation on the update rule
for λ* refer to [3].

G. Fish, M. Dempsey

The Modelica Association 254 Modelica 2008, March 3rd − 4th, 2008

