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Abstract 

Powerboats in operation represent a system consist-
ing of a number of complex components such as: 
surface propellers, aerodynamics and hydrodynam-
ics; which interact with each other and with the wind 
and water surface conditions.  By measuring the be-
haviour of the powerboat it is possible to create a 
mathematical model using system identification 
methods.  A neural network model has been gener-
ated which can be used to predict how the powerboat 
will perform under different driver inputs for the 
purpose of optimizing performance. 
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1 Introduction 

There are many different approaches to mathematical 
modelling and the decision about the most appropri-
ate method to use is based on what a priori  knowl-
edge is known about the system.  Modelica is typi-
cally used for white box modelling, which is based 
on the application of the universal laws and princi-
ples.  This paper discusses the use of black box mod-
elling techniques that are entirely based on the use of 
measurement data to generate the mathematical 
model [1]. 

In black box modelling, the inputs and outputs of an 
unknown system are used to create a model that pro-
duces an output “close” to that of the actual system, 
when supplied with the same inputs.  Neural network 
system identification is one method that can be used 
to create black box models. 

In the case of a powerboat, it is convenient to model 
the system as a black box, as it is not feasible to 
model the behaviour of the system as a white box 
model.  Figure 1 shows a class 1 powerboat under 
race conditions.  To create a white box model we 
would need to create models of the aerodynamic and 
hydrodynamic effects, and their interaction with the 

surface propellers and environmental conditions 
(such as the water surface and wind speed and direc-
tion).   

The aim of generating a mathematical model of the 
system was to be able to investigate the effect on the 
boat performance of variations in driver input and 
boat setup.  A neural network system identification 
method was selected as the most appropriate way to 
model the system.  Neural network techniques can be 
very effective at identifying complex nonlinear sys-
tems when complete model information cannot be 
obtained [2]. 

A Modelica library called ANN_SID has been de-
veloped to facilitate system identification using neu-
ral networks.  The library contains different types of 
neural network and several training methods and has 
been applied to study the powerboat system. 

  

 
Figure 1. View of a powerboat during operation.  
Image courtesy of Victory Team 

2 Neural networks 

2.1 An artificial neural network 

An artificial neural network is a network of functions 
called neurons, which are connected by weighted 
signals (see Figure 2).  This architecture is loosely 
based on a biological neural network.  Neural net-
works can be used for a variety of tasks such as sys-
tem identification and classification.  The ANN_SID 
library provides neural networks appropriate for sys-
tem identification tasks. 
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Figure 2 shows a simple diagram of a typical neural 
network, commonly called a feedforward neural 
network, which consists of an input layer, a hidden 
layer and an output layer.  In both the hidden and 
output layers, the weighted sum of the inputs to the 
layer and the bias, are applied to neuron functions.   

The formulae that describe the feedforward neural 
network in Figure 2 are shown below. Equation (1) 
calculates the outputs of the hidden layer and equa-
tion (2) calculates the output of the neural network.   
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where: 

oj is the output of the hidden layer 

Oj is the hidden neuron function 

ui is the input 

vn+1j is the bias weight for the j neuron (there are n 
inputs) 

yk is the output of the neural network 

Yk is the output neuron function 

wm+1k is the bias weight for the k neuron (there are m 
hidden neurons) 

t is the current sample 

 

Within the ANN_SID library the most common neu-
ron functions such as linear, sigmoid and tanh are 
available.  The user can also easily add their own 
neuron function by extending from the neuron func-
tion base class and implementing the required func-
tion.   

 

2.2 Types of neural networks implemented in 
the ANN_SID library 

The ANN_SID library provides pre-defined neural 
network models for feedforward neural networks and 
a form of dynamic recursive neural networks called 
Neural Network Output Error.  Within each type of 
neural network there can be any number of inputs, 
hidden neurons, neuron layers and output neurons.  

In the dynamic recursive neural network, the output 
of the neural network can be used as an input to the 
neural network, as shown in Figure 3.  This type of 
recursive network is used for modelling dynamic 
systems where the next output is affected by the pre-
vious output values and previous input values.  

2.3 Training of the neural network 

The weights and biases in a neural network have to 
be trained so that the output of the neural network 
approximates the actual system well.  The mean 
square error between the actual output and predicted 
output is the cost function determining the measure 
of the closeness of the approximation of the neural 
network to the actual system, as in equation (3). 
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where: 

MSE is the mean square error 

z is the target value (output from the actual system) 

y is the output of the neural network 

N is the total number of target values 

 

The process of minimising the cost function of the 
neural network is called training.  In the ANN_SID 
library both backpropagation and the Levenberg-
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Figure 3. Dynamic recursive neural network  
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Figure 2. Feedforward neural network 
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Marquardt training methods are available.  These 
methods have been implemented in Modelica in both 
continuous and discrete forms. The choice of method 
to train a neural network is influenced by the size of 
the neural network and the amount of data being 
used to train the network. 

The continuous training methods have the advantage 
that the gradient, which is the rate of change of the 
weights, is accurate everywhere, not only at the lin-
earization points as with discrete methods.  This can 
result in the search method travelling along the bot-
tom of valleys of the cost function and not oscillating 
along valley walls.  

The continuous method interacts with the variable 
step solvers to determine the step-size. If the gradient 
changes suddenly then the solver will reduce the step 
size to deal with this efficiently.  The disadvantage 
of the continuous method is that it generates huge 
numbers of equations due to the way that Dymola 
expands the for loops used in the model.  By using 
Modelica functions and external C functions these 
problems can be minimized through the reuse of 
code sections.   

Data storage and the manipulation of large matrices 
in Dymola can also generate problems with large 
neural networks if the continuous training methods 
are used.  The discrete methods have been imple-
mented to overcome these issues. 

2.3.1 Backpropagation 
It is possible to train a neural network by calculating 
the gradient of the cost function with respect to the 
weights, and to then adjust the weights in the appro-
priate direction to reduce the cost function.  This 
method is called backpropagation and can be slow to 
converge to a solution.  Appendix A has further in-
formation about how the gradient is calculated. 

2.3.2 Levenberg-Marquardt 
The Levenberg-Marquardt training method generally 
requires fewer iterations than the backpropagation 
method to train a neural network.  However the LM 
method is more complex and requires more compu-
tation and memory to perform each iteration. 

The rules used to calculate the weights are described 
in Appendix B. 

2.3.3 Recursive method 
In this method the partial derivative of the neural 
network with respect to the weights is required.  
From this partial derivative the gradient and Hessian 
matrices can be calculated.  Once we have deter-
mined these matrices either the backpropagation or 

Levenberg-Marquardt training methods can be used 
to minimise the cost function. 

Modelica provides semantics to define partial deriva-
tives and Dymola is able to utilise these semantics to 
generate the symbolic derivative of functions.  Ex-
ample 1 shows how the partial derivatives are de-
fined in Modelica. This method was used to help 
define a function to calculate the partial derivatives 
of the neural network with respect to the weights.  

 
[Example: The specific enthalphy can 
be computed from a Gibbs-function as 
follows:  
function Gibbs  
input Real p,T;  
output Real g;  
algorithm  
...  
end Gibbs;  
 
function Gibbs_T=der(Gibbs, T);  
 
function specificEnthalpy  
input Real p,T;  
output Real h;  
algorithm  
h:=Gibbs(p,T)-T*Gibbs_T(p,T);  
end specificEnthalpy;  

] 

Example 1. An example of Modelica code for the gen-
eration of the partial derivative of a function.  Quoted 
from Modelica 3.0 Specification [4] 

 

2.3.4 ANN_SID Implementation 
An example of training a neural network using the 
ANN_SID library is shown in Figure 4.  The training 
methods are implemented in the replaceable training 
component and the user simply selects the required 
method. 

 

 
Figure 4.  ANN_SID training performed in a model 

Training 
component 
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2.4 Improving the neural network training 

When training a neural network it is important to 
have confidence that the neural network will ap-
proximate well with inputs that are not part of the 
training data. This ability is known as generalisation 
[5].  One way to investigate this is to divide the data 
into two sets, one that is used to train the neural net-
work (training data), and one that is used to test the 
generalisation of the neural network (test data).   

Generalisation is likely to be improved by reducing 
the number of weights used in the neural network 
[3].  The ANN_SID library supports both weight 
decay and pruning methods to reduce the number of 
weights and improve generalisation. 

Two pruning methods are available in the library and 
these are known as Optimal Brain Surgery and Op-
timal Brain Damage.  These algorithms determine 
which weights to remove from the neural network.  
The remaining weights are then updated to reduce 
the errors introduced by removing the weights (for 
further details refer to [3]). 

Weight decay is another approach to removing 
weights from a neural network.  In this method a 
penalty proportional to the magnitude of the weights 
is added to the cost function (see [3] for further de-
tails).  All cost functions should contain a measure of 
the closeness of the neural network outputs to the 
desired output.  Adding a weight penalty to the cost 
function generates a trade off between reducing the 
magnitude of the weights and reducing the closeness 
measure.  As a result of this the weights that have 
little effect on improving the closeness measure will 
now be reduced in magnitude. 

3 Powerboat operation 

The type of powerboat that has been modelled using 
the ANN_SID library is a Victory Team class 1 off-
shore powerboat as shown in Figures 1 and 5.  These 
boats have a catamaran hull with two engines and a 
central rudder.  Each engine drives a height adjust-
able, steerable propeller.  The boats are operated by 
two crewmembers: a throttle man and a driver. Be-
tween them they have 5 controls, which are: 

• A steering wheel that directly controls the 
rudder angle.  The steered angle for the pro-
pellers is also controlled by the steering 
wheel angle. 

• The propeller heights are set using two 
rocker switches.  These control the trim pis-
tons that move the propellers vertically. 

• Throttle position is set using the throttle lev-
ers for the left and right engine. 

 

 
Figure 5.  Rear view of a powerboat.  Image cour-
tesy of Victory Team 

 

As the boat accelerates it begins to plane and travels 
higher above the water, i.e. less of the hull is below 
the water line.  As the boat lifts out of the water, the 
propellers are lowered (trimmed down) to control 
their depth in the water. 

The trim height (or propeller depth) also affects the 
pitch angle at which the boat travels. In general, the 
lower the depth of the propellers, the lower the pitch.  
If the boat is travelling at a pitch angle that is too 
high for the speed it is doing, it will flip over (a 
blowover).  If the pitch angle of the boat is too low 
the result will be a larger surface area of the boat in 
the water and thus an increase in drag. 

When cornering, the catamaran powerboat rolls to 
the inside of the corner (due to the asymmetrical hull 
design).  If the cornering is too severe for the current 
speed, the boat will begin to roll to the outside of the 
corner, and will roll over if the drivers do not take 
correcting action.  A typical cornering manoeuvre 
requires the throttle man to reduce the throttle to 
slow the boat to a controllable speed before the cor-
ner, and the driver to steer the boat along the course, 
ensuring that the steering angle is not too steep for 
the current speed. 

trim 
piston rudder 
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Figure 6. A Racecourse.  The powerboats must 
travel along a course defined by buoys.  There are 
three different types of laps.  The start lap in red, the 
short lap in black and the long lap in green.  Supplied 
courtesy of IOTA. 

 

A race involves the boats travelling around a course 
defined by buoys laid out in the water (see Figure 6).  
The drivers try to select good trim height to maxi-
mize acceleration while maintaining stability.  The 
drivers also try to find good throttle, rudder and trim 
positions for cornering that result in fast and stable 
cornering.  The neural network can investigate dif-
ferent possible driver inputs and predict their effects 
on boat performance over a lap. 

4 Powerboat model 

4.1 Defining the neural network 

To model the powerboat using neural network tech-
niques, a significant amount of data is used to char-
acterise the system.  During races and testing ses-
sions the boats are fitted with a data logger that re-
cords the data required to train the neural network.   

The input data required is: 

• The engine throttle positions 

• The rudder angle 

• The trim height of both propellers 

 The target output data required is: 

• The engine speed of both engines 

• The boat speed 

• The yaw rate of the boat 

Using this input and output data we can train a neural 
network to represent the powerboat system and then 

use the neural network to investigate the system per-
formance with different inputs.   

As the boat is an example of a dynamic system, the 
dynamic recursive neural network was chosen.  The 
model has been generated from data recorded by 
Victory Team from their racing boat number 77 dur-
ing the 2007 Arendal race.  During this race the boat 
completed 12 laps of the course.   

The measured data was filtered using Basel and 
Chebyshev filters to reduce the amount of noise and 
high frequency components in the data.  The filtered 
data was then re-sampled from 100Hz to 1.7Hz to 
reduce the number of duplicate data points and to 
decrease the amount of time required to train the 
neural network.  Finally the data was divided into 
training and test data sets. 

4.2 Training the neural network 

Training a neural network for such a complex system 
is done in a number of steps.  When first training a 
dynamic recursive neural network it is not known 
how many past outputs and inputs will result in the 
model giving a good representation of the powerboat 
system.  It is also not known how many neurons will 
be required, or which neuron functions should be 
used.  These can only be determined by trying differ-
ent configurations to find the best setup. 

The first step in training this type of neural network 
is to train it to only predict the next output value 
from the previous data value. The weights from this 
training are then used as the initial weights for the 
recursive training.  The recursive training algorithm 
described in 2.4.3 was used with the Levenberg-
Marquardt method to train the neural network. To 
improve the generalization, weight decay was used.   

4.3 Correlation results 

After training, the MSE for the neural network using 
the training data set was 0.0035 and the MSE for the 
test data set was 0.0064. This means that the neural 
network has been trained successfully and is able to 
accurately predict the performance of the powerboat, 
as shown in Figure 7.   

In Figure 7, the recorded driver inputs have been fed 
in to the trained neural network and the outputs for 
boat speed, engine speed and the yaw rate of the boat 
are compared to the measured data.  Overall the re-
sults show that there is very good correlation be-
tween the neural network and the real powerboat.   

There are some small deviations which could be due 
to a number of different factors, such as swell and 
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wind conditions along the course, that are not ac-
counted for in the neural network.   

 

Figure 7.  Comparison of simulated neural network 
with recorded data for a single lap of the course. 

4.4 Optimisation of the trim strategy 

Section 3 describes how the propeller height (trim 
height) affects the performance of the powerboat.  
By using the neural network it is possible to deter-
mine what the optimum trimming strategy is for the 
powerboat. 

The model shown in Figure 8 uses the trained neural 
network to simulate the powerboat accelerating from 
an initial speed up to its maximum speed.   

 

 
Figure 8.  Acceleration model test.  The throttle po-
sition is set to 100% and the boat is travelling in a 
straight line.  

 

Figure 9 compares an example trimming strategy 
extracted from the race data and the optimized trim 
strategy that has been determined with the use of the 

neural network.  Using the optimised trimming strat-
egy the powerboat would take 1s less to travel along 
a 2km straight than using the example trim strategy. 

 

 
Figure 9.   Comparison of a simulated trim strategy 
with a real trim strategy.  The simulated optimal re-
sults (Simulated Speed and Simulated Trim) assume 
the boat is travelling perfectly straight.  The Example 
Trim strategy was taken from the race data and ap-
plied to the simulator. 

 

The neural network used in the model can only be 
expected to accurately model an operating region if 
this region was sufficiently excited during the data 
recording stage.  In Figure 10 the histogram data 
identifies what trim position data is available for the 
operating region of the simulated result.  The opti-
mum trim strategy is limited by the availability of 
data (see Figure 10).  The upper bound on the trim 
data is probably due to driver caution because of the 
risk of a blowover in this operating region. 

 

 
Figure 10.  Histogram plot of recorded trim position 
at the operating state.  The optimised trim position is 
plotted over the histogram as white circles 
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5 Conclusions 

A library called ANN_SID has been developed for 
the development and training of neural networks for 
system identification.  This library was used to gen-
erate a black box model of a powerboat, and this 
model was then used to determine an improved 
trimming strategy that should deliver improvements 
in boat performance. 
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APPENDIX A:  Backpropagation al-
gorithm 

By calculating the gradient of the cost function (see 
Section 2.3) it is possible to update the weights in a 
way that will reduce the cost function.  The example 
below is how backpropagation would be used to up-

date a feedforward neural network using the MSE as 
the cost function. 

  

The following equations describe a neural network.  
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The cost function is the mean square error (i.e. 
MSE): 
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The calculation of the partial derivative of MSE with 
respect to output weight wjk follows: 
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Substituting in (2): 
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The calculation of the partial derivative of the cost 
function with respect to hidden weight follows: 
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The discrete weight update method is: 
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By choosing η sufficiently small, the cost function 
can be decreased at each iterate. 

 

The continuous method uses the gradient calculated 
above to update the existing weights continuously. 

APPENDIX B:  Levenberg-Marquardt 
algorithm 

In the backpropagation algorithm the search direc-
tion is calculated from the first order Talyor ap-
proximation of the cost function.  The Levenberg-
Marquardt algorithm makes use of the second order 
Talyor approximation of the cost function to update 
the weights.  The second order approximation of the 
cost function follows: 

 

)(
^

θV = V(θ*) + (θ -θ*)V′(θ*) +  

                  ½(θ -θ*)V(θ*)′′(θ -θ* )  

)(
^

θV  = V(θ*) + (θ -θ*)G + ½(θ -θ* ) H(θ -θ* ) 

 

where: 

θ  represents all the weights in the neural network 

θ* are the weights at which the Taylor approxima-
tion is made. 

V′ is dV/dθ and equal to the gradient G 

V′′ is d2V/dθ2 and equal to the Hessian H 

 

In the Levenberg-Marquardt method a further ap-
proximation is made; the Hessian is approximated by 
the following equation: 
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This is valid when the MSE is the cost function. 

 

Let the approximation of the cost function be: 

L(θ)= V(θ*) + (θ -θ*)G + ½(θ -θ*) R(θ -θ*)            (4) 

 

This cost function is minimised using an iterative 
process; where the next weights are limited to a re-
gion around the current weights (see (5)).  Limiting 
the range of the search is often effective as “If the 

minimum of L is far from the current iterate, θ(i)
, a 

poor search direction may be obtained.” [3]. 

)(minarg )()1( θθ
θ
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subject to |θ(i+1) - θ(i)| ≤ δ(i)                         (5) 

where: 

λ
(i) has a monotonic relationship with δ(i) [3].  Where 

increasing λ(i) decreases δ(i) and visa versa. 

 

The weights are updated using the following rule: 

[R(θ(i)) + λ(i)I]∆θ  = -G(θ) 

where: 

∆θ = θ(i+1) - θ( i) 

 

The update rule for the λ value follows:   

1.  If the L(i) value approximates MSE well, then  

  λ
(i+1) = λ(i)/2 and thus increasing the search re-

gion. 

2.  If the L(i) value does not approximates MSE well, 
then λ(i+1) = λ(i)*2  and thus decreasing the search 
region. 

3.  Leave λ* if neither the 1 or 2 thresholds are true. 

 

To get a more detailed explanation on the update rule 
for λ* refer to [3].  

G. Fish, M. Dempsey

The Modelica Association 254 Modelica 2008, March 3rd − 4th, 2008


