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Abstract surface propellers and environmental conditions
(such as the water surface and wind speed and direc

Powerboats in operation represent a system condi&).

ing of a number of complex components such @he aim of generating a mathematical model of the
surface propellers, aerodynamics and hydrodynasystem was to be able to investigate the effe¢hen

ics; which interact with each other and with thedvi boat performance of variations in driver input and
and water surface conditions. By measuring the lmat setup. A neural network system identification
haviour of the powerboat it is possible to creatensethod was selected as the most appropriate way to
mathematical model using system identificatiomodel the system. Neural network techniques can be
methods. A neural network model has been geneery effective at identifying complex nonlinear sys
ated which can be used to predict how the powerbtaths when complete model information cannot be
will perform under different driver inputs for theobtained [2].

purpose of optimizing performance. A Modelica library called ANN_SID has been de-
veloped to facilitate system identification usingun

Keyvvords_ neural networks; Wae'n |dmt|f|cat|on, ral net\Norks. The Iibrary Contains different typﬁs

powerboats neural network and several training methods and has
been applied to study the powerboat system.

1 Introduction

There are many different approaches to mathemat
modelling and the decision about the most approp
ate method to use is based on waatiori knowl-
edge is known about the system. Modelica is ty|
cally used for white box modelling, which is basg
on the application of the universal laws and princr - —— ————
ples. This paper discusses the use of black bak mbigure 1. View of a powerboat during operation.
elling techniques that are entirely based on tleeafis Image courtesy of Victory Team

measurement data to generate the mathematical

model [1].
In black box modelling, the inputs and outputs of zg Neural networks

unknown system are used to create a model that pro- . K
duces an output “close” to that of the actual syste-l ~An artificial neural networ
when supplied with the same inputs. Neural netwoyk

system identification is one method that can belu h artificial neural _network is a network of furr_nms
to create black box models called neuronswhich are connected by weighted

. ) (iignals (see Figure 2). This architecture is lhose
In the case of a powerboat, it is convenient to @0¢)a5eq on a biological neural network. Neural net-

the system as a black box, as it is not feasible {8 ks can be used for a variety of tasks such ss sy
model the behaviour of the system as a white bR, jgentification and classification. The ANN_SID

model. Figure 1 shows a class 1 powerboat unggtary provides neural networks appropriate fos-sy
race conditions. To create a white box model Wem identification tasks.

would need to create models of the aerodynamic and
hydrodynamic effects, and their interaction witle th
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2.2 Types of neural networks implemented in
Input layer Hidden layer Output Layer the ANN_SID Iibrary

The ANN_SID library provides pre-defined neural
network models for feedforward neural networks and
a form of dynamic recursive neural networks called
Neural Network Output Error. Within each type of
neural network there can be any number of inputs,
hidden neurons, neuron layers and output neurons.

In the dynamic recursive neural network, the output
of the neural network can be used as an inputdo th
neural network, as shown in Figure 3. This type of
Figure 2. Feedforward neural network recursive network is used for modelling dynamic
systems where the next output is affected by tee pr
Figure 2 shows a simple diagram of a typical neusdabus output values and previous input values.
network, commonly called a feedforward neural
network, which consists of an input layer, a hidden
layer and an output layer. In both the hidden end
output layersthe weighted sum of the inputs to tt
layer andthe bias, are applied to neuron functions.

The formulae that describe the feedforward neu
network in Figure 2 are shown below. Equation (

calculates the outputs of the hidden layer and ¢ delay

tion (2) calculates the output of the neural nekwor delay

0;(t) =0, (z u (t)v; +1V,.,;) (1)

y, ) =Y, (Z 0, (t)ij +10W_.,.) 2) Figure 3. Dynamic recursive neural network
i

where: 2.3 Training of the neural network

0 is the output of the hidden layer The weights and biases in a neural network have to

G;is the hidden neuron function be trained so that the output of the neural network
u; is the input approximates the actual system well. The mean
Vi3 IS the bias weight for thneuron (there are nsquare error between the actual output and preldicte
inputs) output is the cost function determining the measure

of the closeness of the approximation of the neural

is the output of the neural network . :
Y P network to the actual system, as in equation (3).

Yiis the output neuron function 1w
Wins 1 is the bias weight for thleneuron (there are m MSE = _Z(z(t) - y(t))2 (3)
hidden neurons) 2N =
t is the current sample
where:
Within the ANN_SID library the most common neuMSE is the mean square error

ron functions such as linear, sigmoid and tanh & the target value (output from the actual syytem

available. The user can also easily add their own th tout of th | network

neuron function by extending from the neuron funé-'> "¢ OUPUL 0T Th€ NEUral networ

tion base class and implementing the required fu¥is the total number of target values

tion.
The process of minimising the cost function of the
neural network is called training. In the ANN_SID
library both backpropagation and the Levenberg-
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Marquardt training methods are available. Thekevenberg-Marquardt training methods can be used
methods have been implemented in Modelica in bathminimise the cost function.

continuous and discrete forms. The choice of methg@delica provides semantics to define partial deriv
to train a neural network is influenced by the e tjyes and Dymola is able to utilise these semarttics
the neural network and the amount of data beifgnerate the symbolic derivative of functions. Ex-
used to train the network. ample 1 shows how the partial derivatives are de-
The continuous training methods have the advantdgeed in Modelica. This method was used to help
that the gradient, which is the rate of changehef tdefine a function to calculate the partial derives
weights, is accurate everywhere, not only at the liof the neural network with respect to the weights.
earization points as with discrete methods. This ¢

result in the search method travelling along the b? Exanpl e: The specific enthal phy can
tom of valleys of the cost function and not ostitig . conputed from a G bbs-function as
along valley walls. foll ows:

The continuous method interacts with the variabl@nction G bbs
step solvers to determine the step-size. If theigra. ! "PU' REZ‘; P T
changes suddenly then the solver will reduce the s§| ggri thm v
size to deal with this efficiently. The disadvayga . . .

of the continuous method is that it generates hugyal G bbs;
numbers of equations due to the way that DqulﬁlnCti on G bbs_T=der (G bbs, T):
expands the for loops used in the model. By using - o
Modelica functions and external C functions thes@nction specifi cEnt hal py
problems can be minimized through the reuse iofput Real p,T;

code sections. output Real h;
al gorithm

Data storage and the manipulation of large matriges-G bbs(p, T)- T*G bbs_T(p, T);

in Dymola can also generate problems with larged speci fi cEnt hal py;

neural networks if the continuous training methods

are used. The discrete methods have been im@gample 1. An example of Modelica code for the gen-

mented to overcome these issues. eration of the partial derivative of a function.uded
from Modelica 3.0 Specification [4]

2.3.1 Backpropagation

It is possible to train a neural network by caltnig )
the gradient of the cost function with respecttte t2.3.4 ANN_SID Implementation

weights, and to then adjust the weights in the @)ppn example of training a neural network using the
priate dlirectlon to reduce the. cost function. ThisN_SID library is shown in Figure 4. The training
method is called backpropagation and can be slowni@thods are implemented in the replaceable training

converge to a solution. Appendix A has further ikpmponent and the user simply selects the required
formation about how the gradient is calculated.  method.

2.3.2 Levenberg-Marquardt

The Levenberg-Marquardt training method genera Training
requires fewer iterations than the backpropagati 4| component
method to train a neural network. However the L .

method is more complex and requires more comy E -
tation and memory to perform each iteration.

The rules used to calculate the weights are destri
in Appendix B.

2.3.3 Recursive method

In this method the partial derivative of the neur
network with respect to the weights is require
From this partial derivative the gradient and Hassi
matrices can be calculated. Once we have de
mined these matrices either the backpropagation

—4

ééure4. ANN_SID training performed in a model
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e The propeller heights are set using two
_ o rocker switches. These control the trim pis-
24 Improving the neural network training tons that move the propellers vertically.

Throttle position is set using the throttle lev-
ers for the left and right engine.

When training a neural network it is important to
have confidence that the neural network will ap-
proximate well with inputs that are not part of the
training data. This ability is known as generalwat |
[5]. One way to investigate this is to divide tfeta |
into two sets, one that is used to train the neuesl
work (training data), and one that is used to tiest
generalisation of the neural network (test data).

Generalisation is likely to be improved by reduci
the number of weights used in the neural netwg
[3]. The ANN_SID library supports both weigh
decay and pruning methods to reduce the numbe
weights and improve generalisation.

Two pruning methods are available in the librarg a
these are known as Optimal Brain Surgery and C
timal Brain Damage. These algorithms determi
which weights to remove from the neural networ
The remaining weights are then updated to red
the errors introduced by removing the weights (f
further details refer to [3]). )%

Weight decay is another approach to removi
weights from a neural network. In this method &
penalty proportional to the magnitude of the wedg ' .

is added to the cost function (see [3] for furter F19ure 5. Rear view of a powerboat. Image cour-
tails). All cost functions should contain a measof €S Of Victory Team

the closeness of the neural network outputs to the

desired output. Adding a weight penalty to thet coss the boat accelerates it begins to plane anelsav
function generates a trade off between reducing thigher above the water, i.e. less of the hull i®we
magnitude of the weights and reducing the closengiss water line. As the boat lifts out of the watée
measure. As a result of this the weights that hgy@pellers are lowered (trimmed down) to control
little effect on improving the closeness measuré Wiheir depth in the water.

now be reduced in magnitude. The trim height (or propeller depth) also affedts t
pitch angle at which the boat travels. In genetsd,

) lower the depth of the propellers, the lower thetpi

3 Powerboat operation If the boat is travelling at a pitch angle thatti®
high for the speed it is doing, it will flip ove®’ (

The type of powerboat that has been modelled usii@wover). If the pitch angle of the boat is taovl

the ANN_SID library is a Victory Team class 1 offthe result will be a larger surface area of thet fima
shore powerboat as shown in Figures 1 and 5. Thgs€water and thus an increase in drag.

boats have a catamaran hull with two engines anq\{ﬂen cornering, the catamaran powerboat rolls to

gﬁ?;ritgzggk?l; Irzgcgllspgl'rllﬁedggiss a;rr;el)gh;&d é%e inside of the corner (due to the asymmetricdll h
’ prop ) P design). If the cornering is too severe for theremnt

two crewmembers: a throttle man a_nd a d.rlver. B?ﬁeed, the boat will begin to roll to the outside¢he
tween them they have 5 controls, which are:

corner, and will roll over if the drivers do notkéa

* A steering wheel that directly controls theorrecting action. A typical cornering manoeuvre
rudder angle. The steered angle for the pri@quires the throttle man to reduce the throttle to
pellers is also controlled by the steeringlow the boat to a controllable speed before the co
wheel angle. ner, and the driver to steer the boat along thesegu

ensuring that the steering angle is not too steep f

the current speed.

\

trim ~,
piston 1-

The Modelica Association 250 Modelica 2008, March 3™ — 4" 2008



Application of Neural Networks to model Catamaran Type Powerboats

use the neural network to investigate the system pe
formance with different inputs.

As the boat is an example of a dynamic system, the
dynamic recursive neural network was chosen. The
model has been generated from data recorded by
Victory Team from their racing boat number 77 dur-
ing the 2007 Arendal race. During this race thatbo
completed 12 laps of the course.

The measured data was filtered using Basel and
Chebyshev filters to reduce the amount of noise and
high frequency components in the data. The fittere

data was then re-sampled from 100Hz to 1.7Hz to
: reduce the number of duplicate data points and to
DUBAI 2007 decrease the amount of time required to train the

Figure 6. A Racecourse. The powerboats mugjglijr:i?]l gnaer:\évct)élg.t dztlgaslzsthe data was divided into

travel along a course defined by buoys. There are
three different types of laps. The start lap i, the 42  Traininath al K
short lap in black and the long lap in green. $iedp raining the neural networ

courtesy of IOTA. Training a neural network for such a complex system
is done in a number of steps. When first trairdng

A race involves the boats travelling around a ceurdynamic recursive neural network it is not known

defined by buoys laid out in the water (see Figi)re how many past outputs and inputs will result in the

The drivers try to select good trim height to maxinodel giving a good representation of the powerboat

mize acceleration while maintaining stability. Thgystem. Itis also not known how many neurons will

drivers also try to find good throttle, rudder arich be required, or which neuron functions should be

positions for cornering that result in fast andokta used. These can only be determined by trying diffe

cornering. The neural network can investigate dgnt configurations to find the best setup.

ferent possible driver inputs and predict theieef The first step in training this type of neural netw

on boat performance over a lap. is to train it to only predict the next output velu
from the previous data valu&he weights from this
training are then used as the initial weights fog t

4 Powerboat model recursive training. The recursive training algumit
described in 2.4.3 was used with the Levenberg-
4.1 Defining theneural network Marquardt method to train the neural network. To

improve the generalization, weight decay was used.
To model the powerboat using neural network tech-
nigues, a significant amount of data is used ta-chd.3 Correlation results
acterise the system. During races and testing ses-
sions the boats are fitted with a data logger that After training, the MSE for the neural network ugin
cords the data required to train the neural network the training data set was 0.0035 and the MSE fr th
The input data required is: test data set was 0.0064. This means that theIneura
. . network has been trained successfully and is able t
* The engine throttle positions accurately predict the performance of the powerboat

e The rudder angle as shown in Figure 7.
+ The trim height of both propellers In Figure 7, the recorded driver inputs have begh f
The target output data required is: in to the trained neural network and the outputs fo

boat speed, engine speed and the yaw rate of #te bo
are compared to the measured data. Overall the re-
* The boat speed sults show that there is very good correlation be-
* The yaw rate of the boat tween the neural network and the real powerboat.

Using this input and output data we can train aaleuThere are some small deviations which could be due
network to represent the powerboat system and ttiera number of different factors, such as swell and

* The engine speed of both engines
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wind conditions along the course, that are not
counted for in the neural network.

aveural network. Using the optimised trimming strat
egy the powerboat would take 1s less to travelgalon
a 2km straight than using the example trim strategy

+ S Pk S0 Roozoncied Hoaed
| .f/'--t"'-\_,n.o-‘,_ '-ﬂ-"l".’-s-;h;:l_ »\: —— Optimized Speed Ogtimized Trim Example Speed Example Trim
| ),-"‘, ;_; ﬁ,\,.w l/*,./"'f Ii. r;’ ..:
| l|.- [ "n: Ill.,- 'L;_')" | 4
| J S -'-":L:'r ;L'
7 i e | | T
e LTI I8 ]
: JA o P ik | ]
: rr'_rl_,,‘:,a{ l‘!"“d" | —’_|—
— Simutated Yaw Fiooondad Vo L B S T T T T
Ld 1.0/ | Figure 9. Comparison of a simulated trim strategy
e P uii..:‘L . . . .
F A < I s R M T with a real trim strategy. The simulated optine r
Nl 1| WA I sults (Simulated Speed and Simulated Trim) assume
L1 | the boat is travelling perfectly straight. The Eyde

- - - Trim strategy was taken from the race data and ap-
Figure 7. Comparison of simulated neural networ lied to the simulator.

with recorded data for a single lap of the course.
4.4  Optimisation of thetrim strategy The neural network used in the model can only be
expected to accurately model an operating region if
Section 3 describes how the propeller height (trithis region was sufficiently excited during the alat
height) affects the performance of the powerboagcording stage. In Figure 10 the histogram data
By using the neural network it is possible to deteadentifies what trim position data is available the
mine what the optimum trimming strategy is for theperating region of the simulated result. The -opti
powerboat. mum trim strategy is limited by the availability of

The model shown in Figure 8 uses the trained neufafa (see Figure 10). The upper bound on the trim
network to simulate the powerboat accelerating frg#ta is probably due to driver caution becaus®ief t
an initial speed up to its maximum speed. risk of a blowover in this operating region.

nnin
D 70
zosssample e
S out
D 50
40
neuralNet]wol ayers?
criteria *

=]

Figure 8. Acceleration model test. The throttle p

sition is set to 100% and the boat is travellingainFigure 10. Histogram plot of recorded trim position

straight line. at the operating state. The optimised trim pasit®
plotted over the histogram as white circles

Figure 9 compares an example trimming strategy
extracted from the race data and the optimized trim
strategy that has been determined with the uskeof t
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5 Conclusions date a feedforward neural network using the MSE as
the cost function.

A library called ANN_SID has been developed for

the development and training of neural networks fgpe following equations describe a neural network.
system identification. This library was used tam-ge

erate a black box model of a powerboat, and tHs = O, (ZUMJ +1V,,) (1)
model was then used to determine an improved
trimming strategy that should deliver improvementg, =, (ZO W, 1O L) 2

in boat performance. j

The cost function is the mean square error (i.e.

MSE)'
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APPENDIX A: Backpropagation al- "V
i 0
gorithm ———Z(Z X0X yk(t) %® 0 )

: : . Vi k(t) ab.J ®
By calculating the gradient of the cost functioed(s
Section 2.3) it is possible to update the weighta i where:by(t)= O, (Zu v, +10v,)
way that will reduce the cost function. The exaanpl

below is how backpropagation would be used to Uphe discrete weight update method is:

ayk(t) 0(0; (W, +1IWp,y)
WZ(Z k() (t) av.

U]
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v minimum of L is far from the current iterate” a
M= N v poor search direction may be obtained.” [3].
] . .
(i+) — in] ®
By choosingn sufficiently small, the cost functione argmgln L7 (0)
can be decreased at each iterate. subject to§"*? - 69| < &" 5)
where:

The continuous method uses the gradient calculaﬁeﬂ

- . . has a monotonic relationship witf [3]. Where
above to update the existing weights continuously. P 31

increasing”’ decreases” and visa versa.

APPENDI X B: Levenber g-Marquar dt The weights are updated using the following rule:
algorithm [R(&") +201]1 46 = G(§
where:
In the backpropagation algorithm the search direﬁyz g+v - gv
tion is calculated from the first order Talyor ap-
proximation of the cost function. The Levenberg-
Marquardt algorithm makes use of the second ordére update rule for thevalue follows:

Talyor approximation of the cost function to update If theL” value approximateSISE well, then
the weights. The second order approximation of the @1 — /2 and thus increasing the search re-

cost function follows: gion.

2. If theL” value does not approximatitSE well,

N then ™Y = 20*2 and thus decreasing the search
V(6)=\(8) +(8-6)V(6) + region.

W-9)V(d)'(6-6 ) 3. Leave! if neither the 1 or 2 thresholds are true.
V(8) =V(8) +(8-0)G +{6-8 YH(8-6 )

To get a more detailed explanation on the updage ru
for " refer to [3].
where:

6 represents all the weights in the neural network

@ are the weights at which the Taylor approxima-
tion is made.

V' isdv/dfand equal to the gradieBt
V" isd?V/dé and equal to the Hessigh

In the Levenberg-Marquardt method a further ap-
proximation is made; the Hessian is approximated by
the following equation:

1 & dy(t) dy(t
N+ dé dé
This is valid when the MSE is the cost function.

Let the approximation of the cost function be:

L(O=V(F) +(6-6)G + H{6-0) R(O-0) (4)

This cost function is minimised using an iterative
process; where the next weights are limited to-a re
gion around the current weights (see (5)). Lingjtin
the range of the search is often effective ast¥ t
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