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Abstract 

This paper presents how complex phasors are used 
for quasi-stationary analysis of electrical circuits, i.e. 
with sinusoidal excitation neglecting dynamic tran-
sients. The theoretical background of complex 
phasors is elaborated and a Modelica implementation 
– the AC Library – is presented. Additional exam-
ples demonstrate the possibilities of the application 
of complex phasors. 
Keywords: electrical circuit, sinusoidal excitation, 
quasi-stationary analysis, complex phasors 

1 Introduction 

In the simulation of physical systems described by a 
system of algebraic and ordinary differential equa-
tions we distinguish different types of simulation 
analysis: 
• The transient analysis is the most general analy-

sis, showing both the dynamic transients as well 
as steady-state solutions (if steady-state is 
reached). 

• A stationary analysis (sometimes also called DC 
analysis) eliminates the derivatives with respect 
to time, determining steady-state solutions. 

• The so-called small signal AC analysis linearizes 
a non-linear model in a certain point of operation 
(which is found by a stationary analysis), only 
applying excitations with small amplitudes. 

Mainly in the field of electrical engineering – due to 
the nature of electrical power plants that provide 
nearly perfectly sinusoidal voltages with fixed fre-
quency and amplitude – one more type of analysis is 
of great importance: 
• Quasi-stationary analysis applies sinusoidal ex-

citations with known frequency, amplitude and 
phase shift. In a circuit with isolated sub-circuits, 
each sub circuit may be operated at different fre-

quencies, however. Each frequency with respect 
to a sub-circuit is known due to the respective ex-
citation. Fast dynamic transients are not consid-
ered. In a quasi-stationary analysis the unknown 
voltages and currents, with respect to their phase 
shift and amplitude, have to be determined. Re-
garding the consideration of exactly one fre-
quency for each sub-circuit it has to be assumed 
that the only linear circuits are investigated. 

This paper will demonstrate how complex phasors 
simplify the quasi-stationary analysis, and how com-
plex phasors could be modeled using Modelica. Con-
sidering some limitations in the current Modelica 
version will lead to suggestions for improvement. 

2 Complex Phasors 

2.1 Representation of Sinusoidal Voltages and 
Currents 

Any sinusoidal oscillation can be expressed by com-
puting the real part of a complex time-dependent 
phasor according to Fig. 1: 

 ( ) ( ) ( )ϕω=ϕ+ω= jtj eeReA2tcosÂta  (1) 

 ( ) ( )tjj eARe2taeAA ωϕ ⋅=⇒⋅=  (2) 
 

 

Fig. 1 The real part of a rotating phasor equals a             
sinusoidal oscillation; depicted phasor with ϕ = 0;                   

left: complex phasor tjeA2 ω ;                                   
right: time domain signal  )t(a ω
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The magnitude  of the complex phasor A A  is the 
root mean square (RMS) value of the cosine wave. 
The phase shift  is the phase shift of the cosine 
with respect to its maximum at . Time depend-
ence is considered by the phasor  and 

ϕ
0t =
tje ω 2  is the 

ratio between the amplitude and the RMS value of 
the sinus waveform. 
This background of complex phasors can also be 
applied to sinusoidal voltages and currents using 
complex voltage and current phasors: 
 
 ( ) ( ) ( )tj

v eVRe2tcosV̂tv ω⋅=ϕ+ω=  (3) 

 ( ) ( ) ( )tj
I eIRe2tcosÎti ω⋅=ϕ+ω=  (4) 

Assuming sinusoidal excitation of an electric circuit, 
all voltages and currents are of sinusoidal waveform 
with the same angular frequency . Therefore 
the complex voltage phasor  

f2π=ω

 vjeVV ϕ⋅=  (5) 

and the complex current phasor 

 IjeII ϕ⋅=  (6) 

are sufficient to describe quasi-stationary voltages 
and currents. 
The derivative of a complex phasor A  with respect 
to time leads to: 

 ( ) ( )tjejARe2
dt

tda ωω⋅=  (7) 

The time derivative of a sinusoidal waveform is thus 
considered in the complex domain by multiplying 
the original phasor with ωj . This relationship also 
implies the result of the integration with respect to 
the time domain. Since the constant of integration is 
zero for quasi-stationary analysis, the complex repre-
sentation of a time domain integration is determined 
by the division of the original phasor by  ωj .

2.2 Modeling a Linear Resistor 

A linear resistor can be described by the algebraic 
equation: 
 iRv ⋅=  (8) 
Using complex phasors of voltage and current, we 
can replace the algebraic equation by a complex al-
gebraic equation: 
 IRV ⋅=  (9) 

2.3 Modeling a Linear Conductor 

A linear conductor can be described by the algebraic 
equation: 
 vGi ⋅=  (10) 
Using complex phasors of voltage and current, we 
can replace the algebraic equation by a complex al-
gebraic equation: 
 VGI ⋅=  (11) 

2.4 Modeling a Linear Inductor 

A linear inductor can be described by the differential 
equation: 

 
dt
diLv =  (12) 

Exploiting the sinusoidal waveform of the current 
(4), we can replace the differential equation by a 
complex algebraic equation: 
 IXILjV L ⋅=⋅ω=  (13) 

We find a complex version of the equation describ-
ing a resistor, using the complex reactance 

LjXL ω= . 

2.5 Modeling a Linear Capacitor 

A linear capacitor can be described by the differen-
tial equation: 

 
dt
dvCi =  (14) 

Exploiting the sinusoidal waveform of the voltage 
(3), we can replace the differential equation by a 
complex algebraic equation: 
 VYVCjI C ⋅=⋅ω=  (15) 

We find a complex version of the equation describ-
ing a conductor, using the complex admittance 

CjYC ω= . 

2.6 Kirchhoff’s Laws 

For complex voltages and currents, respectively, 
Kirchhoff’s Laws can be applied equivalently: 
 0Ii =∑  (16) 

The sum of all complex current phasors flowing to a 
node is zero. 
 0Vi =∑  (17) 

The sum of all complex voltage phasors in a closed 
loop is zero; this also implies that directly connected 
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nodes have the same complex potential. Both laws 
are inherently considered in Modelica connections. 

2.7 Power 

Multiplying a time dependent voltage (3) and the 
corresponding current (4), we obtain the instantane-
ous electrical power: 
 ( ) ( ) ( )titvtp ⋅=  (18) 

Substituting (3) and (4) in the electric power equa-
tion we obtain: 

 

( )
( ) ( )
( ) ([ IVIV

IV

t2coscosIV
tcosI2tcosV2

tp

ϕ+ϕ+ω+ϕ−ϕ⋅⋅
=ϕ+ω⋅ϕ+ω

=

)]
 (19) 

The instantaneous power oscillates with double the 
frequency of voltage and current, respectively. The 
average value of instantaneous power is dependent 
on the phase shift between voltage and current; this 
term is the active power: 
 ( ) ( )IVIV cosScosIVP ϕ−ϕ⋅=ϕ−ϕ⋅⋅=  (20) 

Apparent power S is defined as the product of the 
RMS values of the voltage and the current: 
 IVS ⋅=  (21) 
Reactive power is defined as quadratic complement: 

 ( IV
22 sinSPSQ ϕ−ϕ⋅=−= )  (22) 

Using complex phasors, we obtain: 
 jQPIVS +=⋅=  (23) 

In this equation, S  is the complex apparent power; 
the amplitude of this complex quantity is the appar-
ent power (21). 

3 Design of an AC Modelica Library 

3.1 Implementation of Complex Arithmetics 

Unfortunately complex numbers are not an intrinsic 
data type in the Modelica language. As a work-
around, a record Complex containing both the real 
and the imaginary part of the complex number can 
be defined: 
record Complex 
  Real re "Real part"; 
  Real im "Imaginary part"; 
end Complex; 

In some cases, the polar representation of a complex 
phasor, consisting of length and phase angle, is ad-
vantageous, however: 

 ϕ⋅=⋅+= j
ImRe eÂAjAA  (24) 

record Polar 
  Real len "Length of the phasor"; 
  Modelica.SIunits.Angle phi "Phase angle"; 
end Polar; 

Of course we have to provide functions for complex 
arithmetic + - * /, like 
function '+' "Complex add" 
  input Complex c1; 
  input Complex c2; 
  output Complex c3 "= c1 + c2"; 
algorithm  
  c3 := Complex(c1.re + c2.re,  
                c1.im + c2.im); 
end '+'; 

as well as complex functions like  
• abs length of the phasor 
• arg phase angle 
• conj conjugate complex 
• sqrt square root 
• exp natural exponentiation 
• log natural logarithm 
• sin sine 
• cos cosine 
which can be implemented according to a mathe-
matical textbook. 
It is not very elegant to use these functions: 
 v = Complex.'*'(Complex(0, w*L), i); 

Therefore an intrinsic implementation (or at least 
operator overloading) would allow reading, type and 
understanding code easier. 
Additionally, we need conversion functions between 
rectangular and polar representation: 
function fromPolar 
  input Polar polar; 
  output Complex result; 
algorithm 
  result.re :=polar.len*cos(polar.phi); 
  result.im :=polar.len*sin(polar.phi); 
end fromPolar; 

function toPolar 
  input Complex c; 
  output Polar polar; 
algorithm  
  polar.len := Complex.'abs'(c); 
  polar.phi := Complex.arg(c); 
end toPolar; 

The tricky part of the conversion from rectangular to 
polar representation is obtaining an angle that may 
be smoothly differentiated to obtain the angular ve-
locity of the corresponding phasor. With the pre-
sented implementation the wrapping of the phase 
angle at 2π cannot be avoided. Instead, a continuous 
growth of the phase angle for non-zero frequency is 
desired. 
A rather difficult exception of a smooth angle is the 
following example: Imagine a phasor with constant 

Quasi-Stationary Modeling and Simulation of Electrical Circuits using Complex Phasors

The Modelica Association 231 Modelica 2008, March 3rd − 4th, 2008



angle, but length varying with time. The length 
shrinks within a certain time to zero, growing again 
in the opposite direction afterwards. This would lead 
to a discontinuity by π when the phasors crosses the 
origin. 
Additionally, we have to define complex phasors 
with physical units, like: 
record ComplexVoltage = Complex ( 
    redeclare Modelica.SIunits.Voltage re, 
    redeclare Modelica.SIunits.Voltage im); 

record ComplexCurrent = Complex ( 
    redeclare Modelica.SIunits.Current re, 
    redeclare Modelica.SIunits.Current im); 

to take advantage of a tool’s type checking capabili-
ties. Furthermore we have to define the polar repre-
sentations, too: 
record PolarVoltage = Polar ( 
  redeclare Modelica.SIunits.Voltage len); 

record PolarCurrent = Polar ( 
  redeclare Modelica.SIunits.Current len); 

3.2 Propagation of the Common Frequency 

Since different sub-circuits of an electrical circuit 
could have different frequencies – e.g. stator and 
rotor of an asynchronous induction motor– it would 
be advantageous to provide the local frequency of a 
component via the connector. Introducing an addi-
tional variable (reference angle, frequency or angular 
velocity) in the connector leads to over-determined 
connection equations. Fortunately, Modelica [4] pro-
vides methods to deal with this problem. This con-
nector variable has to be defined as a type or record 
with an additional function definition: 
record Reference  
  Modelica.SIunits.Angle phi; 
  function equalityConstraint  
    input Reference ref1; 
    input Reference ref2; 
    output Real residue[0]; 
  algorithm  
    residue := ...; 
  end equalityConstraint; 
end Reference; 
Additionally, the following functions are used to al-
low a tool to break algebraic loops: 
• Connect 

defines a breakable branch 
• Connections.branch 

defines a non-breakable branch 
• Connections.root 

defines a root node in a virtual connection graph 
• Connections.potentialRoot 

defines a potential root node in a virtual connec-
tion graph 

3.3 Single Phase Components 

The connector definition  
connector Pin  
  Types.ComplexVoltage v; 
  flow Types.ComplexCurrent i; 
  Types.Reference ref; 
end Pin; 

not only contains complex potential and complex 
current, but also the record providing the local fre-
quency respectively phase angle of the reference 
frame as explained in 3.2. 
Additionally, basic components as ground, resistor, 
conductor, capacitor and inductor are defined. Fur-
thermore, we need sensors and voltage sources as 
well as current sources. Fig. 2 gives an overview of 
the implemented components. 

 
Fig. 2 Structure of the AC library 
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As an example, the implementation of the inductor 
as well as the partial models that inductor extends 
from are shown: 
partial model TwoNode  
  Types.ComplexVoltage v =  
    Complex.'-'(p.v, n.v); 
  Types.ComplexCurrent i = p.i; 
  Modelica.SIunits.AngularVelocity w = 
    der(p.ref.phi); 
  AC.SinglePhase.Interfaces.PositivePin p;  
  AC.SinglePhase.Interfaces.NegativePin n;  
equation  
  Connections.branch(p.ref, n.ref); 
  p.ref.phi = n.ref.phi; 
end TwoNode; 

TwoNode defines the complex voltage drop along the 
component as well as the angular velocity by differ-
entiating the reference phase angle. 
partial model OnePort  
  extends TwoNode; 
equation  
  Complex.'+'(p.i, n.i) = Complex.'0'(); 
end OnePort; 

OnePort additionally defines that the sum of currents 
flowing into the component is zero. 
model Inductor  
  extends Interfaces.OnePort; 
  parameter  
    Modelica.SIunits.Inductance L=1; 
equation  
  v = Complex.'*'(Complex(0, w*L), i); 
end Inductor; 

Using these partial models Inductor is a simple im-
plementation of (13). 

3.4 Auxiliary Blocks 

Additionally to the basic components, blocks with 
complex inputs / outputs are needed. Therefore a 
complex signal is defined, as well as a polar signal: 
connector ComplexSignal = AC.Types.Complex; 

connector PolarSignal = AC.Types.Polar; 

These connectors are used to define ComplexInput, 
ComplexOutput, PolarInput and PolarOutput. In-
stances of these output signal connectors are  needed 
for sensors, as well as input signal connectors for 
variable sources. 
Additionally some useful blocks are defined: 
• ToComplex generates a complex phasor from real 

inputs, either real and imaginary part or ampli-
tude and phase angle. 

• FromComplex generates real outputs – real and 
imaginary part as well as amplitude and phase 
angle – either from a complex input or a polar in-
put. 

• ToPolar takes a complex input and generates a 
polar representation of the phasor as the output. 

• FromPolar takes a polar representation of a 
complex phasor on the input and generates a 
complex phasor as the output. 

• FromPolar calculates the complex sum of an 
array of complex input phasors. 

4 Simulation Examples 

For calculating quasi-stationary characteristic curves 
of an electrical circuit varying a parameter the usage 
of the AC library is advantageous. This will be dem-
onstrated on four examples: 
• Current of a series resonance circuit, varying the 

supply frequency 
• Voltage of a parallel resonance circuit, varying 

the supply frequency 
• Torque and current of an asynchronous induc-

tion machine, varying slip 
• Terminal voltage of a synchronous induction 

machine, varying load impedance (resistive and 
inductive). 

4.1 Series Resonance Circuit 

As a first example, we model a series resonance cir-
cuit (Fig. 3). 

 
Fig. 3 Model of a series resonance circuit 

We apply sinusoidal voltage with constant amplitude 
and phase to a series connection of a resistor, an in-
ductor and a capacitor. Frequency varies according 
to a ramp.  
Analytically the resonant frequency of this simple 
experiment can be determined: 

 
LC
1

res =ω  (25) 

With H
2
1L
π

=  and F
2
1C
π

=  we derive a reso-

nance frequency at f = 1 Hz. From the amplitude 
(Fig. 4) as well as the phase shift (Fig. 5) of the cur-
rent, the resonance frequency is evident. 
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Fig. 4 Amplitude of current versus excitation frequency 

 
Fig. 5 Phase shift of current versus excitation frequency 

4.2 Parallel Resonance Circuit 

Furthermore, we investigate a parallel resonance cir-
cuit (Fig. 6). 

 
Fig. 6 Model of a parallel resonance circuit 

We inject a sinusoidal current with constant ampli-
tude and phase to a parallel connection of a resistor, 
an inductor and a capacitor. Frequency varies ac-
cording to a ramp. The resonant frequency of the 
parallel resonant circuit is: 

 
LC
1

res =ω  (26) 

With H
2
1L
π

=  and F
2
1C
π

=  we derive a reso-

nance frequency at f = 1 Hz. From the amplitude 
(Fig. 7) as well as the phase shift (Fig. 8) of the volt-
age, the resonance frequency is evident. 

 
Fig. 7 Amplitude of voltage versus excitation frequency 

 
Fig. 8 Phase shift of voltage versus excitation frequency 

4.3 Asynchronous Induction Machine 

Quasi-stationary operation of a three-phase asyn-
chronous induction machine with squirrel cage 
(AIMC) may be described by an equivalent circuit as 
depicted in Fig. 9. This equivalent circuit represents 
one phase of a symmetrical three phase asynchro-
nous induction machine, however. 

 
Fig. 9 Single phase equivalent circuit of an AIMC 
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In this equivalent circuit Rs is the stator resistance, 
Lsσ is the stator leakage inductance, and Lm is the 
main field inductance. In the rotor circuit Lrσ' is the 
rotor leakage inductance and Rr' is the rotor resis-
tance. Both these rotor components refer to an 
equivalent stator winding and are thus indicated by '. 
An implementation of this equivalent circuit in Mod-
elica is shown in Fig. 10. 
For an induction machine slip  

 
s

1s
ω
ω

−=  (27) 

is the relative deviation of the mechanical angular 
velocity from the synchronous angular velocity: ω

 
p

f2
s

π
=ω  (28) 

 
Fig. 10 Model of an AIMC 

In the presented example slip is modeled as a ramp 
from slip 100% (i.e. stand-still) to slip 0% (i.e. no-
load). Dividing the rotor resistance by the slip is 
equivalent to multiplying the rotor conductance by 
slip. The slip dependent rotor conductance is thus 
modeled by a variable conductance gr_s. Using the 
conductance avoids division of zero slip at no-load: 

 
s
'R

'R r
actual,r =  (29) 

The motor parameters used for this example are the 
same as those of the dynamic model  
Electrical.Machines.BasicMachines. 
AsynchronousInductionMachines. 
AIM_SquirrelCage. 
This leads to the quasi-stationary motor characteris-
tics depicted in Fig. 11 and Fig. 12. The horizontal 
axis of these plots shows the relative (per unit) speed 
which is equal to (1–slip). 
Fig. 12 shows only 1/3 of the total air gap power of 
the machine since only one phase is modeled. The 
total airgap torque can thus be determined by: 

 
s

airgapP3
T

ω

⋅
=  (30) 

 
Fig. 11 Stator current versus (1-slip) 

 
Fig. 12 Airgap power versus (1-slip) 

4.4 Synchronous Induction Machine 

A synchronous induction machine feeding an iso-
lated system is presented in this example. Two cases 
are investigated: resistive load (Fig. 13) and induc-
tive load (Fig. 14). 
In both cases, constant excitation is assumed. Syn-
chronous induced voltage is modeled by a voltage 
source with constant complex voltage phasor. ld 
represents the synchronous reactance and rs the re-
sistance of one phase. Variable load is prescribed by 
a ramp with logarithmic scale. 

 
Fig. 13 Synchronous induction machine with R-load 
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Fig. 14 Synchronous induction machine with L-load 

Fig. 15 shows the characteristic voltage versus cur-
rent from nearly no-load (high resistance and induc-
tance, respectively) to nearly short circuit (low resis-
tance and inductance, respectively).  
The machine parameters used for this example are 
the same as those of the dynamic model  
Electrical.Machines.BasicMachines. 
SynchronousInductionMachines. 
SM_ElectricalExcited. 

 
Fig. 15 Voltage versus current for 
resistive load and inductive load 

5 Conclusions and Outlook 

The design of a Modelica library for quasi-stationary 
analysis of electrical single-phase circuits has been 
presented. The application of complex algebraic 
equations instead of dynamic differential equations 
leads to high performance simulations. 
With respect to the current Modelica version 3.0, the 
implementation of complex numbers is possible but 
not really satisfying. The authors would suggest the 
introduction of complex numbers as an intrinsic data 
type. This data type and complex arithmetics would 
improve the Modelica language, however. 
Based on the presented draft of an AC library, the 
next steps will be extending the components for 
multi-phase circuits as well as modeling of asyn-

chronous and synchronous induction machines for 
quasi-stationary analysis. These machine models are 
planned to be based on space phasors as described 
in [6]; the transformation of space phasors with re-
spect to different reference frames has to be imple-
mented. 
For applications focused on the energy consumption 
of an electric drive over a longer period of time, the 
fast electrical transients can be neglected.  Using 
complex quasi-stationary models would lead to faster 
simulations, however. 
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