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Abstract

The Hertz model of an elastic bodies contact and its
volumetric modification are analyzed for the proper
implementation on Modelica. Computational algo-
rithms applied aim to accelerate the simulation process
and make it more reliable.
The algorithm tracking the surfaces of the bodies
which are able to contact was improved using its dif-
ferential version and showed an accuracy high enough.
Simulation of the Hertz model was accelerated due to
use of the differential technique to compute the com-
plete elliptic integrals and due to the replacement of
the implicit transcendental equation by the differential
one.
To have a reliable model for the simulation of the con-
tact especially in case of the contact spot ellipses of
an eccentricity high enough the volumetric modifica-
tion of Hertz model is introduced. The model showed
a reliable behavior and an acceptable accuracy.
Finally an implementation of the ball bearing model as
an example of the contact models application is under
consideration. The particular bearings being analyzed
can have different number of balls and different types
of raceways. The bearing models created using the
library of classes developed earlier and have an outside
look exactly like a mechanical constraints and behave
in some degree similar to the revolute joints.
Keywords: Hertz contact model, volumetric approach,
ball bearing model

1 Introduction

It is known [1] to compute a force of the elastic bod-
ies interaction at a contact several different approaches
are applied: (a) the classical Hertz model [2], (b) the
model based on the polygonal approximation of the
contacting surfaces [3] applied to cases of the surfaces
of a complex shape and implemented on Modelica [4],
(c) the volumetric model [1, 5]. In our model we fol-

low the classical Hertz approach, and the normal force
computation method is a main topic of our analysis.
To handle with the surfaces at the contact we apply
an approach mentioned in [4] as variant 2: algebraic
constraint surfaces, which we frequently use in our
models. For definiteness and simplicity to simulate the
tangent contact force one uses a regularized model of
the Coulomb friction [6]. This is sufficient enough to
simulate the dynamics over time of the machine under
simulation lifecycle. May be some additional compli-
cations for the friction model, e. g. an account of the
lubrication of any type, will be needed.

2 Reduction in Vicinity of Contact

Keeping a frame of the formalism applied previously
to simulate a unilateral constraint [6] consider its par-
ticular case corresponding to mechanics of contact in-
teraction for two elastic bodies, identified hereafter as
A andB. Their outer surfaces, see Figure 1, being at
contact supposed sufficiently regular.

Figure 1: Vicinity of the Contact Area

Applying the same notations as ones used in [6] we
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start here by reproducing the system of eight scalar
algebraic equations

gradgA(rPA) = λ ·gradgB(rPB) ,
rPA− rPB = µ·gradgB(rPB) ,
gA(rPA) = 0,
gB(rPB) = 0.

(1)

defining the coordinatesxPA, yPA, zPA, xPB, yPB,
zPB of the outer surfaces opposing pointsPA, PB,
see Figure 1. Here the coordinate vectorsrPA =
(xPA,yPA,zPA)

T , rPB = (xPB,yPB,zPB)
T are defined with

respect to (w. r. t.) the absolute coordinate frame
O0x0y0z0 of reference (AF) usually connected to the
multibody system base bodyB0. Note the functions
gA(r0) = gA(r0, t), gB(r0) = gB(r0, t) are really a time
dependent ones, and define the outer surfaces current
spatial position of the bodies at a contact w. r. t.AF.
The valuesλ, µ are an auxiliary variables.
It turned out by the computational practice with Dy-
mola the most suitable approach to implement a sys-
tem of algebraic equations like (1) is to replace it by
the system of DAEs properly derived from (1). It can
be done by introducing an additional variables which
the time derivatives and thus compose the differential
subsystem

ṙPA = uPA, ṙPB = uPB, λ̇ = ξ, µ̇= η, (2)

completed by the algebraic one

[ωωωA,gradgA]+TAHessfATT
A (uPA−vPA)−

ξgradgB−
λ([ωωωB,gradgB]+TBHessfBT∗B (uPB−vPB)) = 0,

uPA−uPB−ηgradgB−
µ
(
[ωωωB,gradgB]+TBHessfBTT

B (uPB−vPB)
)

= 0,
(gradgA,uPA)−

(
gradfA,TT

A vPA

)
= 0,

(gradgB,uPB)−
(
gradfB,TT

B vPB

)
= 0.

(3)
where the vectorsvPA, vPB are a velocities of the bod-
ies physical points currently located at the geometric
pointsPA, PA and are to be calculated according to the
Euler formula

vPα = vOα +[ωωωα, rPα − rOα ] (α = A,B),

whereOA, OB are the bodies masscenters,ωωωA, ωωωB are
the angular velocities of the bodies. MatricesHessfA,
HessfB are the Hesse ones of the functionsfA, fB
defining the bodies outer surfaces w. r. t. the bodies
central principal coordinate systems. The the func-
tions fA, fB relate to the onesgA, gB according to the
equations

gα (r0) = fα
[
TT

α (r0− rOα)
]

(α = A,B),

and their gradients connected by

gradgα (rPα) = Tα gradfα
[
TT

α (rPα − rOα)
]
,

whereTA, TB are the orthogonal matrices defining cur-
rent orientation of the bodies.
Surely, in case of the DAEs use one has to provide a
consistent initial values for all the additional state vari-
ables introduced here for each object of the compliant
contact being under construction in the sequel.
Unlike our previous approach [6] now we suppose the
bodiesA andB don’t create any obstacles for their rel-
ative motion. If 3D-regions bounded by the bodies
outer surfaces don’t intersect then the object of a con-
straint, rather of a contact, generates a zero wrench in
the direction of each body. Simultaneously this object
has to generate the radius vectorsrPA, rPB of opposing
with each other pointsPA, PB.
Based on (1) note the variableµ indicates the contact
of the bodiesA andB. Indeed, for definiteness suppose
the outer surfaces in vicinities of the pointsPA, PB are
such that vectors of gradientsgradgA(r), gradgB(r)
are directed outside the each body. Then we have the
following cases at hand: (a)µ > 0 means the contact
absent; (b)µ≤ 0: the contact takes place. Ifµ< 0 then
the bodies supposed to penetrate each other, though re-
ally begin to deform in a region of the contact. In the
sequel we follow the simplest elastic contact model
originating from Hertz [2]. Computational analysis
will be performed for the case of contacting only, see
Figure 2. For simplicity and definiteness the surfaces
are showed convex in Figure 2 though it is not neces-
sary at all in general for our implementation.

Figure 2: Local Coordinate System

To represent the Hertz contact model in its classical
form first of all we have to construct an auxiliary base
in vicinity of the contact. First base is composed by
three unit vectorsααα, βββ, γγγ such thatγγγ = nA, wherenA is
the unit vector along the gradientgradgA(r) collinear
to thez-axis in Figure 2. As it was for the derivation of
the opposing points the most appropriate move to com-
pute the proper base{ααα,βββ,γγγ} is to construct a relevant
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subsystem of DAEs. First of all start with differential
equation forγγγ. It has the form

γ̇γγ = |gradgA|−1 [(gradgA)˙− (nA,(gradgA) )̇nA] ,

where the time derivative of the gradient reads

(gradgA)˙= [ωωωA,gradgA]+TAHessfATT
A (uPA−vPA) .

Now we can right down the chain of equations

ΩΩΩ = [γγγ, γ̇γγ] , α̇αα = [ΩΩΩ,ααα] , βββ = [γγγ,ααα] ,

defining successively the angular velocityΩΩΩ of the unit
vector γγγ(t) rotation, the differential equation for the
unit vectorααα, and the unit vectorβββ completing the lo-
cal base under construction. Actually the vectorΩΩΩ is
an angular velocity of the base triple{ααα,βββ,γγγ} w. r. t.
AF.
Note once more we have to provide the consistent ini-
tial data for the vectorsααα, γγγ which became now a vec-
tor valued state variables. And of course browsing the
equations represented above it is transparent enough
which Modelica code stands behind the algorithm out-
lined here.
Using the base{ααα,βββ,γγγ} built up above it is easy
enough to compose the matrixT = [ααα,βββ,γγγ] consist-
ing of the columns composed themselves by the co-
ordinates of the unit vectors. ActuallyT is the trans-
fer matrix between coordinates ofAF and the current
local base{ααα,βββ,γγγ}. Let us first express the outer sur-
faces equations in coordinates of the local system (LF)
having an origin at the pointPA, see Figure 2.
Because the matrixT is orthogonal its inverse is de-
rived by the transposition ofT. Then to compute the
matrix of coordinate transformation from theLF to
one of the bodies’ we can represent it as follows

Rα = TTTα (α = A,B).

Introducing new temporary notationr = (x,y,z)T for
the coordinate vector of the current geometric point
w. r. t. local systemPAxyzone can easily deduce the
dependence

r = ρρρOα
+Rαrα (α = A,B),

whereρρρOα
= (ξOα ,ηOα ,ζOα)

T is the coordinate vector
of the bodyα mass center w. r. t.LF .
Let the bodyα outer surface is defined by the equation

hα(r) = 0 (α = A,B), (4)

w. r. t. current position ofLF . Then it is easy to see
the functionhα can be computed by the formula

hα(r) = fα
(
RT

α
(
r −ρρρOα

))
(α = A,B).

Further bring the equations (4) to the form suitable to
analyse the contact problem in vicinity of the corre-
sponding points

ρρρPα
= ρρρOα

+Rαρρρα (α = A,B),

on the surface of the bodyα. Here the vectorρρρα de-
fines the position of the pointPA w. r. t. the bodyα
own coordinate system. Supposing the surfaces regu-
lar enough we have the expansions

fα(rα) = fα (ρρρα)+(gradfα (ρρρα) ,∆rα)+
1
2

(Hessfα (ρρρα)∆rα,∆rα)+O
(
|∆rα|3

)
,

hα(r) = hα
(
ρρρPα

)
+

(
gradhα

(
ρρρPα

)
,∆r

)
+

1
2

(
Hesshα

(
ρρρPα

)
∆r ,∆r

)
+O

(
|∆r |3

)
,

where∆r = r−ρρρPα
, ∆rα = rα−ρρρα. Since∆r = Rα∆rα

then it is easy to verify that

gradhα
(
ρρρPα

)
= Rαgradfα (ρρρα)

Hesshα
(
ρρρPα

)
= RαHessfα (ρρρα)RT

α .
(5)

Because at the bodyα outer surface pointρρρPα
the func-

tion hα is zero-valued then up to the terms of the third
order in the coordinate systemPαxyzthe equation (4)
can be represented as follows

∂hα

∂z
z+

(
x y

)(
aα cα
cα bα

)(
x
y

)
= 0, (6)

where the Hesse matrix elements are to be expressed
by the formulae

aα =
1
2

∂2hα

∂x2 , bα =
1
2

∂2hα

∂y2 , cα =
1
2

∂2hα

∂x∂y
,

where in turn one should use the results of (5). Note
the equation (6) has such a simple representation be-
cause at the pointρρρPα

the choice of the base causes the
conditions

∂hα

∂x

(
ρρρPα

)
= 0,

∂hα

∂y

(
ρρρPα

)
= 0. (7)

Supposing the surfaces are nondegenerate at the points
Pα we have the condition

|gradhα (rα)|> 0,

and because of (7) it causes the condition

∂hα

∂z
(rα) 6= 0.

Therefore, the equation (6) can be resolved w. r. t. the
variablez in explicit form as

z= a′αx2 +2c′αxy+b′αy2, (8)
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where the new coefficients of the second order terms
are computed in the form

a′α =− aα
∂hα

∂z

, b′α =− bα
∂hα

∂z

, c′α =− cα
∂hα

∂z

.

The further reduction comes to a transformation to
canonical view of the quadratic form

q(x,y) = ax2 +2cxy+by2, (9)

derived as a difference between the forms (8) such that

a = a′B−a′A, b = b′B−b′A, c = c′B−c′A.

The transformation is implemented simply as a rota-
tion about thez-axis of the systemPAxy to achieve
the coefficientc vanishes. Finally the function (9) be-
comes having the form

q(x,y) = Px2 +Qy2 (10)

with the additional condition0 < P≤Q.

3 The Hertz Model

According to the known technique [7] to compute the
total normal force at the contact we have to solve the
system

FD
π

∞∫

0

dξ√
(α+ξ)(β+ξ)ξ

= h,

FD
π

∞∫

0

dξ
(α+ξ)

√
(α+ξ)(β+ξ)ξ

= P, (11)

FD
π

∞∫

0

dξ
(β+ξ)

√
(α+ξ)(β+ξ)ξ

= Q,

of three transcendental equations provided the coef-
ficients P, Q from the representation (10) and depth
of mutual penetration, so-called mutual approach,h =
|rPB− rPA| are already have been computed. The sys-
tem (11) has three unknown variables:α, β, F , where
the valuesα, β are the semi-major axes squared of the
contact spot ellipse, andF is the total normal elastic
force really distributed over the contact area. The pa-
rameter

D =
3
4

(
1−ν2

A

EA
+

1−ν2
B

EB

)

summarizes elastic properties of the contacting bod-
ies: νA, νB being Poisson’s ratios, andEA, EB being
corresponding Young’s moduli.

Using the substitutionξ 7→ η (ξ = λη) in elliptic in-
tegrals of (11) we can separate the last two equations
of (11). Indeed, introducing new scaled unknown vari-
ablesα′, β′ according to formulaeα′ = α/λ, β′ = β/λ
we can deduce the two mentioned equations to the
closed system

I1(α′,β′) = P, I1(β′,α′) = Q, (12)

if the scaling factorλ satisfies the norming condition

FD
π
· 1

λ3/2
= 1. (13)

Here the elliptic integralI1(α,β) is defined by

I1(α,β) =
∞∫

0

dξ
(α+ξ)

√
(α+ξ)(β+ξ)ξ

causing clearly verified equations

I1(α′,β′) =−2
∂I(α′,β′)

∂α′
, I1(β′,α′) =−2

∂I(α′,β′)
∂β′

,

(14)
where taking into account thatα′ ≥ β′, which is equiv-
alent to the conditionP≤ Q satisfied above, we may
have the relations

I(α′,β′) =
∞∫

0

dξ√
(α′+ξ)(β′+ξ)ξ

=
2√
α′

K(k),

where in turnK(k) is the complete elliptic integral of
the first kind with the modulus defined by the formula

k =

√
α′−β′

α′
.

Here one can see the valuek actually has a geometric
sense exactly of the contact spot ellipse eccentricity.
Using the work [8] as a pattern we introduce the value
c = k2 of the elliptic integral modulus square. Taking
into account that elliptic integrals are regular functions
of c = 1−β′/α′ we obtain using the rule of the com-
pound function differentiation

I1(α′,β′) =
2

α′3/2

(
K(c)−2(1−c)

dK(c)
dc

)
,

I1(β′,α′) =
4

α′3/2

dK(c)
dc

.

Dividing then the first equation of (12) by the second
one and using the last derived expressions we reduce
finally the whole problem to the one-dimensional tran-
scendental equation

1
2
K(c)

(
dK(c)

dc

)−1

− (1−c) =
P
Q

(15)
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w. r. t. the unknown valuec.
Once the solution of the equation (15) had been found
we can obtain immediately the values

α′ =
(

4
Q

dK(c)
dc

)2/3

β′ = α′(1−c).

Using the first equation of (11) and normalizing de-
pendence (13) we then find the value of the scaling
factor

λ =
h

I(α′,β′)
(16)

thus arriving to the Hertz problem solution: the normal
force and the contact ellipse semi-major axes values

F =
π
D

λ
√

λ, a =
√

λα′, b =
√

λβ′.

Nevertheless an implementation on Dymola requires a
further reduction of the model in a manner we already
mentioned above twice: use preferably the differential
equations (probably to overcome the potential prob-
lems for the analytical processor when differentiating
the transcendental expressions on the DAE system in-
dex reduction stage when compiling and indirectly and
more rarely when running the model). To this end we
have to remind the known ODEs connecting the com-
plete elliptic integrals of the firstK(c) and the second
E(c) kind between one another [8]

dK

dc
=

E− (1−c)K
2c(1−c)

,
dE

dc
=

E−K

2c
.

Furthermore instead of (15) then we should use its dif-
ferential version

[
3

(
dK

dc

)2

−K
d2K

dc2

]
ċ = 2

(
dK

dc

)2

Ċ,

whereC = P/Q, and

d2K

dc2 =
(1−c)(2−3c)K− (2−4c)E

4c2(1−c)2 .

In this way the complete integrals become an addi-
tional state variables such that

K̇ =
dK

dc
ċ, Ė =

dE

dc
ċ,

and simultaneously we have yet another way to com-
pute elliptic integrals in dynamics, note: exclusively
fast and sufficiently accurate way.
Staying in frame of the traditional Hertz model and
taking into account that the expression for the normal
force has the form

Felast=−e(P,Q)h3/2,

where while changing the valueh the valuesP, Q don’t
change, we conclude the potential energy of elastic de-
formations is represented by the expression

Uelast=
2
5

e(P,Q)h5/2.

On the other hand using the volumetric approach [5]
one can try to represent the same potential energy as
follows

Uelast= f

(
b
a

)
VνSσ pδ,

whereV is the volume of the bodies undeformed ma-
terial intersected,S is the area of the intersection pro-
jection onto thexy-plane of theLF , p is the perimeter
of that projection. It turned out ifν = 2, σ = −7/4,
δ = 1/2 then the function

Velast= 0.357469
8

15π1/4(θA +θB)
V2p1/2

S7/4
,

differs fromUelast by 0.5% of its value in wide range
of the contact ellipse shapes: surely forb/a∈ [0.1,1].
Here

θα =
1−ν2

α
πEα

, (α = A,B).

Since in the case of the Hertz model the contact spot is
the ellipse then the valuesV, S, p are to be computed
by the expressions

V =
πh2

2
√

PQ
, S=

πh

2
√

PQ
, p =

4
√

h(Q/P)1/4E(c1)
(PQ)1/4

,

where the elliptic integral modulus squared this time
has the expressionc1 = 1−P/Q. Then taking into
account that

Felast=−∂Uelast

∂h
,

we get the Vilke formula for the approximate value of
the normal force at the contact

Felast=−0.357469
2

3(θA +θB)

√
E(c1)

P3/8Q3/8
h3/2.

Numeric experimental verification showed an appli-
cation of the above expression for the normal force
indeed causes the relative error near the value0.5%
for the contacting bodies configuration coordinates in
compare with “exact” Hertz model over long time of
simulation. Anyway to estimate with the proper qual-
ity the fatigue processes in machines while the lifecy-
cle simulation it is sufficient enough to have an accept-
able approximation for the contact forces.
The Vilke formula is essentially simpler than compu-
tations in the Hertz model requiring the solution of the
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transcendental equation. Volumetric derived algorithm
is more reliable than the Hertz one though sometimes
due to the differential techniques arranged for the el-
liptic integrals the Hertz algorithm works even faster
than one of Vilke.

4 Implementation

The procedures described above to compute the nor-
mal force of an elastic interaction were implemented
on Modelica in frame of general approach to con-
struct the objects of mechanical constraint [9]. Strictly
speaking in case of the compliant connection the con-
straint itself is absent. Instead we have an elastic
compliance implementing the Hertz contact model.
Though the general architecture of the objects inter-
action conserves completely. Thus for future purpose
retain the term “constraint”.
When implementing a class of the compliant interac-
tion it turned out to be useful to split its base classes
in two different lines of inheritance: (a) the first one
contains mainly the geometric properties, (b) the sec-
ond line is responsible for the normal force calcula-
tion. Thus in the last derived class we use the multiple
inheritance allowed in Modelica. An example of the
classes hierarchy in the case under consideration see
in Figure 3.
The example is one of the simplest ones to test an im-
plementation of the Hertz model: the contact of the
ellipsoid and the plane. The left line of inheritance,
see Figure 3, concerning mainly with the contact geo-
metric properties

Constraint
↓

CompliantConstraint
↓

CompliantConstraintAddOn
↓

SurfacesOfConstraintDifferential

has a common use and doesn’t depend on the type of
the contacting surfaces. The variables which do de-
pend on such that gradients and the Hesse matrices are
evaluated in the class

EllipsoidAndHorizontalPlaneDifferential .

The classSurfacesOfConstraintDifferential
is here the most essential derived one. It is responsible
for the pointsPA and PB permanent tracking, imple-
ments the DAE system (2), (3), and has the following
Modelica code

partial model
SurfacesOfConstraintDifferential

extends CompliantConstraintAddOn;
SI.Velocity[3] drA;
SI.Velocity[3] drB;
ConstraintDetectorRate dmu;
Real lambda;
LambdaRate dlambda;
GradientRate[3] dgradgA;
GradientRate[3] dgradgB;
Real Active(start = 1);
Hessian[3, 3] HessgA;
Hessian[3, 3] HessgB;

equation
der (Active) = 0;
der (rA) = Active*drA;
der (rB) = Active*drB;
der (lambda) = Active*dlambda;
der (mu) = Active*dmu;
dgradgA = cross (InPortA.omega, gradgA)

+ HessgA*(drA - vrA);
dgradgB = cross (InPortB.omega, gradgB)

+ HessgB*(drB - vrB);
dgradgA = lambda*dgradgB +

dlambda*gradgB;
drA - drB = mu*dgradgB + dmu*gradgB;
0 = gradgA*(drA - vrA);
0 = gradgB*(drB - vrB);
HessgA = InPortA.T*HessfA*

transpose (InPortA.T);
HessgB = InPortB.T*HessfB*

transpose (InPortB.T);
end SurfacesOfConstraintDifferential;

where the variables correspond to ones in (2), (3) in an
evident way by use of their names.
In the line of the force properties inheritance

NormalForce
↓

NormalForceHertzDiff

the classNormalForce plays a role of the base class
for any implementation of the normal force. In the
classNormalForceHertzDiff the normal force be-
sides the elastic Hertzian term has the term of viscosity
of the form

Fvisc =−d(h)ḣ,

whereh is the mutual approach. This latter term sup-
posed to arise due to the plasticity properties of the
material the bodies made of. It is fair natural to con-
sider the coefficient aṫh to depend uponh [10] since
as the mutual approach increases from zero then the
contact spot area also increases from zero. Therefore
it is quite natural for the plastic resistance to increase
continuously from zero.
The classNormalForceHertzDiff Modelica code
is long enough thus let us highlight some of its main
features, namely the implementation of the auxiliary

I. Kosenko, E. Alexandrov

The Modelica Association 208 Modelica 2008, March 3rd − 4th, 2008



Figure 3: Example of Compliant Constraint Classes Hierarchy

local base{ααα,βββ,γγγ} tracking and equations to compute
the solution of the system of the transcendental equa-
tions

model NormalForceHertzDiff
· · ·

initial equation
K = CompleteEllOfFirstKind(k2);
E = CompleteEllOfSecondKind(k2);
0.5*CompleteEllOfFirstKind(k2)/

dKdk2(k2) - (1 - k2) = C;
equation

dgamma = (dgradgA1 -
normA1*(normA1*dgradgA1))
/ sqrt (gradgA1*gradgA1);

der (gamma) = dgamma;
OmegaA = cross (gamma, dgamma);
der (alpha) = cross (OmegaA, alpha);
beta = cross (gamma, alpha);
· · ·
der (k2) = dk2;
dK = if k2 < Accuracy then dKdk2(k2)

else 0.5*(E - (1 - k2)*K)/k2
/(1 - k2);

dE = if k2 < Accuracy then dEdk2(k2)
else 0.5*(E - K)/k2;

der (K) = dK*dk2;
der (E) = dE*dk2;
C = A1/B1;
dC = der (C);
ddK = if k2 < Accuracy then

d2Kdk22(k2) else 0.25*((1 - k2)*
(2 - 3*k2)*K - (2 - 4*k2)*E)/k2^2

/(1 - k2)^2;
(3*dK^2 - K*ddK)*dk2 = 2*dK^2*dC;
· · ·

end NormalForceHertzDiff;

where the variablesK, E, k2, dK, dE, ddK, A1, B1,
C stand correspondingly for the valuesK(c), E(c),
c, dK/dc, dE/dc, d2K/dc2, P, Q, C from previ-
ous section. The functionsdKdk2(k2), dEdk2(k2),
d2Kdk22(k2) are used if the modulus is small enough,
i. e. regular expressions become inoperative. These
functions are computed via expansions of series with
the fast convergence for the small modulus. Section of
initial equations is needed to initialize a state variables
being computed using known expansions for the com-
plete elliptic integrals. These expansions work only
once when starting the simulation.
A tangent force at the contact in our case is computed
in the classCompliantConstraintAddOn and for
the simplicity is implemented as a regularized model
of the Coulomb friction [6]. Obviously, one can create
here even far more complicated models for the tangent
force at the contact.

5 Example of the Ball Bearing

The ball bearing model is built up using the architec-
tural principle mentioned above. On the Icon-level
of its representation it looks exactly like the model

Implementation of the Hertz Contact Model and Its Volumetric Modification on Modelica

The Modelica Association 209 Modelica 2008, March 3rd − 4th, 2008



Figure 4: Visual Model of the Ball Bearing
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of any constraint: it has two ports of the connector
typeKinematicPort to import the twists of the rigid
bodies connected by the bearing, and two ports of the
WrenchPort type to export the wrenches in directions
of the bodies mentioned. Visual model of the ball bear-
ing see in Figure 4
For definiteness the bearing was equipped by eight
balls. Each ball has two elastic contacts: one with
the inner ring, and one with the outer one. In both
cases when contacting the ball simultaneously rolls
over the surfaces of the toroidal tubes corresponding
to the raceways of the inner and outer rings.
Describe in brief the specifications of the contact be-
tween the ball and one of the toroidal raceways. The
ring always supposed to be denoted as a bodyA in the
contact object of the ball bearing model, while the ball
always denoted asB. All we need to complete the con-
straint specifications is to define the functionsfA, fB.
In our case we have

fA(x,y,z) = 4R2
A

(
x2 +y2

)
−(

x2 +y2 +z2 +R2
A− r2

A

)2
,

fB(x,y,z) = x2 +y2 +z2−R2
B,

whererA is the toroidal pipe radius,RA is the radius of
the circle being an axis of that toroidal pipe,RB is the
ball radius.
Paying an attention to the ball bearing visual model,
Figure 4, note the central column represents eight ob-
jects B1, B2, . . . , B8 of elastic balls. Left and right
columns of objects composed by the contact objects
between the balls and the outer ring (left column) and
inner ring (right column), all implemented using the
Hertz model described above. The objects represent-
ing in the model the inner and outer rings have the
namesIR andORcorrespondingly. At left and right ex-
treme sides of the class the objects of rigid constraints
are located. These constraints connect the outer and
the inner rings objects with the objects of the bodies,
outer and inner shafts in our case, attached one with
another by the bearing. In the example under consid-
eration the body connected with the outer ring rests
w. r. t. AF while the body connected to the inner ring
rotates uniformly aboutz-axis of AF both thus per-
forming the prescribed motion, see the animation im-
age in Figure 5.
The visual model of the example testbench see in Fig-
ure 6. To verify the quality of the Hertz model imple-
mentation we compared the vectorsγγγ andnA as func-
tions of time. The computational experiments showed
that their coordinates coincide with a very high accu-
racy. At last yet another remark: to make the simula-
tion even more faster, at least twice, one can apply the

Figure 5: Animation of the Model

simplified expression of the form

Felast=−eh3/2,

with the constant coefficiente for the normal elastic
force at the contact [11]. But it is possible only if the
geometric properties (curvatures etc.) don’t change
while simulating the model. Moreover, for different
cases of contacting the coefficientewould have differ-
ent values. Then its value can be computed using the
numerical experiment, or even better using the natural
physical experiment. If the motion under simulation is
perturbed from its pure case with the constante then
immediately its value begins change in time.

Figure 6: Visual Model of the Testbench

6 Conclusions

Summarizing the results presented above we can split
them to the several main remarks influencing the po-
tential directions of future work:
(1) According to an experience accumulated while de-
veloping the models simulating the multibody dynam-
ics one can resume the usefulness of the approach
when the differential formulations proper applied are
preferable in several aspects. It is a real way to han-
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dle the transcendental equations in frame of dynami-
cal problems using the ODEs derived from the tran-
scendental ones in combination with the linear solver
w. r. t. derivatives of the new state variables.
(2) In particular it turned out an introduction of the
component of the ODEs system for the elastic bodies
outer surfaces tracking for the contact problem con-
serves an accuracy and simultaneously improves the
reliability of the models. To implement the tracking
in case of the complex shape surfaces we have to rear-
range only one derived class at the end of the inheri-
tance chain to define an equations for the gradients and
Hessians of the surfacesAandBw. r. t. LFs of the bod-
ies. The surfaces supposed smooth enough and with-
out sharp edges but can be described byif -constructs
properly arranged.
(3) Implementation of the complete elliptic integrals
using ODEs subsystem also was useful: the models
became more reliable and faster. For instance, the
Hertz algorithm improved as described above turned
out to be even faster than the V. G. Vilke one in case
of the almost circular contact area.
(4) The algorithm of V. G. Vilke is more reliable and
suitable for wide range of the contact area eccentric-
ities simultaneously providing an accuracy of0.5%
with respect to the Hertz-point algorithm.
Regarding the directions of the future work it is evi-
dent enough an interest to apply the developed mod-
els to different types of appliances with the rotary mo-
tions, or to the problems essentially including the ef-
fects of friction when contacting.
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