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Abstract low the classical Hertz approach, and the normal force
computation method is a main topic of our analysis.
The Hertz model of an elastic bodies contact and it§ handle with the surfaces at the contact we apply
volumetric modification are analyzed for the propeih approach mentioned in [4] as variant 2: algebraic
implementation on Modelica. Computational alg@onstraint surfaces, which we frequently use in our
rithms applied aim to accelerate the simulation procefgdels. For definiteness and simplicity to simulate the
and make it more reliable. tangent contact force one uses a regularized model of
The algorithm tracking the surfaces of the bodigge Coulomb friction [6]. This is sufficient enough to
which are able to contact was improved using its déimulate the dynamics over time of the machine under

ferential version and showed an accuracy high enougiulation lifecycle. May be some additional compli-
Simulation of the Hertz model was accelerated duedations for the friction model, e. g. an account of the
use of the differential technique to compute the comrbrication of any type, will be needed.

plete elliptic integrals and due to the replacement of

the implicit transcendental equation by the differential . . o

one. 2 Reduction in Vicinity of Contact

To have a reliable model for the simulation of the con-

tact especially in case of the contact spot ellipses/df€Ping a frame of the formalism applied previously
an eccentricity high enough the volumetric modificde simulate a unilateral constraint [6] consider its par-

tion of Hertz model is introduced. The model showdifular case corresponding to mechanics of contact in-
a reliable behavior and an acceptable accuracy. teraction for two elastic bodies, identified hereafter as

Finally an implementation of the ball bearing model 4yandB. Their outer S_u.rfaces, see Figure 1, being at
an example of the contact models application is und&ntact supposed sufficiently regular.
consideration. The particular bearings being analyz -

can have different number of balls and different type /
of raceways. The bearing models created using t B
library of classes developed earlier and have an outs gs(ro) =0

look exactly like a mechanical constraints and beha
in some degree similar to the revolute joints.
Keywords: Hertz contact model, volumetric approacl grad g4
ball bearing model

24(rp) = 0 V grad gp

1 Introduction

It is known [1] to compute a force of the elastic bod

ies interaction at a contact several different approact

are applied: (a) the classical Hertz model [2], (b) th

model based on the polygonal approximation of the

contacting surfaces [3] applied to cases of the surfaces  Figure 1: Vicinity of the Contact Area

of a complex shape and implemented on Modelica [4],

(c) the volumetric model [1, 5]. In our model we folApplying the same notations as ones used in [6] we
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start here by reproducing the system of eight scatard their gradients connected by
algebraic equations
g q gradgq (rp,) = Tagradfe [Ty (re, —ro,)]

gradga(rp,) = A-gradgs(res), whereTj, Tg are the orthogonal matrices defining cur-

r;“ zrrpj i ggradgg(rps), (1) rent orientation of the bodies.
g/;(r:;) ; 0, Surely, in case of the DAEs use one has to provide a

consistent initial values for all the additional state vari-
defining the coordinatesq,, Yr., Zp,, Xps, Yms, ables introduced here for each object of the compliant
zp, of the outer surfaces opposing poirgs, Ps, contact being under construction in the sequel.

see Figure 1. Here the coordinate vectogs = Unlike our previous approach [6] now we suppose the
(XPa,YPa, Zea) s TRy = (X, YRy, Zp,) | are defined with bodiesA andB don't create any obstacles for their rel-
respect to (w. r. t.) the absolute coordinate franagive motion. If 3D-regions bounded by the bodies
OoxoYozo of reference AF) usually connected to theouter surfaces don't intersect then the object of a con-
multibody system base bodgp. Note the functions straint, rather of a contact, generates a zero wrench in
ga(ro) =0a(ro,t),gs(ro) =9s(ro,t) are really atime the direction of each body. Simultaneously this object
dependent ones, and define the outer surfaces curhestto generate the radius vectoss rp, of opposing
spatial position of the bodies at a contact w. rAE. with each other pointBa, Ps.

The values\, pare an auxiliary variables. Based on (1) note the variableindicates the contact

It turned out by the computational practice with Dyef the bodiesA andB. Indeed, for definiteness suppose
mola the most suitable approach to implement a syise outer surfaces in vicinities of the poifRg, Ps are

tem of algebraic equations like (1) is to replace it bsuch that vectors of gradiengsadga (r), gradgs (r)

the system of DAEs properly derived from (1). It caare directed outside the each body. Then we have the
be done by introducing an additional variables whidhllowing cases at hand: (@) > 0 means the contact
the time derivatives and thus compose the different@dsent; (b < 0: the contact takes place.lf< 0then

subsystem the bodies supposed to penetrate each other, though re-
. _ : _ ally begin to deform in a region of the contact. In the
FRa=Upy Ry =Ur, A=& H=N.  (2) gequel we follow the simplest elastic contact model
completed by the algebraic one originating from Hertz [2]. Computational analysis
will be performed for the case of contacting only, see
[0a, gradga] + TaAHesSfAT, (Up, — Ve, ) — Figure 2. For simplicity and definiteness the surfaces
& gradgs— are showed convex in Figure 2 though it is not neces-

A ([ws, gradgg] + Ts Hessfg Ty (Up, —VR)) =0,  sary at all in general for our implementation.
Up, — Up, —Ngradgs— ,

u([wB, gradgg] + Tg HessfgTg (Up, — va)) =0, . B z
(gradga, up,) — (gradfa, T4 vp,) =0, P4
(gradgs, Up,) — (gradfg, T ve,) =0. . - —— =
(3) G B

where the vectorsp,, vp, are a velocities of the bod > =

ies physical points currently located at the geome /’/ 7,

pointsPa, Pa and are to be calculated according to t 4

Euler formula o N

Vp, = Vo, t Wy, R, —To,] (0 =AB), Figure 2: Local Coordinate System

whereO,, Og are the bodies masscenteas,, wg are o ]

the angular velocities of the bodies. Matridésssfa To represent the Hertz contact model in its classical
Hessfg are the Hesse ones of the functiohs fE: form first of all we have to construct an auxiliary base
defining the bodies outer surfaces w. r. t. the bodilsVICiNity of the contact. First base is composed by

central principal coordinate systems. The the funfree unitvectorst, B,y such thay = na, wherena is
tions fa, fs relate to the onega, gs according to the the unit vector along the gradiegtadga (r) collinear
equations to thez-axis in Figure 2. As it was for the derivation of

the opposing points the most appropriate move to com-
Ja (o) = fa [Tq (ro—ro,)] (a=AB), pute the proper bas@, B,y} is to construct a relevant
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subsystem of DAEs. First of all start with differentiaFurther bring the equations (4) to the form suitable to
equation fory. It has the form analyse the contact problem in vicinity of the corre-

Y= ’gradgA\_l[(gradgA)'— (A, (Gradga)) Nal sponding points

= =AB
where the time derivative of the gradient reads Pe, =Po, TRaPa (0 =AB),

. T _ on the surface of the body. Here the vectop, de-
(gradga) = [, gradga + TaHessIATa (Uey —VP) - e the position of the poira w. r. t. the bodya

Now we can right down the chain of equations own coordinate system. Supposing the surfaces regu-
_ , lar enough we have the expansions
Q=[yy, a=[Q,a], B=][y.a],

defining successively the angular velod@yof the unit fa(fo) 1 fo (Po) +-(@radfe (Pa). Ara) + 3
vector y(t) rotation, the differential equation for the 5 (Hessa (Pg) A, Ara) +O (JAra )
unit vectora, and the unit vecto completing the lo-  ha(r) =ha (Pp,) + (grachy (pp, ) ,Ar) +

cal base under construction. Actually the vediis }(Hesﬂn(, (p )Ar Ar) +O(\Ar|3)
an angular velocity of the base tripfet, B,y} w. r. t. 2 Fa/ 0 ’
AF. whereAr =r —pp , Arg =rq — Pg. SiNCEAr = RyArg
Note once more we have to provide the consistent igtren it is easy to verify that

tial data for the vectorda, y which became now a vec-

tor valued state variables. And of course browsing the ~ 9rad (Pp,) = Ragradfa (py) (5)
equations represented above it is transparent enough Hess$ (pPa) = RaHessa (Py) RS-

which Modelica code stands behind the algorithm oz c5use at the bodyouter surface poirpy, the func-
lined here. _ . tion hy is zero-valued then up to the terms of the third
Using the base{a,B,y} built up above it is easy grqer in the coordinate systeRaxyzthe equation (4)
enough to compose the matrix= [a,B,y] consist- .o pe represented as follows

ing of the columns composed themselves by the co-

ordinates of the unit vectors. Actually is the trans- Moyt (x y) < a Ca ) < X ) _0. (®
fer matrix between coordinates AF and the current 0z Ca bg y ’

local base{q,B,\G. Let us first express the outer SUNVvhere the Hesse matrix elements are to be expressed
faces equations in coordinates of the local systef) ( by the formulae

having an origin at the poi,, see Figure 2.
Because the matriX is orthogonal its inverse is de- 10%hy 10%hy 10%hy
rived by the transposition of. Then to compute the 2= 52 g2 * 20 = 2 0y2’ Ca = 2 oxay’
matrix of coordinate transformation from thd- to

o . where in turn one should use the results of (5). Note
one of the bodies’ we can represent it as follows

the equation (6) has such a simple representation be-

Re=TTTy (a=AB). cause at the poirgp the choice of the base causes the
. _ conditions
Introducing new temporary notatian= (x,y,z)" for
the coordinate vector of the current geometric point %( 5 ) =0, Oha (Pp,) = 0. (7)
w. r. t. local systenPaxyzone can easily deduce the 0X * gy e
dependence Supposing the surfaces are nondegenerate at the points
r =po, +Rala (A =AB), P« we have the condition
wherepg = (§0,,N0o,.L0,)" is the coordinate vector |gradha (ra)| > 0,
of the bodya mass center w. r. LF. ~and because of (7) it causes the condition
Let the bodya outer surface is defined by the equation oh
(04
ha(r)=0 (a=AB), (@) oz (fa) 70

w. r. t. current position of.F. Then it is easy to seeTherefore, the equation (6) can be resolved w. r. t. the
the functionhy can be computed by the formula variablez in explicit form as

ha(r) = fa (R (r —Po,)) (a=AB). z= 2l + 2c, Xy + by, (8)

The Modelica Association 205 Modelica 2008, March 3¢ — 4t 2008



I. Kosenko, E. Alexandrov

where the new coefficients of the second order tertdsing the substitutiog — n (§ = An) in elliptic in-
are computed in the form tegrals of (11) we can separate the last two equations
b C of (11). Indeed, introducing new scaled unknown vari-
%= "5 by = _aTa’ Cy = ~ah ableso’, B’ according to formulae’ = a /A, ' =B/A

-« -« -« we can deduce the two mentioned equations to the
0z 0z 0z closed system

The further reduction comes to a transformation to o .

canonical view of the quadratic form h(o,B)=F L(f.a)=Q (12)

, Aq

if the scaling facton satisfies the norming condition

) ) FD 1
derived as a difference between the forms (8) such that R (13)

q(x,y) = ax + 2cxy+ by?, 9)

a=ag—a,, b=bg—b,, c=cg—Cj. Here the elliptic integraly (a, ) is defined by

The transformation is implemented simply as a rota- dg

. : . l1(a,B) =
tion about thez-axis of the systenPaxy to achieve CH) O/(O(Jrz) @+&)(B+E)E

the coefficient vanishes. Finally the function (9) be-
comes having the form causing clearly verified equations

a(x.y) = PX+Qy (10) dl (o', B) al(a’,B)

. N N (@B =250 B ) = 275
with the additional conditio® < P < Q. (14)
where taking into account that > 8/, which is equiv-
3  The Hertz Model alent to the conditior® < Q satisfied above, we may
have the relations

According to the known technique [7] to compute the 5
total normal force at the contact we have to solve the 1 (a’, '

YR -
system 0 \/(a,‘FE)(B/‘i‘E)E \/a

K(K),

< where in turnK(K) is the complete elliptic integral of

FD d
*/ ¢ = h the first kind with the modulus defined by the formula
(a+&)(B+&)¢

o _ a/_B/
£2 g8 = P (11) =V

m /(or+E) (a+&)(B+8)E

0

00

Here one can see the valkactually has a geometric

ED dé sense exactly of the contact spot ellipse eccentricity.
?/ BV A+ BLES = Q Using the work [8] as a pattern we introduce the value

0 ¢ = k? of the elliptic integral modulus square. Taking

of three transcendental equations provided the colBfo account that elliptic integrals are regular functions
- . CY

ficients P, Q from the representation (10) and deptpf ¢ =1 —B'/a’ we obtain using the rule of the com-

of mutual penetration, so-called mutual approack, Pound function differentiation

Irp, —rp,| @re already have been computed. The sys- 2 dK(c)
tem (11) has three unknown variables:B, F, where ~ 11(a'.p") = oz | K©)—201- C)dc> ;
the valuesu, B are the semi-major axes squared of the o, 4 dK(c)

contact spot ellipse, anfd is the total normal elastic L(B,a) = 03/2 dc

force really distributed over the contact area. The

IOI.%li_viding then the first equation of (12) by the second
3/1-v2 1-V2 one and using the last derived expressions we reduce
D=~ A ° finally the whole probl he one-dimensional

Ex Eg inally the whole problem to the one-dimensional tran-

4
. . . _ Sé:endental equation
summarizes elastic properties of the contacting bod-

ies: va, Vg being Poisson’s ratios, arfeh, Eg being lK( ; <dK(c)

corresponding Young’s moduli. 2 dc

rameter

1 =
) ~a-9-g a3
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w. r. t. the unknown value. where while changing the valithe value$?, Q don't
Once the solution of the equation (15) had been fouddange, we conclude the potential energy of elastic de-
we can obtain immediately the values formations is represented by the expression
4 dK(c)\ %3 2
o = <Q d(CC)> B'=d(l-c). Uelast= ge(P, Q)h5/2-

Using the first equation of (11) and normalizing dé&2" the other hand using the volumetric approach [5]

pendence (13) we then find the value of the scalif§® ¢a" try to represent the same potential energy as
factor follows

h Ussi= f (2 ) vWeopd
A= o) (16) elast (a p,
thus arriving to the Hertz problem solution: the norm#fhereV is the volume of the bodies undeformed ma-

force and the contact ellipse semi-major axes valueierial intersectedSis the area of the intersection pro-
jection onto thexy-plane of theLF, p is the perimeter

F= E)\ﬁ, a= VA, b=/Ap. of that projection. It turned out # = 2, 0 = —7/4,
D 0 = 1/2then the function

Nevertheless an implementation on Dymola requires a
further reduction of the model in a manner we already Voroe— 0.357469 8 Vv2pt/2

. . . . elast= V. v, )
mentioned above twice: use preferably the differential 151/4(6p+0g) S/4
equations (probabl_y to overcome the pqtenUal .prpgii‘fers from Ugjast by 0.5% of its value in wide range
lems for the analytical processor when dn‘ferentlatlnoc_lr the contact ellipse shapes: surely kgia € [0.1, 1]
the transcendental expressions on the DAE system in- ' B
dex reduction stage when compiling and indirectly and "¢ 1-2
more rarely when running the model). To this end we 0o = ?a, (a=AB).
have to remind the known ODESs connecting the co y
plete elliptic integrals of the firg€(c) and the second
E(c) kind between one another [8]

dK E-(1-cK dE_ E-K

Igi-nce in the case of the Hertz model the contact spot is
the ellipse then the valuds S, p are to be computed
by the expressions

dc 2¢(1-c¢) * dc 2 y_ M o mh o= 4v/h(Q/P)*/*E(cy)
- 2yPQ T 2yPQ " PQ)L/4 ’
Furthermore instead of (15) then we should use its dif- Q Q (PQ
ferential version where the elliptic integral modulus squared this time
has the expressiooy = 1 — P/Q. Then taking into
dK) * d*K ] dK\? account theg[ / ’
3[— | - K—|¢c=21—) C
dc dec? dc ' = _ OUelast
elast— — oh
whereC = P/Q, and we get the Vilke formula for the approximate value of
d2K (1—c)(2—3c)K — (2—4c)E the normal force at the contact
d ~ 4c?(1—c)? ' 2 E
. Felast= —0.357469 / /B(C,o,l/)s he/2,
In this way the complete integrals become an addi- 3(6a+68) P3/8Q
tional state variables such that Numeric experimental verification showed an appli-
K — dK. - dE, cation of the above expression for the normal force
~act tTac” indeed causes the relative error near the val&o

and simultaneously we have yet another way to com-r the contacting bodies configuration coordinates in
pute elliptic integrals in dynamics, note: exclusivelgPMPare with “exact” Hertz model over long time of

fast and sufficiently accurate way. Simulation. Anyway to estimate with the proper qual-
Staying in frame of the traditional Hertz model anfly the fatigue processes in machines while the lifecy-

taking into account that the expression for the norn’ﬂ? S|mulat|qn It IS sufficient enough to have an accept-
force has the form able approximation for the contact forces.

The Vilke formula is essentially simpler than compu-
Felast= —e(P,Q)h%2, tations in the Hertz model requiring the solution of the
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transcendental equation. Volumetric derived algorithmextends  CompliantConstraintAddOn;
is more reliable than the Hertz one though sometimesS!.Velocity[3] drA;

due to the differential techniques arranged for the el-S!-Velocity[3] drB;

liptic integrals the Hertz algorithm works even faster ConstraintDetectorRate dmu;

. Real lambda;
than one of Vilke. LambdaRate dlambda;

GradientRate[3] dgradgA,;
i GradientRate[3] dgradgB;
4 Implementatlon Real Active(sftzirt 2 1)?
The procedures described above to compute the nor;:::zg% g} E:iggf
mal force of an elastic interaction were implementeg ation ’
on Modelica in frame of general approach to con- ger (Active) = 0;
struct the objects of mechanical constraint [9]. Strictly der (rA) = Active*drA;
speaking in case of the compliant connection the con-der (rB) = Active*drB;
straint itself is absent. Instead we have an elasticder (lambda) = Active*dlambda;
compliance implementing the Hertz contact model. dr (mu) = Active*dmu;
Though the general architecture of the objects inter-dgrf‘dg':ss:g AS(EZS _(ICFA?)r_tA'omega’ gradgA)
When implementing a class of the compliant interac- dgradgA = lambda*dgradgB +
tion it turned out to be useful to split its base classes dlambda*gradgB;
in two different lines of inheritance: (a) the first one drA - drB = mu*dgradgB + dmu*gradgB;
contains mainly the geometric properties, (b) the sec-0 = gradgA*(drA - vrA);
ond line is responsible for the normal force calcula- ¢ = 9radgB*(drB - vrB);
. . . . HessgA = InPortA.T*HessfA*
tion. Thus in the last derived class we use the multiple transpose  (INPOTA.T):
inheritance allowed in Modelica. An example of the HessgB = InPortB.T*HessfB*
classes hierarchy in the case under consideration see transpose (InPortB.T);
in Figure 3. end SurfacesOfConstraintDifferential;
The example is one of the simplest ones to test an im-
plementation of the Hertz model: the contact of thghere the variables correspond to ones in (2), (3) in an
ellipsoid and the plane. The left line of inheritanceyvident way by use of their names.
see Figure 3, concerning mainly with the contact gelor-the line of the force properties inheritance

metric properties
NormalForce

Constraint l
l NormalForceHertzDiff
CompliantConstraint
! the clasNormalForce plays a role of the base class
CompliantConstraintAddOn for any implementation of the normal force. In the
! classNormalForceHertzDiff the normal force be-
SurfacesOfConstraintDifferential sides the elastic Hertzian term has the term of viscosity

has a common use and doesn’t depend on the typé)fowe form
the contacting surfaces. The variables which do de- Risc = —d(h)h,

pend on such that gradients and the Hesse matrices,gigreh is the mutual approach. This latter term sup-
evaluated in the class posed to arise due to the plasticity properties of the
EllipsoidAndHorizontalPlaneDifferential . material the bodies made of. It is fair natural to con-

sider the coefficient at to depend upom [10] since
The classSurfacesOfConstraintDifferential

. ; : : as the mutual approach increases from zero then the
is here the most essential derived one. Itis respons@iemact spot area also increases from zero. Therefore
for the pointsP, and Ps permanent tracking, imple-, '

ments the DAE system (2), (3), and has the followi bis quite natural for the plastic resistance to increase

Modelica code continuously from zero.
The classNormalForceHertzDiff Modelica code
partial model is long enough thus let us highlight some of its main
SurfacesOfConstraintDifferential features, namely the implementation of the auxiliary
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Figure 3: Example of Compliant Constraint Classes Hierarchy

local bas€{a, B,y} tracking and equations to compute

1 - k2)r2;

the solution of the system of the transcendental equa{3*dk"2 - K*ddK)*dk2 = 2*dK"2*dC;

tions

model NormalForceHertzDiff

initial equation
K = CompleteEllOfFirstKind(k2);
E = CompleteEllOfSecondKind(k2);
0.5*CompleteEllOfFirstKind(k2)/
dKdk2(k2) - (1 - k2) = C;
equation
dgamma = (dgradgAl -
normAl1*(normAl*dgradgAl))
/ sqrt (gradgAl*gradgAl);
der (gamma) = dgamma,;
OmegaA =cross (gamma, dgamma);
der (alpha) = cross (OmegaA, alpha);
beta = cross (gamma, alpha);

der (k2) = dk2;

dK = if k2 < Accuracy then dKdk2(k2)
else 0.5*E - (1 - k2)*K)/k2
/(1 - k2);

dE = if k2 < Accuracy
else 0.5*E - K)/k2;

der (K) = dK*dk2;

der (E) = dE*dk2;

C = Al/B1;

dC = der (C);

ddK = if k2 < Accuracy then
d2Kdk22(k2) else 0.25%(1 - k2)*
(2 - 3*k2)*K - (2 - 4*k2)*E)/k2"2

then dEdk2(k2)

end NormalForceHertzDiff;

where the variableX, E, k2, dK, dE, ddK, A1, Bi,

C stand correspondingly for the valuégc), E(c),

¢, dK/dc, dE/dc, d’K/dc, P, Q, C from previ-

ous section. The functiondkdk2(k2), dEdk2(k2),
d2Kdk22(k2) are used if the modulus is small enough,
i. e. regular expressions become inoperative. These
functions are computed via expansions of series with
the fast convergence for the small modulus. Section of
initial equations is needed to initialize a state variables
being computed using known expansions for the com-
plete elliptic integrals. These expansions work only
once when starting the simulation.

A tangent force at the contact in our case is computed
in the classCompliantConstraintAddOn and for

the simplicity is implemented as a regularized model
of the Coulomb friction [6]. Obviously, one can create
here even far more complicated models for the tangent
force at the contact.

5 Example of the Ball Bearing

The ball bearing model is built up using the architec-
tural principle mentioned above. On the Icon-level
of its representation it looks exactly like the model
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Figure 4: Visual Model of the Ball Bearing
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of any constraint: it has two ports of the connector
typeKinematicPort  to import the twists of the rigid o

bodies connected by the bearing, and two ports of the o o
WrenchPort type to export the wrenches in directions

of the bodies mentioned. Visual model of the ball bear-

ing see in Figure 4

For definiteness the bearing was equipped by eight o o
balls. Each ball has two elastic contacts: one with

the inner ring, and one with the outer one. In both

cases when contacting the ball simultaneously rolls

over the surfaces of the toroidal tubes corresponding o o

to the raceways of the inner and outer rings.

Describe in brief the specifications of the contact be- o

tween the ball and one of the toroidal raceways. The

ring always supposed to be denoted as a bddythe

contact object of the ball bearing model, while the ball Figure 5: Animation of the Model

always denoted &. All we need to complete the con-
straint specifications is to define the functioips fg.

In our case we have simplified expression of the form
_ 2. \2
(C+y?+Z2+RE-13)",
fa(x,y,2) = X+y?+Z-R3, with the constant coefficiere for the normal elastic

wherer » is the toroidal pipe radius is the radius of force at 'Fhe contagt [11]. But it is possible only if the
the circle being an axis of that toroidal pifRs is the geometric properties (curvatures etc.) don’t change
ball radius while simulating the model. Moreover, for different

Paying an attention to the ball bearing visual mod&RSes of contacting the coefficienwould have differ-

Figure 4, note the central column represents eight St vaI.ues. Then its value can be comp'uted using the
jectsB1, B2, ..., B8 of elastic balls. Left and rightnum(_erlcal expgrlment, or even_better using the natu_ral
columns of objects composed by the contact obje&t%ysmal experlment. If the motlgn under simulation is
between the balls and the outer ring (left column) aﬁgrturb_ed frqm Its pure case with thg cc_)nstaniuen
inner ring (right column), all implemented using thgnmed|ately its value begins change in time.

Hertz model described above. The objects represen

ing in the model the inner and outer rings have the %,
namesR andORcorrespondingly. At left and right ex- @ ey
treme sides of the class the objects of rigid constraint P ®

are located. These constraints connect the outer al
the inner rings objects with the objects of the bodies,
outer and inner shafts in our case, attached one with
another by the bearing. In the example under consid-
eration the body connected with the outer ring rests
w. r. t. AF while the body connected to the inner ring
rotates uniformly aboug-axis of AF both thus per- 6 Conclusions

forming the prescribed motion, see the animation im-

age in Figure 5. Summarizing the results presented above we can split
The visual model of the example testbench see in Figem to the several main remarks influencing the po-
ure 6. To verify the quality of the Hertz model impletential directions of future work:

mentation we compared the vectqrandna as func- (1) According to an experience accumulated while de-
tions of time. The computational experiments showedloping the models simulating the multibody dynam-
that their coordinates coincide with a very high accies one can resume the usefulness of the approach
racy. At last yet another remark: to make the simuleten the differential formulations proper applied are
tion even more faster, at least twice, one can apply fheferable in several aspects. It is a real way to han-

Figure 6: Visual Model of the Testbench
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dle the transcendental equations in frame of dynamj3]
cal problems using the ODEs derived from the tran-
scendental ones in combination with the linear solver
w. r. t. derivatives of the new state variables.

(2) In particular it turned out an introduction of the
component of the ODEs system for the elastic bodidé!
outer surfaces tracking for the contact problem con-
serves an accuracy and simultaneously improves the
reliability of the models. To implement the tracking

in case of the complex shape surfaces we have to rear-
range only one derived class at the end of the inheri-
tance chain to define an equations for the gradients ar[‘gﬁ
Hessians of the surfacésandBw. r. t. LF s of the bod-

ies. The surfaces supposed smooth enough and with-
out sharp edges but can be describedf byconstructs
properly arranged.

(3) Implementation of the complete elliptic integrals[6]
using ODEs subsystem also was useful: the models
became more reliable and faster. For instance, the
Hertz algorithm improved as described above turned
out to be even faster than the V. G. Vilke one in case
of the almost circular contact area.

(4) The algorithm of V. G. Vilke is more reliable and L]
suitable for wide range of the contact area eccentric-
ities simultaneously providing an accuracy @5%
with respect to the Hertz-point algorithm.

Regarding the directions of the future work it is evi-
dent enough an interest to apply the developed mod-
els to different types of appliances with the rotary morg
tions, or to the problems essentially including the ef-
fects of friction when contacting.
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