
ExternalMedia: A Library for Easy Re-Use of
External Fluid Property Code in Modelica

Francesco Casella1 Christoph Richter2
1Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

2Institut für Thermodynamik, TU Braunschweig, Germany
casella@elet.polimi.it ch.richter@tu-bs.de

Abstract

The modeling of thermo-physical fluid properties is
of great importance when modeling thermo-fluid
systems. The Modelica Standard Library provides a
number of medium models that can be used in com-
ponent models but are not sufficient in many applica-
tions. This paper presents a new interface library
with a Modelica front-end that allows for an easy
inclusion of external fluid property code in Modelica
using the standard interfaces provided in the Mode-
lica.Media library. The new library was developed as
an open-source project and is available for free from
the Modelica website including an interface to the
FluidProp software developed and maintained at TU
Delft. The new library can easily be extended to
other external fluid property code.
Keywords: external fluid property code; Mode-
lica.Media; thermo-fluid systems

1 Introduction

Modelica is finding more and more applications in
the field of thermo-fluid system modeling due to the
many advantages of the object-oriented equation-
based approach. A fundamental problem in this field
is the availability of good Modelica models for the
computation of fluid properties. The Modelica.Media
library was included in the Modelica Standard Li-
brary in version 2.2. It currently provides several
ready-to-use models for ideal gases, mixtures, wa-
ter/steam, moist air, table-based incompressible flu-
ids, and generic linear fluid models which can be
used in a wide range of applications. The library and
some applications are described in [1] and [2]. How-
ever, there exists a large class of engineering systems
such as refrigeration systems, heat pumps, or organic
Rankine cycles that require accurate models of ap-
plication-specific two-phase fluids which are cur-
rently not provided in the Modelica Standard Li-
brary.

One possibility to overcome this limitation is to write
the required medium models in Modelica, possibly
by conforming to the Modelica.Media interfaces for
greater compatibility. The advantage of this ap-
proach is that self-contained Modelica models are
obtained that can be optimized for efficiency. The
major drawbacks are that writing such code requires
a sizable investment in terms of time and effort, and
that the developed code can only be re-used in a
Modelica context.
The other possibility is to take advantage of existing
fluid property code developed for general-purpose
applications and to interface that code to Modelica.
This approach offers a couple of unique advantages
compared to a Modelica-internal solution:

• Many existing fluid property codes are well-
tested and used in a number of commercial
applications and products.

• Many existing fluid property codes provide
fast and robust solvers for the inverse itera-
tion of fluid properties.

• External fluid property codes can be used in
a number of different software tools such as
simulators, office programs, and post-
processing tools.

Some existing publications such as [3] show that
interfacing external fluid property code from Mode-
lica is a feasible alternative to Modelica-internal so-
lutions. This solution becomes extremely interesting
if the effort of developing the interface for any given
external fluid property code is kept to a minimum.
The ExternalMedia library was developed with this
objective in mind. The current implementation con-
siders two-phase, single-substance fluids since this
combination already covers many interesting appli-
cations that cannot be developed using existing
Modelica.Media models. Fluid mixtures might be
supported in the future.
The goals of the ExternalMedia library can be sum-
marized as follows:

ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica

The Modelica Association 157 Modelica 2008, March 3rd − 4th, 2008

• The new medium models shall be 100%
compatible to the Modelica.Media interface.

• The new interface library that handles all ex-
ternal fluid property codes should work with
all available Modelica tools and C/C++
compilers.

• The effort to interface new external fluid
property codes should be kept as little as
possible.

• The new approach shall be numerically effi-
cient to be comparable with current Mode-
lica-internal solutions.

The new library including all source code will be
released on the Modelica website and will be made
available under the Modelica license.

2 Architecture of the Library

The new fluid property library consists of three main
parts: A Modelica front-end called ExternalMedia,
an interface layer written in C, and an object-
oriented interface library called ExternalMediaLib
written in C++ that handles a number of external
fluid property codes.
The Modelica front-end of the new library is the Ex-
ternalMedia library, whose class structure is illus-

trated in Figure 1. This Modelica library contains a
package named ExternalTwoPhaseMedium that ex-
tends from PartialTwoPhaseMedium defined in
Modelica.Media.Interfaces. The ExternalTwoPhase-
Medium package is generic. The actual external fluid
property code used is specified by setting the values
of suitable string constants in the medium package.
The libraryName specifies the name of the external
fluid property code to be used whereas the sub-
stanceName defines the name of the substance from
this external fluid property code. The mediumName
defined in the PartialMedium package in the Mode-
lica.Media library is also passed to the interface li-
brary but is not used for the specification of the fluid.
The new external medium model can be used in any
component model that uses a medium package ex-
tending from PartialTwoPhaseMedium.
A set of functions in the ExternalTwoPhaseMedium
package corresponds one-to-one to C-functions de-
fined in the C interface layer. These functions are
called according to the external function mechanism
as defined in the Modelica language specification.
The interface layer functions manage a collection of
C++ objects that define the interface to the external
fluid property codes. A class diagram of this part of
the new library is shown in Figure 2.

Figure 1: UML class diagram of packages in Modelica.Media and ExternalMedia library.

F. Casella, C. Richter

The Modelica Association 158 Modelica 2008, March 3rd − 4th, 2008

Figure 2: UML class diagram of C++ objects in the ExternalMediaLib library.

The first fundamental object is the Solver object that
encapsulates the external fluid property code. In or-
der to manage several different solvers at the same
time, the interface layer defines the map SolverMap
which is a collection of Solver objects indexed by
the strings defined in the ExternalTwoPhaseMedium
package. Each time an external function is called,
these strings are passed as arguments. This allows
for an instantiation of the corresponding solver when
the function is called the first time and for the inter-
face layer to point to the correct solver in any subse-
quent function call.
The second fundamental object is the TwoPhaseMe-
dium object which corresponds with a point in a
thermodynamic phase diagram such as a pressure-
enthalpy diagram or a point on the saturation curve
for saturation properties. Each TwoPhaseMedium
object contains a pointer to the corresponding Solver
object and a record of type TwoPhaseMediumProp-
erties which is used as a cache record containing all
possible thermodynamic properties including trans-
port properties. All instances of these objects are
stored in the map MediumMap which is indexed by
an integer called uniqueID.
In order to understand how the library works, con-
sider the following code snippet:

import SI = Modelica.SIunits;

package Toluene
 extends ExternalTwoPhaseMedium(
 mediumName=”Toluene”,
 libraryName=”REFPROP”,
 substanceName=”Toluene”);
end Toluene;

model Example
 Toluene.ThermodynamicState state;
 SI.Density d;
 SI.SpecificEnthalpy h;
equation
 state = Toluene.setState_pT(1e5,300);
 d = Toluene.density(state);
 h = Toluene.specificEnthalpy(state);
end Example

The setState_pT() function of the medium package
calls the corresponding C function of the interface
layer, passing the values of pressure and temperature
as well as the three medium identification strings. If
those strings are not already present in the Solver-
Map, an instance of the corresponding solver (in this
case REFPROP [4]) is added to the SolverMap. Sub-
sequently, an instance of TwoPhaseMedium is added
to the MediumMap and the setState_pT() function of
the Solver is called to compute all fluid properties.
The computed fluid properties are stored in the Two-
PhaseMediumProperties object that acts as a cache
record. Finally, a unique identification number is
returned to identify the TwoPhaseMedium object in
the MediumMap. This number is stored in the Ther-
modynamicState record together with the values of
pressure, temperature, density, specific enthalpy, and

ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica

The Modelica Association 159 Modelica 2008, March 3rd − 4th, 2008

specific entropy. Note, that the setState_pT() func-
tion in Modelica is an impure function since it re-
turns a different uniqueID each time it is called.
When the density() function is called, the corre-
sponding interface layer function is called with the
uniqueID stored in the ThermodynamicState record.
This allows for retrieving the already computed
value for the density from the TwoPhaseMedium
object in the MediumMap. The same thing happens
when the specificEnthalpy() function is.
At the next simulation step, when the setState_pT()
function is called again, a new TwoPhaseMedium
object is allocated in the MediumMap and a new
unique identification number is returned. In order to
avoid running out of memory, the MediumMap is
used as a circular buffer with a predefined maximum
number of TwoPhaseMedium objects. The size of
the buffer must be large enough to accommodate all
setState_XX() function calls during a single simula-
tion step.
The most straightforward implementation of the
Solver objects computes all possible fluid properties
at once when a setState_XX() function is called. This
often is a reasonable option since most of the CPU
time is often spent on the inverse iteration while the
additional cost of computing all fluid properties is
small. However, it is always possible to decide that
the setState_XX() functions of the Solver only com-
pute and store some of the properties and that the
additional computations are triggered when the func-
tions to retrieve these additional properties are
called. This is very often a good idea for the trans-
port properties. This mechanism allows for avoiding
unnecessarily repeated computations in a flexible
way that is 100% compatible with the existing struc-
ture of the Modelica.Media package.
Note, that the call of the setState_XX() functions
will usually be performed before the other function
calls because of the BLT partitioning of equations
performed by the Modelica compiler. If this does not
happen (e.g., due to the presence of implicit equa-
tions), the property functions could be called before
the unique identification number has been set, thus
with a default uniqueID=0. In this case it is still pos-
sible for the interface layer to select the correct
solver by using the medium identification strings and
to compute the required property using the values of
pressure, temperature, etc. stored in the Thermody-
namicState record. The uniqueID argument is thus
introduced for efficiency reasons, i.e. to avoid un-
necessarily repeated computations, but is not re-
quired for the correctness of the results.
If the BaseProperties model defined in the Mode-
lica.Media library is used to compute the medium

properties, the circular buffer for the MediumMap
can be avoided. A unique identification number is
instead stored in each instance of the BaseProperties
model. This number is set once and for all during the
initialization phase. The setState_XX() functions are
then called within the BaseProperties model by ex-
plicitly supplying the uniqueID. The same Two-
PhaseMedium object in the MediumMap is thus used
for all computations in the corresponding BaseProp-
erties object. In order for the MediumMap to distin-
guish between these static unique identification
numbers and the transient unique identification num-
bers discussed in the previous paragraphs, the former
are given positive values while the latter ones are
given negative numbers.

3 Implementing new Medium Models

Implementing the interface to a new external fluid
property code is a straightforward task requiring a
limited amount of time.
First of all a new Solver must be defined, extending
from the BaseSolver. This new Solver has to imple-
ment all abstract setState_XX() functions defined in
the base class. These functions will actually call the
external fluid property code and store the retrieved
properties in the TwoPhaseMediumProperties cache.
Then, a few lines of code must be added to the get-
Solver() function of the SolverMap object in order to
recognize the new identification strings of the addi-
tional external fluid property code. All remaining
functionality is already provided by the library
framework.

4 Current Status and Future Devel-
opment

The framework of the new library for the support of
external two-phase single-substance medium models
is complete. Two Solvers are already implemented.
The first Solver, TestSolver, is a dummy fluid model
roughly corresponding to cold water which can be
used to troubleshoot the C/C++ and Modelica com-
piler setup without worrying about the actual exter-
nal code. It can also be used as a starting point for
new user-defined fluid property codes.
The second available Solver is an interface to the
FluidProp software [5] developed and maintained at
TU Delft which provides a common interface to sev-
eral external fluid property codes including StanMix,
TPSI, and the whole REFPROP database. FluidProp
can be downloaded for free even though the REF-

F. Casella, C. Richter

The Modelica Association 160 Modelica 2008, March 3rd − 4th, 2008

PROP module requires purchasing a license from
NIST. Since FluidProp is based on the proprietary
COM architecture by Microsoft, the corresponding
solver can only be compiled under MS Windows
using a MS Visual Studio compiler, even though an
extension based on open-source architectures is envi-
sioned for the near future.
The library framework is fully compliant with stan-
dard Modelica (2.2 and 3.0) and with standard ANSI
C/C++. New Solvers can thus be implemented and
used within any Modelica tool, using any C/C++
compiler.
The library, including all source code, will be re-
leased under the Modelica License and will be made
available on the Modelica website. The C/C++
source code is fully documented, using the Doxygen
tool. Future development might include the devel-
opment of new general-purpose Solvers as well as
the development of an external media interface for
fluid mixtures.
Furthermore, the object-based fluid property library
TILFluids developed at TU Braunschweig and pre-
sented in [6] uses the code of the presented external
fluid property library and provides a different Mode-
lica interface. TILFluids also provides interfaces to
other software tools such as MS Excel or MAT-
LAB/Simulink that might be included in a future
release of the ExternalMedia library.

5 Conclusions

This paper presents a new fluid property library for
two-phase single-substance fluids that allows for an
easy inclusion of external fluid property code in
Modelica, using the standard interfaces for two-
phase media defined in the Modelica.Media library.
Any model designed to use models derived from
these standard interfaces can therefore be used with-
out any modification. The new library is freely avail-
able under the Modelica license, and can easily be
extended by including other external fluid property
codes. Further development might extend the inter-
face to single-phase pure substances and mixture
media, as well as two-phase mixture media. Inter-
ested users are welcome to use the new library in
their applications and are invited to contact the au-
thors for contributions to the project.

References

[1] H. Elmqvist, H. Tummescheit, and M. Otter.
Object-Oriented Modeling of Thermo-Fluid

Systems. In Proc. of 3rd International Mode-
lica Conference, pages 269-286, Linköping,
November 2003.

[2] F. Casella, M. Otter, K. Prölß, C. Richter,
and H. Tummescheit. The Modelica Fluid
and Media library for modeling of incom-
pressible and compressible thermofluid pipe
networks. In Proc. of 5th International Mode-
lica Conference, pages 631-640, Vienna,
September 2006.

[3] H. Tummescheit and J. Eborn. Chemical Re-
action Modeling with ThermoFluid/MF and
MultiFlash. In Proc. of 2nd International
Modelica Conference, pages 31-39, Oberp-
faffenhofen, March 2002.

[4] E. W. Lemmon, M. Huber, and M. McLin-
den. NIST Standard Reference Database 23:
Reference Fluid Thermodynamic and Trans-
port Properties-REFPROP, Version 8.0. Na-
tional Institute of Standards and Technology,
Standard Reference Data Program, Gaithers-
burg, 2007.

[5] FluidProp: A software for the calculation of
thermophysical properties of fluids.
http://fluidprop.tudelft.nl/

[6] C. Richter. Proposal of New Object-Oriented
Model Libraries for Thermodynamic Sys-
tems. Doktorarbeit, TU Braunschweig, to be
published in 2008.

ExternalMedia: A Library for Easy Re-Use of External Fluid Property Code in Modelica

The Modelica Association 161 Modelica 2008, March 3rd − 4th, 2008

