Modelica Library for Logic Control Systems written in the FBD Language

Modelica library for logic control systems

written in the FBD language

Alberto Leva, Filippo Donida, Marco Bonvini', Lorenzo Ravelli’
Dipartimento di Elettronica e Informazione, Politecnico di Milano
Via Ponzio, 34/5 — 20133 Milano, Italy
{donida, leva}@elet,polimi.it
“former student at the Politecnico di Milano

Abstract
The paper describes a Modelica library for the simulation of logic control systems written in
the FBD (Functional Block Diagram) language as defined in the IEC61131.3 standard. The
library contains not only strictly logic blocks, but also the main types of industrial PID

controllers. Models of different complexity levels are included, so that the user can specify a

control system as a continuous-time model (for fast simulation to check whether or not a

control strategy solves the problem at hand) or an event-based one (for precise evaluation of

the algorithms' behaviour).

1. Introduction

In many control domains, particularly — but not
exclusively — in the process control field, a
correct representation of the control system
connected to the plant being investigated is of
paramount importance [7, 1, 3, 18, 19, 8, 9, 4, 11,
13, 17, 21, 15]. In many cases, the structuring and
the subsequent tuning of that control system is
even the main goal of the simulation activity; and
also if control commissioning is not the primary
purpose of the simulation, having a correct and

realistic control representation is always
important in order to draw meaningful
conclusions.

Nowadays, more and more control systems are
implemented adhering to the IEC61131.3 standard
[1, 2, 6, 7, 20, 10, 11, 14, 16], that defines five
programming languages (Ladder Diagram or LD,

Sequential Functional Chart or SFC, Functional
Block Diagram or FBD, Structured Text or ST,
Instruction List or LD) basically oriented to logic
control, although most systems adhering to the
standard also offer modulating control functions.
In the last years, the IEC61131.3 standard has
become very popular in the arena of PLC
programming, therefore spreading out in a vast
number of contexts and applications [2, 10, 8, 16,
15, 5].

As the IEC61131.3
available in the Modelica environment is of great

such, having standard
help, for at least two reasons. First, if an industry
standard is uniformly adopted, there is (ideally)
no room for ambiguities in the communication
between the people who own and/or run the plant,
and the analysts who create the simulator and
realise the necessary studies (some issues may
still arise owing to the fact that virtually every

The Modelica Association

147

Modelica 2008, March 3¢ — 4t 2008

A. Leva, F. Donida, M. Bonvini, L. Ravelli

standard is the result of a compromise, and
therefore very frequently exists also in the form
of so-called “dialects”, but addressing that
problem is apparently beyond the scope of this
research). Second, the solutions found at the
simulation level are deployed to the target control
architecture in a very straightforward way.

For the reasons above, a free (GPL) FBD
Modelica library is being developed at the
Politecnico di Milano. The present state of that
library is described in this paper, that is organised
as follows. Section 2 describes the organisation of
the library, briefly list its contents, and presents
some selected blocks with a minimum of detail.
Section 3 discusses two examples. The first aims
at showing the importance of having the
described both at a

(continuous-time) and at a detailed (event-based)

regulators simplified
level. The second shows some library blocks
applied to the control of a small manufacturing
system, to illustrate how the obtained Modelica
schemes are easily understood by people
developing code for the typical industrial control
architectures. Finally, section 4 reports some

conclusions, and the future plans of the research.
2 Library organisation

The library comes in a single Modelica package
named FBD, and organised in subpackages as

sketched below:

e the FBD.OneBitOperation
implements basic logical operations,

subpackage

e the FBD.CompareOperation subpackage
implements comparisons (the <, >, >= <=
,= operators) on the Integer and Real
types,

e the FBD.Counter subpackage provides

up/down counters,

e the FBD.MathOperation subpackage
implements the basic mathematical
instructions,

e the FBD.Timer
timers (and is similar to the Counter one),

subpackage provides

e the FBD.NBitOperation subpackage
implements logical operation on arrays of
bits,

e the FBD.LinearSystems subpackage

provides linear, time invariant dynamic
systems in the continuous and discrete
time, as typically specified in IEC-
control

compliant code development

environments,

e the FBD.IndustrialController subpackage
contains several industrial controllers,
including of course several types of PID,

e the FBD.Test subpackage contains test
each FBD block,
to allow for a precise

simulators for
individually,

comprehension of its functionalities,

finally the FBD.Applications
subpackage provides some examples of

use of the FBD blocks of the library.

e and

For obvious space reasons we do not describe the
blocks here, referring the interested reader to the
library documentation. A couple of remarks are
however worth some lines.

First, for every component a “test” model is
provided, to allow the user to fully understand
how works,

that component and possibly

disambiguate situations where the available
specifications are not fully univocal; everyone
wishing to extend the library (contributions are of

course welcome in the GPL spirit) is strongly

The Modelica Association

148

Modelica 2008, March 3¢ — 4t 2008

Modelica Library for Logic Control Systems written in the FBD Language

encouraged to do the same.

both
continuous-time and event-based models are

Second, especially for regulators,
present. The former type of model allows for
faster simulation, and is the choice of election
when the purpose is to check the correctness of a
control strategy. The latter is apparently less
time-efficient, but allows to check the behaviour
of a control algorithms. The library therefore
allows to perform both types of simulation, and
even to mix the two, e.g. by convenient use of
model replaceability, and top-level variables. To
limit the performance loss, equations (not
algorithms) were used in event-based models, so
as to allow those models to be manipulated with
the rest of the simulator. Doing so involves some
limitations when porting a pre-existing algorithm
into the library, since for example multiple
assignments are not allowed. It is the authors'
opinion, however, that an accurate translation in
the form adopted by the presented library is
possible for of any control algorithm one may

come acCross.

For example, the following Modelica code is the
event-based implementation of an ISA PID with
antiwindup, manual and tracking modes, and
bumpless mode switch [17, 18].

function Der "Thi sfunction represents a derivative action"
input Real sp;
input Real pv;
input Real pv_old;
input Real Td;
input Real Ts;
input Real N;
input Real d_old;
output Real d;
algorithm
d := Td/(Td + N*Ts) * d_old - Td*N/(Td + N*Ts) * (pv - pv_old);
end Der;

model Proportional
RealInput sp "set point";
ReallInput pv "process variable";
RealOutput p "control signal";
parameter Real Ts = 0.1 "sample time [s]";
parameter Real K 5 "proportional constant";
parameter Real b 1 "set point weight";
protected

3 Examples

discrete Real sp_d;
discrete Real pv_d;
discrete Real p_d(start=0);

equation
when sample(0,Ts) then
sp_d = sp;
pv_d = pv;
pd =p;
p = Pr(pre(sp),pre(pv),K,b);
end when;

end Proportional;

model Integral
RealInput sp "set point";
RealInput pv "process variable";
RealOutput i "control signal";
parameter Real Ts = 0.1 "sample time [s]";
parameter Real Ti = 5 "integral time";
protected

discrete Real i_d(start=0);
discrete Real sp_d(start=0);
discrete Real pv_d(start=0);
equation
id-=i;
when sample(0,Ts) then
sp_d = sp;
pv_d = pv;
i d = Int(pre(sp),pre(pv),Ti,Ts,pre(i_d));
end when;

end Integral;

model Derivative
RealInput sp "set point";
RealInput pv "process variable";
RealOutput d "control signal";
parameter Real Ts = 0.1 "sample time [s]";
parameter Real Td = 5 "derivative time";
parameter Real N = 10 "derivative filter";
protected
discrete
discrete
discrete
discrete
discrete
equation
dd =d;
when sample(0,Ts) then
pv_d = pv;
sp_d sp;
d_d2 pre(d_d);
pv_d2 = pre(pv_d);
d_d= Der(pre(sp_d),pre(pv_d),pre(pv_d2),Td,Ts,N,pre(d_d2));
end when;
end Derivative;

Real d_d(

Real d_d2(
Real pv_d(
Real pv_d2(
Real sp_d(

start=0);
start=0);
start=0);
start=0);
start=0);

model PID parallel AW Tr_ AutoMan
RealInput sp "set point";
RealInput pv "process variable";
RealInput tr "signal followed during the tracking mode";
RealInput CSman "control signal for manual mode";
BooleanInput TS "flag for the tracking mode";
BooleanInput MAN "flag for the manual mode";
RealOutput cs "control signal";
Proportional P(Ts=Ts,K=K,b=b) "Proportional block";
Derivative D(Ts=Ts,Td=Td,N=N) "Derivative block";

Integral I(Ts=Ts,Ti=Ti) "Integral block";
parameter Real Ts = 1 "sample time [s]";
parameter Real Ti = 8 "integral time";
parameter Real Td = 5 "derivative time";
parameter Real K = 10 "proportional constant";
parameter Real b = 1 "weight of the set point in the P action";
parameter Real N = 10 "derivative filter";
parameter Real CSmax = 1 "Max cs value";
parameter Real CSmin = 0 "min Cs value";
protected
Real control;
equation
P.sp = sp;
D.sp = sp;
I.sp = sp;
P.pv = pv;
D.pv = pv;
I.pv = pv;

control = if (MAN==false)
then I.i + P.p + D.d
else CSman;
if (TS==true and MAN==false)
then tr
else max(CSmin,min(CSmax,control));
end PID_parallel AW Tr AutoMan;

Ccs =

We now report two simulation examples. the first
is aimed at showing the usefulness of the

The Modelica Association

149

Modelica 2008, March 3¢ — 4t 2008

A. Leva, F. Donida, M. Bonvini, L. Ravelli

possibility of simulating the same regulator as
continuous-time and as event-based model, while
the
application of the presented library.

second shows a “small but realistic”

3.1 Example 1

This example refers to some PI/PID control
loops, and deals with set point step and ramp
responses where the antiwindup mechanism of
the regulator comes into play. The process to be
controlled is described by the transfer function

S)= 12
1+2s+s5°/0.016

and the PID regulator

1 + 3s
30s 1+0.3s

R(s)=10[1+

is applied to it, in the continuous-time version
and as an event-based model with a sampling
time of 0.01 s.

Risp

Ripy

R23P

R2PY

R2CS

Risp Ripy

R23P

R2PY

R2CS

Figure 1: results of example 1.

Figure 1 above shows the comparison between
the continuous-time (R1) and event-based (R2)
controller implementation in the case of a ramp
response (left column of plots) and of a step
response (right column): SP, PV and CS stand for
Set Point, Process (controlled) Variable, and
Control
simulating the same controller as a continuous-

Signal, respectively. Apparently,
time or an event-based model (i.e., as it will
really be implemented) can give very different
results, depending not only on the controller
parametrisation, the sampling time and other very
well known facts, but also on the control law
of the

antiwindup type, and so on (facts that conversely

being incremental or positional,
are frequently overlooked). The example therefore
backs up the usefulness of the presented library
as far as the control behaviour evaluation is

concerned.

3.2 Example 2

This example shows the control of a small
manufacturing system where parts are fed to the
working area by a conveyor, machined, and then
taken away by another conveyor. The detailed
sequence of operations is as follows:

The Modelica Association

150

Modelica 2008, March 3¢ — 4t 2008

Modelica Library for Logic Control Systems written in the FBD Language

Input piston

A)ut belt

e machine the part (drill a hole with a Output
piston

e lead one part near the machining area

entrance with an input belt,

e push the part into the machining area with

an input piston,
Qutput belt

C

controlled-speed machining head)

Machining area

e push the part out of the machining area))))))
. . Figure 2: schematic drawing of the machine considered in
with an output piston,

example 2.
e and finally lead the part away with an
output belt. Figure 3 shows the Modelica scheme using some
The considered machine 1is synthetically library blocks (mostly set point generators, PIDs,
described in figure 2 and logic elements), while a sample of simulated

transients is given in figure 4.

._-‘QL _I Incr... - -
= - gen... ’—E PID* = '['—:_—

-
-
- -
L gs.?n L g | Incr...
- - PD: [
-
|
—-—n - = | |
m Set. [I
gen... L gy Incr... =
- m| PIDF [
-
tre..od
J_.
Set ... [
Incr...

bres

il
i
ol] 5
- PID= [L fptre. o
:I:h I —a
—I—n] tre.. o
m| Set i i —
gen... Incr...
[i

PID*

r!l

Incr...

PID* - -
ey EE"E“‘"T P S

Figure 3: the Modelica scheme using the presented FBD library used in example 2.

L

A

The Modelica Association 151 Modelica 2008, March 3¢ — 4t 2008

A. Leva, F. Donida, M. Bonvini, L. Ravelli

——REESP ——RXPY
12

1.0

0.6

0.6

0.4

0.2

0.0

-0.2

1.0

T
100

T
150 200

0.8

0.6+

0.4

0.2+

oo

-0.2 T T T T T

u] a0

T
100

T
1480 200

Figure 4: some simulated transients referring to example 2; the upper plot shows the drilling head x position (red) and set

point (blue), the lower plot shows the drilling depth (red) and set point (blue).

The similarity of figure 3 with the schemes
encountered in many control code development
systems are apparent. The example therefore
backs up the usefulness of the presented library
as far as the clarity of the control specification (in
terms of a widely accepted industrial standard) is
concerned.

4 Conclusions

A free (GPL) Modelica library for the simulation
of logic control systems written in the FBD
(Functional Block Diagram) language was

presented.

The library adheres to the FBD specifications as
defined in the IEC61131.3 standard, and contains
not only strictly logic blocks, but also the main
types of industrial controllers, particularly of the

PID type. The adoption of an industrial standard

facilitates information sharing and greatly

reduces ambiguities.

With the presented library, that the user can
specify a control system as a continuous-time or
an event-based model , for maximum flexibility
in fulfilling the simulation needs.

Some simulations were presented to illustrate the
usefulness of the library, which will be extended
in the future, with respect to both FBD and other
IEC-compliant languages.

The Modelica Association

152

Modelica 2008, March 3¢ — 4t 2008

Modelica Library for Logic Control Systems written in the FBD Language

References

[1] T. Sato, E. Yoshida, Y. Kakebayashi, J.
Asakura, N. Komoda, Application of IEC61131-3
For Semiconductor Processing Equipment,
Emerging Technologies and Factory Automation.
2001 8th IEEE International

Conference on, 2001.

Proceedings.

[2] J. Huang, Y. Li, W. Luo, X. Liu, K. Nan,
The Design of New-Type PLC based on
IEC61131-3, of the
Internadonal Conference on Machine Learning
and Cybernetics, Xi, 2-5, November 2003.

Proceeding Second

[3] D. E. Rivera, and S.
Skogestad, 4. pid
controller design, Ind. Eng. Chem. Res., vol. 25,
pp- 252-265, 1986.

M. Morari,

Internal model control

[4] H. Takada, H. Nakata, S. Horiike, A
Reusable Object Model for Integrating Design
of Plant Systems
Proceedings of the Fourth
Conference on Computer
Technology (CIT’04).

Phases Engineering,
International

and Information

[5] H. Taruishil, S. Kajiharal, J. Kawamotol,
M. Ono, H. Ohtani, Development of Industrial
Control Programming Environment Enhanced by
SICE-ICASE
International Joint Conference 2006 in Bexco,
Busan, Korea, Oct. 18-2 1, 2006.

Extensible Graphic Symbols,

[6] Y. Qiliang, X. Jianchun, W. Ping, Water
Level Control of Boiler Drum Using One
IEC61131-3-Based DCS, Proceedings of the 26th
Chinese Control Conference, Zhangjiajie, Hunan,
China, July 26-31, 2007.

[7] M. Bonfe', C. Fantuzzi, L. Poretti, PLC
Object-oriented programming using IEC61131-3
norm languages: an application to manufacture
machinery, in Proc. of IEEE/ASME Int. Conf. on
Advanced Intelligent Mechatronics, vol. 2, pp.
787-792, 2001.
[8] [Online]. Available
http://www.plcopen.org.

[9] J. Roger Folch, J. Pérez, M. Pineda, R.
Puche, Graphical Development of Software for
12th
and Motion

Programmable = Logic Controllers,
International Power Electronics

Control Conference.

[10] [Misc]. DeltaV: Monitor and control
software.
[11] [Misc]. Labview:

http://www.ni.com/labview.

[12] A. Nobuo, I. Kenichi, Y. Ejji, Application
portfolios for stardom, 12th International Power
Electronics and Motion Control Conference.

[13] M. Otter, K. E. Arzén, 1. Dressler,
StateGraph-A Modelica Library for Hierarchical
State Machines, 4th International Modelica
Conference, March 7-8, 2005.

[14]
Engineering Design

O. Johansson, A. Pop, P. Fritzson,
Tool Standards
Interfacing Possibilities to Modelica Simulation

and

Tools, 5th International Modelica Conference,
September 4-5, 2006.

[15] E. Tisserant, L. Bessard, M. de Sousa, An
Open Source IEC 61131-3 Integrated
Development Environment, Industrial

Informatics, 5th IEEE International Conference
on, 2007.

The Modelica Association

153

Modelica 2008, March 3¢ — 4t 2008

A. Leva, F. Donida, M. Bonvini, L. Ravelli

[16] [Online]. ISaGRAF:
http://www.icpdas.comyproducts/PAC/i-
8000/isagraf.htm

[17] [book]. O'Dwyer Aidan, Handbook of PI
and PID Controller Tuning Rules, Imperial

College Press.

[18] [book]. K. J. Astrom and T. Hégglund,
Advanced PID control, ISA - The
Instrumentation, Systems, and Automation

Society, 2005.

[19] [book]. K. J. Astrom and T. Hagglund,
PID Control Theory, Design and tuning, ISA,

1995.

[20]
customer value of industrial control performance
Sixth
International Conference on Chemical Process
Control, AIChE Symposium Series Number 326
(Volume 98), 2002.

L. Desbourough, R. Miller, Increasing

monitoring — Honeywell’s experience,

[21] O. Johansson, A. Pop, P. Fritzson, A
functionality Coverage Analysis of Industrially
used Ontology Languages, in Model Driven
Architec-ture: Foundations and Applications
(MDAFA), 2004, 10-11 June, 2004, Linkoping,
Sweden.

The Modelica Association

154

Modelica 2008, March 3¢ — 4t 2008

