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Abstract 

The increasing application of network technologies 
and smart embedded devices in the field of automa-
tion and control leads to new distributed system ar-
chitectures. The analysis of the resulting distributed 
automation systems requires models that cover physi-
cal processes as well as computing and communica-
tion devices. Modelica as multi-domain modeling 
language offers the necessary support to build such 
models. While, for physical systems, there are many 
Modelica libraries, only limited support for the mod-
eling of computation and communication is currently 
available. This gap is filled by the presented network 
and controller libraries. The network library currently 
supports switched Ethernet, WLAN, and ZigBee. The 
controller library offers different types of controllers 
as well as interface devices. Implementation aspects 
of the presented libraries are discussed in some detail 
and their application is illustrated by examples. 

1 Introduction 

As automation systems are constantly increasing in 
complexity, new methods for controller design have 
to be applied. One promising approach is the concept 
of Distributed Automation Systems (DAS). Though 
distribution simplifies the design of complex control 
applications, analysis is more difficult than in tradi-
tional monolithic or strictly hierarchical systems. 
Distributed systems have a concurrent nature. Hence, 
coordination and synchronization are needed between 
the individual control devices. This is usually 
achieved by means of networks. Because of the inex-
pensiveness of components, the plug-and-play abili-
ties and the possibility for information access from 
higher level business units, standard networks like 
Ethernet currently tend to replace special purpose 
networks (ASI, ProfiBus, ...) in automation. 
To design and analyze an automation system, the 
engineer relies on tool support. Individual tools for 

algorithm analysis, network analysis and process si-
mulation are available. However, the isolated analysis 
of any of these aspects does not meet the engineer’s 
requirement of analyzing the closed-loop behavior of 
the system where the controller interacts with the 
controlled process via the network. 
A simulation environment covering all aspects of 
distributed automation systems is Matlab/Simulink 
with the TrueTime [1] toolbox. Matlab/Simulink is a 
well-known tool for controller design and process 
simulation. TrueTime adds models for network and 
controller hardware. As Matlab/Simulink is used as 
platform, the analysis benefits from its advantages 
(widely spread, many process models available) but 
also inherits its disadvantages. Here, especially the 
causal procedural modeling approach in 
Matlab/Simulink complicates the design of complex 
process models and hinders the reuse of components. 
Modelica, as a multi-domain modeling language, 
with the object oriented modeling paradigm and the 
non-signal-flow-dependant model causality, which 
increases the reusability of process models, is another 
adequate basis for overall system analysis. 
The paper presents an approach for simulation of 
networks and controller hardware in Modelica in 
combination with process models, also modeled in 
Modelica. Means to analyze both, the functional and 
the temporal behavior of the overall system in early 
development stages are provided. First analysis re-
sults have already been presented in [2]. 
This paper focuses on the description of the devel-
oped libraries, including implementation details. In 
the next chapter, the used modeling objective is pre-
sented. Chapter 3 describes a library for simulation of 
network components. Together with the controller 
library, rendered in chapter 4, it is possible to model 
distributed automation systems. Both libraries have 
been implemented and tested with Dymola 6.1. Ap-
plication examples of the presented libraries are given 
in chapter 5. Finally, conclusions are drawn and an 
outlook on future work on the libraries is given. 
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2 Modeling Objective 

As in all simulation applications the initial step of the 
designer is to identify components and effects to be 
considered in the simulation. Based on this identifica-
tion the next step is to decide about the modeling 
approach for implementation. In the case of distri-
buted automation systems we have chosen a structure 
conserving modeling approach, mapping real world 
components to individual models. Figure 1 shows an 
archetype of a distributed automation system and the 
component models provided by the Modelica libra-
ries presented in the following chapters. 
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Figure 1: Archetype of systems that are to be covered 
by the presented librarys. 

Basically, the components of the archetype can be 
divided in three domains: 
The first domain (dark shading) covers the network. 
A network consists of one or more communication 
media (Medium). In the case of Ethernet this is usual-
ly a twisted pair cable. If more than one Medium is 
used, coupling devices (Intermediate System) have to 
be used. In Ethernet an Intermediate System, could be 
a hub or a switch. To access the Medium a Transceiv-
er is used. It manages all physical and protocol issues 
necessary for proper communication over the net-
work. The network card of a PC is an example of a 
Transceiver. 
The second domain (light shading) covers compo-
nents related to data handling and process interfacing. 
The components Controller and I/O-Board can be 
regarded as embedded devices. The control algo-
rithms are executed in Controllers (e.g. industrial PCs 
or PLCs). In general, a Controller has access to the 
network via a Transceiver as well as access to the 
controlled process via directly connected sensors and 
actuators. I/O-Boards are a simplified version of a 

Controller and allow remote access to sensors and 
actuators via the network. Usually, I/O-Boards have 
only limited processing abilities and are not used to 
execute control algorithms. 
Components of the third domain (no shading) are 
related to the physical process. 
There are three types of interconnections between 
components. Network connections (dashed edges) 
describe data wrapped in a protocol frame, dependant 
on the network type used. Pure data transport is indi-
cated by dotted edges. The exchange of physical val-
ues is shown as solid edges. 
Based on the domain classification of components in 
distributed automation systems, in chapter 3, a Mod-
elica library for network components is presented. 
The library described in chapter 4 covers the compo-
nents related to embedded devices for process con-
trol. 
Both libraries make intensive use of the object orien-
tation abilities of the Modelica language. Interface 
models are used to allow the exchange of components 
with similar behavior. Wherever possible and appro-
priate, components implement a predefined interface 
or are extended from other existing models. Along 
with the Modelica keyword replaceable, this allows 
e.g. a wide variety of controller models based on a 
small number of basic components. In the figures of 
component models replaceable component models 
can be identified by the gray shaded box around them 
(e.g. Figure 10 component CPU). 

3 Network Library 

3.1 Structure of the library 

The network library consists of fundamental compo-
nents which cover the important issues in the area of 
network transmission, e.g. communication media, 
intermediate systems, transceiver interfaces, etc. The 
rule of structure conserving modeling is held. I.e., the 
network is not modeled as a single class but all the 
fundamental components are explicitly modeled. The 
main advantage of this modeling approach is that the 
network topology, which can have significant influ-
ences on the network performance, is visible. 
Currently, the library (Figure 2) supports three wide-
spread transmission protocols, namely, fully switched 
Ethernet [3], WLAN [4] and ZigBee [5]. To increase 
simulation speed, the protocols are simplified to some 
extent, thus, only the chosen dominant factors related 
to the automation system are modeled. Especially 
noteworthy is the fact that in the network compo-
nents, only the physical and data link layers of the 
ISO/OSI model are considered and also here some 
abstractions have been made. Necessary interfaces for 

F. Wagner, L. Liu, G. Frey

The Modelica Association 114 Modelica 2008, March 3rd − 4th, 2008



the exchange of events are also included. In the Func-
tions library, external “C” functions and correspond-
ing wrap functions in Modelica can be found. Exter-
nal functions are used to simplify information ex-
change, especially for the formatted string communi-
cation. In the Examples library, application templates 
are given for each protocol, illustrating how to build a 
networked system using the models. 

 
Figure 2: Tree view of the network library. 

3.2 Application template of the network library 

Figure 3 shows a typical application example of a 
ZigBee network. The dark shading blocks on the left-
most side represent primary controller models. They 
provide the data to be sent and read the data from 
network messages regardless of the underlying 
transmission protocols. In the middle there are two 
transceiver modules connected to the controller and 
the shared medium. The transceiver module together 
with the medium defines the transmission protocol. In 
the example, controller ‘A’ sends messages to con-
troller ‘B’ via the network while ‘B’ does the same to 
‘A’. 

 
Figure 3: Application template of a ZigBee network. 

The source controller renews the data to be sent cyc-
lically and writes the message into the send queue of 
the transceiver module. Based on the network state 
and medium access algorithm, the transceiver module 
decides when to send the network message. After the 
transmission duration has expired, the network me-
dium writes the message into the receive queue of the 
destination transceiver. Then, the destination control-

ler determines when to read the data from the net-
work message stored in the receiver queue. 

3.3 Implementation of the queuing system 

As noted above, the transceiver module serves as an 
interface between the controller and the network. In 
addition to the medium access control, it has to ac-
complish the information exchange. A transceiver 
interacts with both, the controller and the medium (cf. 
Figure 4). 

 
Figure 4: Queuing mechanisms in the Transceiver. 

Thus the information flow in a transceiver is bidirec-
tional. Furthermore, the information flow in one di-
rection is split into two segments due to the unsyn-
chronized behaviors of controller, transceiver and 
network. To manage the information flow, FIFO 
queues are utilized. Each information flow segment is 
represented as a FIFO queue. The two nodes on both 
ends of the same information flow share the access to 
the same queue. The FIFO queue system is imple-
mented as external “C” functions to simplify the 
Modelica code and reduce the number of events. The 
interface functions in Modelica are given as: 

QueueID=CreateQueue(QueueSize); 
Enqueue(QueueID,MessageID); 
MessageID=Dequeue(QueueID); 
Index=ReadQueueIndex(QueueID); 

CreateQueue(QueueSize) creates a queue with given 
length and returns a unique ID. Enqueue(QueueID, 
MessageID) stores the MessageID in the first free 
place of the queue. Dequeue(QueueID) reads the first 
message from the queue and shifts the rest of the 
queue one place towards the beginning position. 
ReadQueueIndex(QueueID) returns the current posi-
tion index. The entries of a queue are message iden-
tifiers. Each message (string) is indexed with a 
unique integer ID. This utility is supported by a 
“C++” library. 
Figure 5 illustrates the information exchange in 
queues for the example from Section 3.2. New data 
(string) from the controller is represented by an iden-
tifier (ID1). This ID is enqueued in DataSendCache. 
In the next step, ID1 is dequeued and the actual con-
tent of ID1 is encapsulated to a frame with protocol 
header. Thus, a new message (string) is produced and 
a new identifier (ID2) is enqueued in FrameSend-
Cache. In the transmission, medium dequeues the 
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ID2 and makes a copy named ID3. Later after the 
transmission, ID3 is enqueued in FrameRcvCache on 
the destination side. Finally, ID3 is decapsulated and 
a message ID4 is enqueued in DataRcvCache. During 
the whole procedure, each time the Dequeue() func-
tion is called, a copy of the dequeued message is 
made and the original message is deleted. Hence, the 
message ID4 and ID1 actually have the same content. 
The information exchange is accomplished. 

... ID1 ...

DataSendCache

... ID2 ...

FrameSendCache

ID3

... ID3 ...

FrameRcvCache

... ID4 ...

DataRcvCache

Medium

ID1 “Data”

ID2 “Header”+ “Data”

ID3 “Header”+ “Data”

ID4 “Data”

... ...

String repository  
Figure 5: Queue operation in a transmission. 

3.4 Implementation of Ethernet 

The implemented Ethernet protocol is abstracted 
from a fully switched, full-duplex Ethernet. The net-
work behavior is illustrated in Figure 6.  

 
Figure 6: State diagram of Ethernet protocol. 

A twisted-pair cable is taken as the modeling pattern 
for a medium in Ethernet. Since no collisions are 
considered, the end of a cable can only be connected 
to one transceiver. In a simulation, the cable model 
receives request events from connectors on both ends 
and sends out notifications on connectors after the 
internal processing.  

3.5 Implementation of wireless communication 

In principle, the network is modeled as a discrete 
event system. It reacts on external events with deter-
ministic or non-deterministic delays. The modeling 
focuses on the standard MAC layer taking into ac-
count random access and conflict handling.  
The implementation of the protocol is divided into 
software and hardware parts. The software part cov-
ers medium access, frame format etc. It is the algo-
rithm integrated in the transceiver and intermediate 

system. The hardware part is the communication me-
dium. The communication state, the transmission 
duration and other relevant variables are decided by 
electromagnetic characteristics of the medium. From 
this point of view, there is always a clear relation 
between the network protocol and the underlying 
physical medium. In the presented approach, parts of 
the protocol codes from the transceiver model are 
moved into the medium model. In other words, the 
medium is designed with some extent of intelligence. 
In wireless communication, it is not possible to listen 
while sending because of the nature of the channel 
(frequency band). Hence, the Collision Avoidance 
(CA) method is used to improve the performance of 
Carrier Sense Multiple Access (CSMA). In principle, 
a network node always listens to the channel and 
sends only if the channel is sensed as idle. The im-
plementation of this protocol is separated into two 
parts, namely, the medium part and the transceiver 
part. The interaction between medium and transceiver 
is realized by Network_Port which can be found in 
Network.Interfaces.  
There are two main differences between the 
CSMA/CA algorithms for ZigBee and WLAN on the 
MAC layer: 
1. WLAN has an unlimited number of retries, while 

ZigBee is strictly limited on retries. 
2. ZigBee assesses the network state only at the end 

of the whole backoff time, while WLAN checks 
after each single delay unit.  

Then again, they do have some important characteris-
tics in common, e.g. listening before sending, random 
backoff waiting time before sending, incremental 
backoff time after collision.  
Therefore, the modeling attempt is to design a com-
mon model for these two algorithms. The differences 
can be represented by changing model parameters. 
The implementation is based on the unslotted 
CSMA/CA scheme, which means the network works 
without beacon synchronization and all nodes are 
working in the Ad-hoc mode. Thus the access to the 
network is random and contention prone. Details 
about the protocols can be found in [4] and [5]. 
The common wireless medium model is illustrated in 
Figure 7. The shared medium is triggered if any net-
work node sends an attempt of trying. Based on the 
sum of trying nodes, it decides to begin transmitting 
or to send a collision notification. After successful 
transmission, it waits for a certain time before reset-
ting the medium state to idle. This time is given by:  
WaitingTime = SIFS + ACK + DIFS                       (1) 
where SIFS (Short Inter Frame Space), ACK (Ac-
knowledge), DIFS (Distributed Inter Frame Space) 
are physic dependent parameters defined in the stan-
dard. 
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Figure 7: State diagram of wireless medium. 

The transceiver part algorithm is mainly used to per-
form the backoff procedure. Here, the separate im-
plementation shows great advantage in the WLAN 
protocol considering the simulation performance. 
Since the conflict detection is executed by the me-
dium model, the transceiver models do not have to 
assess the medium state after each unit delay, but 
only to wait for the event trigger from medium notifi-
cation. By doing so, unnecessary events, which slow-
down the simulation dramatically, are avoided. For 
instance, 802.11 standard defines the backoff time in 
the unit of timeslots: 
Backofftime = backoff_counter × slot_time             (2) 
where the initial backoff_counter is a random number 
in the range [0, 31] and slot_time is 20 μs [6]. If no 
collision happens, it causes on an average 16 events 
with a cycle of 20μs per transmission. In the worst 
case (4 collisions happen successively), there are 
1031 events for a transmission. In the separate im-
plementation, the number of events is reduced to 1. 
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Figure 8: State diagram of wireless transceiver. 

The designed common model is illustrated in Figure 
8. The exact model behavior is predefined by a model 
parameter given as “802.11” or “802.15”. The com-
mon model is a partial model in Modelica, thus in the 
application, it is instantiated as a replaceable model 
and can be easily parameterized for different proto-
cols. 
There are some important assumptions to be noticed:  
1. No transmission failure is taken into considera-

tion, i.e. no packet is lost in the transmission and 
no re-transmission is needed.  

2. The acknowledge message is not modeled. 
3. One shared medium model represents one avail-

able channel. All nodes connected to the medium 
hence operate in the same channel. No dynamic 
channel switching is considered. As a conse-
quence, the network capacity is restricted. 

4 Controller components library 

4.1 Overview of the library 

The controller components library contains models to 
describe the behavior of an embedded controller de-
vice. In comparison to the simulations of automation 
systems without detailed controller models, the ef-
fects of synchronization, scheduling and queuing are 
considered in retrieving system behavior which pro-
vides more realistic simulation results. 
The library is split into sub-libraries that group con-
troller components by their function (cf. Figure 9). 

 
Figure 9: Screenshot of the controller library. 
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Board 
The basic component of a controller device is a 
board. It hosts devices that are needed to run control 
algorithms, to interface plants to be controlled and to 
interchange information between controller devices. 
The library Controller.Board hosts three basic board 
models which distinct in the interfaces they provide 
(only process interface (IOBoard), only network in-
terface (NetworkBoard), combination of 
both(NetworkIOBoard)). The components of the 
NetworkIOBoard model, shown in Figure 10, will be 
detailed in the following sections. 

 
Figure 10: Component model of a board with process 
and network interfaces. 

Process Interfaces and Converters 
The process interface consists of an array of conti-
nuous input (u) and output (y) signals. As in real con-
trollers input and output signals are not directly con-
nected to the CPU. The input signals are first con-
verted by a hardware AD-Converter, and the DA-
conversion of the output signals is done by means of 
a hardware DA-Converter. The converter models can 
be found in the Controller.ProcessInterface library. 
RAM 
The results of the AD-conversions are stored in a 
random access memory (RAM) called process image 
of inputs (PIInputs), whereas the output signals to be 
DA-converted are read from the process image of 
outputs (PIOutputs) by the DA-Converter. 
The RAM model can be found in Controller.Memory. 
It provides means to exchange information between 
component models. To attach models to a memory 
component the MemoryConnector is used. 
Network Interface 
The network interface is provided by the network 
library. It is regarded as a transceiver IC which per-
forms network operations concurrently. The CPU can 
transfer messages to be sent via network to the tran-
sceiver IC whereas received network messages can be 
read by the CPU from the transceiver IC. 
CPU 
The central processing unit (CPU) executes the con-
trol algorithms. The CPU models can be found in the 
library Controller.CPU. There are two different 

CPU-models in the library, one without network 
access (CPU) and one with network access (CPU-
WithNetwork). The CPU model is instantiated as rep-
laceable in the board models and, thus can be ex-
changed to other CPU models extending CPU. The 
CPU executes the control algorithms wrapped in 
Tasks as described in the next section. Figure 11 
shows the CPUWithNetwork model. 

 
Figure 11: Model of a CPU with network access. 

Task and Scheduler 
A task (library Controller.CPU.Task) is a software 
process which runs quasi-concurrently to other tasks 
in a CPU. A scheduler (library Control-
ler.CPU.Scheduler) allocates processing time to the 
tasks according to a certain scheduling policy. The 
library provides several scheduler models (e.g. Round 
Robin, FIFO) which are all based on the Control-
ler.Interfaces.IScheduler model. 
All tasks have access to the process images (PIInputs 
and PIOutputs) and share a common memory called 
RAM. The RAM can be used to exchange informa-
tion between tasks inside a CPU. The connections to 
the different memory types are drawn in different 
colors in Figure 11 (PIInputs: orange, PIOutput: red, 
RAM: blue). The connections between the tasks and 
the scheduling model are drawn in black. The green 
horizontal bars are used as a Modelica bus to reduce 
connections to the scheduler. 
The CPUWithNetwork model can host up to four 
tasks without network access (Task) and two tasks 
with network access (NetworkTask). Task and 
NetworkTask are implemented as partial models and 
serve as generalized task models. The task models are 
instantiated as replaceable in the CPUWithNetwork 
model and can be easily changed to specialized ones. 
The models DummyTask and DummyNetworkTask 
can be used to specify that a task is not present. The 
library user can easily build his own CPU models 
with more Tasks by extending the existing ones. 
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4.2 Implementation details 

RAM 
The Controller.Memory.RAM model plays an impor-
tant role in the simulation of an embedded controller. 
It provides means to interchange information between 
controller components. On the first look, this does not 
seem to be a big issue in Modelica, as the connector 
type is especially designed for this purpose. But, in 
the domain of informational systems a connector is 
not a convenient tool to exchange information be-
tween components. Due to the fact that the amount of 
data exchanged may vary, not all cases can be cov-
ered when designing a general information exchange 
connector. Instead, it is appropriate to make use of 
the external function interface of Modelica to imple-
ment an information exchange system in a dedicated 
programming language which is then triggered by 
Modelica models. In this way the complexity of data 
handling is hidden from the Modelica models. To do 
so, a C++ library has been developed which emulates 
a collection of random access memories that can be 
accessed via a unique index. Figure 12 shows a 
coarse overview of the C++ library internals and the 
interconnection with the Modelica model. 
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Figure 12: Coarse overview of the C++ library. 

Interface functions to use the C++ memory collection 
are provided in the sub-libraries 
Controller.Memory.Functions.WrapperFunctions: 

RAMIndex:=createRAM(); 
value:=readRAM(RAMIndex,address); 
writeRAM(RAMIndex,address,value); 

The function createRAM creates a random access 
memory in the collection and returns the unique iden-
tifier of the memory (RAMIndex) as an Integer. When 
reading or writing from or to a memory, the RAMIn-
dex has to be passed to identify the memory. 
readRAM is used to read values (as String) from the 
memory RAMIndex from the given position address 
(as Integer) in the memory, whereas writeRAM is 
used to store a value in the given memory RAMIndex 
at position address. 

In the C++ library, a RAM is organized as a collec-
tion of references to strings (character arrays) stored 
in a global string repository. Library internal func-
tions provide the mechanism to read and write strings 
to the string repository, identified by the RAMIndex, 
using the given address which is a local identifier 
inside a RAM. 
A slightly varied functionality is used to implement 
the queuing mechanism in the same library. Instead 
of giving random access to values in a queue, the 
interface functions only allow reading (dequeueing) 
from the first address in the queue and writing (en-
queuing) at the end of the queue. The string manage-
ment is done in the same way as in the case of RAM, 
using the string repository. 
For maximum flexibility, the values passed to or from 
the memory are of type String. This way arbitrary 
information can be used in the simulation. When ne-
cessary, numerical information contained in the 
strings can be parsed by means of functions provided 
in the Modelica.Utilities.Strings library. In the case of 
real values, the library provides the functions 
readReal and writeReal in the sub-library 
Controller.Memory.Functions, where parsing is done 
automatically. 
The RAM model itself is just a placeholder for one of 
the memories managed in the C++ library. Its only 
dynamic behavior is a function call to create a memo-
ry in the memory collection in the initial simulation 
step. The unique index of this memory is then stored 
in the RAM model and published via the 
MemoryConnector, which only consists of the unique 
memory index. 
To improve debug capabilities, the interface functions 
provide the possibility to trace read and write ac-
cesses to the RAM model. For this purpose, each 
function call, including function parameters, of rea-
dRAM and writeRAM can be stored in a textfile or a 
database table (cf. Table 1). 
Table 1: Dump of a database trace of operations on 
RAM models. 

id operation RAMindex address value
//

28 W 1 2 "5"
29 W 2 5 "-3"
30 R 1 2 "5"
31 W 2 3 "3"
32 R 2 2 "1"
33 R 1 2 "5"

//  

Tasks 
As described above, the control algorithms are orga-
nized in tasks to allow multiple algorithms to run 
quasi-concurrently on a single CPU. Hence, if mul-
tiple tasks are active at once, they are competing for 
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processing time. The scheduling instance manages 
that the processing time is spread among all tasks. 
The task models (Controller.Task.*) can be seen as 
wrapping units that provide interfaces to access CPU-
internal (e.g. Memory, Timer) and CPU-external 
components (e.g. process images, network port). 
Therefore, all tasks extend the Control-
ler.Intefaces.ITask interface. The behavior is de-
scribed in Figure 13. 

 
Figure 13: State diagram of a task. 

A task can be in one of three states (Idle, Waiting, 
Running), and is controlled by four variables: run, 
idle, runTime and sleepTime which enforce state 
switches. Depending on the state, the timers runTimer 
and sleepTimer are active or inactive and processing 
time is requested or not (variable request). 
The external variable run is provided by the schedu-
ler and determines if the task is currently the active 
task in the CPU. The internal variable idle enforces 
the task to go to Idle state if its value is true. runTime 
determines the processing time that is needed to 
finish the current job of the task, while sleepTime is 
used to assign the period to send the task to Idle state. 
If a task has no job to do, it is in Idle state. In state 
Waiting, the task is requesting processing time, but 
currently does not get processing time by the schedu-
ler. In state Running, the task gets processing time 
and is thus running. When the runTimer value ex-
ceeds runTime the jobFinished event is raised which 
indicates that the current job of the task is completed. 
This event is used to embed the actual control algo-
rithm in the Task model, just by extending one of the 
given template tasks (Task or NetworkTask). The 
behavior is given by the extended Task model. This 
way the library user can focus on the implementation 
of the algorithms itself. 
Integration of Algorithms 
The Controller library provides basically two differ-
ent ways to define the algorithms executed in a Task 
model: 

1. algorithm definition in Modelica language 
2. algorithm definition in external libraries using the 

Modelica external function interface 
To define and implement an algorithm in Modelica, 
one of the basic Task models (Task or NetworkTask) 
must be extended. As intelligence for scheduling is 
predefined in the basic Task models, only the values 
of the task control variables idle, sleepTime and run-
Time as well as the reaction on the jobFinished event 
must be specified. 
The basic structure of tasks using Modelica algo-
rithms is defined as shown below. 
model ExampleTask 
 extends Controller.CPU.Task.Task; 
initial algorithm 
 sleepTime:=0; 
 runTime:=100/CPUFreq; 
algorithm 
 when (pre(jobFinished)) then 
  //here, the algorithm semantics are specified 
 end when; 
end ExampleTask; 
The initial algorithm section assigns start values for 
the control variables sleepTime and runTime. In the 
algorithm section, the processing of the jobFinished 
event is defined by means of a when block. The con-
dition jobFinished must be wrapped by a pre to cut 
the algorithmic loop involving the task and the sche-
duler component. 
The semantics of the algorithm is then specified in 
the body of the when block, as shown in the follow-
ing example of a single input single output P control-
ler: 
… 
import Functions=Controller.Memory.Functions; 
… 
when (pre(jobFinished)) then 
 //when a job is finished, runTimer is reset 
 reinit(runTimer,0); 
 //state==0: read input value 
 if (state==0) then 
  //read sensor value from process image 
  y:=Functions.readReal(PIInputs, 1); 
  //next state is executing control law 
  state:=1; 
  //executing control law takes 5000 cycles 
  runTime:=5000/CPUFreq; 
  //state==1: execute control law 
 elseif (state==1) then 
  //calculate control error and new set value 
  e:=w - y; 
  u:=k*e; 
  //next state is writing new set value 
  state:=2; 
  //execution for writing takes 500 cycles 
  runTime:=500/CPUFreq; 
  //state==2: set output value 
 elseif (state==2) then 
  //write output value to process image 
  Functions.writeReal(PIOutputs,1,u); 
  //next state is reading input values 
  state:=0; 
  //reading input signal takes 500 cycles 
  runTime:=500/CPUFreq; 
 end if; 
end when; 
… 
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The task is divided into three jobs which are executed 
sequentially. The job currently processed is indicated 
by the Integer variable state (0: read inputs, 1: calcu-
late output, 2: write output). The execution time can 
vary among the jobs and is expressed in terms of pro-
cessor cycles divided by the processor frequency 
(CPUFreq in Hz). When the jobFinished event arises, 
the semantics of the job is being performed and the 
settings for the next job are carried out. This means 
that the runTimer variable is reset to zero and that the 
runTime for the next job is assigned. The task should 
run without breaks and thus is never send to Idle state 
(sleepTime:=0, idle:=false). 
As described earlier, the tasks do not have direct 
access to the environment (input and output signals). 
Instead, the algorithms work on images of the input 
and output signals by reading from the process image 
of inputs (PIInputs) or writing to the process image of 
outputs (PIOutputs) using the provided interface 
functions. 
For complicated algorithms, the Modelica design 
language is not the mean of choice. For this case, the 
Controller.CPU.Tasks library provides the External-
Task and ExternalNetworkTask models, which allow 
the definition of algorithms in other programming 
languages (e.g. C or Java). Using the construct of 
replaceable function, the user of the library can easily 
access external algorithms by providing Modelica 
interface functions extending Control-
ler.CPU.Tasks.externalAlgorithm. 

5 Application of the Libraries 

Many analysis problems in DAS can be characterized 
as runtime or delay investigations. A typical real 
world problem is the determination of the response 
time distribution on events in the process to be con-
trolled (e.g. emergency stop). Results, elaborated 
with an earlier version of the presented library, have 
been published in [7]. 
Including the plant under control in the simulation, 
quality analysis can be performed. Reaction delays, 
due to the distributed nature of DASs, cause fluctua-
tions in the control quality. As shown in [2], the libra-
ries can be used to analyze the variations of process 
values based on a collection of simulation runs. 
Another application of overall system simulation is 
feasibility analysis. It can be used to perform proof-
of-concept tests in early development stages of 
DASs. The classical example for feasibility analysis 
in continuous control is the stabilization of an in-
verted pendulum in the instable (upper) rest position. 
Figure 14 shows the setup of a DAS with an inverted 
pendulum using a wireless network. The experimen-
tal setup consists of the inverted pendulum with 

0.5 kg mass for the cart as well as for the pendulum 
arm with a length of 1 m. In the initial, state pendu-
lum arm and cart are not moving, but the pendulum 
arm is rotated by ϕ = 0.25 rad. 

 
Figure 14: Inverted pendulum experiment. 

Attached to the pendulum there are four Control-
ler.Board.IOBoards (sensor1-4) providing informa-
tion about position and velocity of the cart as well as 
angle and angular velocity of the pendulum arm. The 
Controller.Board.IOBoard actuator drives the cart 
with the translation force calculated by the Control-
ler.Board.NetworkIOBoard microController. The 
Controller.Board.NetworkIOBoard SCADA (Super-
visory Control And Data Acquisition) is allotted to 
collect the overall system status periodically. 
The control algorithm on the microcontroller is split 
up into three concurrent tasks. The first task cyclical-
ly requests sensor values from the sensor boards and 
sends the calculated force value to the actuator board. 
The second task handles incoming network messages, 
and is only active when network messages are availa-
ble. The third task is the control algorithm itself 
working in three sequential steps: 

1. reading input signals from the RAM, pro-
vided by the remote sensors, 

2. calculating the force value (control law),  
3. writing the force value to the RAM. 

The control law is a state controller, with gains ac-
quired from a linear continuous time state space 
model. 
The requesting task runs 4 ms and then falls asleep 
for 20 ms. The message handling task needs 1 ms to 
process each incoming message. The control algo-
rithm task needs 1 ms to read the input signal values 
as well as 1 ms to write the force value. To execute 
the control law, 11 ms are needed. 
Processing of network messages in the sensor and 
actuator boards takes 2 ms. As there are no concur-
rent tasks in these boards execution starts as soon as a 
network message is received. 
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The example setup has been simulated with two dif-
ferent networks, ZigBee with 250 kbps transmission 
rate and WLAN with 11 Mbps transmission rate. Ad-
ditionally, the inverted pendulum has been simulated 
using the same control law emulating a continuous 
controller neglecting all delays imposed by the auto-
mation system. 
As shown in Figure 15, the pendulum angle varies a 
lot among the three simulated scenarios. As expected, 
the scenario neglecting delays shows best perfor-
mance and the WLAN scenario is superior to the 
ZigBee scenario. 
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Figure 15: Pendulum arm angle sequence plot. 

The reason for the differences among the scenarios is 
the delayed application of the actuator force caused 
by the automation system delays. It can be seen from 
Figure 16 that the first update of the actuator value 
occurs after approx. 80 ms using WLAN. In the sce-
nario with ZigBee this delay increases to 100 ms. 
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Figure 16: Zoomed applied translational force 
sequence plot. 

A 20 s lasting simulation (carried out in Dymola 6.1) 
takes 94.2 s CPU time on a PC with 2.8 GHz Pentium 
IV HT and 2 GB RAM. Best performance has been 
achieved using the Lsodar integration algorithm with 
1e-6 tolerance. 
Using the common setup for storing variables con-
sumes too much memory and disk space, even for 
short simulations (less than 10 seconds). Thus, inter-
esting simulation values have to be stored using pro-

prietary mechanism, e.g. sampled saving of data to a 
file with using Modelica.Utilities.Streams.print. 

6 Conclusions and Outlook 

Libraries for simulation of Distributed Automation 
Systems using the Modelica language have been pre-
sented. The libraries allow delay time determination, 
quality of control analysis and feasibility analysis in 
closed-loop applications. The application of the libra-
ries has been illustrated by an example using wireless 
communication. 
Future work will focus on improvement of the net-
work models regarding failure behavior (e.g. packet 
losses) and the integration of other networks especial-
ly in the field of automotive applications (CAN, 
LIN, …). 
The presented libraries can be downloaded from 
http://www.eit.uni-kl.de/frey. 
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