
Simulation of Distributed Automation Systems in Modelica
Florian Wagner Liu Liu Georg Frey

University of Kaiserslautern
Erwin-Schrödinger-Str.12

D-67663, Kaiserslautern, Germany
{wagner | liuliu | frey}@eit.uni-kl.de

Abstract

The increasing application of network technologies
and smart embedded devices in the field of automa-
tion and control leads to new distributed system ar-
chitectures. The analysis of the resulting distributed
automation systems requires models that cover physi-
cal processes as well as computing and communica-
tion devices. Modelica as multi-domain modeling
language offers the necessary support to build such
models. While, for physical systems, there are many
Modelica libraries, only limited support for the mod-
eling of computation and communication is currently
available. This gap is filled by the presented network
and controller libraries. The network library currently
supports switched Ethernet, WLAN, and ZigBee. The
controller library offers different types of controllers
as well as interface devices. Implementation aspects
of the presented libraries are discussed in some detail
and their application is illustrated by examples.

1 Introduction

As automation systems are constantly increasing in
complexity, new methods for controller design have
to be applied. One promising approach is the concept
of Distributed Automation Systems (DAS). Though
distribution simplifies the design of complex control
applications, analysis is more difficult than in tradi-
tional monolithic or strictly hierarchical systems.
Distributed systems have a concurrent nature. Hence,
coordination and synchronization are needed between
the individual control devices. This is usually
achieved by means of networks. Because of the inex-
pensiveness of components, the plug-and-play abili-
ties and the possibility for information access from
higher level business units, standard networks like
Ethernet currently tend to replace special purpose
networks (ASI, ProfiBus, ...) in automation.
To design and analyze an automation system, the
engineer relies on tool support. Individual tools for

algorithm analysis, network analysis and process si-
mulation are available. However, the isolated analysis
of any of these aspects does not meet the engineer’s
requirement of analyzing the closed-loop behavior of
the system where the controller interacts with the
controlled process via the network.
A simulation environment covering all aspects of
distributed automation systems is Matlab/Simulink
with the TrueTime [1] toolbox. Matlab/Simulink is a
well-known tool for controller design and process
simulation. TrueTime adds models for network and
controller hardware. As Matlab/Simulink is used as
platform, the analysis benefits from its advantages
(widely spread, many process models available) but
also inherits its disadvantages. Here, especially the
causal procedural modeling approach in
Matlab/Simulink complicates the design of complex
process models and hinders the reuse of components.
Modelica, as a multi-domain modeling language,
with the object oriented modeling paradigm and the
non-signal-flow-dependant model causality, which
increases the reusability of process models, is another
adequate basis for overall system analysis.
The paper presents an approach for simulation of
networks and controller hardware in Modelica in
combination with process models, also modeled in
Modelica. Means to analyze both, the functional and
the temporal behavior of the overall system in early
development stages are provided. First analysis re-
sults have already been presented in [2].
This paper focuses on the description of the devel-
oped libraries, including implementation details. In
the next chapter, the used modeling objective is pre-
sented. Chapter 3 describes a library for simulation of
network components. Together with the controller
library, rendered in chapter 4, it is possible to model
distributed automation systems. Both libraries have
been implemented and tested with Dymola 6.1. Ap-
plication examples of the presented libraries are given
in chapter 5. Finally, conclusions are drawn and an
outlook on future work on the libraries is given.

Simulation of Distributed Automation Systems in Modelica

The Modelica Association 113 Modelica 2008, March 3rd − 4th, 2008

2 Modeling Objective

As in all simulation applications the initial step of the
designer is to identify components and effects to be
considered in the simulation. Based on this identifica-
tion the next step is to decide about the modeling
approach for implementation. In the case of distri-
buted automation systems we have chosen a structure
conserving modeling approach, mapping real world
components to individual models. Figure 1 shows an
archetype of a distributed automation system and the
component models provided by the Modelica libra-
ries presented in the following chapters.

Transceiver
(Network Card)

Controller
(Industrial PC)

Medium
(Cable)

Intermediate
System
(Hub)

Intermediate
System
(Switch)

Medium
(Cable)

Transceiver
(Network
Extension)

Controller
(PLC)

Medium
(Cable)

Transceiver
(IC)

I/O‐Board
(Remote I/O)

Process

Medium
(Cable)

Figure 1: Archetype of systems that are to be covered
by the presented librarys.

Basically, the components of the archetype can be
divided in three domains:
The first domain (dark shading) covers the network.
A network consists of one or more communication
media (Medium). In the case of Ethernet this is usual-
ly a twisted pair cable. If more than one Medium is
used, coupling devices (Intermediate System) have to
be used. In Ethernet an Intermediate System, could be
a hub or a switch. To access the Medium a Transceiv-
er is used. It manages all physical and protocol issues
necessary for proper communication over the net-
work. The network card of a PC is an example of a
Transceiver.
The second domain (light shading) covers compo-
nents related to data handling and process interfacing.
The components Controller and I/O-Board can be
regarded as embedded devices. The control algo-
rithms are executed in Controllers (e.g. industrial PCs
or PLCs). In general, a Controller has access to the
network via a Transceiver as well as access to the
controlled process via directly connected sensors and
actuators. I/O-Boards are a simplified version of a

Controller and allow remote access to sensors and
actuators via the network. Usually, I/O-Boards have
only limited processing abilities and are not used to
execute control algorithms.
Components of the third domain (no shading) are
related to the physical process.
There are three types of interconnections between
components. Network connections (dashed edges)
describe data wrapped in a protocol frame, dependant
on the network type used. Pure data transport is indi-
cated by dotted edges. The exchange of physical val-
ues is shown as solid edges.
Based on the domain classification of components in
distributed automation systems, in chapter 3, a Mod-
elica library for network components is presented.
The library described in chapter 4 covers the compo-
nents related to embedded devices for process con-
trol.
Both libraries make intensive use of the object orien-
tation abilities of the Modelica language. Interface
models are used to allow the exchange of components
with similar behavior. Wherever possible and appro-
priate, components implement a predefined interface
or are extended from other existing models. Along
with the Modelica keyword replaceable, this allows
e.g. a wide variety of controller models based on a
small number of basic components. In the figures of
component models replaceable component models
can be identified by the gray shaded box around them
(e.g. Figure 10 component CPU).

3 Network Library

3.1 Structure of the library

The network library consists of fundamental compo-
nents which cover the important issues in the area of
network transmission, e.g. communication media,
intermediate systems, transceiver interfaces, etc. The
rule of structure conserving modeling is held. I.e., the
network is not modeled as a single class but all the
fundamental components are explicitly modeled. The
main advantage of this modeling approach is that the
network topology, which can have significant influ-
ences on the network performance, is visible.
Currently, the library (Figure 2) supports three wide-
spread transmission protocols, namely, fully switched
Ethernet [3], WLAN [4] and ZigBee [5]. To increase
simulation speed, the protocols are simplified to some
extent, thus, only the chosen dominant factors related
to the automation system are modeled. Especially
noteworthy is the fact that in the network compo-
nents, only the physical and data link layers of the
ISO/OSI model are considered and also here some
abstractions have been made. Necessary interfaces for

F. Wagner, L. Liu, G. Frey

The Modelica Association 114 Modelica 2008, March 3rd − 4th, 2008

the exchange of events are also included. In the Func-
tions library, external “C” functions and correspond-
ing wrap functions in Modelica can be found. Exter-
nal functions are used to simplify information ex-
change, especially for the formatted string communi-
cation. In the Examples library, application templates
are given for each protocol, illustrating how to build a
networked system using the models.

Figure 2: Tree view of the network library.

3.2 Application template of the network library

Figure 3 shows a typical application example of a
ZigBee network. The dark shading blocks on the left-
most side represent primary controller models. They
provide the data to be sent and read the data from
network messages regardless of the underlying
transmission protocols. In the middle there are two
transceiver modules connected to the controller and
the shared medium. The transceiver module together
with the medium defines the transmission protocol. In
the example, controller ‘A’ sends messages to con-
troller ‘B’ via the network while ‘B’ does the same to
‘A’.

Figure 3: Application template of a ZigBee network.

The source controller renews the data to be sent cyc-
lically and writes the message into the send queue of
the transceiver module. Based on the network state
and medium access algorithm, the transceiver module
decides when to send the network message. After the
transmission duration has expired, the network me-
dium writes the message into the receive queue of the
destination transceiver. Then, the destination control-

ler determines when to read the data from the net-
work message stored in the receiver queue.

3.3 Implementation of the queuing system

As noted above, the transceiver module serves as an
interface between the controller and the network. In
addition to the medium access control, it has to ac-
complish the information exchange. A transceiver
interacts with both, the controller and the medium (cf.
Figure 4).

Figure 4: Queuing mechanisms in the Transceiver.

Thus the information flow in a transceiver is bidirec-
tional. Furthermore, the information flow in one di-
rection is split into two segments due to the unsyn-
chronized behaviors of controller, transceiver and
network. To manage the information flow, FIFO
queues are utilized. Each information flow segment is
represented as a FIFO queue. The two nodes on both
ends of the same information flow share the access to
the same queue. The FIFO queue system is imple-
mented as external “C” functions to simplify the
Modelica code and reduce the number of events. The
interface functions in Modelica are given as:

QueueID=CreateQueue(QueueSize);
Enqueue(QueueID,MessageID);
MessageID=Dequeue(QueueID);
Index=ReadQueueIndex(QueueID);

CreateQueue(QueueSize) creates a queue with given
length and returns a unique ID. Enqueue(QueueID,
MessageID) stores the MessageID in the first free
place of the queue. Dequeue(QueueID) reads the first
message from the queue and shifts the rest of the
queue one place towards the beginning position.
ReadQueueIndex(QueueID) returns the current posi-
tion index. The entries of a queue are message iden-
tifiers. Each message (string) is indexed with a
unique integer ID. This utility is supported by a
“C++” library.
Figure 5 illustrates the information exchange in
queues for the example from Section 3.2. New data
(string) from the controller is represented by an iden-
tifier (ID1). This ID is enqueued in DataSendCache.
In the next step, ID1 is dequeued and the actual con-
tent of ID1 is encapsulated to a frame with protocol
header. Thus, a new message (string) is produced and
a new identifier (ID2) is enqueued in FrameSend-
Cache. In the transmission, medium dequeues the

Simulation of Distributed Automation Systems in Modelica

The Modelica Association 115 Modelica 2008, March 3rd − 4th, 2008

ID2 and makes a copy named ID3. Later after the
transmission, ID3 is enqueued in FrameRcvCache on
the destination side. Finally, ID3 is decapsulated and
a message ID4 is enqueued in DataRcvCache. During
the whole procedure, each time the Dequeue() func-
tion is called, a copy of the dequeued message is
made and the original message is deleted. Hence, the
message ID4 and ID1 actually have the same content.
The information exchange is accomplished.

... ID1 ...

DataSendCache

... ID2 ...

FrameSendCache

ID3

... ID3 ...

FrameRcvCache

... ID4 ...

DataRcvCache

Medium

ID1 “Data”

ID2 “Header”+ “Data”

ID3 “Header”+ “Data”

ID4 “Data”

... ...

String repository
Figure 5: Queue operation in a transmission.

3.4 Implementation of Ethernet

The implemented Ethernet protocol is abstracted
from a fully switched, full-duplex Ethernet. The net-
work behavior is illustrated in Figure 6.

Figure 6: State diagram of Ethernet protocol.

A twisted-pair cable is taken as the modeling pattern
for a medium in Ethernet. Since no collisions are
considered, the end of a cable can only be connected
to one transceiver. In a simulation, the cable model
receives request events from connectors on both ends
and sends out notifications on connectors after the
internal processing.

3.5 Implementation of wireless communication

In principle, the network is modeled as a discrete
event system. It reacts on external events with deter-
ministic or non-deterministic delays. The modeling
focuses on the standard MAC layer taking into ac-
count random access and conflict handling.
The implementation of the protocol is divided into
software and hardware parts. The software part cov-
ers medium access, frame format etc. It is the algo-
rithm integrated in the transceiver and intermediate

system. The hardware part is the communication me-
dium. The communication state, the transmission
duration and other relevant variables are decided by
electromagnetic characteristics of the medium. From
this point of view, there is always a clear relation
between the network protocol and the underlying
physical medium. In the presented approach, parts of
the protocol codes from the transceiver model are
moved into the medium model. In other words, the
medium is designed with some extent of intelligence.
In wireless communication, it is not possible to listen
while sending because of the nature of the channel
(frequency band). Hence, the Collision Avoidance
(CA) method is used to improve the performance of
Carrier Sense Multiple Access (CSMA). In principle,
a network node always listens to the channel and
sends only if the channel is sensed as idle. The im-
plementation of this protocol is separated into two
parts, namely, the medium part and the transceiver
part. The interaction between medium and transceiver
is realized by Network_Port which can be found in
Network.Interfaces.
There are two main differences between the
CSMA/CA algorithms for ZigBee and WLAN on the
MAC layer:
1. WLAN has an unlimited number of retries, while

ZigBee is strictly limited on retries.
2. ZigBee assesses the network state only at the end

of the whole backoff time, while WLAN checks
after each single delay unit.

Then again, they do have some important characteris-
tics in common, e.g. listening before sending, random
backoff waiting time before sending, incremental
backoff time after collision.
Therefore, the modeling attempt is to design a com-
mon model for these two algorithms. The differences
can be represented by changing model parameters.
The implementation is based on the unslotted
CSMA/CA scheme, which means the network works
without beacon synchronization and all nodes are
working in the Ad-hoc mode. Thus the access to the
network is random and contention prone. Details
about the protocols can be found in [4] and [5].
The common wireless medium model is illustrated in
Figure 7. The shared medium is triggered if any net-
work node sends an attempt of trying. Based on the
sum of trying nodes, it decides to begin transmitting
or to send a collision notification. After successful
transmission, it waits for a certain time before reset-
ting the medium state to idle. This time is given by:
WaitingTime = SIFS + ACK + DIFS (1)
where SIFS (Short Inter Frame Space), ACK (Ac-
knowledge), DIFS (Distributed Inter Frame Space)
are physic dependent parameters defined in the stan-
dard.

F. Wagner, L. Liu, G. Frey

The Modelica Association 116 Modelica 2008, March 3rd − 4th, 2008

Idle

Transmission requests
from nodes

Assess the number of active nodes
/N=sum(active nodes)

[N>1]

Transmitting
Entry/ Assess the transmission duration
Do/ waiting
/Medium busy=true
/collision=false

Notification
/Medium busy=true,
/collision=true

[N=1]

[Finished=false][Finished=true]

Notification
Do/ Waiting for SIFS+ACK+DIFS
Quit /Inform the receiver side
Quit /Medium busy=false
Quit /collision=false

sm Wireless Medium

Figure 7: State diagram of wireless medium.

The transceiver part algorithm is mainly used to per-
form the backoff procedure. Here, the separate im-
plementation shows great advantage in the WLAN
protocol considering the simulation performance.
Since the conflict detection is executed by the me-
dium model, the transceiver models do not have to
assess the medium state after each unit delay, but
only to wait for the event trigger from medium notifi-
cation. By doing so, unnecessary events, which slow-
down the simulation dramatically, are avoided. For
instance, 802.11 standard defines the backoff time in
the unit of timeslots:
Backofftime = backoff_counter × slot_time (2)
where the initial backoff_counter is a random number
in the range [0, 31] and slot_time is 20 μs [6]. If no
collision happens, it causes on an average 16 events
with a cycle of 20μs per transmission. In the worst
case (4 collisions happen successively), there are
1031 events for a transmission. In the separate im-
plementation, the number of events is reduced to 1.

Idle

New data to transmit

Assess the medium state

Backoff
do/ waiting

Break backoff procedure

/interrupted backoff=true

sm Tranceiver

[Busy]

Init back off procedure
/BE=BEinit
/NB=NBinit

[Idle]

Perform CCA

Calculate new back off
parameters

/NB=NB+1
/BE=min(BE+1,BEMAX)

[802.11]

[802.15]

[NB>Nbmax
&

802.15]

[NB<=Nbmax
or

802.11]

Delay time expired

[Medium busy]

[Medium free]

Transmitting
Entry/ Transmitting begin
Do/ Waiting for Notification

Transmission finished

Medium busy [802.11]

Assess delay time

Failure

[Idle and
interrupted backoff]

resume
backoff procedure

/interrupted backoff=false

Figure 8: State diagram of wireless transceiver.

The designed common model is illustrated in Figure
8. The exact model behavior is predefined by a model
parameter given as “802.11” or “802.15”. The com-
mon model is a partial model in Modelica, thus in the
application, it is instantiated as a replaceable model
and can be easily parameterized for different proto-
cols.
There are some important assumptions to be noticed:
1. No transmission failure is taken into considera-

tion, i.e. no packet is lost in the transmission and
no re-transmission is needed.

2. The acknowledge message is not modeled.
3. One shared medium model represents one avail-

able channel. All nodes connected to the medium
hence operate in the same channel. No dynamic
channel switching is considered. As a conse-
quence, the network capacity is restricted.

4 Controller components library

4.1 Overview of the library

The controller components library contains models to
describe the behavior of an embedded controller de-
vice. In comparison to the simulations of automation
systems without detailed controller models, the ef-
fects of synchronization, scheduling and queuing are
considered in retrieving system behavior which pro-
vides more realistic simulation results.
The library is split into sub-libraries that group con-
troller components by their function (cf. Figure 9).

Figure 9: Screenshot of the controller library.

Simulation of Distributed Automation Systems in Modelica

The Modelica Association 117 Modelica 2008, March 3rd − 4th, 2008

Board
The basic component of a controller device is a
board. It hosts devices that are needed to run control
algorithms, to interface plants to be controlled and to
interchange information between controller devices.
The library Controller.Board hosts three basic board
models which distinct in the interfaces they provide
(only process interface (IOBoard), only network in-
terface (NetworkBoard), combination of
both(NetworkIOBoard)). The components of the
NetworkIOBoard model, shown in Figure 10, will be
detailed in the following sections.

Figure 10: Component model of a board with process
and network interfaces.

Process Interfaces and Converters
The process interface consists of an array of conti-
nuous input (u) and output (y) signals. As in real con-
trollers input and output signals are not directly con-
nected to the CPU. The input signals are first con-
verted by a hardware AD-Converter, and the DA-
conversion of the output signals is done by means of
a hardware DA-Converter. The converter models can
be found in the Controller.ProcessInterface library.
RAM
The results of the AD-conversions are stored in a
random access memory (RAM) called process image
of inputs (PIInputs), whereas the output signals to be
DA-converted are read from the process image of
outputs (PIOutputs) by the DA-Converter.
The RAM model can be found in Controller.Memory.
It provides means to exchange information between
component models. To attach models to a memory
component the MemoryConnector is used.
Network Interface
The network interface is provided by the network
library. It is regarded as a transceiver IC which per-
forms network operations concurrently. The CPU can
transfer messages to be sent via network to the tran-
sceiver IC whereas received network messages can be
read by the CPU from the transceiver IC.
CPU
The central processing unit (CPU) executes the con-
trol algorithms. The CPU models can be found in the
library Controller.CPU. There are two different

CPU-models in the library, one without network
access (CPU) and one with network access (CPU-
WithNetwork). The CPU model is instantiated as rep-
laceable in the board models and, thus can be ex-
changed to other CPU models extending CPU. The
CPU executes the control algorithms wrapped in
Tasks as described in the next section. Figure 11
shows the CPUWithNetwork model.

Figure 11: Model of a CPU with network access.

Task and Scheduler
A task (library Controller.CPU.Task) is a software
process which runs quasi-concurrently to other tasks
in a CPU. A scheduler (library Control-
ler.CPU.Scheduler) allocates processing time to the
tasks according to a certain scheduling policy. The
library provides several scheduler models (e.g. Round
Robin, FIFO) which are all based on the Control-
ler.Interfaces.IScheduler model.
All tasks have access to the process images (PIInputs
and PIOutputs) and share a common memory called
RAM. The RAM can be used to exchange informa-
tion between tasks inside a CPU. The connections to
the different memory types are drawn in different
colors in Figure 11 (PIInputs: orange, PIOutput: red,
RAM: blue). The connections between the tasks and
the scheduling model are drawn in black. The green
horizontal bars are used as a Modelica bus to reduce
connections to the scheduler.
The CPUWithNetwork model can host up to four
tasks without network access (Task) and two tasks
with network access (NetworkTask). Task and
NetworkTask are implemented as partial models and
serve as generalized task models. The task models are
instantiated as replaceable in the CPUWithNetwork
model and can be easily changed to specialized ones.
The models DummyTask and DummyNetworkTask
can be used to specify that a task is not present. The
library user can easily build his own CPU models
with more Tasks by extending the existing ones.

F. Wagner, L. Liu, G. Frey

The Modelica Association 118 Modelica 2008, March 3rd − 4th, 2008

4.2 Implementation details

RAM
The Controller.Memory.RAM model plays an impor-
tant role in the simulation of an embedded controller.
It provides means to interchange information between
controller components. On the first look, this does not
seem to be a big issue in Modelica, as the connector
type is especially designed for this purpose. But, in
the domain of informational systems a connector is
not a convenient tool to exchange information be-
tween components. Due to the fact that the amount of
data exchanged may vary, not all cases can be cov-
ered when designing a general information exchange
connector. Instead, it is appropriate to make use of
the external function interface of Modelica to imple-
ment an information exchange system in a dedicated
programming language which is then triggered by
Modelica models. In this way the complexity of data
handling is hidden from the Modelica models. To do
so, a C++ library has been developed which emulates
a collection of random access memories that can be
accessed via a unique index. Figure 12 shows a
coarse overview of the C++ library internals and the
interconnection with the Modelica model.

String Repository

1:String1

3:String2

5:String3

1 2 3 4

5 6 7 8

RAM 1

1 2 3 4

5 6 7 8

RAM 2

1 2 3 4

5 6 7 8

RAM n

…

2:String4

String repositoryM
od

el
ic
a
Fu
nc
ti
on

In
te
rf
ac
e

static C++ library (.lib)

RAMIndex=1

RAMIndex=2

RAMIndex=n

Memory collection

Address in Memory
1

2

3

5

Identifier of String
Figure 12: Coarse overview of the C++ library.

Interface functions to use the C++ memory collection
are provided in the sub-libraries
Controller.Memory.Functions.WrapperFunctions:

RAMIndex:=createRAM();
value:=readRAM(RAMIndex,address);
writeRAM(RAMIndex,address,value);

The function createRAM creates a random access
memory in the collection and returns the unique iden-
tifier of the memory (RAMIndex) as an Integer. When
reading or writing from or to a memory, the RAMIn-
dex has to be passed to identify the memory.
readRAM is used to read values (as String) from the
memory RAMIndex from the given position address
(as Integer) in the memory, whereas writeRAM is
used to store a value in the given memory RAMIndex
at position address.

In the C++ library, a RAM is organized as a collec-
tion of references to strings (character arrays) stored
in a global string repository. Library internal func-
tions provide the mechanism to read and write strings
to the string repository, identified by the RAMIndex,
using the given address which is a local identifier
inside a RAM.
A slightly varied functionality is used to implement
the queuing mechanism in the same library. Instead
of giving random access to values in a queue, the
interface functions only allow reading (dequeueing)
from the first address in the queue and writing (en-
queuing) at the end of the queue. The string manage-
ment is done in the same way as in the case of RAM,
using the string repository.
For maximum flexibility, the values passed to or from
the memory are of type String. This way arbitrary
information can be used in the simulation. When ne-
cessary, numerical information contained in the
strings can be parsed by means of functions provided
in the Modelica.Utilities.Strings library. In the case of
real values, the library provides the functions
readReal and writeReal in the sub-library
Controller.Memory.Functions, where parsing is done
automatically.
The RAM model itself is just a placeholder for one of
the memories managed in the C++ library. Its only
dynamic behavior is a function call to create a memo-
ry in the memory collection in the initial simulation
step. The unique index of this memory is then stored
in the RAM model and published via the
MemoryConnector, which only consists of the unique
memory index.
To improve debug capabilities, the interface functions
provide the possibility to trace read and write ac-
cesses to the RAM model. For this purpose, each
function call, including function parameters, of rea-
dRAM and writeRAM can be stored in a textfile or a
database table (cf. Table 1).
Table 1: Dump of a database trace of operations on
RAM models.

id operation RAMindex address value
//

28 W 1 2 "5"
29 W 2 5 "-3"
30 R 1 2 "5"
31 W 2 3 "3"
32 R 2 2 "1"
33 R 1 2 "5"

//

Tasks
As described above, the control algorithms are orga-
nized in tasks to allow multiple algorithms to run
quasi-concurrently on a single CPU. Hence, if mul-
tiple tasks are active at once, they are competing for

Simulation of Distributed Automation Systems in Modelica

The Modelica Association 119 Modelica 2008, March 3rd − 4th, 2008

processing time. The scheduling instance manages
that the processing time is spread among all tasks.
The task models (Controller.Task.*) can be seen as
wrapping units that provide interfaces to access CPU-
internal (e.g. Memory, Timer) and CPU-external
components (e.g. process images, network port).
Therefore, all tasks extend the Control-
ler.Intefaces.ITask interface. The behavior is de-
scribed in Figure 13.

Figure 13: State diagram of a task.

A task can be in one of three states (Idle, Waiting,
Running), and is controlled by four variables: run,
idle, runTime and sleepTime which enforce state
switches. Depending on the state, the timers runTimer
and sleepTimer are active or inactive and processing
time is requested or not (variable request).
The external variable run is provided by the schedu-
ler and determines if the task is currently the active
task in the CPU. The internal variable idle enforces
the task to go to Idle state if its value is true. runTime
determines the processing time that is needed to
finish the current job of the task, while sleepTime is
used to assign the period to send the task to Idle state.
If a task has no job to do, it is in Idle state. In state
Waiting, the task is requesting processing time, but
currently does not get processing time by the schedu-
ler. In state Running, the task gets processing time
and is thus running. When the runTimer value ex-
ceeds runTime the jobFinished event is raised which
indicates that the current job of the task is completed.
This event is used to embed the actual control algo-
rithm in the Task model, just by extending one of the
given template tasks (Task or NetworkTask). The
behavior is given by the extended Task model. This
way the library user can focus on the implementation
of the algorithms itself.
Integration of Algorithms
The Controller library provides basically two differ-
ent ways to define the algorithms executed in a Task
model:

1. algorithm definition in Modelica language
2. algorithm definition in external libraries using the

Modelica external function interface
To define and implement an algorithm in Modelica,
one of the basic Task models (Task or NetworkTask)
must be extended. As intelligence for scheduling is
predefined in the basic Task models, only the values
of the task control variables idle, sleepTime and run-
Time as well as the reaction on the jobFinished event
must be specified.
The basic structure of tasks using Modelica algo-
rithms is defined as shown below.
model ExampleTask
 extends Controller.CPU.Task.Task;
initial algorithm
 sleepTime:=0;
 runTime:=100/CPUFreq;
algorithm
 when (pre(jobFinished)) then
 //here, the algorithm semantics are specified
 end when;
end ExampleTask;
The initial algorithm section assigns start values for
the control variables sleepTime and runTime. In the
algorithm section, the processing of the jobFinished
event is defined by means of a when block. The con-
dition jobFinished must be wrapped by a pre to cut
the algorithmic loop involving the task and the sche-
duler component.
The semantics of the algorithm is then specified in
the body of the when block, as shown in the follow-
ing example of a single input single output P control-
ler:
…
import Functions=Controller.Memory.Functions;
…
when (pre(jobFinished)) then
 //when a job is finished, runTimer is reset
 reinit(runTimer,0);
 //state==0: read input value
 if (state==0) then
 //read sensor value from process image
 y:=Functions.readReal(PIInputs, 1);
 //next state is executing control law
 state:=1;
 //executing control law takes 5000 cycles
 runTime:=5000/CPUFreq;
 //state==1: execute control law
 elseif (state==1) then
 //calculate control error and new set value
 e:=w - y;
 u:=k*e;
 //next state is writing new set value
 state:=2;
 //execution for writing takes 500 cycles
 runTime:=500/CPUFreq;
 //state==2: set output value
 elseif (state==2) then
 //write output value to process image
 Functions.writeReal(PIOutputs,1,u);
 //next state is reading input values
 state:=0;
 //reading input signal takes 500 cycles
 runTime:=500/CPUFreq;
 end if;
end when;
…

F. Wagner, L. Liu, G. Frey

The Modelica Association 120 Modelica 2008, March 3rd − 4th, 2008

The task is divided into three jobs which are executed
sequentially. The job currently processed is indicated
by the Integer variable state (0: read inputs, 1: calcu-
late output, 2: write output). The execution time can
vary among the jobs and is expressed in terms of pro-
cessor cycles divided by the processor frequency
(CPUFreq in Hz). When the jobFinished event arises,
the semantics of the job is being performed and the
settings for the next job are carried out. This means
that the runTimer variable is reset to zero and that the
runTime for the next job is assigned. The task should
run without breaks and thus is never send to Idle state
(sleepTime:=0, idle:=false).
As described earlier, the tasks do not have direct
access to the environment (input and output signals).
Instead, the algorithms work on images of the input
and output signals by reading from the process image
of inputs (PIInputs) or writing to the process image of
outputs (PIOutputs) using the provided interface
functions.
For complicated algorithms, the Modelica design
language is not the mean of choice. For this case, the
Controller.CPU.Tasks library provides the External-
Task and ExternalNetworkTask models, which allow
the definition of algorithms in other programming
languages (e.g. C or Java). Using the construct of
replaceable function, the user of the library can easily
access external algorithms by providing Modelica
interface functions extending Control-
ler.CPU.Tasks.externalAlgorithm.

5 Application of the Libraries

Many analysis problems in DAS can be characterized
as runtime or delay investigations. A typical real
world problem is the determination of the response
time distribution on events in the process to be con-
trolled (e.g. emergency stop). Results, elaborated
with an earlier version of the presented library, have
been published in [7].
Including the plant under control in the simulation,
quality analysis can be performed. Reaction delays,
due to the distributed nature of DASs, cause fluctua-
tions in the control quality. As shown in [2], the libra-
ries can be used to analyze the variations of process
values based on a collection of simulation runs.
Another application of overall system simulation is
feasibility analysis. It can be used to perform proof-
of-concept tests in early development stages of
DASs. The classical example for feasibility analysis
in continuous control is the stabilization of an in-
verted pendulum in the instable (upper) rest position.
Figure 14 shows the setup of a DAS with an inverted
pendulum using a wireless network. The experimen-
tal setup consists of the inverted pendulum with

0.5 kg mass for the cart as well as for the pendulum
arm with a length of 1 m. In the initial, state pendu-
lum arm and cart are not moving, but the pendulum
arm is rotated by ϕ = 0.25 rad.

Figure 14: Inverted pendulum experiment.

Attached to the pendulum there are four Control-
ler.Board.IOBoards (sensor1-4) providing informa-
tion about position and velocity of the cart as well as
angle and angular velocity of the pendulum arm. The
Controller.Board.IOBoard actuator drives the cart
with the translation force calculated by the Control-
ler.Board.NetworkIOBoard microController. The
Controller.Board.NetworkIOBoard SCADA (Super-
visory Control And Data Acquisition) is allotted to
collect the overall system status periodically.
The control algorithm on the microcontroller is split
up into three concurrent tasks. The first task cyclical-
ly requests sensor values from the sensor boards and
sends the calculated force value to the actuator board.
The second task handles incoming network messages,
and is only active when network messages are availa-
ble. The third task is the control algorithm itself
working in three sequential steps:

1. reading input signals from the RAM, pro-
vided by the remote sensors,

2. calculating the force value (control law),
3. writing the force value to the RAM.

The control law is a state controller, with gains ac-
quired from a linear continuous time state space
model.
The requesting task runs 4 ms and then falls asleep
for 20 ms. The message handling task needs 1 ms to
process each incoming message. The control algo-
rithm task needs 1 ms to read the input signal values
as well as 1 ms to write the force value. To execute
the control law, 11 ms are needed.
Processing of network messages in the sensor and
actuator boards takes 2 ms. As there are no concur-
rent tasks in these boards execution starts as soon as a
network message is received.

Simulation of Distributed Automation Systems in Modelica

The Modelica Association 121 Modelica 2008, March 3rd − 4th, 2008

The example setup has been simulated with two dif-
ferent networks, ZigBee with 250 kbps transmission
rate and WLAN with 11 Mbps transmission rate. Ad-
ditionally, the inverted pendulum has been simulated
using the same control law emulating a continuous
controller neglecting all delays imposed by the auto-
mation system.
As shown in Figure 15, the pendulum angle varies a
lot among the three simulated scenarios. As expected,
the scenario neglecting delays shows best perfor-
mance and the WLAN scenario is superior to the
ZigBee scenario.

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10 12 14 16 18 20
time / s

ϕ
 /

ra
d

Continuous controller
WLAN
ZigBee

Figure 15: Pendulum arm angle sequence plot.

The reason for the differences among the scenarios is
the delayed application of the actuator force caused
by the automation system delays. It can be seen from
Figure 16 that the first update of the actuator value
occurs after approx. 80 ms using WLAN. In the sce-
nario with ZigBee this delay increases to 100 ms.

-4
-3
-2
-1
0
1
2
3
4
5
6

0 0.2 0.4 0.6 0.8 1
time / s

F
/ N

Continuous controller

WLAN
ZigBee

Figure 16: Zoomed applied translational force
sequence plot.

A 20 s lasting simulation (carried out in Dymola 6.1)
takes 94.2 s CPU time on a PC with 2.8 GHz Pentium
IV HT and 2 GB RAM. Best performance has been
achieved using the Lsodar integration algorithm with
1e-6 tolerance.
Using the common setup for storing variables con-
sumes too much memory and disk space, even for
short simulations (less than 10 seconds). Thus, inter-
esting simulation values have to be stored using pro-

prietary mechanism, e.g. sampled saving of data to a
file with using Modelica.Utilities.Streams.print.

6 Conclusions and Outlook

Libraries for simulation of Distributed Automation
Systems using the Modelica language have been pre-
sented. The libraries allow delay time determination,
quality of control analysis and feasibility analysis in
closed-loop applications. The application of the libra-
ries has been illustrated by an example using wireless
communication.
Future work will focus on improvement of the net-
work models regarding failure behavior (e.g. packet
losses) and the integration of other networks especial-
ly in the field of automotive applications (CAN,
LIN, …).
The presented libraries can be downloaded from
http://www.eit.uni-kl.de/frey.

References

[1] Cervin, A.; Ohlin, M.; Henriksson, D. Simula-
tion of networked control system using
TrueTime. 3rd International Workshop on
Networked Control Systems: Tolerant to
Faults, Nancy, France, June 2007

[2] Liu, L.; Frey, G. Simulation Approach for
Evaluating Response Times in Networked Au-
tomation Systems. IEEE Int. Conf. on Emerg-
ing Technologies and Factory Automation
(ETFA), Patras, pp. 1061-1068, Sept. 2007.

[3] IEEE Std 802.3, Part 3: Carrier sense multiple
access with collision detection (CSMA/CD)
access method and physical layer specifica-
tions, 1999.

[4] IEEE Std 802.11, Part 11: Wireless LAN Me-
dium Access Control (MAC) and Physical
Layer (PHY) Specifications, 1999.

[5] IEEE Std 802.15.4, Part 15.4: Wireless Me-
dium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (LR-
WPANs) 2003.

[6] Ferre, P.; Doufexi, A.; Nix, A.; Bull, D.
Throughput analysis of IEEE 802.11 and
IEEE 802.11e MAC. Wireless Communica-
tions and Networking Conference (WCNC),
Vol. 2, pp. 783 - 788 March 2004

[7] Greifeneder, J.; Liu, L.; Frey, G. Methoden
zur Antwortzeitanalyse in vernetzten Automa-
tisierungssystemen. SPS/IPC/DRIVES, Nürn-
berg, Germany, pp. 517 - 525, Nov. 2007.

F. Wagner, L. Liu, G. Frey

The Modelica Association 122 Modelica 2008, March 3rd − 4th, 2008

