
A Multi Level Approach for
Aircraft Electrical Systems Design

† Martin R. Kuhn † Martin Otter ‡ Loïc Raulin

† German Aerospace Center (DLR) ‡ Airbus France
Institute of Robotics and Mechatronics Electrics System

Department of System dynamics and Control EDYNE department
82234 Wessling, Germany 31300 Toulouse, France

Abstract

This paper describes the needs, ideas, implementation
and application of a multi-level concept used for air-
craft electrical systems design. The goal is to eas-
ily switch between three model levels in a complex
system model, in order to arrive at dedicated models
for the needed simulation tasks: a simple and super
fast model for energy consumption design, a detailed
model for fast network stability analysis and a very
detailed model for network quality assessment. Spe-
cial care was spent on the modeling assumptions and
a suitable library concept fitting to the needs. For sim-
plified unitary testing and configuration management
of the multi-level models a concept was developed.
The approach is demonstrated with an aviation equip-
ment use case. The usage of the models for stability
and quality studies is sketched.
Keywords: Multi-level modeling, Electrical Network,
Aircraft, DC-DC buck converter, stability analysis,
quality analysis

1 Introduction to multi-level model-
ing

For industrial design, evaluation and certification pro-
cess of energy distribution networks, often several
models exist which represent different modeling ac-
curacies of the same system. It is not always useful
to take the most detailed one, as it may not improve
the overall accuracy but will slow down the simula-
tion drastically. Depending on the desired evaluation
of an electrical network (power consumption, network
stability, network quality), system simulations with
models of different levels of accuracy are much better

suited. The simulation time of the simplest, architec-
tural level of a model is usually 2 to 3 orders of magni-
tude faster than the most complicated, behavioral level
of the model.
The following model levels are taken into account:

• Level 1: Architectural level
Steady-state power consumption. Usually, alge-
braic equations describing the energy balance be-
tween ports without dynamic response.
Typical use: power budget.

• Level 2: Functional level
Steady-state power consumption and mean-value
transient behavior (e.g. inrush current, consump-
tion dynamics with regard to input voltage tran-
sients). Switching is not included.
Typical use: network logic studies, network sta-
bility studies.

• Level 3: Behavioral level
Representing actual wave forms including
switching and HF injection behavior.
Typical use: network power quality studies.

Note: This nomenclature may be used differently in
the literature.
In Figure 1 on page 2 the tree-level concept is illus-
trated at hand of simulations of a DC/DC buck con-
verter. The architectural layer input current shows
large simulation steps neglecting the detailed effects
which can be seen at the behavioral layer model sim-
ulation. The functional layer model covers the wave-
form of the detailed model without switching effects.
In order to improve the simulation process for de-
sign and validation of the Electrical System, there was
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a) architectural layer b) functional layer c) behavioral layer

Figure 1: Illustration of the 3 layer concept at hand of simulations of a DC/DC buck converter

identified a need for methods to simplify unitary test-
ing and configuration management of suppliers’ mod-
els in order to enhance the coherency of electrical be-
havior of the various modeling levels of one single
equipment.

2 Modeling assumptions

While the architectural layer is defined to contain only
static energy balance equations and the behavioral
models are close to the hardware level, the definition
of the functional models is not as straight forward.
These models have to be applicable for linearization
for stability investigations with methods of control the-
ory for linear time invariant systems. For DC systems,
those have to be deduced from the complex models by
averaging the switching models on a time interval and
order reduction techniques.
For AC systems, the time variant characteristics of
the sinusoidal alternating currents prevents a time in-
variant steady state condition and hence linearization.
Therefore it is proposed to use an equivalent represen-
tation which expresses a rotating electric machine in
a static rotor fixed system (also called Park transfor-
mation)1. Transforming the system equations to a net-
frequency fixed system results e.g., in "i(t) = i (ωnet)
+ ∆i(t)". The model uses ∆i(t) as state and not i(t). In
stationary operation with constant load and constant
speed, ∆i(t) = 0 and i(t) = i (ω). This time invari-
ant system also results in much faster simulation. The
transformation output is a representation in d, q and
zero system. The zero system may be skipped for this
application since it is mainly relevant for asymmetric
loads not treated by functional models. Park trans-

1Some results were inspired by the EU Project Realsim (Real-
time Simulation for Design of Multi-Physics Systems). It resulted
in the open source library “SPOT” of H. J. Wiesmann of ABB
Switzerland, http://www.modelica.org/libraries/spot

formation is the standard way of modeling generators
and motors and used for control but is also applica-
ble to 3phase-line impedances. Asymmetric loads are
allowed but will not result in a steady state condition
for this transformation. For an aeroplane multi-phase
power transmission system the following components
are of importance:

• Power source: The generators supply sinusoidal
voltage at net frequency. Calculation of voltage
and current is usually performed in a rotor-fixed
system (synchronous machine)

• Loads: For symmetrical resistive, inductive and
capacitive loads as well as synchronous mo-
tors current/voltage relations are fixed to net fre-
quency.

• Other loads: Switches, diodes, unsymmetrical
loads, time variant loads do not have simple
steady-state dependencies upon net frequency.
But: Calculation of the generator demands the
use of transformations anyway. So, incorporating
other components to the dq0-system will not nec-
essarily essentially speed up the simulation but
will not break it either.

Limitations for level-triggered switching devices may
be circumvented by averaged models. Especially for
self commutating rectifiers there is a need for calcu-
lating the mean output voltage/current, averaged on a
commutation interval. Theory on electric components,
the transformation and averaged models can be found
for instance in [1].
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3 Library concept

3.1 Comparison of methods

Following the demands from chapter 1, methods for
multi-level modeling were investigated which could
replace the current models (behavioral, functional, ar-
chitectural) by one single multi-level model. This
multi-level model shall integrate the separate layers to
be activated independently from each other. There-
fore a methodology is investigated to join models of
different abstraction levels within a single "container"
model and supply tools for the automatic selection of
the desired level. Three alternatives were identified to
meet the demands:

Alternative 1: Every level is implemented as a sep-
arate sub-model. A "generic" model (or template
model) is utilized in a user model via the Modelica lan-
guage construct “replaceable”. Via a selection box the
"generic" model can be defined to be one of the level
models. The connectors of the different levels are ei-
ther identical or, if this is not possible, they are also
"replaceable". Details may be found in the Modelica
tutorials. Typical problems are:

• It is not possible to select the level by an expres-
sion, i.e. it is not possible to select the model
based on the setting of the global default. In-
stead, at every component the model level has to
be manually changed to the required one.

• Whenever the selection is changed (e.g. from ar-
chitectural to behavioral and then back to archi-
tectural), all parameter definitions from the previ-
ous selection are lost.

• All levels need the same connectors or the con-
nectors must be replaceable, which makes the de-
sign complicated.

Alternative 2: All layers are described in the same
model. Via flags different parts of the model are acti-
vated. In the simplest case, there is just an if-clause:
parameter Integer level(min=1, max=3) = 1 "Model

level";

...

equation

if (level == 1) then

// equations for architectural model

elseif (level == 2) then

// equations for functional model

else

// equations for behavioral model

end if;

The simulation program selects at compile time the
corresponding if-branch, if the branch is determined
by a parameter expression (i.e., in the generated code,
only the equations of the selected branch is present).
Advantages:

• The level can be set by an Integer expression.
This allows, e.g., to refer to a global setting of
the level.

• The parameters of all 3 levels are visible and can
be set. They remain present, even if the level is
changed. This alternative is useful for base com-
ponents, such as a capacitor or an inductor, that
are described by equations and do not contain
other model instances.

Alternative 3: This is a variant of alternative 2. Ev-
ery level is a separate model. There is a "container"
model that is used in a user model. The container
model contains all models of the different levels in
form of conditional models. Via a flag, the desired
model level is activated and the connect statements to
the deactivated submodels are removed automatically.
Advantages:

• Every model level can be built and tested inde-
pendently from the other levels. Only the con-
nection interfaces need to be the same.

• When switching between levels, the parameter
settings of the other levels remain.

• Parameters that are common to all levels can
be defined in the container object and can then
be propagated to the level models (via Modelica
modifications)

Disadvantages:

• In the plot window there is an unnecessary hier-
archy, e.g., motor.level2.flange_a.w (on the other
hand, it becomes very clear which level is con-
tained in the model).

• The connection lines from the level models to
the interfaces are redundant information (e.g. not
present in alternative 1)

Due to severe disadvantages with implementing this
so called “conditional declaration” with existing lan-
guage constructs, an initiative was started in the Mod-
elica Association to improve this situation. As a result,
in the Modelica language version 2.2 from Feb. 2005,
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“conditional declarations” have been introduced into
the Modelica language. This language construct has
been supported in Dymola since March 2005 (Dymola
version 5.3c).

3.2 Implementation

Due to their advantages, it was decided to use alter-
native 2 for basic components, such as capacitors and
inductors and to use alternative 3 for all other multi-
level components (using the new Modelica feature of
conditional declarations). Also test equipment, such
as load resistances as function of time, may depend on
the accuracy level as well as the connectors. In this
section all the details are explained including library
structuring.

The basic approach is to use multi-level equipment
components in a system model and select in a global
menu the default accuracy level. At every instance of
an equipment model it is possible to define whether the
default accuracy level shall be used (= default behav-
ior) or another one via the “level” parameter. Possible
options are

“global option”: Use globally defined level
“level 1”: Use architectural model level
“level 2”: Use functional model level
“level 3”: Use behavioral model level

. “outer” references the "global_options" component
in the enclosing environment. Equations and/or dec-
larations of a model are activated and deactivated de-
pending on parameter “actualLevel” or the derived bi-
nary flags level1active, level2active or level3active.
Since “actualLevel” is a parameter expression (=
an expression depending only on literals, constants
and parameters), Dymola evaluates conditions of if-
clauses that depend on “actualLevel” at compile time
and therefore selects the corresponding if-branch also
at compile time. This means that any change of “actu-
alLevel” requires re-compilation of the system model.

In order to simplify the multi-level model develop-
ment, some partial models and classes can be reused.
Models can inherit the multi-level components like the
“outer” parameter “level” to define the desired model-
ing level via “extends partialmodel” . This is demon-
strated hereafter with the multi-level model “issue1”:

model issue1 "my model with several levels"

extends mylib.interfaces.partial_3_levels;

...

equation //for base components:

if level1active then

...;

else

...;

end if;

public //for hierarchical multi-level models:

componentsIssue1.architecturalModel ModelLevel1

if level1active;

componentsIssue1.functionalModel ModelLevel2 if

level2active;

componentsIssue1.behaviouralModel ModelLevel3 if

level3active;

...

end issue1;

which extends partial_3_levels:
partial model partial_3_levels

"Parent class that should be included via extend

for a multi-level model with 3 levels"

import Choice = mylib.types.level_choice;

parameter Choice.temp level="global option" ;

"Model level to use (global setting,

architectural/functional/behavioral level)"

protected

outer mylib.components.global_options

global_options;

parameter String actualLevel = if

(level == Choice.global_options) then

global_options.defaultLevel else level;

parameter Boolean level1active = (actualLevel ==

Choice.level1);

parameter Boolean level2active = (actualLevel ==

Choice.level2);

parameter Boolean level3active = (actualLevel ==

Choice.level3);

parameter mylib.components.global_options

global_options_temp( defaultLevel=level);

end partial_3_levels;

The possible choices are defined in level_choice:
package level_choice

constant String global_options="global option";

constant String level1="level 1";

constant String level2="level 2";

constant String level3="level 3";

type temp

extends String;

annotation (choices(

choice="global option" "use global option

setting",

choice="level 1" "level 1 (architectural

level)",

choice="level 2" "level 2 (functional level)",

choice="level 3" "level 3 (behavioral

level)"));

end temp;

end level_choice;

With the future implementation of Modelica enumera-
tions in simulation environments the need for complex
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naming of the choices will become obsolete.
The “global_options” object which defines the global
setting has to be dragged to the highest hierarchy
level and set to "inner". This defines a "global"
structure that is accessible by all components on the
same or a lower hierarchical level. To generate the
“inner” object automatically when dragging (“inner
mylib.global_options global_options; “), the following
declaration is used (this property is defined via an an-
notation in the model):
model global_options

"Global options settings"

annotation (defaultComponentName="global_options",

defaultComponentPrefixes="inner",

missingInnerMessage="A \"global_options\"

component was introduced with default options.",

...

);

parameter mylib.types.level_choice_default.temp

defaultLevel= "level 1" "Default model level

(architectural/functional/behavioral level)";

end global_options;

Almost identical to level_choice, the global_options
object supports choices for the three levels but of
course no choice for global_option itself:
package level_choice_default

constant String level1="level 1";

constant String level2="level 2";

constant String level3="level 3";

type temp

extends String;

annotation (choices(

choice="level 1" "level 1 (architectural

level)",

choice="level 2" "level 2 (functional level)",

choice="level 3" "level 3 (behavioral

level)"));

end temp;

end level_choice_default;

As explained earlier, the multi-level container object
for the alternative 3 has to be the superset of the
connectors of the single models. To avoid unneces-
sary variables, the concept of “expandable connec-
tors” can be employed (e.g. expandable connector
positive_plug_expandable "Positive expandable elec-
tric plug"). The content of this Modelica connector is
defined by the sum of connected variables. With this,
non identical connectors of the level-dependent mod-
els may be connected to the container object connector
but only the data of the level selected are present after
compilation. E.g. for the transformed/not transformed
three phase system, dq transformed components de-
mand one extra variable in the connector: the rotor
angle. On the other hand just the dq system uses 2 cur-
rent/voltage connectors while the non transformed abc
system uses three of them.
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Figure 2: Test circuit for chopper use case (for all 3
levels)

4 Demonstration

In the following chapter the library concept shall be
demonstrated with a generic chopper model (electri-
cal non-isolated DC/DC buck converter). The con-
verter is used for transformation of the 270 Volts DC
supply to a 28 VDC load network. It was designed
to include the most important obstacles, e.g. differ-
ent levels have different interfaces, components, and
load profiles. The behavioral model contains nonlinear
switching semiconductors. Only with this the ripple
detection for high frequency noise is applicable. The
functional model is averaged with the output voltage
as the duty ratio times the input voltage. The architec-
tural model lacks of any dynamics. The converter is
modeled with an energy balance. A test model for the
chopper can be seen in figure 2.
Base components that are solely described by equa-
tions are implemented with if-clauses that depend on
parameter “actualLevel”. For example, the inductor is
defined by:
if level1active then v = 0;

else // level 2 or 3

L*der(i) = v;

end if;

This means, for level 1 the dynamics equation is re-
moved. In the icon of the inductor, the instance name
(here: “inductor”), the inductance (here: “1.2e-6) and
the value of parameter “level” (here: global option) are
displayed.
Other components are implemented with container ob-
jects and conditional declarations as sketched in alter-
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Figure 3: Multi-level chopper component with condi-
tional declaration

native 3 above. So, the structure of the chopper model
can be seen from figure 3.
In the left part of the figure, the icon of the chopper
is shown. Besides the model instance name, the value
of parameter “level” is displayed in the icon. In the
right part of the figure, the container object is present.
It contains models of every level. All models are con-
nected to the connectors (p_in, p_out, m, duty, bus) de-
fined in the icon and are defined by “conditional dec-
larations”:
model issue2

extends mylib.utilities.interfaces.partial_3_levels;

parameter Modelica.SIunits.Voltage v_out_desired

= 28;

...

mylib.chopper.componentsIssue1.level1 Level1(

v_out_desired = v_out_desired) if level1active;

mylib.chopper.componentsIssue2.level2 Level2

( v_out_desired = v_out_desired, k_integrator

= k_integrator, L_filter = L_filter, R_filter =

R_filter) if level2active;

...

equation

connect(Level1.p_out, p_out);

...

end issue2;

For example, component “Level1” is an instance of
“mylib.chopper.comonentsIssue1.level1” and is only
present if “level1active=true”. If a component is
used in a connection, such as “connect(level1.p_out,
p_out)”, this connect statement is automatically re-
moved if one or both of the models referenced in the
connect(..) statement are deactivated. Therefore, it is
no longer necessary to manually include an if-clause
around such connect(..) statement as in previous ver-
sions of Modelica. Note that the interface of level 1
does not include the “duty” pin but for the multi-level
container object the pin is skipped if the level is level

Figure 4: Menu of multi-level chopper component

Figure 5: Menu of time_table component

1. It is convenient for the user if the parameters of all
levels are defined as parameters of the container ob-
ject and are propagated to the corresponding models.
For example, when clicking on the icon of the chopper
example above, the menu shown in figure 4 is opened.

When using model level 1, only parameter
“v_out_desired” is actually utilized. For model
level 3, all parameters in this menu are taken
into account. If the parameters of the levels are
different, it is useful to display them in different
“tabs”. For example, in the menu of component
“mylib.utilities.components.multi_level_time_table”
shown in figure 5, different tables can be defined
for the various levels (the purpose is, e.g., to have
different load resistances for the various levels).
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5 Application

Without going into detail, this chapter is a short out-
look on the usage of the models for stability and qual-
ity studies.
A regulated buck converter is a typical critical com-
ponent in a power system. Due to the negative resis-
tance at low frequencies the regulated buck converter
could be unstable in combination with the input fil-
ter. Therefore it is necessary to investigate the stabil-
ity of the whole electric network both at small signal
level for steady state conditions and large signal level
for transients, impacts and network reconfiguration.
The library concept proposed above is a good tool for
its usage since validity of functional models can first
be demonstrated by comparison of simulation results
with the behavioral models. The Modelica functional
models can be used for stability studies with meth-
ods for linear time invariant systems. For eigenvalue
based methods, including modal analysis and eigen-
value sensitivity, the eigenvalues have to be calculated
numerically by the simulation program. µ analysis is a
powerful method of robust control for stability investi-
gations of parametric varying systems. The Modelica
functional models can be directly applied for µ anal-
ysis after extraction of the symbolic code and using it
in Maple and Matlab. Compared with other methods
for small signal stability, e.g. Middlebrook criterion
and Modal Analysis, the µ sensitivity approach gives
a much more global and direct result for the influence
of all components on stability. For details on the meth-
ods, see [2].
In contrast to these approaches, for industrial use sta-
bility of a system often is defined as the ability of a
system to keep a certain system variable within desired
limits given by industrial standards. These are com-
bined criteria of network stability, power quality and
performance. This makes them difficult to proof with
methods of linear control theory. Therefore a simu-
lation based approach often is the only possibility to
proof “industrial” stability and also large signal sta-
bility including failure protection devices. Instead of
random or gridded parameter variation on the varying
environment and system parameters, an other method
is to search for the most critical parameter combination
directly. The basic idea is to use an optimizer to find
the criterion from the standards which is most critical
and make it worst by changing the uncertain parame-
ters in the possible range. In case the criterion is vi-
olated, stability/quality/performance can be shown to
be not guaranteed. On the other hand, the tolerable de-
sign range for parameters could be investigated as the
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Figure 6: Quality and stability studies overview

bounds leading to standard violations.
An overview on the methods is shown in figure 6.
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7 Conclusion

In this paper a multi-level concept used for aircraft
electrical systems design based on conditional decla-
rations was shown. The three level concept was ex-
plained and modeling demands and methods were pro-
posed, especially using park transformation for AC
systems. The implementation was demonstrated with
a multi level DC/DC chopper use case. The model ling
concept improves modeling of large systems and al-
lows easy comparison of different levels simulation re-
sult. An overview on typical applications of the mod-
els for stability and quality studies was given..
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