
Introducing Sol: A General Methodology for

Equation-Based Modeling of Variable-Structure Systems

Dirk Zimmer

Institute of Computational Science, ETH Zürich

CH-8092 Zürich, Switzerland

dzimmer@inf.ethz.ch

Abstract

This paper presents a derivative language of Modelica

that is called Sol. It has been especially designed for the

convenient expression and simulation of variable-structure

systems within an object-oriented, equation-based model-

ing framework. Starting from a formal definition of the

grammar and type-system, the paper advances to an ex-

planation of Sol’s semantics. Finally the current state of

implementation and corresponding processing mecha-

nisms are presented. Keywords: language design, vari-

able-structure systems, causalization mechanisms.

1 Motivation

Many contemporary models contain structural

changes at simulation run-time. These systems are

typically denoted by the collective term: variable-

structure systems. The motivations that lead to the

generation of such systems are manifold. Typical

cases are represented by ideal switching or breaking

processes, variability in the number of entities, dy-

namic multi-level models or user interaction [5].

Let us focus on the modeling-paradigm that is repre-

sented by Modelica: declarative models that are

based on differential algebraic equations (DAEs)

with hybrid extensions. Within this paradigm, a

structural change is reflected by a change in the set

of variables and by a change in the set of relations

(i.e., equations) between the time-dependent vari-

ables. Such replacements may lead to severe changes

in the model structure. This concerns the causaliza-

tion of the equation system, as well as the perturba-

tion index of the DAE system.

Current contributions of this research domain include

the development of the language MOSILAB [8] or

Hydra [7]. Also some specific techniques, like in-

line-integrators [4] that can be included in Modelica

prove to be helpful in certain situations. However,

most of these approaches leave the standard domain

of Modelica, since the modeling of variable-structure

systems within the current Modelica framework is

very limited [10]. This is partly due to a number of

technical restrictions that mostly originate from the

static treatment of the DAEs. But these technical re-

strictions are not the only limiting factor. Another

major problem is the lack of expressiveness in the

Modelica-language itself.

To express structural changes, a corresponding mod-

eling language has to meet certain requirements. For

instance, it must be enabled to state relations be-

tween variables or sub-models in a conditional form,

so that the structure can change depending on time

and state. In addition, variables and sub-models

should be dynamically declarable, so that the corre-

sponding instances can be created, handled, and de-

leted at run time. Such requirements partly contradict

with fundamental assumptions made in the design-

process of Modelica.

Therefore we decided to develop a new language

called Sol [11]. It is a language primarily conceived

for research purposes that attempts to be of minimal

complexity with a high degree of expressiveness. We

want to explore the full power of a declarative mod-

eling approach and how it can handle potential, fu-

ture problem fields. The implementation of Sol will

be a small and open project that should enable other

researchers to test and validate their ideas with a

moderate effort. The longer term goal of our research

is to significantly extend Modelica’s expressiveness

and range of application. Furthermore, the Sol-

project gives us a development-platform for techni-

cal solutions that concerns the handling of structur-

ally changing equation systems. This includes solu-

tions for dynamic recausalization or the dynamic

handling of structural singularities.

Although Sol forms a language of its own, it is de-

signed to be as close to Modelica as reasonably pos-

sible. This should drastically ease the understanding

for anyone in the Modelica community. It is not our

goal to immediately change the Modelica standard or

to establish an alternative modeling language. Our

scientific work is intended to merely offer sugges-

tions and guidance for Modelica’s future develop-

ment.

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems

The Modelica Association 47 Modelica 2008, March 3rd − 4th, 2008

Example 1: Model of a simple machine driving a fly-wheel with a fluctuating torque.

model SimpleMachine Definition of the main model: “SimpleMachine”

 (1) Header:

 define inertia as 1.0; ● Definition of a constant

interface: (2) Interface Section:

 parameter Real meanTorque; ● Declaration of parameters

 static Real w; ● Declaration of a public member

implementation: (3) Implementation part:

 static Real torque; ● Declaration of private members
 static Real a;

 torque = inertia*z; ● Stating Newton’s law of motion…
 w = int(x=z);

 phi = int(x=w);

 torque = (1+cos(p=phi))*meanTorque; ● Equation for the fluctuating torque

end SimpleMachine End of the model-definition

…

static SimpleMachine M1{ meanT << 10}; ● An example declaration of the machine model.

cout << SimpleMachine.w; ● Simple Output Generation.

2 The Language: Sol

2.1 Principle Components

Essentially, Sol redefines the fundamental concepts

of Modelica on a dynamic basis. Following the spirit

of Modelica, it forms a language of strong declara-

tive character and therefore completely abandons any

imperative parts. Unlike many other declarative

modeling languages, Sol enables the creation, ex-

change and destruction of components at simulation

time. To this end, the modeler describes the system

in a constructive way, where the structural changes

are expressed by conditionalized declarations. These

conditional parts can than get activated and deacti-

vated of during run-time. This constructive approach

avoids an explicit description of modes and transi-

tions and yet proves to be fairly powerful and flexi-

ble.

In contrast to Modelica, the grammar of Sol (cf. ap-

pendix) is significantly stricter. In its aim for sim-

plicity, it prohibits any ambiguous ordering of its

major sections. Also any grammar elements that one

would typically denote by the term syntactic sugar

are largely omitted. Whereas the strict section order-

ing definitely leads to a good modeling style, the

lack of syntactic shorthand notations may sometimes

result in clumsy formulations.

On the top-level, the Sol language features only a

single language component that represents the defini-

tion of a model in a very generic way. Such one-

component approaches are frequent for experimental

languages (e.g. [1]), since they typically result in a

uniform structure that eases further processing. In

addition, they yield to a clear and simple grammar.

The example above gives a first glance at Sol and

enables us to take a closer look at the structure of a

model-definition. A model-definition consists of

three parts, where each of them is optional:

• The header section is essentially composed out

of further definitions. These may be constants or

further models. Definitions of the header-part can

be publicly accessed and belong the model defini-

tion itself and not to one of its instances. In addi-

tion, the header enables you to state an extension

of an existing definition.

• The interface section enables the modeler to de-

clare the members of a model that can be publicly

accessed. The members can either be basic vari-

ables or sub-models. Any of these members can

be marked as a parameter that is passed at the

model’s instantiation and remains constant for the

object’s lifetime. Hence extra means for class-

parameterization as in Modelica become obsolete.

• The implementation part contains then the actual

relations between the variables and describes the

dynamics of the system.

D. Zimmer

The Modelica Association 48 Modelica 2008, March 3rd − 4th, 2008

This general structure of a model-definition enables

it to be used also for degenerated tasks like the defi-

nition of packages or connectors. A model in Sol

represents a uniform approach that is similar to the

class concept of Modelica. On the other hand side,

the term “model” is almost overstressed and became

so general that it lost some of its actual meaning. To

regain expressiveness, Sol offers you different

model-specifiers that enable the explicit denotation

of certain sub-kinds. The usage of these specifiers

involves consequently a number of restrictions.

However, the syntax and semantics still remain uni-

form.

2.2 Object-Oriented Organization

The object-oriented and hierarchic organization of

modeling code is substantially supported by two

model-specifiers:

• package: Packages are used to collect models in

a meaningful entity. A package-definition is re-

duced to the header part. It features neither an in-

terface nor an implementation.

• connector: A connector typically collects mem-

bers that are intended to be related by a connec-

tion-statement. A connector consists essentially

of an interface. There’s no implementation part.

The creation of an object-oriented hierarchy is illus-

trated in example 2 where the machine-model is split

up into its principle components: An engine, a fly-

wheel and additionally a simple gear model. These

models use a uniform connector model and are based

upon partial models that have been collected in an

extra template package. Example 2 makes frequent

use of the keyword extends that demonstrates the

appliance of type-generation.

Example 2: Package structure in Sol

package MechTemplate

 package Interfaces

 connector Flange

 interface:

 static potential Real phi;

 static flow Real t;

 end Flange;

 partial model OneFlange

 interface:

 static Flange f;

 end OneFlange;

 partial model TwoFlanges

 interface:

 static Flange f1;

 static Flange f2;

 end TwoFlanges;

 end Interfaces;

end MechTemplate;

package Mechanics extends MechTemplate;

 model Engine1

 extends Interfaces.OneFlange;

 interface:

 parameter Real meanT;

 implementation:

 f.t = meanT;

 end Engine1;

 model Engine2

 extends Interfaces.OneFlange;

 interface:

 parameter Real meanT;

 implementation:

 static Real transm;

 transm = 1+cos(x = f.phi);

 f.t = meanT*transm;

 end Engine2;

 model FlyWheel

 extends Interfaces.OneFlange;

 interface:

 parameter Real inertia;

 static Real w;

 implementation:

 static Real z;

 f.phi = int(x=w);

 w = int(x=z);

 -f.t = z*inertia;

 end FlyWheel;

 model Gear

 extends Interfaces.TwoFlanges;

 interface:

 parameter Real ratio;

 implementation:

 ratio*f1.phi=f2.phi;

 -f1.t=ratio*f2.t;

 end Gear;

end Mechanics;

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems

The Modelica Association 49 Modelica 2008, March 3rd − 4th, 2008

Sol offers three simple but

effective mechanisms for

type-generation. The most

important of them is the

type-extension better known

as inheritance. Any model

can extend any other model

as long as there are no cir-

cular or recursive depend-

encies. Since packages rep-

resent models as well, in-

heritance can be applied to complete packages as

well. The remaining two mechanisms consist in the

redeclaration of members and the redefinition of

models. Also these mechanisms can be applied to all

feasible elements. In contrast to Modelica the rede-

claration is used for type-generation only and not for

class-parameterization.

Figure 1 depicts the resulting package structure of

our example. The solid lines denote the memberships

whereas the dotted arrows represent inheritance.

Figure 1: Exemplary package-hierarchy in Sol

Whereas the example has been over-elaborated for

the purpose of demonstration, the combined usage of

type-generation mechanisms forms a powerful tool

for certain application domains like fluid-dynamics

[3]. There, a package for a certain material may

serve as a potential template. A modeler can then

quickly adapt to other materials by a package-

extension and a redefinition of the basic material

model.

2.3 Type-System

Like Modelica, Sol features a structural type-system

[2]. It is solely based on the model’s interfaces. The

development of implementations and interfaces can

therefore be separated and disjoined lines of imple-

mentation may yield into compatible types. The pro-

vided mechanisms of inheritance and redeclaration

enable a satisfactory degree of polymorphism.

The type of a model is composed out of its members

in the interface section. Any type-extension will

yield to the creation of a sub-type of the inherited

model. Also redeclarations and redefinition are lim-

ited to be only possible by sub-types of their original

representation. Figure 2 illustrates the resulting type-

structure of Example 2.

A proper and user-evident type-system becomes in-

creasingly important in a dynamic framework like

Sol. In situation where assignments are applied on

complete sub-models to perform a model-exchange

the corresponding assignments should be guarded by

the type-rules.

2.4 Implementation part

The implementation part represents a block. A block

may contain declarations of private members, rela-

tions (e.g. equations) or further nested conditional

blocks in any arbitrary order. Let us analyze each

component in more detail.

Private Declarations:

Declarations of private members do hardly differ

from their counterparts in the header sections. Only

the parameter attribute and the access-specifiers are

now meaningless and therefore disabled.

The declaration of a member links a model instance

to a given identifier. This linking is either static or

dynamic. This selection has to be stated before the

actual declaration. In contrast to a static linking, a

dynamic linking enables to modeler to (re-)assign a

new instance to the corresponding identifier.

Figure 2: Exemplary type-hierarchy in Sol

D. Zimmer

The Modelica Association 50 Modelica 2008, March 3rd − 4th, 2008

Conditional Blocks:

Sol features if-else-branches and when-else-

branches. The condition of an if-branch is immedi-

ately applied. It forms a safe condition that can be

assumed to hold for its content. Hence the condition

must be independent on any of its branches’ content.

When-statements are used to catch an event. The

events are triggered during the update-procedure and

are scheduled for the next one. Thus, when-

conditions are not safe. Unlike Modelica, there are

no syntactical restrictions on the content of the

branches, but all branches shall finally lead to correct

system of equations.

Statements:

Three fundamental operators are provided for setting

up relations between members:

• The operator = states an equation between two

expressions of type real.

• The causal copy-transmission << is setting up

causal relationships between real variables and

can be used to link a copy of a model-instance to

an identifier.

• The causal move-transmission <- is used to link

a model-instance to a new identifier and to re-

move the former linking.

Member-access in statements:

To access the public members of your sub-models,

three options are provided:

• As in Modelica the . operator is the most

straightforward way of access, but not always

convenient.

• The connection(…) statement exist also in Sol

and has practically the same meaning as its

counterpart in Modelica.

• The () operator enables a function-like nota-

tion. It is especially suited for anonymously de-

clared members.

Whereas the . operator represents a universal form of

member access, the other two forms serve conven-

ience and their proper appliance is determined by

specifiers at the corresponding member-declarations.

The connection statement only refers to variables

that have been marked by the specifiers flow or

potential. The specifiers in and out determine

the applicability of the access by round-brackets.

3 Example Model

The presented language elements are sufficient for

the formulation of highly variable systems. However,

given the brief introduction above, it may not be evi-

dent how objects can be dynamically created, ex-

changed and deleted as there appears to be no ex-

plicit tool for these purposes. Let us therefore look at

an example.

We reassemble the machine-model from example 1

that consists of an engine that drives a fly-wheel.

This time we use the components of the Mechanics

package in example 2. Furthermore we add a simple

gear to our model. We recognize that the package

provides two models for an engine: The first model

Engine1 applies a constant torque on the flange. In

the second model Engine2, the torque is dependent

on the positional state, roughly emulating a piston-

engine. Both models share the same type (see figure

2). Our intention is to use the latter, more detailed

model at the machine’s start and to switch to the

simpler, former model as soon as the wheel’s inertia

starts to flatten out the fluctuation of the torque. This

exchange of the engine-model represents a simple

structural change on run-time.

Example 3: Machine with a structural change

model Machine

implementation:

 static Mechanics.FlyWheel F{inertia<<1};

 static Mechanics.Gear G{ratio << 1.8};

 connection(G.f2,F.f);

 static Boolean fast;

 if fast then

 static Mechanics.Engine1 E{meanT<<10};

 connection(E.f,G.f1);

 else then

 static Mechanics.Engine2 E{meanT<<10};

 connection(E.f,G.f1);

 end;

 if initial then fast << false; end;

 when F.w > 40 then fast << true; end;

end Machine;

The resulting model is presented above. It includes

two conditional branches, one for each mode. The

current mode is stored in the Boolean variable fast.

The corresponding transition is modeled by the

when-statement.

3.1 Simulation Result

Using an interpreter program, the system was simu-

lated for 10 seconds by the excessive number of

10’000 integration steps with the forward Euler

method. The computational effort sums up to a total

of 0.2 seconds on a standard CPU, where the effort

for parsing and preprocessing is almost completely

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems

The Modelica Association 51 Modelica 2008, March 3rd − 4th, 2008

negligible. Figure 3 displays a plot of the angular

velocity. The structural change reveals more clearly

in the magnification. The actual change in the struc-

ture of equations is presented by the two causality-

graphs of figure 5 and 6. Their closer examination is

part of section 4.

Figure 3: Angular velocity of the flywheel.

3.2 Alternative modeling approach

In the prior example, model-instances have been im-

plicitly created and removed by the if-statement. Us-

ing local engine-models in the two branches is a very

natural modeling approach, but often leads to redun-

dant formulations (e.g. the connection statement) and

therefore not all structural changes can be formulated

in such a way. Thus, Sol enables the dynamic linking

of an identifier to its instance. This offers a more

convenient and general approach.

Let us model the machine for a second time, this

time using a dynamic engine-model E that is initially

linked to an Engine2 model. At the transition-event,

the Engine1 model is dynamically created by an

anonymous declaration. Since it is linked to the

member E by a move-transmission, its lifetime ex-

ceeds the event and the newly created model replaces

the former one. The replacement is valid because the

types of the two engine models are equivalent.

Example 4: Alternative version of the machine-model

model Machine

implementation:

 static FlyWheel F{inertia<<1};

 static Mechanics.Gear G{ratio << 1.8};

 dynamic Engine2 E{meanT << 10};

 connection(E.f,G.f1);

 connection(G.f2,F.f);

 when F.w > 40 then

 E <- Engine1{meanT << 10};

 end;

end Machine;

The deletion of a model-instance is mostly done im-

plicit by replacing the linking to an instance (as

above) or by the removal of the corresponding iden-

tifier. However, example 5 presents the predefined

trash object that is of type void and can be used for

the explicit deletion of any object.

Example 5: Explicit deletion of a model-instance

 trash <- E;

This mechanism for the dynamic linking of a model-

instance represents a pointer-free modeling ap-

proach. The linking obeys clear ownership principles

and therefore the simulation system can assure a

memory-safe execution. Furthermore, the modeler is

freed from the tedious and error-prone task of mem-

ory-management.

4 Processing Schemes

Sol is currently processed by an interpreter. The in-

terpreter was named Solsim and represents a com-

mand-line program running under Linux or Win-

dows. The input-file can be written in a standard

text-editor. The simulation is performed and its out-

put can be written into a file readable by the pro-

grams Matlab™ or Gnuplot. In addition to its main

task, the interpreter provides also tools for the analy-

sis of the model-hierarchy, type-structure and causal-

ization mechanisms

Whereas the pair of a compiler and a simulator is the

preferred choice for high-end simulation tasks, an

interpreter is an appropriate tool (cf. [6]) for research

work on language design. The development process

becomes easier, faster and more flexible. Hence the

development of the interpreter can proceed in paral-

lel with a further refinement of the language. Fur-

thermore, new debugging techniques become crucial

in a more dynamic framework. This can be easier

provided by an interpreter, since all necessary meta-

information is available. Figure 4 displays a simpli-

fied overview of the main processing scheme that is

composed out of six blocks. The following sections

discuss these parts in more detail.

4.1 Parsing and Lexing

The Lexer processes the elementary elements of the

language and discards all comments and formatting.

Since the remaining part of the language forms an

L1-Grammar, the actual parsing forms a rather trivial

task. The parser is handwritten and features an auto-

matic error-generation.

D. Zimmer

The Modelica Association 52 Modelica 2008, March 3rd − 4th, 2008

Figure 4: Processing scheme of Sol

4.2 Preprocessing

In the next stage, the mechanisms for type-

generation are applied. This concerns primarily the

resolving of type-identifiers and the appliance of the

type-extensions. However these two processes can-

not be implemented in a linear fashion. They usually

have to be processed in several, interleaved steps.

Since a type-extension can be applied even on a

complete package, the extension itself may generate

new type-identifiers that may have to be resolved

elsewhere. Thus, the algorithm has to “crawl”

through the dependencies. Circular or recursive ex-

tensions lead to an inevitable downfall of this proc-

ess and are therefore detected.

Furthermore the mechanisms for model-redefinition

and member-redeclaration are processed. All meth-

ods for type-generation undergo a validation process,

where consistency of the type-structure is checked.

The resulting tree-structure of the package-hierarchy

and of the type-system can be displayed by the inter-

preter. Please note that figure 1 and 2 represent

graphs that have been automatically generated.

4.3 Instantiation and flattening

At the beginning, the top model is instantiated. The

instantiation of a model evokes the following steps:

First, all members (i.e. variables or sub-models) are

instantiated recursively. Second all the statements in

the implementation are processed.

The process of instantiation is aligned with the flat-

tening of the system. Hence common statements like

transmissions or equations are collected in a global

set. The processing of an if-statements leads prelimi-

nary just to the instantiation of its corresponding

condition. The actual content is instanced at a latter

evaluation cycle.

In the dynamic framework of Sol the instantiation of

models isn’t restricted to the initial build up phase.

Later instantiations will most likely occur. Conse-

quently also their removal has to be managed. This is

done in the exact reverse way.

4.4 Dynamic Causalization

The result of the previous stage is a flattened model

represented by a global set of equations and trans-

missions. The dynamic causalization analyzes this

set of equations generates a data-structure that is

suited for later evaluation cycles. The final target of

this processing stage is depicted by the causality-

graph in figure 5 and 6. There, the actual change in

structure is revealed.

The resulting graph sketches the dependencies be-

tween the equations and transmissions. It includes

also logical dependencies (dotted-lines) that result

out of the conditional branches. This graph can then

be further simplified by removing alias-variables or

constant parts.

Any change in the set of equations will yield to an

update of the causality-graph. The new equations

need to be causalized and integrated into the graph.

Furthermore the causality of previously causalized

equations may now change. To handle all these cases

in an efficient manner, the algorithm for the dynamic

causalization is strongly optimistic. This means that

it preserves existing structures, as long as possible,

even if they temporarily loose their causal roots.

Hence we can ensure that a small local change will

not cause a global change unless the structure of the

equation system makes this inevitable. For instance,

the exchange of the engine model will not affect the

causality of the fly-wheel or the gear model. There-

fore the update considers only a sub-graph and can

be treated locally. The details of this algorithm re-

main to be published.

4.5 Update and Evaluation

Based on the causality-graph, the system can be

evaluated. This may consider the whole system or

only a small subpart. Arbitrary updates can be trig-

gered. If several updates are triggered at once, they

are evaluated synchronously. The update procedure

evaluates all dependent relations and successfully

avoids any multiple evaluations of relations where

separate update-paths meet.

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems

The Modelica Association 53 Modelica 2008, March 3rd − 4th, 2008

Logic-dependencies in the causality graph form si-

lent dependencies. This means that an update of the

corresponding Boolean expression does not directly

trigger updates on its logical dependent equations.

Silent dependencies are purposed only to ensure a

correct update flow.

Furthermore, the causality graph contains also rela-

tions that own side-effects. Those relations may typi-

cally trigger an instantiation or removal of equations.

The condition of an if-branch represents a prime ex-

ample for this.

4.6 Time-Integration

The evaluation of the system (or a part of it) is trig-

gered by two major sources. One is the insertion of

new relations through instantiation. The other one,

and much more frequent, is the time-integration of

the corresponding state-variables. Currently, only

simple explicit methods for integration are available.

Since the system may reconfigure during an integra-

tion step, most integration algorithms with multiple

steps cannot be implemented in a straightforward

manner. It should be ensured that only the final step

may trigger structural changes. Also certain methods

for step-size control need to be adapted for the new

framework.

5 Limitations and Efficiency

5.1 Current limitations

The current version of Solsim provides a framework

for a more dynamic handling in equation-based

modeling. The language itself enables the statement

of drastic structural changes in a general way. Thus,

the causalization of several equations may change in

dependence of the structure. Also various sub-

models may be instantiated or removed on run-time

leading to a variable number of instances.

However, there are severe restrictions that consider

the type of equation systems that are currently sup-

ported. Solsim is yet unable to treat any equation

system that contains algebraic loops. Also there is no

index-reduction mechanism. And therefore the dif-

ferential equations are temporarily formulated by the

explicit statement of an integrator.

These restrictions reduce severely the applicability of

the current system. In most practical situations,

structural changes hardly lead to an isolated recon-

figuration like a simple causality change. Often a

complete set of tasks has to be accomplished at once

[5]. This concerns, for instance, the dynamic han-

dling of algebraic loops, a dynamic state-selection

Figure 5 (left): Causality-graph of the machine at time 1

having “Engine2” as submodel.

Figure 6 (right): Causality-graph of the machine at time 8

using the simpler model “Engine1” as submodel.

Both graphs originate from an automatically generated

version, where the gear-model has been omitted. The

graphs have been slightly simplified to increase clarity and

readability.

D. Zimmer

The Modelica Association 54 Modelica 2008, March 3rd − 4th, 2008

and mechanisms for index-reduction or robust, re-

dundant re-initialization. In mechanics, the problem

of multiple contact points with ideal-friction even

yields to a complicated optimization task [9].

5.2 Efficiency

Whereas it is too early to give serious benchmark

results, this section may at least give an impression

about the current speed of our interpreter on a stan-

dard CPU. In general, we can state that the number

of equations that can be evaluated per second is in

the order of magnitude from 10
5
 to 10

6
. The mecha-

nisms for instantiation, flattening and causalization

manage altogether to handle between 10
4
 and 10

5

equations per second.

Most important is that the efficiency is high enough

to let us exceed the complexity of trivial models. Of

course, the interpreter, like any other interpreter suf-

fers from a certain computational overhead that will

prevent its usage for highly demanding simulation

applications.

Please note that the outlined processing scheme is

not an exclusive solution. It is a very general ap-

proach and consequently represents overkill for

many specific applications. However, a declarative

language as Sol is very well suited to enable various

optimization techniques, since the semantics do not

directly stipulate the processing scheme. A number

of optimizations may therefore be developed. For

instance, a potential optimization is a run-time com-

piler. One might also try to include certain parts of

the causalization, simplification and flattening into

the preprocessing stage. Another interesting topic is

the automatic identification and pre-compilation of

situations where the system can be described by a

finite set of sub-modes.

5.3 Future Tasks

Our primary target is to enhance the general applica-

bility of our approach with respect to the set of DAE-

systems that can be properly handled. Therefore we

have a strong incentive to develop algorithms for the

tearing of algebraic loops and index-reduction that

are flexible and can be well integrated into our dy-

namic framework.

Furthermore the presentation of the core language

omits a number of language elements that have still

remained in the state of design. This concerns, for

example, a general solution for collections of models

(e.g. arrays).

6 Conclusions

The Sol language is built upon declarative principles

and is strongly influenced by Modelica. It incorpo-

rates a general modeling methodology for variable-

structure systems. The Sol research project offers a

dynamic framework that enables the convenient ac-

quaintance of knowledge in language design and

processing techniques that we think will be essential

for Modelica’s future development.

Such a methodology benefits prevalent application

areas and is likely to enlarge application field for

equation-based modeling. To this end, future devel-

opments that concern primarily language design and

processing techniques are required.

Appendix

The following listing of rules in extended Backus-

Naur form (EBNF) presents the core grammar of the

Sol modeling language. The rules are listed in a top-

down manner listing the high-level constructs first

and breaking them down into simpler ones. Non-

terminal symbols start with a capital letter and are

written in bold. Terminal symbols are written in

small letters. Special terminal operator signs are

marked by quotes. Rules may wrap over several

lines.

Common fundamental expressions like the model for

the mathematical function sin() or given global vari-

ables as time or initial form predefined elements

within the language itself and are therefore not part

of the grammar. The same holds for the fundamental

types in Modelica. These are: Real, Integer, Boo-

lean, String and Void.

Listing 1: EBNF-Grammar of Sol

Model = ModelSpec Id Header

 [Interface] [Implemen] end Id ";"

ModelSpec = [redefine] [partial]

 (model | package | connector | record)

Header = {Extension} {Define} {Model}

Extension = extends Designator ";"

Define = define (Const | Designator) as Id ";"

Interface = interface ":" {(IDecl | ParDecl) ";"} {Model}

ParDecl = parameter Decl

IDecl = [redelcare] LinkSpec [IOSpec] [CSpec] Decl

ConSpec = potential | flow

IOSpec = in | out

Implemen = implementation ":" StmtList

StmtList = [Statement {";" Statement }]

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems

The Modelica Association 55 Modelica 2008, March 3rd − 4th, 2008

Statement = [Condition | Event | Declaration | Relation]

Condition = if Expression then StmtList ElseCond

ElseCond = (else Condition) | ([else then StmtList] end [if])

Event = when Expression then StmtList ElseEvent

ElseEvent = (else Event)|([else then StmtList] end [when]

Declaration = [redeclare] LinkSpec Decl

LinkSpec = static | dynamic

Decl = Designator Id [ParList]

Relation = Expression Rhs

Rhs = ("=" | "<<" | "<-") Expression

ParList = "{" [Designator Rhs {"," Designator Rhs }] "}"

InList = "(" [Designator Rhs {"," Designator Rhs }] ")"

Expression = Comparis {(and|or) Comparis }

Comparis = Term [("<"|"<="|"=="|"<>"|">="|">")Term]

Term = Product {("+" | "-") Product }

Product = Power { ("*" | "/") Power }

Power = SElement {"^" SElement }

SElement = ["+" | "-" | not] Element

Element = Const | Designator [InList] [ParList]

 | "(" Expression ")"

Designator = Id {"." Id }

Id = Letter {Digit | Letter}

Const = Number | Text | true | false

Number = ["+"|"-"] Digit { Digit }

 ["." {Digit }] [e ["+"|"-"] Digit { Digit }]

Text = "\"" {any character} "\""

Letter = "a" | ... | "z" | "A" | ... | "Z" | "_"

Digit = "0" | ... | "9"

Acknowledgments

I would like to thank Prof. Dr. François E. Cellier for

his helpful advice and support. This research project

is sponsored by the Swiss National Science Founda-

tion (SNF Project No. 200021-117619/1).

References

[1] Bläser, L.: A Component Language for Structured

Parallel Programming. In: Joint Modular Languages

Conference, Oxford, UK (2006) 230-250.

[2] Broman, D., Fritzson, P., Furic, S.: Types in the

Modelica Language. In: Proceedings of the Fifth In-

ternational Modelica Conference, Vienna, Austria

(2006) Vol. 1, 303-315.

[3] Casella, F., et al.: The Modelica Fluid and Media

Library […]. In: Proc.eedings of the Fifth Interna-

tional Modelica Conference, Vienna, Austria (2006)

Vol. 2, 631-640.

[4] Cellier, F.E., Krebs, M.: Analysis and Simulation of

Variable Structure Systems Using Bond Graphs and

Inline Integration. In: Proc. ICBGM’07, 8th SCS

Intl. Conf. on Bond Graph Modeling and Simulation,

San Diego, CA (2007) 29-34.

[5] Enge, O.: Analyse und Synthese elektromecha-

nischer Systeme, Ph.D. Dissertation, TU Chemnitz,

Germany (2006).

[6] Mosterman, P.J.: HYBRSIM - A Modeling and

Simulation Environment for Hybrid Bond Graphs,

In: J. Systems and Control Engineering, 216, Part I

(2002) 35-46.

[7] Nilsson, H., Peterson, J., Hudak, P.: Functional Hy-

brid Modeling from an Object-Oriented Perspective

In: Proc. of the 1st Intern. Workshop on Equation-

Based Object-Oriented Languages and Tools, Ber-

lin, Germany (2007) 71-87.

[8] Nytsch-Geusen, C., et al.: Advanced modeling and

simulation techniques in MOSILAB: A system de-

velopment case study. In: Proceedings of the Fifth

International Modelica Conference, Vienna, Austria

(2006) Vol. 1, 63-71.

[9] Pfeiffer, F., Glocker, C.: Multibody Dynamics with

Unilateral Contacts. John Wiley & Sons, New York

(1996).

[10] Zauner, G., Leitner, D., Breitenecker, F.: Modeling

Structural-Dynamics Systems in Modelica […]

Mosilab and AnyLogic. In: Proc. of the 1st Intern.

Workshop on Equation-Based Object-Oriented Lan-

guages and Tools, Berlin, Germany (2007) 71-87.

[11] Zimmer, D.: Enhancing Modelica towards variable

structure systems. In: Proc. of the 1st International

Workshop on Equation-Based Object-Oriented Lan-

guages and Tools, Berlin, Germany (2007) 61-70.

Biography

Dirk Zimmer received his MS

degree in computer science from

the Swiss Federal Institute of

Technology (ETH) Zurich in

2006. He gained additional ex-

perience in Modelica and in the

field of modeling mechanical

systems during an internship at

the German Aerospace Center

DLR 2005. Dirk Zimmer is cur-

rently pursuing a PhD degree with a dissertation re-

lated to computer simulation and modeling under the

guidance of Profs. François E. Cellier and Walter

Gander. His current research interests focus on the

simulation and modeling of physical systems with a

dynamically changing structure.

D. Zimmer

The Modelica Association 56 Modelica 2008, March 3rd − 4th, 2008

