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Abstract 

This paper presents a derivative language of Modelica 

that is called Sol. It has been especially designed for the 

convenient expression and simulation of variable-structure 

systems within an object-oriented, equation-based model-

ing framework. Starting from a formal definition of the 

grammar and type-system, the paper advances to an ex-

planation of Sol’s semantics. Finally the current state of 

implementation and corresponding processing mecha-

nisms are presented. Keywords: language design, vari-

able-structure systems, causalization mechanisms. 

1 Motivation  

Many contemporary models contain structural 

changes at simulation run-time. These systems are 

typically denoted by the collective term: variable- 

structure systems. The motivations that lead to the 

generation of such systems are manifold. Typical 

cases are represented by ideal switching or breaking 

processes, variability in the number of entities, dy-

namic multi-level models or user interaction [5]. 

Let us focus on the modeling-paradigm that is repre-

sented by Modelica: declarative models that are 

based on differential algebraic equations (DAEs) 

with hybrid extensions. Within this paradigm, a 

structural change is reflected by a change in the set 

of variables and by a change in the set of relations 

(i.e., equations) between the time-dependent vari-

ables. Such replacements may lead to severe changes 

in the model structure. This concerns the causaliza-

tion of the equation system, as well as the perturba-

tion index of the DAE system. 

Current contributions of this research domain include 

the development of the language MOSILAB [8] or 

Hydra [7]. Also some specific techniques, like in-

line-integrators [4] that can be included in Modelica 

prove to be helpful in certain situations. However, 

most of these approaches leave the standard domain 

of Modelica, since the modeling of variable-structure 

systems within the current Modelica framework is 

very limited [10]. This is partly due to a number of 

technical restrictions that mostly originate from the 

static treatment of the DAEs. But these technical re-

strictions are not the only limiting factor. Another 

major problem is the lack of expressiveness in the 

Modelica-language itself. 

To express structural changes, a corresponding mod-

eling language has to meet certain requirements. For 

instance, it must be enabled to state relations be-

tween variables or sub-models in a conditional form, 

so that the structure can change depending on time 

and state. In addition, variables and sub-models 

should be dynamically declarable, so that the corre-

sponding instances can be created, handled, and de-

leted at run time. Such requirements partly contradict 

with fundamental assumptions made in the design-

process of Modelica.  

Therefore we decided to develop a new language 

called Sol [11]. It is a language primarily conceived 

for research purposes that attempts to be of minimal 

complexity with a high degree of expressiveness. We 

want to explore the full power of a declarative mod-

eling approach and how it can handle potential, fu-

ture problem fields. The implementation of Sol will 

be a small and open project that should enable other 

researchers to test and validate their ideas with a 

moderate effort. The longer term goal of our research 

is to significantly extend Modelica’s expressiveness 

and range of application. Furthermore, the Sol-

project gives us a development-platform for techni-

cal solutions that concerns the handling of structur-

ally changing equation systems. This includes solu-

tions for dynamic recausalization or the dynamic 

handling of structural singularities.  

Although Sol forms a language of its own, it is de-

signed to be as close to Modelica as reasonably pos-

sible. This should drastically ease the understanding 

for anyone in the Modelica community. It is not our 

goal to immediately change the Modelica standard or 

to establish an alternative modeling language. Our 

scientific work is intended to merely offer sugges-

tions and guidance for Modelica’s future develop-

ment. 
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Example 1: Model of a simple machine driving a fly-wheel with a fluctuating torque. 

model SimpleMachine  Definition of the main model: “SimpleMachine” 
 

   (1) Header: 

 define inertia as 1.0;  ● Definition of a constant   

  
    

interface: (2) Interface Section: 

 parameter Real meanTorque;  ● Declaration of parameters 

 static Real w;  ● Declaration of a public member  
    

implementation: (3) Implementation part: 

 static Real torque;  ● Declaration of private members 
 static Real a;  

 torque = inertia*z;  ● Stating Newton’s law of motion… 
 w = int(x=z);  

 phi = int(x=w); 

 torque = (1+cos(p=phi))*meanTorque;  ● Equation for the fluctuating torque 

 

end SimpleMachine End of the model-definition 
 

… 
 

static SimpleMachine M1{ meanT << 10}; ● An example declaration of the machine model. 

cout << SimpleMachine.w; ● Simple Output Generation. 
 

 
 

2 The Language: Sol  

2.1 Principle Components 

Essentially, Sol redefines the fundamental concepts 

of Modelica on a dynamic basis. Following the spirit 

of Modelica, it forms a language of strong declara-

tive character and therefore completely abandons any 

imperative parts. Unlike many other declarative 

modeling languages, Sol enables the creation, ex-

change and destruction of components at simulation 

time. To this end, the modeler describes the system 

in a constructive way, where the structural changes 

are expressed by conditionalized declarations. These 

conditional parts can than get activated and deacti-

vated of during run-time. This constructive approach 

avoids an explicit description of modes and transi-

tions and yet proves to be fairly powerful and flexi-

ble.  

In contrast to Modelica, the grammar of Sol (cf. ap-

pendix) is significantly stricter. In its aim for sim-

plicity, it prohibits any ambiguous ordering of its 

major sections. Also any grammar elements that one 

would typically denote by the term syntactic sugar 

are largely omitted. Whereas the strict section order-

ing definitely leads to a good modeling style, the 

lack of syntactic shorthand notations may sometimes 

result in clumsy formulations. 

On the top-level, the Sol language features only a 

single language component that represents the defini-

tion of a model in a very generic way. Such one-

component approaches are frequent for experimental 

languages (e.g. [1]), since they typically result in a 

uniform structure that eases further processing. In 

addition, they yield to a clear and simple grammar.  

The example above gives a first glance at Sol and 

enables us to take a closer look at the structure of a 

model-definition. A model-definition consists of 

three parts, where each of them is optional: 

• The header section is essentially composed out 

of further definitions. These may be constants or 

further models. Definitions of the header-part can 

be publicly accessed and belong the model defini-

tion itself and not to one of its instances. In addi-

tion, the header enables you to state an extension 

of an existing definition. 

• The interface section enables the modeler to de-

clare the members of a model that can be publicly 

accessed. The members can either be basic vari-

ables or sub-models. Any of these members can 

be marked as a parameter that is passed at the 

model’s instantiation and remains constant for the 

object’s lifetime. Hence extra means for class-

parameterization as in Modelica become obsolete.  

• The implementation part contains then the actual 

relations between the variables and describes the 

dynamics of the system. 
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This general structure of a model-definition enables 

it to be used also for degenerated tasks like the defi-

nition of packages or connectors. A model in Sol 

represents a uniform approach that is similar to the 

class concept of Modelica. On the other hand side, 

the term “model” is almost overstressed and became 

so general that it lost some of its actual meaning. To 

regain expressiveness, Sol offers you different 

model-specifiers that enable the explicit denotation 

of certain sub-kinds. The usage of these specifiers 

involves consequently a number of restrictions. 

However, the syntax and semantics still remain uni-

form.  

2.2 Object-Oriented Organization 

The object-oriented and hierarchic organization of 

modeling code is substantially supported by two 

model-specifiers: 

• package: Packages are used to collect models in 

a meaningful entity. A package-definition is re-

duced to the header part. It features neither an in-

terface nor an implementation.  

• connector: A connector typically collects mem-

bers that are intended to be related by a connec-

tion-statement. A connector consists essentially 

of an interface. There’s no implementation part.  

The creation of an object-oriented hierarchy is illus-

trated in example 2 where the machine-model is split 

up into its principle components: An engine, a fly-

wheel and additionally a simple gear model. These 

models use a uniform connector model and are based 

upon partial models that have been collected in an 

extra template package.  Example 2 makes frequent 

use of the keyword extends that demonstrates the 

appliance of type-generation. 

 

Example 2: Package structure in Sol 

package MechTemplate 

 

  package Interfaces 
 

    connector Flange 

    interface: 

      static potential Real phi;  

      static flow Real t;  

    end Flange; 
 

    partial model OneFlange 

    interface: 

      static Flange f; 

    end OneFlange; 

    

    partial model TwoFlanges 

    interface: 

      static Flange f1; 

      static Flange f2; 

    end TwoFlanges; 
 

  end Interfaces; 
 

end MechTemplate; 

 

package Mechanics extends MechTemplate; 
 

  model Engine1  

    extends Interfaces.OneFlange; 

  interface: 

    parameter Real meanT; 

  implementation: 

      f.t = meanT;  

  end Engine1; 
 

  model Engine2  

    extends Interfaces.OneFlange;  

  interface: 

    parameter Real meanT; 

  implementation: 

    static Real transm; 

    transm = 1+cos(x = f.phi); 

    f.t = meanT*transm;  

  end Engine2; 
 

  model FlyWheel  

    extends Interfaces.OneFlange; 

  interface: 

    parameter Real inertia; 

    static Real w; 

  implementation: 

    static Real z; 

    f.phi = int(x=w); 

    w = int(x=z); 

    -f.t = z*inertia; 

  end FlyWheel;  
 

  model Gear  

    extends Interfaces.TwoFlanges; 

  interface: 

    parameter Real ratio; 

  implementation: 

    ratio*f1.phi=f2.phi; 

    -f1.t=ratio*f2.t; 

  end Gear; 
 

end Mechanics; 
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Sol offers three simple but 

effective mechanisms for 

type-generation. The most 

important of them is the 

type-extension better known 

as inheritance. Any model 

can extend any other model 

as long as there are no cir-

cular or recursive depend-

encies. Since packages rep-

resent models as well, in-

heritance can be applied to complete packages as 

well. The remaining two mechanisms consist in the 

redeclaration of members and the redefinition of 

models. Also these mechanisms can be applied to all 

feasible elements. In contrast to Modelica the rede-

claration is used for type-generation only and not for 

class-parameterization.  

Figure 1 depicts the resulting package structure of 

our example. The solid lines denote the memberships 

whereas the dotted arrows represent inheritance. 

 
Figure 1: Exemplary package-hierarchy in Sol 

Whereas the example has been over-elaborated for 

the purpose of demonstration, the combined usage of 

type-generation mechanisms forms a powerful tool 

for certain application domains like fluid-dynamics 

[3]. There, a package for a certain material may 

serve as a potential template. A modeler can then 

quickly adapt to other materials by a package-

extension and a redefinition of the basic material 

model.  

 

2.3 Type-System 

Like Modelica, Sol features a structural type-system 

[2]. It is solely based on the model’s interfaces. The 

development of implementations and interfaces can 

therefore be separated and disjoined lines of imple-

mentation may yield into compatible types. The pro-

vided mechanisms of inheritance and redeclaration 

enable a satisfactory degree of polymorphism. 

The type of a model is composed out of its members 

in the interface section. Any type-extension will 

yield to the creation of a sub-type of the inherited 

model. Also redeclarations and redefinition are lim-

ited to be only possible by sub-types of their original 

representation. Figure 2 illustrates the resulting type-

structure of Example 2. 

A proper and user-evident type-system becomes in-

creasingly important in a dynamic framework like 

Sol. In situation where assignments are applied on 

complete sub-models to perform a model-exchange 

the corresponding assignments should be guarded by 

the type-rules.  

2.4 Implementation part 

The implementation part represents a block. A block 

may contain declarations of private members, rela-

tions (e.g. equations) or further nested conditional 

blocks in any arbitrary order. Let us analyze each 

component in more detail. 

Private Declarations: 

Declarations of private members do hardly differ 

from their counterparts in the header sections. Only 

the parameter attribute and the access-specifiers are 

now meaningless and therefore disabled. 

The declaration of a member links a model instance 

to a given identifier. This linking is either static or 

dynamic. This selection has to be stated before the 

actual declaration. In contrast to a static linking, a 

dynamic linking enables to modeler to (re-)assign a 

new instance to the corresponding identifier. 

 

Figure 2: Exemplary type-hierarchy in Sol 

D. Zimmer

The Modelica Association 50 Modelica 2008, March 3rd − 4th, 2008



Conditional Blocks: 

Sol features if-else-branches and when-else-

branches. The condition of an if-branch is immedi-

ately applied. It forms a safe condition that can be 

assumed to hold for its content. Hence the condition 

must be independent on any of its branches’ content. 

When-statements are used to catch an event. The 

events are triggered during the update-procedure and 

are scheduled for the next one. Thus, when-

conditions are not safe. Unlike Modelica, there are 

no syntactical restrictions on the content of the 

branches, but all branches shall finally lead to correct 

system of equations. 

Statements:  

Three fundamental operators are provided for setting 

up relations between members: 

• The operator = states an equation between two 

expressions of type real.  

• The causal copy-transmission << is setting up 

causal relationships between real variables and 

can be used to link a copy of a model-instance to 

an identifier. 

• The causal move-transmission <- is used to link 

a model-instance to a new identifier and to re-

move the former linking. 

Member-access in statements:  

To access the public members of your sub-models, 

three options are provided:  

• As in Modelica the . operator is the most 

straightforward way of access, but not always 

convenient. 

• The connection(…) statement exist also in Sol 

and has practically the same meaning as its 

counterpart in Modelica. 

• The ( ) operator enables a function-like nota-

tion. It is especially suited for anonymously de-

clared members. 

Whereas the . operator represents a universal form of 

member access, the other two forms serve conven-

ience and their proper appliance is determined by  

specifiers at the corresponding member-declarations. 

The connection statement only refers to variables 

that have been marked by the specifiers flow or  

potential.  The specifiers in and out determine 

the applicability of the access by round-brackets. 

3 Example Model 

The presented language elements are sufficient for 

the formulation of highly variable systems. However, 

given the brief introduction above, it may not be evi-

dent how objects can be dynamically created, ex-

changed and deleted as there appears to be no ex-

plicit tool for these purposes. Let us therefore look at 

an example. 

We reassemble the machine-model from example 1 

that consists of an engine that drives a fly-wheel. 

This time we use the components of the Mechanics 

package in example 2. Furthermore we add a simple 

gear to our model. We recognize that the package 

provides two models for an engine: The first model 

Engine1 applies a constant torque on the flange. In 

the second model Engine2, the torque is dependent 

on the positional state, roughly emulating a piston-

engine. Both models share the same type (see figure 

2). Our intention is to use the latter, more detailed 

model at the machine’s start and to switch to the 

simpler, former model as soon as the wheel’s inertia 

starts to flatten out the fluctuation of the torque. This 

exchange of the engine-model represents a simple 

structural change on run-time. 
 

Example 3: Machine with a structural change 

model Machine 

implementation: 

  static Mechanics.FlyWheel F{inertia<<1}; 

  static Mechanics.Gear G{ratio << 1.8}; 

  connection(G.f2,F.f); 
   

  static Boolean fast; 

  if fast then 

    static Mechanics.Engine1 E{meanT<<10}; 

    connection(E.f,G.f1); 

   else then 

    static Mechanics.Engine2 E{meanT<<10}; 

    connection(E.f,G.f1); 

  end; 
   

  if initial then fast << false; end; 

  when F.w > 40 then fast << true; end;  

end Machine; 

The resulting model is presented above. It includes 

two conditional branches, one for each mode. The 

current mode is stored in the Boolean variable fast. 

The corresponding transition is modeled by the 

when-statement. 

3.1 Simulation Result 

Using an interpreter program, the system was simu-

lated for 10 seconds by the excessive number of 

10’000 integration steps with the forward Euler 

method. The computational effort sums up to a total 

of 0.2 seconds on a standard CPU, where the effort 

for parsing and preprocessing is almost completely 
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negligible. Figure 3 displays a plot of the angular 

velocity. The structural change reveals more clearly 

in the magnification. The actual change in the struc-

ture of equations is presented by the two causality-

graphs of figure 5 and 6. Their closer examination is 

part of section 4. 

 
Figure 3: Angular velocity of the flywheel.  

3.2 Alternative modeling approach 

In the prior example, model-instances have been im-

plicitly created and removed by the if-statement. Us-

ing local engine-models in the two branches is a very 

natural modeling approach, but often leads to redun-

dant formulations (e.g. the connection statement) and 

therefore not all structural changes can be formulated 

in such a way. Thus, Sol enables the dynamic linking 

of an identifier to its instance. This offers a more 

convenient and general approach.  

Let us model the machine for a second time, this 

time using a dynamic engine-model E that is initially 

linked to an Engine2 model. At the transition-event, 

the Engine1 model is dynamically created by an 

anonymous declaration. Since it is linked to the 

member E by a move-transmission, its lifetime ex-

ceeds the event and the newly created model replaces 

the former one. The replacement is valid because the 

types of the two engine models are equivalent. 
 

Example 4: Alternative version of the machine-model 

model Machine  

implementation: 

  static FlyWheel F{inertia<<1}; 

  static Mechanics.Gear G{ratio << 1.8}; 

  dynamic Engine2 E{meanT << 10};  

  connection(E.f,G.f1); 

  connection(G.f2,F.f); 

  when F.w > 40 then  

    E <- Engine1{meanT << 10};  

  end;  

end Machine; 

The deletion of a model-instance is mostly done im-

plicit by replacing the linking to an instance (as 

above) or by the removal of the corresponding iden-

tifier. However, example 5 presents the predefined 

trash object that is of type void and can be used for 

the explicit deletion of any object. 
 

Example 5: Explicit deletion of a model-instance 
 

  trash <- E; 
 

This mechanism for the dynamic linking of a model-

instance represents a pointer-free modeling ap-

proach. The linking obeys clear ownership principles 

and therefore the simulation system can assure a 

memory-safe execution. Furthermore, the modeler is 

freed from the tedious and error-prone task of mem-

ory-management.  

4 Processing Schemes 

Sol is currently processed by an interpreter.  The in-

terpreter was named Solsim and represents a com-

mand-line program running under Linux or Win-

dows. The input-file can be written in a standard 

text-editor. The simulation is performed and its out-

put can be written into a file readable by the pro-

grams Matlab™ or Gnuplot.  In addition to its main 

task, the interpreter provides also tools for the analy-

sis of the model-hierarchy, type-structure and causal-

ization mechanisms 

Whereas the pair of a compiler and a simulator is the 

preferred choice for high-end simulation tasks, an 

interpreter is an appropriate tool (cf. [6]) for research 

work on language design. The development process 

becomes easier, faster and more flexible. Hence the 

development of the interpreter can proceed in paral-

lel with a further refinement of the language. Fur-

thermore, new debugging techniques become crucial 

in a more dynamic framework. This can be easier 

provided by an interpreter, since all necessary meta-

information is available.  Figure 4 displays a simpli-

fied overview of the main processing scheme that is 

composed out of six blocks. The following sections 

discuss these parts in more detail. 

4.1 Parsing and Lexing 

The Lexer processes the elementary elements of the 

language and discards all comments and formatting. 

Since the remaining part of the language forms an   

L1-Grammar, the actual parsing forms a rather trivial 

task. The parser is handwritten and features an auto-

matic error-generation.  
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Figure 4: Processing scheme of Sol 

4.2 Preprocessing 

In the next stage, the mechanisms for type-

generation are applied. This concerns primarily the 

resolving of type-identifiers and the appliance of the 

type-extensions. However these two processes can-

not be implemented in a linear fashion. They usually 

have to be processed in several, interleaved steps.  

Since a type-extension can be applied even on a 

complete package, the extension itself may generate 

new type-identifiers that may have to be resolved 

elsewhere. Thus, the algorithm has to “crawl” 

through the dependencies. Circular or recursive ex-

tensions lead to an inevitable downfall of this proc-

ess and are therefore detected.  

Furthermore the mechanisms for model-redefinition 

and member-redeclaration are processed. All meth-

ods for type-generation undergo a validation process, 

where consistency of the type-structure is checked. 

The resulting tree-structure of the package-hierarchy 

and of the type-system can be displayed by the inter-

preter. Please note that figure 1 and 2 represent 

graphs that have been automatically generated. 

4.3 Instantiation and flattening 

At the beginning, the top model is instantiated. The 

instantiation of a model evokes the following steps: 

First, all members (i.e. variables or sub-models) are 

instantiated recursively. Second all the statements in 

the implementation are processed.  

The process of instantiation is aligned with the flat-

tening of the system. Hence common statements like 

transmissions or equations are collected in a global 

set. The processing of an if-statements leads prelimi-

nary just to the instantiation of its corresponding  

condition. The actual content is instanced at a latter 

evaluation cycle. 

In the dynamic framework of Sol the instantiation of 

models isn’t restricted to the initial build up phase. 

Later instantiations will most likely occur. Conse-

quently also their removal has to be managed. This is 

done in the exact reverse way.  

4.4 Dynamic Causalization 

The result of the previous stage is a flattened model 

represented by a global set of equations and trans-

missions. The dynamic causalization analyzes this 

set of equations generates a data-structure that is 

suited for later evaluation cycles. The final target of 

this processing stage is depicted by the causality-

graph in figure 5 and 6. There, the actual change in 

structure is revealed. 

The resulting graph sketches the dependencies be-

tween the equations and transmissions. It includes 

also logical dependencies (dotted-lines) that result 

out of the conditional branches. This graph can then 

be further simplified by removing alias-variables or 

constant parts.  

Any change in the set of equations will yield to an 

update of the causality-graph. The new equations 

need to be causalized and integrated into the graph. 

Furthermore the causality of previously causalized 

equations may now change. To handle all these cases 

in an efficient manner, the algorithm for the dynamic 

causalization is strongly optimistic. This means that 

it preserves existing structures, as long as possible, 

even if they temporarily loose their causal roots. 

Hence we can ensure that a small local change will 

not cause a global change unless the structure of the 

equation system makes this inevitable. For instance, 

the exchange of the engine model will not affect the 

causality of the fly-wheel or the gear model.  There-

fore the update considers only a sub-graph and can 

be treated locally. The details of this algorithm re-

main to be published. 

4.5 Update and Evaluation  

Based on the causality-graph, the system can be 

evaluated. This may consider the whole system or 

only a small subpart. Arbitrary updates can be trig-

gered. If several updates are triggered at once, they 

are evaluated synchronously. The update procedure 

evaluates all dependent relations and successfully 

avoids any multiple evaluations of relations where 

separate update-paths meet. 

Introducing Sol: A General Methodology for Equation-Based Modeling of Variable-Structure Systems

The Modelica Association 53 Modelica 2008, March 3rd − 4th, 2008



 

Logic-dependencies in the causality graph form si-

lent dependencies. This means that an update of the 

corresponding Boolean expression does not directly 

trigger updates on its logical dependent equations. 

Silent dependencies are purposed only to ensure a 

correct update flow. 

Furthermore, the causality graph contains also rela-

tions that own side-effects. Those relations may typi-

cally trigger an instantiation or removal of equations. 

The condition of an if-branch represents a prime ex-

ample for this. 

4.6 Time-Integration 

The evaluation of the system (or a part of it) is trig-

gered by two major sources. One is the insertion of 

new relations through instantiation. The other one, 

and much more frequent, is the time-integration of 

the corresponding state-variables. Currently, only 

simple explicit methods for integration are available. 

Since the system may reconfigure during an integra-

tion step, most integration algorithms with multiple 

steps cannot be implemented in a straightforward 

manner. It should be ensured that only the final step 

may trigger structural changes. Also certain methods 

for step-size control need to be adapted for the new 

framework.  

5 Limitations and Efficiency 

5.1 Current limitations  

The current version of Solsim provides a framework 

for a more dynamic handling in equation-based 

modeling. The language itself enables the statement 

of drastic structural changes in a general way. Thus, 

the causalization of several equations may change in 

dependence of the structure. Also various sub-

models may be instantiated or removed on run-time 

leading to a variable number of instances.  

However, there are severe restrictions that consider 

the type of equation systems that are currently sup-

ported. Solsim is yet unable to treat any equation 

system that contains algebraic loops. Also there is no 

index-reduction mechanism. And therefore the dif-

ferential equations are temporarily formulated by the 

explicit statement of an integrator. 

These restrictions reduce severely the applicability of 

the current system. In most practical situations, 

structural changes hardly lead to an isolated recon-

figuration like a simple causality change. Often a 

complete set of tasks has to be accomplished at once 

[5]. This concerns, for instance, the dynamic han-

dling of algebraic loops, a dynamic state-selection 

 

 

 

Figure 5 (left): Causality-graph of the machine at time 1 

having “Engine2” as submodel.  

Figure 6 (right): Causality-graph of the machine at time 8 

using the simpler model “Engine1” as submodel.  

Both graphs originate from an automatically generated 

version, where the gear-model has been omitted. The 

graphs have been slightly simplified to increase clarity and 

readability.   
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and mechanisms for index-reduction or robust, re-

dundant re-initialization. In mechanics, the problem 

of multiple contact points with ideal-friction even 

yields to a complicated optimization task [9]. 

5.2 Efficiency 

Whereas it is too early to give serious benchmark 

results, this section may at least give an impression 

about the current speed of our interpreter on a stan-

dard CPU. In general, we can state that the number 

of equations that can be evaluated per second is in 

the order of magnitude from 10
5
 to 10

6
. The mecha-

nisms for instantiation, flattening and causalization 

manage altogether to handle between 10
4
 and 10

5
 

equations per second. 

Most important is that the efficiency is high enough 

to let us exceed the complexity of trivial models. Of 

course, the interpreter, like any other interpreter suf-

fers from a certain computational overhead that will 

prevent its usage for highly demanding simulation 

applications.  

Please note that the outlined processing scheme is 

not an exclusive solution. It is a very general ap-

proach and consequently represents overkill for 

many specific applications. However, a declarative 

language as Sol is very well suited to enable various 

optimization techniques, since the semantics do not 

directly stipulate the processing scheme. A number 

of optimizations may therefore be developed.  For 

instance, a potential optimization is a run-time com-

piler. One might also try to include certain parts of 

the causalization, simplification and flattening into 

the preprocessing stage. Another interesting topic is 

the automatic identification and pre-compilation of 

situations where the system can be described by a 

finite set of sub-modes.  

5.3 Future Tasks 

Our primary target is to enhance the general applica-

bility of our approach with respect to the set of DAE-

systems that can be properly handled. Therefore we 

have a strong incentive to develop algorithms for the 

tearing of algebraic loops and index-reduction that 

are flexible and can be well integrated into our dy-

namic framework.  

Furthermore the presentation of the core language 

omits a number of language elements that have still 

remained in the state of design. This concerns, for 

example, a general solution for collections of models 

(e.g. arrays).  

6 Conclusions 

The Sol language is built upon declarative principles 

and is strongly influenced by Modelica. It incorpo-

rates a general modeling methodology for variable-

structure systems. The Sol research project offers a 

dynamic framework that enables the convenient ac-

quaintance of knowledge in language design and 

processing techniques that we think will be essential 

for Modelica’s future development.  

Such a methodology benefits prevalent application 

areas and is likely to enlarge application field for 

equation-based modeling. To this end, future devel-

opments that concern primarily language design and 

processing techniques are required.  

Appendix 

The following listing of rules in extended Backus-

Naur form (EBNF) presents the core grammar of the 

Sol modeling language. The rules are listed in a top-

down manner listing the high-level constructs first 

and breaking them down into simpler ones. Non-

terminal symbols start with a capital letter and are 

written in bold. Terminal symbols are written in 

small letters. Special terminal operator signs are 

marked by quotes. Rules may wrap over several 

lines.  

Common fundamental expressions like the model for 

the mathematical function sin() or given global vari-

ables as time or initial form predefined elements 

within the language itself and are therefore not part 

of the grammar. The same holds for the fundamental 

types in Modelica. These are: Real, Integer, Boo-

lean, String and Void. 
 

Listing 1: EBNF-Grammar of Sol 

Model = ModelSpec Id Header  

  [Interface] [Implemen] end Id ";" 

ModelSpec = [redefine] [partial]   

    (model | package | connector | record)  
 

Header  =  {Extension} {Define} {Model} 

Extension  =  extends Designator ";" 

Define  =  define (Const | Designator) as Id  ";" 
 

Interface  =  interface ":" {(IDecl | ParDecl) ";"} {Model}     

ParDecl = parameter Decl 

IDecl =  [redelcare]  LinkSpec [IOSpec] [CSpec] Decl 

ConSpec = potential | flow  

IOSpec  =  in | out 
 

Implemen =  implementation ":" StmtList 

StmtList =  [Statement {";" Statement }] 
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Statement  =  [Condition | Event | Declaration | Relation] 
 

Condition =  if Expression then StmtList ElseCond 

ElseCond  =  (else Condition) | ([else then StmtList] end [if])  

Event =  when Expression then StmtList  ElseEvent 

ElseEvent  =  (else Event)|([else then StmtList] end [when]  
 

Declaration = [redeclare] LinkSpec Decl 

LinkSpec  =  static | dynamic 

Decl  =  Designator Id [ParList] 
 

Relation  =  Expression Rhs 

Rhs  =  ("=" | "<<" | "<-")  Expression 
 

ParList  =  "{" [Designator Rhs {"," Designator Rhs }]  "}" 

InList  = "(" [Designator Rhs {"," Designator Rhs }]  ")" 
 

Expression = Comparis {(and|or) Comparis }  

Comparis  = Term [("<"|"<="|"=="|"<>"|">="|">")Term]  

Term  =  Product {( "+" | "-" ) Product }  

Product  =  Power { ("*" | "/")  Power } 

Power =  SElement {"^" SElement }  

SElement =  [ "+" | "-" | not ] Element 

Element  =  Const | Designator [InList] [ParList]  

  | "(" Expression ")"   
 

Designator  = Id {"." Id } 

Id  =  Letter {Digit | Letter} 

Const =  Number | Text | true | false 

Number  =  ["+"|"-"] Digit { Digit }  

  ["." {Digit }] [e ["+"|"-"] Digit { Digit }]  

Text =  "\"" {any character} "\""  

Letter  =  "a" | ... | "z" | "A" | ... | "Z" | "_" 

Digit =  "0" | ... | "9" 
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