Initialization of Modelica Models in Scicos

Initialization of Modelica models in Scicos

Masoud Najafi Ramine Nikoukhah
INRIA-Rocquencourt, Domaine de Voluceau,
78153, Le Chesnay Cedex, France

Abstract

The current Scicos Modelica compiler only supports
one form of initialization of index-1 DAEs: differen-
tial state variables and system parameters are consid-
ered known, algebraic variables as well as the deriva-
tives of differential variables are computed. In many
practical applications this is not enough. For example,
often it is required to start a simulation in an equilib-
rium state. Scicos has recently been extended to sup-
port general initialization of Modelica models. In this
paper, we present this extension and in particular the
way the continuous-time part of a Modelica program
is initialized, the graphical interface, as well as the ini-
tialization methods used.

Keywords: hybrid differential equations; initializa-
tion; numerical solver; Modelica, Scicos

1 Introduction

The Modelica compiler used in Scicos' [1, 2] has been
developed in the SIMPA? project with the participa-
tion of INRIA, IMAGINE, EDF, IFP, and Cril Tech-
nology. Recently the ANR3/RNTL SIMPA2 project
has been launched to develop a more complete Mod-
elica compiler. The main objectives of this project are
to extend the SIMPA compiler to fully support inher-
itance and hybrid systems, to give the possibility to
solve inverse problems by model inversion for static
and dynamic systems, and to enhance initialization of
Modelica models.

A model can be simulated only if it is initialized
correctly. The reason lies in the fact that a DAE
(Differential-Algebraic Equation) resulting from a
Modelica program can be simulated only if the initial
value of all variables as well as their derivatives are
known and consistent. An index-1 DAE can be formu-

Iwww.scicos.org

2Simulation pour le Procédé et I’ Automatique
3French National Research Agency

lated as
0= F(x’,x,y,p)

where x, X', y, p are the vector of differential variables,
derivative of differential variables, algebraic variables,
and model parameters, respectively [3, 4].

Previous version of the Modelica compiler of Scicos
supports only one form of initialization; it assumes
that the parameters and the initial value of differential
variables (variables whose derivative exist in the Mod-
elica program) are known and given by start key-
word, then a solver is used to compute the derivative
of differential variables and algebraic variables. The
user can also give start values of algebraic variables in
the Modelica program which are used as guess values
to help the solver to find consistent initial values. In
many practical applications, this approach of initial-
ization does not cover all forms of initializations. For
example, often it is required to start a simulation in
the steady state. In this case, derivatives of differential
variables are set to zero and the initial values of all the
variables are found as a function of known outputs (or
observable states). The initialization problem can also
be formulated as an inverse problem where the system
outputs are known at initial time, and the inputs and
internal states are to be computed. Sizing is another
form of initialisation, where, e.g., a parameter of the
model is computed at steady states as a function of a
system output (or observable states).

The next version of the Modelica compiler used in the
Scicos simulator provides support for a more general
form of initialization. In this initialization method-
ology, the user can select freely the knowns and un-
knowns of the initialization problem between the all
Modelica variables, the derivatives of differential vari-
ables, and the parameters of the model. A confidence
factor is associated to each value specifying the degree
of confidence in that value. The confidence factor goes
from zero to one where zero means the value is just a
pure guess and one means the guess value corresponds
to the actual value. This latter situation corresponds in
particular to the usage of the "fixed" keyword in Mod-

The Modelica Association

37

Modelica 2008, March 3" — 4t 2008

M. Najafi, R. Nikoukhah

elica. With this initialization methodology, no matter
if an unknown is a parameter or a differential or al-
gebraic variable, it can be computed as a function of
other known values.

Another problem with the previous approach of ini-
tialization concerns with start values of algebraic vari-
ables. The Modelica compiler of Scicos performs for-
mal simplifications on Modelica programs and gener-
ates a DAE which is used for both model initialization
and dynamic simulation. Using the simplified Mod-
elica model causes a problem in initialization of big
Modelica programs where guess values of algebraic
variables are important for convergence of the solver.
The generated DAE contains all differential variables
and their derivatives, but many algebraic variables are
eliminated during the formal simplification phase of
the Modelica model. This has several consequences:
First, algebraic variables to be eliminated may change
when the Modelica model changes a bit. Thus, the user
is unable to know in advance what algebraic variables
will be selected to provide their guess values. Further-
more, in many cases the remained algebraic variables
may not have physical interpretation and the user can-
not provide the guess value without performing a cal-
culation.

Because of these difficulties, we decided to separate
the model initialization and the dynamic simulation
and generate two DAEs for each one:

e a flat Modelica model without formal simplifica-
tion to be used in the initialization phase

e asimplified Modelica model to be used in the dy-
namic simulation phase.

With this approach, the problem of the selection of al-
gebraic variables no longer exists. In fact, once the
initialization phase finished, initial values of all alge-
braic variables as well those of derivatives of differen-
tial variables are known. As a consequence, the selec-
tion of algebraic variables in the simplified Modelica
code does not affect the dynamic simulation.

In Modelica, the start keyword can be used to set
start values of variables. Start value of derivatives
of variables can be given within initial equation
section. For small programs, this method can be eas-
ily used but as the program size grows, it becomes
difficult to set start values and change the fixed at-
tribute of variables/parameters directly in the Model-
ica program; initialization via modifying the Modelica
model is specially difficult for models with multiple
level of inheritance. e.g., The GUI (Graphical User

Interface) of Dymola* is not well adapted to visualize
and fix/relax the variables and the parameters. Then,
the user often needs to have a single model but with
several initialization scenarios. So, for each scenario a
copy of the model should be saved. Furthermore, it is
not possible to use variable attributes used in a model
in another model.

Having confronted these inconveniences, we found
it easier and more intuitive if start values and other
attributes of variables/parameters are provided via a
GUL In the GUI, the user can easily change attributes
such as start, fixed, max, min, nominal for vari-
ables/parameter of a model. Furthermore, it is possible
to indicate whether a variable, the derivative of a vari-
able or a parameter must be fixed or relaxed during
initialization. It is also possible to save the resulting
configuration in a file and use it later.

In the following sections the initialization method-
ology for Modelica models, the initialization GUI,
and available initialization computing methods for
continuous-time Modelica models (index-1 DAE) will
be explained.

2 Initialization methodology for

Modelica models

The first objective of the initialization is to compute
consistent initial values for all variables and deriva-
tives of differential variables (for index-1 DAEs). In
order to have access to all variables, the model should
be flattened, i.e., a model without inheritance should
be constructed. Then, in order to initialize the model,
which is often a dynamic model, i.e, it contains
derivatives, it should be converted into a pure algebraic
model. For that, all derivatives should be replaced by
algebraic variables.

The procedure of initialization is given in Figure 1.
The initialization is composed of:

e converting the Modelica program into a flat Mod-
elica model

e converting the flat model to an XML file
e modifying the XML file by the initialization GUI

e converting the XML file back to a Modelica pro-
gram

e computing the unknown variables/parameters.

4www.dymola.com

The Modelica Association

38

Modelica 2008, March 3" — 4t 2008

Initialization of Modelica Models in Scicos

| MyLibs.mo i .MyModel.moE

, MyLibs e

Translator

Simulation
I

i MyModel_flatmo

,,,,,,,, s

Translator —xml

¢ Initialization

| MyModel flat.xml
I

Initialization
.~
GUI :
Simulation
Initialization

i MyModel_flat.xml)
1 1

Modelicac | 7 ¢ 777777777
EEREEEEE & ————————— | ‘ XML2Modelica ‘
i MyModel_simplified.c | *

' __o___]
pmmmm e e
ROTITIIT L | MyModel_flat.mo |

| MyMode e

Modelicac —no—simplifs

: Computing :
I (finding initial values) :

............... s

MyModel_flat.xml

Figure 1: Initialization in Scicos

In the initialization process, three external applica-
tions are used: Translator, XML2Modelica, and
modelicac (all developed at LMS Imagine.Lab®).
Translator is used for three purposes:

e Modelica Front-end for dynamic simula-
tion. When called with appropriate options,
Translator generates a flat Modelica program.
For that, Translator verifies the syntax and

Shttp://www.Imsintl.com

semantics of the Modelica program, applies in-
heritance rules, generates equations for connect
expressions, expands for loops, handles pre-
defined functions and operators, performs the
implicit type conversion, and etc. The generated
flat model contains all the variables, derivatives
of differential variables, and parameters defined
and declared with fixed=false. Constants and
parameters with the attribute fixed=true are
replaced by their numerical values.

e Modelica Front-end for initialization. In this
case, besides generating a flat Modelica model,
derivatives of the variables are replaced by an al-
gebraic variable. As a convention, e.g., "der(x)"
is replaced by " der x" in the generated flat
model for initialization.

e XML generator. When called with -xml option,
Translator generates an XML file from a flat
Modelica model. The generated XML file con-
tains all the information of the flat model. An
example of an XML file is given in Appendix A.

Once the XML file generated, the user can change
variable/parameter attributes. The modified XML file
should be reconverted into a Modelica program to be
compiled and initialized. XML2Modelica is used to
perform this task.

Modelicac, which is a compiler for the subset of the
Modelica language, compiles a flat Modelica model
and generates a C program for Scicos targets. The
main features of the compiler are the simplification
of the Modelica models and the generation of the C
program ready for simulation. It supports discontin-
uous model switching and provides the analytical Ja-
cobian of the model. It does not support higher index
DAEs. This compiler is used in initialization and dy-
namic simulation stages:

e when called with -no-simplifs option,
modelicac generates a C program without doing
formal simplification and variable elimination.
Only parameters with the attribute fixed=true
are eliminated and replaced by their numerical

values.
e when called with appropriate options,
modelicac can perform formal simplifica-

tion and generate a simplified C program for
dynamic simulation.

When the user requests a Modelica initialization in
Scicos, as shown in Figure 1, Translator is called

The Modelica Association

39

Modelica 2008, March 3" — 4t 2008

M. Najafi, R. Nikoukhah

and first a flat Modelica model, then an XML file
are generated. The XML file can then be used in
the initialization GUI. The user can change the vari-
able/parameter attributes in the XML file. The mod-
ified XML file is then translated back to a Modelica
program. The Modelica program is compiled with
modelicac and a C program is generated. The C pro-
gram is used by Scicos to compute the initial value of
variables/parameters. Once the initialization finished,
whether succeeded or failed, the XML file is updated
with the most recent results which the user can visual-
ize and decide if the dynamic simulation should start
or not.

At the beginning of the dynamic simulation, the initial
values of the variables are read from the XML file and
the simulation can start. The results of the dynamic
simulation can also be saved in an another XML file to
be used as a starting point for another simulation.

3 Initialization GUI

In order to manipulate an XML file, a GUI has been
developed for Scicos. This API has been developed in
TCL/TKS. A screenshot of this GUI is shown in Fig-
ure 2.

With this GUI, the user can Open/Merge/Close/Save
XML files and visualize the attributes of vari-
ables/parameters. Each variable/parameter has several
attributes: name, id, type, fixed, value, weight,
max, min, nominal, comment, and selection.

e name: attribute is the name of the vari-
able/parameter used in the Modelica program.
Note that the derivative of a variable is replaced
by an algebraic variable. The user cannot change
the name attribute.

e id: the identification of name and is used to lo-
cate the variable in the XML file. The user cannot
change the id attribute.

e type: itindicates whether name is a parameter or
a variable in the original Modelica program. The
user cannot change the type attribute.

e fixed: it shows the value of the fixed attribute
of name in the original Modelica program. The
user cannot change the fixed attribute.

e value: it is the default value of name in the orig-
inal Modelica program. The user can modify this
field.

Ohttp://www.tcl.tk/software/tcltk/

e weight: it is the confidence factor attributed to

name and can take a value in the range [0,1].
weight==0 means the value is just a pure guess.
This situation corresponds to the fixed=false
in Modelica. weight==1 means the given value
corresponds to the initial value. This situation
corresponds to fixed=true in Modelica. The
default value of weight for parameters and dif-
ferential variables is one, whereas for algebraic
variables and derivative of differential variables
(converted to variables) is zero. Note that when
the user sets weight to one, the corresponding
variable/parameter will be considered as a con-
stant and in the initialization phase, it will be re-
placed by its numerical value. In this way, a pa-
rameter in Modelica program can be considered
as an unknown and its value be computed during
the initialization phase.

For large models, it is nearly impossible to give
all guess values, so the guess values of unspec-
ified variables are set to zero by the compiler.
Furthermore, many variables are redundant and
the user does not know the initial guess of which
ones should be given. This often happens with
variables linked by the connect operator. Con-
sider, e.g., the following equation set.
x—3
F(X): 0 = (x—3)2+1 —0d
0 = x—y

In this case, if the user sets the initial guess of y to
10 and leaves the guess value of x unspecified i.e.,
x =0, although y = 10 is close to the solution, the
Newoton’s methods will likely fail. Because, the
solver ignores the initial value of y and uses that
of x. In fact, there is no way to indicate the solver
the guess value which is "more" correct than the
others. Using the weight attribute can be useful
to help the solver to give more importance to the
values specified by the user and help the solver to
converge toward the desired solution.

When the final model is not square or weight val-
ues are are zero or one, an optimization problem
should be solved to minimize the cost:

N
Cost = A F(X)F'(X)+ Y wilxi—v)* (1)
-1

where x; is an unknown, v; is its guess value, and
w; is weight or the confidence factor. A is the
Lagrange multiplier and N is the total number of
unknowns.

The Modelica Association 40

Modelica 2008, March 3" — 4t 2008

Initialization of Modelica Models in Scicos

X Szizgg ladaliza inizializazian aindour (1) - O
File Help
4 Normal - Selected - F.Selected - F.Changed Search: Initial time: |0 Method: | Sundials j
Open | Merge Close Save as | Initialize & Retum | Exit |
— Model tree | —Varaibles & parameters attributes
MName Type Fixed Value Weight Max tin Maminal Comment Selection
B—®RLC im i var false |0 0 1 y R
Y Yar false |0 0 1 n
E— %) Resistorl _der_i Par true |0 1 1 derivative |y
L Par true (0.00071 1 1 Inductanc |y
——%p
&n
H——%3Resistor2
H——%Resistor3
E— % Inductor
L &p |
in
E——=) Capacitorl
E——4%) Ground1 |
/ /
-~ P <]l [>
RLC_im |Equations=43 |unknowns=43 |Fixed Pars=13 [Free Pars=0 |Fixed Vars=0 [Free Vars=43

Figure 2: Screenshot of the initialization GUI in Scicos for the electrical circuit of Figure 4

e max/min: they are used to set maximum and
minimum bounds on values.

nominal: it is used to set error tolerances and
normalize variables/parameters.

Comment: it is the comment provided in the
Modelica program for variables or parameters
and can be modified by the user.

selection: itisused to select and display inter-
esting variables/parameters. If the display mode
is Selected, only variables/parameters whose
selection field is ’y’ will be displayed. This op-
tion is useful specially when a block has many
variables but the user is interested only in a few.
There are other display modes, i.e., F.selected
which displays all selected variables, Changed
which displays only the variables or parameters
whose weight attributes have changed.

Once the user changes the new attributes of vari-

ables/parameters, the initialization process can be in-
voked by clicking on the "Initialize& Return" button.
The obtained results, either successful or failed, are
put back into the XML file and new values are dis-
played. If failed, the user can select another computing
methods available and iterate until a consistent result
is obtained.

4 Computation methods

The initialization problem is generally defined as the
solution of a nonlinear system of equations

0= F(X)

where X is a vector composed of all the wvari-
ables, derivatives of the differential variables (trans-
formed into algebraic variables), and relaxed parame-
ters (fixed=false or weight=0). The initialization
GUI provides several computation methods for initial-
ization. None are guaranteed to converge, so the user

The Modelica Association

41

Modelica 2008, March 3" — 4t 2008

M. Najafi, R. Nikoukhah

should try sequentially several available methods un-
til one works. This is possible because, if one method
fails, another method can be tried using the last ob-
tained result. In this section these methods as well as
their characteristics will be presented.

4.1 Sundials

SUNDIALS’ [5, 6] is a family of solvers which includes
CVODE, for systems of ordinary differential equations,
CVODES, variant of CVODE for sensitivity analysis,
KINSOL, for systems of nonlinear algebraic equations,
and IDA, for systems of differential-algebraic equa-
tions.

CVODE and IDA solvers have already been integrated
in Scicos for dynamic simulation of models. IDA in-
cludes an optional user-callable module to recompute
the initial conditions so as to be consistent with the
given DAE system. This module uses inexact New-
ton methods with line-search strategies for acceler-
ated convergence. We used this feature of IDA for
initialization of models. IDA also permits inequal-
ity constraints to be imposed on the solution compo-
nents. This can be used to implement max/min at-
tributes used in Modelica.

4.2 Fsolve

Similar to IDA, Fsolve finds a zero of a system of non-
linear functions. This solver is based on the Modified
Newton method and uses the QR factorization tech-
nique.

4.3 Optim

When the Modelica model is flattened, several vari-
ables exist for which start values are not given by the
user. The compiler sets their start values to zero. It
happens very often that the Jacobian matrix associated
with the nonlinear equations in the very first step be-
comes singular, e.g., consider the equation set (2) with
Xo = [0,0]" start values.

0 = x—1
F<X):{O = xy—1

The first computed Jacobian matrix is singular and the
Newton method fails. In order to overcome this prob-
lem, the user can choose the Optim solver. In this case,
Scicos tried to obtain the solution by minimizing the
cost function C(X).

2

7https://computation.llnl.gov/casc/sundials/

N

C(x) =X 1 (X) (3)
i=1

The result of this optimization provides non-zero val-

ues that may be used as new start values for other

methods, such as Sundials.

4.4 Homotopy

If Sundials or Fsolve methods fail, the user can use
another methods often referred to as continuation or
homotopy methods [7, 8]. Continuation methods are
slower but more robust than Newton’s method. In elec-
trical circuit simulator, such as Spice and Spectre, in
the case the Newton iteration fails, homotopy methods
are used [9, 10, 11]. They start by modifying the model
in such a way that the solution to the modified model is
known or easy to compute, and such that a parameter
controls the amount of the modification. Once the so-
lution has been found for the modified model, the pa-
rameter is slowly returned to the original value, which
causes the model set to return to its original form. As
the parameter is changed, the solution is computed at
each step, using the solution obtained from the previ-
ous step as the starting point. As long as the solution
changes continuously as a function of the parameter,
and the steps are small enough, the previous solution
is very often a good starting point and the Newton’s
method converges. In other words, the model is writ-
ten in the form ¢ (X.s) = 0 where s is a real valued
variable changing in the interval [0, 1]. In Scicos, we
use

9 (X,s5) =5 F(X)+ (1 =) (FIX) = F (X))

where X is the initial starting point and F(X) is the
initialization equation to be solved.®.

e for s = 0 the solution X is known in advance or
is easy to compute, i.e., ¢ (X,s) = F(X) — F(Xp).

e fors =1, the equation to be solved is the original
initialization equation, i.e., ¢ (X,s) = F(X)

e the trajectory X (s) is a continuous function of's.

This results in a contour curve between the solution of
the initial system and the desired solution of the final
system, as shown in Figure 3-A. The procedure for do-
ing that is to slowly vary s from 0 to 1, computing the
X(s) at every step. In each step a the Newton method

80(X,s) =s F(X)+ (1 —s5) (X —Xp) is another popular form
used in homotopy methods, but we could not get good results with.

The Modelica Association

42

Modelica 2008, March 3" — 4t 2008

Initialization of Modelica Models in Scicos

is used to find the solution. The homotopy method
is considerably slower than Newton’s based method
(Sundials & Fsolve).

The homotopy method may fail with some types of
curves: simple discontinuities (see Figure 3-B), folds
(see Figure 3-C), bifurcation (see Figure 3-D), and
non-convergent curves (see Figure 3-E,F). Simple dis-
continuities are caused by discontinuities in the model
equations. Folds, which are relatively common, occur
when the solution curve doubles backs on itself and re-
sults in the model having multiple solutions for at least
some values of X(s).

s¥1

Figure 3: Homotopy curves

In the Spice and Spectre simulators, several variants of
homotopy methods such as Gmin stepping and source
stepping are used. In Gmin stepping, a resistor is
placed between each node and ground. The resistor
values are varied from zero to a very high value. In the
source stepping method, the circuit sources are var-
ied from zero to nominal values. In practice, source
stepping trajectories are plagued by folds and so do
not work very well. Gmin stepping is also subject to
folds, but is much less susceptible to them that source
stepping [9]. The Gmin stepping cannot be imple-
mented without modifying the Modelica model, the
source stepping method can, however, be employed.

There are several homotopy methods and software
available. In Scicos, we use HOMPACK® package. This
package provides several homotopy methods such as
fixed point, zero finding, and general homotopy curve

http://www.netlib.org/hompack/

tracking using three different algorithms: ODE-based,
normal flow, and augmented Jacobian [12, 13, 14].
We got better results with the general homotopy curve
tracking method. HOMPACK can be successfully used
for curves with folds, it fails however for discontinu-
ous curves and curves with bifurcations.

4.5 Fsolve stepping

In this method, which is also an homotopy method,
the s value is increased monotonically from O to 1 and
in each step the nonlinear function ¢ (X,s) is solved
using Fsolve. An interesting property of Fsolve is
returning the absolute value of the solution when there
are two complex conjugate solutions. For example,
(4) has positive real valued solutions, but the solution
curve X(s) from s = 0 to s = 1 is not entirely in real
domain, the solutions go to the complex domain and
then returns.

0 p—
0 pr—

x+y—>5

4
xy+y—38)

The Fsolve stepping option does not support folds
in the curve.

5 Example

Consider the electrical circuit shown in Figure 4. This
circuit has been modeled with Modelica blocks in Sci-
cos. The initialization GUI for this circuit is shown in
Figure 2. For this electrical circuit, we would like to
use the initialization GUI for two purposes: initializa-
tion from equilibrium state and for parameter sizing.

L=0.0001

R=x
L @

-8 =0

) !

< MScopg

Figure 4: An electrical circuit to be initialized

o Initialization: In order to initialize from the
steady state, all derivatives values should be fixed

The Modelica Association

43

Modelica 2008, March 3" — 4t 2008

M. Najafi, R. Nikoukhah

to zero. For that, in the initialization GUI, deriva-
tives of the differential variables which have been
transformed into algebraic variables should be set
to zero and their weight attribute should be set
to one. In this circuit there are only two deriva-
tives variables defined in inductor and capacitor
blocks. In the initialization GUI, clicking on the
name of these blocks, the user can change the at-
tributes of derivatives. Then, the user can select
a compute method and launch the initialization.
Once the initialization finished, the obtained re-
sults will be displayed in the GUI and the user
can start the dynamic simulation or retry another
initialization method.

e Parameter sizing: In this case, the user needs to
find a parameter value as a function of known sys-
tem outputs. Suppose that the user needs to com-
pute the resistance value of Resistance1 that re-
sults in a current equal to two Amperes through
the inductor at steady state. In this case, the R
parameter in Resistancel should be relaxed by
setting its weight attribute to zero. Then, the cur-
rent through Inductorl should be fixed to two
Amperes (by setting the weight attribute of i to
one and its value to two). After selecting the com-
pute method, the resistance value would be com-
puted.

It is interesting to note that several initializations can
be performed without modifying the Modelica pro-
gram. Each initialization can be saved in an XML file
and be used later.

6 Future works

The model initialization and model inversion which
has been implemented asks some features:

e weight: At the current stage of the project,
we focus on handling the cases weight=0 and
weight=1 corresponding to fixed=false and
fixed=true. At the next stage of the project,
the user would be able to give the weight values
between zero and one. In order to solve this op-
timization problem, we intend to implement sev-
eral optimization methods such as least-square,
quasi-Newton, conjugate-gradient, and Nelder-
Mead (moving simplex) methods in Scicos.

e initial equations: They are not yet sup-
ported with Translator. It should be included in
Translator by the end of the SIMPA?2 project.

e Arrays: The way arrays and matrices are dis-
played in the initialization GUI should be im-
proved. Currently, arrays are displayed element
by element. When the number of elements of the
array is large, this becomes inconvenient.

e max, min, nominal: Although implemented in
the initialization GUI, they are not yet used in
computing the initial values.

e structural analysis: In sizing or dynamic
model inversion, when a fixed variable/parameter
is relaxed, the user should fix a relaxed vari-
able/parameter. The choice of variable/parameter
is not straightforward and easy. In order to have a
reasonable choice, a structural analysis should be
performed. This task is a part of SIMPA2 project
that should be implemented by 2009.

e Piecewise linear methods and Simplex are other
methods that are used when the Newton based
methods fail [15, 16, 17, 18, 19]. We intend to
implement these methods in Scicos for model ini-
tialization.

7 Conclusion

In this paper the new initialization methodology of
Scicos for initializing Modelica models has been pre-
sented. This methodology provides an easy and intu-
itive way for initializing Modelica models as well as
model sizing and inverse problems.

References

[1] S. L. Campbell, J.P. Chancelier, R. Nikoukhah,
Modeling and simulation in Scilab/Scicos,
Springer Verlag publishing, 2005.

[2] J. P. Chancelier, F. Delebecque, C. Gomez, M.
Goursat, R. Nikoukhah, S. Steer, An introduction
to Scilab, Springer Verlag, Le Chesnay, France,

2002.

[3] K. E. Brenan, S. L. Campbell, and L. R. Pet-
zold, Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, SIAM

publication, Philadelphia, 1996.

[4] P. N. Brown, A. C. Hindmarsh, and L. R. Pet-
zold, "Consistent initial condition calculation
for differential-algebraic systems", SIAM J. Sci.

Comp., no. 19, 1998.

The Modelica Association

44

Modelica 2008, March 3" — 4t 2008

Initialization of Modelica Models in Scicos

[5] A.C. Hindmarsh, P. N. Brown, K. E. Grant, S. L.
Lee, R. Serban, D. E. Shumaker, and C. S. Wood-
ward, "SUNDIALS: Suite of Nonlinear and
Differential/Algebraic Equation Solvers," ACM
Transactions on Mathematical Software, 31(3),
pp. 363-396, 2005.

[6] A. C. Hindmarsh, "The PVODE and IDA Al-
gorithms," LLNL technical report UCRL-ID-
141558, December 2000.

[7] E.L. Allgower and K. Georg, Numerical Contin-
uation Methods, an Introduction, Springer Ser. in
Comput. Math. Springer-Verlag, Vol 13, 1990.

[8] E.L. Allgower and K.Georg, "Continuation and
path following", Acta Numerica, 1993, pp. 1-64.

[9] Kenneth S. Kundert. “The designer’s guide to
Spice and Spectre”. Kluwer academic publishers,
1995.

[10] A. Dyess, E. Chan, H. Hofmann, W. Horia, and
Lj. Trajkovic, "Simple implementations of ho-
motopy algorithms for finding dc solutions of
nonlinear circuits", Proc. IEEE Int. Symp. Cir-
cuits and Systems, Orlando, FL, Vol. VI, 1999,
pp. 290-293.

[11] W. Mathis, Lj. Trajkovic, M. Koch, and U. Feld-
mann, "Parameter embedding methods for find-
ing dc operating points of transistor circuits",
Proc. NDES ’95, Dublin, Ireland, 1995, pp. 147—
150.

[12] L.T. Watson, Appl. Math. Comput. 5 (1979), pp.
297-311.

[13] L.T. Watson, "Golobally convergent homotopy
algorithm for nonlinear systems of equations",
Nonlinear Dynamics, Vol. 1, 1990, pp. 143—-191.

[14] L. T. Watson, M. Sosonkina, R. C. Melville, A.
P. Morgan, and H. F. Walker, "Algorithm 777:
HOMPACK90: A suite of FORTRAN 90 codes
for globally convergent homotopy algorithms",
ACM Trans. Math. Software, Vol. 23, 1997, pp.
514-549.

[15] B. C. Eaves, "A Short Course in Solving Equa-
tions with PL Homotopies", SIAM-AMS Pro-
ceedings 1X, 1976, pp. 73—-143.

[16] K. Georg," An introduction to PL algorithms:
Computational solution of nonlinear systems of

[17]

(18]

[19]

A

equations", Lectures in Applied Mathematics,
American Mathematical Society, 26, 1990, pp.
207-236.

W.PM.H. Heemels, J.M. Schumacher, and S.
Weiland, "Linear complementarity systems",
SIAM Journal on Applied Mathematics,Vol. 60
(2000), pp. 1234-1269.

C.E. Lemke, and J.T. Howson, "Equilibrium
points of bimatrix games", SIAM J. Appl. Math.,
Vol. 12, 1964, pp. 413-423.

D. M.W. Leenaerts, W.M.G. van Bokhoven.
Piecewise Linear Modelling and Analysis.
Kluwer Academic Publishers, Boston, 1998.

XML file example

RCL_im.xml

<model>
<name>RCL_im</name>

<elements>

<terminal>
<name>R3</name>
<kind>parameter</kind>
<id>R3</id>
<fixed value="true"/>
<initial_value value="(5)"/>
<weight value="1"/>
<max value=""/>
<min value=""/>
<nominal_value value="1"/>
<comment value="R3"/>
<selected value="y"/>
<kind_orig>fixed_parameter</kind_orig>

</terminal>

<struct>

<name>CurrentSensorl</name>
<subnodes>
<terminal>
<name>i</name>
<kind>variable</kind>
<id>CurrentSensorl.i</id>
<fixed value="false"/>
<initial_value value="(0)"/>
<weight value="0"/>
<max value=""/>
<min value=""/>
<nominal_value value="1"/>
<comment value=""/>
<selected value="y"/>
<kind_orig>variable</kind_orig>
</terminal>
<struct>
<name>p</name>
<subnodes>

</struct>
</elements>
<equations>

<equation value="0
<equation value="0
<equation value="0

(‘VoltageSensorl.n.i¢ + ...;"/>
(‘Groundl.p.i¢ + ...;"/>
(‘Resistorl.n.i¢ + ...;"/>

The Modelica Association 45

Modelica 2008, March 3" — 4t 2008

M. Najafi, R. Nikoukhah

</equations>
<when_clauses/>
</model>

The Modelica Association 46 Modelica 2008, March 3" — 4t 2008

