
Unit Checking and Quantity Conservation

Sven Erik Mattsson Hilding Elmqvist
Dynasim AB

Ideon Science Park, SE 223 70 Lund, Sweden
SvenErik.Mattsson@3ds.com Hilding.Elmqvist@3ds.com

Abstract

What can be done to guaranty correctness of a
model? The paper discusses two approaches to
automatic checking. First, Dymola’s support of units,
unit checking and unit deduction is described. It has
already proven useful and has helped improving the
quality of the Modelica Standard Library. The dis-
play unit concept allows users to enter parameters
and plot variables in different units. The inputs, out-
puts and parameters of general blocks defining
sources and mathematical operations have of course
no units specified. Dymola infers their units in order
to improve the variable browsers for entering pa-
rameter values and plotting variables during simula-
tion. Second, the possibilities of checking quantity
conservation automatically are discussed. It is in
open area with a large potential to check that models
fulfill the very basic laws of physics including en-
ergy conservation, Newton’s third law “action equals
reaction”, etc. To really support automatic checking
of quantity conservation it is necessary to include
more information in the models. Fortunately, it
seems as if most of this can be done in the basic
components such as inertia, body, volume, capacitor
etc which actually store some quantities and in dissi-
pative elements as for example resistors or friction
elements.

1 Introduction

Modelica (Modelica, 2007) is a powerful modeling
language. It allows you to quickly build complex
models by putting together model components from
free public and commercial libraries. The openness
of Modelica makes it easy to modify an existing
component. All this opens for errors. How can we
guide users and provide automatic checking? How
can we guarantee quality of provided library compo-
nents?

Modelica is a strongly typed language implying that
classical computer scientific methods can be used.

The Modelica 3.0 definition has taken this further
and introduced the concepts of plug-in compatibility
and balanced models. This paper will discuss two
other orthogonal approaches:

1. unit checking of expressions and equations

2. checking of quantity conservation.

In Sections 2-4, Dymola’s support of units, unit
checking and unit deduction is discussed. In Section
5 the possibilities of checking quantity conservation
automatically are discussed.

2 Support of Units in Dymola

Physical modeling deals with physical quantities
such as length, mass, force, current. The value of a
quantity is generally expressed as the product of a
number and a unit. Modelica (2007) supports this
approach. A real variable have a quantity attribute
and a unit attribute, for example

 type Mass = Real(quantity="Mass",
 final unit="kg");

The package Modelica.SIunits provides a large set of
predefined quantities and it is recommended to use
them whenever possible.

2.1 SI units

The Modelica specification states “A basic support
of units in Modelica should know the basic and de-
rived units of the SI system.” Dymola fulfils this re-
quirement.

A good reference on SI units is what commonly is
called the SI brochure published by Bureau Interna-
tional des Poids et Mesures [BIPM, 2006]. The NIST
Reference on Constants, Units, and Uncertainty
[NIST, 2000] gives a good overview; see also [Tay-
lor, 1995]. ISO does not specify a formal syntax for
unit expressions but there are strict recommenda-
tions. The Modelica language specification includes
a formal specification based on these recommenda-
tions.

Unit Checking and Quantity Conservation

The Modelica Association 13 Modelica 2008, March 3rd − 4th, 2008

Dymola supports all the 20 SI prefixes to form deci-
mal multiples and submultiples of SI units.

Factor Name Symbol Factor Name Symbol

101 deca da 10-1 deci d

102 hecto h 10-2 centi c

103 kilo k 10-3 milli m

106 mega M 10-6 micro µ

109 giga G 10-9 nano n

1012 tera T 10-12 pico p

1015 peta P 10-15 femto f

1018 exa E 10-18 atto a

1021 zetta Z 10-21 zepto z

1024 yotta Y 10-24 yocto y

Dymola knows all the seven SI base units

Name Symbol

metre m

kilogram kg

second s

ampere A

kelvin K

mole mol

candela cd

as well as the 22 SI derived units that have been
given special names and symbols

Name
Symbol
(in Modelica)

Definition

radian rad 1

steradian sr 1

hertz Hz 1/s

newton N kg.m/s2

pascal Pa N/m2

joule J N.m

watt W J/s

coloumb C A.s

volt V W/A

farad F C/V

ohm Ohm V/A

siemens S A/V

weber Wb V.s

tesla T Wb/m2

henry H Wb/A

degree Celcius degC K

lumen lm cd.sr

lux lx lm/m2

becquerel Bq 1/s

gray Gy J/kg

sievert Sv J/kg

katal kat mol/s

There are also units that are not part of the
International System of Units, that is, they are
outside the SI, but they are accepted for use with the
SI. Dymola knows the following of them:

Name Symbol Expressed in SI units

minute min 60 s

hour h 60 min

day d 24 h

degree deg (π/180) rad

litre l dm3

decibel dB 1

electronvolt eV 0.160218 aJ

bar bar 0.1 MPa

phon phon 1

sone sone 1

In power systems the unit for apparent power is
“V.A”. Dymola knows var = V.A which has been
adopted by the International Electrotechnical Com-
mission, IEC, as the coherent SI unit volt ampere for
reactive power, see IEC [2007].

The rotational frequency n of a rotating body is de-
fined to be the number of revolutions it makes in a
time interval divided by that time interval. The SI
unit of this quantity is thus the reciprocal second, s-1.
However, the designations "revolutions per sec-
ond" (r/s) and "revolutions per minute" (r/min) are
widely used as units for rotational frequency in
specifications on rotating machinery. Although use
of rpm as an abbreviation is common, its use as a
symbol is discouraged. Dymola knows r = 2π rad. It
can be used for example as “r/s” or “r/min”.

Dymola also knows the temperature units degF (de-
gree Fahrenheit) and degRk (degree Rankin).

2.2 Other units

Dymola recognizes the users' needs to enter parame-
ters and plot variables in different units. Modelica

S. E. Mattsson, H. Elmqvist

The Modelica Association 14 Modelica 2008, March 3rd − 4th, 2008

defines displayUnit for that purpose. Dymola sup-
ports displayUnit when plotting variables and when
entering values in parameter dialogs.

A user can define units for display and its meaning is
in terms of the SI unit. For example, the display unit
“min” is defined in the following way in terms of the
SI unit “s” as

defineUnitConversion("s", "min", 1/60);

There is a fourth optional argument to specify offset.
For example, conversion from Kelvin to degrees
Fahrenheit can be specified as

 defineUnitConversion("K", "degF",
 9.0/5.0, 32-(9.0/5.0)*273.15);
However, if the quantity represents a temperature
difference the offset shall not be included. Dymola
supports an annotation __Dymola_absoluteValue
to control this. In Modelica.SIunits the quantity
temperature difference is specified as

type TemperatureDifference = Real (
 final quantity=
 "ThermodynamicTemperature",
 final unit="K")
 annotation
 (__Dymola_absoluteValue=false);

These definitions are conveniently stored in script
(mos) file that is executed at the start of Dymola. By
default Dymola has a file displayUnit.mos including
display units of general interest.

As an example, consider the model CoupledClutches
in Modelica Standard Library 3.0.

J1

J=1

torque

t...
clutch1

sin1

freqHz=5

step1

startTim
e...

J2

J=1 clutch2

J3

J=1 clutch3

J4

J=1

sin2

freqH
z

=f...

step2

startTim
e...

f ixed

Pop the parameter dialog for the rotating body, J1.

The start values for the angle, phi, and the angular
velocity, w, can be entered in SI units. The Modelica
code for J1 is

Modelica.Mechanics.Rotational.Inertia
 J1(J=1,

 phi(fixed=true, start=0),
 w(start=10, fixed=true))

We can enter the start velocity in “deg/s”. Click on
the unit to pop a menu and select unit

Which alternatives that are available depends on
which defineUnitConversion calls that actually have
been invoked. It can be customized by any user by
editing the file displayUnit.mos. If a user wants to
see any length only in mm or inch, the user can re-
strict the display unit to that.

The value is now displayed as 572.96 deg/s. It is
easy to enter a new value, say 60 deg/s.

The Modelica code for J1 becomes

Modelica.Mechanics.Rotational.Inertia
 J1(J=1,
 phi(fixed=true, start=0),
 w(start=1.047197551196598,
 fixed=true, displayUnit="deg/s"))

Note, that the attribute displayUnit is modified ac-
cording to our choice. However, the parameter value
being 60 deg/s is stored in SI units, “rad/s”. Thus
portability is preserved and it is still a tool issue to
support the displayUnit in the dialogs.

Let us simulate the original example and plot J1.w.
Put the cursor on the curve and pop the context
menu.

Unit Checking and Quantity Conservation

The Modelica Association 15 Modelica 2008, March 3rd − 4th, 2008

Selecting “deg/s” as unit for plotting gives the plot.

0.0 0.4 0.8 1.2 1.6
100

200

300

400

500

600

 [
de

g/
s]

J1.w

3 Unit Checking

Equations add terms. Naturally these must be of the
same physical quantity. This is exploited in the clas-
sical physical dimension check of equations which
many of you have done by paper and pen in school.
Dymola (Dynasim, 2007) has automated this check.

 The number of physical quantities we can think of is
large. Fortunately, they are related and all physical
quantities can be expressed as product of powers of a
small set of base quantities. The International System
of Units, the SI system, defines such a set including
seven physical quantities: length, mass, time, electric
current, thermodynamic temperature, amount of sub-
stance and luminous intensity, see BIPM (2006). The
SI base units define a unit for each of these seven
quantities. The units for other quantities are derived.
For example, the unit for area is m2 because the
physical quantity area = length*length and the unit
for length is m (meter). Thus there is a mapping from
quantity to unit in terms of the seven SI base units.
Dymola exploits this for unit checking.

Dymola’s checking of units is active when checking
a package, function or model as well as when trans-
lating a model for simulation. It includes checking of

unit strings and unit compatibility of equations. It
can be seen as a part of the type checking. It includes
the checking of actual function input arguments and
output arguments against their formal declarations.

Currently Dymola makes a relaxed checking. It
means that an empty unit string, "", is interpreted as
unknown unit. Also number literals are interpreted to
have unknown unit. The unknown unit is propagated
according to simple rules

unknown unit * "unit1" -> unknown unit

unknown unit + "unit1" -> "unit1"

There is one important exception. Let e be a scalar
real expression. Consider the inverse of e given as
1/e. The number 1 (one) in the numerator does not
relax the checking. If e has a well-defined unit then
also 1/e has a well-defined unit.

The unit checking is applied to the original equa-
tions. This has implications for vector, matrix and
array equations. For an array where all elements
have the same unit, the check works as if it was a
scalar. Arrays and array expressions where the ele-
ments have different units are allowed. However, the
check is then relaxed and the array is viewed to have
an unknown unit that is compatible with all units.
Checking the unit consistency between two records
is done recursively for each component.

Currently, the unit checking does not issue error
messages but it generates only warnings. The unit
checking can be disabled.

As a simple example consider the modeling of mo-
tion where there is a mistake

 parameter Modelica.SIunits.Mass m=1;
 Modelica.SIunits.Velocity v;
 Modelica.SIunits.Force f;
equation
 m*v = f; //Should read m*der(v) = f;

When checking or translating it, Dymola outputs

 Warning: Incompatible units in
 m*v = f;
 The part
 m*v
 has unit N.s
 The part
 f
 has unit N

Dymola’s unit checking has already been proven
useful. Several errors in the Modelica Standard Li-
brary were found. A user reported that he several
years ago had rewritten a model in Modelica, but he
did not get the same simulation result. He had really

S. E. Mattsson, H. Elmqvist

The Modelica Association 16 Modelica 2008, March 3rd − 4th, 2008

tried to find the reason, without success. Dymola’s
unit checking pointed out an inconsistency and he
had found the error.

The basic laws for conservation of mass, momentum,
electrical charge, energy are expressed as balance
equations between physical quantities. Also constitu-
tive equations such as Ohm’s law are readily ex-
pressed as equations for physical quantities. It means
that the unit checking should not make the modeling
more complicated in most cases.

However, the parameterized curve descriptions used
to model idealized characteristics of for example di-
odes or Coulomb friction needs more attentions.
Consider the modeling of an ideal diode having the
characteristics shown in the figure.

The parameterized curve description is

 off = s < 0;
 v = if off then s else 0;
 i = if off then 0 else s;
The curve parameter is just a real variable that is ei-
ther representing a voltage or a current. To make the
equations unit consistent, the equations can for ex-
ample be rewritten as

v = unitVoltage*(if off then s else 0);
i = unitCurrent*(if off then 0 else s);

The s parameter and the unit constants are declared
protected as

 protected

 Real s(final unit="1");
 constant Modelica.SIunits.Voltage

 unitVoltage= 1
 annotation(HideResult=true);

 constant Modelica.SIunits.Current

 unitCurrent= 1
 annotation(HideResult=true);

The HideResult annotation has the effect that the unit
constants are not included in the simulation result.
Basically these constant are only active during unit
checking and then eliminated in the equations.

In summary, don’t just declare real variables, but
declare physical quantities. Use the predefined quan-
tities available in Modelica.SIunits whenever possi-
ble. The SI units were invented to allow equations to
be written in a clean way without conversion factors.
This simplicity is a very good reason for using the SI
units in physical modeling. Thus, it is recommended
that unscaled SI units are used when specifying the
unit attribute of a real variable. To be clear, this also
means that prefixes shall not be used. For example
"m", "kg", "V", "N.m" and "W" are good, but not
"cm", "g", "kV", "MW" or "bar". The displayUnit
concept provides convenient entering of parameter
values and displaying and plotting of results in other
units.

4 Unit Deduction

The Modelica.Blocks library includes general blocks
to define sources and mathematical operations. Their
inputs and output have of course no units specified.
For user convenience, Dymola has introduced auto-
matic deduction of units. Here is a short description
Consider the expression, e1 + e2, where Dymola has
found that the expression e1 has a well-defined unit
u1, but the unit of the expression e2 is unknown. We
can then deduce as described in the introduction that
the unit of the sum e1 + e2 is u1. Moreover, for unit
consistency reasons the unit of e2 must also be u1. If
now e2 is a simple variable reference, v, we can de-
duce that v must have the unit u1. For more complex
expressions Dymola makes a downwards recursion
to see if it is possible to deduce units of variables
with unknown units.

The SignalType definition in the Modelica Standard
Library 2.0 allowed the user to specify the units
manually by declaring the type of the inputs, the out-
puts and the parameters of the block. The Sig-
nalType is removed in the Modelica Standard Li-
brary 3.0 and the units are deduced automatically.

The deduction of units may reveal unit inconsisten-
cies. In such a case it may be useful to enable the
logging and inspect the log. It is also useful to check
the log when developing a model component, be-
cause if a real variable gets its unit deduced that may
indicate that the variables shall be declared using any
of the quantities defined by Modelica.SIunits.

As an example consider the model ElasticBearing in
Modelica.Mechanics.Rotational.Examples.

Unit Checking and Quantity Conservation

The Modelica Association 17 Modelica 2008, March 3rd − 4th, 2008

shaft

J=1

load

J=50

spring

c=1e3

fixed=0

d=
5

sp
rin

gD
am

pe
r=

1e
5

torque

tau

ramp

duration=5

idealGear=3

ho
us

in
g

J=
5

The component ramp is of the class Mode-
lica.Blocks.Sources.Ramp. The parameters

parameter Real height=1
 "Height of ramps";
parameter Real offset=0
 "Offset of output signal";

have no units specified. Similarly the unit of the out-
put y is not specified. At translation Dymola deduces
their units and displays them in the variable browser

The deduced SI unit radian is treated in a special way
by Dymola. Consider Euler’s equation for a one di-
mensional rotating body
J*a = flange_a.tau + flange_b.tau;

where the inertia, J, has unit kg.m2, the rotational
acceleration, a, has unit rad/s2 and the torques
flange_a.tau and flange_b.tau have the unit N.m. It
means that the left hand side of the equation has the
unit, rad.kg.m2/s2 and the right hand side has the
unit, N.m = kg.m2/s2. It means that the units are
equal besides the left side has a factor “rad”. This is
fine from the formal point of view because the de-
rived unit radian is formally expressed as m/m, see
Table 3 in [BIPM, 2006], which also states that the
radian is “a special name for the number one that
may be used to convey information about the quan-
tity concerned.”

However, in order to support the use of radians when
deducing units, Dymola treats the radians as if it was
a SI base unit during the analysis. The consistency
checking is of course relaxed for radians. The result-
ing unit will include the minimum power of radians.

5 Quantity conservation

The design of Modelica.Mechanics.Rotational and
the discussion on the modeling of mounting have
clearly indicated the need for more automatic testing
of models. The failure to model the mounting of a
drive-train element is an example where the user
fails to account for important interactions between
components or between a component and its envi-
ronment. The failure to model the mounting of a
component gives a simulation result where momen-
tum is not preserved. Such a model violates New-
ton’s third law “action equals reaction”.

Balance equations and conservation of physical
quantities such as mass, momentum, energy and
electrical charge are basic in physical modeling.

A flow variable of a connector represents the flow of
a conserved quantity into a component. Thus it is
straightforward to calculate the net amount of a con-
served quantity flowing into a component. A proto-
type implementation has been made in Dymola. As
an example consider the model

J1

J=1

torque

clutch1

sin1

freqH...

J2

J=1

s
in

2

freqH
...

The flow variables of the connectors have their at-
tributes quantity="Torque". Dymola introduces for
each component a variable named sum_Torque and
an equation such as

 J2.sum_Torque = J2.flange_a.tau+J2.flange_b.tau;

For the clutch that has no inertia, the sum_Torque
variables are zero as it should be. It is not zero for
inertia models J1 and J2 because they can store mo-
mentum. Their models include the equation

J*a = flange_a.tau + flange_b.tau;

Thus, for inertia we have

sum_Torque = J*a

The variable torque.sum_Torque is non zero. For the
system, above momentum is not preserved. In reality
the drive train is mounted in the car. The chassis
provides a corresponding reaction torque, which
propagates through the wheels and tires to the road.
Thus if we put the drive train above into a chassis
model without connecting the bearing connectors of
the drive train properly to model the real mounting,
we will get wrong simulation results. How can we
provide some automatic checks?

S. E. Mattsson, H. Elmqvist

The Modelica Association 18 Modelica 2008, March 3rd − 4th, 2008

For components not storing conserved quantities, we
can use sum_Torque and the other sum variables and
add an assertion that the sum should be zero. For the
example, the simulation stops issuing

 Assertion failed: abs(torque.sum_Torque)< 1E-005
 Torque not conserved in the component torque.

In the general case, a component needs to include
information on what are the storage terms. Tiller and
Kittirungsi (2006) propose annotation to be used. For
example to indicate that the term J*a above implies
storage:

Modelica.SIunits.Torque
 torqueStorage = J*a
 annotation(storageTerm));

In 3 D mechanics forces are vectors and the balances
of forces must be set up in the same frame. More-
over, the torque balances are even more complicated
since they also include terms referring to the forces
acting on the body.

One idea is to add an annotation to
 Modelica.Mechanics.MultiBody.Interfaces.Frame:

connector Frame
 "Frame of a mechanical system"

annotation(ConservedQuantity(
 Force= Frames.resolve1(R.T, f),
 Torque=Frames.resolve1(R.T,t)+
 cross(r,Frames.resolve1(R.T,f))));

import SI = Modelica.SIunits;
SI.Position r_0[3];
Frames.Orientation R;
flow SI.Force f[3];
flow SI.Torque t[3];

end Frame;

The scope for the right-hand-sides is the local con-
nect (exactly as for e.g. a binding equation in the
class) and this takes precedence over the default-
summing of quantity-flows to 0. This annotation
should only be added once [i.e. for the base-class of
all flange-connector and not for each model], and we
could alternatively have this built-in in Dymola for
this class.

Please, note that if a model component fails to anno-
tate or mark a term as contribution to storage then
the check will detect this, i.e., the component model
is not conserving properly.

In order not to be forced to model all universe, it is
necessary to support infinite sources or sinks for
conserved quantities. Again it is possible to use an
annotation to mark such components. However, there
is a potential risk with ground elements. Assume that
we fix the coupled clutch model above by connecting

a ground component to the bearing connector of the
component torque. This component can be viewed as
a rig where we put the drive train for testing. The rig
may be viewed as representing the “infinite mass” of
the earth.

Energy conservation is important to check. However,
it is more complex. For thermodynamics the heat
flows as well as the enthalpy flows are a power flow.
However, the energy flow does not always appear
explicitly as flow variables in the connectors. Some
energy flows can be computed by multiplying the
flow quantities by a proper derivative of the corre-
sponding across variable. Examples:

pin.v*pin.i => V*A=W
der(flange.s)*flange.f => m/s*N=W
der(flange.phi)*flange.tau => rad/s*Nm=W

It works for Electrical, Rotational and Translational.
For MultiBody there is the problem with different
coordinate systems.

Establishing energy conservation also includes iden-
tification of energy dissipation. For example a resis-
tor “dissipates” energy, or more explicitly, it con-
verts electrical energy into heat. The basic compo-
nents in Electrical do not include such information.

The automatic checking of conservation may have
several objectives. A primary objective is to catch
model errors. However, a conservation condition
may be violated over time due to numerical drift of
the numerical solution for the conserved quantity.
This calls for a more sophisticated checking consid-
ering the numerical drift. On the other hand it may
also be used to improve the numerical solution. A
numerical solver may exploit these invariants for
automatic selection of tolerances, i.e. the user put
tolerances on invariants. Projection methods may be
used to numerically control the drift.

Evidently there is a need to include more information
in the models in order to be able to perform auto-
matic checking of quantity conservation. Fortu-
nately, quantity storing is done in the basic compo-
nents such as inertia, body, volume. For energy bal-
ances we need also to consider dissipation in for ex-
ample resistor, damper, pipe friction etc.

6 Conclusions

Dymola’s support of units, unit checking and unit
deduction has been described. It has already proven
useful. Several errors in the Modelica Standard Li-
brary were found. It has encouraged the developers
of the Modelica Standard Library to declare vari-

Unit Checking and Quantity Conservation

The Modelica Association 19 Modelica 2008, March 3rd − 4th, 2008

ables representing quantities appropriately. The dis-
playUnit concept allows users to enter parameters
and plot variables in different units while allowing
clean equations without complicating conversion
factors because the equations can refer to the quanti-
ties in SI units. The Modelica.Blocks library includes
general blocks to define sources and mathematical
operations. Their inputs and outputs have of course
no units specified. This may also be the case for
some parameters such as gain. At translation of a
model for simulation Dymola infers their units in
order to improve the variable browsers for entering
parameter values and plotting variables during simu-
lation.

Second, the possibilities of checking quantity con-
servation automatically are discussed. It is in open
area where there is a large potential to check that
models fulfill the very basic laws of physics includ-
ing energy conservation, Newton’s third law “action
equals reaction”. Evidently there is a need to include
more information in the models to really support
automatic checking of quantity conservation and
there is a need for extensions of Modelica. Fortu-
nately, it seems as if most of this can be done in the
basic components such as inertia, body, volume, ca-
pacitor etc which actually stores some quantity. For
energy balances it is also necessary to identify and
mark dissipation in resistors, friction elements etc.

References

BIPM 2006. The International System of Units (SI), Bu-
reau International des Poids et Mesures, 8th edition,
2006. Available at www.bipm.org/en/si/si_brochure

Dynasim. 2007. Dymola Version 6.1. Dynasim AB,
Lund. Sweden. http://www.dynasim.se/.

Modelica 2007. Modelica® - A Unified Object-Oriented
Language for Physical Systems Modeling – Language
Specification, Version 3.0, Available in electronic form
at www.modelica.org/documents/ModelicaSpec30.pdf

M.Tiller and B. Kittirungsi: UnitTesting. 2006. A li-
brary for Modelica unit testing. Proceedings of the 5th

Modelica Conference, Vienna, Austria, 2006, Vol. 2,
pp. 695-704.

S. E. Mattsson, H. Elmqvist

The Modelica Association 20 Modelica 2008, March 3rd − 4th, 2008

