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ABSTRACT

Modeling, Simulation, and Autonomous
Vehicles: Challenges and Opportunities

Modeling is abstraction of reality. As an engineering practice
and skill set, modeling has evolved and been evolving over
the decades aligned with two fundamental priorities - form
and function. Geometric modeling to capture form has made
tremendous progress, and spawned form-driven functional
(primarily structural) modeling through finite element
decompositions and analysis. However, the interest of the
Modelica community is on functional modeling that abstracts
away form and focuses on dynamic behavior of systems.

| will discuss some of my experiences in functional modeling,
along with the evolution in techniques over the decades.

This experience spans aero and automotive systems. The
growing maturity of the field is observed in the distillation and
separation of critical techniques to enable specialization and
cross-leverage of expertise. The explosive growth of software
content in functionality over the last decades has been a
catalyst for the use of modeling for algorithm development
and verification and validation of embedded software.

With the advent of machine learning, artificial intelligence, and
growth of autonomous driving systems, new challenges and
opportunities have emerged for modeling to be useful. There
is morphing of the fundamental priorities between form and
function, as photorealistic rendering of environment becomes
integral to functional modeling driven by the presence

of sensors such as cameras and LIDARs that observe the
environment and influence dynamic behavior. The sheer growth
in complexity and scale of these systems forces the exploration
of distributed computations and simulations, bringing with

it new questions to be answered. Uncertainty modeling and
stochasticity are part and parcel of learning systems, providing
yet another avenue for evolution of modeling.

Finally, continued evolution of abstraction leads to the next
layer, where machines are interacting with humans. | will finish
with some thoughts on the opportunities for modeling in

this context.




KEYNOTE SPEAKER

BIO

Clas Jacobson is a Carrier Senior Fellow with over 25 years
experience in Systems Engineering and Controls.

”»

Jacobson has focused his efforts on “Model Based Development
and has contributed to several areas to develop and deploy
computational methods and tools for the effective use of model
based development across Carrier.

Jacobson served as Chief Scientist for the United Technologies
Systems & Controls Engineering (UTSCE) organization across
United Technologies Corporation and, before that, in several
UTRC management and technical positions. In his Chief
Scientist position, he led the creation of the UTSCE organization
with a mission of driving product and product development
transformation enabled by systems and controls engineering
technologies.

Jacobson was a (tenured) Associate Professor at Northeastern
University before joining Carrier.

CLAS A. JACOBSON

Senior Fellow, Systems Engineering
Carrier Global Corporation

ABSTRACT

Energy Urgency, Computation and Role
of “Systems” Methods & Tools

Today, energy considerations are critical and policy issues matter
more than in the recent past, so that there is a newfound urgency
to address cost, climate and security. These kinds of decisions
require very large capital investments; how do we address the
risks involved and the choices that are to be made? Several things
are needed that are described in this talk. First, well-crafted
design flows are needed to determine how overall capabilities will
be considered, designed, implemented, and maintained. Second,
it is essential that we understand what we can compute today
and what we cannot compute, as well as the reliability of these
computations and their accessibility to a wide set of groups. A
few examples of energy districts and data centers will be used

to illuminate what we can do and what we cannot. What should
the audience thus take away from this presentation? Computing
is much more than simulation. Computation --- in reliable and
trusted ways - is a key element to decision making today, but

not all the pieces are in place. In particular, the workforce in
“computational engineering” and their training in academia

needs to be used and designed to scale.
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Model-Based Design and Characterization
of an Actuator with Low-Boiling Liquid

Christoph Steinmann'

Johannes Herold!

Jens Schirmer!

nstitute of Electromechanical and Electronic Design, TUD Dresden University of Technology, Germany
christoph.steinmann@tu-dresden.de

Abstract

Visually impaired people rely on special equipment for ac-
cess to graphic representations in digital form. The avail-
able devices are very large and expensive. A simple and
cost-effective alternative to the existing concepts for hap-
tic displays is therefore desirable. This paper evaluates
the concept of a lifting actuator based on a fluid with a
low boiling point for this purpose. A functional proto-
type is constructed and its behavior is characterized. A
corresponding model is built and validated to simulate the
actuator and to analyze its operation. It provides detailed
information about the actuator that can be used to further
develop the design and to make decisions on the usability
of the new actuator in the product design process. Follow-
ing test runs and investigations on the model, the actuator
concept proved to be suitable for haptic display devices
under certain assumptions. Therefore the newly developed
model presents a good starting point for future revisions of
the concept.

Keywords: haptic display, multi-domain model, liquid-to-
gas phase change actuator, low-boiling liquid

1 INTRODUCTION

Tactile displays make it possible for visually impaired
people to interact with graphical representations of infor-
mation. Text-to-speech or classical braille lines can not
fulfill this functionality to the same degree (Baldwin et al.
2017). It is therefore desirable to further improve this type
of device.

Information can be made palpable primarily by ther-
mal, electrical or mechanical stimulation. Consequently
a variety of actuators can be used to generate these ef-
fects. For dot based graphical output the most com-
mon method is to feel mechanically elevated surfaces
(Vidal-Verdu and Hafez 2007). These can be actuated
by electric motors (Wagner, Lederman, and Howe 2002;
Sarakoglou, Tsagarakis, and Caldwell 2005), shape mem-
ory alloy (Howe, Kontarinis, and Peine 1995; Velazquez
et al. 2005), light (Mirvakili et al. 2021), pneumatic de-
vices (Caldwell, Tsagarakis, and Giesler 1999; Wilhelm
2015) or piezoelectric actuators, as often used in commer-
cial products (Tieman and Zeehuisen 1988; Matschulat
2024; Metec AG 2024).

Thermopneumatic actuators are rarely used. They are
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based on the expansion of fluids due to heat input. When
liquids with low boiling points are utilized even more me-
chanical expansion is obtainable during evaporation. This
type of actuator is called a phase change actuator (PCA).
A very simple actuator consisting of a closed volume of
fluid with the ability to expand directionally can be con-
structed (Rai-Choudhury 1997; Matsuoka and Suzumori
2014).

This actuator principle could have many advantages be-
cause of its very simple structure and the miniaturization
potential it offers. The low number of internal components
might also lead to a more cost effective design.

There are multiple publications utilizing this principle
to generate mechanical force in soft robotics and other
fields (Han et al. 2019; Matsuoka, Kanda, et al. 2016;
Niiyama, Rus, and Kim 2014; Boyvat, Daniel M. Vogt,
and Robert J. Wood 2019; Sanchez et al. 2020; Uramune
et al. 2022). Work has also been done on low-boiling lig-
uids in the context of single braille actuators (Vidal-Verdd,
Madueno, and Navas 2005) and even on the use of micro
electro-mechanical system technology (Kwon, S. W. Lee,
and S. S. Lee 2009).

A common shortcoming of existing publications using
thermopneumatic actuators for braille displays is the lack
of a satisfactory theoretical model to describe the entire
system. Available models typically focus only on specific
properties or are based on simplified assumptions regard-
ing the thermodynamics of the system. An example of this
is the use of the Clausius-Clapeyron equation in (Vidal-
Verdi, Madueno, and Navas 2005), which describes the
resulting vapor pressure as a function of the temperature.
It does not provide any information on the system state
and therefore its own validity; nor does it provide any in-
formation on transport properties like heat capacity, which
is needed to calculate the energy demand. The exact force
generated is often characterized by taking measurements
on prototypes subsequently.

The goal of this work is to build a useful model of the
complete tactile system with standard engineering tools
and to make similar models applicable to other designs
based on the same principle. For this purpose a thermo-
pneumatic actuator is built based on the braille standard
size with a corresponding model describing its behavior.
The prototype is then characterized with measurements to
validate the model.



2 METHODS

First a basic design is decided upon to then derive a model
of the relevant physical effects and the model’s theoretical
behavior. A demonstrator is constructed on the same basis.
Finally, the two are compared by means of experimental
validation in order to derive findings for further decisions
in the product development process.

2.1 Actuator Design

The actuator meets the requirements of the braille stan-
dard, in particular the footprint of 2.5mm (braille dot
size), and represents a single tactile point. The prototype
was designed considering the available tools, scalability
and general ability to build up a matrix display based on
it. This is a more segmented approach comprising dis-
crete components as compared to other more integrated
approaches like in Kwon, S. W. Lee, and S. S. Lee (2009).
The system comprises only a few components to facilitate
modeling (Figure 1 A).

A wide variety of materials with different state transi-
tions (solid to liquid, liquid to gas) can be used to im-
plement the basic principle (Wilhelm, Richter, and Rapp
2018). We decided to use Novec 7000 (also known as HFE
7000 or RE347mcc) because of its low boiling point, good
environmental performance and its successful use in other
studies by Nakahara et al. (2017), Hiraki et al. (2020), and
Narumi et al. (2020).

The working fluid (F) is held in a copper chamber
sealed by adhesive copper foil (Figure 1 component "C").
While using this much copper increases the thermal mass
and therefore slows down the actuator, it accelerates heat
entry and speeds up the process. The latter was the dom-
inant effect with the first prototypes. Thermopneumatic
actuators are often designed with thin, flexible membranes
primarily made from latex. Tests showed that this is not an
option for this prototype using Novec 7000 as a working
fluid: The hygroscopic properties of alkoxy perfluoroalka-
nes (Koenigsegg 2021) might have led to water from the

2,5mm

Figure 1. A) Components of actuator prototype from bottom
to top: heatplate H, copper foil C, fluid F, membrane/foil M,
spring S, pin P

B) Experiment with tensile testing machine TM, stroke S and
force F
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surrounding air migrating through the thin latex layers.
Therefore in our design a polyester foil with aluminum
coating is used (M). The metal layer makes this seal gas-
tight. The actuator can only expand by curving the foil
instead of mechanically stretching it like an elastic mem-
brane. This solution reaches its lower size limit with the
design footprint of 2.5 mm but produces a better seal than
a latex membrane. The prototype is completed by a small
push rod (P) to transmit the force and motion to the touch
surface and a spring (S) to assist with restoring the initial
position. The actuator itself does not include a heat gen-
erating device for the demonstrator. An external Peltier
element with temperature control is used to provide the
thermal energy needed (H).

2.2 Model of the Actuator

Bardaweel et al. (2009) built a detailed model of a PCA by
dividing it into discrete elements that are each described
by algebraic differential equations. Combining these re-
sults in a model describing all relevant internal and exter-
nal properties of the actuator. This technique of combining
differential equations across multiple physical domains
in a single system simulation is well suited for thermo-
pneumatic actuators. The structure of our chosen design
is shown schematically in Figure 2 A. It illustrates that
many variables and various physical effects interact with
each other in this actuator.

To make a similar approach for our actuator more gen-
erally accessible we opted to use the Modelica (Matts-
son and Elmqvist 1997) based commercial simulation tool
SimulationX (SimulationX 2024). With this approach a lot
of object-oriented basic elements are predefined and easily
accessible. A second general advantage of the approach is
that the parameters of the idealized individual components
can be well estimated in the concept phase and still be eas-
ily adjusted later. Hence, models created this way offer a
high degree of flexibility. The most important constructive
parameters of the prototype are shown in Table 1. These
values change when altering the actuator design. Parame-
ters which are constant in this context like material prop-
erties are not listed in the table.

In Figure 2 B the network of thermal components in the
system is built from the bottom up. It consists of contact
resistances between the components and their respective
heat capacities. Constructive parameters from Table 1 in
this context are contact areas and the mass of the compo-
nents to calculate heat capacity. The thermal conductiv-
ity at the contact points with thermal grease can be deter-
mined from the literature (Lienig and Bruemmer 2017).
For the heat transfer into the fluid, boiling and condensa-
tion processes would theoretically have to be considered,
which affect the resistance value depending on the fluid
state. Since available models do not properly reflect a
wide chamber, like it is used in our design, and since this
variable primarily affects system dynamics, the effect is
not being modeled more precisely for the time being. It
could be integrated in the model in future iterations.

10.3384/ECP2077
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Figure 2. A) Schematic of the different physical domains in-

volved in a PCA and their connections

B) Simplified version of the system model realized with Model-

1ca

The chamber with the working fluid is connected to the
thermal network. The thermodynamic properties of the
fluid are hard to determine. In principle, the pressure in the
fluid can be represented as a function of temperature using
the Antoine equation or an empirical function according
to the data sheet. With the characteristic points given in
the data sheets, the Clausius-Clapeyron equation (Gerlach
and Dotzel 2008) describing the vapor pressure can often

be evaluated:

p(1) = pi-e? (1)

DOI 10.3384/ECP2077
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Here the critical point tuple (7, px) and heat of evapo-
ration Ly can be taken from the manufacturer’s data sheet.
The universal gas constant R is also well documented. The
state of the fluid includes additional variables like the ra-
tio of vapor to liquid phase as well as dependent transport
variables, such as thermal conductivity and thermal capac-
ity. In the case of very extensively tested fluids (e.g. wa-
ter), the corresponding relationships can be found in em-
pirical formulae or tables. But generally such thoroughly
verified data is not available for every material.

Table 1. Most important constructive model parameters for
nominal (n) and tuned (t) model

component parameter value
H,C radius contact area heater 5.25 mm
H,C thickness copper bottom 0.05 mm
C mass fluid chamber 2.1g
C radius fluid chamber 1.25 mm
C volume fluid chamber 23 mm?
M movement force foil 36.8 mN
M stiffness foil (n) 137 N/m
M stiffness foil (t) 500 N/m
S spring constant 585 N/m
P mass pin 05¢g
P maximum stroke 0.6 mm
F elasticity fluid volume (n) 0.7 mm?3/bar
F elasticity fluid volume (t) 0.5 mm>/bar

Thermodynamic reference models such as CoolProp
(Bell et al. 2014), TREND (Span et al. 2020) or REF-
PROP (Lemmon et al. 2018) offer a solution. Based on
the Helmholtz equation of state and appropriate laboratory
data, these tools provide both state and transport quanti-
ties. They also determine properties that would be un-
available with the above method. REFPROP, which was
developed by the National Institute of Standards and Tech-
nology (NIST), was used in this work. In order to include
the data in the Modelica model, either suitable lookup ta-
bles can be generated beforehand and integrated into the
corresponding simulation programs or, as in our case, a
program interface can be used, which feeds parameters
from the current simulation step directly into REFPROP
and receives the results. This means that states outside the
phase transition region can also be simulated in the fluid
section of the model (Figure 2 blue) and energy aspects
can be considered by means of the variable material pa-
rameters.

The model is completed by the actuator’s mechanical
components. These consist of basic elements such as
springs and masses as well as travel stoppers. Foil be-
havior (Figure 1 component "M" and Figure 2 B "M") is
modeled by a force hysteresis over the deformation path.
Hysteresis parameters are obtained from previously per-
formed tests on the physical setup with an external pres-
sure source instead of the fluid. Two parameters in Table 1

Ei
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Figure 3. Simulation results with characteristic points on the
actuator curve

are used to represent the hysteresis in the model: the stiff-
ness of the foil, which determines the increase in force,
and a constant force offset, which determines the pressure
at which the foil begins to change its direction of move-
ment. The latter was adjusted in a tuned model in sec-
tion 3. For the purpose of this study, only the observed
behavior is used as a basis for modeling. One approach
for a more precise modeling would be the phenomenolog-
ical description of the process using two principles: The
stiffness is mainly caused by friction of the foil against it-
self during flipping. The constant force is comparable to
the limit load that leads to plate buckling. However, since
the foil represents a design trade off to make the chamber
gas tight, a more detailed modeling is not considered to be
necessary. Further iterations of the actuator design would
need a different solution for this component nonetheless.

2.3 Experimental Validation

The experimental procedure can now be virtually repro-
duced in the actuator model and the measurable variables
can be compared with each other. In addition, the model
also provides insight into the system states.

First, the actuator is preheated to a constant temperature
and completely extended. In a real-world scenario, a per-
son would now apply a tactile force from above when feel-
ing the actuator. In order to simulate this process and to
characterize the actuator as appropriately as possible, the
measurement is performed identically: The extended ac-
tuator is compressed to the lower end stop by a tensile test-
ing machine (Zwick 1120) and then released. Meanwhile,
the force is measured as a function of the actuator stroke.
The test cycles are very slow with 40 s for 0.5 mm stroke
to enable the readjustment of the temperature, which is as-
sumed to be constant. Each measurement is carried out at
least twice on the real prototype. The tests are repeated
at different temperatures. A characteristic curve based on
the model is plotted in Figure 3.

The plot shows that the force at the beginning (Fy4)
is greater by the amount of the hysteresis force Fj,y; when
moving down than when moving out at the end (F,,;). As
long as steam is still present in the system, the pressure is

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA
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curve

constant according to theory, since the temperature is kept
constant. The increase k visible in Figure 3 is due to the
mechanical properties of the spring and foil.

When leaving the two-phase region, there is a signif-
icant increase of up to F,,, in the force required be-
cause the vapor pressure equation loses its validity at this
point and the tensile tester is now acting against a non-
compressible fluid with no vapor content. This response
can only be depicted by using the thermodynamic refer-
ence model.

Curves similar to those yielded by the model are also
expected in the trials and can be compared based on the
characteristic points. Exemplary test results are shown in
Figure 4 and variables corresponding to those in the model
are plotted for comparison purposes.

3 Results

The experiments show that the fully assembled proto-
type fulfills the basic function of an actuator for an active
braille display. In addition to the functional tests, the test
sequence described above was performed 13 times. Figure
4 shows two of these test runs at 64°C and 66°C, respec-
tively.

There is a constant temperature offset of 9 K between
the model values and the measurements. This will be dis-
cussed later.

3.1 General Behavior

Some basic actuator characteristics were determined prior
to the force measurements. It has been shown that the
prototype does not start to extend until a temperature of
62°C is reached. The extension and retraction periods of
31s and 60 s, respectively, are very long with the heating
and cooling unit used. The reason for this is that the over-
all structure is stiffer then it needs to be, which is mainly
due to the foil being used to make the system gas tight.
The minimum force of 50 mN - required for probing the
point (Vidal-Verdd and Hafez 2007) - is greatly exceeded
as well. However, these drawbacks are all a direct conse-
quence of the concrete design implementation. With the
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Figure 5. Forces at different temperatures. From top to bottom:
force at first contact, maximum force and force after releasing
the load

help of the model, it is possible to simulate a smaller ac-
tuator with lower heat capacity and less stiff mechanical
components that reaches cycle times of 0.1 s with still suf-
ficiently large tactile force.

Although the energy consumption could not be mea-
sured in the demonstrator, the results from the model al-
low conclusions to be drawn in this regard as well. The
selected design boundary conditions, such as overall size,
mechanical losses and stiffness, are clearly too large. This
results in very high energy consumption. In practical
terms, this would mean that approximately 1 W of power
would be required per actuator in the extreme case of a
display with a 10 Hz refresh rate. This is not realistic for
applications with several thousand actuators like high res-
olution tactile displays. The design of the actuator concept
would have to be adapted so that it could realistically be
operated at lower power levels.

The curve in Figure 4 can be compared with the mod-
eled sequence in Figure 3 and all characteristic values are
identifiable for further examination. The plot also shows
that the demonstrator does not quite achieve the targeted
maximum stroke of 0.5 mm due to mechanical tolerances.
Other differences between the curves can be better ana-
lyzed using the characteristic points in the next section.

3.2 Actuator Characteristics

The characteristic points in the force-displacement curve
are obtained from the experimental procedure described
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Figure 6. Stiffness (top) and hysteresis (bottom) of the actuator
at different temperatures

above. This data is used to compare the model and the
experiment. In addition to the model with nominal values
from the design process, a tuned model was developed, as
a result of deviating system parameters (Table 1). In cer-
tain areas this new model better corresponds to the mea-
surement. Figure 5 shows the three force points. The force
at the beginning of the cycle Fy,,; is well reproduced by
both models, taking into account the constant temperature
offset. The same applies to the force after releasing the
load (F,,4).

The maximum force F,,, applied during the experi-
ment is significantly less accurate. The parameter for the
stiffness of the fluid chamber was changed in the tuned
model to achieve a slightly better match. However, this
is still significantly less accurate compared to the other
two forces. There are two reasons for this: First, the ten-
sile tester compresses the test setup to a defined maximum
force, since the stroke could not be used in a control capac-
ity. As a result, the very high peak forces do not originate
from the actuator itself but from the mechanical stop be-
tween the actuator and the testing equipment. The exact
value is therefore difficult to determine from the test data.
Secondly, there are also inaccuracies in the model, which
compresses a fluid inside a stiff mechanical structure af-
ter leaving the two-phase region. This parameter change
causes numerical inaccuracies at peak values, which could
not be fine-tuned for every test series.

The parameters of the actuator stiffness k and hysteresis
width Fjy; in Figure 6 can also not be fitted very well and
both show a fundamental unsolved problem in our stud-
ies: In the demonstrator the actuator stiffness increases
with temperature. This behavior is not implemented in the
model, since the exact cause of the effect is still unknown.
Accordingly, there are strong deviations between model
and measurement here.
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4 Discussion

In the simulation results (Figure 3), a clear distinction can
be made between the two-phase region with steam inside
the fluid chamber and the single-phase region with pro-
gressive compression. The sharp bend separating the two
regions is assumed to occur at a stroke height of around
0.3 mm, however in the test setup it is not nearly as appar-
ent as in the model. It should be noted, that the rightmost
part of the curve in Figure 4 results from the actual test
setup, in which the actuator is fully compressed and re-
leased again. This represents a well repeatable test case,
but does not correspond to the practical application. When
the elevated surfaces are sensed by touch, the actuator
would only be loaded in the left part of the characteris-
tic curve. The relevant characteristic values Fy,,; and F,,,;
are again well modeled there.

The continuous transition between the two regions in
the trial could explain why the stiffness k of the test ac-
tuator is higher than in the model. A temperature depen-
dency can be at least partially explained: In the two-phase
region, the stiffness depends only on the mechanical com-
ponents of the system, since the pressure in the actuator
remains constant. However, this does not apply to further
compression with purely liquid fluid. Changes can occur
here since the mechanical properties of the fluid change in
relation to temperature. Whether these effects are a suf-
ficiently accurate quantitative explanation for the differ-
ences needs further investigation.

4.1 Temperature Offset

The temperature during the experiment was only set on the
heater and actively regulated there. It could not be mea-
sured inside the actuator itself due to its compact design. It
is therefore conceivable that the temperature inside the ac-
tuator was slightly lower than inside the heating plate be-
cause the device was air cooled. In addition, it was shown
earlier that the complete actuator is overall stiffer than the
model predicts. This means that the real actuator needs a
higher temperature to exert the desired force. Both effects
combined can explain the temperature difference between
model and experiment.

4.2 Model Inaccuracies

Two simplifications were made in the design of the model.
On one hand, the expansion within an ideal cylindrical
piston is assumed. In this case, the calculated volume
does not exactly match that of the actuator because the
foil bulges slightly and does not form perfect edges. On
the other hand, the boiling and condensation processes are
not accurately modeled. The heat transfer between cham-
ber and fluid is thus only a simplification, which impacts
actuator dynamics. However, the impact of both effects
on the system should be minimal and does not explain the
increase in actuator stiffness as a function of temperature.
Enhancing these parts of the model therefore improves the
overall model behavior only slightly.
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4.3 Future Work

This work shows how a Modelica based simulation model
can be used to evaluate an idea during the product develop-
ment process. Apart from this, the actually implemented
structure of the actuator prototype still has room for fur-
ther improvement that should be addressed in future work.
The modeling inaccuracies that occur are mainly related to
these components.

The foil used as a membrane was selected to replace
latex membranes, which repeatedly showed leaks. The
foil for the 2.5 mm diameter prototype actuator is on the
limit of usability because of its stiffness. This caused the
very high operating temperature and large actuator forces,
which are significantly greater than required. A better so-
lution with good sealing properties when used in combina-
tion with fluorine-based fluids is needed for future setups.

In addition, the setup should be equipped with more
sensors for pressure and temperature monitoring inside
the actuator. Even if this means that the targeted size of
2.5 mm is probably not feasible for an experimental setup,
this disadvantage is outweighed by the significantly better
verifiability of the model.

Furthermore it would be worth considering whether a
different fluid could be utilized. The coolant used has a
high evaporation enthalpy, due to its intended use for ab-
sorbing heat, which is also responsible for the high energy
consumption. It might be more advantageous to choose a
fluid with a higher boiling point but a lower heat of evapo-
ration. The temperature of the actuator must then be kept
close to the boiling point by means of insulation. Un-
fortunately, substances with similarly low boiling points
and at the same time low enthalpy of vaporization, such as
isopentane, are often toxic (Chiba and Oshida 1991).

5 Conclusions

It was shown that the system simulation approach in com-
bination with thermodynamic reference models can be
used to simulate PCAs for tactile applications. The struc-
ture is intuitive due to the existing object-oriented libraries
and can be adapted well to further work. They therefore
form a useful basis for product development processes
when evaluating solution concepts.

A model of an actuator was successfully built and ex-
perimentally validated. This makes transient simulations
possible. It can be easily adapted to modified designs. The
challenges that still exist are largely due to the specific foil
used in the actuator.

The model based on Modelica with libraries from Sim-
ulationX can also be extended to include the previously
neglected effects. To do this, it would make sense to first
carry out further tests with more measurement options and
thus clarify the still unexplained effects in regard to the ac-
tuator stiffness. However, due to the energy consumption
observed on the model, the actuator concept was not pur-
sued further for the specific planned application of a haptic
braille display.
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Abstract

Compressors are the vital component of the vapor
compression systems and account for the majority of
energy consumption. Developing appropriate controllers
or optimizing compressor design can significantly reduce
the carbon emissions. The isothermal compressor
combines the compressor chamber and gas cooler, using
the liquid piston to compress the working fluid for near-
isothermal compression. This methodology can reach up
to 30% energy saving compared to the traditional
isentropic compression work. This paper leverages the
CEEE Modelica Library (CML) to demonstrate a detailed
isothermal compressor model that captures the near-
isothermal compression process of transcritical carbon
dioxide (CO») cycle. The model uses the real experimental
data as the boundary conditions, and the relevant
component-level experimental validation was carried out
by using a prototype with 1-ton nominal capacity. The
results proved the accuracy of the dynamic model (7.5%
relative error for chamber pressure and 0.74 K deviation
for chamber temperature), and provide a guideline for
designing the isothermal compressor chamber. Finally,
the modeling for the isothermal compression cycle is
ongoing and the filed is still in its infancy.

Keywords: Isothermal Compressor, Transcritical CO>
Cycle, Dynamic Modeling

1 Introduction

Vapor compression system (VCS) are extensively utilized
in heating, ventilation, and air conditioning (HVAC) area,
which together account for more than 30% of electricity
generated in the U.S. (EIA, 2022). The compressor,
responsible for circulating refrigerant and transferring
heat, consumes the majority of this electricity. Therefore,
measures to improve the system energy -efficiency,
especially the innovative design of compressor, can
significantly reduce the carbon footprint and boost the
resilient energy economy.

The ideal thermodynamic cycle (Carnot cycle) defines
the upper limit on the efficiency of refrigeration system in
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creating a temperature difference through the application
of work to the system. In reality, it’s not possible to build
such thermodynamically reversible engine and the real
engines that even operate along the Carnot cycle style
(isothermal expansion / isentropic expansion / isothermal
compression / isentropic compression) are rare. However,
the isothermal compression can bring the system close to
the Carnot cycle efficiency, and the related technology
have achieved breakthrough progress recently, especially
with the widespread adoption of compressed air energy
storage (CAES) that driven by the increasing penetration
of renewable energy sources (Kim et al., 2022). Given that
one of the biggest problems come with CAES is low
energy efficiency, i.e., the traditional CAES systems lose
energy due to heat generated during the compression,
which cannot be fully recovered. A considerable number
of studies have explored achieving isothermal
compression in CAES applications, including water
injection (Patil et al., 2020, Odukomaiya et al., 2016),
chamber shape optimization (Zhang et al, 2016) and
chamber packing with inserted material (Yan et al, 2015,
Saadat et al, 2012).

On the other hand, CAES systems emit greenhouse
gases, which pose challenges to the goals of reducing
greenhouse gas emissions. In view of long-term
environmental safety, one potential substitute refrigerant
is carbon dioxide (CO»), a natural refrigerant that has
negligible impact on climate change, which is
environmentally benign, non-toxic, and non-explosive. In
addition, recent advancements in system design and
manufacturing improvements make it possible to achieve
high pressure required for CO; transcritical operation, and
the CO» can deliver much higher heat rejection through
sensible cooling to regain efficiency when it’s compressed
beyond critical point (31.1 °C, 7.38 MPa). The CO,
transcritical cycles have many different system
configurations for different applications (Sarkar et al.,
2004, Fernandez et al., 2010), with ongoing tightening
environmental regulations, further theoretical research is
needed to explore the potential for enhancing the energy
efficiency of transcritical CO; systems.
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The CEEE Modelica Library (CML) 1is a
comprehensive Modelica library developed by the Center
for Environmental Energy Engineering (CEEE),
University of Maryland, College park. It is designed for
transient simulation of extensive thermal system
configurations and HVAC applications. The CEEE can
assist in gaining a deeper understanding of
thermodynamic systems. The CML is scalable, allowing
users to virtually assess and optimize the VCS’s
performance. Two features in our implementation are
tailored for modeling of isothermal compressor model in

2 Modeling Methodology

In our test unit, a two-chamber isothermal compressor
design with shared liquid pump is adopted. Each
compression chamber is based on the plate heat exchanger
(PHX), with the secondary fluid (water) provided by the
air-cooled radiator to cool down the compressed
refrigerant. Additionally, both the residual gas cooler and
suction line heat exchanger are PHXs as well, utilized to
ensure the rated cooling capacity of 1 ton. The piston
accumulator is used as the storage component to regulate
the system charge level and mitigate pressure fluctuation.
The electronic expansion valve (EXV) controls the
downstream pressure and mass flow rate, while the
electric heater acts as the evaporator to control the
refrigerant state at the suction side of the isothermal
compressor by regulating its heat load.

CML: (1) Using the liquid piston to compress the working
fluid (CO») within the heat exchanger-based chamber to
enhance the heat transfer. (2) The compression chambers
can realize the double-acting mechanism, allowing
compression and suction processes to occur
simultaneously. The modeling details are elaborated in
Section 2, while Section 3 covers the information about
our experimental setup and the relevant experimental
validation. Finally, the conclusions and future work are
summarized in Section 4.

The schematic diagram of the test facility with sensors
installed is shown in Figure 1. Sensors are in place to
measure key operation variables such as pressures,
temperatures and mass flow rates, etc. In Figure 1, letters
‘T* and ‘P’ represent the temperature and pressure
measurement via thermocouples and pressure transducers,
respectively, which can provide us with information about
the refrigerant state for different components. The
hydraulic directional control valve is installed to
facilitates the switching of flow direction when the
isothermal chamber completes the compression/ suction
stroke, and the oil level reaches the upper/ lower oil level
sensor. The check valves were utilized to minimize the
dead volume in each compression cycle and the mass flow
meter is uilized to measure the suction side mass flow rate
of the isothermal compressor.

— Low pressure refrigerant flow
— High pressure refrigerant flow

Oil flow
('b Oil separator Supply water flow
Check valve @ Return water flow
Residual gas cooler N— f ]
Suction @ o
line HX 'g:‘ Chamber 1
Mass flow meter —
Secondary loop water radiator
Piston Vessel - = o
accumulator oum
Solenoid (P) A (D P
®_ valve @X o P @

T
Exv i § A [ |Electric B
- heater Chamber 2 Hydraulic
directional valve
Level sensor OOy
@ Vessel [~ QC

Figure 1. Sensor instrumentation diagram for the test unit.

The Modelica interface of the PHX-based isothermal
compressor is depicted in Figure 2 and following
assumptions are made for the modeling:
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1. The refrigerant side boundary conditions (e.g.,
pressure and enthalpy) of the isothermal
compressor were provided based on the
experimental data, while the water-side boundary

10.3384/ECP20715

DOI



DOI

conditions were assumed to be constant for
simplification.

2. The liquid piston model is simplified as the input
to the isothermal compressor, which compresses
or suck in the refrigerant within the chamber
under the given volumetric flow rate and time
period.

3. For each channel of the PHX-based isothermal
compressor, the geometric details and the flow
conditions (e.g., mass flow rate and temperature)
for both primary and secondary fluid were
assumed to be the same. Therefore, the individual
channel was selected for the modeling, and the
corresponding results were multiplied by half the
total number of plates to derive the overall
component results.

4. The process of solubility / degassing of CO> in oil
during the compression/ suction is too complex

flange_s

and can affect the charge estimation within the
isothermal ~ compressor.  Therefore,  for
simplification, the oil is assumed to be mineral oil
with no solubility. Additionally, the model does
not consider the heat transfer between the oil and
COo.

The geometric details of the PHX are shown in Table 1.

Table 1. Geometric details of the PHX.

Parameter Value
Port to port length (mm) 329
Width (mm) 119.5
Corrugation depth (mm) 1.55
Area enlargement factor 1.24

Total number of plate 50
Diamter of port (mm) 23.5

i

Liquid piston

Refrigerant side

boundary conditions
Enthalpy

i

S

mdot_water
) 0.36
Water side boundary
conditions

Twater

40+27315 B

refrigerantCond

Isothermal
control volume

150Geo

Figure 2. Modelica interface of the isothermal compressor model.

The conservation differential equations for the refrigerant
energy, mass and tube wall energy for the isothermal
compressor are given in Equation 1 to Equation 3.

U = minhin - mmtthuut _arA(T; _Tw) (1)
me = min _moul (2)
E = Cth,wj-\'v = arA(T)’ _]:v ) - awaterA(T:N _T:vater) (3)

where U is the refrigerant internal energy; i, and m,,
represent the inlet and outlet refrigerant mass flow rates
of the chamber, respectively; 4, and ... represent the inlet
and outlet refrigerant enthalpy of the chamber,
respectively; 7,, T, and Tyaer are the temperature of
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refrigerant, plate wall and water (secondary fluid); , is

the time derivative of refrigerant mass held in the
chamber; E is the plate wall energy and Cy, . denotes its
thermal capacitance; 4 is the heat transfer area; o, and
Owater are the refrigerant side and water side heat transfer
coefficient (HTC), respectively;

Based on the relationship between the refrigerant internal
energy and enthalpy

u=h—£
el

“

where u is the refrigerant specific internal energy and p is
the refrigerant density, the time derivative of the
refrigerant internal energy U in Equation 1 can be
decomposed into terms of time derivatives of the pressure



and enthalpy using the chain rule:
U= (a—pVh—VjP+[a—pVh+ijh+(ph—P)V )
opP Oh

where V is the chamber volume of isothermal compressor.
Similarly, the mass balance equation of Equation 2 can be
rewritten as

[ op op.
Ly v Ly 0 ph-P .
oP oh, F,
[/; % I/: % 0 Pi ‘hi
aPl ah, Twi
0 Cth,w O I/';
I 0 0 0 1 ]

where i denotes the i channel; V,, is volumetric flow rate
of the liquid piston and N is half of the total number of
plates.

As shown in Figure 1, a flow meter was installed at the
hydraulic part to measure the volumetric flow rate of oil,
and the experimental results were shown in the left part of
Figure 3. For modeling purposes, simplifications were

Experiment (T,,,=T,,.=25 s)

#1 Isothermal chamber

-
=
[l N

. op - Op - .
m,=V|—=P+—h |+pV 6
2 ( 2. o j p (6)
Equation 5 and 6 allow the reformulation of the governing
equations using the pressure P and enthalpy / as the state
variables. The resultant state-space governing equations

for each channel of PHX-based isothermal compressor are
formulated as follows

_ ﬂhin_%hi_ari*"li(Tn_Twi) |
N N ’ ' ’
ﬁ _ moul
= N N (7
ar,iAi (Tn - Tw,i ) - awater,iAi (T wi water,i)
.
L N J

thereby implemented: in each process (compression/
suction), the volumetric flow rate was initially kept
constant for the first 6 seconds, and then linearly declined
throughout the remaining period. Note that the volumetric
flow rate profile for each chamber takes mirror
relationship.

Simulation

—
o
IS

T IC T 4l #1 Isothermal chamber
“ o N L = | s ' ' ‘
E? F E ~
g 52
— [l
z 0 =
] 3o
‘EJ - . - —"_*'ﬂ . B2 P .
;3 . Com Suc Com Suc Com | Suc _E Com “Suc Com “Suc | Com “Suc
0 20 40 50 &0 100 120 140 % 20 40 60 80 100 120 140
‘ Time (s) Time (s)
T4 «107* ) i #2Is‘o'thermal ::hamber[ . . % 4 <104 #2 |sothermal chamber
b - . & ' ' ' ' ‘
E 1 1 -
z &
ot ] 20
2. Suc | Com Suc Com |~ Suc | Com E |="sue | com |~Suc | Com Suc | Com
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Time (s) Time (s)
Figure 3. Volumetric flow rate of liquid piston for each compression chamber
(“Com”: compression, “Suc”: suction).
3 Experimental Validation chamber undergoes either the suction or compression

Figure 4 shows the test rig of isothermal compressor
system with the rated cooling capacity of 1 ton. As
forementioned, the two PHXs-based compression
chambers were utilized to implement the double-acting
mechanism. This design ensures each of the compression
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process, with both processes having the same duration by
using the level sensor to monitor the oil level. The
secondary loop of PHX is managed by the water radiator
with fan to release the heat into ambient. The oil separator
is introduced to separate the oil dissolved in the refrigerant
during the compression process and return it to the liquid
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pump. This pump provides high-pressure liquid to the
compression chamber and is designed to achieve high
volumetric efficiency.

Level sensor

Compression chamber

Piston accumulator

Qil separator

Water radiator with fan

Figure 4. Experimental facility of isothermal compressor cycle.

The experimental validation results for the isothermal
compression system model were depicted in Figure 5.
Overall, the established model can accurately capture the
pressure and temperature behavior of test rig, for both
dynamic and steady state characteristics, with 7.5%
relative error for the chamber pressure and 0.74 K
deviation for the chamber temperature. However, the
pressure comparison revealed that the simulation curve
appears “steeper” than the experimental counterpart at the
end of the compression process (delivery of CO»), which
probably due to the liquid piston model didn’t accurately
reflect the real volumetric flow rate at that stage.
Therefore, one of the future tasks should be the calibration
of liquid piston model. Furthermore, during the suction
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period, there is noticeable deviation between the
simulation and experiment. This is mainly because the
model didn’t account for the degassing process, where
quite amount of CO; is released from the oil due to the
pressure drop.

As for the temperature comparison, the experimental
results show a sudden drop at the beginning of the suction
process. This drop is due to the expansion of the remaining
CO: in the isothermal chamber. However, the model did
not capture this behavior, likely because the sensor is
attached to the surface of the compression chamber, and
the model did not account for the thermal mass of the
chamber wall.
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Figure 5. Comparisons of pressure and temperature between experiment and simulation for each compression chamber.

4 Conclusions

In this paper, a dynamic model for the double-acting
isothermal compressor based on the CML is established.
The isothermal compressor is coupled with liquid piston
to serve the dual purpose as a heat exchanger to cool down
the refrigerant and achieve the isothermal compression
within the chamber. Unlike the conventional compressor
model which evolve on much faster time scales than the
heat exchanger dynamics and typically established as
quasi-steady state model, the compression process for the
isothermal compressor model requires much longer time
to dissipate the sufficient heat. To demonstrate the
accuracy, the experimental tests were carried out based on
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Abstract

This paper presents two methods for reallizing fluid prop-
erty functions in Modelica simulation models. Each
makes use of a coordinate transformation that aligns one
coordinate with the saturation curve. This provides for
a precise representation of the fluid property function at
the saturation curve, and for connected domains of inter-
est including the liquid, vapor, supercritical and two-phase
regions. Both approaches make use of spline function ap-
proximation in the aligned coordinates, and are numeri-
cally efficient, well conditioned, and allow for efficient
calculation of derivatives up to any desired order that are
precise up to processor numerical tolerance.

Keywords: thermofluid models, fluid properties

1 Introduction

Fluid property functions relate fluid property variables
such as temperature, pressure, density, etc., to one another.
For a fluid of fixed composition in thermodynamic equi-
librium, all fluid property variables can be calculated as
a function of two independent variables: a mixture vari-
able and a second variable. Pressure P and specific en-
thalpy & are often chosen for vapor compression models,
but other combinations are also possible (Bejan, 1993).
Fluid property functions are critical for thermofluid model
simulation, and must be implemented in an accurate, com-
putationally efficient manner. For some applications, fluid
property function evaluations consume more than 70% of
simulation time (Aute and Radermacher, 2014).

Mathematically, the domain of a fluid property function
is the span of the two independent fluid property variables.
For many thermofluid systems, such as vapor compression
cycles, the domain includes values of the two independent
fluid property variables that correspond to more than one
of the fluid’s states, such as the vapor state, the supercrit-
ical state, or the two-phase state. The boundary between
the liquid region and two-phase region in the domain is
the liquid saturation curve, and the boundary between the
vapor region and two-phase region in the domain is the
vapor saturation curve. These curves intersect smoothly at
the critical point of the fluid, and their union is referred to
as the saturation curve.

The saturation curve is distinguished because its image
under a fluid property function is not smooth. The fluid
property function is continuous (Cy), but not continuously
differentiable (C)), for all points on the saturation curve.
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Saturation
Curve

22

log(Pressure)

B2 2

Enthalpy

Figure 1. Density of R410A as function of 4 and log(P), show-
ing the saturation curve (red).

For all other points in the domain, the fluid property func-
tion is a smooth (C,) function of the two fluid property
variables, for some n > 1, as shown in Figure 1, which
plots density p as a function of specific enthalpy # and
pressure P for R410A. Modelica models of thermofluid
systems often make use of derivatives of a fluid property
function with respect to the two fluid property variables,
and it is important to compute these accurately, especially
near the saturation curve.

Several approaches for computing fluid properties may
be found in the literature. Some are based upon using the
Helmbholtz (or Gibbs) free energy equation (Span, 2000).
Any fluid property of interest may be numerically com-
puted by solving these equations using iterative meth-
ods, typically Newton’s method of root finding. These
methods are realized in available software such as REF-
PROP (Lemmon et al., 2018) and CoolProp (Bell et al.,
2014), and also realized in the HelmholtzMedia Model-
ica library (Thorade and Saadat, 2012, 2013). While these
methods are general and accurate, they tend to be com-
putationally expensive for use in simulation models, espe-
cially for large models with long simulation times. Fur-
thermore, iterative algorithms include a stopping criteria,
and therefore small errors are introduced into the com-
puted fluid property values. If these values are numeri-
cally differentiated, which may be done by a simulation
tool to compute a Jacobian, for example, then small er-
rors can be amplified to the point of being unacceptably
large, especially in the region near the saturation curve.
Moreover, these iterative methods can fail to converge for
certain values of the two independent fluid property vari-
ables.
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Other approaches for calculating fluid property func-
tions for use in simulation include Taylor’s series approx-
imations or splines. Aute, et al describe a method using
Chebyshev polynomials that is built from data obtained
from REFPROP (Aute and Radermacher, 2014). This
method demonstrates a significant speedup over standard
iterative methods, but does not enforce consistency be-
tween the properties and their derivatives and cannot rep-
resent the behavior of the fluid close to the critical point.
Kunick et al. describe a method using quadratic splines
to represent the fluid properties of water and steam for
the International Association for the Properties of Water
and Steam (IAPWS) (Kunick, 2018). This method divides
a domain of interest into three distinct regions of fluid
state. But by splitting up the domain into non-overlapping
sets, the method introduces inconsistencies at the satura-
tion curve between these sets, resulting in errors in the
property derivatives near the saturation curve.

US Patent Application 2020/0050158 (Xu, 2020) de-
scribes a thermodynamic property calculation method us-
ing a linear approximation of the properties, but this does
not capture the nonlinearities that are pominant near the
saturation curve. US Patent 7,676,352 B1 (Van Peursem
and Xu, 2010) describes a method for calculating thermo-
dynamic properties and their derivatives using local ap-
proximations of fluid property functions, but it is an it-
erative algorithm and fails to describe nonlinear fluid be-
havior on a large domain of interest, and does not provide
accurate derivatives near the saturation curve.

Generally, previously published methods that use func-
tion approximations such as splines, or commonly used it-
erative methods based on the Helmholtz free energy func-
tion, for example, suffer from two fundamental problems.
First, the coordinates used for numerical calculation are
not aligned with the saturation curve. In other words, the
saturation curve is not represented as a contour of one of
the two independent coordinates. Therefore, the discon-
tinuity in derivative across the saturation curve is not ac-
curately represented. Secondly, the coordinates typically
used can result in an ill-posed numerical calculation at or
near the critical point. This is because one of the coordi-
nates achieves a maximum when expressed as an explicit
function of the other coordinate at this point. Iterative
methods especially fail near the critical point, and may
employ special curve-fit approximations near it. As such,
many available fluid property libraries are limited to the
sub-critical region. However, both of these problems are
purely a consequence of poorly chosen coordinates: The
saturation curve itself is smooth everywhere, and the prop-
erty function itself is smooth everywhere except across the
saturation curve.

In this paper, we introduce two coordinate systems for
representation of fluid property functions that are well-
defined for all regions of practical interest, including the
two-phase, vapor, liquid, and super-critical regions. Both
coordinate systems are defined to be aligned with the sat-
uration curve, so that the discontinuity in derivative is rep-
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resented in terms of only one of the coordinates, which is
defined to be constant along the saturation curve (Laugh-
man et al., 2023). In both coordinate systems, the critical
point is no different from any other on the saturation curve,
so that super-critical problems are no different than purely
subcritical ones.

First, we show how a normalized polar coordinate sys-
tem may be used to define fluid property functions. In
these coordinates, the interior of the unit disk represents
the two-phase region, and the liquid, supercritical and va-
por regions are represented in the exterior of the unit disk.
The saturation curve is an arc of the unit circle. Fluid
property functions are represented as B-spline functions
(de Boor, 1978; Piegl and Tiller, 1995), arranged such that
the transition across the saturation curve is Cy but not C.
B-spline coefficients are computed off-line by solving a
constrained least squares problem using data generated by
a reference calculator such as REFPROP. The implemen-
tation is computationally and memory efficient, accurate,
numerically well-conditioned and allows for evaluation of
derivatives of the fluid property function of any desired
order.

We derive a second implementation using normalized
parabolic coordinates, which may be less familiar to the
reader but for this application have a certain elegance. In
normalized parabolic coordinates, the saturation curve is
represented as a unit parabola in one of the two coordi-
nates, which is naturally similar in shape to the saturation
curve expressed in conventional (A, P) variables. The re-
sulting fluid property functions are computationally effi-
cient and well-conditioned, but some of the peculiarities
of parabolic coordinates require additional attention.

Both are realized as a set of C language functions, with
interface to Modelica though the external function inter-
face. This makes the coordinates entirely invisible to the
user. However, the result begs a question: Is there a ben-
efit to expressing the fluid dynamics equations explicitly
in these variables, instead of using conventional physi-
cal variables? This might be possible if the coordinate
transformations were defined natively in the Modelica lan-
guage. Addressing this question is left to future research.

This paper is organized as follows. In Sections 2 and 3
we derive the polar and parabolic coordinate transforma-
tions and property functions realizations, respectively. We
discuss some of the implications in Section 4, and draw
some conclusions in Section 5.

2 Polar Coordinates

Consider density p (kg/ m?) as a representative fluid prop-
erty, to be computed as a function of independent fluid
property variables pressure P, (Pa) and specific enthalpy
h. (J/kg), where the subscript e denotes that the variables
are in engineering units. Consider a domain of interest
in the h, — P, plane, on which an approximation p of p
is defined. Q may include the two-phase region, the liq-
uid and vapor regions, and the super-critical region, and
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will be defined below. p is computed in a normalized po-
lar coordinate system defined by the composition of three
coordinate transformations 7 = T30 T o T.

Scaling Coordinate Transformation 7;

Choose an origin (feo, Peo) € Q, inside the two-phase re-
gion, and values for two scaling factors, py (dimension-
less) and A (J/kg), to define the scaling coordinate trans-
formation Tj : R? — R? : (he, P.) + (h,p) as

h= (he - heO)/hs
p = ps-log(P/Pep).

(1a)
(1b)

The scaling factors are chosen such that the dimensionless
p and h are O(1) over Q. The inverse scaling coordinate
transformation, 7' : R? — R?: (h, p) > (he,Pe), is
he = hy - h+ heo
Pe = Feo - exp(p/py)-

(2a)
(2b)

Polar Coordinate Transformation 7,

In the scaled (h, p) coordinates, define the polar coordi-
nate transformation 75 : R — R? : (p,h) ~ (r,0) as

r=+/h?+p? (3a)
0 = atan(p, h), (3b)

where atan(-,-) is the two-argument, four quadrant inverse
tangent function. The inverse polar coordinate transfor-
mation 7, ' : R = R?: (1,0) + (h, p) is
h=r-cos(0)
p =r-sin(6).

(4a)
(4b)

Saturation Curve Radial Distance Normalization 735

Figure 2 shows a domain Q on the (%, p) - plane, divided
into three regions: € is the two-phase region; Q; is out-
side the two phase region, and may include the liquid,
vapor and super-critical regions; and € is the saturation
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curve, which is the boundary between Q| and ;. De-
fine p,o to be a small value of p on the vapor side of the
saturation curve ) at or near the lower boundary of Q.
Consider a small value p;o of p on the liquid side of the
saturation curve, at or near the lower boundary of Q. A
precise value for p;o will be computed from p,o and the
choice of spline knots in the 6-direction below. Define
hyo and hjy to be the scaled enthalpies corresponding to
pro and pjo, respectively, on Q. This defines the points
(ho, pro) and (hyo, pio) on €. Express these points in po-
lar coordinates as

(r1,61) = Ta(hyo, pro) 5)

and
(rj+,0j+) = Tr(hyo, pio), (6)

where j* is defined below. Then the saturation curve be-
tween (hy0, pro) and (g, pjo), including the critical point
(he, pe), may be represented on the (h,p) plane in po-
lar coordinates as the image of (Agat, Psat) = T2_1 (rsat, 0),
where fo :R—R:0—r,is

Tsat = fsat(0) for 0 €[601,0]. @)

As shown in Figure 2, choose an extension of fy, on
the open interval (6;+,0; +27) so that the extended fqy is
periodic in @ and C"~! (continuous up to (n— 1)"* deriva-
tive) for all 8 € R, for some value of n > 0. (A value for
n is defined below as the degree of a spline.) Essentially,
this defines a closed curve (a loop) to be the image of the
extended f, that is the saturation curve for scaled pres-
sures larger than p, and pjo, and connects (hyjo, pjo) and
(0, pro) through the two-phase region.

The extended function f,(0) is approximated with a
periodic B-spline denoted fi,(6), which is fit to data on
Q; that is generated by a thermofluid property calcula-
tor such as REFPROP. Other functional representations,
such as NURBS, Fourier series or Chebychev polynomi-
als might also be used. Define

Oy ={6,...,0j,...,6y} )
to be a set of (periodic) knots in the 6-direction, and de-
note the corresponding i degree-n periodic B-spline basis
function as B; ,(0), 1 <i < N (de Boor, 1978; Piegl and
Tiller, 1995). Then

N
fsat(e) = chiBi,n(e)- )]
i=1

The coefficients c;; 1 < i < N are computed by solving
a least squares curve fit to data, as follows. First compute
a number Ny of pairs of values of (h, p) along the liquid
and vapor sides of the saturation curve from (%,9, p,o) and
(Mo, pio), respectively, up to but not including the critical
point (h, p.), using a thermofluid property calculator and
the transformations 7;. For many fluids the values of P,
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Figure 3. Periodic spline function r = fy, () for R410A.

and A, on the saturation curve near the critical point is dif-
ficult to compute and may be inaccurate, but the value of
P, and h, at the critical point may be computed accurately.
Add the calculated value of (h., p.) to the set of data from
the vapor and liquid saturation curves, giving Ny, + 1 data
pairs. This set is transformed into polar coordinates using
T, giving a set of data points (¢, 6;) for 1 <k < Nys+1,
and this set is used to solve a least squares curve fit prob-
lem to compute ¢, 1 <i < N.

Note that the set ®; need not be uniform, and we may
set j* = N, so that the saturation curve extension is de-
fined by a single spline interval. If the data set is accurate,
then ®; may be defined by the values of 6 in the data, so
that the spline function is interpolating between the data
points.

The third coordinate transformation 73 : RZ — R2? :
(r,0) — (7,0), which normalizes the distance between the
origin and € to a constant value of one, is defined as

r= r/fsat(e) (10a)
6=0, (10b)
with inverse 75 ' : R = R2: (7,0) + (1,0)
r="7fa(0) (11a)
6=20. (11b)

Polar Splines

The fluid property function p is approximated by a two-
dimensional spline function p of degree n defined in the
(7,0)-coordinates. Spline functions in dimensions higher
than one are conventionally constructed for Cartesian co-
ordinates, and the presence of the origin, where con-
ventional polar coordinates exhibit a singularity, requires
some care.

Knot Points

Referring to Figure 2, a set of knots ®,, is defined in the
O-direction around the full circle, such that the first knot
6, is coincident with the point (4,5, pr,) on the vapor side
of Q, knots are spaced in a counter-clockwise (positive)
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direction, and the set includes 8;«. Note that ®, need not
be the same as O, (8), used to represent fsat. Computations
are simplified if an even number of knots is used such that
that both 6; and 6; + 7 are in ©®,, simplifying consideration
of negative 7. The multiplicity of the knots depends on the
region and is discussed in the next section.
In the 7-direction, a set of knots
(12)

q)P = {_rm_rn—la-~-7_r1;07r17r27~~-armax}
is defined such that O and 1 are elements, and n negative
values are included to create some overlap at the origin.
The multiplicity of the knots at 7 = 1, corresponding €,
is n so along € in the 7-direction, the spline function is
Co but not C;. All other knots have multiplicity 1 so that
the spline function is C" between any of the knots, C"~! at

any of the knots not on Q.
Indexing

Indexing of B-spline functions in polar coordinates is
more complex than for Cartesian coordinates. For the 7-
direction, denote the set of integers that index the spline
basis as

I ={iel:1<i<inx}, (13)

where ipax is the number of spline basis functions. Let
isp € Z denote the index for 7 = 1, and decompose ¥
into

I = {isp} (14a)
={ie I i>ip} (14b)
={ie S i<ip}, (14¢)

so that ., contains the basis indices in the 7-direction on
Q,, .7, contains the basis indices in the 7-direction outside
of Q; (region Q1), and .#, contains the basis indices in the
7-direction inside of € (region £2;).

In the O-direction, the number of basis functions de-
pends on the fluid state region, shown in Figure 4, mak-
ing the B-spline indexing dependent on the region. In the
two-phase region Q,, the B-spline basis functions in the 6
direction are periodic, defined for all values of 6, and all
of the knots are multiplicity one. Then the set of integers
that index the spline basis in the -direction in region Q;
is

S ={jel:1<i< jmax} (15)

where jmax is the number of elements of ®p

On the saturation curve, the density p is smooth as a
function of 6 except at the points 8; and 6 i where there
is a transition between the actual saturation curve and the
extended saturation curve, p is Cp but not C in the 6 di-
rection, so the multiplicity of knots at 6, and 9 « 1s n. This
leads to a different number of B-spline basis functions in
the @ direction for Q; compared to ,, requiring a differ-
ent indexing. The set of integers that index the B-spline
basis in the 8-direction in region € is

Js={j€l:1<i< jmx+2(n—1)}.  (16)
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Figure 4. Domain Q in normalized polar coordinates, show-
ing the saturation curve ; (red) the saturation curve extension
( ), the two-phase region €, and single-phase region ;.

As illustrated in Figure 4, p in the region Q; is the par-
tial annular set (1,7max] % [01,0;+]. For many thermofluid
systems of interest, the fluid property p for values of P,
and A, corresponding to the region below the extended sat-
uration curve, between the limits 6 i+ and 0y, is outside the
region of interest and is therefore excluded from Q.

Since the region Q; is only partially annular, the B-
spline functions in the @ direction are Cartesian and not
periodic in 6. The set of integers that index the spline
basis functions in the -direction in region Q; is

J1={1<j<j —1+n}

Normalized Polar Spline Functions

A7)

The normalized polar spline function p is
Z Z cijB jDi, n é)
i€ je 7

Q)

+Z ZCU zn

167316/3

Qg

+Z chjli’l (

i€ je N

p(7,0) =

F)B;n(6)

D

) (18)

Q

where B;,(7) and B;,(0) are n-degree B-spline basis
functions defined by knot sets ®, and ©,, respectively,
and c;; are spline coefficients that are computed by solv-
ing a constrained least squares or equivalent curve fitting
algorithm. Note that although the knot sets are identical
for each region, the multiplicities differ, so the Bj,(-) are
different in each region.

Coefficient Calculation

Values for the coefficients ¢;; in (18) are computed by
solving a constrained least squares problem using a ref-
erence property calculator such as REFPROP. First, note
that for values of (7,0) € Q,

7,0)= Z CigyBin(0)

JESs

19)
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This is because all of the B-spline basis functions in the
7-direction vanish on €, except for those corresponding
to index isp, which is identically 1 for 7 = 1. This makes
the contributions from the Q; and Q; terms in (18) to be
zero for (7,0) € Q.

The coefficients c;; for the Q; term in equation (18) are
computed first using equation (19). For each value of éj
from a data set ; = {éj : 1 < j <Ny}, where Ny is any in-
teger greater or equal to the number of coefficients in (19)
and 0 ; suitable sample €, p; is computed on the extended
saturation curve using a thermofluid property calculator
such as REFPROP. Then equation (19) may be solved for
¢ig, by solving a least squares or similar curve fit problem.

Once the coefficients c¢;; are computed for the saturation
curve g, then equation (18) decomposes into two decou-
pled equations

Y Y cibi(R)pi(6) =

icIs je I

p(7,0)— DD IRAGLAC)

i€ je 7

Q Q)

(20)
for the two-phase region Q,, and

Y, Y cbi(Pb}(6)=

ie ;s je fs

p(F,0)— Y Y b (AY(6)

ic€d je 71

Q Q

21
for the region Q. Note that the terms on the left-hand
sides of (20) and (21) labeled Q; may be assigned a nu-
merical value given a value for (7,0). For each element
of asetof data Z, = {(F;,0;) : 1 <i<Np, 1 < j<M}
over the region Q,, where 7; and éj suitably sample €,
and N, and M, are sufficiently large, values of p;; are
computed using a thermofluid property calculator such as
REFPROP. These values are substituted for p in equa-
tions (20), defining an constrained least squares problem,
which is solved for the unknown coefficients c;;. The con-
straint arises because for coefficients near the origin, c;;
for positive 7; and 6; is identical to the coefficient c;; for
negative 7; and 6; + m. This is repeated for a set of data
D ={(7,6;) : 1 <i<N; 1< j<M} over the region
Q1. where 7; and 6; suitably sample Q.

Derivative Evaluation

Derivatives of p with respect to the (7,8) variables may
computed using efficient algorithms (de Boor, 1978; Piegl
and Tiller, 1995), and add marginal overhead to the com-
putational cost of evaluation of the B-spline function p at a
given (7, 6). These derivative calculations are exact; there
is no numerical differentiation. The derivatives of p with
respect to the two input fluid property variables &, and P,
are computed with the Jacobian of T, denoted DT,

3 ap =
i dr I
@ |=DT-| § |=DI3-DI-DT1-| {f |,
dF. de a9

(22)



where DTy, DT> and DT; are the Jacobians of 77, 75 and
T3, respectively.

At the origin, derivatives of p with respect to the en-
gineering coordinates /s, and P, are well defined and are
evaluated by computing derivatives of p with respect to 7
evaluated at (7,0) = (0,0) and (7,0) = (0,7/2), respec-
tively, and then by using elements of DT}, DT> and DT; to
transform back to engineering units:

’ =— 23a
an, 1 = G (232)
ap ap 1

png =L g D (23b)
8Pe he=hgg OF ' 6=n/2 f(ﬂ,'/Z) P,y

This calculation is well-defined because the domain of the
spline in the 7 direction was extended to include negative
values of 7, and also because of the structures of Ty, T3
and 73 make some of the off-diagonal terms in the Jaco-
bians zero. Higher derivatives with respect to /. and P,
are computed similarly.

3 Parabolic Coordinates

Normalized parabolic coordinates are similar to normal-
ized polar coordinates, defined by the composition of three
coordinate transformations, 7' = T3 o T o Ty, reusing nota-
tion from Section 2. T is the same, but here 7> defines
parabolic instead of polar coordinates.

Parabolic Coordinate Transformation 75

In the scaled (h, p) coordinates, define the parabolic co-
ordinate transformation 75 : R> — R?: (p,h) — (0,7) as

o =sign(h)-\/Vh +p?—p (24a)
=P 4p (24b)

with inverse T[l :R? 5 R?: (0,17) ~ (h,p)
h=0-1 (25a)
p=(1*—0c?))2. (25b)

Figure 5 shows constant contours of ¢ and 7 on the (h, p)-
plane, along with the saturation curve for R410A for ref-
erence.

Saturation Curve 7-Distance Normalization 73

The third coordinate transformation T3 : RZ — RZ :
(0,7) — (6,7) normalizes the saturation curve to be the
locus T = 1, and is defined as

6=0 (26a)

t =1/ fs(0), (26b)
with inverse T;l ‘R? »R?:(6,7) — (0,1)

c=60 (27a)

T=7 fiu(5), (27b)
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P Constant o contours | I [/
= Constant 7 contours | |

X Saturation Curve Data =1 [

= Saturation Spline Curve

Figure 5. Constant contours of & (blue) and 7 (red), on the
(h, p)-plane. Also shown is the saturation curve represented as a
spline function (purple), fit to saturation curve data ().

15 - -0.5 0 05 1 15

o
Figure 6. Saturation curve defined as the spline function 7 =
Jsat(0) for R410A. Note the gap in data around the critical point.

where T = fy(G) denotes an approximation to T =
fsat(0), which defines the saturation curve in 7 as a func-
tion of o. Just as for polar coordinates, we use a property
calculator to compute pairs of values for 7 and ¢ on the
saturation curve, using 77 and 7>, and then fit a spline to
the data to give the approximation 7 = fi(G), as shown
in Figure 6 for R410A.

Normalized Parabolic Spline Functions

The density function p is realized as a 2-dimensional n-
degree B-spline function in (G, T) coordinates,

ZZC:J in

i=1j=

p(6,7) = )Bjn(7), (28)

defined on the rectangular domain [—Gmax, Omax] X
[0, Tmax), which defines Q = Q;JQ,JQ,. Figure 7
shows the domain in the (6,7) coordinates, and its pull
back into the (%, p) coordinates, for R410A.

Parabolic coordinates exhibit two characteristics that at
first seem to be obstacles but with some thought present no
problems. First, there is an apparent singularity along the
p-axis (h = 0), where T = 0 along the negative p axis, and
where ¢ = 0 along the positive p axis. Along a constant &
contour, the sign of ¢ changes discontinuously from posi-
tive in the right half plane to negative in the left half plane

10.3384/ECP20721

DOI



DOl

Taiss Frerterttteterettettbtrsatetsttits

D

= S T
—Omax 0 Tmax
Connected

Figure 7. Q,, Q,, Q; and their boundaries in (4, p) coordinates
(left) and (6, T) coordinates (right) for R410A.

at the p axis. This is caused by the sign(4) used to define
o in (24). Second, the boundary of Q seems to have a dif-
ferent number of edges when represented in (&,7) coor-
dinates, compared to (4, p) coordinates. Indeed, the rect-
angular region in (0, T), with four boundary edges, maps
to a region in (h, p) coordinates that is bounded by two
parabolas, as shown in Figures 5 and 7.

Fortunately these characteristics do not present any ob-
sticles. Figure 7 shows how the rectangular domain Q in
(6,7) coordinates maps back to (h, p) coordinates, with
the boundaries shown in color. The two vertical bound-
aries along —Gmax and Gpax map to the lower boundary of
Q in (h, p), while the lower boundary 7 = 0 is in fact not
a boundary at all. Points on the positive &-axis are con-
nected to points on the negative &-axis, so that p(&,0)
is equivalent to p(—6&,0), for 0 < & < Opax- The T=10
axis is equivalent to the negative p axis, which is inside
Q. Therefore, when defining a spline function p on Q, we
simply need to ensure that coefficients are constrained so
that the spline function is connected across the T = 0 axis.
This ensures that the spline p and its first n — 1 deriva-
tives are continuous across T = 0, and are well defined
for all points in Q J€;. This is precisely how the spline
coefficients were computed for polar coordinates around
the origin (by extending 7 to be negative, and then con-
straining coefficients for positive and negative 7 to ensure
continuity at 0) except for parabolic coordinates, it must
be done across the entire 7 axis.

Knot indexing is simplified compared to polar coordi-
nates. In the T-direction, knots are spaced from 0 to Ty,
with a knot of multiplicity n placed at 1, which is the sat-
uration curve in (6,7) coordinates. All other knots are
multiplicity 1. In the &-direction, knots are spaced from
—Omax 10 Omax, all of multiplicity 1. This defines the
degree-n B-spline basis functions B;, and B;, in the &
and 7 directions, respectively.

4 Discussion

Both methods are computationally efficient. The calcula-
tion of T in polar coordinates requires 11 floating point
operations, compared to 14 for the equivalent calculation
in parabolic coordinates. Only one floating point division
is needed, but if fsztl is approximated by a spline instead
of fuai, then that division becomes a multiplication. Ad-
ditionally, both methods require one 1-d spline function
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Figure 8. log(p) for R410A in (&, T)-coordinates.

evaluation of fi, plus evaluation of the 2-d spline func-
tion p. Spline derivatives are computed essentially for free
and pulled back into the (P,, k. ) coordinates using DT

Polar coordinates have the advantage of familiarity and
simplicity in terms of domain boundaries. Computing
derivatives at the origin is not ill-posed because the spline
is defined for some range of negative 7, and the derivatives
are computed in the (P, h,) coordinates using elements of
DT that are all well defined at the origin.

There are some disadvantages to polar coordinates. In-
dexing is complex. The extended saturation curve is
clumsy, and the spline function p near the point (%9, pjo)
can fit data poorly because of the large change in deriva-
tive near this point in the § direction. Despite their un-
familiarity, parabolic coordinates seem more natural once
their peculiarities are mastered, as these issues are avoided
entirely. One issue with parabolic coordinates is that the
domain Q is “warped” by 73. In particular, the vapor re-
gion to the right of the saturation curve may be insuffi-
ciently covered using a rectangular domain in (&,7) co-
ordinates. This is apparent in Figure 7. One solution is
to make use of a non-rectangular domain, extending 7 for
positive values of G.

It should be emphasized that the spline functions fyy
and p (and its derivatives) should be used consistently
and exclusively in any simulation model. These in effect
become the definitions of the saturation curve and fluid
property function, even though they are spline approxima-
tions of a data set, which is in turn was computed from a
Helmbholtz energy function, which itself is defined to be
the reference standard, but is in reality a curve fit to exper-
imental data. It is important not to mix different represen-
tations of the saturation curve or fluid property functions
in the same model, because even slight differences, espe-
cially near the saturation curve, can result in significant
differences (or even failures) in simulation results.

For some properties, especially density p, we have no-
ticed that a 2-dimensional spline fit to log p, (or, more rig-
orously, log(p/po) for some constant density pp) instead



of p, reduces approximation error, especially near the sat-
uration curve, at the expense of one additional exponen-
tial computation during evaluation. A rendering of log(p)
on Q in (&, T)-coordinates for R410A is shown in Figure
8. The log reduces the magnitude of the first and second
derivatives near the saturation curve, reducing approxima-
tion error. We have observed similar behavior for polar
coordinates. However we offer no formal proof of this
statement.

In practice, significant attention must be paid to data
cleaning. Values for p, P and & computed by REFPROP,
for example, may exhibit small errors that can adversely
affect the curve fitting computation. This is especially true
for mixtures such as R454C. Errors are caused by finite,
nonzero iteration termination conditions in REFPROP’s
code, or sometimes by failures to converge, and are es-
pecially apparent around the saturation curve at high pres-
sures, although other regions can also exhibit errors. A
full discussion may be found in (Laughman et al., 2024).

There is little performance gain to be had by imple-
menting these functions directly in Modelica, since the
Modelica compiler will translate it into C anyway, and
that code is unlikely to be more efficient than the relatively
simple, hand coded function. However, one potential per-
formance improvement is largely unexploited: derivative
evaluation can be done largely for free when evaluating p.
Unfortunately the Modelica compiler does not know that,
so it may evaluate the function multiple times to compute
p and its derivatives. Perhaps there is a way to prevent this
behavior in Modelica?

Finally, we speculate that the fluid property coefficients,
and the 2-dimensional spline function evaluations, could
be implemented in integer arithmetic. Although this is not
likely to improve numerical efficiency by a large margin in
a modern superscalar architecture, it would reduce mem-
ory storage requirements. This in turn could reduce simu-
lation time because of improved cache efficiency.

5 Conclusion

This paper presents two methods for computing fluid
property functions in simulation models. Both make use
of coordinate transformations that align one coordinate
with the saturation curve. This provides for precise rep-
resentation of the fluid property function at the saturation
curve, and for connected domains of interest including the
liquid, vapor, supercritical and two-phase regions. Both
approaches make use of spline function approximation in
these special coordinates, and are numerically efficient,
well conditioned, and allow for efficient calculation of
derivatives up to any desired order that are precise up to
processor numerical tolerance.
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Abstract

This article proposes a method for improved model ver-
ification within Large-Scale Simulators (LSS). The ap-
proach relies on machine-interoperable traceability of
model verification information, such as model Operational
Domains (ODs). This enables automated evaluation of
model relevance and facilitates the combination of mod-
els for a broader evaluation of credible simulation re-
sults. The paper introduces a proof-of-concept testbed for
verification of black-box models against model require-
ments. Furthermore, the results also include a proposal
for a machine-readable format to capture model require-
ment Verification & Validation (V&V) results, along with
the resulting model and updated model OD information.
Keywords:  Verification and Validation, Operational
Domain, Large-Scale Simulators (LSS), Machine-
Interoperable  Traceability, ~Model Reuse, Model
Exploration, Simulation Credibility, FMI, SSP, SSP
Traceability

1 Introduction

In the area of modeling and simulation, the primary chal-
lenges no longer concern whether something can be sim-
ulated or not but rather if the results are credible and can
be utilized as intended. Many different factors influence
whether the results can be used for a specific purpose
or not, several of them exemplified by NASA STD-7009
(2008):

¢ Are models validated for the scenario simulated?

* Does the model fidelity correspond to what is re-
quired by the intended use of the results?

* Are aggregation effects between interacting models
sufficiently accounted for?

For a user to make credible decisions based on simulation
results, all questions above, and many more, must be
answered to the rigor required purpose. When scaling
from a scenario where the model designer is making
decisions based on simulation results, to a use-case
where the simulator end-user has minimal knowledge of
the simulated models, additional information needs to
be transferred along with the model for the user to be
able to draw conclusions regarding the credibility of the
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test results. Increased simulator complexity or model
complexity increases the need for this knowledge transfer.
Simulator complexity is in this context seen to be dictated
by factors that increase the number of support functions
needed for a simulation to execute; such as functions
that enable the mixing of Software-in-the-loop (SIL) and
Hardware-in-the-loop (HIL) or distributing computations
over multiple computers.

How this additional information is to be transferred is
situation-dependent, for smaller projects or Modeling
& Simulation (M&S) activities it could be enough to
discuss model requirements between the user and model
designer. For LSS (Andersson 2012; Steinkellner 2011),
the number of models and support systems makes the
amount of knowledge needed to evaluate if results are
credible almost impossible for a single user to manually
ingest in a reasonable time frame. Thus solutions to
automate this workflow are required (Hillgvist 2023).
This creates additional demands on the model designer
and many model requirements that previously were
implicit now need to be explicit and verified in a traceable
way. Examples of model characteristics that typically
fall into this category are related to runtime performance,
numerical errors, or end-use not captured in the original
model specification. The gain of explicitly expressing
these requirements, and imposing a standard for how the
information is relayed, is seen as an enabler in further
scaling of LSS.

In short, LSS imposes an increased need for standardized
knowledge transfer and evaluation of model intended uses.
Enabling this effectively is stipulated to minimize the need
for users to possess detailed knowledge of all constituent
models and their respective implementations. This would
allow extended simulator utilization and increase the cred-
ibility of decisions based on simulator results. The goal
of this work is to propose a machine-interoperable way
of providing model requirement verification information.
This goal is expressed in the following research questions,

RQ: How can information regarding model ver-
ification activities be communicated in a tool-
independent way to enable model evaluation in a LSS
environment?



1.1 Contributions

The work includes the development, evaluation, and
demonstration of a proof of concept testbed that provides
a structured way of verifying black-box models against
requirements. This testbed enables the verification of
legacy models where knowledge of the model’s intended
use and model requirements are documented according to
the traditional document-centric paradigm; any improve-
ments on this topic are highly desirable in organizations
with a large knowledge capital expressed in legacy mod-
els. The testbed verification results are documented in
a machine-readable format, based on Extensible Markup
Language (XML). The proposed format provides a con-
tainer for mediating information regarding model verifi-
cation results that enable automated reasoning on how
models can be combined without implicit compromises
of credibility. Integrating this information into the model
enhances availability and traceability, while also demon-
strating an industry-relevant application of the SSP Trace-
ability (Modelica Association 2022) format Simulation
Resource Meta Data (SRMD). The proposed structure is
thought to initiate a discussion on the establishment of an
end-user standardized layer on top of SRMD, capturing
what meta-data is relevant to encapsulate together with a
model or set of coupled models.

1.2 Research Method

The utilized research method is built on the estab-
lished method, "Industry-as-laboratory" proposed by Potts
(1993), where the industry provides the questions and then
acts as a base for conducting experiments. The goal is
to enable the study of real-world problems in a scientific
manner. The method has since been further refined by
Muller (2020) and has previously been applied success-
fully within the field of aeronautical engineering, see for
example Eek, Hillgvist, et al. (2016) and Oprea (2022).

2 Theoretical Background

2.1 Verification and Validation

There have been many attempts in both academia and in-
dustry to clarify the difference between model verifica-
tion and model validation (Wang et al. 2019); however,
should we strive to separate the two different sets of ac-
tivities? Model verification is popularly defined as the
quest to answer the question of whether the model is built
“right” whereas validation is the quest to answer the ques-
tion of whether the right model has been built (Osman
Balci 1997). In other words, verification concerns a “qual-
ity control” on conducted model transformations typically
associated with the identification of “bugs” in the imple-
mentation. In contrast, validation concerns ensuring that
the model is fit for its purpose. So, model validity needs
to be assessed with respect to the purpose of the model.
Verification does not. However, transforming model re-
quirements into a model is a transformation that needs to
be verified, just as the transformation from source code to
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an executable model that can be integrated in a simulator.
In that sense, the modeling begins with the requirements.
Any model purpose is therefore ideally expressed explic-
itly in the form of requirements to, among other things,
simplify the model development (Hillqvist 2023). Exam-
ples of such functional requirements are shown in Enu-
meration 1.

Enumeration 1. Functional requirements of a model.

1. The model predicting the ambient air temperature
shall predict the temperature with 95% accuracy,
concerning the corresponding physical system, in its
complete input space, see Section 2.3.

2. The model predicting the ambient air shall relate the
model inputs altitude and speed to its response quan-
tity in an International Standard Atmosphere (ISA)
(ISO 2533 1975) atmosphere.

These two requirements can act as a solid foundation
to a model development process (Carlsson et al. 2012).
Transforming model requirements into a mathematical
model should be accompanied by verification activities.
Such verification activities can be done without any
subjective judgment; however, they cannot be concluded
until a 95% accuracy in the model response quantity,
according to requirement one in Enumeration 1, can be
guaranteed with sufficient probability to deem the risk of
concluding the activities as acceptable. In early phases,
this can be achieved through, for example, Uncertainty
Quantification (UQ) (Riedmaier et al. 2020) techniques.

In later phases the accuracy can be accessed through com-
parisons against in-situ measurements (Beisbart and Saam
2019; Sargent 2010), accompanied by UQ analysis if
deemed necessary. Once this point has been reached, there
is no need to initiate any activities denoted as "valida-
tion"; As the model has been deemed to fulfill its specified
purpose (the two requirements). With this line of reason-
ing, model validation is a subset of verification concerning
only the verification of requirements that are implicit or
require subjective judgment. These types of requirements
are, as pointed out earlier, undesirable. Consequently, we
should strive towards declaring an intended use free from
implicit requirements and remove the need for model val-
idation.

2.2 Intended Uses

Expressing explicit modeling requirements with verifica-
tion criteria is a challenging task that requires substantial
research. Murray-Smith (2019) emphasizes how impor-
tant it is for a user to be aware of model limitations and
accuracy for all of its intended use and that formal testing
is often lacking during model development. Methods
and tools to aid engineers in this process are essential.
Haillgvist (2023) partitioning model purposes into two
different categories: coarse-grained intended-uses and
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fine-grained intended-uses:

A coarse-grained intended use qualitatively expresses the
purpose of a M&S application in some format, formal or
natural language, with a clear connection to, if needed
for acceptance, one or more fine-grained intended uses.

A fine-grained intended use quantitatively expresses the
purpose of a M&S application in a formal format, with
a mathematical connection to one or more validation
or predictive capability metrics, predictive capability
defining a notion of capturing model representativeness.

To concretize requirements as fine-grained intended uses
and to utilize these as foundation during verification is
to provide increased traceability during the model design
process. Correlations can be made towards Test-driven de-
velopment (TDD) and maybe even more so towards Ac-
ceptance test—driven development (ATDD) where accep-
tance tests are written before feature development. As
described by Martin and Melnik, this allows the designer
to analyze the requirements, in a structured way, and to
evaluate how they can be translated into tests (Martin and
Melnik 2008). Verifying this translation should be done
by both the architect and model designer to ensure that
requirements are interpreted correctly and test cases cover
all intended uses (Pugh 2010). Expressing a requirement
as a test can be one of the most effective ways to verify its
’completeness and accuracy’ and the process can be uti-
lized to weed out implicit or ambiguous requirements thus
reducing the risk of not *designing the model right’.

2.3 Operational Domains

The work on concretizing model ODs is viewed as an
essential part of expressing fine-grained intended uses. A
model OD is viewed as an enclosed n-dimensional volume
representing the model’s feasible input space. A sought,
or required, model OD could be seen as an outcome of
the model specification activity. The modeler then has
a challenge in realizing or identifying existing models
capturing, selected aspects of the physical system to be
modeled. Three such ODs are schematically visualized
in Figure 1. The OD denoted ODyjoqe1 3 Schematically
represents the feasible input space of an existing legacy
model of the System of Interest (Sol). The, by the M&S
task, required model OD is visualized as ODpode1 A- A
first verification activity could encompass the evaluation
and comparison of ODpoge1 o and ODpjode1 B; Where
ODhodel B can have been deduced analytically or empiri-
cally. This verification will concern iterative negotiations,
between the model end-users and developer, regarding
the overlapping regions of ODpgode1 o4 @and ODyjogel B tO
deduce if the developed model is fit for purpose.

A frequently used representation of the n-dimensional

volume representing the OD has been that of an n-
dimensional hypercube constrained by the minimum and
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Figure 1. Schematic description of two-dimensional ODs:

ODg,; represents the system of interest input space, and
OD\oder i the OD of two different models representing differ-
ent parts of the system of interest input space.
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Figure 2. Verification samples mapping input space towards
passed or failed evaluations.

maximum value of each input variable (FMI development
group 2022). A hypercube representation may in cer-
tain cases result in a loss of information regarding how
a model can be used, see Figure 2 where any attempt to
limit the OD to a rectangular domain will reduce the rep-
resentation of the OD with respect to the actual capabil-
ity of the model. Both Roy and Oberkampf (2011) and
Hallgvist, Eek, et al. (2023) utilize n-dimensional convex
hulls to represent ODs; however, they are still models of
the domain and suffer from the same problems that any
model representation incurs, mainly, ’is it good enough?’
Nonetheless, this approach enables transferring a more nu-
anced picture of the actual domain at the cost of simplic-
ity." The documented use, in the context of the presented
research, has focused on creating and utilizing hulls for
verification, but not on how it can be stored for further
reuse downstream in the M&S chain.
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2.3.1 Delimitations

Multiple solutions for passing information regarding ver-
ification results exist, the most straightforward one is to
provide the coordinates of all the tests. This leaves the
full responsibility of interpreting the verification results to
the end-user. In certain situations, this may be preferred
but in LSS this is not an option due to the broad user base
and extensive quantities of packaged information. In the
end, the choice should be the least complex solution that
encapsulates sufficient information to express the model
requirement. For example, whilst potentially providing a
higher fidelity representation of a model OD, a concave
hull is more complex to construct and utilize than a con-
vex hull. Where a set of points can only have one solution
in a convex volume, the number of solutions in a concave
hull grows rapidly with the number of points (Asaeedi,
Didehvar, and Mohades 2014). Other solutions such as
clustering algorithms to map the OD into smaller regions
of hypercubes, hyperspheres or hulls may provide a more
detailed representation, but the choice of clustering algo-
rithm must then be taken into account leading to increased
complexity. We will acknowledge the existence of other
solutions and limit the scope to the shape of the transfer-
able n-dimensional volume as a convex hull or one of its
simpler representations such as the hypercube, since the
shape itself is not vital in establishing the methodology
around its transfer and it has been utilized in a similar con-
text in related research.

2.4 Model reuse and Traceability

Many of the aspects of model reuse can be correlated to
the Findable, Accessible, Interoperable, Reusable (FAIR)
principles (Wilkinson et al. 2016) and their role in en-
abling increased reuse of datasets or, to some extent, Long
term archiving and retrieval (LOTAR) (Coic et al. 2021) in
its goal to provide a common standard for geometry data.
All aspects of FAIR are needed as enablers for credible
model reuse. The Functional Mock-up Interface (FMI)
(FMI development group 2019) and System Structure and
Parameterization (SSP) standards (Modelica Association
Project System Structure and Parameterization 2019)
enable some of the FAIR principles by providing common
interfaces and data structures, enabling model reuse over
a multitude of tools and simulation purposes. However,
they do not capture all aspects concerning the Findable
principle of FAIR. While there are mechanisms to convey
information concerning units and permissible input ranges
for models or systems, more comprehensive information
of intended use is not supported in a structured way as of
now (FMI development group 2022).

A model expressed in the form y, = F(¥,%_1,...,X0),
often referred to as a computational model (P. Fritzson
2004; Ljung and Glad 2004), adds something that static
data does not; a data conversion or a predictive capability
(Beisbart and Saam 2019). This creates an additional
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requirement that FAIR does not encompass, traceability
when it comes to results. Within the healthcare sector,
Erdemir et al. (2020) states that having the ability to as-
sociate results to input data and model version is "critical
for accurate interpretation, repeatability, reproducibility,
and debugging of the simulation predictions". There is no
reason that this should not be true for the field of complex
product development.

The area of storing and reusing engineering knowl-
edge has been under intensive research for a long time
(Robinson et al. 2004; Sivard 2001) and according to
Pokojski, Knap, and Skotnicki (2021) any knowledge
from subject matter experts that can be stored and reused
will be beneficiary. Traceability between the executable
model and the founding model requirements is one of
the cornerstones when it comes to model use; any use
of a model in a context where it can not be proved
to be credible is by definition not credible (O. Balci
and Ormsby 2000). A multitude of standards dictate
how requirements are to be traced through a product
life-cycle, e.g. ISO 26262 (2018), DO-178C (2012),
NASA STD-7009 (2008) or MIL-STD-3022 (2008). Since
models and the resulting data often are not part of the
end-product they can sometimes be exempted from
mentioned standards. However, lacking such information
traceability can impede the possibility of model reuse. It
additionally restricts the utilization of models employed
in product verification (Oprea 2022; Hallqvist 2023) or
where models are included in the end-product, such as
pilot training simulators (Gripen Mission Trainers 2024).
Transparency and traceability of any data underlying
decisions and a formal testing process increase the
credibility of models greatly (Murray-Smith 2019).

Increasing utilization of simulation results in the prod-
uct development process prompts harsher requirements
regarding the traceability of models and simulation re-
sults (Level 2024). This is the reason for introducing
the "Credible Simulation Process Framework" within the
Simulation-based Engineering and Testing of Automated
Driving (SET Level) project (Level 2024). The process is
a base for the SSP Traceability standard (Modelica Asso-
ciation 2022).

2.4.1 Delimitations

To convey model ODs, the SRMD container of the SSP
Traceability is selected as an initial bearer. Its intent de-
fined as “SRMD files are used to define essential metadata
for resources that can help users quickly understand the
content and intent of a simulation” (Modelica Association
Project System Structure and Parameterization 2019) goes
well in line with the intent to store information regarding
intended use. The format sets few boundaries to what can
be stored within the container and it provides large free-
dom in how the resulting OD can be expressed. When
looking at information abstraction levels, SSP is more at-
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Figure 3. Different methods used for model Operational Domain (OD) exploration.

tuned to system-level information, and FMI is closer to the
model level. In some cases, it would be more fitting to uti-
lize a layered FMI standard to convey the OD. This does
however pose a limitation in usage, that the information
can only be conveyed on a model level and not on a sys-
tem level. To remedy this, and get access to both model
and system standards, a simple solution of incorporating
standalone models in a SSP is proposed. A single model
can be viewed as a system and can easily be incorporated
within a SSP container to get access to both FMI and SSP
layered standards. It is possible to do the opposite but not
without a loss of flexibility regarding the inner workings
of the SSP and then only layered standards of FMI would
be available.

2.5 Exploration

The primary method of model exploration involves ex-
posing the model to various scenarios and evaluating the
outcomes. Model exploration allows the model designer
to verify the model against requirements, whether for
new model design or model reuse. Many models are
developed for, and subjected to, use where the quantities
of interests are time-dependent, this is in contrast to sce-
narios performed under steady-state operating conditions.
When synthesizing simulation scenarios the former will
hence be referred to as dynamic scenarios and the latter as
steady-state scenarios. The underlying purpose of model
exploration utilized for verification differs somewhat
from Design Space Exploration (DSE) or Hyperparameter
Optimization (HPO); while the latter aims to find global
extrema in the form of an optimal design, the former seeks
to continuously increase the understanding of specific
model behavior, often measured by a coverage metric
(Atamturktur, Hemez, et al. 2009).

To empirically verify the model OD, various established
methods in DSE and HPO are considered viable alter-
natives for model exploration. These methods include
random search, where values for each input variable
are randomly sampled from a uniform distribution (see
Figure 3b). In contrast, grid search systematically maps
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the entire input domain with evenly distributed points in a
grid (see Figure 3a). Lastly, Bayesian search iteratively
evaluates previous simulations to identify and further ex-
plore areas of interest (see Figure 4). This is often done by
comparing the resulting coverage for new potential points.

According to Feurer and Hutter (2019), black-box meth-
ods such as random search and grid search suffer from
the curse of dimensionality and can take a long time to
search a multidimensional volume compared to guided
search methods like Bayesian search. However, both ran-
dom search and grid search are simple and straightforward
in their implementation, requiring minimal tuning com-
pared to Bayesian algorithms. Comparing random search
to grid search, in x explorations, random search will eval-
uate x different values, whereas grid search will only ex-
plore x!'/" different values since each row corresponds to
the same exploration value (Feurer and Hutter 2019). For
input combinations with low correlation, this can result in
simulations that do not contribute new information. Ran-
dom search, unlike grid search, is also an embarrassingly
parallel algorithm (Herlihy and Shavit 2012), making it
highly parallelizable with minimal overhead.

2.5.1 Delimitations

For this study, only steady-state scenarios will be used.
These scenarios are considered complex enough to
yield useful results while allowing for straightforward
evaluation. However, future research may benefit from
expressing coarse-grained intended use as use-cases,
as proposed by Andersson and Carlsson (2012), to
deduce dynamic scenarios and create variations used for
verification.

Two different exploration methods are selected to verify
the model OD: Random search and Grid search, primarily
due to their ease of use. The assessment of coverage based
on different metrics, as summarized by Atamturktur, Ege-
berg, et al. (2015), is also omitted from this study.
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Figure 4. Bayesian search, placement of test coordinate depend-
ing on previous evaluations.

ECS_HW:ECS_H)

At: Real [1],

Mach: Real [1],

conamerFecdn: Real[1] s,

ecdm : Real 1] _<SsdCor

eedp: Real[1] _ <SsiComex

eedp: Red (1]

Real[1]

Real [1]__

L consumerF exd X[1): Real (1]

<SsiComecions consumerFesd X[1]-Real[1].

1 consumerF eed.X(2]: Real (1] «

erFeed X(2): Real[1]_

1 consumerf eed X[3] - Real (1]«

erFeed (3] Real [1)

I consumerRethn : Red (1] «SsiCor

umerRet b Real [1]

' conaumefetn Realt] <o

Resl[1]

consumerRetm : Real [1]-

Real 1]

Real[1]

Real [1]

L consumenmet (1) Rea (1)

«SsiComectons RetX[1):Resi[1].

- conumenRet X(2) : Red (1]

eSeiComecions _conaumerRet X{2):Reai 1)

«SiComnectons _ consumerRet X(3) : Real [1}.

L Tamb : Reai[1]

Pamb: Real[1}.
Tamb: Real (1],

L texTout: Resll1] sgacemections

A Real[1]

L Mach: Real 1]

L heatlosd: Real (1)

L dietTemp :Real [t

L inletTemp : Resi (1]

-
& Reall] s LIS P P ey e—— T
T | «SsdConnections Pamb - Real 1], oy Ma: Real[1]
pock: Reall) —
ECS_SW: OpensW [ " et Reoi 1}, it sdpdoriiE

L Input Arcrat_State: String [1] 1 AircratState : Real [1]

o Ssconnedions
‘SWsignals Aparat St - Integer (1],

T TUoua: Real ) seaconmectons [ Lo 1

Figure 5. Application example architecture expressed as a
SysML block diagram.

3 Application example

The application example simulator used in this study
is a virtual reference system, originally developed in
the EMBrACE project (ITEA 3 2019). This system is
based on publicly available data regarding the modeled
constituent sub-systems (Schminder et al. 2018; Hillqvist,
Schminder, et al. 2018), and it offers a level of complexity
and requirements similar to those encountered during the
preliminary and detailed design of aircraft subsystems
at Saab Aeronautics. The application example consists
of a simple heat sink to consumer loop, including an
Environmental Control System (ECS) and its controlling
software, as illustrated in Figure 5. This system aligns
well with the scope of the study and it provides oppor-
tunities to evaluate the use-case specified in Section 4.
An initial OD volume is derived from the sub-system
requirements. The OD is a subset of the full input space
to increase results visibility; here limited to two input
variables, altitude and mach. Other inputs are fixed to a
specified value in collaboration with the model designer.

Two of the models in the application example architecture
are chosen for this study: the ECS model and the model
representing a generic consumer of cooling power. The
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inner workings of these two different models have been
described in detail by Hillqvist, Munjulury, et al. (VI). In
short, however, the ECS model includes both a traditional,
bleed-driven, cooling system as well as a coolant distri-
bution system. The coolant distribution system exploits
a liquid coolant to transport heat from the consumer to a
heat sink utilizing a modeled pump, a heat exchanger, and
piping components all modeled using Modelica Standard
Library (MSL), initially presented by Pop and P. A. Fritz-
son (2004), and the Saab in-house Modelica Fluid Light
(MFL) (Eek, Gavel, and Olvander 2017) Modelica library.
The consumer model coupled to the ECS model is also
modeled using components from the same Modelica li-
braries. However, the aircraft sub-systems that the mod-
els represent are typically developed by different organiza-
tions at Saab which motivates the co-simulation approach
compared to developing a Modelica monolith.

4 Use-Case

The use-case presented in this section aims to exemplify
the need for the research in focus. The use-case aims
to capture a realistic and likely scenario in any organi-
zation applying M&S for decision-making, in any life-
cycle phase. The presented use-case is seen to be applica-
ble also in early life-cycle phases such as concept devel-
opment (Raymer 2018; International Council on Systems
Engineering 2015); however, the activities are likely less
formal and rigorous to reflect the pace and information
uncertainty inherent to the early phases.

4.1 Prerequisites

A need for a new model of a system, sub-system, or com-
ponent emerges as a result of an engineering task deduced
as most efficiently tackled through M&S. Additionally, a
set of model requirements have been deduced, see for ex-
ample Section 2.2, from the requirements on the physical
system along with the M&S need. Several similar models
exist, as a result of previous M&S activities, but their fit to
the current model requirements is uncertain.

4.2 Actors

A total of three actors participating in the use-case are
identified: the architect, the model designer, and the
simulation engineer. The architect supplies requirements
on the physical system in focus and utilizes the M&S
results to evaluate the system design. The model designer,
in close collaboration with the architect, transforms sys-
tem requirements to requirements on the corresponding
virtual system implementation; furthermore, they design
and verify the model against the supplied requirements.
The simulation engineer utilizes the model to produce the
results needed by the architect.

It is important to recognize that permutations of the above-
stated roles may occur. Naturally, the setup decided to
be most efficient in advancing the task at hand is the one
that should be employed. The immediate need for trace-
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ability of all information concerning the utilization of the
model increases when the number of involved actors in-
creases. However, please note that traceability to model-
ing requirements is here viewed as essential regardless of
whether adopting a life-cycle perspective or not.

4.3 Main Scenario

1. The architect is to decide on a system design, and
appropriate knowledge regarding a constituent sub-
system is lacking.

2. The architect and the model designer identify a po-
tential to fill this gap in knowledge by means of sim-
ulating the subsystem.

3. The model designer searches central model storage
for possible models to reuse.

4. The model designer finds a model that could fit the
requirements, but the documentation concerning the
usage in the new context is incomplete.

5. The model designer explores the model to verify it
against the new set of requirements. In each ex-
ploratory simulation, the model is evaluated using
the steps presented in Enumeration 2 until a suffi-
cient coverage (Atamturktur, Egeberg, et al. 2015)
of the input space is achieved.

6. The model designer evaluates the results from 5. If
the actor is unsuccessful, he or she adjusts the model
and reiterates the main scenario steps from 5.

7. The simulation engineer utilizes the model when
simulating the subsystem.

8. The architect utilizes the results as the basis for se-
lecting, or refining, a system design.

Enumeration 2. Detailed description of the model
evaluation steps.

1. Pre-processing, the test input point is selected from
the initial OD using an exploration algorithm, and a
steady-state scenario is synthesized from the values.
(Figure 9)

2. Run simulation, the simulation encompasses three
different phases, the duration of the phases is ideally
objectively defined with a connection to the model
characteristics. (Figure 6)

A. Ramp-up phase, enables a smooth and numer-
ically sound transition from a cold model state
to the test point.

B. Stabilization phase, allows the model to reach
a steady-state at the test input point.

C. Measurement phase, the model Quantity of In-
terests (Qols) are recorded.

10.3384/ECP20729

OCTOBER 14-16, STORRS, CT, USA PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024

«  Altitude
Mach

0 500 1000 1500 2000 2500 3000 3500

Figure 6. Synthesized simulation scenario of a set of input coor-
dinates, i.e. input steady-state values representing one of the sets
of coordinates of Fig. 9. The scenario is partitioned into three
different phases: A-Transitioning from cold to test coordinate, B-
fixing the input to the selected test coordinate, and C-Evaluating
test coordinate based on output measurements.

3. Post-processing, the simulation results (Figure 7a
and 7b) are evaluated with respect to the model re-
quirements.

From the results of the model evaluation steps described
in Enumeration 2, initial ODs in the form of hulls are gen-
erated. These reference hulls enable comparing OD be-
tween models and identifying limitations concerning the
system’s intended use. They also aid in identifying poten-
tial attributes for a standardized data format. The determi-
nation of sufficient coverage is left to the discretion of the
model designer on a case-by-case basis.

The test framework DevelOpment, RIgorous, and auto-
mated assessment of models and Simulators (DORIS)
(Hallgvist 2023), implemented in the now finalized project
Digital Twin for Automated Flight Test Evaluation and
Model Validation (Hillqvist 2019), is extended and uti-
lized to evaluate models. The software is built around
OMSimulator (Ochel et al. 2019) enabling simulations
unified by Modelica Association (MA) (The Modelica As-
sociation 2019) standards such as FMI and SSP. It enables
exploratory testing of models in an automated and repeat-
able way. The evaluation against requirements will be lim-
ited to check model robustness. A set of general model
integration requirements is exemplified in Enumeration 3.

Enumeration 3. General model integration requirements
adopted to exemplify the presented research.

1. The simulation shall not crash.

2. There shall not be any errors or warnings due to com-
putational/solver problems.

3. Any single time step should be executed within rea-
sonable time limits, as specified by the model de-
signer.

4. The modeled system shall be able to reach steady-
state, see 7a for example.
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Figure 7. Example of simulation results for different test coordinates, see Figure 5 for an overview of the simulated application

example.

To evaluate how hulls can be utilized when aggregat-
ing multiple models into a larger system, two Functional
Mock-up Units (FMUs) are extracted from the application
example architecture. These two models are subjected to
an identical verification exploration to generate their cor-
responding hulls. The hypothesis is that the system can
only be utilized in the hull created by the intersection of
the internal model hulls (x,,,4.;) for any shared input vari-
able according to

models

Xsystem = m Xmodel (D
model=0

where Xxgyen tepresent the system OD. Comparison
between the model hulls and measurements of selected
variables extracted from the system simulation is to
provide a basis for conclusions regarding this hypothesis.

Additionally, a reference implementation of a simple
Bayesian search is developed to evaluate the challenges
and possibilities for further research. Although the
method will not be used in the current study, some rea-
soning around the implementation will be included in the
Discussion.

5 Results

When the domains initially exhibit a simple hypercube
characteristic, it becomes evident from exploring the
reference system (see Figure 2) that this representation
is insufficient. In investigated model examples, fitting a
hypercube to encompass the passed samples will incur a
loss of information. It can also be seen in Figure 9 that
the quality of the generated hull is also a factor to take
into consideration. Where the ’Original hull’ has a very
low quality in its representation of the domain against
the requirement, the 'Low quality hull’ increases that
quality but there are still a certain amount of verification
experiments within the volume that fails. The last area,
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’High quality hull’, is a very high-quality area where no
experiments have failed, but this is at the cost of utiliza-
tion of the model; in other words, the high quality hull
excludes many operating conditions that are identified as
"Passed’ .

A simple nearest neighbor metric has been used for cre-
ating the different quality hulls. A metric value for each
simulation is calculated based on the ratio of how close
the simulation is to both failed and successful simulation,
mathematically described through

SiMyatio = f(sim, sims i) / f (sim, sims pass ) 2
sims
f(sim,sims) = Z (1/((distance(sim, sim,)* 3)
n=1
where sim is the current simulation and sims .1/ pass
signify all simulations that pass or fail a requirement.

The proposed extension of the SRMD format consists
of an OperationalDomain tag that encapsulates the OD
information. An implementation example is shown in
Listing 1, followed by a description of the individual tags
and attributes in Table 1, 2, 3, 4 and 5. The included
attributes should be viewed as initial examples and should
be evaluated further in a broader industrial context to
account for requirements from other business domains.
A full example can be found in Listing 2 provided in the
Appendix.

A note on the types of OD proposed, a hypercube can be
expressed as a convex hull but the points needed to do so
are 2", therefore we also proposed to include "hypercube"
as a separate volume type where the geometry is defined
by two points "Xin, YminiXmaxs Ymax  for simplicity.
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Figure 8. Model ODs that can be used to describe and aggregated system OD.

Table 1. OperationalDomain tag details.

20000 x| puit Attribute Description
\?\2 = Original hull name (str) Unique name of the OD
15000 1 e derived (str) If present, enables traceability to the
E i nam ey domain used as a basis for the current ex-
_%é: o000 R ) ploration
z : Element

5000 <Annotations> | If present, FMI or SSP XML standard an-
fEEC e s s notations to support additional information
B e e and a human-readable definition of the OD.

o0 o2 Mtk 20 <Volume> Contains the resulting volumetric represen-

tation of the OD.

Figure 9. Different quality variants of Operational Domain | <Requirement>| Defines against what requirements the OD

(OD), represented as convex hulls. is verified.
<Error> Provide information regarding the faults

within the final hull

Listing 1. SRMD implementation example. Table 2. Volume tag details.

<OperationalDomain

name="domainl.1" Attribute | Description
derived="domainl"> type (enum["convex_hull", "hypercube"]) The volume
<Annotations> type OD
<Annotation type="OD_Information"> points (array[array[float]]) The coordinates of the points
<Info> defining the volume.
Simulation completed, no errors variables | (array[str]) The variable name mapping towards
</Info> the model input space.
</Annotation>
</Annotations>
Table 3. Requirement tag details.
<Volume
type="convex_hull" Attribute Description
points="x1,yl;x2,y2;x3,y3" simulation_status | (enum|"failed", "no_errors",
variables="Altitude,Mach"/> "no_warnings"]) If present, place
<Requirement constraints on simulation execution.
simulation_status="no_errors"/> execution_time (float) If present, place constraints on
<Error fraction="0.1"> single-step execution time in seconds.
<Point pos="x4,y4"> hull_uncertainty | (float) If present, place constraints on
cee hull uncertainty as the ratio of permis-
</Error> sible faults within the volume.

</OperationalDomain>
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Table 4. Error tag details.

Attribute | Description

fraction (float) The final ratio between failed/passed
points within the hull.

Element

<Point> [multiple] If present, coordinates of a failed
point within the hull to enable an additional
evaluation of credibility.

Table 5. Point tag details.
Attribute | Description |
position (array[float]) Coordinates of a point \

5.0.1 OD comparison

When evaluating hulls to establish what performance and usage
that can be expected when pairing the application example
models, both the consumer and ECS are utilized. A return
pipe connecting the consumer and ECS is selected for the
comparison and both models were verified using a random
search, they both have a nine-dimensional input space where
suitable ranges for each input variable were acquired from the
respective model designers. The comparison of ODs presented
in Figure 8 is conducted over liquid enthalpy and mass flow;
these two input variables were selected since they both appear
to have some correlation to test failure in both model and system.

Mapping the system usage over the two models, see Figure 11,
shows that the hypothesis should not be discarded. The results in
this case are promising and the method utilized could give sys-
tem architects a powerful new tool for evaluating how a system
will behave earlier in the product development cycle. However,
additional tests involving other models and systems are needed
for any strong conclusions to be made but such tests are left for
future research.

6 Discussion

O. Balci and Ormsby (2000) argues that a model accreditation
recommendation can only be provided for data and scenarios
connected to the model’s intended use and that any results
obtained from conditions outside this scope are not credible.
Model exploration is a means to evaluate the model in such a

800000
e Passed
700000 % Failed
600000
500000
400000

300000

200000

Return pipe enthalpy (J)

100000

[
0.0 02 0.4 06 08 10

Return pipe massflow (m3/s)

Figure 10. Results of the system verification and the resulting
OD, a total of 500 tests are performed.
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Figure 11. Comparison between the consumer model OD, the
ECS model OD, and the resulting system utilization OD.

way as to provide evidence supporting that model accreditation
can be provided for the full OD. One of the larger questions
regarding this is when a requirement can be guaranteed up to
a certain confidence level. Taking Figure 9 as an example,
the single failed experiment almost in the center of the plot
showcases a situation without a simple solution. If the require-
ment of this particular model dictates a confidence level of
100%, it could be the difference between reusing a model and
designing a new one. In some cases, the design cost difference
between 100% and 95% can be extensive. Concretizing the
confidence level for each requirement enables the creation
of a cost-effective solution. As stated Section 2.1, we are to
strive towards minimizing implicit requirements. This together
with the utilization of a standardized machine-readable format
together with the MA standards would fulfill the Findable,
Accessible, Interoperable, and Reusable principles of FAIR and
increase the traceability of model verification.

Stating confidence levels in requirements opens up an interest-
ing opportunity for model reuse. As seen in Figure 9, multiple
domains for a requirement can be specified depending on
the confidence level. The current system may require a 95%
confidence level, but during verification, ODs can be created
not only for 95% but also for 90% and 80%. This could enable
evaluating the model for uses outside the current project that
requires a larger OD but has lower requirements regarding con-
fidence level. The same approach may be applied to common
requirements such as requirements concerning accuracy and
speed. Variations of confidence levels and requirements can,
in most cases, be achieved without additional simulations by
evaluating already collected data from each simulation against
additional requirements. Each model or application area will
likely have some specific requirements that may enable easier
utilization in new contexts and quick verification in reuse cases.
The areas that could benefit the most from this approach will
likely become clearer with increased usage of domains in
general.

When exploring a model, as established earlier, it is quite in-
effective to explore the OD using the described Grid or Ran-
dom search approaches. However, as previously stated, a simple
Bayesian search was implemented to evaluate potential chal-
lenges using this method in this context, see Figure 4. It is
built upon the assumption more information regarding system
behavior can be found in the border regions dividing the passed
and failed simulations. It’s therefore designed to prioritize new
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simulations in such areas. The main finding from this imple-
mentation is that a challenge in utilizing a Bayesian search as
a general solution is in evaluating the choice of tests chosen by
the algorithm. For example, evaluating results based on a Ran-
dom search is often straightforward, whereas the corresponding
results when using a complex search algorithm may require spe-
cialized knowledge of both the search algorithm and the cov-
erage metric. This is especially true as manual evaluation of
the exploration strategy becomes more complex with increas-
ing input dimensions. As of now, avoiding specialized search
algorithms sidesteps the question of evaluating if the chosen op-
timization method and coverage objective is the correct choice
for the current model.

7 Conclusion

Coupling a requirement-driven formulation of a model veri-
fication activity in the form of a Operational Domain (OD)
would increase traceability and may provide multiple new
opportunities for model and system verification.  Before
simulating, evaluating how aggregated models perform together
can provide valuable insights regarding the system’s behavior.
During simulation, model validity can be monitored and
provide warnings for models utilized in an unverified context.
After simulating, more computationally intensive verification
and debugging can be conducted utilizing logs and results.
When combining multiple models, aggregation factors make it
difficult to validate the system at scale (Wang et al. 2019), and
verification utilized during all phases of usage can be seen as a
means to monitor aggregation effects.
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8 Appendix

Full example of an SRMD hull implementation, Listing 2, showcasing an initial hull provided by model designer and then the
resulting verified hull. These two hulls correspond to the "original hull" and "high quality hull" in Figure 9.

Listing 2. Full SRMD implementation example.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<srmd:SimulationResourceMetaData version="1.0.0" name="Simulation meta data"
generationTool="Manual" generationDateAndTime="2024-02-06T13:21:417z"
xmlns:srmd="http://ssp-standard.org/SSPTraceabilityl/SimulationResourceMetaData"
xmlns:ssc="http://ssp-standard.org/SSP1/SystemStructureCommon"
xmlns:stc="http://ssp-standard.org/SSPTraceabilityl/SSPTraceabilityCommon"
xmlns:xlink="http://www.w3.0rg/1999/x1link">

<OperationalDomain name="initial_domain" >
<Annotations>
<Annotation type="OD_Information">
<Info>
Initial hypercube provided by model designer Mr/Mrs. X.
</Info>
</Annotation>
</Annotations>

<Volume
type="hypercube"
points="0,0;22000,2.3"
variables="Altitude,Mach"/>
</OperationalDomain>

<OperationalDomain name="no_errors_confidence_1" derived="initial_ domain" >
<Annotations>
<Annotation type="OD_Information">
<Info>
High confidence operational domain of no error requirement,
confidence level of 100%.
</Info>
</Annotation>
</Annotations>

<Volume
type="convex_hull"
points="10500,0;7000,0;5000,0.1;5000,0.4;6000,2.3;8000,2.3;13000,0.1"
variables="Altitude,Mach"/>

<Requirement simulation_status="no_errors"/>

<Error fraction="0.0">

</Error>

</OperationalDomain>
</srmd:SimulationResourceMetaData>
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Abstract

We propose a component-based, automated, bottom-up
method to system design, using models are expressed in
the Modelica language. This bottom-up approach is based
on a meta-topology that is iteratively refined via opti-
mization. Each topology link is described by a univer-
sal component that is defined in terms of atomic compo-
nents (e.g., resistors, capacitors for the electrical domain)
or more complex canonical components with a well de-
fined function (e.g., operational amplifier-based inverters).
The activation of such links is done via discrete switches.
To address the combinatorial explosion in the resulting
mixed-integer optimization problems, we convert the dis-
crete switches into continuous switches that are physically
realizable and formulate a parameter optimization prob-
lem that learns the component and switch parameters. We
encourage topology sparsity through an L; regularization
term applied to the continuous switch parameters. We
improve the time complexity of the optimization prob-
lem by reconstructing intermediate design models when
components become redundant and by simplifying topolo-
gies through collapsing components and removing discon-
nected ones. To demonstrate the efficacy of our approach,
we apply it to the design of various electrical circuits.
Keywords: component-based, design, optimization, non-
linear programming

1 Introduction

In this paper, we describe a general approach for design-
ing physical systems using a bottom-up approach that im-
plements the “change design” process in Figure 1. This
type of problem can be formulated as a mixed integer pro-
gram that includes a combinatorial part to select the com-
ponent types and a continuous optimization part that se-
lects parameters of components to meet requirements. A
brute force approach to solving such an optimization prob-
lem suffers from combinatorial explosion, and heuristics
based on branch-and-bound methods do not scale with the
number of discrete optimization variables (Clausen 2003;
Morrison et al. 2016). To limit the effects of combinatorial
explosion, we introduce an algorithm that transforms the
mixed-integer formulation into a nonlinear program, with
physically realizable solutions.

To facilitate the description of the algorithm and of the
results, we focus on design problems in the electrical do-
main. However, the approach can be generalized to other
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physical domains. We use the Modelica language to de-
scribe the basic components and the generated design so-
lutions, which allows subject matter experts to interpret
and evaluate the generated designs.

The design models use a universal component that em-
beds the behavior of basic components in the electrical
domain (e.g., resistor, inductor, capacitor, short connec-
tion, and open connection) or more complex components
based on operational amplifiers (OpAmps) in various con-
figurations. For example, a universal component based
on inverting and non-inverting OpAmp configurations is
shown in Figure 2. Each branch of the component is acti-
vated or deactivated by a switch that controls the current
that flows through it. The design problem is to find the
correct switch assignments and component parameter val-
ues to meet the requirements, which can be specified in
terms of the time evolution of certain quantities of inter-
est or the characteristics of a transfer function in the case
of filter design. We start with a topology that describes
how the universal components are connected and includes
points for setting boundary conditions (e.g., voltage/cur-
rent sources) and taking measurements. The design prob-
lem is then formulated as an optimization problem that
minimizes a loss function € (94.7(p,s),yo.r), where p
and s are the parameters and switches of the basic com-
ponents, respectively, yo.r is a target vector of measure-
ments over time interval [0,7T], $o.r(p,s) is the model’s
predicted measurements, and ¢ is a metric that measures
the error between the model predictions and the target
measurements (e.g., mean square error). The optimization
problem also takes into account dynamic constraints, and
bounds on component parameters (e.g., resistances must
be non-negative).The main contributions of this paper are
as follows:

» Continuous relaxation with lossless realization: We
developed an optimization algorithm that relaxes
the integer constraints on the switches by treat-
ing them as continuous variables in the range [0,
1]. The parameters of the components and their
associated switches are optimized using gradient-
free search algorithms and simulations based on
Functional Mockup Units (FMUs) (Blochwitz et al.
2011). To encourage sparsity in the design solu-
tion, we also add an L; regularization term to the
loss function. The non-zero switches are not approx-
imated by O or 1, but are realized as electric resis-
tors, ensuring no loss in optimality but a possible
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loss in sparsity. Since we cannot guarantee finding
the global optimum, we also use parallel optimiza-
tion runs with random initial conditions to generate a
diverse set of design solutions.

Scalability improvement via model simplifications:
During optimization, when certain components are
no longer needed (i.e., their switches are set to zero),
we eliminate them and reconstruct the design model.
This reduces the complexity of the model, as mea-
sured by the number of equations, and leads to faster
simulation times. In addition, we developed a graph
theory-based algorithm that further simplifies the de-
signs generated by the optimization procedure. The
algorithm removes unnecessary components, com-
bines compatible components in series and parallel
connections into equivalent single components, and
annotates the resulting design models for visual rep-
resentation and simulation in tools that support the
Modelica language.
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Paper structure: In Section 2, we present an algorithm
for automated design that uses continuous relaxation. In
Section 3, we discuss how we improve the efficiency of
our design algorithm by reducing the complexity of the
intermediate design models that are simulated during the
design space exploration. Finally, in Section 4, we present
the designs generated by the proposed algorithm for var-
ious circuit design problems and types of universal com-
ponents.

2 Design optimization

When using branch-and-bound heuristics to solve mixed
integer programs, we may encounter situations where the
cost of the relaxed problem is better than the cost ob-
tained by converting the optimization variables into in-
teger values. In this section, we present a method to
avoid such a case. The key idea is to interpret the
switches in a way that allows for their physical im-
plementation, even when they do not have integer val-
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ues. In the universal component definition, each branch
has a corresponding switch that opens or closes a con-
nection. When the switch is open, no current flows
through the component, leading to its exclusion from the
design model. In the Modelica electrical library, the
switch (Modelica.Electrical.Analog.Ideal.
IdealOpeningSwitch) is modeled such that when
the switch is open, there is a high resistance that blocks
the flow of current. When the switch is closed, there is
a very low resistance and the current flows freely. This
switch is controlled by a boolean input, the value of which
determines the switch mode. We draw inspiration from
the definition of the Modelica switch to create a contin-
uous switch that is controlled by a parameter that takes
values in the range [0, 1]. The switch is defined by the
equations

v = a((e—1)s+1), (1)
a((1—¢)s+¢), ()

where v is the switch voltage, i is the current through the
switch, a is an auxiliary variable, s € [0,1] is the switch
control, and € is a small hyper-parameter that determines
the residual resistance when the switch is closed. The
switch equation can be simplified to

(e—1)s+1,
V= —"——i,
(1—¢€)s+e¢
showing that for s = 0 we have v =i/e and for s = 1
we have v = &i, the expected behavior of a switch. We
do not use this simplified representation of the switch for
numerical stability reasons. The introduction of the aux-
iliary variable a prevents the presence of equations with
terms that involve divisions by very small numbers. How-
ever, the disadvantage is that the resulting system of equa-
tions for the design model becomes a differential algebraic
equation (DAE) rather than an ordinary differential equa-
tion (ODE). This limitation restricts the type of optimiza-
tion approach that can be used, as we cannot directly uti-
lize platforms that support automatic differentiation (AD)
(e.g., the torchdiffeq package in Pytorch). In addi-
tion to the requirements loss function &, we introduce a
sparsity-promoting L regularization term, resulting in the
total optimization loss:

Z(pvs) = %(?O:T(p7s)7y0:T) +A’H3H1a

where 0 < s; < 1, with s = (s;), and A is a positive weight
that controls the sparsity strength. If in the optimiza-
tion solution not all entries of s are zero or one, we map

them into electric resistors with equivalent resistances,
(e—1)s;+1
(I—¢)si+e*
affecting the optimal cost function, i.e., the design require-
ments.

The pseudocode for this algorithm is shown in Algo-

rithm 1. We use a gradual approach to achieve sparsity.

Thus, we can physically realize them, without
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We start with a small A value to make sure that we gener-
ate an initial design that satisfies the requirements. Then
we gradually increase A until the requirements cost func-
tion is no longer improved. Ideally, for each A, we would
like to obtain the optimal solution. The strategy for updat-
ing A is reminiscent to a primal-dual approach (Bertsekas
1999), where we minimize 4 under an L; sparsity con-
straint.

In our approach, we incrementally increase the value of
A until it begins to negatively impact the requirements cost
function. At this point, we halt the process and perform a
final optimization without the L; regularization term. The
result of this final optimization will be our design solution.
Box constraints are commonly used in our problem setup,
but we use variable transformations to eliminate them and
use an unconstrained optimization algorithm to minimize
Z. For example, we can eliminate the constrainta <x <b
by using the transformation x = a + (sin(%) + 1) (b —a) /2,
where ¥ is the new unconstrained optimization variable. It
is not guaranteed that the optimization will converge to the
global minimum, as the cost function’s nonlinear depen-
dence on the optimization parameters means we cannot
accurately predict the structure of the problem. Ideally,
we would find at least a local minimum for each A value,
but it is possible that the optimization algorithm may take
too many iterations to converge. As a result, we set a limit
on the number of iterations allowed between A updates for
practical reasons.

All optimization algorithms will require the evaluation
of the design model. We use a black-box approach to op-
timization, where the cost evaluation is done by querying
a computational model of the design: an FMU (Blochwitz
et al. 2011). In the cosimulation version of the FMU,
such a representation contains the algorithm used for sim-
ulating the model (e.g., CVODE solver (Hindmarsh et
al. 2005)), in addition to the design description. FMUs
can be integrated in several languages (e.g., Python, C,
Java) and computational platforms (e.g., Matlab/Simulink,
OpenModelica, Dymola). The optimization algorithms
were implemented in Python based on the Scipy opti-
mization package. We used a gradient free (i.e., a direct
method) optimization algorithm that relies only on the ob-
jective function, namely Powell’s method (Powell 1964).
Empirically, it provides a better convergence rate than
other gradient-free algorithms such as Nelder-Mead, and
is faster than global, gradient-free optimization algorithms
(e.g., genetic algorithms). The integration of FMUs into
the optimization algorithms was done using the PyFMI
library (Andersson, Akesson, and Fiihrer 2016).

3 Model Construction and Simplifica-
tion

We automatically construct a Modelica model for a do-

main given a universal component and a specification of

the initial topology. For instance, if the user wanted to use
a 5x6 grid, then the program would generate a Modelica



Algorithm 1 Continuous relaxation design algorithm

Require: §: solution tolerance
Require: A: L; loss weight
Require: A: L; loss weight increase rate
Require: FMU of the initial design model
Require: p, s: initial parameter and switch values
Require: y,.r: target measurements

I: %prev =

2: while True do

32 p,s < argming s (Yo.r(P.S5), Yo.r) + Allsls

4 ¢ :Cg(yO:T(pﬂg)?yO:T)

5 if € < €prer then

6: A AL

7 Corev =C*

8 eliminate components corresponding to zero
switches and reconstruct the model

9: else

10: p.s < argming s € (Yo.7 (P, ), ¥o.1)

11: return p.s

12:  endif

13: end while

model with 30 grid points with components connecting
pairs of points vertically and horizontally (see Figure 3).
This model is embedded in another model which specifies
the components that set the boundary conditions, i.e., the
voltage source and the resistor load (see Figure 4).

Figure 3. Modelica model for the grid. Universal components
connect the grid points.

Y E
< '9 &
P
N !
[ p—
— ground1

Figure 4. Modelica model for the scenario that gives the bound-
ary conditions of a grid.

In the continuous relaxation approach to optimization,
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each universal component has switches that allow inter-
nal components to be enabled or disabled. These switches
can be set from the top level model. When a component
is disabled, then the Modelica compiler ignores it when
constructing an FMU, thus no equations pertaining to the
respective components are added. This process is imple-
mented by conditionally declaring the basic components
of the universal component. Consequently, a basic com-
ponent appears in the instance of a universal component
only when a corresponding flag is set to true. The flags of
the basic components in all instances of the universal com-
ponent are continuously updated during the optimization
process.

After the optimizer has found a solution (i.e., has de-
termined which components should be enabled and what
their parameter values should be), we produce another
Modelica model that flattens the universal components
and just shows the internal components. At this point we
perform two simplification operations: eliminate isolated
components and dangling components. These operations
are necessary to deal with the cases where switch, resis-
tor or capacitor values are close to zero. Such a situa-
tion indicates the presence of open connections. Figure 5
shows a design solution example based a universal compo-
nent that uses passive components only, and that contains
isolated (capacitor between vertices 26 and 27) and dan-
gling (components between vertices 14, 20, 21, 22) com-
ponents. The design solution can contain isolated com-

Number of components: 19
Isolated connected components.
28— C —@&i 28 — short —29 — c||L — 30

Dangling components

—— short —

~

19 /" (20— short —21 — short —22 23 —c—24
/§6\ T T é %G/"
ar_s 13 — R—— 14 — short — 15 — short — 16 — short — 17 — short — 18 gr |
: | | : | |
con_s— short — 7 — short —' 8 9 — short —10 — RL —11 — L ——12 — short —con_|
2 o ° 2
1 —short — 2 — short — 3 — short — 4 — short — 5 — short — 6

Figure 5. Graph representation of a design solution: vertices are
connection points and edges components.

ponents since switches are not exactly zero, meaning that
there may be some very small residual currents passing
through components. Thus, it may appear that we have
components that are isolated but in fact only a small, neg-
ligible current passes through them. The isolated compo-
nents are eliminated by first generating the largest set of
connected components that include the boundary condi-
tions (i.e., the voltage source and the resistor load), and
discarding the remaining ones. The design solution may
also contain components that appear to be dangling, i.e.,
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they are connected at one end only. The reason for such
a phenomenon is the same as in the isolated components
case: residual currents passing through them. The dan-
gling components are found by looking at the cycles of
the design. If a component does not belong to a cycle
then it must be dangling, thus it is eliminated. We im-
plemented code that generates a visually interpretable lay-
out for the components based on the and-or graph also of
the components that are between two grid points. The
layout was achieved by annotating the flattened Model-
ica design model with Modelica notation that generates
the visual effects. Finally, we have code to simplify the
model by merging compatible serial or parallel compo-
nents. The code goes through this process iteratively, un-
til no merging can be achieved. The resulting model has
correct equivalent parameter values (i.e., resistances in se-
rial connections are added) and it can be simulated using
Modelica.

4 Results

In this section we present design results based on Algo-
rithm 1 for various design examples.

4.1 Cauer analog low pass filter with passive
components

Our goal is to design a filter whose output from a step re-

sponse matches the output of the Cauer analog low pass

filter of the fifth order (see Figure 6). The input voltage
versus the load voltage plot is shown in Figure 7. To

L1 L2

G 5
L=11 L=12
R1 c2 c4
o ——m I =
R=10Q C=c2 C=c4
-
‘
- L]
2
; e} 2Lg 2@ -AD 2
4 A 4 =
) ik I
] & =

G

Figure 6. Modelica model of the Cauer analog, low pass filter
of the fifth order.

improve the likelihood to find a design solution, we start
with a dense initial topology expressed as a 5x6 grid, with
a universal component based on passive electrical compo-
nents. The number of optimization variables correspond-
ing to this initial topology is 343, including component
parameters and switch values. The dense initial topology
is likely to ensure the existence of several local minima
that are close to satisfy the design requirements. To ex-
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—— input source votage —— resistive oad votage

™

10 2 B 0 B

Figure 7. Cauer low pass analog filter: input source voltage vs.
resistive load voltage.

plore multiple of such local minima, we leverage parallel
executions of design optimization processes, where each
process starts with random initial component parameters,
and initial weight for the L; cost, and where all switches
are initialized to 0.5. We run 20 parallel processes that
explore various design solutions. The design optimization
algorithm was implemented in Python, and the evaluation
of the design loss function was done via FMU-based sim-
ulations using the fmypi Python package. We refer to
each optimization corresponding to an instance of the L;
loss weight as outer iteration. An outer iteration was im-
plemented using the gradient free Powell algorithm, where
we limit the execution of the algorithm to 150 (inner) it-
erations. The limited number of iteration affects only the
early outer iterations, since 150 iterations may not be suf-
ficient to converge to a local minima. However, since we
use a sequence of outer iterations, where each such outer
iteration uses the previous optimization variables as initial
values, in practice we do converge to a design that satis-
fies requirements. More importantly, each outer iteration
reduces the time complexity since, after each outer iter-
ation we eliminate redundant components whose switch
values are approximately zero. The number of variables
drops from 343 at the first iteration to values in the twen-
ties or smaller, at the last iteration. Remarkably, after the
first iteration that uses no L; regularization term, all pro-
cesses eliminate more than 250 optimization variables as
a result of switches being set to zero. The time per itera-
tion is determined by three factors: the number of iteration
of the Powell algorithm, the number of optimization vari-
ables and the FMU simulation time. Not unexpectedly, the
most expensive outer iteration is the first one, that corre-
sponds to 343 optimization variables. As the design mod-
els become simpler, the outer iteration times reduce to tens
of seconds. An example of a design solution that realizes
the behavior of the Cauer analog filter implemented using
passive components is shown in Figure 8.



ground1
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Figure 8. Design solution for the Cauer analog low pass filter based on passive components generated by Algorithm 1.

4.2 Voltage level shifter design with opera-
tional amplifiers

We present the results of designing a voltage level shifter
(see Figure 9), using Algorithm 1. The universal compo-
nent employed to generate the initial grid topology con-
sists of a resistor, capacitor, and operational amplifier
arranged in a non-inverting configuration, together with
open and short connections. We run 10 parallel execu-
tions of Algorithm 1 for 150 outer iterations, with a limit
of 300 inner iterations for the Powell algorithm in each
outer iteration.

6000
2000
£ MW - 750
12k OUTPUT
INPUT +
750 RL=750
Vece
1.2kQ
1kQ

Figure 9. Voltage level shifter circuit used to generate the
ground truth data in the form of the voltage across the load re-
sistor (Ry).

Two examples of design solutions produced by Algo-
rithm 1 for the voltage level shifter are depicted in Figures
10 and 11. Notably, both solutions have a component
count that is similar to that of the original level shifter de-
picted in Figure 9, with 10 and 9 components for the two
solutions compared to 8 components in the original cir-
cuit (not counting the load resistor and the voltage source
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components). Additionally, both solutions utilize a single
OpAmp.

4.3 Cauer analog low pass filter with active fil-
ters

We repeated the design optimization problem for the
Cauer low pass filter, where the branches of the universal
component include first and second-order low and high-
pass filters, implemented using operational amplifiers, to-
gether with resistor, capacitor, short and open connection
components. We started with a 2x6 grid as the initial
topology and ran 10 parallel executions of Algorithm 1 for
250 outer iterations, with a limit of 1000 inner iterations
for the Powell algorithm in each iteration. After a final
simplification, we chose one of the solutions and arrived
at a circuit shown in Figure 12 that includes 8 operational
amplifiers. The Modelica Standard Library (MSL) has an
implementation of the Cauer analog filter that uses only
5 operational amplifiers but also includes 4 negative re-
sistors, where each negative resistor can be implemented
using an operational amplifier. Our design solution there-
fore has a similar number of operational amplifiers as the
one in the MSL.

Table 1 summarizes the design results of the above ex-
amples in comparison with the original circuits that were
used to generate the ground truth. When counting the
number of resistors and OpAmps in the MSL active im-
plementation of the Cauer filter, we included the number
of resistors and OpAmps needed to implement the neg-
ative resistors. The loss function used in the optimiza-
tion algorithm focuses on behavior and complexity (via
the L1 regularization term). The loss function can be aug-
mented with additional objectives that can include compo-
nent costs, for example. The computational time depends
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Figure 10. Design of the voltage level shifter with operational amplifiers using Algorithm 1: design solution 1.

on the number of iterations of the optimization algorithms
and the FMU simulation time. The latter can be decreased
or increased by manipulating the number of collocation
points or the solver tolerances. Depending of the com-
plexity of the initial models and the weight of the L1 regu-
larization term, the optimization algorithms can take from
tens of minutes to several hours.

5 Differential programming
gradient-based optimization

for

The algorithm introduced in the previous sections uses
gradient-free optimization to search for the component pa-
rameters. The advantage of such algorithms is that they
work directly with computational representations of the
design model (i.e., FMUs). The disadvantage is that they
become slower as the number of optimization variables
increases. An alternative to gradient-free algorithms is
gradient-based algorithms, and the optimization problem
would translate into a nonlinear program with dynamical
constraints. Solving such a problem would requires hav-
ing access to the gradients of the objective and constraint
functions. When dealing with design models represented
as ODEs, we can map the design optimization problem
into a framework that supports automatic differentiation
(AD) (e.g., Pytorch (Paszke et al. 2017) or Jax (Bradbury
et al. 2018)), and solve the problem using gradient de-
scent algorithms. Such platforms are endowed with ODE
solvers that support AD (Chen et al. 2018). To formu-
late the problem in frameworks such as Pytorch or Jax,
we first need to extract the equations from the Model-
ica model of the design. One approach is to generate an
XML representation for the DAE using the dumpXMLDAE
function of the OpenModelica (Fritzson et al. 2010; Open
Source Modelica Consortium n.d.) scripting language. Al-
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ternatively, we can process the flattened Modelica us-
ing a Python Modelica parser such as modparc (Dong-
Ping 2013). Similar equation extraction can be done
using commercial Modelica tools such as Dymola, or
SystemModeler. The extracted equations are con-
verted into symbolic objects such as Sympy (Meurer et
al. 2017) objects, and mapped into deep-learning platform
objects that support automatic differentiation. This pro-
cess leads to a constrained optimization problem that in
the case of the continuous relaxation approach is given by:

min ¢ Gor(p.s)yor) Al 3)
subject to: x=f(x,z;p,s), )
g(x,z;p,s) =0, (5)

9 =h(x,z;p,s), (6)

where (4)-(5) is the DAE in the semi-explicit form, repre-
senting the dynamics of the design model, and h(x, z; p, §)
is the sensing model.

To solve (3), we can convert (4) into a set of equality
constraints using direct collocation methods (Hargraves
and Paris 1987; Herman and Conway 1996), or we can
use local (e.g., Chebyshev polynomial expansions (Boyd
2001)) or global (e.g., neural networks) parameterizations
of the state solution and solve for the representation pa-
rameters (e.g., weights and biases of the neural network).
For example, if we use neural networks to represent the
state x(1) = NN,(t; B) and the algebraic variables z(r) =
NN, (t; B;), the optimization problem (3) will be solved in
terms of the parameters 3, 3., p, s. In addition, automatic
differentiation can be used to evaluate the time derivative
of the state. Our attempts to use a differentiable program-
ming paradigm to solve design problems were met with
mixed results. In the case where the model is represented
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Figure 11. Design of the voltage level shifter with operational amplifiers using Algorithm 1: design solution 2.

Figure 12. Design solution for the Cauer analog low pass filter with operational amplifiers using Algorithm 1.

as an ODE, we obtained good results. For example, in
(Ion Matei et al. 2020) we showed how to learn control
policies for an inverted pendulum using a model predic-
tive control approach solved using Pytorch. When dealing
with DAEs though, the gradient-based optimization algo-
rithm, when combined with direct collocation methods to
approximate time derivatives, tend to converge slowly. In
addition, the parameterized DAE solution does not always
check against the DAE simulation executed with the op-
timal component and switch parameters. Unfortunately,
we cannot always guarantee that the design model can be
represented as an ODE, especially since the model is re-
peatedly reconstructed and simplified. Thus, the results
shown in this paper use a direct method (i.e., Powell al-
gorithm), instead a gradient-based approach. Ideally, we
would like to have a sensitivity analysis method embed-
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ded in the DAE solvers, so that we can access the Jacobian
of the state with respect to the model parameters. Such a
method is present for instance in the SUNDIALS software
family, introduced in (Gardner et al. 2022; Hindmarsh et
al. 2005), with DAE solvers such as CVODES and IDAS
that include both direct and adjoint-based approaches to
compute sensitivities. Currently though, deep learning
platform do not offer such a functionality, except for the
case where the DAE can be transformed into an ODE.
Moreover, even when dealing with ODE, gradient-descent
algorithm that include solvers supporting automatic differ-
entiation tend to slow down as the number of optimization
parameters increases. We addressed this challenge in (I.
Matei et al. 2023), where we showed that block coordinate
descent algorithm in combination with direct collocation
method speed up training by several order of magnitude.
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Circuit Number of resistors | Number of capacitors | Number of inductors | Number of OpAmps

Original passive Cauer filter 1 5 2 0
Designed passive Cauer filter 5 3 5 0
Original active Cauer filter 19 8 0 9
Designed active Cauer filter 17 16 0 8
Original voltage level shifter 7 1 0 1
Designed voltage level shifter (sol. 1) 8 2 0 1
Designed voltage level shifter (sol. 2) 5 4 0 1

Table 1. Summary of the design results for various examples.

We are currently working on extending this approach to
DAE models. There are Julia libraries that can also be
used for a gradient-based approach. For example, Mod-
elingToolkit.jl and its component library, ModelingToolk-
itStandardLibrary, are modeling languages for symbolic-
numeric computation (Ma et al. 2021). They combine
symbolic computational algebra systems ideas with causal
and acausal equation-based modeling frameworks. We did
not use this library in our work because it lacks many
components from the Modelica Standard Library, thus re-
quiring a model-transformation component for mapping
Modelica models into Julia representations. White the dif-
ferential programming paradigm is an appealing avenue
for dealing with numerical complexity, we cannot always
guarantee that the model we use are smooth. It is possi-
ble for such models to be hybrid (i.e., include discrete and
continues variables) and thus not differentiable.

6 Conclusions

In this paper, we presented an automated design process
utilizing a bottom-up approach. The process begins with
an initial possibly large topology of universal components
that is iteratively refined until a sparse solution is found.
The initial design is based on universal components, each
of which can exhibit a range of behaviors through ba-
sic components. This combination of modes and topol-
ogy ensures a broad coverage of the design space. We
demonstrated an approach for addressing the combina-
torial explosion typical of design optimization problems.
The approach relaxes discrete variables to continuous vari-
ables by transforming discrete switches into continuous
switches. These continuous components are physically
realizable, resulting in no loss in performance. Addition-
ally, sparsity is induced through an L; regularization cost
that encourages the parameters of the continuous switches
to be zero. The proposed approach is supported by au-
tomated model simplification and reconstruction that re-
duce the complexity of the design model, in turn decreas-
ing the time complexity for the continuous optimization
algorithms that require model simulations. The continu-
ous optimization algorithms are gradient-free. We are cur-
rently investigating the application of a differential pro-
gramming paradigm to the design problem described in
this paper, which would allow us to utilize gradient-based
algorithms. The major challenge we face is extending au-
tomatic differentiation support to DAEs that typically re-
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quire stiff, implicit numerical solvers, while avoiding the
need for implementing model-transformation modules to
convert Modelica models to new representations.
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Abstract

Context-aware systems are widespread in our daily lives,
but modeling languages that address the notion of context
are rare. Variable structure systems (VSS) allow for struc-
tural and behavioral changes in physical models at runtime
(while the simulation is running) based on different situ-
ations. It is desirable to explicitly describe under which
contextual situation a specific variant of the simulation
model should be used and how to implement the switching
between these variants at runtime. In this case, contexts
could be used to control the variability of context-aware
systems. Equation-based modeling languages are suitable
for modeling complex multi-domain, multi-physical sys-
tems, and among them, Modelica is the state-of-the-art.
Unfortunately, the capabilities for VSS in Modelica are
strongly limited. As a result, several frameworks have
been proposed to address this problem by supporting dif-
ferent VSS types. However, it remains unclear which
framework contributes to which VSS type. Furthermore,
approaches have been developed to support VSS, but none
can explicitly describe contexts and their transitions. In
this work, we first introduce VSS and its different types.
Then, we provide an overview of which framework tar-
gets which VSS type. Finally, we propose a new language
extension based on Modelica, ContextModelica, that pro-
vides semantics for the direct context definition, enabling
the use of context to control and manage variability.
Keywords: modeling and simulation, Modelica, variable
structure systems, context, context-oriented programming,
ContextModelica

1 Introduction

1.1 Context-aware systems

Context-aware systems are widely present in different as-
pects of our daily lives. According to Dey, Abowd,
et al. 2000, a context is "any information that can be
used to characterize the situation of an entity. An en-
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tity is a person, place, or object considered relevant to
the interaction between a user and an application, in-
cluding the user and application themselves". Many
context-aware systems operate according to system con-
texts (e.g., "a robot should stop working when a human
enters its operation area”, "an iPhone will make emer-
gency calls if a car crash has been detected"). Dif-
ferent context-oriented techniques have been developed
to enhance context-aware systems, including Context-
Oriented Programming (Hirschfeld, Costanza, and Nier-
strasz 2008), commonly referred to as COP. Elyasaf, Car-
dozo, and Sturm 2023 and Elyasaf and Sturm 2023 state
"Although COP languages have existed for over 15 years,
they are still very limited for developing context-aware
systems. Also, modeling languages that address the notion
of context are rare." Thus, how the idea of COP could be
implemented in equation-based modeling languages, such
as Modelica, remains a research question.

1.2 Variable Structure Systems and Modelica

Utkin 1977 introduced variable structure systems (VSS),
which consist of continuous subsystems with a proper
switching logic and enable dynamic control of simulation
systems. In real applications, certain conditions, such as
contexts (Elyasaf and Sturm 2022), can be used to control
the variability (different modes). Modes refer to differ-
ent states; different modes correspond to different models
defined by distinct equation systems.

Figure 1 shows a minimal example. On a sunny day
(Context = Sunny), solar radiation is present, and the mode
"Solar Power" is activated. This mode engages the corre-
sponding equation system, which represents the solar pan-
els. Thus, in the Sunny context, the solar panels are acti-
vated and begin producing electricity from solar energy.
In the evening (Context = Night), solar radiation is absent,
and the mode "Standby" with its corresponding equation
system is activated (while other modes and their equation
systems are deactivated). The equation system for this
mode represents a physical state where the solar panels
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Figure 1. A minimal example of using contexts to control different modes.

are inactive. In realistic applications, multiple systems can
be switched simultaneously. All of this occurs at runtime
(simulation time); there is no need to power off the system,
switch modes, and then re-initialize and restart the simula-
tion. Typical application fields where VSS can be benefi-
cial include circuit switching, mechanical elements break-
ing apart, systems with clutches, different rocket stages,
and robot reconfigurations.

Modern modeling environments handle complex phys-
ical systems using equation-based modeling languages,
also known as acausal modeling languages. The Model-
ica language (Fritzson and Engelson 1998) (Modelica, for
short) is the state-of-the-art example, widely used in var-
ious industries like energy grids (Senkel et al. 2021) and
building systems (Wetter et al. 2014). However, like most
equation-based modeling languages, the possibilities for
VSS in Modelica (current version 3.6) are limited. Only
a few frameworks have been designed to support VSS in
Modelica, and in most cases, switching modes at runtime
fails. Zimmer 2010 attributes these limitations to the static
treatment of the differential-algebraic equations (DAEs)
and the lack of expressiveness in the Modelica language.

A classic example of VSS is the "breaking pendu-
lum" (Figure 2) which can be described as follows: a
ball attached to a string moves as a pendulum initially
(mode 1). After a few seconds, the string breaks, and
the ball moves as if in free fall (mode 2). This exam-
ple includes two modes, each corresponding to a different
model: one describes the pendulum (Listing 2), and the
other describes the free fall of the ball (Listing 3). Mode
switching is triggered by time. It is important to note that
the two models have different equation systems. Classical
Modelica environments, such as OpenModelica (Fritzson,
Pop, et al. 2022) and Dymola (Elmqvist 1979), which are
based on the current Modelica specification (Modelica As-
sociation 2023), cannot handle this situation effectively.
The simulation will fail at the moment when the modes
are switched. Typically, different modes are modeled and
simulated separately. Ideally, developers would model and
integrate different modes within a single model.

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Mode 2: Free Fall

Mode 1: Pendulum

Figure 2. Two modes of the breaking pendulum.

1.3 Problem Statement and Research Objec-
tives

During literature research, two main problems related to
VSS in Modelica have been identified:

1. Despite various frameworks targeting VSS in Model-
ica (Table 1) and Modelica-like environments, it re-
mains unclear which solution contributes to which
VSS type. A detailed overview is lacking.

2. Enabling contexts significantly impacts the control of
variability and the realization of context-aware sys-
tems. However, the idea of COP has not yet been im-
plemented in Modelica. How to introduce contexts in
Modelica remains an interesting research question.

This work aims to address these two problems. The
main goals are:

1. To provide a clear classification of VSS in Modelica
and an overview of frameworks supporting their VSS

types.

2. To propose the extension ContextModelica that intro-
duces contexts into Modelica.

10.3384/ECP20753
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Table 1. Frameworks targeting VSS in Modelica and other
equation-based modeling environments.

Frameworks

Mosilab (Nytsch-Geusen et al. 2005)

Sol (Zimmer 2010)

Hydra (Giorgidze 2012)

Modelyze (Broman and Siek 2012)

DySMo (Mockel, Mehlhase, and Nytsch-Geusen 2015)
MoVasE (Esperon, Mehlhase, and Karbe 2015)
PyVSM (Stiiber 2017)

Modia.jl (Elmqvist, Neumayr, and Otter 2018)

OM_jI (Tinnerholm, Pop, Sjolund, et al. 2020)
ModelingToolkit.jl (Ma et al. 2021)

1.4 Structure of the Work

Section 2 provides a detailed explanation and classifica-
tion of VSS in Modelica. Section 3 summarizes vari-
ous frameworks designed to support different VSS types
in Modelica or Modelica-like environments, offering an
overview to understand which framework addresses which
specific VSS problem. In Section 4, we propose Con-
textModelica, developed based on OpenModelica.jl, in
short, OM.jl' (Tinnerholm, Pop, Sjclund, et al. 2020). Our
extension combines Modelica with the concept of con-
text from the language engineering field. We demonstrate
ContextModelica with an example and discuss the cur-
rent challenges. This section also explores the potential
benefits of integrating context-aware features into existing
Modelica models. Finally, Section 5 presents the conclu-
sions and an outlook, including discussions and sugges-
tions for future research.

2 VSS in Modelica

To provide an extension that enables modeling and man-
aging VSS using contexts in Modelica, the first step is
to understand what VSS are. Definitions of VSS vary
slightly across different domains in the literature. VSS
were first introduced by Utkin 1977. Mehlhase 2015 of-
fers an overview of publications with definitions related
to VSS. In short, VSS can be summarized as "structural
change during runtime (simulation time)". In Model-
ica, VSS correspond to the switching of equation systems
based on different situations while the simulation is run-
ning. However, different types of structural change during
runtime exist, and Modelica supports only some of them
in a limited way. Consequently, various frameworks have
been designed to enhance VSS possibilities in Modelica
and Modelica-like environments. Unfortunately, since the
types of structural changes during runtime have not been
discussed in detail, it remains unclear, which framework
addresses which specific VSS type.

"https://github.com/JKRT/OM.jl (A Modelica compiler written in
Julia)
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To the best of our knowledge, variables and differ-
ential index” have the most impact on realizing VSS in
Modelica. In general, three different types can be distin-
guished based on these two factors:

1. Two modes share the same variables and differ-
ential index. Thus, the structural change does not
introduce new variables, and the differential index
remains unchanged.

2. Two modes have different variables but the same
differential index. In this case, the structural change
introduces new variables and corresponding equa-
tions, while the differential index stays the same.

3. Two modes have the same variables but different
differential indices. Here, the structural change in-
volves a change in the differential index.

At this point, some issues related to VSS arise in Mod-
elica (Benveniste, Caillaud, et al. 2019). In most cases,
the simulation fails when switching from one mode to an-
other, primarily because Modelica is static and the com-
piler cannot handle types 2 and 3 at runtime.

Regarding type 2 where each mode contains a different
set of variables, there are several sub-types. The number
of variables may either change or remain the same during
the mode transition. For simplicity, this work does not
specify different sub-types of variables.

3 State of the Art

This section provides an overview of the frameworks for
supporting different VSS types in Modelica and other
equation-based modeling environments (most of them are
Modelica-like). Table 2 summarizes the applicability of
approaches for different VSS types. All approaches can
be used for type 1.

Mosilab (Nytsch-Geusen et al. 2005) uses a Modelica
extension to describe the models and transitions
through a state chart.

Mosilab supports types 1 and 2 but does not support
type 3, as the environment only simulates index-0
models and lacks an index-reduction mechanism.

Sol (Zimmer 2010) is an experimental language designed
as a proof of concept to support variable-structure
models using dynamic casualization.

Although Sol is similar to Modelica, it is a separate
language. It enables the modeling of VSS with Sol-
Sim and allows changes to the differential index.

ZFor a general differential algebraic equation (DAE) F (t,x,x/) =0,
the differential index is defined as "the minimum number of differentia-
tions required to translate the DAE system into a system of the ordinary
differential equations (ODEs)" (Campbell and Gear 1995) (Benveniste,
Bourke, et al. 2014). Thus, ODEs have a differential index of 0.
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Hydra (Giorgidze 2012) is an embedded acausal model-

ing language implemented in Haskell according to
the paradigm of functional hybrid modeling. Hy-
dra lacks the object-oriented characteristic present in
modeling languages such as Modelica.

Modelyze (Modeling Kernel Language) (Broman and

Siek 2012) is a host language designed for embed-
ding equation-based DSL based on gradual typing.
Modelyze has been developed with OCaml.

Dymola extensions Elmqvist, Mattsson, and Otter 2014

and Mattsson, Otter, and Elmquvist 2015 present ex-
tensions of Dymola to enable the possibility of VSS.
In the first work VSS with varying DAE index is not
supported, the second work extends the Pantelides al-
gorithm (Pantelides 1988) and allows VSS with vary-
ing DAE index. These extensions have limited func-
tionality. They have only been tested with simple
examples. Because of this, these extensions have not
been implemented in the latest stable release of Dy-
mola yet (as of May 2024).

OM.jl OpenModelica.jl (Tinnerholm, Pop, Sjolund, et

al. 2020) is a Modelica compiler written in Julia,
developed by the OpenModelica development team
from Linkoping, Sweden. Leveraging Julia’s just-in-
time (JIT) compilation and multi-dispatch features,
OM.jl supports modeling VSS. It can also connect
ModelingToolkit.jl with Modelica (Tinnerholm, Pop,
Heuermann, et al. 2021).

ModelingToolkit.jl (Ma et al. 2021)% is a Julia pack-

age for modeling and simulation that integrates Ju-
lia’s ecosystem with the modeling. Inspired by
Modelica, it features a Modelica-like syntax. Com-
pared to Modelica, ModelingToolkit.jl supports not
only ODEs and DAEs, but also partial differential
equations (PDEs), stochastic differential equations
(SDEs), and other types of equation systems. Like
Modia.jl and OM.jl, ModelingToolkit.jl supports var-
ious VSS types due to Julia’s capabilities.

DySMo (Dynamic Structure Modeling) (Mehlhase Table 2. Overview of Modelica-based and Modelica-like frame-
2015) is a Python application that enables the simu- works for different VSS types. v indicates that the approach
lation of VSS. A case study by Mackel, Mehlhase, supports this VSS type, while X indicates that it does not.
and Nytsch-Geusen 2015 demonstrated the use of
DySMo in the context of building simulation.

VSS Types  Applicability of Approaches

DySMo is a script-based approach designed for sim- Type 1 All approaches (v')
ulating VSS rather than modeling them. In this ap-
proach, different models are simulated separately, Type 2 Standard Modelica (X)
and their results are then integrated using Python. Mosilab (v, but only index 0)
Sol (v
MoVasE (Modelica Variable-structure Editor) Dyn(lol)a extensions (v')
(Esperon, Mehlhase, and Karbe 2015) enables DySMo (V)
structural changes to models by defining conditional MoVasE (unknown, lack of literature)
exchanges externally. PyVSM (V)
Compared to DySMo, MoVasE has the advantage of Modia.jl (v)
not requiring manual creation and maintenance of all OM,jl (v)
modes and transitions. However, this approach still ModelingToolkit.jI (v)
has limitations in terms of the dynamic addition and
removal of components. Type 3 Standard Modelica(X)
Mosilab (X)
PyVSM (Python Variable-structure Model) (Stiiber Sol (V)
2017) is another script-based approach using Dy- Dymola extensions (v)
mola’s Python interface. The idea is the same as in DySMo (v)
DySMOZ USiI’lg Modelica for simulating different MoVasE (unknown, lack of literature)
modes and Python for switching between them. PyVSM (V)
L. ) ) Modia.jl (V)
Modia.jl (Elmqvist, Neumayr, and Otter 2018) is a OM.jl (v)
Modelica-like software written in Julia. It has been ) e
ModelingToolkit.jl (v')

initiated by the inventor of Dymola. After several
attempts to support VSS in Dymola, as discussed
in Elmqvist, Mattsson, and Otter 2014 and Mattsson, Despite some approaches supporting all VSS types,
Otter, and Elmquvist 2015, the authors explored Ju- none of the above approaches support the explicit spec-
lia’s potential in modeling. Modia.jl utilizes prede- ification of contexts and their transitions.

fined acausal components, as described in Neumayr
and Otter 2023.

3https://docs.sciml.ai/Modeling Toolkit/dev
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4 ContextModelica

The previous section introduced different approaches to
support VSS in Modelica. However, none of these ap-
proaches provide semantics to support contexts and con-
text management within Modelica for modeling and man-
aging context-aware systems. Therefore, we propose the
ContextModelica - an extension of the Modelica language
based on OM.jl, which already includes capabilities for
supporting structural transitions between variants in Mod-
elica.

This section will examine the concepts behind this ex-
tension in more detail and describes how it can be applied
to manage VSS, along with an illustrative example. Fi-
nally, we will discuss the current challenges and limita-
tions of the extension.

4.1 Units of Variability

In a software language, variability relies on variation
points (Webber and Gomaa 2004). The Variation Point
Model (VPM) is designed to model variation points con-
tained in reusable software components (Webber and Go-
maa 2004). Variation points are the units of variation in
a specification of a program. For Modelica, several kinds
of variation points can be considered, some of which are
intended by the language designers.

Class and subclass Modelica is a static object-oriented
language in which classes can be specialized by sub-
classes. These subclasses can be defined in varia-
tions. Therefore, a class is a static variation point
in Modelica, and it is common to replace a class with
one of the members of its transitively defined derived
subclasses.

Equation block An equation block defines a set of vari-
ables or derivatives, constituting the provided inter-
face of the block. In Modelica, equation blocks can
be guarded by i f/else and when statements, al-
lowing them to be dynamically varied (dynamic vari-
ation point).

Equation A single equation can also be a variation point.
It is a special case of a block variation point.

As discussed, modes in VSS may differ in variables and
the differential index. Modes relate to variation points in
that these constraints about variables and the differential
index must hold also for all variants of a Modelica varia-
tion point. This means that for any pointwise variation, the
VSS types 1-3 can be distinguished. For instance, a vari-
ation point of type 1 can be a class, block, or equational
variation point.

For a class variation point, VSS type 1 is the simplest
type, where polymorphism of the class resolves the tran-
sition to another subclass. At runtime, the subclass can be
varied by wrapping all variant subclasses in a simple case
expression. In Modelica, polymorphism is not available
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because subclasses must be selected statically. A block
variation point of VSS type 1 can also be handled in Mod-
elica if the block is encapsulated by a case expression. All
frameworks discussed in section 3 offer dynamic block
variation. Usually, an equational variation point of VSS
type 1 can also be managed because one equation is a sim-
ple equational block.

We will demonstrate later how ContextModelica can be
employed for the variation points described above.

4.2 Context

While addressing the lack of VSS manageability in Mod-
elica, one potential solution is to introduce a language
concept called a context. Contexts are common used in
software development to separate concerns (Hirschfeld,
Costanza, and Nierstrasz 2008). By integrating contexts
into Modelica, we can achieve better code structure and
improved manageability of VSS.

To this end, we have extended the Modelica language
to include this concept and thus created ContextModelica.
This extension introduces two new semantics, as shown
in Listing 1. First, all modes can be listed in a separate
section using the keyword "context", with each mode as-
sociated with corresponding condition. Second, the new
semantics allow for the addition of multiple equation sys-
tems, with each system labeled by the corresponding con-
text. This means that the equation system represents the
model or mode when the context is active. Additionally,
the set of contexts must include an initial state, which is
the mode that is active at the start of the simulation.

The advantage of mapping contexts to their applicable
conditions is that developers no longer need to manage the
resulting transitions between contexts. This separation of
concerns leads to cleaner and more readable code, partic-
ularly when compared to the use of if/else and when
statements in large-scale systems.

Listing 1. Semantics in ContextModelica.

model ExampleModel
/*parameters & variablesx/

equation on initial (ContextA)
/xcorresponding equationsx/

equation on ContextB
/*xcorresponding equationsx/

equation on ContextC
/xcorresponding equationsx/

context
initial on /#conditionx/;
ContextB on /xconditionx/;
ContextC on /#conditionx/;

end context;

end ExampleModel;
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Figure 3. Structure of ContextModelica. The blue section represents the original OM.jl, while the green section indicates the added

preprocessor.

4.3 How It Works

ContextModelica® is implemented as a language extension
of Modelica in Julia (OM.jl). It benefits from the structural
transitions available in OM.jl, which can be used to con-
struct state machines in Modelica. More precisely, the de-
fined contexts and their associated conditions from a given
ContextModelica model are translated into a context tran-
sition automaton comprising states and transitions, repre-
senting the possible changes of the contexts. This results
in n*(n-1) state transitions, where 7 is the number of exist-
ing states. The context transition automaton can be real-
ized through the dynamic recompilation features of OM.jl.
The structure of ContextModelica is illustrated in Fig-
ure 3. OMK.jl functions as a preprocessor for OM.jl and
was developed by reusing components of OM.jl, including
the ANTLR parser generator (Parr and Quong 1995) and
the abstract syntax tree (AST) module. Both have been
slightly modified to support the new semantics introduced
in ContextModelica, specifically the definition of contexts
with their corresponding conditions and the equation sys-
tems that can be tagged with context labels. In addition
to these modules, we added a code generator backed by
some OpenModelica packages. It traverses the AST con-
structed by the parser and then generates the correspond-
ing state machine using the syntax of structural transitions
provided by OM.jl. Therefore the code generator gathers
context labels, active conditions, and the associated equa-
tion sets, creating sub-models within a larger model. Af-
terward, the transitions supported by OM.jl are inserted.
The resulting state machine is an undirected graph where
every state has a transition to every other state. The output
can then be passed to OM.jl, which generates the corre-
sponding Julia code for further simulation.
ContextModelica inherits the ability of OM.jl to sup-
port the change of differential index, thus supporting type
3. Type 2 is currently not supported because all variables
and parameters share a common set. This is due to the
focus on varying the actual behavior in the individual con-
texts, which is primarily determined by the equation sys-
tems. Future modifications should allow separate defini-
tions for local variables and parameters. In conclusion,
ContextModelica supports two VSS types: types 1 and 3.

“https://github.com/dev-manuel/OMK_jl
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4.4 Example

We demonstrate the proposed ContextModelica using the
classical "breaking pendulum" model, as shown in Fig-
ure 2. Listing 2 and Listing 3 show the Modelica mod-
els for the "Pendulum" mode and the "FreeFall" mode re-
spectively. With the classical Modelica software which
has limited functionality of VSS the developers need to
model and simulate them separately. In ContextModel-
ica, these two models can be integrated into one model
as VSS with two modes, as Listing 4 shows. Two differ-
ent equation sets together with switch mechanisms will be
defined in the model. The outcome of the preprocessor is
shown in Listing 5. It includes the whole context transition
automaton containing the models and transitions required
by OM.jl for further simulation. This model corresponds
to VSS type 3 because the differential index of the "Pen-
dulum" and "FreeFall" modes are different. The result is
shown in Figure 4.

Listing 2. A pendulum model written in Modelica.

model Pendulum
parameter Real g
parameter Real L =
Real x(start = 10);
Real y(start = 10);
Real vx; Real vy;
Real phi(start=1.0);
equation
der (phi) = phid;
der (x) = VvX;
der(y) = vy;
x = L % sin(phi);
y = -L % cos(phi);
der (phid) = -g / L * sin(phi);
end Pendulum;

9.81;
sqgrt (200) ;

Real phid;

Listing 3. A free fall model written in Modelica.
model FreeFall

Real x; Real y; Real vx; Real vy;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;
equation
der (x) = vx;
der(y) = vy;
der (vx) = vx0;
der (vy) = -g;
end FreeFall;
10.3384/ECP20753
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Listing 4. Syntax for modeling the "Breaking Pendulum" model 15
in ContextModelica. This model corresponds to VSS type 3.

model BreakingPendulum

——pendulum.y — freeFally

10.3384/ECP20753

Real x; Real y; Real vx; Real vy;
Real phi(start=1.0); Real phid;
parameter Real g = 9.81;
parameter Real vx0 = 0.0;
parameter Real L = sqrt(200);

//context = Initial (Pendulum)
equation on initial

der (phi) = phid;

der (x) = vx;

der(y) = vy;

x = L % sin(phi);

y = -L % cos(phi);

der (phid) = -g / L x sin(phi);
//context = FreeFall
equation on FreeFall

der (x) = vx;
der (y) = vy;
der (vx) = vx0;
der (vy) = —-g;

//switch of contexts
context
initial on t < 5;
FreeFall on t >= 5;
end context;

end BreakingPendulum;

Listing 5. Transpiled model compatible with OM.jl.
model BreakingPendulum

// BreakingPendulum = BP
structuralmode

BP_ Context_Initial

bP_ Context_Initial_instance;
structuralmode

BP_FreeFall

bP_FreeFall_instance;

Real x; Real y; Real vx; Real vy;
Real phi(start=1.0); Real phid;
parameter Real g=9.81;

parameter Real vx0=0.0;

parameter Real L = sqrt(200);

model BP__ Context_Initial
equation
/*equation setx*/
end BP_ Context_Initial;

model BP_FreeFall
equation
/*equation setx/
end BP_FreeFall;

equation
initialStructuralState (
bP__ Context_Initial_instance);
structuralTransition (
bP_ Context_TInitial_instance,
bP_FreeFall_instance,
t >= 5);

end BreakingPendulum;
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Figure 4. Simulation result of the "breaking pendulum" model
with ContextModelica.

Compare the same "breaking pendulum" model imple-
mented in ContextModelica (Listing 4) and OM.jl (List-
ing 6). ContextModelica enables the explicit definition of
contexts directly while defining the corresponding equa-
tion systems for each mode, eliminating the need to de-
fine structural modes separately. The transition process
is also simplified. In OM.jl, the transition process must
be defined with a separate equation system, while in Con-
textModelica, this is unnecessary. The explicit definition
of contexts in ContextModelica results in a cleaner struc-
ture and readable code for realizing and managing VSS,
especially in large context-aware systems.

Listing 6. Syntax of "Breaking Pendulum" model in OM.jl
model BreakingPendulum

model FreeFall
/*xparametersx/
/*variablesx/
equation
/*equationsx/
end FreeFall;

model Pendulum
/*xparametersx/
/xvariablesx/
equation
/*xequationsx/
end Pendulum;

structuralmode Pendulum pendulum;
structuralmode FreeFall freeFall;

equation
initialStructuralState (pendulum) ;
structuralTransition (
pendulum, freeFall,
t >= 5
)i

end BreakingPendulum;



The example also shows how ContextModelica can be
deployed to the block and the equational variation points.
Each equation block, or single equation in specific cases,
will be varied by switching on/off different contexts/-
modes. In conclusion, ContextModelica supports VSS
types 1 and 3 as well as block and equational variation
points, as summarized in Table 3.

Table 3. Supported VSS types and variation points of Con-
textModelica.

Supported VSS types  Supported variation points
VSS type 1 v Class and subclass

VSS type 2 Equation Block v/

VSS type 3V Equation v/

4.5 Challenges

One challenge is synchronizing variable values when tran-
sitioning from one mode to another. Currently, all vari-
ables and parameters in a model must be defined as global
ones, making them valid across all modes. For example,
in Listing 4 the variables phi and phid are only used
in the first mode (Pendulum), which results in redundant
variables for the second mode (FreeFall). This limitation
means that specific variables and parameters cannot be
defined within their corresponding modes. This charac-
teristic leads to the lack of support for VSS type 2 and
this may negatively impact the performance, especially in
large systems. Another challenge is that, currently, the
OM_jl version only supports structural transitions in the
top-level model of a program. As a result, one of the lim-
itations is that only the top-level model of a program can
have user-defined contexts. This means the use of con-
texts in submodels is not supported at the moment (e.g.
different contexts can be defined under the "BreakingPen-
dulum" model, but no contexts could be defined under the
"FreeFall" submodel). Still, the number of modes/contexts
in the top-level model is not limited. Because of this, Con-
textModelica does not fully support class/subclass varia-
tion point. Another challenge is the overlap of transition
conditions. If two conditions can be evaluated to be true
at the same time, unexpected behavior may occur because
the transition is not deterministic. For now, the developers
need to ensure that the conditions are mutually exclusive
to avoid such issues.

5 Conclusion and Future Work

To fully demonstrate and explain the restricted VSS fea-
ture in Modelica, we have discussed the background and
explained how combining COP with Modelica can help
manage variability in context-aware systems. Modeling
variability using contexts reveals the switch mechanisms,
aiding developers in understanding and maintaining mod-
els more effectively. Following this, we presented a clas-
sification of VSS types as well as a detailed overview
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of various frameworks designed to support VSS in Mod-
elica or Modelica-like environments, covering different
VSS types. Unfortunately, none of these frameworks
support the explicit specification of contexts, making it
difficult to manage variability in context-aware environ-
ments. Therefore, we proposed the ContextModelica, a
context-oriented extension of Modelica ContextModelica
with easy-to-understand semantics. This approach also
avoids the complexities of using if/else and when
statements in large-scale systems. ContextModelica sup-
ports VSS types 1 and 3, as well as "equation block" and
"equation" variation points. To our knowledge, the pro-
posed ContextModelica is the first approach that intro-
duces the concept of context and COP into Modelica.
It extends the Modelica language with the explicit specifi-
cation of context, providing a novel solution to model and
manage variability in context-aware systems.

Note that the VSS can be quite complex, and this com-
plexity must be addressed in future work. On one hand,
contexts can either be mutually exclusive or overlapping,
which adds complexity to our implementation. We need
to carefully consider and address these scenarios to en-
sure that our system can handle both exclusive and non-
exclusive contexts effectively. On the other hand, in our
example, we only covered contexts that are time-relevant.
However, there can also be time-irrelevant contexts. For
instance, after the "FreeFall" mode, when the ball hits the
ground and switches to the "BouncingBall" mode, it is
challenging to define the exact moment the ball hits the
ground. In such cases, time-irrelevant contexts are use-
ful, e.g., when the ball hits the ground and its accelera-
tion vectors changes direction, at this moment, the third
mode "BouncingBall" is activated, as shown in Listing 7.
While ContextModelica can technically handle this sce-
nario, we do not consider it a verified example without
thorough testing. More tests are needed to explore poten-
tial issues that might arise in such cases.

Listing 7. Syntax for adding the "BouncingBall" mode.

model BreakingPendulum
/*parametersx/
/*variablesx/

equation on initial
/*xequationsx/

equation on FreeFall
/*equationsx/

equation on BouncingBall
/*xequationsx/

//switch of contexts
context
initial on t < 5;
FreeFall on t >= 5;
BouncingBall on vy < 0;
end context;

end BreakingPendulum;
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Another complexity of VSS is the concept of unilateral
constraints, as explored in the works of Ch Glocker and
Pfeiffer 1992, Friedrich Pfeiffer and Christoph Glocker
2000, Enge and Mailler 2005, and Enge-Rosenblatt 2017,
as well as in the PhD theses of Christoph Glocker 1995
and Enge 2005, where the switching between modes is
driven by these constraints. For example, this occurs when
a normal "Pendulum" mode transitions to a string-bound
free-flying mode Figure 5, or in switching diodes used in
power electronics. In the first example, defining the ex-
act point of transition is difficult, unlike in a scenario in-
volving a pendulum string breaking, which can be clearly
identified. The transitions in the second example differ
depending on the direction of the switching.

Mode 1: Pendulum Mode 2: Free Flying

Figure 5. Transition from the pendulum mode to the string-
bound free-flying mode.

The two challenges discussed in Section 4.5 are also
crucial for future work. Firstly, VSS type 2 is not sup-
ported since all variables and parameters should be de-
fined as global variables and parameters, this may lead to
redundancy of variables and thus performance issues, es-
pecially in large systems. Secondly, only contexts in the
top-level model are supported. It would be more prac-
tical to also enable defining and using contexts in sub-
models. This will also allow ContextModelica to support
the class and subclass variation point. It should be noted
that OM.jl supports both structural transitions and recom-
pilation constructs. However, currently, ContextModel-
ica only supports structural transitions. Implementing the
recompilation constructs in ContextModelica would help
solve these two challenges and improve the performance
significantly. Listing 8 shows an example of recompila-
tion constructs used in OM.jl for the "breaking pendu-
lum" model’. In this example, variables and parameters
for different submodels can be defined separately in the
submodels rather than as global variables and parameters.
Implementing recompilation constructs to support VSS
type 2 and nested contexts in submodels should be consid-
ered for future development. Furthermore, more practical
and industry-oriented examples should be examined using
ContextModelica.

Shttps://github.com/JKRT/OM.jl/tree/master/test/Models/VSS
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Listing 8. Syntax using recompilation constructs in OM.jl.
model BreakingPendulum

model FreeFall
/*parameters & variablesx/
equation

/*equationsx/
end FreeFall;

model Pendulum
/*parameters & variablesx/
equation

/*equationsx/
end Pendulum;

parameter Boolean
FreeFall freeFall
Pendulum pendulum

breaks = false;
if breaks;
if not breaks;

equation
when 5.0 <= time then
recompilation (breaks,
end when;

true);

end BreakingPendulum;
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Abstract

Ensuring the stability of complex power system models
is a critical challenge in the field of electrical power engi-
neering, and the tuning of Power System Stabilizers (PSS)
plays a pivotal role in this endeavor. Modelica, an open-
access modeling language, emerges as a powerful tool for
this purpose, due to its distinctive features that facilitate
efficient power system modeling. This paper explores the
capabilities of Modelica using the OpenIPSL library to
create models to analyze control system designs developed
for a multi-machine power system model. It particularly
focuses on using the features of Modelica for the lineariza-
tion, control-oriented analysis, and time-simulation of the
model. The results demonstrate the effectiveness of using
Modelica for control system design analysis and perform-
ing linear model-based analysis. This work aims to show
how Modelica can be used to perform these tasks on a sin-
gle platform efficiently, thereby streamlining the process
of power system design and analysis.

Keywords: Power System Modeling, Linearization, Stabil-
ity Analysis, Controller Design Analysis, OpenlPSL

1 Introduction
1.1 Motivation

Modern power systems exhibit a complex architecture that
requires the use of both physics-based models for sophisti-
cated control system designs. The design of robust control
systems is crucial to ensure reliable grid operation, which
facilitates the management of complex power system dy-
namics. A significant aspect of this involves conducting
stability analysis and tuning of Power System Stabilizers
(PSS), which are essential to damp electromechanical os-
cillations that can adversely affect system stability (F. J.
De Marco, Martins, and Ferraz 2012). To address this need
of developing models for control design and analysis, Mod-
elica, in conjunction with the OpenIPSL library, has been
used effectively to create a detailed University Campus
Microgrid model, demonstrating its effectiveness in linear
analysis, which is often challenging with traditional power
system analysis tools (Fachini, Bhattacharjee, et al. 2023).

This work explores the capabilities of Modelica (Fritz-
son and Engelson 1998), and the Dymola tool (Briick et al.
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2002), to develop power system models that are suitable
for control system design and analysis. The model devel-
oped here emerges from the power system literature (F.
De Marco, Rullo, and Martins 2021), which can be used to
address intra-plant and inter-area oscillations when consid-
ering a power plant with multiple machines. The developed
can be further explored to create a more detailed design
for specific control tasks beyond those for which it was
originally developed (F. J. De Marco, Martins, and Ferraz
2012).

1.2 Background and Related Works

The evolution of power system analysis has advanced com-
puting technologies, notably through the development of
software tools designed to improve the accuracy and ef-
ficiency of modeling and simulation (Isaacs 2017). This
transition has been marked by significant shifts from tra-
ditional methods to more sophisticated software-oriented
approaches that integrate the capabilities of modern com-
puting frameworks (Guironnet et al. 2018). These advances
have facilitated a detailed analysis of the dynamics of the
power system, setting the stage for the addressing of the
complex engineering challenges that arise from the adop-
tion of renewable energy sources (Fachini, Luigi Vanfretti,
et al. 2021; Plietzsch et al. 2022). The widespread com-
modification of computing technologies in the 1900s and
2000s led to the commercialization of domain-specific pro-
prietary software and the rise of open-source software for
power system analysis, often exploiting proprietary general-
purpose computing languages and environments, that is,
mainly tools based on MATLAB (Chow and Cheung 1992;
Milano and Luigi Vanfretti 2009). This technological evo-
lution set the stage for the addressing of more complex
system challenges. One such challenge is linearization of
power system models, a task that is complex due to the
limitations of domain-specific tools, many of which lack
symbolic linearization capabilities.

Many industry standard tools such as Siemens PSS/E
depend on additional tools to perform numerical pertur-
bations for linearization (Nikolaev et al. 2020). Likewise,
CEPEL in Brazil has developed two independent tools, one
for nonlinear time simulation and another for linear anal-
ysis (Martins et al. 2000). However, developers of both



tools need to provide symbolic expressions, which presents
challenges in maintaining modeling consistency between
the internal model descriptions within each tool (Luigi Van-
fretti et al. 2013). Researchers have developed certain tools,
such as PSAT, that support symbolic linearization (Milano
2005). However, they require users to input symbolic ex-
pressions and have a complete understanding of the source
code of the software to modify or expand it (Li, Luigi Van-
fretti, and Chompoobutrgool 2012). Other software tools
such as DOME have been developed that utilize Python
for power system analysis, demonstrating the viability and
utility of scripting languages in this field, particularly for
their modularity, ease of integration with various libraries
and suitability for academia (Milano 2013).

In contrast, Modelica offers a compelling alternative,
providing robust support for graphical modeling through
software such as OpenModelica (al. 2020) and Dymola,
thus significantly improving user experience and acces-
sibility. Modelica emerges as a formidable language for
power system modeling, especially when integrated with
the Open-Instance Power System Library (OpenIPSL)
(Baudette et al. 2018; De Castro et al. 2023), as elabo-
rated in (Winkler 2017). Unlike the conventional power
system approach of building a monolithic simulation tool,
Modelica serves as a language that numerous software pro-
grams can implement, including proprietary options such
as Dymola, Modelon Impact, Wolfram System Modeler,
etc.

Along with these compliant tools, what the Modelica
language offers is a unique advantage: it facilitates model
linearization (including symbolic-based linearization) with-
out the need of users or developers to specify additional
(linear) models, excelling over other alternatives. This
work explores the capabilities of Modelica symbolic analy-
sis to automatically derive the linear model from exactly the
same model used for non-linear time-domain simulation.

1.3 Paper Contribution

The main contributions of this paper are:

e To construct a multi-machine power system model by
utilizing Modelica and the OpenIPSL library, specially
designed to study intra-plant and inter-area oscillations
(F. De Marco, Rullo, and Martins 2021).

e To extend the model in applying a control system de-
sign derived from the literature (F. J. De Marco, Mar-
tins, and Ferraz 2012).

e To demonstrate the benefits of object-oriented model-
ing for complex power system models.

e To demonstrate the application of the Modelica lan-
guage and the OpenIPSL library for control system de-
sign analysis as a strong alternative to domain-specific
power system tools with simulation results.

While the article aims to illustrate how Modelica and
OpenIPSL can be used for the purposes stated above, some
familiarity with the Modelica language would be beneficial
to the reader. When necessary, the paper briefly introduces
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some language constructs and concepts used to guide the
reader.

1.4 Paper Structure

The structure of the paper is as follows: Section 2 demon-
strates the application of the object-oriented modeling tech-
nique to construct the different components of the system.
Section 3 explains the process of creating the model used
for linearization. Section 4 describes the nonlinear simu-
lation of the multimachine system. The simulation results
for the designed control system are presented in Section
5. Finally, Section 6 concludes the work and outlines the
future direction of the work.

2 Object-Oriented System Modeling

Figure 1 shows the package structure of the three-
machine infinite bus package ThreeMIB with several sub-
packages, namely Generation Units, Networks,
Systems, PF_Data, etc. Due to space con-
straints, only the Generation Units package is
expanded in Figure 1 to show its internal structure.
The sub-packages Generation Units, Networks,
Systems are further explained below to describe the
process of system modeling. This package is avail-
able in the Github repository: https://github.com/
ALSETLab/AMCONF2024_ThreeMIB

2.1 Component Modeling

The OpenIPSL contains different component models
that are built using object orientation. For components,
object-oriented modeling can be illustrated using the in-
stance for the bus component. As observed in the
Modelica code excerpt in Listing 1, the Bus model ex-
tends a partial model named pfComponent from
the x».Electrical.Essentials package. This
inheritance approach is a hallmark of object-oriented
modeling in Modelica, allowing the bus model to re-
utilize and extend predefined functionalities, such as
initial parameter setups for algebraic variables that are
crucial for setting initial state values in the models
it comprises. Central to object-oriented design, at-
tributes like final enablev_0O=true and final
enableangle_0O=true are strategically enabled for
initializing values, while final enableP_0O=false
is disabled to comply with KCL, illustrating the model’s
ability to customize through selective inheritance. The
PwP in instance, named p, exemplifies encapsulation, ini-
tializing its algebraic variables, vr and vi, from v_0 and
angle_0. Furthermore, the variables v and angle, in
Lines 13 and 14, which represent the magnitude and angle
of the voltage, are managed within the model to reflect
its link with other components of the system. The calcu-
lations in for voltage (Lines 13-14) and zero current en-
forcement (Lines 15-16) throughp.ir and p. i1i not only
confirm the model’s functionality but also ensure its inte-
gration within the larger system, underscoring the efficacy
and adaptability of object-oriented modeling for complex
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Figure 1. Package Structure
power systems.

Listing 1. Excerpt of the

OpenIPSL.Electrical.Buses.Bus model

model Bus "Bus model"
extends OpenIPSL.Electrical.Essentials.
pfComponent (

final enableP_0O=false,

final enablev_0=true,
final enableangle_O=true);
OpenIPSL.Interfaces.PwPin p(vr (start=v_0x
cos (angle_0)), vi(start=v_0xsin(
angle_0)));
Types.PerUnit v (start=v_0)
magnitude";
Types.Angle angle (start=angle_0)
angle";

"Bus V.

"Bus V.

equation

sqrt (p.vr"2 + p.vin2);
angle = atan2(p.vi, p.vr);
p.ir = 0;

p.ii = 0;

v =

end Bus;

Similarly to the bus component, other OpenIPSL com-
ponent models are used to develop the system models de-
scribed below. More information on the components avail-
able in OpenIPSL can be found in (L. Vanfretti et al. 2016;
Baudette et al. 2018; De Castro et al. 2023).

2.2 System Modeling

This section explains how the object-oriented features of
Modelica (Fritzson 2014) and OpenIPSL components are
used to construct the multi-machine power system model
from (F. De Marco, Rullo, and Martins 2021), as shown in
Figure 4, allowing modular reusable components that sim-
plify the design of the system model and enhance the sim-
ulation flexibility. The model consists of three generation
units, six buses, two transmission lines, three transformers,
three loads, and an infinite bus. Some of the sub-packages
are explained below.

e Generation Units: The GenerationUnits sub-
package is expanded in Figure 1 to show the internal
structure. The sub-packages within offer various con-
figurations of the three generation units named G1,
G2, and G3:
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Figure 2. GenerationUnits.MachineEXPSS.Generatorl

Generator] model diagram view

* MachineOnly: Consists of only the syn-
chronous machine (SM).

* MachineEXPSS: Consists of a synchronous
machine equipped with an excitation control sys-
tem (ES) and power system stabilizer (PSS).

* MachineEXPSSIO: Consists of a synchronous
machine equipped with an excitation control sys-
tem (ES) and power system stabilizer (PSS) along
with an input and output (IO) interface.

The three generation units are chosen from
MachineEXPSS to be used in the multi-machine
model shown in Figure 4. Each unit is modeled as a
separate component. The structure of each generation
unit consists of a synchronous machine (SM), which is
the primary component for generating electrical power,
an excitation control system (ES) which regulates the
field voltage, maintaining the terminal voltage stability,
and a power system stabilizer (PSS) which provides
damping of the power system oscillations by modulating
the ES. The diagram view of one of the generation
units G1 is shown in Figure 2. The graphical placement
and connections of the components ensure that the
mathematical relationships are correctly established when
connect (...) statements are generated. In Modelica,
aconnect (...;...) statement links the compatible
ports of two components, enabling them to interact within
the simulation environment as described in Chapter 9
(Modelica Association 2023).

The SM and ES are parameterized using the values
of an implementation made in the Siemens PSS/E soft-
ware. = .raw and *.dyr files from (Illinois Center for
a Smarter Electric Grid ICSEG) 2024) are used to set pa-
rameter values and to obtain a power flow solution that
populates Modelica records within the PF_Data sub-
package in Figure 1. These help provide an initial guess for
the algebraic variables that are used to initialize the model
(see more details in (Dorado-Rojas et al. 2021). PSS mod-
els are specifically parameterized according to optimized
transfer functions from studies on PSS tuning for phase
compensation(F. J. De Marco, Martins, and Ferraz 2012;
F. De Marco, Rullo, and Martins 2021). Furthermore, the
parameters of the individual components that are required
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at higher levels, such as the model shown in Figure 4, are
propagated to provide a user-friendly interaction.

e Networks: The sub-package named Networks is com-
prised of a partial model of the multi-machine
system ThreeMIB.Networks.Base including the
buses B1-B6, transmission lines 1inel and 1ine2,
the transformers TF1-TF 3, and the System Data
component. Instead of programmatically building it,
this model is built graphically. The components are
dragged and dropped, connected, and parameterized;
the Modelica tool automatically generates the corre-
sponding source code as shown in Listing 2.

Listing 2. Connect equations of the partial model called
ThreeMIB.Networks.Base

I partial model Base "Partial model
containing network elements"

3 OpenIPSL.Electrical.Branches.PwlLine linel
(R=0, X=0.036, G=0, B=0);

5 equation

6 connect (Bl.p, TFl.p);

7 connect (TFl.n, B4.p);

8 connect (B2.p, TF2.p);

9 connect (1linel.n, line2.p);

10 ... (more connect equations follow)
11 end Base;

As observed in Listing 2, the instantiation of the
PwLine component named as 1inel and the parameter
X=0.036 is set through a modifier, that is, it is changed
from the default values. Similar code is generated for all
other component instantiation and parameterized. Observe
that there are fewer components in Figure 3 than those
shown in Figure 4. This is because the model in 4 is built
through inheritance, i.e., it inherits the components in Fig-
ure 3 and adds new ones. This method allows for the cre-
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ation of varied system model variants from partial models,
which are extended and customized through modifications.
The automatically generated connect equations link the
PwP in within each component instance. For example, as
observed from Line 6 of Listing 2, B1 . p is connected to
TF1.p, thereby interfacing bus B1 to transformer TF1.
Similarly, line 9 shows how 1inel and 1ine 2 are in-
terfaced through the connect equations. For illustration,
this is labeled in red in Figure 4. Similar equations are
automatically generated by the tool for other connections
that were done graphically.

The partial model ThreeMIB.Networks.Base
is extended by adding other components, namely
the power flow component pf, the loads Loadl-
Load3, and the fault component pwFault. This
does not include the generation units, which are dis-
cussed later.  The resulting base model is called
ThreeMIB.Networks.BasePFnFault shown in
Figure 3.

e Systems: The sub-package Systems comprises
the final model of the multi-machine power sys-
tem, as shown in Figure 4. To create this,
the ThreeMIB.Networks.BasePFnFault en-
closed in the dotted blue box is extended and
the three generation units G1, G2, and G3
enclosed in the dotted green box are dragged
and dropped from the ThreeMIB.Generation
Units.MachineEXPSS package. Once connected
to the corresponding buses, the generation units are
parameterized with power flow data contained within
the pf record component. The resulting model is the
ThreeMIB. Systems.Grid, which can be readily
used for typical power system time-domain simulations.
This particular package also consists of the models built
for linearization and nonlinear simulation which is dis-
cussed in detail in the following sections.

3 Deriving Linear Models

3.1 Refactoring Models for Linearization

This section discusses the creation of the linearized
model, here referred to as “plant”.  To generate
a model that can be linearized, the base model
ThreeMIB.Networks.Base is extended and instanti-
ated as ThreeMIB.Systems.GridIO, and the power
flow component pf and fault component pwFault are
added graphically. It is worth noting here that the
load components added to this model Loadl-Load3
are chosen as those with an external input. Fig-
ure 5 shows the detailed extended model with the in-
puts in the green boxes and the outputs within the or-
ange one. This is achieved by choosing the genera-
tion units from the package ThreeMIB.Generation
Units.MachineEXPSSIO with an IO interface depict-
ing a structure as shown in Figure 6. The inputs, enclosed
within the dotted green boundary in Figure 6, are simply
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Figure 4. ThreeMIB. Systems .Grid multi-machine power
system model

connected to a RealInput interface from the Model-
ica Standard Library (MSL). In the case of the outputs,
RealOutput interfaces from the MSL need to be pro-
vided, which are shown enclosed by a dotted orange bound-
ary in Figure 6. These interfaces must be linked to the
desired output variables. This is carried out in the textual
layer of the model, as shown in Listing 3.

Listing 3. Linking output variables to the RealOutput inter-
faces.

model GridIO
"Multimachine power grid model with input
/output interfaces L
extends ThreeMIB.Interfaces.
OutputsInterface;
extends ThreeMIB.Networks.Base (...
GenerationUnits.MachineEXPSSIO.
GeneratorlEXPSSIO Gl (...)
// More instantiations follow
equation
SCRXin = Gl.feedbackSCRX.y;
SCRXout = G1.sCRX.EFD;
Vt = Gl.gENSAE.ETERM;
ANGLE = G1.gENSAE.ANGLE;
SPEED = G1l.gENSAE.SPEED;
... // More connect statements follow
end

Each of the RealOutput interfaces must be linked
to the output of different components. For example, on
Line 10 of Listing 3, the generator’s terminal voltage
G1.gENSAE.ETERM is linked to the interface Vt. This
is done similarly for other machine variables. Meanwhile,
to access the output of the PSS (which is the input of
the ES), the RealOutput interface SCRXin is linked to
Gl.feedbackSCRX.y as seen in Line 8 and similarly
the output of the ES, SCRXout, is linked to the field volt-
age G1.sCRX.EFD in Line 9. The plant model shown in
Figure 5 can now be utilized as a block with the specified
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Figure 5. ThreeMIB.Systems.GridIO multi-machine
power system model with IO interface

inputs and outputs for the analysis of the design of the
control system. Figure 7 illustrates this concept where the
inputs to the ThreeMIB. Systems.GridIO can be set
to zero with only one desired functional input and output.
The entire model enclosed in the red dotted lines is treated
as a single-input-single-output (SISO) block. This modu-
larity improves the adaptability and utility of the model in
diverse linearization and simulation needs.

3.2 Linearization Process

Each Modelica-compliant tool, such as Dymola or Open-
Modelica, supports symbolic analysis to automatically
generate a linear model from the same model used for
non-linear time-domain simulation. Within Dymola, the
Modelica_LinearSystems2 (MLin2) library can
be used to perform this task, which allows easy conver-
sion of models to representations of linear time-invariant
systems (Baur, Otter, and Thiele 2009). Listing 4 shows the
command needed to linearize the model shown in Figure
5. A state space object and * .mat file are generated as
the resulting output ss which is suitable for further analy-
sis in Dymola or external tools, supporting tasks such as
eigenvalue computation, frequency response analysis, and
advanced control design such as pole placement and LQG
controller design.

Listing 4. Linearization using Modelica_LinearSystems2
ss := Modelica_LinearSystems2.ModelAnalysis

.Linearize ("ThreeMIB.Systems.GridIO") ;

Once linearized, the system, input, and output matrices
can be observed from Dymola’s command window.

4 Nonlinear Simulation

This section explores the initialization process and the se-
lection of solvers in time-domain simulations, demonstrat-
ing how these features can accommodate various use cases
with models developed using OpenIPSL.

4.1 Initialization

Providing suitable initial guess values for large-system
models under various operating conditions can be challeng-
ing. To address this, a Modelica record template within
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ThreeMIB.PF_Data.powerflow is associated with
each component of the model to facilitate the entry of data
from the power flow solution as starting values. This map-
ping is done once when creating the model. As shown in
Figure 5, the component pf is added directly as the block
of the yellow record template in the diagram. This allows
for the selection of specific data values for buses, machines,
loads, and transformers. This record structure can be auto-
matically implemented using the p£2rec Python utility,
which transforms the power flow simulation results into
Modelica records (Dorado-Rojas et al. 2021).

Similarly, as mentioned in Sec-
tion 2 the OpenIPSL.Electrical
.Essentials.pfComponent can be provided

with data that are used to calculate the starting values
within each of the components that extend from the
pfComponent. For example, it can be observed in
Listing 1, how the start values for the real and imaginary
parts of the voltage phasor, vr and vi are calculated from
data of voltage magnitude and angle, v_0 and angle_0
(see Line 8).

4.2 Solvers

Domain-specific power system tools like Siemens PSS/E
usually provide a single solver for which the models’
equations have been discretized; a popular choice is to

use the trapezoidal integration method combined with a -
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Netwon-Raphson solver to solve the DAEs. This approach
typically restricts simulations to a few seconds with a fixed
time step. Modelica tools do not face this limitation when
simulating the models from the OpenlIPSL library. As
noted in (Henningsson, Olsson, and Luigi Vanfretti 2019),
Dymola has advanced solvers for sparse large-scale DAE
models, enhancing the competitiveness of power system
simulations with Modelica compared to Siemens PSS/E.
To utilize these advanced features in Dymola, the utility
ThreeMIB.Utilities.SetupSolverSettings

offers a series of functions to enable or dis-
able them. For example, it allows settings
like Advanced.Define.DAEsolver :=

true/false and Advanced.SparseActivate
:= true/false, which activates the DAE solvers
and optimizes for sparsity, respectively. Note that for
linearization tasks, these advanced settings should be
deactivated to ensure the generation of accurate state-space
models.

5 Results

The power system models developed in this work are
utilized to analyze the control system design developed
in the study for PSS tuning using phase compensation
(F. J. De Marco, Martins, and Ferraz 2012). Modelica
tools provide means to visualize and analyze the results.
Custom functions can be used with the necessary path
to the models to perform the required analysis. Within
Dymola, the Modelica_LinearSystems2 (MLin2)
library provides commands to directly linearize and plot
the frequency response from the single-input-single-output
version of the model in Figure 7 as observed in Listing 5.

Listing 5. Custom Function for Bode Plot using Model-
ica_LinearSystems2

function bodeplot_GridIOsiso
extends Modelica.Icons.Function;
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input Modelica.Units.SI.Time tlin = 30;

algorithm

// linearize and plot

Modelica_LinearSystems2.ModelAnalysis.
TransferFunctions (

"OpenIPSL.ThreeMIB.Systems.GridIOsiso",
simulationSetup=

Modelica_LinearSystems2.Records.
SimulationOptionsForLinearization (

linearizeAtInitial=false,

t_linearize=tlin));

end bodeplot_GridIOsiso;

Figure 8 illustrates the frequency response of the sys-
tem, showing both the magnitude and phase of the terminal
voltage as functions of frequency for increasing values of
the PSS gain (K,,). These values were obtained from the
designs in (F. J. De Marco, Martins, and Ferraz 2012). The
adjustment K,, adjusts the phase change introduced by the
system as shown in Figure 8a. When the PSS is disabled
by setting K, = 0, the phase curve introduces a negative
phase shift in the frequency response. Increasing K,, to 15
and 35 shows an improvement in phase around the reso-
nant frequency, reducing the phase lag, which is crucial to
effectively damp system oscillations. The magnitude plot
as shown in Figure 8b reveals the system’s sensitivity to
frequency changes for different PSS gains. With increasing
K,,, there are noticeable peaks in the magnitude response,
particularly around the resonant frequencies, suggesting
an enhanced ability of the PSS to counteract perturbations
effectively. However, higher gains (K, = 35) introduce
sharp peaks that could lead to potential system instability
under certain conditions.

The PSS is tuned by receiving a feedback signal from the
rotor speed of the synchronous machine. Figure 9 demon-
strates the time-domain simulation of the rotor speed of
Generator 1 after a load disturbance at t = 30.5 seconds,
clearly demonstrating the impact of varying PSS gain val-
ues on the stability of the system. With the PSS disabled
(K,, = 0), the rotor speed experiences substantial oscilla-
tions, indicating poor damping characteristics. With an
increase of K, to 15 and 35 there is an improvement in
damping performance, with the rotor speed quickly stabiliz-
ing and exhibiting minimal oscillatory behavior. This anal-
ysis underscores the effectiveness of PSS in enhancing the
system’s dynamic response to disturbances, highlighting
the critical role of appropriate PSS tuning in maintaining
system stability.

To further investigate this power system dynamics, Fig-
ure 10 provides further insight into the stability of the sys-
tem by illustrating the pole positions of the GridIOsiso
model under varying PSS gains. With the PSS disabled
(K,, = 0), the poles marked with pink crosses highlight
a critically damped system with potential for sustained
oscillations. Increasing K,, to 15 (red) and 35 (dark red)
shows a shift in the poles, which move toward the left in
the complex plane. This indicates improved damping and
stability, thus emphasizing the significant influence of PSS
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Figure 8. Bode Plot of the GridIOsiso model for three values of
the PSS gain (K,,)

tuning on the system dynamics. Moreover, this illustrates
the value of complementing non-linear simulations with
linear methods when assessing control system designs.

6 Conclusions

In this work, Modelica and the OpenIPSL library have been
utilized to build a multi-machine power system model de-
veloped for the analysis of intra-plant and inter-area modes.
The model is refactored and extended to implement a con-
trol system design and analyze its performance. This is
done by exploiting the object-oriented modeling features
of Modelica. Linearization capabilities provide an advan-
tage over other domain-specific tools in implementing this
design and performing an analysis of the model. Given the
complexity of power systems and the critical role of stabil-
ity and dynamic behavior as illustrated in Figure 10, careful
control design analysis is essential to ensure the robustness
of the system to dynamic conditions and disturbances.
This study demonstrates how Modelica and OpenIPSL
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Figure 10. Poles of the GridIO model

can be used to assist in control design analysis and im-
prove power system dynamic performance by testing con-
trol system designs. The modifications (model re-factoring
and extension) aim to effectively address the complexities
of power system stability studies effectively. Additional
work includes the development of detailed examples of
the actual design of the PSS using the unique features of
Modelica and the integration of the models presented into
the OpenIPSL library.

To access the models in this paper before they are in-
tegrated into OpenIPSL, the reader can find them in the
following GitHub repository: https://github.com/
ALSETLab/AMCONF2024_ThreeMIB
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Abstract

Vendors of power system simulation tools are investigat-
ing the incorporation of actual controller code into spe-
cialized simulation environments. To facilitate this, IEEE
and CIGRE have collaboratively created the [IEEE/CIGRE
DLL Modeling Standard. However, adoption by simula-
tion tool providers has been minimal. The limited adop-
tion is because ‘real code’ models per the IEEE/CIGRE
DLL Modeling Standard must be provided as DLLs by
equipment vendors. Thus, to support the standard, tools
need to support a standard-specific interface and provide
additional functions to execute the models.

This paper presents a method for integrating ’real
controller code’ models (RCMs) built according to the
IEEE/CIGRE DLL Modeling Standard into Modelica-
based tools. This is achieved by linking precompiled C
code to Modelica models and using components from the
OpenIPSL library. The approach is demonstrated with
an RCM of a simplified silicon-controlled rectifier exci-
tation system (SCRX). The paper discusses the details of
the implementation, challenges, and solutions. The find-
ings show that this method allows RCMs to be used in
Modelica tools for power system simulations, providing a
valuable alternative to specialized simulation tools.
Keywords: IEEE/CIGRE DLL Modeling Standard, Gener-
ator excitation, Power Systems, Power System Simulation,
External Object

1 Introduction
1.1 Motivation

In modern control systems engineering, the ability to test
and validate control strategies under diverse and realis-
tic conditions is paramount. Traditional controller test-
ing methods often fail to replicate real-world scenarios,
leading to discrepancies between the simulated and ac-
tual performance of the system under test. To bridge this
gap, the integration of controller code into simulation en-
vironments has emerged as a crucial step, often referred
to as “Software-In-the-Loop” (SIL) simulation (Schaub,
Hellerer, and Bodenmiiller 2012). By incorporating the
controller code into SIL, the number of discrepancies be-
tween simulation results and field measurements can be
reduced, improving the accuracy and reliability of simula-
tion models (Ramasubramanian et al. 2024). However, in
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the field of power system simulation, this remains a chal-
lenging situation for multiple reasons. One of the difficul-
ties faced is that of exchanging models between electro-
magnetic transient (EMT) simulation platforms and/or dy-
namic simulation tools (transient stability or phasor sim-
ulators). To a large extent, this is mainly due to the lack
of a standardized equation-based modeling language for
model exchange, leading to inconsistencies in simulation
results between different tools. This inconsistency can re-
sult in speculation about the accuracy of the model or the
adequacy of a simulation tool, highlighting the need for a
more consistent model exchange mechanism (Rogersten,
Vanfretti, and Li 2015).

Power system simulation tool vendors and users have
started to explore the integration of ’real controller code’
models (RCMs) into domain-specific simulation environ-
ments. They have established a joint effort within two
professional organizations (CIGRE and IEEE ') to de-
velop a domain-specific approach to perform such integra-
tion, known as the IEEE/CIGRE DLL Modeling Standard
(ICDMS). Unfortunately, the proposed approach has only
been adopted by a few power system simulation tool ven-
dors, limiting the use of such RCMs to those tools. This
adoption has been limited because the RCMs, according
to the IEEE/CIGRE DLL Modeling Standard (ICDMS),
are to be provided as DLLs (Dynamic Link Libraries)
by equipment vendors. Hence, to support this standard
within a simulation environment, a standard-specific inter-
face needs to be called, and to run the models additional
ancillary functions need to be developed.

To expand the potential use of such models beyond
domain-specific power system tools and leverage the built-
in features of the Modelica language for integrating ex-
ternal objects, this paper presents a novel method for in-
corporating precompiled C code to support the ICDMS

! According to https://www.electranix.com/
ieee-pes-tass-realcodewqg/ thisis under the IEEE Task Force
“Use of Real-Code in EMT Models for Power System Analysis” and
according to https://tinyurl.com/ieee-cigre-dll-tor
this is a Joint Task Force under CIGRE Study Committe B4, with Title:
“Guidelines for Use of Real-Code in EMT Models for HVDC, FACTS
and Inverter based generators in Power Systems Analysis”.

CIGRE is the International Council on Large Electric Systems, which
is a professional global non-profit in the field of high voltage.

The Institute of Electrical and Electronics Engineers (IEEE) is a pro-
fessional association for electronics engineering, electrical engineering,
and other related disciplines
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domain-specific standard within the Modelica language
and the OpenIPSL library.

1.2 Related Works

The modeling and simulation community has success-
fully developed interoperable standards, such as the Func-
tional Mock-up Interface (FMI) (Junghanns et al. 2021)
and the Functional Mock-up Interface for Embedded Sys-
tems (eFMI) (Lenord et al. 2021), which aim to stream-
line model exchange and integration in simulation envi-
ronments. However, there are still significant challenges
to achieve widespread adoption, especially in engineer-
ing areas where domain-specific approaches are the rule,
which is the case for the electrical power industry (Van-
fretti, Li, et al. 2013).

Meanwhile, within the power industry itself, previous
efforts to standardize equipment models have not been
successful due to their lack of adoption. One particular ex-
ample is that of the generic software interface developed
as part of the IEC 61400-27-1:2020 standard “Wind en-
ergy generation systems - Part 27-1: Electrical simulation
models - Generic models” (see https://webstore.
iec.ch/publication/32564), which intended to
provide both generic models and an interface method for
vendor-specific wind turbine models.

These grid standards have been unsuccessful as equip-
ment manufacturers have been slow to adopt them and
provide equipment models according to the standards, re-
sulting in persistent difficulties in model exchange. Man-
ufacturers are discouraged in adopting any of these stan-
dards due to the customers’ preference for tool-specific
implementations (e.g., PSCAD and PSS/E), which leads
to tool lock-in. Although there have been efforts in Europe
to develop the Common Grid Model Exchange Specifica-
tion (see https://tinyurl.com/cgmes2p5); sim-
ulation tools built and used outside Europe have not yet
adopted this standard. What this implies for user’s that
need functionalities not yet supported by domain-specific
simulation tools, or that want to use Modelica-complaint
simulation environments, is that the domain-specific ap-
proach has to be somehow supported within the Model-
ica ecosystem. This is what is attempted in this paper
for the case of the IEEE/CIGRE DLL Modeling Standard
(ICDMS).

In addition to implementing the ICDMS, means to sim-
ulate the reminder of the power grid in Modelica tools
are required. Fortunately, an effort to port the behavioral
model descriptions in Modelica replicating those of the
PSS/E software (the simulation tool most used in the US
and the Nordic countries) has been in place for almost a
decade (T. Bogodorova et al. 2013; Vanfretti, Tetiana Bo-
godorova, and Baudette 2014; Zhang et al. 2015), which
makes it possible to reproduce power system dynamic
simulation results like those expected by industry practi-
tioners. The OpenIPSL(de Castro et al. 2023) is a Mod-
elica library that provides robust models and enhanced
portability aimed at building an open-source software-
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based encyclopedia of dynamic power system models that
can be exploited by multiple modeling tools that are com-
pliant with the Modelica language specification. The
OpenlPSL is used here to set up power grid simulation
models in which the RCMs are included.

1.3 Contributions

This paper presents a method for integrating RCMs built
according to the IEEE/CIGRE DLL Modeling Standard
(ICDMS) into Modelica-based tools. This is achieved by
linking precompiled C code to Modelica models and us-
ing components from the OpenIPSL library. The approach
is demonstrated with an RCM of a simplified silicon-
controlled rectifier excitation system (SCRX).

Our demonstration involves modifying and compiling
the code of the SCRX RCM into Dynamic Link Libraries
(DLLs), following the ICDMS. This standardization en-
sures compatibility with domain-specific standards and fa-
cilitates the seamless incorporation of controller code into
Modelica simulations. The primary contribution of this
paper is the detailed description of the process used to
integrate the precompiled DLLs into the simulation envi-
ronment, enabling extensive testing and validation of the
controller code.

2 Background on the IEEE/CIGRE
DLL Modeling Standard

To explain how the ICDMS functions, the simulation
workflow shown in Figure 1 is used. It starts with “Al-
locate Memory”, where memory for inputs, outputs, and
parameters is allocated. Model Initialization then sets ini-
tial conditions and parameters. The Update Input step
reads the current input values, followed by Run Calcula-
tion, where the model computes the output based on input
values and parameters. Finally, Update Output writes the
results to the output variables, completing one simulation
cycle. This workflow repeats, allowing dynamic simula-
tion of the controller’s behavior.

Model Structure

Allocate Structure
Memory

1

Input/Output Definition

!

Model Initialization ‘
Parameter Initialization

|
¢ {
{

17
Update Input
¥
Run Calculation }
L]
[ Update Output

Check Parameter
Range

Figure 1. Model Structure and Simulation Workflow according
to the IEEE/CIGRE DLL Modeling Standard

The implementation of the workflow in Figure 1 fol-
lows the ICDMS by defining a clear structure for in-
put signals, output signals, and parameters using stan-
dardized data types and units. Standardized functions



such as Model_Getlnfo, Model_CheckParameters, and
Model_Initialize ensure proper initialization and param-
eter validation. The Model_Outputs function performs the
main computational tasks, adhering to the fixed time step
approach common in the real-world controller firmware.
Each model to be developed using this approach needs to
be compiled into a DLL, enabling its use across various
simulation tools. However, this requires that the ICDMS
be supported by the simulation tool.

3 Implementing the IEEE/CIGRE
DLL Modeling Standard in Model-
ica

In the following section, the SCRX RCM is used as an

example to illustrate the implementation of the interface

between the C code and the Modelica language. The same
methodology can be applied to other controller codes fol-
lowing the same ICDMS. It should be noted that the

SCRX RCM is one of the examples used in the develop-

ment of the ICDMS.

This example demonstrates the capability to interface

a DDL of an RCM with a Modelica library and simula-
tion tool. In most cases, controller manufacturers will not
disclose their controller structure and may only provide
parameter values, which would require a clean-room re-
implementation similar to those in (Laera et al. 2022) to
be used in a Modelica tool. However, if they follow the
approach proposed in this paper, RCMs provided by man-
ufacturers could be used to run simulations without the
need of a complete re-implementation in Modelica.

3.1 External Object Integration

In ICDMS, structures store all the information about a
controller including the simulation time step, the num-
ber of input/output, the parameter values and other in-
formation. To access a structure defined in C, we have
to define a class in Modelica as shown in Listing 1. A
constructor and destructor must be specified in
a class to initialize and de-initialize an object from a class.
This is essential for the computer to allocate and free the
memory that stores the data of the structure.

Listing 1. SCRX Class Real-code Modelica Implementation.

class SCRX9_DLL

1
extends ExternalObject; 2
function constructor 3
output SCRX9_DLL scrx9_dll; 4
external "C" scrx9_dll = init_scrx_model () 5
annotation (Library="SCRX9",
LibraryDirectory="modelica://OpenIPSL/
Resources/Library");
end constructor; 6
function destructor 7
input SCRX9_DLL scrx9_dll; 8
external "C" deinit_scrx_model (scrx9_dll) 9

annotation (Library="SCRX9",
LibraryDirectory="modelica://OpenIPSL/
Resources/Library") ;

end destructor; 10
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end SCRX9_DLL; 11

The external C function init_scrx_model is called
at line 5 of Listing 1 to allocate memory space. In
annotation, the library name and directory have to be
specified for the compiler to know where to look for the
required functions.

Listing 2. init_scrx_model Function Implementation.

__declspec(dllexport) voidx __cdecl 1
init_scrx_model (void)

IEEE_Cigre_DLLInterface_Instance* instance =3
(IEEE_Cigre_DLLInterface_Instancex)
malloc (sizeof (
IEEE_Cigre_DLLInterface_Instance));

. 4
/+*PARAMETER INITIALIZATIONx*/ 5

. 6
double » states = malloc(6 * sizeof (double) 7

)i

instance->DoubleStates = states; 8
Model_Initialize (instance); 9

10

return (void x) instance; 11

} 12

The C functions shown in Listing 2 initialize all the
parameters (Line 5) of the instance and allocate memory
space (Line 7) to save key state values, when the construc-
tor is called. Since most controller consists of integra-
tors that require memory, line 7 allocates memory space
to store the states of the integrators. Line 11 returns the
address of the instance to access this initialized instance
later in Modelica functions. From line 4 of Listing 1, the
returned address is returned again by the constructor as an
external object of class SCRX9_DLL.

Having initialized and allocated memory, the model
needs to be accessed and integrated to a power system
model. As an excitation control system, the example
model features two primary inputs: ETERM, represent-
ing the generator’s terminal voltage, and XADIFD, rep-
resenting the field current, both initialized to steady-state
values to avoid initialization problems. The EFD output is
the generated field voltage. The object scrx9_struct
wraps the states and parameters of the SCRX controller
initialized in Line 3 of the Listing 2. The algorithm sec-
tion updates the controller’s state from the input port us-
ing the update function shown in Listing 4. The re-
sulting field voltage is obtained through model_output
function defined in Listing 5. In addition, the function
update_scrx_input shown in Listing 4 reads the val-
ues from the input ports in Modelica and updates them in
the defined C instance.

Listing 3. SCRX Controller Modelica Model.

model SCRX 1

Modelica.Blocks.Interfaces.RealInput ETERM( 2
start = 1);
Modelica.Blocks.Interfaces.RealInput XADIFD ( 3
start = 1.325);
Modelica.Blocks.Interfaces.RealOutput EFD; 4
10.3384/ECP20772
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Ec (measured voltage), VOEL (over excitation limit), and
others. The output, EFD, represents the generated field
voltage. Furthermore, the state variables, stored in the
EFD:=Functions.model output (SCrx9_struct); g DoubleStates array (see Line 16) within the instance,
when terminal () then 9 are also included. The function opens the file in binary

Functions.save_ss_state (scrx9_struct); 10 write mode, populates the array with the extracted values,
el Tlnerg " and writes the entire array to the file (see Line 18). This

SCRX9_DLL scrx9_struct = SCRX9_DLL(); 5

algorithm 6

Functions.update (scrx9_struct,time,1,ETERM,0, 7
XADIFD, ETERM, 0, 0) ;

end SCRX; 12

DOI

Listing 4. update Function Implementation.

__declspec(dllexport) void ___cdecl 1
update_scrx_input (
IEEE_Cigre_DLLInterface_Instance* instance,
double sim_time_input, double vref,double ec
4
double vs,double ifd,double vt,double vuel, 2

double voel) {
MyModelInputs* inputs = (MyModelInputsx)
instance->ExternalInputs;

w

process ensures that all critical data required by the con-
troller are preserved, enabling the analysis and potential
reinitialization of the system at the desired state in future
simulations.

Listing 6. save_ss_state Function Implementation.

__declspec(dllexport) void __cdecl 1
save_states (
IEEE_Cigre_DLLInterface_Instancex
instance)

MyModelOutputs* outputs = (MyModelOutputs 3

inputs->IFD = ifd; // Field current 4 «) instance->ExternalOutputs;
inputs—>vT = Yt; // Terminal voltage 5 MyModelInputs* inputs = (MyModelInputsx) 4
... // Other inputs 6 instance->ExternalInputs;
sim_time = sim time input; 7 int listSize = 7+1+6; Sinput+output+ 5
bi 8 states
double list[listSize]; 6
o 4 . . FILEx file = fopen("list.dat", "wb"); 7
Listing 5. model_output Function Implementation. i (efie 0= WEL g
__declspec(dllexport) double __cdecl 1 { 9
model_calculate ( 1list[0] = inputs->VRef; 10
IEEE_Cigre_DLLInterface_Instancex instance) list[1l] = inputs->Ec; 11
{ .../*More Input statesx/ 12
MyModelOutputs* outputs = (MyModelOutputsx) 2 list[6] = inputs->VOEL; 13
instance->ExternalOutputs; list[7] = outputs—>EFD; 14
if (sim_time != pre_sim_time) 3 for (int i = 0; 1 < 6; i++){ 15
{ 4 list[8+i] = instance—> 16
Model_Outputs (instance); 5 DoubleStates[i];
pre_sim_time = sim_time; 6 } 17
} 7 fwrite(list, sizeof (double), listSize 18
return outputs->EFD; 8 , file);
he 9 fclose (file); 19
} 20
At each time step of the simulation, the program will } 21

callmodel_calculate shown in Listing 5 to calculate
the output with Model_Outputs. The calculation re-
sult will return to Modelica as a floating number or a list
of floating numbers depend on the type of the controller
(multiple input single output or multiple input multiple
output).

3.2 Initialization of the External Object

Initializing the RCM requires us to ensure that the simu-
lation starts from a valid equilibrium point. Consequently,
this requires sending data to the external object and link-
ing its output to the rest of the system model. In the case

of the SCRX RCM, this means passing the measured volt- P
age from the bus bar to the excitation system and returning y&zcﬁ::us Exciter Synchronous Power
the field voltage value at the equilibrium condition. Regulator Machine System

To this end, the C function shown in Listing 6 is called
at the termination of each simulation (see Line 10 of List-
ing 3) to extract the current values of the controller’s in-
puts, outputs, and state variables, storing them in an array
for writing to a binary file. For the SCRX controller, the
inputs include signals such as VRef (reference voltage),
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3.3 Illustration with the SCRX Excitation
Model

The SCRX excitation model is a simplified control sys-
tem designed to regulate the field voltage of a synchronous
generator, thereby maintaining the machine’s AC voltage
at a specified reference set-point. This section introduces
the excitation controller and illustrates its block diagram
and overall system structure shown in Fig.2.

<

—
Excitation Control System

Figure 2. Synchronous Machine Control System(IEEE 2007).

The Synchronous Machine Regulator generates control
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Figure 3. Excitation Control System (“IEEE Standard Defini-
tions for Excitation Systems for Synchronous Machines” 2022).

signals based on the reference voltage (V_REF) and feed-
back signals from the synchronous machine. It takes these
inputs to produce an appropriate control command for
the exciter. The Exciter modulates the field voltage of
the synchronous machine in response to the control com-
mands from the regulator. It serves as an intermediary that
translates the regulator’s signals into field winding volt-
age adjustments. The Synchronous Machine is the plant
of this system that converts rotational mechanical energy
into electrical power. It responds to the field voltage ad-
justments made by the exciter and influences the voltage
and stability of the broader power system. The Power Sys-
tem represents the electrical grid of which the synchronous
machine is part. The primary goal of the excitation system
is to maintain the desired voltage levels at the generator
terminals.

The SCRX excitation model shown in Figure 3 presents
a detailed block diagram and standardized modeling ap-
proach that is generally adopted to represent how the con-
trol of the field voltage of the synchronous generators is
achieved (“IEEE Standard Definitions for Excitation Sys-
tems for Synchronous Machines” 2022). The integration
of this model into power system simulations allows for
extensive testing and validation, ensuring optimal perfor-
mance under various operational conditions.

Table 1 lists the parameters and the default values re-
quired by the SCRX controller, including time constants
(TAdTB, TB, TE), controller gain (K), and voltage lim-
its (EMin, EMax), as well as the power source selection
switch (CSwitch) and the field resistance ratio (RCdRFD).
These parameters are essential for configuring the con-
troller to operate within the desired specifications and to
ensure compatibility with the ICDMS.

Table 2 lists the input signals such as the reference volt-
age (VRef), measured voltage (Ec), stabilizer signal (Vs),
field current (IFD), terminal voltage (VT), and excitation
limits (VUEL and VOEL), which are used to dynamically
adjust the controller performance during simulation. Table
3 defines the output signal (EFD), representing the output
machine field voltage.

These tables illustrate the format typically used to de-
fine the models of excitation control systems. Note that
the ICDMS adopts this formating to specify the parameter,
input, and output specifications of all RCMs. This would
allow us to use the RCMs in any simulation environment
adhering to the ICDMS.
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Table 1. SCRX Parameters.

Parameters Description Default
TAdTB Time Constant 0.1

TB Time Constant 10

K Controller Gain 100

TE Time Constant 0.05
EMin Min Field Voltage -10
EMax Max Field Voltage 10
CSwitch Power Source Select 1
RCdRFD Field resistance ratio 10

Table 2. SCRX Input Signals.

Vref Reference voltage
Ec Measured voltage
Vs Stabilizer signal
IFD Field Current
VT Terminal Votlage
VUEL Under Excitation Limit
VOEL Over Excitation Limit
4 Results

4.1 Testing Power Network Model

The power network model that incorporates the SCRX
model is constructed using the OpenIPSL and is shown in
Fig.4. This power system model provides a platform for
testing both RCM and standard OpenIPSL built-in SCRX9
example controllers.

The power network consists of a synchronous genera-
tor connected to an infinite bus through transmission lines,
buses, and including a load. The generator is controlled
by an SCRX excitation system, which regulates the field
voltage (EFD) to maintain the desired power output. A
short fault was applied between Bus2 and Bus3 starting
at 2 seconds and stopping at 2.15 seconds. This net-
work allows for comprehensive testing and validation of
the SCRX controller integrated as an RCM in DLL form,
following the ICDMS. By simulating a short fault (i.e.,
a large disturbance), the power network response can be

R=0.0005 p.u.

R=0.0005 p.u.
Bus1 y-01pu.

X=0.1p.u.

Generator

Inf. Bus

Bus:
R=0.0005 p.u.
X=0.1p.u.

Bus3

P=50MW -y Short Fault
Q=10MVar ~ | Start=2s
Stop =2.15s

Figure 4. SCRX Controller within a Testing Power Network.
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Figure 5. SCRX Controller in OpenIPSL.

Table 3. SCRX Output Signal.

EFD Output Signal Voltage

used to evaluate the performance of the RCM in handling
dynamic events.

4.2 Original SCRX Controller Simulation Re-
sult

SHUNT

GEN2 9ENCLS

gt

FAULT

constantLoad

Figure 6. SCRX9 Simulation Example in OpenIPSL.

OpenIPSL contains a model of the SCRX excitation
control system, which is shown in Figure 5. In this model,
the SCRX is implemented with traditional lead-lag and
phase-lag compensators, similar to what is specified in
(“IEEE Standard Definitions for Excitation Systems for
Synchronous Machines” 2022) and shown in Figure 2.
The default parameters in Table 1 are used in this model to
compare with the model implemented using the external
DLL library. Meanwhile, the grid network is built with
OpenlIPSL and the generator is controlled by the SCRX
RCM, as shown in Figure 6.

Simulating the model in Figure 6 yields the results
shown in Figure 7, where two subplots: 1. Generator Volt-
age (p.u.); 2. SCRX Field Voltage (EFD, Volts). Before
the fault occurs, the generator voltage is stable at the ref-
erence value of 1.0 p.u., and the field voltage (EFD) is
maintained in steady state by the SCRX. When the fault
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Figure 7. Simulation Result: Bus1 Voltage (Top); SCRX Output
Voltage (Bottom).

occurs at 2.0 seconds, there is a significant drop in the
generator voltage to approximately 0.4 p.u. The SCRX
controller responds by sharply increasing the field voltage
to counteract the voltage dip and stabilize the generator.
The peak field voltage reaches around 10 Volts (EMAX)
shortly after the fault initiation. Once the fault is cleared
at 2.15 seconds, the generator voltage initially overshoots
about 0.2 p.u. before settling back to the reference value.
The SCRX controller adjusts the field voltage accordingly,
first reducing it to correct the overshoot and then gradu-
ally stabilizing it around the required level to maintain the
generator voltage at 1.0 p.u. The performance metrics ob-
served in this simulation can be used as a reference for
further testing and comparison with the RCM.

4.3 External Object SCRX Controller Simula-
tion Result

Next, we compare the implementation of the ICDMS us-
ing the ‘real code’ implementation of the SCRX model.
Figure 8 shows the simulation diagram with an exci-
tation controller of the generator replaced with the ‘real-
code’ implementation. The original SCRX controller has
6 inputs. However, 4 of them remain zero during the sim-
ulation. Thus, for simplicity of the block, only two feed-
back ports are preserved, and the input voltage set point is
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Figure 8. SCRX Controller With Real-Code Implementation.
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Figure 9. Simulation Result: Bus1 Voltage (Top); SCRX Output
Voltage (Bottom).

always set to 1 p.u.

The comparison results shown in Figure 9 indicate that
the real code SCRX controller, implemented as a DLL
following the ICDMS , performs similarly to the original
Modelica-based model from OpenIPSL. This successful
integration and matching performance validate the RCM
compatibility and robustness within the Modelica simula-
tion environment. Although the comparison of simulation
performance (e.g., time required to simulate) was part of
our experimental analysis, we observed significant vari-
ability in simulation times between different runs. This
variability led us to conclude that the operating system’s
task scheduling had a substantial impact on the simulation
time. As a result, we were unable to provide a consistent
and meaningful comparison of simulation times between
the two approaches.

5 Conclusions and Future Work

By achieving consistent behavior across different imple-
mentations, this study confirms that the IEEE/CIGRE
DLL Modeling Standard (IDMS) can be implemented in
Modelica to support RCMs. These models can be seam-
lessly integrated with Modelica models of power system
components, as shown using the OpenIPSL library, and

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

tested in simulation scenarios. This offers the possibility
of performing power system simulations without the need
for domain-specific tools, which is valuable for practition-
ers and researchers who need to develop models that com-
ply with the ICDMS. These results support the broader use
of RCMs in power system simulations with Modelica, en-
hancing the flexibility and reliability of power system sim-
ulations and control systems for industrial applications.

The implementation has been tested using the Dymola
software. Future work involves releasing the developed
code to implement the ICDMS, integrating the examples
in this paper into the OpenlIPSL library, and conducting
tests with OpenModelica.

Although the prototype implementation approach used
herein requires one to create treat each RCM individually
and, therefore, providing interfacing functions and a Mod-
elica model for each RCM, this process can be automated
by developing generic Modelica functions that extract and
pass information to a generic DLL. This will be explored
in future work.

In addition, future work includes the development of
unit testing to assess the performance of the integrated
DLLs and determine if additional error handling functions
would be required to protect against unexpected DLL nu-
merical errors or other unwanted simulation behavior.

Finally, the authors will explore the potential wrapping
of RCMs with FMI and compare the benefits and draw-
backs with the approach proposed herein.
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Abstract

The use of hydrogen gas as an alternative fuel to power en-
ergy systems has been a topic of research over the last few
decades and is currently gaining importance, even more
due to current circumstances related to decarbonise energy
supply. One focus of research is the use of hydrogen gas in
combined heat and power gas engines, as this type of en-
ergy conversion is known for its high efficiency. For this
reason, a cross-border project between France and Ger-
many is developing a living laboratory in the Upper Rhine
region to investigate the feasibility of hydrogen gas as an
alternative fuel in a holistic decentralised energy system!.
It consists of several energy components, including a poly-
mer electrolyte membrane electrolyser (PEMEC), gas en-
gine combined heat and power (CHP) unit, photovoltaic
(PV) panels, hydrogen storage, thermal and electrical en-
ergy storage. To enable and demonstrate multiple what-if
scenarios of possible variations of the energy system, a
simulation model was developed using Modelica. Users,
e.g. local authorities, landlords, businessman etc., of this
simulation model could utilize it as a decision support tool
for designing a carbon neutral energy system for their own
use. This paper describes the development of the model
and its application with real measured data from munici-
pal buildings in the city of Offenburg, Germany. The re-
sults indicate that the suitability of the model and the use
of hydrogen CHPs can be beneficial for this specific use
case.

Keywords: Hydrogen, HVAC, CHP, Electrolyser, Gas en-
gine, Cogeneration

1 Introduction

The primary motivation for undertaking these projects is
the ambitious objective to reduce greenhouse gas emis-
sions. Germany set goals to reduce these by at least
65% by 2030 and 88% by 2040, compared to 1990 lev-
els (Umweltbundesamt 2023b). These goals align with the
Paris Agreement and the Kyoto Protocol, forming part of
the climate protection strategies of the EU and the United
Nations. Given these targets, hydrogen is likely to play
a crucial role in the energy transition due to its potential
for carbon-neutral production. On 14" November 2023,

'For more information please visit this website: https://
co2inno.com

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Germany’s Vice-Chancellor Robert Habeck announced a
plan for a 9,700 km hydrogen network, set to start in 2024.
This network is part of the European Hydrogen Backbone
initiative, comprised of thirty-three energy infrastructure
operators with a vision for a climate-neutral Europe sup-
ported by a renewable and low-carbon hydrogen market
(Reuters 2023; European Hydrogen Backbone 2024). De-
spite the initiative’s early stage, concerns have been raised
about the inclusion of small and medium-sized locations,
with Offenburg, for example, not being connected to the
hydrogen backbone until 2035. Yet, Offenburg aims for
carbon neutrality, partly through hydrogen as a green en-
ergy carrier. Given that the city already operates gas en-
gine CHP units, an investigation into the feasibility of
transitioning them to hydrogen is required. When compar-
ing hydrogen-based gas engine CHP units with fuel cell
CHP units, both offer the advantage of no green house
gas emissions. While fuel cells have higher electrical effi-
ciency, gas engines often provide better thermal efficiency
due to higher combustion temperatures. Additionally, gas
engines benefit from shorter startup times and the capabil-
ity for modulation (Ellamla et al. 2015; Elmer et al. 2015).
The purchase, installation and operating costs of gas en-
gine CHP units are also generally lower (see (Danish En-
ergy Agency 2024)). To ensure a precise and practical in-
vestigation, measurement data concerning heat and elec-
tricity demand from five communal buildings were pro-
vided, which are located in Offenburgz.

This paper is structured as follows: Section 2 describes
the model considered in this study and the equations im-
plemented in the newly developed modules. Section 3
presents the validation of the model. Section 4 details the
construction, simulation and results of a case study using
the data provided by the city of Offenburg. Lastly, section
5 discusses the results and outlines future work.

2  Schematic Model Description

Wherever possible, open-source Modelica libraries com-
patible with OpenModelica were integrated to ensure the
software remains open-source. The Modelica Buildings
library was utilized for modeling PV systems, batteries,
and the grid (Wetter et al. 2014). For the heat pump, an

2The software is compatible with OpenModelica and will be pub-
lished here: https://github.com/IKKUengine
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empirical approach was adopted based on Ruhnau et al.
(2019) for both accuracy and to simplify programming.
This methodology allows for the selection between air-,
ground-, and water-source heat pumps, as well as between
floor heating or radiator heating. Additionally, a simpli-
fied thermal energy storage system was implemented to
facilitate easier control of the CHP units. This section
outlines the modeling methodology for gas engine CHP
units, PEMEC, hydrogen storage, compressors, and con-
trol strategies.

Table 1. Notation

Apem m Area membrane
CF Correction factor

E \Y% Operating voltage

Ey v Reversible cell voltage

Eqcr i kJ/mol Activation energy

F C/mol e Faraday constant

Leerr A Cell current

Jok A/m?>  Current exchange density at k

Jeell A/ m?  Current exchange density at
the anode or cathode

Jet A/m?>  Reference exchange current
density

LHYV; kWh/kg Lower heating value

M; kg/mol Molar mass of i
P w Electrical power
R J/(mol- Universal gas constant
K)
Roim Q Resistance
SocC State of Charge of the storage
T K Temperature in Kelvin
0; w Heat flow
V; Nm?/h  Volume flow
Vet \" Activation voltage
Veell \" Cell voltage
Veon \'% Transport voltage
Vohm \" Ohmic voltage
Vo \Y% Open circuit voltage
Vin \Y Thermo-neutral voltage
Y Minimum threshold
zZ Modulation of the CHP plant
m; kg Total mass of fuel needed
1 kg/s Mass flow rate
n; Count
Di Pa Pressure
Vi Stoichiometric coefficients
Ol Symmetry factor
Omem S/m Proton conductivity of the
membrane
v Relative difference
AG kJ/mol Gibbs free energy
AH kJ/mol Work enthalpy
10.3384/ECP20780
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2.1 Gas Engine CHP

Two different modelling approaches were carried out. The
first one being a gas engine CHP operating with a sta-
tionary heat and power output under nominal conditions.
Second, an empirical approach was used for a gas engine
CHP model that can follow a heat load up to a given max-
imum and minimum modulation. Both models are de-
signed for heat-driven operation, where sizing and oper-
ation are based on the heat demand of the consumer. This
is because heat-guided CHPs are the most common (Ar-
beitsgruppe Erneuerbare Energien-Statistik 2015, pp. 16—
17).

One of the most important key performance indices for
an gas eninge CHP are the utilisation hours 7. These will
help to evaluate the performance of the CHP later on and
is defined as:

_ Ecnpa
Pn()m

where Ecpp, is the energy delivered within one year and
Poom 1s the nominal power of the cogeneration unit. This
value can be calculated using either thermal or electrical
energy. In this paper only heat energy and power will be
considered due to the fact that the CHP is heat guided.

2.1.1 Stationary Gas Engine CHP Model

Normally, gas engine CHP units are running under nomi-
nal conditions. Excess heat is stored in a buffer tank. Elec-
tricity is either consumed, stored in the battery (BAT) or
fed into the grid. When the load is lower, the efficiency of
the CHP decreases, so a minimum threshold Y is set as a
turn-on condition, which by default is > 50 %:

T

ey

Y = Pth,dem

l)th,nnm ' (2)

where Py, gem 1s the thermal heat demand and Fyj, 01, 15
the thermal heat production of the CHP at nominal condi-
tions. In order to determine the fuel consumption, nom-
inal efficiencies are required. Thereby 71,; is the ratio of
the electrical power P,; and the fuel power Py:

Pel
el — 75 3
Nel Py (3)

and 1, — also called heat yield — is the ratio of the use-
ful heat output (thermal power) P, and the fuel power:

P

Py “)

MNin

Since the gas engine is able to be fueled with natural
gas, hydrogen, or gas- hydrogen mixture, the fuel power
is calculated by:

Py =Y iit;-LHV;, ®)

where ri1; represents the fuel mass flow rate of i repre-
senting CH4 or Hy and LHYV; is the lower heating value of



the fuel (compare table 2). The total mass of fuel required
can be determined as follows:

w:/mm ©6)

Table 2. LHV of different fuels (Bender et al. 2020, p. 805)

value unit
LHVy, 33.3  kWh/kg
LHVcy, 139 kWh/kg

2.1.2 Modulation Gas Engine CHP Model

The modulation CHP model is based on an empirical
modelling approach based on Berberich et al. (2015) and
Hofner (2019). The electrical efficiency is exclusively a
function of the nominal electrical power of the CHP plant
P.1 nom and the modulation Z, which is defined as

Py

z=—71_
Pf',nom

)

with the nominal fuel power Py, and Z theoretically
ranging between 0 and 1. Within the model, the minimum
modulation Z,,;, must be predefined and should always be
greater than 0.33 and smaller than 1. P, lies in the range
between 50 kW and 18.3 MW according to Berberich et
al. (2015). The general empiric relation between Z and the
electrical efficiency is defined as:

Net = Aol +be; - (Z - Zmin)

(3)
+ Cer - [ln(Pel,nom) - ln(Pel.min)]7

where
Pel,min = el nom Zimin, )

and with the partial derivatives b,; and c,;. The min-
imum electrical efficiency a,; represents the point from
where the tangent plane is spanned. This value can be
computed by rearranging the equation and setting in the
nominal electrical efficiency Ne; nom for 1. as well as set-
ting Z to 1 (Hofner 2019, p. 16). The parameters b,; and
cq result out of the research of Berberich et al. (2015)
analysing 49 combustion engine CHP plants and are sum-
marized in table 3 (Berberich et al. 2015). In addition to
the calculation of the electrical efficiency, the calculation
of the thermal efficiency comprises the further variables
supply temperature of the heat circuit 7y and the return
temperature of the heat circuit 7,. The nominal electri-
cal power P o, and the minimum electrical power Py iy
need to be replaced in comparison to equation by the cor-
responding nominal thermal power Py, n,, and the mini-
mum thermal power By, yin:

Pth,nom

Pth,min = 'Pel7min> (10)

el ,nom
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which leads to the equation:

Nih = arn + bth : (Z - Zmin)
+ - [ln(Pth,nom) - ln(Pth,min)}
+ dyy, - (Ts - Tr,max) + e (Tr - Tr,min)

(11

with the maximum supply 7 ;e and minimum return tem-
perature 7 ,;,. The minimum thermal efficiency equates
a;;, and is reckoned through a rearranging of equation 11.
Since the partial derivatives d;, and e;;, have negative signs
(compare table 3), a;;, reaches its minimum if 7y is set to
the maximum value and 7, is set to the minimum value.
The corresponding terms will be zero. For the calculation
of the thermal efficiency 7, in equation 11 the modulation
Z is needed and redefined as following:

. Pf,tar o Pth,tar Nihnom Nth,nom
. =X ;

7 = =
P f,nom Pth.nom Nt Nih

12)

according to (Berberich et al. 2015, pp. 59-60).
Thereby are Py, the targeted fuel power and X, the ther-
mal modulation. The equation 11 and equation 12 result
in the final equation for 7, (Berberich et al. 2015, p. 62):

1
N = — 5 { —a + bip* Zinin
—Cth [ln(Pth,nom) - ln(Pth,min)]
—dp - [Tr - T;‘,min] — € [Ts - Ts,max}}
1
+ 5 (_alh + by Zinin

—Cth* [ln(Plh,nom) - ln(Pth,min)]

13)

2
—dp - [Tr - Tr,min] — € [Tv - Tv,max]))

0.5
- bth 'Xth ' nth,n()m} )

Now the produced electricity P,; is determined by:

_ Pf,rur _
Pf.,nom

P, el Nel ,nom
F, el,nom Nel

z (14)

2.2 Electrolyser

PEMEC are usually selected by the required hydrogen
mass flow rates. Mass flow rates from the reaction can be
calculated using the following equation with 7 indicating
either water, oxygen or hydrogen:

. Leen
i = vi-Mi- Ny Nees

< (15)

where v; and M; are the stoichiometric coefficients and
the molar mass, respectively (Sood et al. 2020). These
are multiplied by the cell current I.;; and divided by the
number of moles transferred n and the Faraday constant F
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Table 3. Parameters for the calculation of 7,; and 7, according
to (Berberich et al. 2015, p. 57)

Parameter Value Unit
be; 0.1089

Col 0.0255

by, -0.0746

Crh -0.0255

dp, -0.0020

e -0.0017

Zinin 0.33

Zimax 1

Tr,min 45 °C
]tv,max 90 °C

[9.6485-10* C/mol]. In this case n =2 and v; = 1 (Sood et
al. 2020). 1y represents the Faraday efficiency and N,
the total number of cells within the PEMEC. For calculat-
ing Iy losses must be considered. These losses can be
expressed by calculating the operating voltage (E) of the
PEMEC:

E =V +Vaer + Vohm + Vcnna (16)

where V,. represents the open circuit voltage, V,., acti-
vation voltage, V,,, ohmic voltage and V,,,, the transport
voltage. However, V., is negligibly small and do not play
arole in this consideration and are therefore not taken into
account (Sood et al. 2020). V. is derived from the Nernst
voltage valid for the equilibrium state:

RT :
Voe =Eg+ —-1In (pH?pOZ) , (17)
nkF am,o
with AG
Eoy=—=1229V, (18)
nkF

where R stands for the universal gas constant
[8.31447 J/(mol K)], p; for the partial pressures of the re-
spective substances involved and 7T for the temperature in
Kelvin. The partial pressures of hydrogen and oxygen are
typically determined by the system design. The water ac-
tivity ap,o between electrode and membrane corresponds
to 1, because water is fed to the cell (Ruiz Diaz 2021).
The reversible cell voltage E is then calculated with the
Gibbs free energy AG [237.22kJ/mol] at standard condi-
tions (Abdin et al. 2015; Ruiz Diaz 2021).

For calculating V,, the resistance R, is needed
which mainly includes the resistance due to the membrane
and other resistances of the cell components R,

dmem

Romm = + Rother- (19)

mem
The quantity de, denotes the thickness of the mem-
brane. The reference value of 180 um was used according
to Ojong (2018). R, must be determined experimen-
tally (Sood et al. 2020). The proton conductivity G, of

10.3384/ECP20780
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the membrane is directly related to the membrane hydra-
tion and the operating temperature. For PEM fuel cells,
the proton conductivity of the Nafion®- membrane has
been studied in detail and can be empirically expressed
as a function of membrane hydration and temperature:

Giem = (0.0051394 — 0.00326) - [1268(3037' -7 7)]
(20)

where A is the hydration number of the membrane,
which varies from 14 to 25 (Ojong 2018; Ruiz Diaz 2021;
Sood et al. 2020). The degree of hydration of the mem-
brane plays a crucial role in the performance of low-
temperature PEM fuel cells. It shows considerable vari-
ation, which makes it a critical parameter for determin-
ing fuel cell efficiency. On the other hand, for PEM wa-
ter electrolysis cells, where water is the main transport
medium, it is usually assumed that the membrane is al-
ways fully hydrated. This is why the hydration number is
estimated to be (A = 24) (Ojong 2018). V,,,, can be deter-
mined with the use of the cell current /,..;; or with the cell
current density J,.;; as following:

I 1l dmem
Vohm == = 7Jcell-

Rohm Omem
For the calculation of V,, the exchange current den-
sity needs to be obtained. This is typically done with the

Butler—Volmer equation:

2

(aknFV ) (7(l—ak)nF
Jeet1 = Joi [€\ KT ) —e kT

Vact,k) ; (22)

where oy is the symmetry factor, Jo is the current ex-
change density at k which represents either anode or cath-
ode (Ojong 2018; Ruiz Diaz 2021; Sood et al. 2020). Fur-
thermore J,.;; can be determined by using the area content
of the membrane A, according to Sood et al. (2020):

Icell

Jeet1 = (23)

Amem

Lastly the activation voltage V,, x at the anode or cath-
ode can be expressed by the following equation:

RT . Jeell
Vaerk = ——sinh ™ [ 55 )
act k F S (2-10,/{

24)

Jox must be determined for cathode and anode using a
reference exchange current density J(r)ef:

( Eaz‘Lk)
Jog =Jife\ T (25)

where the activation energy E,; x for cathode and anode
must be determined experimentally (Ojong 2018; Sood et
al. 2020). However, there are publications that use a sim-
plified model using only the exchange current density Jp «
without a reference value. Table 4 gives an overview of



the research results from which the values of Abdin et al.
(2015) seem to fit best to this PEMEC model. Other tables
can be found in the literature or have to be determined ex-
perimentally (Carmo et al. 2013; Ojong 2018; Sood et al.
2020).

Table 4. Overview of electrokinetic parameters. Abdin et al.
(2015) parameters were applied.

Parameter Abdin  Liso Marangio Ni et al.
et al. et al. et al (2006)
(2015)  (2018)  (2009)

Jo.anode 1073 5-10° 1072 102

Jocathode ~ 10° 10 10 10°

Olanode 0.8 1.2 2 0.5

Olcathode 0.25 0.5 0.5 0.5

The three important efficiencies to consider are the
Faraday efficiency 1y, cell efficiency 7..;; and the energy
efficiency 7,. The Faraday efficiency represents the cor-
relation between the actual and presumed efficiency of the
produced hydrogen output and is expressed as:

_m-n-F
My,

Ny (26)

The voltage efficiency 7, is the ratio of the thermo-
neutral voltage V},, also called the minimum required volt-
age, and the actual cell voltage V.. This requires the
work enthalpy AH [237.22 kJ/mol] at standard conditions
and is expressed as:

AH
Vip = — = 148V, 27
nkF
Vin
— (28)
' Vcell

Here the losses due to pressure, mass transport and ac-
tivation are taken into account (Ruiz Diaz 2021). At this
point it is possible to determine the overall efficiency of
the cell:

Neett = MNyf - Mv- (29)

Additionally, the energy efficiency is calculated as the
ratio of the benefit, measured as Hy mass flow expressed
in generated watts, to the input, the energy balance:

n-HHV
o= —01 (30)

B Pel _Qhe'i_Qadd'

where HHYV is the higher heating value of hydrogen
(39.4 kWh/kg) (Bender et al. 2020, p. 805). In addition to
the electrical power P,;, the heat recovered from the heat

exchangers Qy,. and the heat supplied to the system Q4
may be included in the energy balance.
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2.3 Hydrogen storage and compressor

The hydrogen storage dynamics are governed by the equa-
tion:

my, -R-T
Voortte - Moortte - Mu,”

where p; is the pressure inside the storage tank, pg the ini-
tial pressure, CF the correction factor, riiy, the mass flow
rate of hydrogen, Vj. and npe . denote the bottle’s vol-
ume and number of bottles, respectively (Albarghot et al.
2019; Gorgun 2006; Onar et al. 2006). The system is de-
signed with a maximum pressure p,,,, of 80 bar, an initial
pressure pg of 1 bar, and a bottle volume Vj,y;, of 50 litres,
mirroring laboratory setups, and np,,,;, indicates the count
of such bottles. The correction factor (CF), integral to the
equation, adjusts for deviations from ideal gas behaviour,
essentially a temperature and pressure-dependent ratio of
real to ideal gas volumes (Zucker et al. 2019, p. 327). It
is equal to one at pressures below 138 bar at ambient tem-
perature, reflecting the model’s assumption of a constant
room temperature and a slow storage process with a max-
imum pressure of 80 bar, thus simplifying CF to one for
this scenario (McCarty et al. 1981). Using this informa-
tion the state of charge (SOC) of the storage can be calcu-
lated:

pi=po+CF - (3D

Pi
pmax '
An isothermal compressor has been implemented, as-
suming an ideal gas as the compression pressures are low.
The power of the ideal compressor P, is defined as an
integral over the volume flow rate:

SOC = (32)

Peom = — /(P*I’u)dvy

where p is the compression pressure and p,, is the ambi-
ent pressure. Using the efficiency 7¢om, the effective com-
pression power required Py, can be calculated in terms of
electrical power needed:

(33)

P com

T’C()m

Pel,req = (34

2.4 Control Strategies

The control strategies play a crucial role in the perfor-
mance of the energy system. First, a BAT management
control sequence has been implemented based on Lu et al.
(2019), as the Modelica Buildings library does not offer
one. The CHP unit within the heating system plays the
most important role. This is because very small or very
large heat loads can not be met by the CHP unit, either be-
cause it is uneconomical or because the size of the engine
does not allow it. The whole control sequence is shown
in Figure 1, where TES is the thermal energy storage, HP
is the heat pump and U is the user. The control system
always checks if the TES is charged. If not, the minimum
threshold is checked and if this is exceeded, the CHP is
switched on. It is switched off when the heat load is no
longer required or when the TES is fully charged.

10.3384/ECP20780
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Electrical system control

Heating system control

AP, — Bat

AP, — PEMEL

A-Pel - Pmaz,pemel — Grid

Qioad <Y - Py onp

Qioad = PinrEs Qioad = Pinp

TES - U HP - U

Switch on CHP

Quoad > Puncp SOCrps < 100%

) )

[ Py, 78S = Quoad — Pincup

[ Qload = Pincap + Pingp

J/ J

CHP,HP — U CHP — U, TES

Figure 1. Control sequence of the implemented heating and electrical system

In general, it is possible to operate industrial PEMECs
in a grid-connected manner. However, in applications for
buildings with smaller PEMECs, low electricity prices are
very important to ensure economic viability. For this rea-
son, only self-produced electricity by e.g. PV is used for
operation. In case a BAT has been implemented as well,
excess energy should first be stored in the BAT before us-
ing it for hydrogen production, in order to reduce losses
due to lower PEMEC efficiencies. This control sequence
is also shown in Figure 1, where AP, is the difference
between the supplied electrical power P, 5, and the de-
mand Py 4em. The power requirement of the compressor is
always included when the PEMEC is in operation. If the
supply exceeds the PEMEC capacity and the BAT is fully
charged, the excess energy is sold to the grid.

Additionally the CHP only runs when sufficient hydro-
gen is in the tank and is turned off when the hydrogen tank
is empty. Similarly to the PEMEC as shown in Figure 2.

No
No

0.99 < SOC

Y

PEMEC on PEMEC off CHP off

Figure 2. Control sequences of the hydrogen tank.
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2.5 COse Calculation

For calculating CO,e emissions the emission factors need
to be known. Sources of COje emissions include com-
bustion of methane gas (202 gCO,e/kWh (Umweltbun-
desamt 2023a)) and electricity production, varying by
location and energy mix. In 2022, emission factors
were 366 gCO,e/kWh for Germany and 66 gCO,e/kWh
for France (European Environment Agency 2023). Us-
ing only green electricity, emission factors differ based
on the renewable source, ranging from 4 gCO,e/kWh
for hydro power to 475 gCO,e/kWh for liquid biomass
(Lauf et al. 2022, p. 40). The estimated green emis-
sion factors are approximately 66 gCO,e/kWh for Ger-
many and 31 gCO,e/kWh for France, reflecting their re-
spective green energy mixes (Arbeitsgruppe Erneuerbare
Energien-Statistik 2024; I’ Agence ORE et al. 2024).

3 Validation

Laboratory measurements, literature, and manufacturer
data were utilized to validate the PEMEC and gas engine
CHP models. Technical data are provided in the appendix
in Table 8 and Table 9. Initially, the PEMEC’s validation
involved conducting measurements at different hydrogen
outlet pressures (6, 8, and 10 bar) in the university labora-
tory. Table 5 is a summary of the measured values com-
pared with the simulation results at a 6 bar outlet pressure,
with the relative deviation, v, calculated using the theoret-
ical value as a reference. This procedure was also applied
to data measured at 8 and 10 bar, revealing an average rel-
ative deviation of 10%.

Due to its high complexity the modulation model
needed to be validated. Hofner (2019) has developed
a model specifically for CHP, rather than a general ap-



proach. Their efficiency curves are therefore suitable for
comparison and validation, as also shown in Figure 3.
Furthermore, the university has the manufacturer’s speci-
fications for a hydrogen-fuelled CHP unit, which are com-
pared with the simulation results in Figure 4. A deviation
is present, yet it remains within acceptable limits. Note
that both gas engine CHP units are from the same manu-
facturer (compare Table 8) (2G Energy AG 2024).
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Figure 4. Comparison of Simulation Efficiencies and Manufac-
turer Specification of agenitor 404 H, Gas Engine CHP

Table 5. Comparison of measurements and simulation at 6 bar
outlet pressure and V in Nm?> /h

Pel VHQ,real VHZ ,Sim v

334.5 0.050 0.054 0.08
555.0 0.100 0.090 0.11
817.7 0.150 0.133 0.13
1138.8 0.200 0.185 0.08
1357.8 0.222 0.220 0.01

4 Case Study

For this project, the city of Offenburg provided hourly data
for heat and electricity consumption, used in all simula-
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tions. In agreement with project partners, the five build-
ings were treated as one system to achieve climate neutral-
ity, requiring the system to be designed around the CHP,
which needs to be dimensioned first. The CHP aims to
cover the base heat demands while the HP operates as sup-
portive heat generator.Here, the classic mode of operation
of a gas-fuelled CHP unit is copied for hydrogen-fuelled
units .

The dimensioning of a heat-guided CHP plant relies
on the descending sorted annual load duration curve of
the consumer. The economic optimum for the classical
CHP and a peak load boiler, an HP, is sought, aiming for
5,000 to 6,000 full utilization hours or 10% to 30% cover-
age of thermal heat demand (Arbeitsgruppe Erneuerbare
Energien-Statistik 2015; Sokratherm GmbH n.d.; Ver-
braucherzentrale 20.05.2021). 4,000 full utilisation hours
or 15% of nominal thermal capacity at maximum heating
demand was chosen as these buildings have no domestic
hot water demand and low summer heating demand. The
optimal fit would be a CHP with a nominal thermal capac-
ity range Pyj, pom 0f 33 to 38 kW. A commercially available
hydrogen CHP was chosen, the smallest available being
the MAH 33.3 TI 311A from MAMOTEC energy solu-
tions (see technical data in Table 6) (MAMotec GmbH
2024).

Table 6. Technical data of hydrogen and natural gas CHP
(MAMotec GmbH 2024).

MAH 333 TI311A

Fuel Hydrogen
P, 38 kW
P 53.7 kW
Nel 355 %
Neh 50.2 %
Nrotal 85.7 %

Given that Offenburg will not be connected to the Eu-
ropean hydrogen grid until at least 2030, a decentralized,
standalone operation is more realistic in the near future.
Hydrogen is produced by PEMEC, stored in tanks, and
then burned by a CHP when needed. Most of the elec-
tricity demand is met by renewable energy sources, with
excess energy stored in a BAT and used to operate the PE-
MEC.

The low density of hydrogen poses storage challenges,
with the hydrogen tank being the limiting factor. Large
tanks can serve as seasonal hydrogen sinks but require sig-
nificant space and investment. Therefore, the hydrogen
tank size will be investigated through a sweep, keeping
the PV size constant. The tank pressure is maintained at
80 bar throughout the study.

Before investigating different tank sizes, the PEMEC
size must be determined. Several test simulations indi-
cated that a 500 kW PEMEC is optimal due to the unifor-
mity of hydrogen production, resulting in high full load
hours for the PEMEC. Diversifying the electricity mix
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Figure 5. Schematic set up of the decentralised stand-alone operation scenario with a modulation CHP

with PV and Wind Turbines (WT) is prudent. Reducing
the PV area to provide the required amount of renewable
energy is cost-efficient, while reducing the size of a WT is
more challenging form a technical point of view.

Figure 5 shows the schematic structure of this scenario.
The Modelica model was implemented identically to the
schematic setup. The orange blocks indicate the varia-
tion combination, the grey block indicates the parameter
for the sweep, and the white blocks indicate constants
throughout the sweeps. Only the modulation operation
strategy of the CHP is investigated, based on previous re-
sults. These showed that with this described control strat-
egy and under the condition that hydrogen can be supplied
at any time, the modulation CHP needed 900 kg less hy-
drogen per year than a stationary CHP (13,700 kg). The
downside is a worse efficiency and less heat coverage of
only 56% compared to 59%. As the production of hydro-
gen is very expensive, it should only be used sparingly.
For this reason, the modulation was chosen.

5 Results

A total of six scenarios are considered and CO,e emis-
sions are calculated for comparison as this is the target to
be reduced. The results are summarised in Figure 6. The
labels indicate the composition of the scenario according
to Table 7.

Figure 6 shows the emissions in tonnes of CO»e for dif-
ferent storage capacities. Sources of emissions during op-

10.3384/ECP20780

eration are from natural gas combustion or depending on
the electricity demand emission factor (see section 2.5).
Since only hydrogen is burned, all emissions are due to
the electricity required from the grid. In this scenario, only
green electricity was consumed, using the estimated green
emission factor of 66 gCO,e/kWh for Germany. It demon-
strates that the combination of PV, WT, and BAT leads to
the lowest emissions. Nevertheless, due to drought periods
where no electricity is produced, this strategy is unable to
entirely eliminate emissions. It also states that the WT
generated by this facility is insufficient for its intended
purpose. Consequently, it would be necessary to expand
the plant. However, the geographical location is not opti-
mal for the generation of wind power.

Furthermore an increase in the size of the hydrogen
storage tank has a negligible impact on emissions from a
volume of 500 m?, particularly when WT and PV are com-

Table 7. Dimensioning and composition of the decentralised
energy system with the MAH 33.3 TI 311A CHP.

Description PV PV and WT
CHP 38 kW, 53.7kWy, 38 kW, 53.7 kW,
PV 1.8 MWp 0.9 MWp
BAT 500 kWh 500 kWh

WT - 0.5 MWp

HP 197 kW 197 kW
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Figure 7. Full utilisation hours and heat coverage of the CHP.

bined. However, tank sizes larger than 50 m? are unreal-
istically large. Therefore, the feasibility of such a system
needs to be investigated using other control strategies.

The full utilization hours of the CHP depend on hy-
drogen production. This depends on the amount of elec-
trical energy available, the size of the PEMEC, and the
size of the hydrogen tank. For this reason, the Figure 7
shows that the full utilization hours also increase as the
tank size increases. The only exceptions are the two sce-
narios where wind power is the sole source of electricity.
In these cases, the full load hours decrease as the tank size
increases due to the minimum threshold of the control sys-
tem, which means the tank can only be emptied when a
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certain amount is available. Here, the electricity produc-
tion of the WT is clearly too low. Conversely, the highest
full utilization hours can be achieved with pure PV and a
larger hydrogen storage tank.

6 Discussion and Outlook

In this paper, the feasibility of a hydrogen-powered gas
engine CHP unit in a decentralised energy system has been
investigated using a real use case with data from the city
of Offenburg in Germany. The ultimate goal is to reduce
emissions in order to achieve carbon neutrality or come
close to this target.

The results of the simulation models indicate several
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promising benefits of hydrogen CHP units. In particu-
lar, this system can significantly reduce carbon emissions
when integrated into decentralised energy systems. How-
ever, hydrogen storage requires a lot of space, which is
questionable in real-world conditions and probably not re-
alistic. Smaller storage sizes already reduce COje, but
other operating strategies may be more efficient in terms
of CO,e emissions and need to be compared while con-
sidering costs as well. Therefore, a new control strategy
needs to be investigated, where the CHP covering only
peak heat demand.

A cost calculation has already been added, calculating
investment and operating costs, as well as the levelized
costs of electricity and hydrogen. In the future, the cal-
culation of CO; emissions will be improved by including
emissions from the manufacture of the equipment used.
In addition, improvements to the empirical approach are
being considered with the CHP units available in the lab-
oratory, as well as improvements to all other models us-
ing measured data from the university laboratory where
possible. For example, by implementing a hydrogen tank
with higher storage pressures. For a continuation of this
project, an optimisation tool could be used to optimally
dimension the system.

Please refer to the link for the latest version of
the model: https://github.com/IKKUengine/
CO2InnO-H2-CHP-Demonstrator.
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Appendix

Table 8. Technical data of the gas engine CHP units (2G Energy
AG 2024; Hofner 2019)

agenitor agenitor agenitor
404c Hp 404 406
P, 115 kW 100 kW 250 kW
Py 129 kW 130 kW 264 kW
MNei 0.377 0.384 0.425
Neh 0.423 0.499 0.449
Niotat 0.80 0.883 0.874
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Table 9. Technical data PEMEC

Value Unit
Neell 10 -
Ngtack 1 -
Pelmax 1900 A\
p 0-10 bar
Vop 230 \'%
Viymax 0.3 Nm’/h
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Abstract

The FMI-3.0 standard, recently released, introduces sev-
eral promising features, such as clocks and arrays. FMI-
3.0 supports various clock types, including time-based
clocks, triggered input and triggered output clocks. Altair
Twin Activate (TA), as a modeling and simulation envi-
ronment, inherently supports hybrid systems combining
continuous-time and discrete-time models. The discrete-
time part is typically activated by events and clocks. The
clock types provided by FMI-3.0 however may differ from
those in TA. In the paper (Najafi and Nikoukhah 2022),
we explained how different clocks defined in FMI-3.0
can be successfully imported into TA. Building upon this,
our current paper aims to demonstrate how various clocks
used in TA can be used in the export of a subsystem in
both FMI-3.0 and FMI-2.0 formats. Specifically, we will
explain the way input periodic clocks and input triggered
clocks are exported.

Keywords: FMI, Synchronous clock, Signal based tool,
Modelica tool

1 Introduction

The Functional Mock-up Interface (FMI) (Modelica As-
sociation 2022) has become the de facto tool-independent
standard for the exchange of dynamic models and co-
simulation. The FMI-3.0 version (Specification 2022)
introduces numerous new features that enable more ad-
vanced modeling and support for co-simulation algo-
rithms. Clocks facilitate the synchronization of events be-
tween Functional Mock-up Units (FMUs) and the simu-
lator (importer). Additionally, several new data types and
multi-dimensional arrays are now supported (Junghanns
et al. 2021).

Altair Twin Activate is a modeling and simulation tool
developed by Altair Engineering, built on the open-source
academic simulation software Scicos (INRIA n.d.). The
TA environment allows users to create models of dynam-
ical systems using signal-based block diagrams. Basic
blocks, such as FMUs, can be interconnected to construct
complex models. This approach is very similar to the way
diagrams are created in the SSP (System Structure and
Parametrization) standard .

TA can also be used to create Modelica diagrams
(Nikoukhah and Furic 2009). The process begins with

'https://ssp-standard.org/
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aggregating Modelica components to create a Modelica
program, which is then processed by the Modelica com-
piler?. In TA, the Modelica compiler generates an FMU
block that replaces the Modelica components in the origi-
nal model. The resulting FMU for Modelica supports both
ModelExchange or CoSimulation.

Due to this FMI-based integration of Modelica in TA,
the tool offers FMU import support via a TA FMU block.
More generally, this block can be used to import FMUs
from other vendors (Nikoukhah, Najafi, and Nassif 2017).

With FMI-3.0 and the introduction of clocks, activa-
tion, and synchronization, FMU import and export in TA
presents new challenges. Although activation signals and
synchronization have been integral parts of the TA seman-
tics from the beginning, slight semantic differences be-
tween FMI-3.0 and TA formalism prevent FMUs from be-
ing imported or exported like other native blocks in TA.
This issue also existed, to a lesser extent, with FMI-2.0, as
discussed in (Nikoukhah, Najafi, and Nassif 2017). The
challenges and solutions for FMI-3.0 import have been
presented in (Najafi and Nikoukhah 2022).

This paper addresses the difficulties and proposed so-
lutions for providing extended support for FMI-3.0 export
in TA. It begins with an overview of how TA handles ac-
tivations (clocks) and discusses the differences with FMI-
3.0’s clock handling. Then, it presents solutions for ex-
porting models as FMI-3.0 in TA, focusing on periodic
and triggered input clock types.

1.1 Activation signals in TA

Activation signals in TA control the execution of block
functions and can be explicitly manipulated, providing
powerful modeling capabilities within the simulation envi-
ronment. These signals are associated with red links con-
nected to ports typically located at the top and bottom of
blocks, as illustrated in Figure 1.

Activation signals are used to specify the activation
times of the blocks to which they are connected. The most
common usage involves the activation of blocks at a fixed
frequency using signals generated by a SampleClock
block. This block produces a series of isolated activa-
tions, known as events, which are regularly spaced in time.
These events correspond to the clock ticks in FMI-3.0.

In TA, events can be explicitly manipulated: they can be
conditionally subsampled, and unions and intersections of

2The Maplesim Modelica compiler is used in TA
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Figure 1. Event Delay model

events can be constructed. Blocks can generate delayed
events, enabling operations such as event delaying. In
the model shown in Figure 1, the output activation port
of an event delay block is fed back to its input activation
port. This setup creates a sequence of events where the
time spacing between successive events corresponds to the
value of the delay.

A first event generated by the Event time (s)
block initiates the cycle, producing its first (and only)
event at 1.0 seconds. The union of this activation
signal and the activation signal fed back from the
EventDelay block is generated by the red "Event
Union" block, which then activates the EventDelay
block at 1.0 seconds. At this point, the EventDelay
block creates an event delayed by 2.0 seconds, so the next
event will occur at 3.0 seconds. The simulation result of
the model in Figure 1 is shown in Figure 2. Since the
EventDelay block’s activation output triggers itself, it
continues to create events every two seconds for the re-
mainder of the simulation. This combination of blocks
mimics the behavior of an EventClock block, and indeed,
the EventClock and SampleClock blocks are con-
structed with the same principle in mind.

Eventdelay/EventScope_1/Scope
2

1 XX A XA XA X AKX XX XX

Figure 2. Event Scope results

PROCEEDINGS OF THE AMERICAN MODELICA CONFERENCE 2024 OCTOBER 14-16, STORRS, CT, USA

Output events are defined by their time instants. Based
on how the time instant of an event is determined, there
are two different types of events in TA: predictable and
unpredictable events.

Predictable or programmed events: When activated
at any event time instant, a block can schedule another
event on its activation output ports either at the current
time instant or at any future time. The block specifies the
event firing delay, i.e., the duration after the block execu-
tion when the event should occur, for each of its output
activation ports.

The block can also schedule initial output events. For
instance, the block Event time(s) only schedules initial
events and remains inactive during simulation.

The programmed events can be considered as similar to
time-based clocks in FMI-3.0, in particular, changing
and countdown time-based clock types.

Unpredictable or zero-crossing events: Activation
signals may also be produced by blocks activated in
continuous-time. If something happens inside the block,
the block can program an event immediately or in the fu-
ture. The EdgeTrigger block is a good example that
produces an event based on a zero-crossing test. It gen-
erates an event when a condition occurs, such as when a
variable reaches a threshold value. Figure 3 represents the
simple model of a thermostat and its results (Figure 4).

B =

Temperature

Figure 3. Simple Thermostat model

Two yellow EdgeTrigger blocks are used to acti-
vate the heater or the cooler when the temperature falls
below -10 or rises above 10. These events trigger the
SelectInput block, which, depending on the activa-
tion port through which it is activated, copies its first or
second input (values -6 or +6) to its output. This out-
put represents the heat flow added to a random signal
and fed to an integrator, the output of which represents
the temperature. The simulation results illustrate how
the thermostat functionality is implemented by the zero-
crossing blocks. This kinds of events are similar to the
triggered output clock type in FMI-3.0.

The activation signals encountered so far are series

10.3384/ECP20791



DOI

Simple_Thermostal/Scope :ririiiiiiiiiiiiiiiiiiiiiiiiiinn:

15

25
0

Figure 4. Results from Simple Thermostat model

of events, which are isolated activation signals in time,
i.e., discrete events. However, activation signals can be
more general and include time intervals. The simplest
activation signal of this type is the always active acti-
vation signal. Many basic blocks in TA palettes, such
as the SineWaveGenerator or the Integral block,
are "always active" by default, i.e., they are (implicitly)
activated by the always active block; they are active in
continuous-time. There is no similar clock or activation
type in FMI-3.0.

Another activation signal is the "initial activation".
Some blocks are only activated once at the initialization
phase, just before the start of the simulation. For example,
the Constant block is declared initially active.

In the model in Figure 1, a sequence of events firing
at regular intervals was created using the EventDelay
block. This was achieved by programming an event on
a regular basis. The resulting activation signal resem-
bles the signal produced by the SampleClock block,
but it is not of the same type. The one produced by
the SampleClock block is of type periodic. The com-
piler recognizes this signal as periodic, which contains
events firing periodically and synchronously with all other
SampleClock blocks in the model. When a block is ac-
tivated by a periodic signal, it has access to the period and
offset information at compile time. This allows the block
to adapt its behavior by computing specific block simula-
tion parameters. For instance, the SampledData block
computes the discrete-time linear system matrices corre-
sponding to the discretization of a continuous-time linear
system for the operating frequency. This frequency, which
is the inverse of the sampling (activation) period, is avail-
able at compile time. SampledData block cannot be ac-
tivated with non-periodic clock. The regular time-spaced
events is similar to periodic time-based clocks in FMI-3.0,
particularly fixed and constant clock types.
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1.2 Synchronous vs. asynchronous activations

Activation signals are characterized by time periods or
time instances. An event, for example, defines an iso-
lated point in time specifying the time instant when the
blocks receiving the event should be activated. However,
the time of the event does not fully characterize the event,
especially its relationship with other events. Two events
may have identical times (simultaneous) but not be syn-
chronous.

When two blocks are activated by the same event, the
compiler must compute the order in which they should be
activated depending on their connections and direct de-
pendencies between inputs and outputs (port feedthrough
properties) of blocks. If a block requires the value on one
of its inputs to compute its output and this input is con-
nected to the output of another block, then the latter block
should be executed first. Generally, for any activation sig-
nal, the compiler computes an execution order of blocks.
This order includes the blocks receiving the activation sig-
nal directly, or indirectly through inheritance.

Each "distinct" activation source has its own list of
blocks and is treated independently of other activation
sources. Even if two events produced by two "distinct"
activation sources happen to have identical times, they are
treated as independent events. At runtime, the two events
are treated sequentially. Two "distinct" activation sources
produce asynchronous activation signals. In general, any
output activation port on a TA is considered a distinct ac-
tivation source. However, there are two exceptions: basic
blocks with direct event input-output dependencies are the
conditional blocks TfThenElse and SwitchCase.

Consider, for example, the TfThenE1se block, which
represents conditional constructs similar to the if-else
statement in classical programming languages such as C.
The IfThenElse block has one activation input port
and two activation output ports. Depending on the value
of the signal on its regular input port, the block redirects
its input activations to one of its output activation ports.
In this case, the output activation signal is synchronous
with the input activation signal. So, the compiler does
not treat the output activation ports of the IfThenElse
block as "distinct" activation sources. In other words, the
origin of the output clocks is the same, making them syn-
chronous. The SwitchCase block is the counterpart of
the switch-case statements in classical languages. Other
blocks, such as Subsample, built on top of these two
basic blocks, also provide synchronous outputs. Note that
all SampleClock blocks, even having periods and offset
values, produce synchronous activations or events.

2  Code Generation and FMU export

Code generation is utilized to create C code from a TA
superblock, capturing its dynamic behavior. The gener-
ated code serves various purposes, including creating new
blocks to replace the original superblock, ensuring intel-
lectual property protection, or exporting to other simula-



tion environments.
Two distinct code generation technologies are available
in TA:

1. Standard Code Generator: This technology
closely mirrors the behavior of the TA simulator, re-
lying on the same libraries used by the simulator, par-
ticularly the libraries containing the simulation func-
tions of the blocks. The generated code essentially
replicates the actions performed by the simulator,
resulting in performance comparable to simulation.
However, the generated code is not intended for in-
spection or direct use and has dependencies on TA
libraries. Therefore, when exported, the FMUs pro-
duced using this code generation technology contain
several shared libraries.

2. Inline Code Generator: Unlike the standard code
generator, the inline code generator does not rely
on TA libraries for block simulation functions. In-
stead, it generates and inlines a specific code based
on the types and sizes of the block input and out-
put signals. The code is customized and highly op-
timized using for example by constant propagation
and threshold based loop rolling. As a result, the
generated code is more efficient and simpler. Ad-
ditionally, all memory used by the code can be stat-
ically allocated. This code generator supports both
discrete-time and continuous-time dynamics and, to
some extent, multiple synchronous clocks. Various
targets can be selected for code generation, such as a
native TA block, a Python block, or an FMU block.

Both code generators support nested FMUs, enabling
the export of Modelica models. In the standard code gen-
erator, the Modelica model is converted into an FMI-2.0
for ModelExchange, while in the inline code generator, it
is converted to an FMI-2.0 for CoSimulation.

2.1 Events and clocks in FMU export

In general, the TA model may contain continuous-time
and discrete-time states. Continuous-time states are, in
general, always active and are invoked by the numerical
solver. These states may be reinitialized or experience dis-
continuities at event times. Events can be triggered by ei-
ther a clock or an external event. Discrete-time states are
usually activated by clocks or external activations.

During the code generation process, the periods and off-
sets of all SampleClocks blocks are used to compute
a base frequency which is used as parameter of a unique
periodic clock. This clock drives the periodic part of the
model directly or through subsampling. Thus, the final
generated code is activated by one clock and possibly sev-
eral external activation sources. The clock and external
activations execute their own tasks at activation. These
tasks may or may not have intersections or common vari-
ables.
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There are several clock and event types in FMI-2.0 and
FMI-3.0. Most of these event and clock types are success-
fuly imported in Activate (Najafi and Nikoukhah 2022).
In this section, we examine the inverse problem: the way
events and clocks defined in TA can be exported to FMUs.

2.2 FMI export for FMI-2.0

Synchronous clocks or external clocks are not supported
in FMI-2.0. FMI-2.0 for CoSimulation does not support
events. In FMI-2.0 for ModeExchange, events can be ei-
ther time-event, input-event, or state-event. Among these
event kinds, time-event looks appropriate to be used for
export of clocks used in TA. In FMI-2.0, at each time
event, the time instant of the next time-event is retrieved
and the FMU is called at that time instant. This is the ex-
act counterpart of the way events are generated in TA. The
events can be either periodic or aperiodic; see, for exam-
ple, the model in Figure 1.

During the FMU export, the initial event time is used at
the very first time the FMU enters the Event-Mode. For
the later event times, the next event time is programmed
by the FMU and delivered to the FMU importer. The code
snippet for handling the event inside the FMU is as fol-
lows:

if (fabs(comp->eventInfo.nextEventTime - currentTime)<Tolerance) {
updateOutput (x, xd, insl,outsl,outs2);
updateState (x,xd, insl, outsl, outs2);
comp->eventInfo.nextEventTimeDefined = fmi2True;
comp->clock_tick++;
comp->eventInfo.nextEventTime = comp->start_time+
(comp->clock_tick) *ClockPeriod;

The Tolerance and ClockPeriod values are de-
fined by the code generator. The problem with events in
FMI-2.0 lies in event classification inside the FMU. When
an event occurs, the FMU must distinguish whether it oc-
curs due to a time-event, state-event, input-event, or if no
particular event has occurred and the importer has simply
pushed the FMU into event mode. To determine if the
event is indeed a time event, the expected time-event time
instant is compared with the current time of the FMU set
by the API fmi2SetTime. While a good importer usu-
ally sets the current time precisely at the expected time
event, the FMU should consider the general case and take
into account numerical round-off errors by using an error
tolerance in the comparison. This error tolerance may be
problematic in many cases, which is why clocks were in-
troduced in FMI-3.0 to eliminate uncertainties.

2.3 FMI export for FMI-3.0

FMI-3.0 provides a number of new features for both
Model-Exchange and Co-Simulation (Gomes et al. 2021).
Some of the new features of FMI-3.0 are intrinsically sup-
ported in TA, such as arrays. However, despite blocks in
TA having activation (clock) inputs and outputs, the se-
mantic differences between FMI-3.0 clocks and TA ac-
tivations do not allow for a simple mapping of FMI-3.0
clocks into TA activation signals.
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In FMI-3.0, besides the legacy time event already avail-
able in FMI-2.0, several clock types have been introduced.
There is no exact one-to-one correspondence between TA
clocks and FMI-3.0 clocks. The way FMI-3.0 clocks
are imported in TA has been explained in (Najafi and
Nikoukhah 2022).

2.3.1 Periodic Clock: Example of Clocked Counter

The simplest and most basic clock type in TA is the
SampleClock, which is defined by offset and period
values. Consider the sample clock shown in Figure 5,
which activates a counter. The counter increaments its
output on each clock tick and once reaches five resets to
Zero.

Periodic clock

Counter

0 {

5

Figure 5. Clocked-counter

The sample clock is mapped to the time-based periodic
clock with intervalvVariability="constant".
The intervalDecimal is set to the basic period of
the final clock, and the shiftDecimal or the clock
offset is always set to zero in TA, as its value has been
taken into account in computing the basic period of
the clock. The clocks in TA cannot be exported with
intervalDecimal fixed or tunable. The clocks at-
tribute of the variable Output indicates the dependency
on the clock, i.e., "2".

<Clock name="SampleClock" causality="input"
valueReference="2" variability="discrete"
intervalVariability="constant"
intervalDecimal="0.2" shiftDecimal="0"
description="Constant periodic input clock: 1,
</Clock>

nevprt=1" >

<Int32 name="Output" valueReference="3" variability="discrete"
clocks="2" causality="output" description="" >
</Int32>

This code snippet is generated for the above model. At
the clock tick, at first, the model is evaluated, then the
internal states are updated.

fmi3Status fmi3SetClock (fmi3Instance instance,
const fmi3ValueReference valueReferences(],
size_t nValueReferences,
const fmi3Clock values[]) {

for (i=0;i<nValueReferences;i++)
if (valueReferences[i]==2) ({
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comp->Clk [k]=values[i];
}
}

}
fmi3Status fmi3UpdateDiscreteStates(...) {
if (comp->Clk[0]) {

updateOutput_clock_1 (outsl);
updateState_clock_1 (outsl);

}
}

The exact timing of the clock ticks is computed by the
importer. At each clock time instant, the importer sets the
corresponding clock and informs the FMU that the clock
is enabled. So there’s no place for uncertainty or error
tolerance.

2.4 Triggered Input Clock: Incrementing the
Counter

The next basic event source type in TA is the external ac-
tivation. If a superblock is activated by an external activa-
tion, the compiler has no information about the periodicity
of the events. The model part is executed when the event
happens. This event type is the exact counterpart of the
triggered event in FMI-3.0. Consider the model in Fig-
ure 6 where a counter is activated by an external unknown
source.

Eventlnput

Counter

0 D

10

Figure 6. Triggered-counter

<Clock name="TriggeredClockl" valueReference="2"
variability="discrete" intervalVariability="triggered"
causality="input"

description="External triggered input clock: 1,
</Clock>

<UInt8 name="Output"

nevprt=1" >

valueReference="3"

variability="discrete" clocks="2"
causality="output" >
</UInt8>
2.5 Multiple Variable Access: Clocked

Counter and Reset

In TA, several events and clocks can be used to access
and update a single variable. For instance, the output
of the block Selector in Figure 3, is updated by two
input events. Another example is the Counter with
reset block. Consider the model in Figure 7 where the



counter is incremented at activation time instants of the
SampleClock.

Periodic clock

Counter

Figure 7. Counter-with-reset

Counter is reset to zero whenever the event of the exter-
nal activation is fired.

reset act ouput

0 0 do nothing

0 1 increament by one
1 0 resent to zero

1 1 resent to zero

In this model, the counter output variable is accessed
and updated by two different events.

<Clock name="TriggeredClockl" valueReference="2"
variability="discrete" intervalVariability="triggered"
causality="input"

description="External triggered input clock: 1,
</Clock>

<Clock name="SampleClock"
variability="discrete" intervalVariability="constant"
intervalDecimal="0.2" shiftDecimal="0" causality="input"
description="Constant periodic input clock: 2, nevprt=2" >
</Clock>

<Float64 name="Output" valueReference="4" variability="discrete"
clocks="2 3" causality="output" description="" >

</Float64>

nevprt=1" >

valueReference="3"

Note that the c1ocks attribute of the variable Output
lists the dependency of the two clocks, i.e., "2, 3".

2.6 Synchronism Issue

Unlike in FMU, in TA, events can happen at the same time
(simultaneous) but be asynchronous. Due to this differ-
ence, several situations should be considered to be han-
dled. Consider, for example, a superblock having two
external input events. In this case, the following table is
considered to handle three possible different tasks in these
situations.

Event-1 Event-2 Task

0 0 do nothing
0 1 task-1

1 0 task-2

1 1 task-3

For instance, if only Event-1 is activated, task-1 should
be run. If Event-1 and Event-2 are activated syn-
chronously, task-3 is run. This distinction between tasks
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is important in some situations where there is a common
variable activated by two events. If no common variables
are activated by both events, the execution of task-3 would
have the same result as the execution of task-1 and task-2
in any order. Consider, for example, the counter in Fig-
ure 8.

Reset Increment
1

Output

Figure 8. Counter with two-external-activations

If at a time instant both the reset and increment events
are activated synchronously, in TA the output of the
counter will be zero. If event ports are activated simul-
taneously, the order of execution is important. If the in-
crement event input is activated after the reset event input
is activated, the result will be different.

In the FMI-3.0 standard, when the FMU en-
ters the event-mode, the importer should inform the
FMU about the activated clocks by calling the API
fmi3SetClock. With this API, the importer can
enable the clocks one by one and then call the API
fmi3UpdateDiscreteStates to execute the tasks
corresponding to each clock of the FMU. The other possi-
bility is to activate all clocks at once and then call the API
fmi3UpdateDiscreteStates.

Actually, since there is no way in FMI-3.0 to indicate
if input clocks are synchronous, i.e., should tick together,
the result of the simulation may be different in different
importers. The only way to avoid this situation is to avoid
using variables activated by different clocks. In this case,
the order of execution does not matter. But this becomes a
limitation for exporting a tool independent FMU.

2.7 Periodic Input Clock Connections

In TA, every clock source, dependent or independent, de-
fines the information flow toward other input clock ports.
No clock source can be connected to other clock sources.
If the union of two clock sources is needed, a Union
block can be used. For example, in Figure 9, the counter
is incremented whenever each of the clock sources ticks.
In FMI-3.0, the causality attribute of periodic
clocks is "input", which should be interpreted as if the
clock source is coming from the importer. This makes
an open gate for arbitrary interpretation from FMU im-
porters. For example, what should happen if two periodic
clocks from two FMUs are connected together and con-
nected to the triggered input clock of another FMU. In
TA, this connection raises an error, but other tools may in-
terpret it as the union (OR operation) or the intersection
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Event time(s)
23 4

Initial

Output

Figure 9. Example of clock unions (EventUnion)

(AND operation) of periodic clock ticks. This lack of def-
inition would result in the FMU export of a model with
such a connection being tool-dependent.

2.8 FMU for Cosimulation: Solver inlining

The way the clock is handled in FMI-3.0 is independent
of the FMU implementation, i.e., the FMU can be either
Model-Exchange or Co-Simulation®. The FMI-3.0 FMUs
work almost identically for both FMU implementations
in handling clocks. The difference between the two im-
plementations is in handling of the continuous-time dy-
namics. The introduction of clocks in FMI-3.0 has offered
TA the opportunity of exporting the internal dynamics in
a new way, i.e., solver inlining.

In the FMU export for Co-Simulation, with the inline
code generation, a variable-step or fixed-step solver is
chosen to be used to simulate the continuous-time part of
the model. Besides the classical solver linking, e.g., link-
ing an Euler or RK4 solver, TA supports solver inlining
which is a transformation method for embedding a numer-
ical solver within the generated code. This transformation
can be applied to a general model or part of it, to turn
it into a purely discrete-time synchronous model with the
resulting discrete-time (super) block behavior matching as
closely as possible that of the original super block.

The model transformation for solver inlining, done dur-
ing the model compilation process, is achieved by em-
bedding a fixed-step numerical solver for discretizing the
dynamics of the continuous-time components of the sys-
tem. The exported model can be considered both as a pure
discrete-time block and a Co-simulation component. The
main usage of the solver inlining is for models exported
by the inline code generator for embedded applications.

The basic idea behind the embedded solver is the con-
version of the differential equations associated with the
dynamics of blocks with internal continuous-time states
to time difference equations. Difference equations are,

3The Scheduled Execution FMU type has not been considered in this
paper
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in turn, can be implemented by discrete-time blocks run-
ning on a single base clock. This, however, does not
work for variable step-solvers. The construction of the
discrete-time version of the model in that case requires
complex transformations. To see this difference, consider
the following simple system, which can be implemented
in TA by two blocks: an integrator block and a memory-
less block realizing the function f.

Y =10

The Euler solver uses a first order discrete approximation
of this system:

Yis1 =Yk +h.f(ye)

where
Y =y(te)

and
el =t+h

. The time instances when the state is updated correspond
to a fixed frequency sampling of time t, with period h. The
differential equation in this case is trivially translated into
a difference equation. The system can be represented as a
block diagram by separating the system into an integrator
block and a memoryless block by noting that it can be
rewritten as follows
y=u

u=f(y)

The corresponding model can be constructed as fol-
lows.

In this case, the Euler discretization yields
Vi1 = Yk +hu

ue = f(x)

So, the discrete-time version of the model is obtained by
simply replacing the integrator block by a discrete block
(Discrete Integral super block). The content of the Dis-
crete Integral superblock is also shown.

The new model which is activated by a SampleClock
block with period h is a purely discrete-time model.
The original model is simply transformed by replacing
the integrator with the Discrete Integral block and a
SampleClock block. In a more general model with
multiple integrator blocks, each integrator block can be
replaced by its discrete-time equivalent, activated the
SampleClock block. The stateless blocks of the model,



represented here by the f block, are not modified. For
higher order approximations of the derivative however, the
computations at each time step cannot be realized by sin-
gle activations of discrete blocks. To see this, consider a
fourth order Runge-Kutta (RK4) solver algorithm for the
same system:

1
Yi+1 =Ykt g(kl + 2ky + 2k3 +ka)

ki = h.f(ye)
ky=h.f(yk+ki/2)
ks =h.f(yk +k2/2)
ks = h.f(yx+ks)

The computation of the of next discrete state y requires
four evaluations of the function f with different arguments.
To embed this solver in the continuous-time model to ob-
tain a discrete-time model, the RK4 solver equations can
be implemented as a more complex Discrete Integral su-
perblock as shown in Figure 10.

o0
o >

Figure 10. Discreteization of an integrator block using RK4
solver

Once the transformation is done, a C code is generated
for the purely discrete model activated by the sample clock
with period &.
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The generated C code, which is activated by a
periodic clock with a known constant period, can
naturally be exported to an FMU. For FMI-2.0, a
periodic regular time-event with the time interval
equal to h will be used in the FMU. For FMI-
3.0, the export is more natural; an input clock
withthe intervalvVariability="constant" and
intervalDecimal equal to & will be used.

The embedded solver transformation converts the
continuous-time dynamics part of the model to discrete-
time. In other words, the FMU has no continuous-time
dynamics and the whole dynamics has been discretized
and activated by a periodic clock. As aresult, dis-
regarding the discretization error, the FMU can be ex-
ported in the same way for both ModelExchange and Co-
Simulation in FMI-3.0.

3 Conclusion

The introduction of clocks in FMI-3.0 has provided
the possibility of exporting more general models with
continuous-time and discrete-time dynamics, particularly
from TA. This paper has explored the integration of clocks
within the context of Altair Twin Activate for FMU ex-
ports. Different clock and activation types are considered
and the way they are exported to FMI-3.0 has been pre-
sented. The introduction of periodic clocks in FMI-3.0
has allowed the inlining of the numerical solver within
the FMU, making it possible to achieve identical discrete
dynamics in FMU export for both ModelExchange and
CoSimulation.
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Abstract

CasADi is an open-source framework that can be used
to efficiently solve optimization problems involving user-
defined ODE/DAE models. Supported solution methods
include so-called shooting methods, where solvers for
initial-value problems in ODEs or DAEs are referenced
inside in nonlinear programming (NLP) formulations. In
order to solve such NLP formulations with gradient-based
algorithms, CasADi implements a fully automatic sensi-
tivity analysis using a variational approach. This analy-
sis includes forward sensitivity analysis, adjoint sensitiv-
ity analysis as well as the calculation of higher-order sen-
sitivities for the ODE/DAE models. Because of the varia-
tional approach, the numerical solution can be performed
with variable-step size, variable-order integrators such as
those from the SUNDIALS suite.

In this work, we present a generalization of the sensi-
tivity analysis support in CasADi to systems with events,
as are common in real-world cyber-physical models. In
particular, the event extension enables us to formulate
and solve optimization problems with such event systems,
without a priori knowledge of the number and ordering of
events. Ultimately, we expect the proposed approach to
be compatible with general cyber-physical models formu-
lated in Modelica or available as model-exchange FMUs.

We demonstrate the proposed approach for two proof-
of-concept examples; the classical bouncing ball written
in CasADi directly and a simple hybrid DAE describing
a breaking spring formulated in Modelica and imported
symbolically into CasADi. In the examples, we show that
the forward sensitivities calculated to high precision using
the proposed approach are consistent with a cruder finite-
difference approximation and provide examples on how
they can be embedded into optimization formulations. We
discuss how the approach can be extended to handle stan-
dard FMUs, adhering to FMI 2 or FMI 3, as well as non-
trivial Modelica models imported via a symbolic interface
based on the emerging Base Modelica standard.
Keywords: Hybrid DAEs, sensitivity analysis, CasADi,
Modelica, FMI

1 Introduction

Dynamic models describing cyber-physical systems often
include events that are triggered when some conditions
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are met. These events can arise both from the need to
faithfully capture the physics, e.g. an object transition-
ing from being stationary to starting to slide, or to capture
the modes in control systems. Physical modeling environ-
ments, such as those based on Modelica, allow events to
be efficiently described and transformed into a canonical
form compatible with numerical solvers. For Modelica,
the corresponding form is a hybrid differential-algebraic
equation (DAE) as described by the language specifica-
tion (Modelica Association 2021). For a hybrid DAE in
a standard form, events are generally triggered by zero-
crossing conditions for a set of event indicators, which are
evaluated along with the DAE. Certain numerical solvers
such as those from the SUNDIALS suite (Hindmarsh et
al. 2005) used in this work, are able to monitor the event
indicators for zero-crossings and stop the integration pre-
maturely if an event is detected. At the detected event, the
system is then updated according to the finite state ma-
chine semantics described in the hybrid DAE representa-
tion before the DAE integration is resumed.

1.1 Events in dynamic optimization

The handling of events using zero-crossing events and
event transitions is the standard approach for hybrid DAE
simulation. For dynamic optimization problems, i.e. op-
timization problems where the hybrid DAE enters as con-
straints in the formulation, the standard approach is in-
stead to partition the time horizon into multiple stages
(or phases) with events happening between the different
stages but not within them. The time durations between
events then become additional decision variables of the
optimization problem. To illustrate, if we have a single
event at (a priori unknown) time 7', the physical time vari-
able 7 is substituted in the first stage with a dimension-
less time 7 according to t = T 7. We can then proceed to
solve the optimization problem as if the event times were
known with stage durations added as an additional opti-
mization variables. While this approach has proven useful
in numerous applications, it is not as general as the hy-
brid DAE representation used for simulation. In particu-
lar, it requires a priori knowledge of the number of stages,
which is often not available.

Using the approach proposed here, this reformulation to
a multi-stage problem, with associated restrictions, is no
longer needed. Instead, we are able to embed the hybrid



DAE:s directly in the dynamic optimization formulations
and still get the exact first and second order sensitivity in-
formation needed by gradient-based numerical optimiza-
tion methods.

1.2 CasADi

CasADi (J. A. E. Andersson et al. 2019) is an open-source
software package for C++, Python, MATLAB and Octave.
It offers versatile environent that in particular can be used
to solve a range of different numerical optimization prob-
lems, using different methods and solvers. In particular,
CasADi can be used to efficiently solve numerical optimal
control problems, i.e. optimization problem constrained
by differential equations. At the core of CasADi is a sym-
bolic framework implementing algorithmic differentiation
(AD) in both forward and reverse (adjoint) modes. In ad-
dition to AD, symbolic expressions can be used for ef-
ficient evaluation, either in virtual machines or in gener-
ated, self-contained C code. Importantly, the symbolic ex-
pressions can embed calls to user-defined, differentiable
function objects. Such function objects can be defined in
number of different ways, including from other symbolic
expressions, by linear or nonlinear systems of equations
or user defined code. In (Joel Andersson 2023), it was
shown how differentiable CasADi function objects could
be created from functional mock-up units (FMUs) adher-
ing to the functional mock-up interface (FMI) standard.
In this work, we present an extention of another imporant
type of function objects in CasADi, Integrator instances,
which are used to simulate and perform sensitivity anal-
ysis for differential equations. A relatively comprehen-
sive and up-to-date description of this functionality is pre-
sented in Section 2. In Section 3, we will show how the
integrators were extended to support general events han-
dling, while still retaining efficient and accurate differen-
tiability.

1.3 Related work

Sensitivity analysis and numerical optimization for hy-
brid dynamic systems have been performed previously,
in particular in the Julia environment, using integrators
formulated in the DifferentialEquations.jl package (Rack-
auckas and Nie 2017). For models available as expres-
sions, derivatives can be calculated analytically by dif-
ferentiating the entire algorithm, giving a integrate-then-
differentiate approach. It is our understanding that this
approach, unlike the variational approach presented here,
can not be readily used with models formulated in Model-
ica or provided as FMUs. We refer to (Corner, C. Sandu,
and A. Sandu 2019) for a recent overview of methods for
hybrid sensitivity analysis.

2 Simulation and sensitivity analysis
in CasADi

CasADi can be used to solve initial value problems (IVP)
in ordinary differential equations (ODESs) or differential-
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algebraic equations (DAEs) with fully automatic sensitiv-
ity analysis. This support, which has existed since early
versions of CasADi, has been extended and improved over
the years. In the following, we provide a description of the
current algorithm, which largely corresponds to the refac-
toring of the functionality which enabled the use of FMI
models, as described in (Joel Andersson 2023). In Sec-
tion 3, we will show how this formulation can be extended
to support events, while still maintaining efficient, analytic
differentiability.

The dynamic systems considered, as of CasADi 3.6, are
semi-explicit DAEs with quadratures:

x(t) = fode(tax<t)az(t)>pvu(t))
0 = fag(t,x(t),2(t), p,u(t)) (D)
Q(t) = fquad(tvx(t)vz(t)»pv”(t))v

where ¢ € R is time (or some other independent variable),
x(-) € R™ is a state vector, z(-) € R is a vector of al-
gebraic variables, g(-) € R is a state vector that does
not appear in the right-hand-side, p € R"” is a (tunable)
parameter and u(-) € R™ is a control input, which is as-
sumed to be piecewise constant. If piecewise constant
control inputs are to restrictive for a particular applica-
tion, piecewise polynomial approximations can be han-
dled by adding additional state variables (e.g. defined by
xpieccwise linear = Upiecewise constant)~ The quadrature states in
this context are especially important for calculating inte-
gral terms but are also used in adjoint sensitivity analysis.

We assume that any DAE is of index-1, i.e. in particular
that the Jacobian of fy with respect to z exists and is in-
vertible. For ODEs, z and f;¢(-) have dimension zero. If
the index-1 assumption does not hold, an index reduction
should be performed prior to simulation, which has been
implemented both in CasADi natively (for models given
as symbolic expressions) and in coupled modeling enviro-
nents, such as those based on Modelica.

To solve IVPs, the CasADi user creates Integrator in-
stances. These are formed from a given initial time #,
an output time grid [fy, ... ,#y] as well as symbolic expres-
sions of the form (1), or more generally, a (differentiable)
CasADi function object that calculate fode, falg and fquad
from given values for #, x, z, p and u:

SR XR™ x R"% x R x R™ — R x R™ x R"
(t,x,2,p,u) — (fodeafalg;fquad)
2
For the typical usage, an Integrator instance is a (differ-
entiable) CasADi function object that given x(fo), p, the
u(t) trajectory and a guess for z(ty), calculates x(#), z(x)
and ¢(t;) at all output times, k = 1,...,N. If the DAE has
quadratures, g(#) is assumed zero. We can write the func-
tion object defined by the integrator instance as follows:

F iR xR% xR x RN — RN o RixN 5 Rrg<N

(x()vz()vpa ”) = (X’Z7Q)

3)
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Solving the initial value problem

The actual calculation of (3) takes places in the CasADi
Integrator class, which relies on successive calls to one of
the solver plugins. The top level solver algorithm is il-
lustrated in Algorithm 1, where the functions RESET and
ADVANCE are implemented in the specific solver plugin.
These two functions correspond to initializing the (for-
ward) integration at some given time, providing the neces-
sary data, and advancing the solution to some given time
point, respectively. Algorithm 1 also includes the helper
function NEXT__STEP which checks the provided control
input and determine when the next step change in the con-
trol occurs. If there are no more input step changes, the
end of the simulation () is returned. The algorithm will
ensure that the integration is stopped at such input change
times. The stopping times are also used to prevent a solver
plugin from taking internal time steps past the stopping
times during the ADVANCE step (omitted in Algorithm 1
for simplicity).

Algorithm 1 Integration in CasADi without sensitivity
analysis or events handling

1: procedure SIM(xg € R™, zo € R, p € R", u; €
R, k=0,....N—1)

2 ksep :=0 > Index of the next input step change

3 fork=0,....N—1do > Forward integration

4 if k = kgtep then > Input step change

5 ksiep := NEXT_STEP (k,tg11,...,UnN—1)

6: RESET (fg, Xx, Zk, P Uk )

7 end if

8 (Xk+152k+1,Gk+1) := ADVANCE (f41)

9 end for

10: return x, € R™, 7 e R, ¢, e R, k=1,...,N

11: end procedure

As of this writing, there were four solver plugins avail-
able; two CasADi native fixed-step integrators implement-
ing explicit and implicit Runge-Kutta, respectively, as
well as interfaces to the SUNDIALS solvers CVODES
and IDAS (Hindmarsh et al. 2005). For latter two solvers,
the default algorithm is a variable-order variable-step size
backward differentiation formula (BDF) method that takes
successive steps past the given output time and then eval-
uates the polynomial representation available for the last
integrator step at the given output time. All the inter-
faced solvers rely on CasADi to automatically generate
any derivative information needed, including sparse Jaco-
bians, and use sparse linear algebra for the step size com-
putation.

The remainder of this section details how Algorithm 1
is extended internally in CasADi to be able to effi-
ciently calculate forward and adjoint sensitivities and re-
quires some familiarity with algorithmic differentiation.
A reader mainly interested in using the framework in ap-
plications may choose to skip these parts as they are not
essential for using the code.
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Forward sensitivity analysis

The CasADi integrators support analytic forward sensitiv-
ity analysis via a variational approach (J. Andersson 2013;
J. A. E. Andersson et al. 2019), i.e. an augmented set of
DAEs are formed corresponding to the forward sensitiv-
ity equations. The forward sensitivity analysis is imple-
mented both symbolically and numerically. In the sym-
bolic implementation, which is the older implementation,
a new DAE for the augmented system is created which is
solved as any other DAE, exploiting only the sparsity of
the augmented DAE system. This symbolic differentia-
tion can be done repeatedly, to get analytic derivatives to
any order, assuming sufficiently smooth DAEs.

To better exploit the specific structure of the for-
ward sensitivity equations, a numeric implementation of
forward sensitivity analysis was added (Joel Andersson
2023). The numeric implementation is implementated by
supporting multiple columns in (3), corresponding to dif-
ferent forward seeds/sensitivities, i.e. perturbations with
respect to different combinations of inputs in Algorithm 1.
For Ny forward sensitivities that are calculated along with
the original (undifferentiated) trajectory, the generalized
definition of F can be written:

F- Rnxx(lJer) % anx(lJer) > Rnpx(]Jer) % Rnux(lJer)N
N Rnxx(lJer)N % anx(lJer)N % anx(]+Nf)N
(x()7ZO,P; Lt) = (va’Q)

“)

Note that the multiple right-hand-sides are usually hid-
den from the user, who typically embeds the undifferenti-
ated F from (3) in some optimization formulation, and the
sensitivity equations are generated automatically to pro-
vide a gradient-based optimizer with the required deriva-
tive information.

Algorithm 1 continues to be valid when forward sensi-
tivity equations are included in the calculation, with the
only change that calculation of x;, z; and g is now done
with (14 Ny) columns at a time instead of one column
at a time. It is up to the solver interfaces, i.e. the imple-
nentation of RESET and ADVANCE to exploit the sensitiv-
ity structure. In the SUNDIALS interfaces, this exploita-
tion is done by providing SUNDIALS with structure-
exploiting linear algebra routines. These linear algebra
routines use second order derivative information — calcu-
lated via forward-over-forward algorithmic differentiation
of the DAE function — to exactly and efficiently solve the
augmented linear system. Note that we do not use SUN-
DIALS native forward sensitivity support.

Adjoint sensitivity analysis

Similar to forward sensitivity analysis, the CasADi in-
tegrators support adjoint sensitivity analysis via a varia-
tional approach (J. Andersson 2013; J. A. E. Andersson et
al. 2019). These equations define a terminal-value prob-
lem coupled to the regular forward integration. Because
the coupling of the terminal-value problem to the initial
value problem is in one direction only, the combined prob-



lem can be solved with a forward integration — recording
the trajectory — followed by a backward integration.

The original implementation of adjoint sensitivity anal-
ysis in CasADi supported a general backward differential
equation, as long as it was affine in the “backward states”,
and was implemented symbolically. Because of the spe-
cific structure, the integrator could be differentiated re-
peatedly, giving analytical sensitivities to any order, not-
ing that adjoint-over-adjoint sensitivities can be reformu-
lated as forward-over-adjoint sensitivities.

In CasADi 3.6, a restriction of the formulation was im-
posed, requiring that the terminal value problem to always
be the adjoint sensitivity equations corresponding to the
forward integration. The adjoint equations may in turn
have forward sensitivity equations, which is important to
be able to efficiently calculate second order derivative in-
formation, e.g. for numerical optimization. With N, ad-
joint sensitivities and Ny forward sensitivities, (4) is fur-
ther generalized as follows:

£ R (14Nf) o Ruex (14N7) o Rrpx(14N7) o paux (14NN
CREXHNINGN o X (14N NaN o Ritgx (14N7) Na N
— RnxX(I+Nf)N x RnZX(I+Nf)N X anX(I+Nf)N
Rnxx(lJer)Na % anx(lJer)Na
XR}’!I;X(1+Nf)Na % RnuX(I‘HVf)NaN

(%0520, Pstty Ay Azy Ag) = (X,2,G, Axys Mgy, Ay M) s

&)
where Ay, A;,A, correpond to adjoint (and forward-over-
adjoint) seeds and Ay, A, Ap, Ay correspond to adjoint
(and forward-over-adjoint) sensitivities. Note that since
20 is a guess, A, is going to be trivially zero, but is kept
in the function signature to get a consistent function sig-
nature (that can easily be embedded into symbolic expres-
sions). The function signature (5), which is the most com-
plex of any of the CasADi core classes, remains the same
with the addition of event support, which we will present
in Section 3.

In Algorithm 2 we show the generalization of Algo-
rithm 1 to handle forward and adjoint sensitivities, which
in addition to RESET and ADVANCE mentioned earlier
also includes two additional methods, IMPULSE to pro-
vide an additive contribution to the adjoint states at a given
time and RETREAT to integrate the system backwards to
a given time point. NEXT__IMPULSE is a helper function,
similar to NEXT__STEP to find the next output time where
an IMPULSE call is needed. Note that whenever there is
a step change in a control input, the forward integration
is repeated starting at the beginning of the previous step
change (or initial time 7).

As in the case of forward sensitivity analysis, the ad-
dition of numerical adjoint (and forward-over-adjoint)
sensitivity analysis in CasADi 3.6 enabled significantly
better structure exploitation in the integrator interfaces,
specifically in the SUNDIALS interfaces. In particular,
it allowed an arbitrary number of forward, adjoint and
forward-over-adjoint sensitivities to be calculated along
with the original simulation without increasing the size of
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the linear system needing to be factorized inside the inter-
faced ODE/DAE integrators. Similar to the forward sensi-
tivity analysis, the forward-over-adjoint sensitivity anal-
ysis uses a matrix-free second order correction, imple-
mented via forward-over-adjoint directional derivatives to
exactly solve the augmented linear system.

Algorithm 2 Integration in CasADi with forward and ad-
joint sensitivity analysis but without events handling

1: procedure SIM_S(xy € RNy 7o Rrx(1+Ny)
pe R”PX(HNf), Uy € ]an¢><(1+N/), )Lx. c Rn,xx(l+Nf)Nu’
)~z. eanx(lJer)Na’ lq. c anx(lJer)Na)

2: kstep :=0 > Index of the next input step change
3: fork=0,....N—1do > Forward integration
4: if k = kep then > Input step change
5: kprev :=k > Also keep track of old kprev
6: ksiep := NEXT_STEP (k, tte)
7 RESET (t, Xk, 2k, P, Uk)
8: end if
9: (Xk415Zk+15Gk+1) := ADVANCE (f41)

10: end for

11: Ap:=0, A, :=0 > Initialize to zero

12: fork=N—-1,...,0do > Backward integration

13: if k < kprev then

14: kprev := <retrieve saved value>

15: RE SET(tkprev7'xkprev7karev’p7 Ltk)

16: ADVANCE (f¢41)

17: end if

18: if k < kgep then

19: IMPULSE(Ay s Az 1> Agiy)

20: ksep := NEXT_IMPULSE(k, Ay, , Az, Aq,)

21: end if

22: [Ae; Ap, Ay) := RETREAT (1)

23: Api=Ap+2Ap, Ay =Ny + A

24: end for

25: Ay 1= Ax

260 Ay =0

27: return x, € R=>HN) o0 e Rux(HN)) g0 e

' 14N X (14N Ny X (14N} N,
RMe*(1+ f)’ Axo e Rux(1+Ny) , lzo e R7X(14+Ny) ,
7Lp c Rnpx(l+Nf)Na’ lu. c Rn,,x(lJer)Nu

28: end procedure

3 Event support in CasADi

In order to implement event support in the CasADi inte-
grators, we add a zero-crossing output to the DAE function
(2) resulting in the generalized formulation:

[ RXR™ xR x R x R™ — R™ x R"% x R" x R"
(t,x,z,p,u) = (fodeyfalgafquadafzero)
(6)
The zero-crossing component calculates n, separate
smooth trajectories which are monitored for zero cross-
ings, as of this writing only from strictly negative to
strictly positive values (this restriction may be removed in
the future). The smoothness property is essential, and will
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be used for finding the exact event time as described as
in Section 3.2 below. Furthermore, the smoothness prop-
erty is necessary to properly calculate forward and adjoint
sensitivities as described in Section 3.3 and Section 3.4,
respectively.

When a zero crossing occurs, an optional event transi-
tion function is called. This is a separate user-provided
function which has the signature:

E: IxRxR™xR% xR xR — R"™ x R"* 7
(J,t,X,2, pyu) = (x,2)

where x~ and 7~ are the values of x and z immediately
before the event, i.e. x(f) = lim;,x(7) and 7 (1) =
lim;_,; z(7), respectively. In other words, the function E
explicitly defines a the new state vector and a new guess
for the algebraic variables. If an event transition function
is not provided, the identity mapping is assumed.

A differentiable function with the signature (7) can be
created in various ways in CasADi. In particular, we may
want to create n, different functions of the form:

Ej:RXR™ xR™ xR xR S R™ xR o
(t,x',z',p,u)H(x,z), j:O,...,ne—l

)

and then use a Switch function in CasADi to combine them
into a single function with the signature of (7). Also note
that we can use an implicit definition of E or E; e.g. by
using a Rootfinder function in CasADi.

With the addition of the zero-crossing output in the
DAE function and the new event transition function, the
DAE formulation (1) becomes generalized as follows:

(x(2),2(1)) = (J»fax (£),2°(t), pu(t)
if 35 fzcro(t X t),Z (t),pﬂ,t(l‘)) =0
x() fode(t x(t) t),p,u(t)) 9)

otherwise

3.1 Generalized simulation algorithm

In Algorithm 3 we show the generalization of Algorithm 2
to also include event handling as described above. Dur-
ing the forward integration, the main generalization comes
from allowing the ADVANCE step to terminate before the
desired output time, in which case it will return the cor-
responding time and the index of the triggered root-zero
crossing component. When this happens, an event transi-
tion function called TRANS in the algorithm is called. For
simulation without sensitivities, the TRANS function is es-
sentially a call to E from (7). We will show in Section 3.3
below how this function generalizes to forward sensitivity
analysis. Following an event transition, the solver plugin
needs to be reset, similarly as for the case of changing in-
puts. To simplify the presentation, we assume that TRANS
returns the actual algebraic variable 7. In the actual im-
plementation, TRANS will just return a guess for the alge-
braic state and the actual values will be calculated during
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the algorithm to find consistent initial conditions inside the
following RESET. For each event, we record x and z both
before and after the event transition, along with informa-
tion such as the zero crossing index and time. This will be
used for the backward integration.

For the backward integration, two generalizations are
necessary. Firstly, before the call to progress the back-
wards integration to the beginning of the interval (¢;), there
is a for-loop to first visit all events that were recorded for
the specific interval. After the adjoint integration has pro-
gressed to a specific event, the adjoint of the event transi-
tion function is called. This function is discussed in Sec-
tion 3.4. Following the event, during the backward inte-
gration, we need to redo the forward integration starting at
the previous event or input step (whichever is encountered
first), denoted by the PREVIOUS_EVENT helper func-
tion.

3.2 Event detection algorithm

In order to determine the time of zero crossing event with
high precision, the current algorithm is based on lineariz-
ing the zero-crossing algorithm in the time direction. Note
that we currently do not use the zero-crossing detection
capabilities of the interfaced solvers, although we may
switch to doing so in a future version of the code, as dis-
cussed in Section 6.3.

Consider the zero-crossing function as a function of ¢,
including the indirect dependencies via x, z and u:

e(t) = frero(t,x(t),2(t),u(r))

We can linearize this function with respect to time as
follows, assuming known values for x(¢) and (¢):

é(t) afm"(t,x(t),Z(f)aPa“(t))
+9f7ef° (t,x(t),2(2), p,u(t)) x(r)
_|_‘9fzer° (t,x(2),2(t), p,u(t)) (1),

which can be efficiently calculated using a forward direc-
tional derivative of f,eo. Note that there are no partial
derivatives w.r.t. p and u as these are constant during the
interval. As of this writing, we obtain %(¢) from evalu-
ating the ODE right-hand-side, i.e. foge in (9) and did
not consider zero crossing functions depending on alge-
braic variables. In a future iteration, we expect to obtain
x(r) and z(¢) from the specific integrator interface, e.g. by
linearizing the DAE equations with respect to time or by
evaluating an exiting polynomial representation of the x(¢)
and z(¢) trajectories.

The event detection algorithm used consists of three
parts:

(10)

Y

* At the beginning of the (now generalized) ADVANCE
function, we predict using linear extrapolation
whether a zero-crossing event is expected before the
given output time. If this is the case, the forward in-
tegration will be done only to this time and not to
the output time. If there are multiple zero crossing



Algorithm 3 CasADi integration, with events handling
1. procedure SIM_E(xg € R™*(14Ny) 75 e Rrex(1+Ny)|
pe Rnpx(l+Nf)’ Uy € Rnux(1+l\/_f)’ z'x. c Rnxx(1+Nf)Nu’
)Lz. c ]anx(H»Nf)Na7 )Lq. c anx(lJer)Na)

2: ksep :=0 > Index of the next input step change
3: t:=ty, i:=0 > Current time, event index
4: fork=0,....N—1do > Forward integration
5: if k = kgep then > Input step change
6: kprev :=k > Also keep track of old kprey
7: ksiep := NEXT_STEP (k, ute)
8: RESET (t, Xk, 2, P, Ux)

9: end if

10: while < ;.| do > Integrate until #;4 |
11: (%,2,G,t,j) := ADVANCE (f34 1)

12: while j > 0 do > Event transition(s)
13: Save X, Z (pre-call), ¢, j for event i

14: (%,%) := TRANS(j,1, %%, p, uy)

15: RESET(t,%,Z, p,ux)

16: Save X, 7 (post-call) for event i

17: ir=i+1

18: J := <chained event, if any>

19: end while

20: end while

21: Xl =X, Zkr1 =2, Gk1:=(

22: end for

23: Ap:=0, A, =0 > Initialize to zero

24: fork=N-—1,....0do > Backward integration

25: if k < kyrev then

26: kprey 1= <retrieve saved value>

27: [t,X,Z] = PREVIOUS_EVENT(k,i)

28: RESET(t,%,Z, p, ux)

29: ADVANCE (f541)

30: end if

31: if k < kgep then

32: IMPULSE(Ay 5 A Agsr)

33: kstep := NEXT_IMPULSE(k, Ay, , Az, Aq,)

34: end if

35: for all events 7 in interval k do

36: [Axs Ap, Ay] := RETREAT(¢(1))

37: [, Az, AE AE] := ADI_TRANS(i, A, 42)

38: [t,%,Z] = PREVIOUS_EVENT(k,i)

39: RESET(t,%,Z, p,ux)

40: ADVANCE(f311)

4l: Api=Ap+ Ay +AE

42: Ay = Ny + X+ AE

43: end for_

44 [Ae,Ap, Ay] := RETREAT ()

45: Ap i =RAp+ 2y, Ay i= Ay + Ay

46: end for

47: Ay =My

48: Ay =0

49: return x, € R UHN) o0 e Reex(4Ny) g0 e

anX(I+Nf), )on c Rnxx(lJer)Na’ A’Zo c IRnZX(H»Nf)Na7
A{p c Rn,,x(lJer)Na’ Au. c Rnux(l+Nf)Na
50: end procedure
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events predicted, only the soonest one will be con-
sidered. Also, ommitted in the algorithm for ease
of presentation, if a zero-crossing event is predicted
before the next input change, the stopping time for
internal time stepping will be updated accordingly.

* If after this initial integration, the zero crossing func-
tions and their derivatives w.r.t. time indicate that
a zero crossing event has occurred or is still pre-
dicted to occur before the desired output time, a root-
finding iteration will start. The algorithm is an New-
ton method, with a fallback to bisection if é has the
wrong sign. This can e.g. happen if é; is non-
positive, even though the sign of e; indicates that a
zero crossing from negative-to-positive has occured,
or if the predicted event crossing happens before the
start of the integration interval. During the rootfind-
ing iterations, the solver interfaces will be responsi-
ble for updating the state to a given time (which may
require small steps backwards in time).

* When the zero crossing iteration has reached a given
tolerance, or hit a user-selected maximum number
of iterations, the corresponding values for x, z and ¢
along with time and zero-crossing index are returned
to the user.

We do not include specific handling of the case where
the event time is explicitly given, e.g. as a function of
p, u and non-changing components of x, but note that the
above algorithm will find the exact time of such events in
a single iteration since e(¢) is linear in .

3.3 Forward sensitivity analysis

For the forward sensitivity analysis, the function TRANS
in Algorithm 3 needs to be generalized. To get the correct
sensitivity propagation through the event, we must take
into consideration that the event time # may depend on
the state. We can handle this at the event considering the
time ¢ to be implicitly defined by the corresponding zero
crossing function:
fibolt.x,z,pu) =0 & 1=Gxzpuw)  (12)
We can propagate forward sensitivities through this
function using the implicit function theorem, similar to
how forward sensitivities for CasADi’s Rootfinder
class implemented. Since it is a scalar function, the prop-
agation can easily be calculated:

. ot ot ot ot

A A A A

IZZZX-FZZ‘FTPP—‘FEM
_ 1 a]“ZCI'O A afZCrO A a,)(‘Zel'() A a,f‘ZCl'O A
- éj<8x e e, Pt on ™

(13)
where 7 are the forward sensitivities of ¢ and the corre-
sponding forward seeds are £, Z, p and #, respectively.
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With 7 for each sensitivity direction calculated, we are
able to propagate the forward sensitivities through the
event transition function:

JE, . OE JoE
- fad x£+7x£+

t JE,  OE,
=

op P ou

A

a, (14)

where E, is the calculation of x using E in (7). This cal-
culation is performed using a forward directional deriva-
tive applied to the event transition function (7). Since the
event transition function will only provide a guess for z
(the exact value being determined by the DAE), no deriva-
tive propagation is needed.

Finally, we need to consider that sensitivity of 7 needs
to be propagated to the duration of the subsequent inter-
val. For example, if a small perturbation Ap in an input
parameter p leads to the event happening a time At later,
the subsequent integration interval will be At shorter. We
can account for this by using x obtained from (9) and the
known sensitivity in duration length (—7).

RTRANS 1= Xp —1X (15)

3.4 Adjoint and forward-over-adjoint sensi-
tivity analysis

Algorithm 3 also include a tentative implementation of ad-
joint sensitivity analysis and second order (forward-over-
adjoint) sensitivity analysis. During the backward integra-
tion, there is no need to detect zero crossings. Instead we
will simply keep records of the events (times and corre-
sponding event indices) during the forward integration and
then visit the same events in reverse order during the back-
ward integration. Second order derivatives are handled by
allowing all variables to have multiple right-hand-sides.

As of this writing, the extension of the adjoint sensitiv-
ity support to support events is still ongoing. The parts
in Algorithm 3 related to adjoint and forward-over-adjoint
sensitivity analysis should therefore reflects the planned
implementation.

4 Examples

4.1 Forward sensitivities for a bouncing ball

In our first example, we perform an analytical forward
sensitivity analysis for a bouncing ball and compare the
results with a finite-difference approximation. The system
has two states corresponding to height 4 and velocity v,
i.e. the state vector is x = [h;v]. The corresponding ODE
is:

h=v, v=-981 (16)

When the ball hits the ground at # = 0, defined by
frero(x) = —h, an event will be triggered defined by:

T o
=08y,

where v~ is the velocity immediately before the event.

A7)
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In the leftmost figures of Figure 1, we show the event
simulation, over 7 s for a ball starting at rest at 7 = 5, us-
ing SUNDIALS/CVODES as the interfaced solver. The
remaining figures show the sensitivities of 4 and v with
respect to perturbations in A(0) = hg and v(0) = vy, re-
spectively. The results are compared to a basic finite dif-
ferencing perturbation of the whole simulation trajectory.

To understand the results in the lower right subplot,
which may seem counter-intutitive, it can be shown that
for a ball starting at rest, the derivative of the time of the
first bounce Thounce With respect to initial velocity can be

written:
d Tbounce 1

=, 18
dvg g (18)
Therefore, the first derivative of the ball velocity at impact
Vimpact = V0 — & Thounce With respect to initial velocity is
Zero:
dvo dTpounce

= — — 7:1—
dvy & dvy

d Vimpact

vy

&_0.
g

19)
The first order sensitivity of the ball velocity after the

bounce with respect to initial velocity, is therefore just due
to how much time has elapsed since the bounce:

dv(t;ho,vo)

- d Tbounce (

o) =1.
v g)

dvo 20)

This theoretical result, which holds in the almost every-
where sense, is confirmed with the analytical forward sen-
sitivities (blue line). The result repeats itself at subsequent
bounces. For the corresponding finite difference approx-
imation (red line), in contrast, the numerical error will
grow for every bounce.

4.2 Parameter estimation for a breaking
spring

As a second example, we consider the a simple model
of a spring formulated in Modelica. When the spring
is extended too far, an event corresponding to the spring
“breaking” is triggered:

model BreakingSpring

input Real m(start = 1)
"PARAMETER:Mass";

output Real v(start = -5, fixed = true)
"velocity";
output Real x(start = -1, fixed = true)

"displacement";
input Real k(start = 2)
"PARAMETER:spring constant";
input Real c(start = 0.1)
"PARAMETER:damping constant";
input Real d(start = 0) "disturbance";
Real f "spring force";
Boolean b "Is the spring broken?";
initial equation
b = false;
equation
der (x) = v;
f = if not b then -k * x + d else 0;
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Figure 1. Forward sensitivity analysis for a bouncing ball, comparison with finite differences (FD)

m x der(v) + ¢ » v = f;
when x>2 then
b = true;
end when;
end BreakingSpring;

Compared to the bouncing ball model, the breaking
spring model includes the following:

* A free input parameter d, corresponding to u in (1)

 Three tunable parameters, m, k and c, corresponding
to p in (1). To ensure derivative information is avail-
able after compiling the model (e.g. into an FMU),
we will model tunable parameters as controls, using
a Parameter: prefix in the description string to
distinguish them from regular controls.

* A boolean state b, which is updated discontinuously
at events. Since CasADi does not have the concept of
discrete states, we will model discrete states as real-
valued states with zero time derivative, i.e. b is a
component of x (say, index i) with x[i,] = 0.

Using OpenModelica 1.24, we compile the above
model into an XML file, containing a symbolic representa-
tion of the problem, using the approach described in (Shi-
tahun et al. 2013). This model is then imported into a
CasADi DaeBuilder instance, which in turn is used to
generate an analytically differentiable integrator object in
CasADi, again using SUNDIALS/CVODES as the inter-
faced solver.
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CasADi integrator instances can be embedded into ex-
pression graphs corresponding to different optimization
formulations. In Figure 2 (left), we show the result of
solving a parameter estimation problem using the hybrid
integrator. The problem corresponds to finding the param-
eter values m, k and ¢ that minimize a sum-of-squares cost

function:
N

minimize Z (xx — %)%,
m,k,c =1

subject to the hybrid dynamical equation and bounds of
the parameter. To generate simulated measurements f,
we add Gaussian noise to the simulation result corre-
sponding to known values of the parameters. The opti-
mization is done for a known disturbance vector d, but
again with random noise added, as shown in Figure 2
(right). The problem is solved using a single-shooting dis-
cretization, using [POPT as an optimizer.

2

S Summary

In this work, we have shown ongoing work towards a ex-
tending the DAE simulation routines in CasADi to han-
dle systems with events. This includes the efficient calcu-
lation of analytical sensitivity information, as needed by
gradient-based optimization algorithms, also in the pres-
ence of events. We provided details of the forward sen-
sitivity implementation, illustrated with two examples, as
well as details on the ongoing work to implement adjoint
sensitivity analysis with events. While we have thus far re-
lied on relatively simple toy examples available as CasADi
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Figure 2. Parameteter estimation for a breaking spring, with generated measurement values.

symbolic expression graphs, the intention is to use this
feature to implement dynamic optimization for challeng-
ing cyber-physical systems, including but not limited to
systems implemented in Modelica. We will discuss the
path to handle such systems in the Outlook below.

6 Outlook

The work presented in this paper is in active development
as of this writing, with additional features being added
as they become required by applications. In the follow-
ing, we discuss some of the most important extensions
planned.

6.1 Event support for models provided as
standard FMUs

The ultimate goal of this work is to enable the formulation
and solution real-world optimization problems with event
dynamics, in particular those formulated in Modelica. In
our initial experiments, presented in Section 4, we used
a symbolic coupling based on a legacy XML-based sym-
bolic coupling between OpenModelica and CasADi. This
coupling is neither well maintained, nor generic enough
to handle realistic systems. It is also restricted to a single
exporting tool (OpenModelica).

A recent addition to CasADi is the import of general
FMUs adhering to FMI 2, as described in (Joel Anders-
son 2023). In pre-release versions of CasADi, this support
has since been extended to FMI 3, including the interface
to adjoint derivatives of model equations. Our plan is to

10.3384/ECP20799
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use the FMI interface together with the event support in
the CasADi integrators to be able to efficiently and conve-
niently solve optimization problems for real-world Mod-
elica models. Note that by relying on FMI, the structure of
the underlying Modelica model becomes irrelivant as long
as it conforms with the FMI standard and has the prerequi-
site smoothness properties for numerical optimization. It
is also possible to use models that include variables that
cannot be represented in CasADi, for example records or
string-valued expressions, as long as these variables are
not manipulated by the optimizer.

Since the FMI format, as written, does not natively con-
form to the required formulation (9), some reformulations
of the Modelica models may be needed prior to FMU gen-
eration. In particular:

» Event indicator expressions will need to be linked to
differentiable model outputs. That means that the ar-
gument of when-constructs in Modelica may need to
be assigned to additional model outputs, following
some naming convention. This convention ensures
that derivative information is available for the zero-
crossing functions.

* The event transition equations need to consist of sim-
ple outputs-to-states mappings. This means that at
events, the differential state should be assigned to
some of variable with output causality. Each event
indicator should uniquely map to an assignment,
which may require the addition of additional output
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variables. This convention ensures that derivative in-
formation is available for the event transition func-
tions.

* We may need to reformulate free parameters as in-
puts (as in Section 4.2) to ensure that analytic deriva-
tive information with respect to these parameters is
included in the FMU. Alternatively, we can rely on
tool-specific extensions, such as using the annotation
"evaluate = false" in Dymola to ensure that
the parameter can be manipulated by the optimizer.

6.2 A standardized symbolic interface based
on Base Modelica

A symbolic model interface, such as the XML-based inter-
face used in Section 4.2 will always have some fundamen-
tal advantages over a “black box” binary interface. This
is especially true when the model dimensions are small
or when higher order derivative information is needed.
To be able to take advantage of the fundamental advan-
tages of a symbolic interface, we plan to replace the
XML interface with a new symbolic interface based on
a ANTLR4-based parser for the emerging Base Modelica
standard (Kurzbach et al. 2023). This interface builds on
our previous work with Pymoca and Cymoca, cf. https:
//github.com/pymoca/pymoca and https://
github.com/jgoppert/cymoca, respectively.
Since Base Modelica is intended to become a stan-
dard, with ongoing work to export models in this format
from different Modelica compilers, the approach should
be compatible with multiple tools. The hope is also that
since Base Modelica is practical terms a small subset of
the full Modelica language, implementing and maintain-
ing a parser should be possible with a reasonable effort.

6.3 Event detection in interfaces

In Section 3.2, we presented an approach to locate events
based on an algorithm implemented in the integrator base
class. An alternative to this algorithm would be to use the
solver’s native event-finding algorithm, such as the Illinois
algorithm (Hiebert and Shampine 1980) used in SUNDI-
ALS. This algorithm has proven efficient and robust for
numerous applications. There is also value in using the
same event finding algorithm that the modeler is already
using for hybrid simulation.

6.4 Algebraic variables in the zero-crossing
functions, event transition functions

The implementation of the proposed approach was done
in the Integrator base class in a way that was generic for
both ODEs and DAEs, meaning that it can in principle
be used for DAEs. The implementation will not work,
however, if the algebraic variables (z) explicitly enters in
the zero-crossing functions or event transition functions.
This is mainly due to the fact that the state derivatives x,
which are needed by the algorithm, are calculated by sim-
ply evaluating the ODE. Obtaining the time derivatives
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of the algebraic variables z, however, is only possible in
the interfaced integrator plugins, typically using the same
linear system formulation and factorization as is used in
the integration. We plan to resolve this by ensuring that
the calculated algebraic variables z and time derivatives
thereof 7 can be retrieved after the RESET step in Algo-
rithm 3. During this step, consistent initial conditions are
determined and a factorization that allows z to be calcu-
lated is available.
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Abstract

This paper describes two ways on how to interface
Functional Mockup Units (FMUs) and Modelica models
through the Pyomo’s foreign function interface with
Pyomo. Pyomo is a Python-based, open-source
optimization modeling language with a diverse set of
optimization capabilities. Modelica has arguably much
better modeling capabilities than Pyomo, but Pyomo
integrates excellent optimization solvers, such as Ipopt
(Wichter et al. 2006), and provides a good optimization
infrastructure. The Interface has been developed in the
context of a NAWI, (National Alliance Water Innovation)
Hub project in collaboration with the University of
Connecticut and Sandia National Labs. The optimization
has been set up and tested within Modelon’s Modelica
platform Modelon Impact. An unpublished, detailed
multi-effect desalination plant developed by Prof. Matt
Stuber in the context of (Stuber et al., 2015) has been used
to demonstrate the capabilities, as well as simple test
models, and design models from Modelon’s commercial
Libraries.

Keywords: Modelica, Functional Mockup Interface,

FMI, Steady-state Optimization, Design Optimization

1 Introduction

There is a growing list of options to perform optimization
studies involving Modelica models. A number of
simulation tools support optimization natively within their
simulation environment (OpenModelica, Ansys Twin
Builder®, System Modeler, the Modelica Optimization
Library, etc.). The models can also be exported as
Functional Mockup Units (FMU) and imported to
specialized  optimization  tools  (modeFrontier®,
Optimus®, etc.). A couple of dynamic optimization
(Bryson 1999) methods (OpenModelica and JModelica)
rely on CasADi (Andersson 2011; Bachmann 2012; Ruge
2014). The tools transfer the Modelica model to CasADi
for automatic differentiation and optimization. Originally
this was done via an XML file format for both tools
(Magnusson 2015), but the Optimica Compiler Toolkit
(OCT) has evolved from JModelica to support more
comprehensive coverage of the Modelica language,
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transferring large parts of the language into a native
CasADi problem (Modelon 2024). This is done
automatically but both methods rely on sufficiently
restricted models to avoid unsupported constructs by
CasADi. The Optimica Compiler Toolkit also includes
support for derivative free optimization using the Nelder-
Mead simplex method (Nelder and Mead 1965; Fletcher
1987) for static optimization. In addition, OpenModelica
and OCT support the Optimica® language for the
description of the optimization problem. This language is
an extension to the Modelica language. An alternative to
the above methods that is explored in this paper, is to
connect the FMU