
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

H. Olsson
Dynasim AB, Sweden
External Interface to Modelica in Dymola
pp. 603-611

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel,
Stefan Wischhusen, TuTech Innovation GmbH

External Interface to Modelica in Dymola

Hans Olsson

Dynasim AB
Research Park Ideon

S-223 70 Lund, Sweden

Introduction

Dymola [1] provides an integrated environment for
modeling, simulation and scripting based on the

Modelica language. However, Modelica is not al-

ways the best choice for GUI-design, database ac-
cess, or canned presentations of libraries (in the last

case the usual choices are PowerPoint® presenta-

tions, pdf-documents, or animation files).

The solution in these cases is to leverage other tools,

such that they can interface to Dymola’s Modelica

functionality and vice-versa for call-backs/links from
Dymola to external tools. These solutions are already

implemented for the forthcoming version Dymola 6,

except for a few specific items described as future
plans (these might be implemented in time for the

release of Dymola 6). Some solutions are also avail-

able in previous versions of Dymola as described in

the manual [1].

1 Model callbacks in Dymola

One goal of the external interface is to allow a model
developer to customize commands for the model by

calling external tools. This functionality is provided

in two separate parts:

• External tools can be interfaced to any Modelica

function.

• Models can be customized to have commands

calling Modelica scripts or functions in Dymola.

As a concrete example a model developer can add

model-specific commands to Dymola’s Commands-

menu. Users of the model can then call a command

from the Commands-menu, which for example
executes a Modelica script calling external Modelica

functions implemented in C.

1.1 Variants of commands

The commands can be generic (independent of the

selected model, e.g. to select a specific demo model

or check that the model fulfils some guidelines), or
specific to the currently selected class (e.g. post-

process the simulation result).

The command can be called explicitly by the user

(from the Commands-menu in Dymola), or implic-

itly to extend existing functionality (the enable-field
in parameter-dialogs is one example where a user

can enable the input field based on a predicate call-

back). In the future, callbacks will be generated at
specific stages of translation, e.g. for users to gather

additional statistics of the use of specific models.

Obviously we could for a specific example provide

the functionality inside Dymola, but by providing an

API and callbacks we allow the customer to extend
Dymola. Thus the API to Modelica structure which

is presented later in the paper is intended to also be

useful for e.g. gathering statistics about the compo-

nents used in the translated model. Some of these
functions need access to browser information (such

as the current class) as will be discussed below.

1.2 Calling functions directly

A specific case of running a command is to call a

function related to the model e.g. to run an optimiza-

tion of the model.

The advantage with directly using function calls is

that there is no need for any model-specific script

files (making it easier to e.g. copy the Modelica

model) and that a function call is part of the Mode-

lica language and thus syntactically correct.

Furthermore it is possible to optionally prompt the
user to modify the arguments of the function call

before the function is called, e.g. to specify the oper-

ating point to optimize for. This uses the normal (and

extensible) function call dialog.

2 Communication protocols

The interprocess communication is between two
running programs one of which is Dymola. The

External Interface to Modelica in Dymola

The Modelica Association 603 Modelica 2005, March 7-8, 2005

transport mechanism can be seen as separate from

the structure of the messages. Currently Dymola can

send and receive DDE-messages. For the future ex-
tension of exchanging XML-data in SOAP-encoding

SOAP-HTTP is a suitable alternative [2], and is

portable to non-Windows platforms (for which the

demand is increasing).

2.1 DDE-interface

For DDE-execute, the return value does not allow

meaningful result values and thus specially formatted

DDE-Request(s) is used for returning data to other

programs with a special case for Matlab (below).

Thus Windows programs can call DDE-routines to
e.g. perform a parameter sweep from Excel (by pro-

gramming in Visual Basic for Application). In this

case the update of the excel spread-sheet is done by
running a macro and there are no links in the Excel-

document, which only contains the start-values

(J1.w), parameter-values (J2.J), and final values for

two variables (J1.w and J2.w):

Figure 1 Parameter-sweep from Excel

The macro opens a DDE-channel to Dymola, sends

the command simulateExtendedModel as a DDE-
request to simulate and get the final values of vari-

ables. To access the spread-sheet the Excel-routine
Sheets("Sheet1").Cells(r, c).Value

is used to get and set the values.

It is also possible to use DDE to communicate di-

rectly with a running simulation, Dymosim, (pro-
vided the compiler option ‘Visual C++ with DDE’ is

selected). This is described in [1] and also allows

automatic update of variables after changes.

These protocols are extensible which allows calls

between two programs running on different comput-
ers, i.e. remote procedure calls. Although remote

procedure calls are beneficial, for security reasons

remote procedure calls must be explicitly enabled (as

is necessary for remote DDE).

Limitations of DDE

Unfortunately DDE has some restrictions (in addi-

tion to being platform-specific), in particular on the

maximum length of the messages, and no general

high-level API for communicating structured data.

For communication with a running simulation (DDE-

communication between Dymola and Dymosim) we

have found it necessary to use special formats to
achieve the high bandwidth needed for e.g. online

animation of Modelica models, while respecting the

limitations of the protocol.

We do not anticipate similar bandwidth needs for the

communication with Dymola, since the natural way
of communicating a vector of values is to send it as

one DDE-message (which automatically solves most

of the performance problems).

The DDE-interface in the caller is preferably written

as one generic routine (as we have done in Matlab)
to make it easy to later extend it e.g. with handling of

messages exceeding the maximum length, and

optimized alternatives to the CF_TEXT-format.

2.2 Direct interfacing

The above handles the complex case of interprocess
communication between two running programs, but

sometimes a simpler mechanism suffices.

2.2.1 Call of external functions

The Modelica language offers the possibility to di-

rectly interface to C and FORTRAN-functions such
that calls of Modelica functions declared as external

C/Fortran are mapped into calls of the corresponding

C or Fortran functions.

There is no restriction on the use of external func-

tions in Modelica and to allow easy use of them in
the interactive environment Dymola performs de-

mand-compilation of external functions. Thus a user

can call external functions in the same way as non-

external functions.

This C interface provides an extensible mechanism
that also handles other languages that can give rou-

tines C linkage, such as C++ and languages that pro-

vide an interface for calls from C, such as Java.
Since the JNI interface to Java allows dynamic

loading of Java-libraries this could be done internally

in Dymola making it possible to directly call a Java

function from Dymola to e.g. show a modal dialog
and get the user response back without using any

external programs.

Below we demonstrate running a Java function

showing a modal dialog box, where the call of the

Java-functions has been included as an external
function call in Modelica (with suitable arguments),

and then compiled by Dymola (the JNI-

implementation require that calls in translated C-

code use the Visual C++ compiler).

H. Olsson

The Modelica Association 604 Modelica 2005, March 7-8, 2005

Figure 2 Calling a modal dialog in Java from a
Modelica function

Extending Modelica’s external interface to directly

include Java in addition to C and Fortran 77 is

straightforward and the specification was deliber-
ately written to allow such extensions. By using sin-

gle-quoted names it is possible to directly support

hierarchical external function name (i.e. containing a

dot) as in Java.

2.2.2 Linking to libraries

It is also possible to link with specific C-libraries

(including Dynamic Link Libraries, DLLs). Due to

the limitations of the C-compilers used, any libraries
must be provided in a binary format compatible with

the C-compiler used to compile the Modelica code in

Dymola (Visual C++ 6/7, egcs, or Watcom). Pro-

vided the external code is portable and available in
source-form that is in general possible. Additionally

Modelica models are often downloaded and run on

realtime platforms, which require different libraries
(or that the C-code is provided in source-form and

linked together with the model).

Another potential problem on Windows is that some

API calls require that the caller is a Windows-

program.

This is e.g. necessary to use the DirectX interface

from Microsoft. An application of DirectX is to al-
low users to control a car-model from VehicleDy-

namics [6] by a steering wheel. In those cases a

Windows program must be generated (in Dymola
this currently requires that you select the compiler

Visual C++ with DDE) and special routines obtain

the window handles.

2.2.3 Calling programs

Modelica.Utilities.System [3] enables functions
written in Modelica to call external programs.

Command line arguments to Dymola enable external

tools to for instance run simulations in Dymola.

The Commands-menu, Dymola’s Execute-function,

and links in the documentation layer also allows
opening other files than Modelica scripts using the

file associations in Microsoft Windows. This is use-

ful for canned presentations, and selecting a menu

entry will automatically open the file in the corre-
sponding tool (e.g. pdf-documents in Acrobat

Reader®, animation files in the media player, html-

files in the browser).

3 Data-structure encoding

To communicate Modelica data-structures in Dy-

mola to other tools the data-structures must be
mapped into other data-structures. Following the C

and FORTRAN-interface this is defined in a generic

encoding for each interface, i.e. there is no need to
specify a mapping for each data-structure. If a spe-

cial mapping is desired for a specific case that can

then be done either in a Modelica function or in the

other tool.

The basic idea of the interface is to return a string
that when evaluated returns the value, e.g. a numeric

value is returned as itself, i.e. 3/2 is returned as the

string ‘1.5’ (without the quotes).

For more advanced data-structures, arrays and rec-

ords, it is necessary to define how the resulting string
is evaluated. The two variants that are implemented

are Modelica data-types constructors and Matlab.

3.1 Mapping to Modelica

The Modelica-mapping is identical to the output

format used in Dymola’s command-window and

makes use of record and array constructors for com-
plex data-structures. Consider the examples (input in

bold and the response-string is given after the ‘=’):

Matrices.inv([1,2;3,4])

=

[(-2.0), 1.0;

1.5, (-0.5)]

GetClassAttributes("Modelica")

 = Dymola.AST.ClassAttributes(

 fullName = "Modelica",

 isPartial = false,

 isProtected = false,

 restricted = "package",

External Interface to Modelica in Dymola

The Modelica Association 605 Modelica 2005, March 7-8, 2005

 isInner = false,

 isOuter = false,

 isEncapsulated = false,

 isShortClass = false,

 isReplaceable = false,

 isRedeclared = false

)

The mapping is sufficiently straightforward that we
will not go into details of it, and if the result is pasted

into Dymola’s command input and evaluated it re-

turns the same result once more.

To use this functionality the application programmer

has to set up a DDE-channel to Dymola, and send a
Modelica-function call as string in a DDE-request.

Dymola’s DDE-server will respond with a string

containing the result as a Modelica data-structure.

DDE-client

Dymola

DDE-server

Modelica

function

Modelica

Modelica

DDE

String(Modelica)

String(Modelica)

User-

programmed

Dymola

Figure 3 Using Dymola’s interface to Modelica

functions from other programs.

For this to be possible, all data-structures in Mode-

lica must have an output format that when evaluated
gives the data-structure back. This seems straight-

forward, but the problem is empty arrays, since

Modelica as a strongly typed language does not al-

low {} for empty arrays.

For primitive types a work-around is to use the fill-
operator. For an empty array of records this requires

using the record-constructor, but in many cases the

record constructor does not have defaults for all ele-
ments and thus cannot be called without specifying

arguments. A future extension of Modelica would be

to allow calls of the record constructor with no ar-

guments in this specific case.

3.1.1 Grammar for Modelica subset

We have defined a subset of Modelica for repre-

senting any structured data values, that is primitive

types, arrays, and records.

The advantage of this format is that the mapping is

self-explanatory, complete for Modelica data-types,

and to be able to parse the Modelica-format it is only

necessary to implement a parser for a subset of ex-

pressions from the Modelica grammar:

expression:
 primary

| "-" primary

primary :
 UNSIGNED_NUMBER
| STRING
| false
| true

| component_reference function_call
| "[" expr_list { ";" expr_list } "]"
| "{" expr_list "}"

component_reference :
 IDENT ["." component_reference]

expr_list :

 expression { "," expression }

function_call :
 "(" [function_args] ")"

function_args :
 expression ["," function_args]
| named_args

named_args:

 named_argument ["," named_args]

named_argument: IDENT "=" expression

Some of the names in the grammar have been short-

ened to keep the grammar elements on one line.

The reason to keep component_reference and func-
tion_call is to use record constructors to build record

data-structures (using named arguments). Function

call without named arguments (the line in italics) is

only needed for the above-mentioned use of fill to

construct empty arrays.

3.2 Mapping for Matlab

Dymola can automatically map data-structures to

Matlab data-structures. They are first encoded in a

string, that is then automatically evaluated by the

Matlab-interface to the corresponding data-structure.

H. Olsson

The Modelica Association 606 Modelica 2005, March 7-8, 2005

Dymola/Modelica Matlab

Real double

Integer double

String string

Enumeration(planned) string

Boolean double

Array matrix or cell array

Record member struct member

Figure 4 Mapping to Matlab

Array results are returned as matrices, except array

of records and array of strings that are returned as

cell arrays.

This provides a complete interface from any data-

structure (i.e. return-value) defined in Modelica to a
corresponding data-structure in Matlab. This in-

cludes the Modelica class and component structure

as will be defined later.

The interface for sending requests from Matlab to

Dymola cannot provide a similar feature based on
the data structures in Matlab. The reasons are that

Matlab does not distinguish between scalars, vectors

and matrices (i.e. ndims in Matlab is always >=2),
and that Modelica lacks a counterpart to Matlab’s

struct, i.e. an untyped record constructor.

However, as will be discussed in a following section

an API to the class structure is available and the

caller routine in Matlab (dymolaCall) has been ex-
tended with code to perform this mapping based on

the declaration of the called Modelica function. Thus

the Matlab-programmer only has to call dymolaCall
with the name of the Modelica function and argu-

ments as Matlab data-structures (arrays and structs).

Dymola and dymolaCall and internally handle this

and the result is a Matlab data-structure.

dymolaCall

DDE-client

Dymola

DDE-server

Modelica

function

Modelica

Modelica

DDE

String(Modelica)

String(Matlab)

Matlab Dymola

Matlab

m-file

Matlab

Matlab

Figure 5 Interface between Matlab and Dymola

This does not include some of the advanced features

of Modelica, e.g. the mapping does not automatically

handle vectorized arguments to functions or allow

you to use named arguments from Matlab.

We have not yet found any performance issues with

this interface, but the m-file could be improved to

locally cache the Modelica class structure in order to

avoid sending the same query several times to Dy-

mola (as will happen with e.g. arrays).

3.2.1 Examples

The following examples are only intended to demon-

strate the possibilities and that strings, arrays of dou-

bles, and records (containing strings and booleans)
are returned (running from Matlab). The first exam-

ples demonstrate sending the entire command as one

string:

>> dymolaCall('"Hello"+" world"')

ans =

Hello world

>> dymolaCall(…

'Modelica.Math.Matrices.inv([1,2;3,4])')

ans =

 -2.0000 1.0000

 1.5000 -0.5000

As indicated above the interface also allows call with

function arguments as Matlab data-types (the second

argument can optionally be used to specify an exist-

ing DDE-channel):

>> dymolaCall('Modelica.Math.Matrices.inv',[],..

[1,2;3,4])

ans =

 -2.0000 1.0000

 1.5000 -0.5000

dymolacall('GetClassAttributes',[], 'Modelica')

ans =

 fullName: 'Modelica'

 isPartial: 0

 isProtected: 0

 restricted: 'package'

 …

External Interface to Modelica in Dymola

The Modelica Association 607 Modelica 2005, March 7-8, 2005

>>dymolaCall(…

'Modelica.Math.Matrices.leastSquares',[],…

[1;0;1],[1;2;3])

ans =

 2

We will later return to how this uses the API to the

Modelica class structure to construct the call.

3.3 Mapping for XML

For the abstract syntax tree one mapping to XML [4]

is defined in [5]. A future mapping of data-structures
to XML could use a subset of this by viewing them

as a function call/expression in this structure (i.e.

similar to the subset for the mapping to Modelica).

This can be viewed as too generic and another possi-

bility is to automatically construct a specific docu-
ment type declaration defining the grammar for the

specific Modelica data-structure(s), i.e. one for each

record class used, and placing this first in the XML-
file [4]. This might still be combined with an exter-

nal pre-defined data-type declaration for the built-in

Modelica types, i.e. Boolean, Integer, Real, and

String.

4 API to Modelica class structure

The first problem with defining an API to the Mode-

lica class and component structure is that it is not
possible to define a data-structure for the entire class

structure in Modelica (at least not as implemented in

Dymola), because the class structure is inherently

recursive. However, even if it were possible to repli-
cate the entire class structure as a set of nested rec-

ords it would not provide an efficient interface to the

class structure for simple queries or modifications.

Therefore we have instead defined access routines

that allow tree walking to be built in Modelica (in the
future there will also be corresponding routines for

modifying and adding classes and components).

4.1 Basic design of API

In order to provide a useful interface to the classes

and components three sets of routines were provided
as follows in package Dymola.AST. Originally each

set was only comprised of two functions and one

record, and the intention is to further extend this (e.g.

with routines for modifying the elements).

The three sets of routines are for classes, extends-

clauses and components. In each set there is a routine

for obtaining the elements (as an array), a record de-
fining the “attributes” (protected, inner, full class

name, …) and a routine for getting the attributes for

a specific element.

These interfaces assume that one can use the name of

elements in the queries, which is possible in the
cases above (technically excluding the obscure case

of repeated identical extends-statements which is

legal Modelica, but without any reasonable use).
Note that Dymola enforces this semantic restriction

in Modelica already during parsing of classes, and

thus it is safe to base the API-routines on this as-

sumption.

The requirements also include access to the import-
statements in the class. For import-clauses it is hard

to define which name to use as a key (when consid-

ering both the qualified and the unqualified import-
statements, thus a combined routine has been added

that returns an array of records defining the import-

statements.

This was found to provide such an increase in ease of

use that similar routines were added for the other

cases. These were trivial to implement based on the
existing routines, and we give a full example below

(excluding its documentation):

function ComponentsInClassAttributes

 "Get components of a class"
 input String className;
 output ComponentAttributes res[:]=

 GetComponentAttributes(className,
 ComponentsInClass(className));
algorithm

end ComponentsInClassAttributes;

Here the names of the components is constructed by

ComponentsInClass and this is then used in a vec-

torized call (as defined in Modelica [3]) of GetCom-
ponentAttributes to get the attributes of all compo-

nents.

Thus functions exists for all elements of table given

on the next page (where “elements in class” has a

class/ package as input and get attributes also exist in
a form that returns an array containing the attributes

of all elements).

H. Olsson

The Modelica Association 608 Modelica 2005, March 7-8, 2005

Record of attributes Elements in class Get attributes

Classes ClassAttributes ClassesInPackage GetClassAttributes

Extends ExtendsAttributes ExtendsInClass GetExtendsAttributes

Components ComponentAttributes ComponentsInClass GetComponentAttributes

Import ImportAttributes ImportsInClassAttributes

Figure 6 Overview of API to class structure. The row headings are the element types and the column
headings the different functions (and records).

To make it possible to traverse all classes it is also

possible to list all top-level classes (optionally lim-

ited to the ones defined in a specific Modelica file).

4.1.1 Example

These functions can be used in Modelica to find all

restricted classes and provide e.g. the following list

of accessible classes (excluding protected and partial

ones):

Modelica 1.6 Modelica 2.1

Model 222 429

Block 71 147

Function 41 199

Type 485 513

Package 50 130

Figure 7 Statistics for Modelica Standard Library

The growth of the standard library is in part due to

the fact that ModelicaAdditions libraries were com-

pleted and after (in some cases major) revisions in-

cluded in the Modelica Standard Library.

An alternative to returning all elements as one array
of records would be to provide an iterator, or a call-

back-routine for enumerating the elements (and ac-

cess routines instead of record elements). This is a
traditional style in several environments (iterators in

C++, enumeration callbacks in Windows API) since

it avoids allocating large arrays. However, it requires
additional state (in the iterator or enumerator call),

which is contrary to the limitations on functions in

Modelica, and therefore also increases the risk of

errors in application code.

4.2 API to semantics not only to syntax

The API above defines basic routines that can be

used directly. They also provide the basis for writing

functions intended to answer higher-level questions,

e.g. to search in a hiearchy for all components de-

clared of a certain class.

Programming such queries require that the API an-

swers questions related to the semantics of the decla-

rations instead of questions based on their syntax

(i.e. Dymola must not only parse the Modelica

classes to answer the question, but also implement

e.g. the semantics of look-up in Modelica).

To clarify this consider the declaration of T2 in the

coupled clutches demo:

 parameter SI.Time T2;

To obtain information about this declaration we can

use the following:

Dymola.AST.GetComponentAttributes(
"Modelica.Mechanics.Rotational"+

".Examples.CoupledClutches","T2")

which gives the result:

Dymola.AST.ComponentAttributes(

 name = "T2",

 fullTypeName="Modelica.SIunits.Time",

 isProtected = false,

 sizes = {},

 variability = "parameter",

 isInput = false,

 isOutput = false,

 isInner = false,

 isOuter = false,

 isReplaceable = false,

 isRedeclared = false,

 isGraphical = false

)

By returning the full name of the type ("Mode-

lica.SIunits.Time") and not the type-name part of the

declaration ("SI.Time") it is straightforward to pro-

gram this kind of queries and this also made it easier

to program the calling interface from Matlab.

Obviously advanced users would like to also have
access to the exact declaration (including modifiers

and annotations) and that is planned for the future.

Basing the API on the semantics is also important for

future improvement of providing routines to modify

the classes through the API, where declaring a new

External Interface to Modelica in Dymola

The Modelica Association 609 Modelica 2005, March 7-8, 2005

component might require the addition of import-

statements. When a user drags and drops a class to

the diagram layer to declare a new component Dy-
mola automatically adds import-statements if neces-

sary. The API can internally re-use this functionality.

Similarly copying (or moving) a class from one

Modelica package to another might require changes

to its declarations which is done automatically by

Dymola’s GUI and hidden from the user.

4.3 Simplification in Modelica 2.2

One previous problem with using these functions

was that the sizes of non-inputs to functions had to

be known from the call according to the Modelica
2.1 standard [3]. That requires complex work-

arounds and/or additional functions.

The restriction has now been lifted in Dymola (and

accepted for Modelica 2.2) allowing a variable de-

clared with size : (and without any binding assign-
ment) to be re-sized (if necessary) when assigned in

the function (note that this includes not only vari-

ables declared directly in the function but also their
record elements). The change is backward compati-

ble since such variables previously were semanti-

cally incorrect.

The change is not limited to working with the

Modelica-structure, but is also useful in Modelica for
unrelated uses, e.g. a routine that returns the positive

eigenvalues. It was also needed to implement the

API functions themselves, in particular the size-field

for array of a component.

Those wanting an additional rationale can examine
the case below where the same function as given in

two versions, one written before the feature was im-

plemented and another version rewritten to use it:

4.3.1 Example after simplification

As an example consider a function for finding the
attribute of all classes defined in package (including

the contents of packages – after the package):

function attributeModelsInPackage
 import Dymola.AST.*;
 input String s;

 output ClassAttributes attr[:];
protected

 String localClasses[:]=
 ClassesInPackage(s);
 ClassAttributes attributes;
algorithm

 for i in 1:size(localClasses,1) loop

 attributes:= GetClassAttributes(
 s + "." + localClasses[i]);

 attr:=cat(1,attr,{attributes});
 if attributes.restricted
 == "package" then
 attr := cat(1, attr,

 attributeModelsInPackage(

 attributes.fullName));
 end if;
 end for;
end attributeModelsInPackage;

4.3.2 Example before simplification

Before this feature of automatic resizing of arrays

was available it was necessary to write two routines,
one to determine the length of the array and one to

actually return the array.

We consider this for the simpler case of only return-

ing the full names of the classes, first we have to

count the size of the output:

function countModelsInPackage

 import Dymola.AST.*;
 input String s;
 output Integer count= 0;
protected

 ClassAttributes attributes;
algorithm

 for i in ClassesInPackage(s) loop

 attributes:=GetClassAttributes(
 s + "." + i);
 count:=count+1;
 if attributes.restricted
 =="package" then

 count := count +
 countModelsInPackage(
 attributes.fullName);
 end if;
 end for;
end countModelsInPackage;

Note that there is no declared array for the result of

ClassesInPackage – instead it is directly iterated over
removing the need for any local variable (and the

problem of its size).

function attributesModelsInPackage
 import Dymola.AST.*;
 input String s;

 output String

 attr[countModelsInPackage(s)];
protected

 ClassAttributes attributes;
 Integer index=0;

 Integer len;
algorithm

 for i in ClassesInPackage(s) loop

 attributes:=
 GetClassAttributes(s + "." + i);

H. Olsson

The Modelica Association 610 Modelica 2005, March 7-8, 2005

 index:=index+1;
 attr[index]:=attributes.fullName;
 if attributes.restricted
 =="package" then

 len :=countModelsInPackage(

 attributes.fullName);
 attr[index+1:index+len] :=
 attributesModelsInPackage(
 attributes.fullName);
 index:=index+len;
 end if;
 end for;
end attributesModelsInPackage;

Apart from practical problem of writing such com-

plex functions an additional problem is that there is a

need to maintain multiple functions. If requirements

change (e.g. only return public classes) it is neces-

sary to update two functions.

4.4 Revisited example from Matlab

When we previously considered the following call

from Matlab

>>dymolaCall(…

'Modelica.Math.Matrices.leastSquares',[],…

[1;0;1],[1;2;3])

we indicated that Dymola’s API was used to con-

struct this argument. The calls of Dymola API func-

tions are:

Dymola.AST.GetComponentAttributes(

"Modelica.Math.Matrices.leastSquares",

"A")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetComponentAttributes(

"Modelica.Math.Matrices.leastSquares",

"b")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Finally the result is the following function call:

Modelica.Math.Matrices.leastSquares(

[1;0;1],{1,2,3})

The first call, GetClassAttributes, determines that

this is a function call and not the call of a record con-

structor. The next call, ComponentsInClass, is used
to determine the components of the function. For

each argument the next input component is found by

looking at the component attributes (this check is not
performed for record constructors). The type of input

component is then accessed, GetClassAttributes(

"Real"), to find that it is a primitive numeric type

(since booleans must be treated specially).

The significant part is that in Matlab there are two
matrices/columns vectors and based on the Modelica

function the first one is sent as matrix to Dymola

([1;0;1]) and the second one as a vector ({1,2,3}).
Without the API-calls it would not have been possi-

ble to determine that these should be treated differ-

ently.

5 Conclusions

This paper shows that Dymola 6’s Modelica imple-

mentation provides an extendable external interface

to use other tools and also be useful from other tools.
In addition it shows that an interface to the Modelica

class structure is useful in itself and also can be used

when implementing the external interface.

References

[1] Dynasim (2005): Dymola User’s Manual,

Dynasim, www.dynasim.com,

[2] XML Protocol Working Group (2000-):

SOAP http://www.w3.org/2000/xp/Group

[3] Modelica Association (2004): Modelica
Language Specification Version 2.1,

www.modelica.org

[4] World Wide Web Consortium (1996-): Ex-

tensible Markup Language (XML),

http://www.w3.org/XML/

[5] Pop A., P. Fritzson P. (2003): Modeli-

caXML: A Modelica XML Representation
with Applications, Proceedings of the 3rd

International Modelica Conference,

Linköping Sweden.

[6] Andreasson J. (2003): VehicleDynamics

library, Proceedings of the 3rd International

Modelica Conference, Linköping Sweden.

External Interface to Modelica in Dymola

The Modelica Association 611 Modelica 2005, March 7-8, 2005

