
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

C. Schlegel, R.Finsterwalder, H. Olsson
Schlegel Simulation GmbH; BU München,Germany; Dynasim AB, Sweden
Using Dymola generated C-Code in specialized Client / Server Simulation
Environments
Not published

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Using Dymola generated C-Code in specialized
Client / Server Simulation Environments

Clemens Schlegel

Schlegel Simulation GmbH
Meichelbeckstr. 8b
D-85356 Freising

Reinhard Finsterwalder

University of the Federal
Armed Forces Munich

D-85577 Neubiberg

Hans Olsson
Dynasim AB

Research Park Ideon
S-22370 Lund

Abstract

The modeling and simulation tool Dymola can gen-
erate C-code from a Modelica simulation model. We
investigate the usage of that code in different client /
server environments with the simulation running on
a server and a simulation GUI running on a client.
The Dymola generated model code (server) has been
run under Windows 2000, Linux and the realtime
operating system QNX. Clients have been imple-
mented in Matlab/Windows 2000, C++/MFC under
Windows 2000 and Windows Mobile, and Java/
AWT. We used DDE and TCP/IP as communication
protocols. As a demo simulation a model of a cold
rolling mill with 462 unknowns and 33 states has
been used. A multithreaded, shared memory buffer
mechanism for the communication turns out to be a
good approach for distributed simulation setups in-
cluding realtime simulators.

1 Introduction

The modeling and simulation tool Dymola [1] can
generate C-code from a Modelica simulation model.
That C-code may be used in the tool’s own simula-
tion environment, in which case the generated code
plugs in seamlessly. It may also be integrated in a
different, user provided environment. In this paper
we will have a look at the second case.

A simulation environment to run model specific code
has to provide mainly four functionalities:

1. Numerical integration, if the integrator is not

part of the generated code and the model con-
tains differential equations.

2. Simulation control. The minimum functionality
is to start and stop the simulation run, it may
comprise synchronization

3. Parameter handling: load, inspect, change and
save parameters.

4. Trajectory handling: display, evaluate and save
simulation results.

Often the model code is run on the same hardware
and software platform as the simulation environ-
ment. If not (the case we are discussing here) the
communication between them is a main issue.

Porting the model code from the model development
system to another platform is mostly driven by spe-
cial needs like cosimulation of different simulation
systems, hiding a model completely from the user,
providing a specialized user interface, embedding the
model in a special environment like a dedicated
training simulator, or an animation system, or run-
ning the model on a specific realtime platform.

In this paper we will have a look at DDE and a more
closer look at TCP/IP for communication. We run
the model and the numerical integration on different
servers, and simulation control, parameter handling
and trajectory display on several clients. The differ-
ent client/server configurations used are given in ta-
ble 1, the corresponding hardware in table 2.

For the configuration Win/DDE we applied Dy-
mola’s optional feature to link the model code as a
DDE server [2] and used Matlab (could be any other
appropriate Windows application as well) as DDE
client [3]. For the other server configurations we
used the Dymola standalone option to set up an
autonomous model code (including an integration
algorithm) and instrumented that code with TCP/IP

Using Dymola generated C-Code in specialized Client / Server Simulation Environments

The Modelica Association Modelica 2005, March 7-8, 2005

communication. Finally, the QNX server [4, 5] is a
true realtime system (e.g. interrupt latency < 4 µs
[6]).

2 The simulation test model used

All the simulation tests have been performed using a
simulation model of a cold-rolling mill. The model
has been developed for investigation of the rolling
process in order to design an innovative automation
system for such plants [7]. The project focused on
thickness control and production throughput. There-
fore the modeling scope does not consider flatness,
crown and width control.

Figure 1 gives a schematic overview of a typical sin-
gle stand cold rolling mill. The metal strip (2) is un-
rolled from an uncoiler (1), which feeds the strip into
the roll gap (4) via a deflector roll (3). The force on
the deflector roll is measured to control the strip ten-
sion via the uncoiler drive. Several back-up rolls (6)
support a set of two work rolls (7), which directly act
on the strip to reduce its thickness, which is meas-
ured after the roll gap. The required force to control
the roll gap amplitude is generally generated by hy-
draulic cylinders (not shown in figure 1). The strip is
then wound up on another coil (5). Together with the
coiler drive an other deflection roll is used for ten-
sion control on the output side.

Modeling and simulation of such plants imposes
several problems:
• Uncoiler and coiler radii are changing discon-

tinuously during the rolling process.
• Friction effects of the strip and deflection rolls

may cause tension oscillations.
• Friction in the hydraulic cylinder and in the roll-

ing mill stand has a strong influence on thickness
control and therefore needs to be modeled with
high fidelity.

• Elastic and plastic deformation effects have to be
considered in the roll gap. The resulting equa-
tions lead to algebraic loops in a nonlinear im-
plicit formulation.

• Due to the mentioned nonlinear implicit alge-
braic relations model initialization is not trivial.

• The complete thickness reduction of a single coil
is performed in several passes and takes up to 15
minutes. Since the required integration step size
is quite small (typically 0.1 to 0.5 ms), simula-
tion speed is important.

• For operator training a realtime simulation of the
overall plant is desirable.

The demo model has 54 components, 791 variables
(33 of them are selected as states by the Dymola
translator), 462 unknowns and 329 non-trivial equa-
tions. Using a PC with medium performance (table
2) 0.55 ms computing time per 1 ms integration step
is required under the realtime system QNX.

3 Communication Protocols

Because of the built in functionality of Dymola and
Matlab we first tried DDE for client / server commu-
nication. That combination offers a comparatively
easy solution. Later in the project we switched to
TCP/IP. To make sure that the client does not miss
any trajectory data of the simulation server we used a
multithreaded buffering scheme described below.

3.1 DDE

The salient point of using Win/DDE is the perform-
ance of the DDE communication between the model
code and the user interface. DDE is not known for
superior performance and requires special provisions
if partial data loss is not acceptable. If e.g. the GUI is
busy due to some user interaction, data sent by the
DDE server gets lost, there is no built-in buffer or
client/server handshake mechanism. Using the hand-
shaking defined for DDE_ADVISE [8] is not always
possible, because it is not accessible from e.g. the
Matlab-client and it degrades performance due to
lack of a built-in buffer.

NetDDE extends DDE for client/server applications
across a network. It can be used in a LAN / WAN
because it’s based on NetBios what might be run
over TCP/IP. However, NetDDE is mainly available
for Microsoft operating systems. There are other
(proprietary) implementations available but these are
not part of the respective operating systems.

To overcome the data loss problem the mentioned
multithreaded buffering scheme could be applied as
well, but that requires to re-program the complete
communication (both client and server) from scratch.
Instead of doing so we switched to TCP/IP.

C. Schlegel, R. Finsterwalder, H. Olsson

The Modelica Association Modelica 2005, March 7-8, 2005

3.2 TCP/IP

In order to cover a great variety of different plat-
forms and for performance reasons we mainly used
the TCP/IP network protocol. It is integral part of all
current operating systems including realtime sys-
tems. TCP/IP guarantees the correct transmission of
data packages from sender to receiver. Data pack-
ages are received in the order they are sent. TCP/IP
supports the communication of distributed processes
running in a heterogeneous computer network. E.g.
the simulation can be run on a QNX computer in
realtime, while the client runs on a Microsoft PC.

4 Client / Server Implementation

4.1 Server implementation

The simulation computer (server) runs two unsyn-
chronized processes, the simulation process and the
data communication process. The simulation process
runs at a fixed sampling rate, e.g. 1ms. The output of
each integration step is written to a FIFO buffer
(first-in-first-out) which is implemented as shared
memory, what is the most efficient way of interproc-
ess communication [10]. The communication process
asynchronously reads that buffer and sends the data
to the client computer for display and further proc-
essing. In order to avoid dead-locks a semaphore
mechanism is established to control the concurrent
access to the shared memory buffer [10]. The size of
the buffer is chosen large enough to hold simulation
data for a longer, user-defined time intervall tbuffer
(e.g. 0.5 s). By that, delays on the client-side due to
interrupts of the operating system or user interaction
can be handled without any loss of data. The buffer
size is adopted to the specific data rate imposed by
the simulation model dynamics and the communica-
tion bandwidth. It can be computed by:

)(datatypesizeofn
t
t

buf signals
step

buffer
size ⋅⋅=

where
- tstep is the step-size of the integration,
- tbuffer is the desired time intervall
- nsignals is the number of signals to be transmitted
- sizeof(datatype) is e.g. 4 Byte for float on 32-Bit

CPUs.
For the demonstration model with nsignals = 9, tstep = 1
ms and tbuffer = 0.5 s, a buffer size of ~ 18 kByte is
required.

The data communication process on the server is cli-
ent-driven. The server is listening on a dedicated
network port. When a client request arrives, a new
thread is created that handles the data communica-
tion with this client while the main process is waiting
for further client requests. This multi-threaded im-
plementation allows the access of multiple clients to
the simulation process using a master client for simu-
lation control (figure 2). For multi-client access the
server load increases only slightly, because only the
communication buffer is duplicated and not the
simulation code.

4.2 Client Implementations

Data exchange between the server and the client is
done on explicit client request only. For visualization
and user interaction purposes it is sufficient to update
the display at a rate of 25 frames/sec, what means the
client requests data from the server every 40 ms.
When the server receives a client request, the server
sends the whole actual content of the shared memory
buffer wrapped in TCP/IP packages. Thus multiple
time instants are transmitted in one package what’s
much more efficient than sending single time in-
stants in small packages.

In order to demonstrate the described mechanisms
we have implemented several clients using different
programming languages (see table 1).

4.3 Matlab Client

Figure 3 shows the Matlab client in action. The Mat-
lab Mex-API is used to interface to our commu-
nication procedures. Three functions are provided
wrapping the whole buffered communication:

- mxTCPIPOpen – connects to simulation server
- mxTCPIPClose – terminates communication
- mxTCPIPCom – sends/receives data

If the GUI is busy due to some user interaction, the
online plot is stopped until the user releases the
mouse. Since the simulation output is buffered on the
server, no information is lost, given the buffer is
large enough. A better result can be achieved by
splitting GUI and online visualization in two proc-
esses. However, Matlab does not support multi-
threading. A practical workaround is to run two Mat-
lab systems at the same time. In the first instance the
control panel is running. The second instance is

Using Dymola generated C-Code in specialized Client / Server Simulation Environments

The Modelica Association Modelica 2005, March 7-8, 2005

started and controlled by the control panel via the
Matlab engine.

4.3 Java Client

Figure 4 shows the Java client in action. Although
the execution of Java bytecode is done by an inter-
preter, the performance is very good. Java programs
are compiled into the machine-independent byte-
code, therefore Java programs can be run on all op-
erating systems without changes in the source code
or recompile [11].

Java programs can be incorporated as applet into
HTML pages. When a web-browser finds an applet
tag in the current html page, it automatically
downloads the corresponding bytecode from the
web-server to the user’s host computer and executes
the applet there. This feature provides a simple
mechanism to deploy software over the Internet
without having to be concerned about installing, con-
figuring or maintaining software on the client com-
puter.

4.4 PDA Client

Figure 5 shows the PDA client in action. The appli-
cation is developed with eMbedded Visual C++ [9].
In our setup the PDA accesses the simulation server
through a wireless LAN. Due to the limited com-
puting and graphics power, data buffering on the
server-side is essential. Nevertheless, the quality of
the visualization is sufficient for monitoring and su-
pervision purposes. It is planned to extend the soft-
ware to communicate via GPRS and UMTS, too. In
addition we will look at using the Java client on a
PDA.

A further PDA application beyond our rolling mill
process control example could be a test driver doing
ECU calibration work (e.g. tuning the parameters of
a electronic gearbox control unit). To pre-check a
new set of parameters remote access to a detailed
vehicle simulation is quite useful.

4.5 Performance issues

Due to multithreaded buffering the communication
parts of the overall computing load are quite low.
The main limiting factor for the communication
bandwidth is the network capacity.

For a Matlab GUI client DDE offers a quick solu-
tion. It is not high performance, but quite sufficient if
partial data loss is acceptable and the setup requires

only moderate data rates. We achieved roughly 1kHz
data rate for that setup.

We have tested our TCP/IP approach in a fast
Ethernet network (100 MBit/s) and in a IEEE
802.11b WLan (11 Mbit/s). Tests showed that no
data gets lost. The results are independent of the op-
erating system of both the client and the server. Us-
ing average performance computer equipment (see
table 2) we achieved a data rate of 50 kHz without
any tuning running both client and server under
Windows. The use of network equipment with higher
capacity (GigaBit Ethernet, 54 Mbit/s WLan) offers
enough margin for quite high data communication
rates.

Obviously a performance limitation is given by the
client graphics speed. Since the communication is
client driven, it may occur that the frame rate de-
creases below 20 frames/s. Nevertheless if the
server-side buffer is large enough it can be guaran-
teed that all data arrive at the client. For realtime and
hardware-in-the-loop simulations, the separation of
simulation and data communication into independent
processes is essential in order to avoid that a client
slows down a fast server.

5 Conclusion

Based on the described communication scheme a
prototype of a framework for distributed client/server
simulation experiments has been build. Although the
current implementation is still a-proof-of-concept
which lacks some of the features which are required
for professional use, the proposed communication
scheme turns out to be a good approach for distrib-
uted simulation setups including realtime simulators.

6 References

[1] www.dynasim.se
[2] Dymola 5 User’s Manual. Dynasim AB, Lund

Sweden. 2004
[3] www.mathworks.com
[4] www.qnx.com
[5] Rob Krten, Getting started with QNX Neu-

trino. A Guide for Realtime Programmers,
Parse Software Devices, 2001.

[6] QNX Neutrino 6.2 RTOS evaluation report.
www.dedicated-systems.com, 2002

[7] Andreas Kroll, Andreas Vollmer, IndustrialIT
für Kaltwalzwerke. Die nächste Generation
der Kaltwalzwerksautomation. ABB Technik
4/2004.

C. Schlegel, R. Finsterwalder, H. Olsson

The Modelica Association Modelica 2005, March 7-8, 2005

7 Acknowledgement [8] msdn.microsoft.com
[9] Steven Makofsky, Pocket PC Network Pro-

gramming. Addison Wesley, 2003. The authors would like to thank Mr. Benno Rieger,
studying computer science at the university of ap-
plied sciences Munich, who did most of the coding
and testing during his industrial training.

[10] Bill O. Gallmeister, POSIX.4. Programming
for the Real World. O’Reilly, 1995.

[11] J. Gosling, B. Joy and G. Steele, The Java
Language Specification. Sun Microsystems
Inc., Addison Wesley, 1996.

Table 1: Client / Server configurations investigated (if not stated explicitly TCP/IP is used for communicati-

 on. For DDE we run client and server on the same computer, for TCP/IP on different computers).

Clients: Matlab / DDE Matlab Win MFC32 Win Mobile / WLan Java
Servers:

Win / DDE X
Windows X X X X

Linux X X X X
QNX X X X X

Table 2: Hardware and OS-software used

 Hardware Operating System
Server Intel Pentium M, 1.4 GHz, 512 MB Microsoft Windows 2000 Professional

 Debian Linux 2.6.10
 QNX Neutrino 6.2

PC Client Intel Pentium M, 1.4 GHz, 512 MB Microsoft Windows XP Professional
PDA Client Dell Axim X5, Intel Xscale 400 MHz, 64 MB Microsoft Windows Mobile 2003

ABB Automation
© ABB Automation Group Ltd - Page 9

Ind. Tens. C.Ind. Tens. C.

THFBTHFB

Pos. Ctrl.Pos. Ctrl.

Ind. Tens. C.Ind. Tens. C.

have va

SFk

ho

Tension CtrlTension Ctrl Tension CtrlTension Ctrl

Ze Za
1

3 4
5

2

6

7

S*

ham

Figure 1: Cold rolling mill schematic overview

Using Dymola generated C-Code in specialized Client / Server Simulation Environments

The Modelica Association Modelica 2005, March 7-8, 2005

Simulation
Process

Client 1

MATLAB

Shared Memory Buffer

ComProcess

Thread 1

Thread 2

Thread 3

Client 2

JavaApplet

Client 3

PDA

Server host, e.g. real time operating system

t i + 2
t i + 3
t i + 4

t i
t i + 1

TCP/IP
Lan/WLan

Heterogenous network clients

Figure 2: Client / Server implementation

Figure 3: Matlab client (same GUI for both DDE and TCP/IP)

C. Schlegel, R. Finsterwalder, H. Olsson

The Modelica Association Modelica 2005, March 7-8, 2005

Figure 4: Java client

Figure 5: PDA client

Using Dymola generated C-Code in specialized Client / Server Simulation Environments

The Modelica Association Modelica 2005, March 7-8, 2005

