
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

P. Fritzson, A. Pop, P. Aronsson
Linköping University, Sweden
Towards Comprehensive Meta-Modeling and Meta-Programming Capabi-
lities in Modelica
pp. 519-525

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Towards Comprehensive Meta-Modeling and Meta-Programming
 Capabilities in Modelica

Peter Fritzson, Adrian Pop, Peter Aronsson
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
{petfr,adrpo,petar}@ida.liu.se

Abstract
The need for integrating system modeling with tool
capabilities is becoming increasingly pronounced. For
example, a set of simulation experiments may give rise
to new data that are used to systematically construct a
series of new models, e.g. for further simulation and
design optimization. Using models to construct other
models is called meta-modeling or meta-programming.

In this paper we present extensions to the Modelica
language for comprehensive meta-programming, in-
volving transformations of abstract syntax tree repre-
sentations of models and programs. The extensions
have been implemented and used in several applica-
tions, are and currently being integrated into the
OpenModelica environment.

1 Introduction
Meta-programming (meta-modeling) is writing pro-
grams (models) having other programs (so called ob-
ject-programs) as inputs or results. A program can for
instance take another program as input data, perform
computations on the program by traversing its internal
structure (the abstract syntax of the program) and return
a modified program as output data.

Often, the object program language and the meta-
programming language are the same, like for instance
in LISP, in Mathematica, or in the Java reflection
mechanism. This is also the approach we have taken for
Modelica. Thus, a language needs some way of repre-
senting the object program as data.

A simple approach is to use text strings as program
representation. However, this has the disadvantage that
not even simple structural (syntactic) correctness can be
guaranteed. Another problem is low performance.
Thus, this approach is only suitable for simple and less
demanding tasks.

Another solution is to encode the object program us-
ing structured data types of the meta-programming lan-
guage. This basically means that data types for the ab-
stract syntax are defined in the language itself. This

approach has the benefit of ensuring correct syntax of
object programs. It is used in for instance Java reflec-
tion where the class java.lang.Class is the data
type for a Java class. The class has methods to query a
Java class for its methods, members, interfaces, etc.

In a previous paper (Aronsson et.al., 2003) we pre-
sented an approach of quoted Modelica code combined
with built-in predefined Modelica types to handle cer-
tain syntax classes, like for instance TypeName for a
Modelica type name or VariableName for a Modelica
variable name. However, this does not give full flexi-
bility and meta-programming power, since the abstract
syntax tree representation cannot be fully manipulated
in the meta-programming language itself. That work
should be seen as a precursor and initial stage for the
work presented in this paper.

2 Tree Data Structures
What are then the needs for data structures and opera-
tions for full meta-programming capabilities? One of
the most common examples of programs that manipu-
late and produce other programs are compilers, which
translate programs in some language into the same or
another language.

The most common data type representation for pro-
grams in compilers are tree structures, and typical op-
erations are transformations of such trees into trees dur-
ing the translation process. Lists are a special case of
tree data types, but are typically given special support
in many symbolic programming languages..

Tree data types have two interesting properties:

• Union type – a tree data type is typically the union
of a number of node types, each representing a tree
node.

• Recursive type – the children of a tree node may a
type which is the tree data type itself.

A small expression tree, of the expression 12+5*13, is
depicted in Figure 1. Using the record constructors
PLUS, MUL, RCONST, this tree can be constructed by the

Towards Comprehensive Meta-Modeling and Meta-Programming Capabilities in Modelica

The Modelica Association 519 Modelica 2005, March 7-8, 2005

expression PLUS(RCONST(12), MUL(RCONST(5),
RCONST(13)))

Figure 1. Abstract syntax tree of the expression 12+5*13.

Union types and recursive types are currently missing
from the Modelica language, which so far has been a
conscious decision in order to avoid heap-allocated
objects.

However, with the increased relevance of meta-
modeling, the time may now be ripe for a possible ex-
tension such as the introduction of the uniontype re-
stricted class construct. The example below declares a
small expression tree type Exp containing 6 different
node types represented as ordinary Modelica record
types.
uniontype Exp
 record RCONST Real x1; end INT;
 record PLUS Exp x1; Exp x2; end PLUS;
 record SUB Exp x1; Exp x2; end SUB;
 record MUL Exp x1; Exp x2; end MUL;
 record DIV Exp x1; Exp x2; end DIV;
 record NEG Exp x1; end NEG;
end Exp;

The uniontype restricted class construct currently has
the following properties:

• Union types can be recursive, i.e., reference them-
selves. The is the case in the above Exp example,
where Exp is referenced inside its member record
types.

• Union types are currently restricted to contain only
record types. This restriction may be removed in the
future.

• Record declarations declared within a union type
are automatically inherited into the enclosing scope
of the union type declaration.

• A record type may only belong to one union type.
This restriction may be removed in the future.

This is a preliminary union type design, which however
is very close to (just different syntax) similar constructs
in functional languages such as Haskell, Standard ML,
OCaml, and RML.

3 Tree Transformation Operations
Regarding operations on trees, most languages support-
ing tree transformations provide a kind of pattern

matching and transformation construct. Therefore we
propose the introduction of match-expressions in the
Modelica language. A trivial example of match-
expression is presented below:
 String str;
 ; Real x
algorithm
 x :=
 match str
 case "one" then 1;
 case "two" then 2;

 else 0;

case "three" then 3;

 end match;

The string variable str is matched against the constant
patterns "one", "two", etc., returning the correspond-
ing value from each branch in the match-expression. A
default value can be returned from the optional else-
branch if no other branch matches.

The general form of the proposed match-expression
is as follows:
match <expr> <opt-local-decl>
 case <pat-expr> <opt-local-decl>
 <opt-local-equations>
 then <value-expr>;
 case <pat-expr> <opt-local-decl>
 <opt-local-equations>
 then <value-expr>;
 ...
 else <opt-local-decl>
 <opt-local-equations>
 then <value-expr>;
end match;

The then keyword precedes the value to be returned in
each branch.. The local declarations started by the lo-
cal keyword, as well as the equations started by the
equation keyword are optional.There should be at
least one case...then branch, but the else-branch is
optional.

The match-expression introduces several new con-
cepts in Modelica:

• Pattern expressions, <pat-expr>, which may ref-
erence unbound local pattern variables declared
within the match-expression.

• Optional local variable declarations, <opt-local-
decl>. These variables are local and have a scope
within the match-expression or within a specific
branch of the match-expression if they are declared
within such a branch.

• Optional local equations, <opt-local-
equations>, which are solved locally within the
match-expression, and where the unbound un-
knowns to be solved for have been declared in local
variable declarations.

PLUS

MULRCONST

RCONST RCONST 12

5 13

P. Fritzson, A. Pop, P. Aronsson

The Modelica Association 520 Modelica 2005, March 7-8, 2005

An example of a match-expression within the function
eval shows its usage in a simple expression tree
evaluator. The local variables v1,v2,e1,e2 have scope
throughout the whole match-expression. Pattern vari-
ables such as e1 and e2 are belong to pattern expres-
sions that are matched against tree expressions. For
example, PLUS(e1,e2) is matched against
PLUS(RCONST(12), MUL(RCONST(5),

RCONST(13))) depicted in Figure 1, thereby binding
e1 and e2 to the children of the PLUS node, in this
match e1 to RCONST(12) and e2 to MUL(

RCONST(5), RCONST(13)).
function eval
 input Exp exp_1;
 R
algorithm
output eal rval_1;

 rval_1 :=
 match exp_1
 local Integer v1,v2;
 Exp e1,e2;
 case RCONST(v1) then v1;

 case PLUS(e1,e2) equation
 v1 = eval(e1; eval(e2) = v2;
 then v1+v2;

 case SUB(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2;
 then v1-v2;

 case MUL(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2);
 then v1*v2;

 case DIV(e1,e2) equation
 v1 = eval(e1); v2 = eval(e2);
 then v1/v2;

 case NEG(e1) equation
 v1 = eval(e1);
 then -v1;
 end match;
end eval;

Note that the match-expression just like other expres-
sions can be used in three contexts: inside equations,
inside algorithm sections, and inside functions.

As usual in Modelica the equations are not direc-
tional, e.g. the two equations v1 = eval(e1) and e-
val(e1) = v1 are equivalent.

There are some design considerations behind the
above match-expression construct that may need some
motivation.

• Why do we have local variable declarations within
the match-expression? The main reason is clear and
understandable semantics. In all three usage con-
texts (equations, algorithm sections, functions) it
should be easy to understand for the user and for the
compiler which variables are unknowns (i.e., un-
bound local variables) in pattern expressions or in

local equations.
 Other variables that are bound to values might
have been declared in some class, or be protected
variables in a function. Without the simple rule that
local unknowns must be declared locally, it would
be hard to discover the difference between variables
that are unknowns and still can receive values, and
other variables which already have values.
 Another reason for declaring the types of local
variables is better documentation of the code – the
modeler/programmer is relieved of the burden of
doing manual type-inference to understand the code.

• Why local equations instead of assignment state-
ments? The match-expression is an expression con-
struct that can be used in the three contexts, includ-
ing expressions in equations which are declarative.
Having non-local assignments inside expressions
would make the expressions nondeclarative.

• Why match-expressions and not match-statements?
The match-expression is more important since it can
be used in all three contexts, and therefore has been
designed first. An analogous match-statement with-
out local equations can be designed at a later stage.

• Why the keywords match ... case instead of
switch ... case as in Java? The current choice of
keywords is inspired by the languages Modelica,
Java, and Mathematica, and is just a matter of taste
– it is easy to change to other keywords. However, it
is probably good style to indicate the increase power
of the match-expression compared to the switch-
statement by a different keyword.

• Why the then keyword before the returned value?
We have experimented with various syntax designs,
and the code becomes easier to read if there is a
keyword before the returned value-expression, es-
pecially when it is preceded by local equations. The
keyword cannot be return since that means return
from a function. The then keyword is used in a
similar way in Modelica if-then-else expres-
sions. Note that most functional languages use the
in keyword instead in this context, which is less in-
tuitive. However, the in keyword has more of a set
or array element membership meaning in Modelica.

Local equations in match-expressions have the follow-
ing semantics:

• Only algebraic equations are allowed, no differen-
tial equations

• Only locally declared variables (local unknowns)
declared by local declarations within the match-
expression are solved for.

Towards Comprehensive Meta-Modeling and Meta-Programming Capabilities in Modelica

The Modelica Association 521 Modelica 2005, March 7-8, 2005

• Equations are solved one by one in the order they
are declared. (This restriction may be removed in
the future).

• If an equation or an expression in a case-branch
fails, all local variables become unbound, and the
next branch is tried. (There is some discussion
whether the semantics of trying the next case-
branch after a fail should be kept).

3.1 Example of Symbolic Differentiation

To make the following example of symbolic differen-
tiation more realistic, we add a few expression nodes to
the Exp data type, including a function call node CALL
whose argument list has the type list<Exp>, see Sec-
tion 4.1.
record IDENT String name; end IDENT;
record CALL Exp id; list<Exp> args;
 end CALL;
record AND Exp x1; Exp x2; end AND;
record OR Exp x1; Exp x2; end OR;
record LESS Exp x1; Exp x2; end LESS;
record GREATER Exp x1; Exp x2;
 end GREATER;

An example function difft performs symbolic differ-
entiation of the expression expr with respect to the
variable time, returning a differentiated expression. In
the patterns, _ underscore is a reserved word that can be
used as a placeholder instead of a pattern variable when
the particular value in that place is not needed later as a
variable value. The as-construct: id as IDENT(_)
in the third of-branch is used to bind the additional
identifier id to the relevant expression. Both tuples
with syntax (expr1,expr2,....), see Section 4.2,
and lists are used in the example.

We can recognize the following well-known deriva-
tive rules represented in the match-expression code:

• The time-derivative of a constant (RCONST()) is
zero.

• The time-derivative of the time variable is one.
• The time-derivative of a time dependent variable id

is der(id), but is zero if the variable is not time
dependent, i.e., not in the list tvars/timevars.

• The time-derivative of the sum (add(e1,e2)) of
two expressions is the sum of the expression deriva-
tives.

• The time-derivative of sin(x) is cos(x)*x' if x
is a function of time.

• etc...

We have excluded some operators in the difft exam-
ple because of limitations of space in this paper.

function difft "Symbolic differentiation
 of expression with respect to time"
 input Exp expr;

 input list <IDENT> timevars;
 E
algorithm
output xp diffexpr;

 diffexpr :=
 match (expr, timevars)
 local Exp e1prim,e2prim,tvars;
 Exp e1,e2,id;
// der of constant
 case(RCONST(_), _) then RCONST(0.0);
// der of time variable
 case(IDENT("time"), _) then
 RCONST(1.0);
// der of any variable id
 case difft(id as IDENT(_), tvars) then
 if list_member(id,tvars) then
 CALL(IDENT("der"),list(id))
 else
 RCONST(0.0);

 // (e1+e2)’ => e1'+e2'
 case (ADD(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then ADD(e1prim,e2prim);

 // (e1-e2)’ => e1'-e2'
 case (SUB(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then SUB(e1prim,e2prim);
// (2)’ => e1'*e2 + e1*ee1*e 2'
 case (MUL(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then PLUS(MUL(e1prim,e2),
 MUL(e1,e2prim));

 // (e1/e2)’ => (e1'*e2 - e1*e2')/e2*e2
 case (DIV(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then DIV(SUB(MUL(e1prim,e2),
 MUL(e1,e2prim)),
 MUL(e2,e2));

 // (-e1)' => -e1'
 case (NEG(e1),tvars) equation
 e1prim = difft(e1,tvars);
 then NEG(e1prim);
// sin(e1)' => cos(e1)*e1'
 case CALL(IDENT("sin"),list(e1)),tvars)
 equation e1prim = difft(e1,tvars);
 then MUL(CALL(IDENT("cos"),list(e1)),
 e1prim);

// (e1 and e2)’ => e1'and e2'
 case (AND(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then AND(e1prim,e2prim);

// (e1 or e2)’ => e1' or e2'
 case (OR(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then OR(e1prim,e2prim);

// (e1<e2)’ => e1'<e2'
 case (LESS(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);
 e2prim = difft(e2,tvars);
 then LESS(e1prim,e2prim);

// (e1>e2)’ => e1'>e2'
 case (GREATER(e1,e2),tvars) equation
 e1prim = difft(e1,tvars);

P. Fritzson, A. Pop, P. Aronsson

The Modelica Association 522 Modelica 2005, March 7-8, 2005

 e2prim = difft(e2,tvars);
 then GREATER(e1prim,e2prim);

// .etc ..
 end match;

end difft;

4 Lists and Tuples
List and tuple data types are common in many lan-
guages used for meta-programming and symbolic pro-
gramming.

4.1 Lists

The following operations allows creation of lists and
addition of new elements in front of lists in a declara-
tive way. Extracting elements is done through pattern-
matching in match-expressions shown earlier.

• list – list(el1,el2,el3, ...) creates a list
of elements of identical type. Examples: list()–
the empty list, list(2,3,4) – a list of integers.

• nil – denotes an empty reference to a list or tree.
• cons – the call cons(element, lst) adds an ele-

ment in front of the list lst and returns the result-
ing list. Also available as a new built-in operator ::
(coloncolon), e.g. used as in: element::lst.

Types of lists and list variables can be specified as fol-
lows:

• list – list<type-expr> is also a list type con-
structor, e.g. :

 type RealList = list<Real>;

• Direct declaration of a variable rlist that denotes
a list of real numbers:
list<Real> rlist;

4.2 Tuples

Tuples can be viewed as instances of anonymous re-
cords. The syntax is a parenthesized list. The same syn-
tax is used in extended Modelica presented here, and is
in fact already present in standard Modelica as a re-
ceiver of values for functions returning multiple results.

• An example of a tuple literal:
 (a, b, "cc")
• A tuple with a single element has a comma in order

to have different syntax compared to a parenthe-
sized expression: (a,)

• A tuple can be seen as being returned from a func-
tion with multiple results in standard Modelica:

 (a,b,c) := foo(x, 2, 3, 5);
• Access of field values in tuples is achieved via dot-

notation, tupvalue.fieldnr, analogous to

recvalue.fieldname for ordinary record values.
For example, accessing the second value in tup:
tup.2

The main reason to introduce tuples is for convenience
of notation. You can use them directly without explicit
declaration. Tuples using this syntax are already pre-
sent in the major functional programming languages.

A tuple will of course also have a type. When tuple
variable types are needed, they can for example be de-
clared using the following notation:
type VarBND = record<Ident, Integer>;

or directly in a declaration of a variable bnd:
record<Ident, Integer> bnd;

The tuple type used in the match-expression of the pre-
vious simple eval function is record<Exp,Exp>.

5 Positional Type Parameters
Class definitions in Modelica allow type parameters,
declared as replaceable local types, e.g.:
class C2 = C(redeclare class
 ColoredClass = BlueClass);

Using a shorter angle-bracket syntax for positional type
parameters similar to what is used in other object-
oriented languages such as C++ or Java, this can be
expressed as:
class C2 = C<BlueClass>;

We have used this syntax in several places throughout
this paper, including a call to a polymorphic function in
Section 7.

6 Expression Evaluator with Envi-
ronments

The previous small expression evaluator presented in
Section 3 could only handle constant expressions. The
following example can handle expressions with vari-
ables. It demonstrates a different representation of ex-
pression trees, with BINARY nodes that are parameter-
ized in terms of the operator, and thereby can handle
several binary operators in a single of-branch in the
match-expression. First we give the type declarations:
type Ident = String;

uniontype Exp
 record RCONST Real x1; end RCONST;
 record IDENT Ident x1; end IDENT;
 record BINARY Exp x1; BinOp op; Exp x2;
 end BINARY;
 record UNARY UnOp x1; end UNARY;
 record ASSIGN Ident x1; Exp x2;

Towards Comprehensive Meta-Modeling and Meta-Programming Capabilities in Modelica

The Modelica Association 523 Modelica 2005, March 7-8, 2005

 end ASSIGN;
end Exp;

uniontype Bin Op
 record ADD end ADD;
 record SUB end SUB;
 record MUL end MUL;
 record DIV end DIV;
end BinOp;

uniontype UnOp
 record NEG end NEG;
end UnOp;

uniontype Value

end Value;
record REALval Real x1; end REALval;

The following eval function can handle evaluation of
expressions with variable references. It calls the
lookup function for access of variable references, and
apply_binop for evaluation of binary operators.
type Ident = String;

function eval
 // Evaluation of expression exp
 // in an environment env
 input Env env_1;
 input Exp exp_1;
 output Value value_1;
algorithm
 value_1 :=
 match (env_1,exp_1)
 local Real v,v1,v2;
 String id;
 Env env;
 Exp e1,e2;
 Boolean v3;
 BinOp relop;
 // Real constant
 case (_,REALval(v)) then REALval(v);

 // able identifier ivari d
 case (env,IDENT(id)) equation

The next example is polymorphic since the array ele-
ment type Type_a is not fixed. It is a replaceable type,
which makes it possible to apply arr_map to arrays of
any element type. For example, applied to an array of
strings, with the addA function that adds "A" to the end
of a string: v = lookup(env,id);

 then REALval(v);

// If id not declared, give an error
// message and fail through error
 case (env,IDENT(id)) equation
 v = not lookup(env,id);
 print("Error - undef variable: ");
 print(id); print("\n");
 then fail()

 // expr1 binop expr2
 case (env, BINARY(e1,binop,e2))
 equation
 eval(env,e1) = REALval(v1);
 eval(env,e2) = REALval(v2);
 v3 = apply_binop(env,binop,v1,v2);
 then REALval(v3);

 end match;
end eval;

7 Function Parameters
A common and rather useful language feature not yet
present in standard Modelica is the ability to pass func-
tion parameters. For example, passing the add1 func-
tion to a mapping function that applies it to each ele-
ment:

arr2 := arr_map_int(add1, {2,3,5,8})

returns:

{2,4,6,9}

We propose the following style of declaring a function
that accepts a function formal parameter, exemplified
through an example. The only syntax extension is to
allow the declaration of a function without body, here
Functype, which allows us to declare the type signa-
ture of the function formal parameter func.
function arr_map_int
 "Map over an array of integers"
 function Functype
 input Integer x1; output Integer x2;
 end FuncType;
input replaceable function c fun

 extends FuncType;
 input Integer[:] inarr;
 output Integer[size(inarr,1)] outarr;
algorithm
 for i in 1:size(inarr,1) loop
 outarr[i] := func(inarr[i]);
 end for;
end arr_map_int;

arr3 :=
 arr_map<String>(addA, {"foo","fie"})

returns:

{"fooA","fieA"}

The definition of the arr_map function:
function arr_map
"Map over an array of elements of Type_a"
 replaceable type Type_a;

 input Type_a x1; output Type_a x2;

function Functype

 end Functype;
 input replaceable function func
 extends FuncType;
 input Type_a[:] inarr;
 output Type_a[size(inarr,1)] outarr;
algorithm
 for i in 1:size(inarr,1) loop
 outarr[i] := func(inarr[i]);
 end for;

P. Fritzson, A. Pop, P. Aronsson

The Modelica Association 524 Modelica 2005, March 7-8, 2005

end arr_map;

The semantics of function parameters include the fol-
lowing:

• Functions can be passed as actual arguments at
function calls.

• Type checking done on the function formal parame-
ter type signature, not including the actual names of
inputs and outputs to the passed function.

8 Exception Handling
The design of exception handling capabilities in Mode-
lica is currently in a preliminary phase. The following
constructs are being discussed:

• A try...catch statement or expression.
• A raise(...) call for raising exceptions.

The statement variant has approximately the following
syntax:
try
 <statements>
 ...
catch <x> then
 <statements>
 ...
end try;

The syntax of the expression variant is as follows:
try
 <expression>
catch <x> then
 <ex
end try;

 pression>

This design is still very preliminary, several issues need
to be determined, and no implementation has yet been
produced.

9 Conclusions
It has been demonstrated how Modelica can be ex-
tended with data structures and operations that are typi-
cally needed for comprehensive meta-programming and
symbolic transformations. The extensions are declara-
tive and preserve the declarative and equation-based
style of Modelica. Recursive data types, lists, and tree
pattern matching in match-expressions with local equa-
tions can be naturally integrated into the current Mode-
lica 2.1 language. A implementation of most of this
functionality has been tested on a number of examples,
including those in this paper, and is currently being
integrated into the OpenModelica compiler.

We believe that the combination of the modeling
power and numeric capabilities of the current Modelica
language, combined with symbolic transformation ca-

pabilities of the new extensions, will make Modelica
into a very powerful meta-modeling and meta-
programming language for the future.

10 Acknowledgements
This work has been supported by Swedish Foundation
for Strategic Research (SSF), in the RISE project, and
by Vinnova in the SWEBPROD project.

References
[1] Peter Aronsson, Peter Fritzson, Levon Saldamli,

and Peter Bunus. Incremental declaration han-
dling in Open Source Modelica. In SIMS - 43rd
Conference on Simulation and Modeling on Sep-
tember 26-27, Oulu, Finland, 2002.

[2] Peter Aronsson, Peter Fritzson, Levon Saldamli,
Peter Bunus and Kaj Nyström. Meta Program-
ming and Function Overloading in OpenMode-
lica. In proceedings of the 3rd International
Modelica Conference, Linköping, Sweden, Nov
2003.

[3] Peter Fritzson, et al. The Open Source Modelica
Project. In Proceedings of The 2nd International
Modelica Conference, 18-19 March, 2002. Mu-
nich, Germany http://www.ida.liu.se/
~pelab/modelica/ OpenModelica.html.

[4] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica. 940 pp.
Wiley-IEEE Press, 2004.

[5] Paul Hudak. The Haskell School of Expression.
Cambridge University Press, 2000.

[6] The Modelica Association. The Modelica Lan-
guage Specification Version 2.1, June 2003.
http://www.modelica.org.

[7] Mikael Pettersson. Compiling Natural Semantics.
PhD thesis, Linköping Studies in Science and
Technology, 1995.

[8] Peter van Roy and Seif Haridi. Concepts, Tech-
niques, and Models of Computer Programming.
MIT Press, 2004.

[9] Tim Sheard. Accomplishments and Research
Challenges in Meta-Programming. Lecture Notes
in Computer Science, 2196:2–.., 2001

Towards Comprehensive Meta-Modeling and Meta-Programming Capabilities in Modelica

The Modelica Association 525 Modelica 2005, March 7-8, 2005

