
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

O. Johansson, A. Pop, P. Fritzson
Linköping University, Sweden
ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and
Checking of Modelica Libraries
pp. 445-454

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

 ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and
Checking of Modelica Libraries

Olof Johansson, Adrian Pop, Peter Fritzson
PELAB – Programming Environment Lab, Dept. Computer Science

Linköping University, S-581 83 Linköping, Sweden
{olojo,adrpo,petfr}@ida.liu.se

Abstract
This paper presents ModelicaDB, a tool that provides
several kinds of queries on repositories of Modelica
models.

The Modelica language has a growing user commu-
nity that produce a large and increasing code base of
models.

However, the reuse of models within the Modelica
community can be greatly hampered in the future if
there are no tools to address a number of management
issues (i.e. scalable searching, analysing, crossreferenc-
ing, checking, etc) of such a large repository of models.

We try to address these issues by providing the Mode-
lica community with a ModelicaDB database for stor-
ing models and services for quering this database to
perform a wide range of model engineering tasks in a
scalable fashion.

In the long-term, this work also aims at providing in-
tegration between Modelica tools and advanced product
development processes that rely on database technol-
ogy.

1 Introduction
The long-term goal of this work is to efficiently inte-
grate Modelica modeling simulation environments into
the overall product development process for products
that require advanced systems engineering [2].

There are many engineering processes that precede
modeling and simulation, and which output information
that defines structure, configuration, and input parame-
ter data to simulation models of the product.

The following are of particular importance:

• The implementation structure of the product that de-
fines its hierarchical division into different subsys-
tems, their components with parameter values, and
component interconnections.

• Run-cases derived from the product requirements,
which define critical behaviour that the product
must achieve, and for which alternative implemen-

tation structures’ behaviour is evaluated with simu-
lation.

Given these, the simulation model designer can select
valid component models from Modelica libraries for
the components in the implementation structure, and
verify that the simulation component’s parameter
values are compatible and transferable from the infor-
mation in the provided implementation structure.

With valid component models assigned and mappings
of their parameters, other tools can assemble a final
simulation model setup for execution and post-
processing of the simulation results for evaluation
analysis in subsequent engineering processes.

One purpose of ModelicaDB is to provide fast access
to possibly relevant component models in Modelica
Libraries, such that the assignment work can be
speeded up with automation tools.

In many cases, a matching model component will not
be available and ready for use in the Modelica Librar-
ies, so the task of selecting component models is aug-
mented by writing new ones or assembling valid
component models from other components in the Mod-
elica library.

Such work is a creative design task, which is signifi-
cantly aided if the designer has tools for searching, ana-
lysing, crossreferencing, and checking the libraries.

The used libraries have been developed by experi-
enced library developers, and contain valuable design-
pattern knowledge of how to properly design and im-
plement models, components and libraries. With fast
browsing and navigation tools, the designer can quickly
find similar designs to the one that is needed, study
how they are used/reused as components in other simu-
lation models, and get a good understanding of how to
build a new simulation component.

The continuous development and improvement of
Modelica libraries by the Modelica design group and
similar efforts within companies, indicates that tools
with ModelicaDB functionality would be valuable to

ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and Checking of Modelica Libraries

The Modelica Association 445 Modelica 2005, March 7-8, 2005

the Modelica community [7] for many other purposes
than we intend here.

Preliminary statistics from the Modelica 2.1 and
Modelica 1.5 libraries definitely show that this kind of
tool would be helpful for many engineers for grasping,
sharing, reusing, and following the large efforts in
simulation model development work that is being si-
multaneously conducted by many people.

The following sections of the paper provide statistics
from the current releases of the Modelica libraries, ex-
amples of use-cases for ModelicaDB, an overview of
the product development process and the intended role
of ModelicaDB, the functionality in the user interface
of ModelicaDB, an example of an SQL-query on the
database and finally results, experiences, future work
and conclusions.

2 Statistics from Modelica Standard
Libraries

Preliminary analysis of the Standard Modelica 1.5 and
2.1 libraries give the following statistics:

Modelica Library V 1_5 V 2_1 V 2_1+
Source files 36 87 144
Imports 93 286 343
Class definitions 910 1447 3141
Components 1628 4636 6915
Equations 1055 2768 3262
Algorithms 99 633 1290

Component_refs 30304 60838 92636
Expression_lists 14736 23715 25354
Real literals 4413 5833 33158

Comments 1720 4755 5649
String Comments 1322 3722 5611

Annotations 1326 3120 5093
String literals 3503 7218 13350
Integer literals 33187 59604 67373
Other 88991 157760 235806
Total elements: 183323 336422 499125

The number columns show the Modelica language
element count from different releases of the Modelica
standard libraries. Modelica 1_5 was downloaded from
the public library page [8]. Modelica 2_1 and 2_1+
were obtained from the Modelica CVS repository
2004-11-15.

V 2_1+ includes the following libraries: Modelica,
ModelicaReference, ModelicaTest, Modelica_Fluid,
Modelica_Interpolation, Modelica_Media and Teach-
ingMaterial.

The source code directory contents of the libraries was
converted to a single xml file for each library release by
ModelicaXML, which then were preprocessed for im-
port into ModelicaDB.

The Imports row is an indicator of reuse. The Compo-
nent_refs row gives the count of the uses of a compo-
nent variables in expressions.

The Comment row is a higher level parse node for
String_comments and Annotations .

String literals and Integer literals are heavily used
within annotations, especially for graphical object an-
notations in Modelica diagrams.

The above statistics shows that the size of the standard
libraries is substantial. Commercial Modelica develop-
ment tools [1],[3] provide user interfaces with tree
views of the package hierarchy, connection diagrams,
and string based text searches, for quick navigation in
the libraries.

ModelicaDB adds additional search facilities and
other types of tree views on the libraries, that can help
to speed up the task of creating a new simulation com-
ponent that efficiently reuses existing component mod-
els and design-pattern knowledge.

3 Use-Case Examples for ModelicaDB
The following section briefly describes use-cases that
illustrate use of additional types of views on Modelica
library structures. The views are computed in Modeli-
caDB, and presented in a tree- or list- based user inter-
face that enables quick navigation with pointing and
clicking.

3.1 Finding Relevant Simulation Components

The following example use cases illustrate subtasks in
the process of finding reusable components and code
sections for building a new simulation component.

• Finding component models with knowledge of the
SI-units their instances will need.

• Finding component models with knowledge of their
connectors.

• Finding equations with knowledge of the type of the
variables used in the expression.

• Finding algorithms with knowledge of their function
call parameters.

O. Johansson, A. Pop, P. Fritzson

The Modelica Association 446 Modelica 2005, March 7-8, 2005

3.2 Finding Relevant Component Using a
Categorization Tree

Categorization trees are an “add-on” feature to Mode-
lica libraries, implemented with annotations.

Categorization trees allow a user to with a few clicks
down the tree find a set of relevant component models.
The categorization tree itself is an aid for remembering
where to find certain components.

Modelica objects can be annotated with a category,
which makes them easier to find with the aid of a cate-
gory system (also known as classification system, fo-
cusing on some aspect). Examples of categories are
“Electrical Components”, “Motors”, “Transistors”,
“Capacitors” etc.

A category system is organized into a tree, where the
root category node contains all Modelica objects that
have that type of category or any of its sub categories.
Sub nodes in the category tree increase the specializa-
tion in the categorization. Leaf nodes in the categoriza-
tion tree usually justify their existence if there are 5-25
component models under this node.

There are many standardized categorization systems
used in industry. Classification trees applied on electri-
cal components are specified by IEC [22], and applied
in succeding industrial standards like RosettaNet Tech-
nical Dictionary which contains a much larger library
of classes [18]. ISO-31 [23] categorizes quantities and
units into 13 chapters and is well known from the Mod-
elica SIunits in the standard libraries. There are other
examples of large classifications systems for standard
terms used in e-business.

Commercial design tools for the design processes
immediately before simulation, like process and in-
strumentation diagrams (P&ID), electrical design and
control system design usually contain a categorization
system for reusable components in their component
library catalogues.

The following use cases examples can be well sup-
ported with a classification tree.

• Finding a component model for a certain purpose.
• Finding connectors for a certain purpose.
• Finding equations for a certain purpose.

The category method of finding Modelica components
requires a library administrator to manually organize or
load a standardized categorization tree , and then anno-
tate the component models with their classifications,
see section 3.7.

Once the classification tree structure is decided, pat-
tern maching searches in the Modelica repository can
be used to populate the categories. For example, a clas-
sification tree for equations that compute a value of a
certain SIunit type, can be organized according to ISO-

31 and the standard SI-units library, and populated with
equations whose left hand side variable matches the
corresponding SIunit type category.

3.3 Verifying that a component is trustworthy
Simulation results must be accurate in order to pro-
vide correct decision support to the product design
process. The following use-cases illustrate ways the
engineer can determine this.

• Finding examples of usage
• Computing statistics of reuse in other models
• Computing statistics of use of certain design pattern

The last use-case applies when the engineer has de-
signed a new simulation component, and wants to
check to what extent others library developers have
used a similar design pattern. Such statistics can indi-
cate if this is a good way to solve the problem, and can
direct more detailed searches for gaining further confi-
dence, or ideas of how to improve a design.

3.4 Finding relevant design patterns
There are many ways to solve a type of problem.
Some of these may prove to be better than others and
tend to re-occcur in many places as design patterns.
The characteristics of components that play a certain
role in the re-occuring interconnection structure of
the design pattern, can be used as search criteria.

3.5 Finding relevant naming conventions and
documentation

Following naming conventions is important for effi-
cient communication in a large community. Naming
conventions usually vary between different engineer-
ing disciplines due to the history of their body of
knowledge and decisions made by library authors.
When extending or reusing a library, it is valuable to
follow the relevant conventions to ease reuse within
the community. The use-cases below illustrate how
this could be supported.

• Finding Naming Conventions for Variables and
Parameters

Pattern search of sorted listings of variable names for a
certain type of SI-unit variable, which may play a cer-
tain role in an equation.
• Finding References to Literature and Documenta-

tion

Searching documentation strings of pattern matched
components for references (e.g. brackets or other text
patterns that indicate a reference)

ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and Checking of Modelica Libraries

The Modelica Association 447 Modelica 2005, March 7-8, 2005

3.6 Checking that the New Component Follows
Design Rules

Engineering domains may pose restrictions on simu-
lation models that are not possible to enforce directly
in Modelica. The same applies for company specific
design rules that accumulate from experience, and
quality assurance procedures that reduce the cost for
errors and maintenance.
The following use-cases are simple examples of de-
sign rule checking.

3.6.1 Checking Naming Conventions for
Classes, Components

Pattern search and listing of Modelica object identifiers
names in a model that do not follow a certain style, or
convention.

3.6.2 Checking Complete Documentation

Pattern search that for instance all components in a
class have a comment string etc.

3.6.3 Checking Use of SIunits

Pattern search for variables whose type is not derived
from SIunits, and are not an array index or similar.

3.7 Managing Product Specific Library Devel-
opment

While developing a complex product that requires sys-
tems engineering, much can be gained by reducing the
number of variants of a certain type of simulation com-
ponent.

The following use cases show how a library developer
can direct the users to the best components for various
purposes, and identify targets for refactoring amongst
existing components.

3.7.1 Finding Candidate Components for Cate-
gorization

Various pattern searches that detect component features
that make them interesting for a certain classification,
and perhaps exclude already classified components

3.7.2 Finding Duplicates or Variants of the
Same Models

Duplicates or variants of the same models can be found
by pattern searches that compares component sets of
variable types and equation patterns within a class
definition. Patterns that detect the same equations,
based on variable types, where the variables themselves
just have different names.

3.8 Additional Analyses and Metrics

Michael Tiller presented analyses and metrics in [21],
which inspire development of additional reporting ap-
plications which can be computed with SQL-queries on
ModelicaDB.

3.9 Automatic Composition and Configuration
of new Models

ModelicaDB augments the work presented in [12] on
automatic composition and configuration of new mod-
els. Using ModelicaDB, designers can compose new
models by blending template like models with configu-
ration information stored in other sources (text or XML
files, databases, etc) to create new models which are
configured accordingly.

4 The ModelicaDB Context and
Architecture

Figure 1 shows the role of ModelicaDB amongst some
of its surrounding engineering processes, connected
with major workflow arrows. Engineering tools
(FMDesign, ModelicaDB, ModelicaXML, Modelica
Simulation tool) support some of the processes. Engi-
neering models are stored in files (Simulation program,
Modelica libraries) and in databases (FMDesign data-
base, ModelicaDB database).

Figure 1. ModelicaDB in its context

The ModelicaDB front-end and database are described
in more detail below. We start by briefly describing the
role of the other tools in the integrated framework [15].

FMDesign is a tool for designing product concepts
with the aid of integrated requirement trees, function-
means trees, product concept trees, and implementation
trees. The implementation tree specifies the product
structure and its interacting components on a level that
is detailed enough so its behaviour can be modeled and
simulated.

The simulation is deferred to one of the existing Mod-
elica Simulation Tools [1][3][10]. All manual editing of
simulation models are performed in one of these tools,

O. Johansson, A. Pop, P. Fritzson

The Modelica Association 448 Modelica 2005, March 7-8, 2005

and the component models are stored in Modelica Li-
braries. The simulation program is generated from the
configuration information stored in the implementation
tree for the product concept.

4.1 ModelicaXML Files

ModelicaXML is a program that converts Modelica
source code into XML-files [1]. Recent additions to
ModelicaXML is functionality for converting a whole
Modelica Library stored in a directory structure into
one XML-file. The size of the created files for the stan-
dard Modelica libraries version 1.5 and 2.1 is 16 MB
and 30 MB respectively.

4.2 ModelicaDB Front-End Tool

This tool parses the ModelicaXML file and builds an
object structure in primary memory which can be syn-
chronized or stored into tables in the ModelicaDB da-
tabase.

The tool also contains a graphical user interface, for
fast navigation of the component model level Modelica
language constructs.

More detailed constructs like expressions are mod-
elled as parse nodes in the database.

Appendix A shows the class diagram for the UML-
model [6] that serves as design specification of Modeli-
caDB. [20] documents the whole UML-model that was
used for generating most of the ModelicaDB specific
source code that implements the front end and database.
The core specification for designing the ModelicaDB
UML model was the ModelicaXML DTD [11]. The
reference work used for its documentation was [4] and
[9].

The user interface displays the results of queries spe-
cific for the use-cases described in section 3 such that
found Modelica objects can be quickly inspected, and
further navigated, including retrieving and displaying
the original Modelica source code from the files. Sec-
tion 5 gives an overview of the user interface.

4.3 ModelicaDB Database

This is a relational database that is used for processing
declarative SQL-queries that do complex searching,
compute the analyses, crossreferences, and checks.

The structure of the database is given in the UML
class diagram in Appendix A. The database schema can
be downloaded from [20] .

The benefit of using an SQL-database instead of navi-
gating parse trees, is that the SQL database optimizer in
cooperation with indexes on tables can compute com-
plex queries much faster on a large library, than a tradi-

tional procedural or object-oriented program which
navigates the parse tree structures.

The performance benefit of a database is first noticed
when the number of stored language objects exceed a
certain breakpoint.

Writing SQL-queries may be tricky at first, but usu-
ally results in little code for a complex task. With a
reusable set of SQL-queries for various types of
searches and analyses, a new query variant can quickly
be written using copy and modify, while verifying that
it produces expected results by executing it with pare-
meters that match a small but well known example
model.

5 ModelicaDB Functionality
This section gives a walkthrough of ModelicaDB front-
end functionality available in its user interface. An
UML class diagram of the user interface design is
given in Appendix B. Tree views have a look and feel
similar to the windows file explorer, where the folder
icons indicate the class restriction or other meta-classes
shown in the UML-diagram in Appendix A. When an
object shown in a tree view is double-clicked, a form
appears which shows the objects attribute values and
direct relationships to other objects.

5.1 ModelicaRepository Main Window

This window allows the user to open a Modelica re-
pository file stored in a fast binary format. The user can
also login to the database, load the complete repository
for caching at the local workstation or synchronize the
cached version with the latest changes in the database.

The main window provides a category tree for finding
suitable Modelica models, and open a Modelica Model
window for these.

Two different types of catalog windows can also be
opened from the Modelica repository window. The
class catalog window shows categorization trees for
Modelica classes, that are organized according to a
suitable standard, which allows engineers to quickly
find relevant component models for a certain type of
product component. Section 3.2 gave a use-case exam-
ple.

5.2 ModelicaModel Window

The ModelicaModel window provides navigation of all
Modelica objects that are recursively owned by a Mod-
elicaModel object, see Appendix A.

In ModelicaDB, a ModelicaModel object is the root of
all packages and component models that are assembled
within one particular ModelicaXML file. Different ver-
sions of the Modelica Standard Libraries, are for exam-

ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and Checking of Modelica Libraries

The Modelica Association 449 Modelica 2005, March 7-8, 2005

ple rooted in different ModelicaModel objects in the
ModelicaRepository.

The window provides import functionality for Mode-
licaXML files, and various menu commands for search-
ing, analyzing, crossreferencing, and checking selected
Modelica objects.

Below the command menu, the window shows the
package hiearchy tree which can be expanded down to
class definitions, their components, equations and algo-
rithms.

A separate class browser window can be opened for a
selected class, which shows its inheritance hierarchy as
a tree. Classes that have no superclasses are shown as
parallel root node sorted by the identifier name. Classes
that are extended from multiple superclasses, are rooted
in the first declared superclass in the tree. The second
and remaining extended superclasses are listed together
on the level below the class with special object icon,
followed by the subclasses that extend the class. Icon
superclasses can optionally be filtered away, with a
special view setting.

A separate model browser can be opened for a class or
component, and shows its part-of structure as a tree.
When expanding a component node in the tree, its de-
fining class is shown on the level below, and can be
further expanded in a similar way.

The Modelica model window also provides access to
various types of two dimensional diagrams, which lay
out various structures and interconnections of
component models in different views, and are intended
as support for seminar discussions on library design
and refactoring issues. These diagrams are still in their
early design stages, and need some prototype iterations
to become useful.

5.3 Report Window for Result Sets

Result sets from searches, analyses, crossreferences and
checks, are displayed as interactive report listings in a
separate report window with numbered rows. Each row
is associated with one object in the Modelica database.
If the row is double clicked further details about this
object can be inspected in a form. A report row may
optionally contain a short text message that further ex-
plains the reasons for including its associated object in
the report.

Examples of result rows, and their text messages for
two use cases is given below.

5.3.1 Finding Component Classes with
Knowledge of the SI-units Their Instances
Will Need

This is a simple use-case that also can be executed in
existing Modelica tools, for instance using the Search

facility in Dymola or evaluating a pattern search ex-
pression in a MathModelica document cell. This use
case can be a benchmark for comparing the time it
takes the user to complete the use-case with various
user interface implementations.

An instance of this use-case in the ModelicaDB front-
end can be as follows:

1) The user has opened the ModelicaModel window on
the Modelica 2.1 standard library. In one of the tree-
views the users selects the Modelica object that repre-
sents Modelica.SIunits.Resistance, which is defined as:

type Resistance = Real (
 final quantity="Resistance",
 final unit="Ohm",
 min=0);

2) The user issues the Report command from the win-
dows top menu, and gets a list of all use cases that can
be reported in a dialog box.

3) The user selects “Find component declarations for
predefined types”, which is the short name for this use
case.

4) The ModelicaDB front-end processes the query and
presents the result rows for the found components in
the Report window sorted according to the component
variable name. There they can be clicked for further
inspection in a form, or set in the focus of one of the
available browser window types which better shows a
Modelica objects surrounding context.

5.3.2 Computing Statistics of Use of Certain
Design Patterns

This is a more complex use-case that illustrates the
benefit of storing large Modelica libraries in a rela-
tional database.

The use-case instance is checking to what extent other
designers have created component models that uses the
simulation model of Electromotoric force Mode-
lica.Electrical.Analog.Basic.EMF in direct
connection with a current sensor component of Mode-
lica.Electrical.Analog.Sensors.CurrentSen
sor.

1) The user has opened the ModelicaModel window on
the Modelica 2.1 standard library, and opened the
package hierarchy tree down to Mode-
lica.Electrical.Analog.Basic. The users se-
lects the EMF class with a first click, and then adds the
CurrentSensor class to the selection by shift-clicking
it in another model browser window showing the
Electrical.Analog package.

O. Johansson, A. Pop, P. Fritzson

The Modelica Association 450 Modelica 2005, March 7-8, 2005

2) The user issues the Report command from the win-
dows top menu, and selects “Sum connected component
uses.”.

 3) The ModelicaDB front-end generates an SQL-query
with attribute value information from the selected ob-
jects as restricting search criteria, sends the query to
ModelicaDB and displays the result below in a Report
window.
0001 ModelicaModel Modelica1_5: count=1
0002 ModelicaModel Modelica2_1: count=1

6 SQL-Query Example
The following example show the SQL-queriey for the
use case described in 5.3.2.
select mmFound.name, count(*)
from class cl1,
 class cl2,
 class clFound,
 modelicamodel mmFound,
 component co1,
 component co2,
 equation eqFound,
 parsenode pn1,
 identifierreference ir1,
 identifierreference ir2
where cl1.identifier = 'EMF'
 and cl1.lowid = co1.classifier_lowid
 and ir1.modelicaobject_lowid = co1.lowid
 and ir1.parsenode_lowid = pn1.lowid
 and pn1.nodeType='equ_connect'
 and ir2.parsenode_lowid = pn1.lowid
 and ir2.lowid != ir1.lowid
 and ir2.modelicaobject_lowid = co2.lowid
 and co2.lowid != co1.lowid
 and co2.classifier_lowid = cl2.lowid
 and cl2.identifier = 'CurrentSensor'
 and pn1.modelicaelement_lowid =
eqFound.lowid
 and eqFound.class_lowid = clFound.lowid
 and clFound.model_lowid = mmFound.lowid
group by mmFound.name

The query returns the name of the found Modeli-
caModel objects, and counts the number of connect
equations in the found model, that refers to components
that are declared as classes with the name ‘EMF’ and
‘CurrentSensor’.

7 Results and Experience
A first prototype version of ModelicaDB has been im-
plemented that verified the approach. More work is
required to cover more advanced features of the Mode-
lica language.

Most of the implementation work was rather strait-
forward, once the UML models in Appendix A, and
underlying detailed specifications [20] were completed.
The exception was the currently 408 mapping rules that

convert the parsed ModelicaXML elements into con-
nected object structures according to the UML model in
the ModelicaDB front end, so they can be stored in the
database.

The Modelica grammar and ModelicaXML structures
contain many details and requires several passes to re-
solve all references. This also involves searching the
name spaces according to the static and dynamic
lookup functions (Chapter 3 in [4]), and resolving iden-
tifier references to imported classes in libraries that are
not in the current ModelicaXML file.

 Other issues that require more work are:
• ModelicaXML-to-ModelicaDB mapping rules,

which are currently initially generated from pre-
processing of large representative ModelicaXML
files, and then manually extended with actions that
specify how priority sorted matching patterns of
XML-elements are stored into objects in the Mode-
licaDB front-end. To get better verification of full
grammar functionality coverage, the rules should be
generated directly from the ModelicaXML DTD, or
another formal Modelica grammar specification, but
such an approach requires more research.

• How to represent modifications in ModelicaDB, so
the users SQL-query pattern searches also hit modi-
fied classes, without the need for expensive process-
ing of modification “deltas” in parse node trees.

Some other interesting research results that came out of
this work are

• Identification of semantic equivalent functionality
between the Modelica language and the industry
standard ontology languages UML and Rosettanet
technical Dictionary [13]. Thus it is definitely pos-
sible to reuse relevant ontologies originating from
other modeling languages for exchanging existing
product data with Modelica simulation model de-
velopment tasks. Other more distant future applica-
tions can be inferred from [5].

New technical results are:

• Formalized Modelica simulation model interchange
format in the form of a DTD, for Modelica 2.1. This
DTD contains 88 language elements, and is de-
scribed in [11] and [9]. The latest version has some
small modifications and can be downloaded from
the reference URL at [11].

• Extensions of the ModelicaXML tool for packaging
directory structures containing Modelica source
code libraries into one XML-file.

• UML-model of the Modelica database.
• Implementation of a relational database for search-

ing, analysing, cross-referencing and checking of
Modelica libraries [20].

ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and Checking of Modelica Libraries

The Modelica Association 451 Modelica 2005, March 7-8, 2005

8 Future work
Future work will be determined after members of the
Modelica Design group and involved researchers at
Linköping University have tested ModelicaDB proto-
types and given recommendations for future work.

9 Conclusions
This paper reports work on ModelicaDB – a tool that
provides database storage and query of Modelica mod-
els. We believe that given proper integration with engi-
neering product development tools, ModelicaDB will
be of great value on finding related product models,
quick access through categorization, and assisting with
a number of other related tasks.

A first prototype of the tool has been implemented. A
full database schema has been designed and tested
against queries, a Modelica library parser that converts
libraries into XML form has been implemented. The
main remaining task is completing the set of rules that
map ModelicaXML elements to ModelicaDB objects.

Acknowledgements
Swedish Foundation for Strategic Research,
ProViking project Systems Engineering and Compu-
tational Design (SECD).

References
[1] Dynasim. Dymola, http://www.dynasim.se/.

[2] INCOSE. International Council on System Engi-
neering, http://www.incose.org.

[3] MathCore. MathModelica,
http://www.mathcore.se/.

[4] Modelica: A Unified Object-Oriented Language
for Physical Systems Modeling, Language Speci-
fication version 2.1, Modelica Association, 2004

[5] Semantic Web Community Portal,
http://www.semanticweb.org/.

[6] OMG. Unified Modeling Language,
http://www.omg.org/uml.

[7] Modelica Community, http://www.modelica.org/

[8] Moldelica Libraries (Ontologies),
http://www.modelica.org/library/

[9] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1,
Wiley-IEEE Press, 2003,
http://www.mathcore.com/drmodelica.

[10] Peter Fritzson, Peter Aronsson, Peter Bunus,
Vadim Engelson, Levon Saldamli, Henrik

Johansson and Andreas Karstöm. The Open
Source Modelica Project, in Proceedings of The
2th International Modelica Conference,March 18-
19, 2002, Munich, Germany.

[11] Adrian Pop, Peter Fritzson. ModelicaXML: A
Modelica XML representation with Applications,
in International Modelica Conference,3-4 No-
vember, 2003, Linköping, Sweden,
http://www.ida.liu.se/~adrpo/modelica/

[12] Adrian Pop, Ilie Savga, Uwe Assmann and Pe-
ter Fritzson. Composition of XML dialects: A
ModelicaXML case study, in Software Composi-
tion Workshop 2004, affiliated with ETAPS
2004,3 April, 2004, Barcelona.

[13] Olof Johansson, Adrian Pop, Peter Fritzson, A
functionality Coverage Analysis of Industrially
used Ontology Languages, in Model Driven Ar-
chitecture: Foundations and Applications
(MDAFA), 2004, 10-11 June, 2004, Linköping,
Sweden.

[14] Pim Borst, Hans Akkermans and Jan Top, En-
gineering ontologies, in Int. J. Human-Computer
Studies, 1997, no. 46, p 365-406

[15] Adrian Pop, Olof Johansson and Peter
Fritzson, An integrated framework for model-
driven product design and development using
Modelica, in Proceedings of the 45th Conference
on Simulation and Modeling (SIMS), 23-24 Sep-
tember 2004, Copenhagen.

[16] Mogens Myrup Andreasen. Machine Design
Methods Based on a Systematic Approach (Synte-
semetoder pa systemgrundlag), Lund Technical
University, Lund, Sweden, 1980

[17] RosettaNet, http://www.rosettanet.org

[18] RosettaNet, RosettaNet Technical Dictioanry,
http://www.rosettanet.org/technicaldictionary

[19] Word Wide Web Consortium (W3C). Web
Ontology Language (OWL),
http://www.w3.org/TR/2003/CR-owl-features-
20030818/

[20] Olof Johansson, ModelicaDB Project,
http://www.modelica.org/projects/ModelicaDB/

[21] Michael Tiller, Parsing and Semantic Analysis
of Modelica Code for Non-Simulation Applica-
tions, in International Modelica Conference,3-4
November, 2003, Linköping, Sweden.

[22] IEC, IEC 61360, http://webstore.iec.ch for a
fee

[23] ISO, ISO 31 Quantities and Units, Part 0-13.
http://www.iso.org for a fee

O. Johansson, A. Pop, P. Fritzson

The Modelica Association 452 Modelica 2005, March 7-8, 2005

classifier_declarations
0..1

0..*

superclass_specializations0..1

0..*

subclass_generalizations

1..1

0..*

modelImport_imports
1..1

0..*

model_modelImports

1..1

0..*

imported_exports0..1

0..*

importedClass_classExports

0..1 0..*

model_classes

1..1

0..*

section_components

0..1

0..*

superclassImport_specializations
0..1

0..*

classifier_declarations

0..1

0..*

section_equations

1..1

0..*

section_algorithms

0..1

0..*

extension_modifications

1..1

0..*

repository_modelicaModels 1..1

0..*

modelicaObject_annotation
0..1

0..1

modelicaObject_commentStrings

1..1

0..*

modelicaElement_parseNodes

0..1

0..*

parseNode_identifierReferences

1..1

0..*

modelicaObject_references

0..1

0..*

parseNode_arraySubscripts1..1

0..*

mainNode_subNodeReferences
1..1 0..*

subNode_mainNodeReferences

0..1 0..*

class_sections 1..1

0..*

enumeration_enumerationLiterals

1..1

0..*

class_algorithms

1..1

0..*

class_equations

1..1

0..*

partOf_components

1..1

0..*

importedClass_componentDeclarations

0..1

0..*

enumerationType_arraySubscripts

0..1

0..*

integerType_arraySubscripts

0..1

0..*

class_localClasses

0..1

0..*

parseNode_literals
1..1

0..*

booleanType_arraySubscripts

0..1

0..*

importClause_imports

1..1

0..*

class_importClauses
1..1 0..*

commentString_annotations
0..1

0..*
Extension
->ModelicaObject

isDerived
visibility

Import
->ElementImport

ModelicaModelImport
->ElementImport

ModelicaModel
->ModelElement

Class
->Classifier

innerouter
isEncapsulated
isPartial
restriction

Component
->ModelicaObject

innerouter
inputOutputPrefix
isFlow
isRedeclaration
isReplaceable
variabilityPrefix
visibility

Equation
->ModelicaObject

isInitial

Algorithm
->ModelicaObject

isInitial

Modification
->ModelicaElement

ModelicaRepository
->Model

PredefinedType
->Classifier

quantity

IntegerType
->PredefinedType

fixed
start
maximum
minimum

EnumerationType
->PredefinedType

start
maximum
minimum

Annotation
->ModelicaElement

isInitial
visibility

ModelicaObject
->ModelicaElement

identifier

ModelicaReference
->Element

subNodePosition
subNodeRole

CommentString
->ModelicaElement

comment

ModelicaElement
->Element

ordinalPosition
sourceCode
sourceCodeEndColumn
sourceCodeEndLine
sourceCodeFileName
sourceCodeStartColumn
sourceCodeStartLine

ParseNode
->ModelicaElement

each
isFinal
nodeType
operation
subNodeCount

IdentifierReference
->ModelicaReference

identifier
languageSpecification

ArraySubscript
->ModelicaElement

size

ParseNodeReference
->ModelicaReference

Section
->ModelicaElement

isInitial
sectionType

BooleanType
->PredefinedType

fixed
start

RealType
->PredefinedType

displayUnit
fixed
nominal
start
stateSelect
unit
maximum
minimim

StringType
->PredefinedType

start

EnumerationLiteral
->ModelicaObject

Literal
->ModelicaElement

literalType
literalValue

ImportClause
->ModelicaObject

externalName
dotStar

Classifier
->ModelicaObject

isFinal
isRedeclaration
isReplaceable
visibility

Domain Model Filename Date Added Date Modified #Cls #Rel #Att
DM.

Dgm

Date Printed

ModelicaDB-21-10d ModelicaDB-21-10d.odm 2003-03-04 08:03:07 2005-01-31 09:40:04 67 64 162
Modelica 2.1 database design for ModelicaXML information exchange. The goal is a repository that can be round-tripped with Modelica source code.
2.0) Modelica High-Level Meta Objects 2004-04-27 14:36:52 2005-01-31 09:40:04 30 37 -
Complete UML Model of Modelica 2.1.

2005-01-31 10:00:01

ModelicaDB - A Tool for Searching, Analysing, Crossreferencing and Checking of Modelica Libraries

The Modelica Association 453 Modelica 2005, March 7-8, 2005

wMain_wModelTreeDiagrams

1..1

0..*

wMain_wClassBrowsers

1..1

0..*

wMain_wModelBrowsers

1..1

0..*

wMain_wDiagramBrowser

1..1 0..1

wMain_wModelicaDiagrams

1..1

0..*

wMain_wClassTreeDiagrams

1..1

0..*

wMain_wModelicaModels

1..1

0..*

wMain_wModelCatalogs

1..1

0..*

wMain_wClassCatalogs

1..1

0..*

WModelicaRepository
->WFileStorage

name
comment

WModelTreeDiagram
->WDiagram

WDiagramBrowser
->WSubDiagramBrowser

WClassBrowser
->WSubWindow

WModelBrowser
->WSubWindow

WModelicaDiagram
->WDiagram

WClassTreeDiagram
->WDiagram

WModelicaModel
->WSubWindow

WModelCatalog
->WSubWindow

WClassCatalog
->WSubWindow

Domain Model Filename Date Added Date Modified #Cls #Rel #Att
DM.

Dgm

Date Printed

appmodelicadb-21-10b appmodelicadb-21-10b.od
m

2004-11-05 21:08:37 2005-01-27 09:26:36 18 11 12
Prototype application window structure for ModelicaDB V2.1x, including Profile support.
2.0) AppModelica 2004-11-05 21:19:14 2004-11-12 07:45:58 10 9 -
Application windows for the Modelica module.

2005-01-31 09:59:20

O. Johansson, A. Pop, P. Fritzson

The Modelica Association 454 Modelica 2005, March 7-8, 2005

