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Abstract 

A typical problem which often appears in Modelica mod-
els is when too many/few equations are specified. This 
leads to a situation where the simulation model is incon-
sistent and therefore cannot be compiled and executed. 
We propose a methodology for detecting and repairing 
over- and under-constrained situations based on graph 
theoretical methods. Components and equations that cause 
the irregularities are automatically isolated, and meaning-
ful error messages for the user are presented. The poten-
tially large number of error fixing alternatives is reduced 
by applying filtering rules extracted from the modeling 
language semantics. 

The paper illustrates that it is possible to localize and 
repair a significant number of errors during static analysis 
of a Modelica model without having to execute the simu-
lation model. In this way certain numerical failures can be 
avoided later during the execution process. The paper 
proves that the result of structural static analysis per-
formed on the underlying system of equations can effec-
tively be used to statically debug real models.  

Keywords: Modelica, debugging, structural and static 
analysis, mathematical modeling, structural validation. 

1 Introduction 

Mathematical modeling and simulation of complex physi-
cal systems is emerging as a key technology in engineer-
ing. Modern approaches to physical system simulation al-
low users to specify simulation models with the help of 
equation-based languages. Such languages have been de-
signed to allow automatic generation of efficient simula-
tion code from declarative specifications. Complex simu-
lation models are created by combining available model 
components from user-defined libraries. The resulted 
models are compiled in a simulation environment for effi-
cient execution.  

Unfortunately, errors are made and inconsistencies are 
easily introduced in the simulation models. A significant 
part of the model development effort is spent on detecting 
deviations from specifications and subsequently localizing 
the sources of such errors. A typical problem which often 
appears in physical system modeling and simulation is 

when too many/few equations are specified in a system. 
This leads to a situation where the simulation model is in-
consistent and therefore cannot be compiled and executed. 
The user should deal with over- and under-constrained 
situation by identifying the minimal set of equations or 
variables that should be removed from the system in order 
to make the remaining set of equations solvable. For ex-
ample, if there are too many equations in a system of 
100 000 equations, which equations should be removed? 
Currently the only systematic technique is to remove 
equations one by one until the equation that caused the in-
consistency is identified and finally removed from the sys-
tem. It can easily be imagined that, if a static debugger 
presents a small subset of over-constraining equations, 
from which the user can select the equation that needs to 
be eliminated from the overall model can greatly reduce 
the amount of time required to get the simulation working.  

Currently there are essentially no advanced tools that 
can handle the debugging of equation-based languages at 
the source code level and provide useful error fixing solu-
tions. The aim of the research presented in this paper is to 
considerably improve the situation, especially with respect 
to debugging the Modelica language. However, powerful 
graph-theoretic methods can help to pinpoint possible 
candidates for erroneous equations. A dramatic reduction 
in the number of erroneous equation candidates can be 
achieved by applying new methods such as semantic fil-
tering.  

In this paper we describe an empirical evaluation of 
debugging of automated debugging techniques for detect-
ing and repair structural inconsistencies in equation-based 
simulation models. We focus on performance of debug-
ging tools that use static analysis tools integrated into a 
Modelica compiler where the main purpose was to reduce 
the number of debugging alternatives when structural in-
consistencies were present in the model. Static analysis 
techniques only involve statically available information, 
such as which variables are present in which equations in 
and equation-based model. No assumptions regarding the 
inputs and outputs of the simulation models are made. The 
development of static and dynamic techniques for equa-
tion-based languages have been addressed by our previous 
research (Bunus 2004 [1], Bunus and Fritzson 2003 [2], 
Bunus and Fritzson 2004 [3]). 

The remainder of the paper is organized as follows: 
Section 2 presents the problem formulation and a motiva-
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tional example. Section 3 gives a brief description of the 
algorithms for detecting and debugging over-constrained 
situations that arise during the modeling phase with equa-
tion-based languages. Section 4 presents an evaluation of 
our debugging framework based on several benchmarks. 
Section 5 presents the overall architecture of a prototype 
debugger developed in the context of a Modelica com-
piler. Finally Section 6 presents our conclusions and fu-
ture work. 

2 Problem Formulation and Motiva-
tional Example 

Mathematical modeling proceeds by specifying a set of 
mathematical equations or functional relations denoted 

1{ , }nE e e= …  involving a set of variables denoted 

1{ , }mV v v= … . In the general case a system of n equation 
with m variables or unknowns can be described by the fol-
lowing equality:  

1( , )i m ie v v c=…     (2.1) 

where ic are constants and 1i n= … . Solving the system 
of equations E is the problem of finding the set of solu-
tions 1 1{( , ) | ( , )}m

m nS s s T e s s= ∈… …  where T is the do-
main of equations, which fulfill the equality (2.1). The re-
lation (2.1) can be expanded into: 
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A necessary condition for the existence and uniqueness of 
a solution S is that matrix A is a square matrix (the num-
ber of equations is equal to the number of variables) and 
there exists permutations 1 2P P  such that 1 2P AP has a non-
zero diagonal. This condition guarantees the structural 
singularity of the system of equations. The structural sin-
gularity checks whether the system of equations is well-
posed or not. It is only a necessary but not sufficient con-
dition for the existence and uniqueness of a solution. The 
more powerful notion of numerical singularity will guar-
antee the existence and uniqueness of a solution. However 
the checking the numerical singularity is as expensive as 
solving the system of equations. Therefore when analyz-
ing the system of equations in this stage we assume that 
the structural non-singularity is a sufficient abstraction for 
implying that the equation system has a unique solution. 
Further analysis based on numerical values and numerical 
singularities is delayed until the dynamic analysis stage.  

If the system of equations is structurally singular we 
switch from the problem of finding the set of solutions S 
to the problem of finding the maximal subset of equations  

1{ , }S tE e e= … where t n<  and SE E⊂  if n m> (we 
have more equations than variables ) or to the to the prob-
lem of finding the maximal subset of variables 

1{ , }S kV v v= …  where k m<  and SV V⊂  if n m< (we 
have more variables than equations ). 

As an example let us consider a Modelica model con-
sisting of a sinusoidal voltage source and a resistor con-
nected together. This model is trivial, but it serves as a 
straightforward vehicle for introducing several fundamen-
tal debugging concepts. 

 connector Pin 
 Voltage v; 
 Flow Current i; 

end Pin; 
model 

  TwoPin  Pin p, n ; 
 Voltage v; 
 Current i; 

equation 
 
v = p.v - n.v; 0 = p.i + n.i; i = p.i 

end 
  TwoPin; 

model Resistor 
 
extends 

  TwoPin; 
 
parameter Real R; 

equation 
 
R*i = v; 

end Resistor; 
model 

  VsourceAC 
 
extends 

  TwoPin; 
 
parameter 

  Real VA=220; parameter 
  Real  f=50; 

 
protected 

  constant Real PI=3.141592; equation 
 
v =VA*(sin(2*PI*f*time)); 

end 
  VsourceAC; 

model Ground 
 Pin p ; 

equation 
 
p.v = 0 

end Ground; 
model Circuit 
 Resistor R1(R=10); VsourceAC AC; Ground G; 

equation 
 
connect (AC.p,R1.p); connect (R1.n,AC.n); 

 
connect ( AC.n,G.p); 

end Circuit; 
 

We introduce an additional equation (i=23) inside the 
Resistor component in order to over-constrain the simu-
lation model. The flattened equations corresponding to the 
Circuit model is depicted in Figure 1.   

 eq1 R1.v = -R1.n.v + R1.p.v 
eq2   0 = R1.n.i + R1.p.i 
eq3  R1.i = R1.p.i 
eq4 R1.i R1.R = R1.v 
eq5 R1.i = 23 
eq6  AC.v = -AC.n.v + AC.p.v 
eq7 0 = AC.n.i + AC.p.i 
eq8  AC.i = AC.p.i 
eq9 AC.v = AC.VA*sin[2*time*AC.f*AC.PI] 
eq10 G.p.v = 0 
eq11 AC.p.v = R1.p.v 
eq12  AC.p.i + R1.p.i = 0 
eq13 R1.n.v = AC.n.v 
eq14 AC.n.v = G.p.v 
eq15 AC.n.i + G.p.i + R1.n.i = 0 

var1 R1.p.v 
var2 R1.p.i 
var3 R1.n.v 
var4 R1.n.i 
var5 R1.v 
var6 R1.i 
var7 AC.p.v 
var8 AC.p.i 
var9 AC.n.v 
var10 AC.n.i 
var11 AC.v 
var12 AC.i 
var13 G.p.v 
var14 G.p.i 
  

Figure 1. Flattened equations and variables corresponding 
to the Circuit model. 
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It should be noted that the number of equation is greater 
than the number of variables and therefore we are facing a 
structurally nonsingular problem.  

3 Debugging Over- and Under-
constrained Models 

The methods proposed in this section present a strategy to 
deal with overdeterminancy by identifying the minimal set 
of equations that should be removed from the system in 
order to make the remaining set of equations solvable. The 
idea is to isolate the over-constraining part of the bipartite 
graph associated to the underlying system of equations 
and to perform reasoning based on specific properties of 
the specified subgraph. Efficient graph transformations, 
based on rules derived from the semantics of the modeling 
language are also performed on the subgraphs. We are go-
ing to show how these rules are automatically derived 
from the modeling language semantics and how the asso-
ciated annotations to the equations contribute to the filter-
ing of the combinatorial explosion of possible error fixing 
solutions. Those interested in more details may wish to 
consult Bunus and Fritzson 2004 [3] or Bunus 2004 [1].  

Step 1: Isolating the over-constraining part. 

In step 1, from the flattened intermediate form of the 
equations the associated bipartite graph is derived and a 
maximum cardinality matching is found. The Dulmage 
Mendelsohn canonical decomposition (Dulmage and 
Mendelsohn 1963 [4]) will lead to two different sub-
graphs: a well-constrained part GW and an over-
constrained part +1

GO  as depicted  in Figure 2. The maxi-
mum cardinality matching is shown in Figure 2 with bold 
edges.  

 eq1 

eq4 

eq5 

eq6 

eq9 

eq10 

eq11 

eq13 

eq14 

var1 

var3 

var5 

var6 

var7 

var9 

var11 

var13 

eq2 

eq3 

eq7 

eq8 

eq12 

eq15 

var2 

var4 

var8 

var10 

var12 

var14 

over-constrained part 

well-constrained part 

 
Figure 2. Canonical decomposition of an over-constrained 
system. 

It can be seen that equation eq11 is not covered by the 
found maximum cardinality matching. Therefore equation 
eq11 is a non-saturated or free vertex of the equation set, 
therefore it is a source for the over-constrained part +1

GO . 
Next, starting from eq11, the directed graph can be de-
rived from the undirected bipartite graph, as illustrated in 
Figure 3, by exchanging all the matching edges into bidi-

rectional edges and orienting all other edges from equa-
tion to variable nodes. The layout of the directed graphs 
derived from the undirected bipartite graphs has been rear-
ranged into a tree representation for the purpose of in-
creasing understandability for the reader of the paper. 
 

 
eq11 

eq6 eq1 

var1 var7 

var11 

eq9 

var3 

eq13 

var9 

eq14 

var13 

eq10 

G.p.v = 0 

var5 

eq4 

var6 

eq5 
R1.i = 23 

AC.v = AC.VA* 
     sin[2*time*AC.f*AC.PI] 

 
Figure 3. A directed graph associated to the over-
constrained part. 

Step 2: Reducing the over-constraining equations 
by using structural information. 

The general error fixing strategy in the case of over-
constrained equation subsystems is to remove the extra 
equations. An immediate fix to the over-constrained part 
is to remove one of the equation nodes, which will lead to 
a well-constrained part. However, as it can be seen from 
Figure 4, not all the equation edges can be safely re-
moved. 
 

eq1 

var1 

var3 

eq13 

var9 

eq14 

var13 

eq10 

G.p.v == 0 

var5 

eq4 

var6 

eq5 
R1.i == 23 

eq11 

eq6 

var7 

var11 

eq9 

var3 

eq13 

var9 

eq14 

var13 

eq10 

G.p.v == 0 

var5 

eq4 

var6 

eq5 
R1.i == 23 

eq11 

eq6 

var7 

var11 

eq9 

 
Figure 4. The elimination of an unsafe equation node 
(eq1) from the over-constrained subgraph (on the left) 
leads to two disconnected components (on the right). 

By removing an equation node and the corresponding in-
cident edges from the bipartite graph the remaining undi-
rected graph must remain connected. In our particular ex-
ample the set of over-constraining equations that satisfy 
this condition is {eq11, eq13, eq10, eq5, eq9}. It should 
be noted that the safe removal of equation nodes only re-
fers to the bipartite graph representation of the intermedi-
ate code of the flattened set of equations, and it is influ-
enced by only structural properties of the bipartite graph. 
If we would like to further reduce this set of equations, 
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removal criteria derived from the semantics of the model-
ing language would need to be developed and included in 
the debugging strategy. 

Step 3: Reducing the over-constraining equations 
by using semantic information 

As we have seen in the previous example not all the over-
constraining equations are possible to remove without 
causing further structural failures in the model description. 
By taking into account simple rules derived from the lan-
guage semantics we can safely discard some other elimi-
nation alternatives as well.  

We note that equation eq11 (AC.p.v = R1.p.v) is 
generated by a connect equation from the Circuit 
model and the only way to remove the equation eq11 is to 
remove the original connect(AC.p, R1.p) equation. 
However, removing the above-mentioned equation will 
remove two equations from the flattened model since the 
connect equation expands into two equations. It is obvi-
ous that this modification cannot be performed by the user 
at the original source code level. 

In order to provide a mechanism to reason about the 
erroneous model under consideration based on language 
semantics rules the equations need to be annotated. We 
define an annotated equation as a record with the follow-
ing structure:   

< Equation,  

  Name,  

  Description,  

  No. of associated equations,  

  Class name,  

  Flexibility level,  

  Connector generated,  

  No. of linked equations  

>  

The Class Name indicates which class the equation comes 
from. This annotation is extremely useful in exactly locat-
ing the associated class of the equation and therefore pro-
viding concise error messages to the user in terms of 
original source code statements. 

The No. of associated eqs. field defines the number of 
equations which are specified together with the annotated 
equation inside the same model. For an equation that be-
longs to the TwoPin class the number of associated equa-
tions is equal to 3. If one associated equation of the class 
needs to be eliminated the value is decremented by 1. Dur-
ing debugging, if the equation R1.i * R1.R = R1.v is 
diagnosed to be an over-constraining equation and there-
fore needs to be eliminated, then the elimination is not 
possible because the model will be invalidated (the No. of 
associated eqs. cannot be equal to 0) and therefore other 
solutions need to be investigated. 

The flexibility level, in a similar way as defined in 
Flannery and Gonzalez 1997 [5], allows the ranking of the 
relative importance of the equation in the overall flattened 
system of equations. The value can be in the range of 0 to 
3, with 0 representing the most rigid equation and 3 being 

the most flexible equation. In practice, it turns out that the 
equations generated by connections are more rigid from 
the constraint relaxation point of view than the equations 
specified inside the model. This means that preference is 
given to repair strategies that involve the removal of equa-
tions which defines the behavior of a particular compo-
nent and not to topology changes of the circuit given by 
the connection equations. We set the flexibility value to 0 
for those equations that should not be removed or modi-
fied. These equations are locked for editing which means 
that an automatic debugger should not consider any repair 
strategy that would involve the modification or the re-
moval of the equations associated to such a component. 
For example the equations of components that come from 
well tested and trusted libraries can have this value set to 
zero. 

The Connector generated is a Boolean attribute 
which tells whether the equation is generated or not by a 
connect equation. Usually these equations have a very 
low flexibility level.  

The No. of linked equations attribute specifies how 
many other equations are linked with the current equa-
tions. Equations that come from connect equations or 
from parent objects (such as the TwoPin partial compo-
nent) have this attribute greater than zero. Removing an 
intermediate equation that has this attribute greater than 
zero will trigger the removal of other intermediate addi-
tional equations equal to the number of linked equations. 
This is due to the fact that the removal of an intermediate 
equation is only possible by removing the original source 
code that generated that equation. By doing this all the 
generated intermediate equations by the original equation 
will be removed. 

It is worth noting that the annotation attributes are 
automatically initialized by the static analyzer. These are 
incorporated in the front-end of the compiler, by using 
several graph representations of the declarative object-
oriented program code. Therefore the user does not need 
to manually annotate the source code. A debugger pre-
processor takes care of the automatic generation and ini-
tialization of the annotating code. In this way a mapping 
between the intermediate code and original declarative 
code is kept during the translation phases. 

The annotations associated to the set of equivalent 
over-constraining equations {eq11, eq13, eq10, eq5, eq9} 
are shown in Table 1. 

Table 1. The associated annotations of the remaining 
over-constraining equation set 
Name Equation No. of 

assoc. 
eqs. 

Class 

 name 

Flex. 

level 

Con. 

gen. 

No.of 
linked 
eqs. 

eq11 AC.p.v=R1.p.v 3 Circuit 1 Yes 1 

eq13 R1.n.v= AC.n.v 3 Circuit 1 Yes 1 

eq10 G.p.v=0 1 Ground 2 No 0 

eq5 R1.i=23 2 Resistor 2 No 0 

eq9 AC.v=AC*VA*sin.. 1 VsourceAC 2 No 0 

The equation node eq11 was already analyzed and can 
therefore be removed from the set. Equation node eq13 is 
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removed as well, for the same reasons as equation eq11. 
By analyzing the remaining equations {eq10, eq5, eq9}, 
one should note that they have the same flexibility level 
and therefore candidates for elimination with equal prob-
ability. However, by analyzing the value of the No. of as-
sociated eqs. annotation, equation eq10 and eq9 have this 
attribute equal to one, which means that they are the only 
equations that define the behavior of the model. Removing 
one of these equations will invalidate the corresponding 
model component, which is probably not the intention of 
the modeler and therefore not acceptable as an error fixing 
solution.  

By examining the annotations corresponding to equa-
tion eq5 one can see that it can safely be removed because 
its flexibility level is high. The removal of eq5 will not 
trigger the removal of any other equation since it has no 
linked equations (indicated by the value of No. of linked 
eqs. annotation which is equal to 0). Moreover, removing 
equation eq5 will not invalidate the model since there is 
another equation defined inside the Resistor model 
(R1.i * R1.R = R1.v) denoted by the value of No. of 
associated eqs. annotation which is equal to 2.  

Step 3: Outputting the debugging alternatives. 

After selecting the right equation for elimination the de-
bugger tries to identify the associated class of that equa-
tion based on the Class name parameter defined in the an-
notation structure. Having the class name and the interme-
diate equation form (R1.i=23), the original equation can 
be reconstructed (i=23) to exactly indicate to the user the 
equation that needs to be removed in order to make the 
simulation model well-constrained. In this case the de-
bugger correctly located the faulty equation previously in-
troduced by us in the simulation model. 

When multiple valid error fixing solutions are possi-
ble and the debugger cannot decide which one to choose, a 
ranked list of error fixes is presented to the user for further 
analysis and decision. In those cases, the user must take 
the final decision, as the debugger cannot know or does 
not have enough information to decide which equation is 
over-constraining. The advantage of this approach is that 

the debugger automatically identifies and solves several 
anomalies in the declarative simulation model specifica-
tion without having to execute the system. 

When debugging under-constrained systems (more 
variables than equations are present in the system) two 
distinct strategies can be considered. The first strategy 
considers the removal of the free variables while the sec-
ond strategy considers the addition of new equations to the 
overall system of equations, which must contain the free 
variables. Additionally, the second strategy takes into ac-
count extra variables that can be added to the introduced 
new equation. New equations can be introduced at differ-
ent levels in the object hierarchy. 

4 Experimental Validation 

In this paper we are interested in the quality of structural 
and semantics filtering rules employed in the proposed 
static debugging algorithm for correcting over- and under-
constrained system of equations extracted from simulation 
models expressed in the Modelica language.  

Firstly, we have modified several working simulation 
models by inserting additional equations in the model 
definitions at various places, thereby over-constraining the 
whole system models. In this first set of experiments we 
were interested if over-constraining situations are detected 
and how many repair possibilities are reported by the de-
bugger.  

A short description of the benchmark programs and 
the over-constraining nature for each example is given in 
Table 2. The measurements in Table 2. were performed as 
follows. We built several Modelica simulation models that 
were structurally correct. Then we have modified each ex-
ample by inserting an extra equation in different compo-
nents of the simulation model. In this way the models be-
came over-constrained. During the translation phase the 
system of flattened equation and each equation was anno-
tated. In the next step a canonical decomposition was per-
formed on the structurally singular system of flat equa-
tions and the over-constraining graph was isolated. Based 
on the over-constraining graph the reduced set of  

Table 2. Benchmark program description for over constrained systems. 

Test model Description 
No.  
of 
var. 

No 
of 
eq. 

Over 
contr. 
part 

Red. over 
constr. 
part 

Semantic 
filtering 

Debugging 
alt. 

1
scircuitR

+  
A simple electrical circuit model consisting of a resistor connected 
in parallel with a continuous voltage source. The Resistor 
component is over-constrained by an extra equation. 

14 15 9 5 1 1 

3
scircuitPin

+  
A simple electrical circuit model consisting two resistors con-
nected in parallel with a direct current source. The TwoPin com-
ponent is over-constrained by one extra equation. 

20 23 19 15 3 1 

2
generatorR

+

 

A generator circuit model similar where the Resistor compo-
nent is over-constrained by one an extra equation. 49 51 35 22 6 3 

1
dcmotorR

+  
A direct current motor circuit model where the Resistor com-
ponent is over-constrained by one an extra equation. 36 37 31 29 7 7 
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Figure 5. Number of over-constraining equations obtained after  
each reduction step during structural debugging.  

over-constraining equations was computed. 
This set of equations was further reduced by 
using semantic filtering rules. Based on this 
final set of equation the error messages are 
output to the user. The numbers of debugging 
alternatives are shown in the last column of 
Table 2. Figure 5 depicts the number of over-
constraining equations obtained after each 
reduction step.   

Secondly, we investigated the detection 
capabilities of the static debugger when un-
der-constrained situation were purposely in-
troduced in the simulation model by deleting 
equations or adding extra variables in the sys-
tem. The modifications performed on each 
model are described Table 3. The debugging 
of the under-constrained system was per-
formed by considering only those corrections 
that imply the removal of a free variable from 

Table 3. Benchmark program description for under-constrained systems 

Test model Description 
No 
of 
eq. 

No.  
of 
var. 

Under 
contr. 
part 

Red. over 
constr. 
part 

Semantic 
filtering 

Debugging 
alt. 

1
scircuitR

−  

A simple electrical circuit model consisting of a resistor connected 
in parallel with a continuous voltage source. In the Resistor 
component an extra variable has been declared (Real s) and the 
equation R*i=v*s was introduced instead of the correct equation 
R*i=v. 

14 15 8 5 1 1 

3
scircuitPin

−  

A simple electrical circuit model consisting two resistors con-
nected in parallel with a direct current source. The TwoPin com-
ponent is under-constrained by introducing an extra variable 
(Real s) and by exchanging equations 0 = p.i + n.i with 
s = p.i + n.i. 

20 23 7 4 3 1 

2
generatorR

−

 

A generator circuit model. In the Resistor component an extra 
variable has been declared (Real s) and the equation R*i=v*s 
was introduced instead of the correct equation R*i=v. 

49 51 28 21 3 1 

1
dcmotorR

−  

A direct current motor circuit model. In the Resistor compo-
nent an extra variable has been declared (Real s) and the equa-
tion R*i=v*s was introduced instead of the correct equation 
R*i=v. 

37 36 30 28 4 4 

 
the system. Figure 6 displays the number 
of under-constraining variables after each 
reduction step. After each step during the 
structural debugging the number of free 
variables that can be removed from the 
system is dramatically reduced. It should 
be noticed in Figure 6 that the largest re-
duction in the number of free variables 
and implicitly in the number of debug-
ging alternatives presented to the user is 
achieved by the semantic filtering phase. 

We are interested in the quality of 
structural and semantics filtering rules 
employed in the proposed static debug-
ging algorithm for correcting over- and 
under-constrained system of equations 
extracted from simulation models ex-
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pressed in the Modelica language. Table 4 shows the per-
centage reduction in the number of equations/variables 
that need to be examined by user after each step in the de-
bugging process. 

Table 4. Percentage reduction of the number of equa-
tion/variables that need to be examined by the user after 
each reduction step. 
Test model No. of flat  

eq./.var 

Step1 Step 2 Step3 Step 4 

1
scircuitR

+  15 40.0% 66.7% 93.3% 93.3% 
3

scircuitPin
+  23 17.4% 34.8% 87.0% 95.7% 

2
generatorR

+  51 31.4% 56.9% 88.2% 94.1% 
1

dcmotorR
+  37 16.2% 21.6% 81.1% 81.1% 

1
scircuitR

−  15 46.7% 66.7% 93.3% 93.3% 
3

scircuitPin
−  23 69.6% 82.6% 87.0% 95.7% 

2
generatorR

−  51 45.1% 58.8% 94.1% 98.0% 
1

dcmotorR
−  36 16.7% 22.2% 88.9% 88.9% 

 
As can be seen in Figure 5, Figure 6 and from the percent-
age reduction Table 4, the proposed algorithm for debug-
ging over- and under-constrained systems is very efficient 
in reducing the number of debugging alternative shown to 
the user. On the average, 91% of the irrelevant candidates 
were eliminated, which allows the user to look for the bug 
among the few remaining candidates, thus dramatically 
improving bug localization effectiveness. 

5 Implementation 

For the previously presented graph decomposition tech-
niques to be useful in practice, we must be able to con-
struct and manage the graph representation of equation-
based specifications efficiently and integrate them into an 
automatic or semi-automatic debugging tool. The use of 
graph-based tools in structural analysis is of great interest 
both in displaying properties of systems of equations and 
also in following and performing symbolic manipulations 
of variables and equations when modeling with equation-
based languages (Harman 2005 [6]). We show how exist-
ing graph theoretical decomposition techniques can be 
adapted and integrated into debugging tools integrated 
into simulation environments that employs such lan-
guages. 

At this stage we are able to provide an overview of 
the proposed framework developed for the Modelica lan-
guage and Modelica-based simulation environments. Even 
if we have limited our prototype implementation to the 
Modelica language, the developed debugging kernels can 
easily be adapted to handle other object-oriented equation-
based languages as well. It is important to note that the 
proposed debugging framework can easily be integrated 
into the existing Modelica compilers.  

AMOEBA (Automatic MOdelica Equation-Based 
Analyzer) is the static analysis module that we have de-
signed and implemented in order to attach it to a Modelica 

compiler. The tool is able to successfully detect and pro-
vide error-fixing solutions for typical over and under-
constrained situations, which might appear during the 
modeling stage using Modelica. Figure 7 show the general 
architecture of our static debugger.  

 
Figure 7. AMOEBA integration into the compilation 
framework. 

Below we present each phase of the static analysis with 
the corresponding module: 

The flattened equations are transformed into the bi-
partite graph representation by a Graph Mapping module. 
The canonical decomposition algorithm applied by the 
BLT module in the compiler splits the graph into three dis-
tinct subgraphs corresponding to an over-constrained sys-
tem of equations (too many equations are present), an un-
der-constrained system (too few equations or too many 
variables are present in the system) and a well-constrained 
system of equations (the number of variables is equal to 
the number of equations). A simple heuristic filtering rule 
assumes that the well-constrained part obtained after de-
composition will lead to a solvable system of equations 
and therefore need not be included in any repair strategy. 
If under- or over-constrained situations are detected, this 
means that there are some inconsistencies in the model. 

The Over- and Under-Constrained System Analyzers 
applies the algorithms presented in previous sections, in 
order to transform these graphs into a well-constrained 
graph and elaborate the necessary program modifications.  

The Code Transformer module needs to validate the 
program correction: it must assure that there exists a se-
mantically correct source code program that can be trans-
lated into the intermediate program correction. The source 
code transformations must be performed only by using 
atomic changes at the original source code level. Finally, 
the error fixing solution is output by the debugger in terms 
of atomic changes that need to be performed on the origi-
nal source code in order to obtain a valid original source 
code program that will generate the corresponding pro-
gram modifications at the intermediate code level. When 
multiple error fixing solutions exist, the annotations at-
tached to the flattened equations are used in the process of 
eliminating some of the modifications and prioritizing the 
remaining ones.   

The Error Presentation module is responsible for pre-
senting error messages to the user based on the previously 
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obtained valid source code modifications. Before being 
presented to the user, the output is filtered. For example, 
all the modifications that would involve atomic changes 
on locked components are eliminated and the remaining 
corrections are ranked based on equations annotations. 
This module handles most of the user interaction neces-
sary for the debugger to complete the missing formal 
specification of the program. At this level the user can be 
confronted with several error fixing corrections that will 
eliminate the symptom of the detected inconsistency at the 
intermediate code level. The corrections that most closely 
correspond to the programmer's view of the model struc-
ture should be selected. 

6 Conclusions 

Structural analysis techniques are widely used for assess-
ing the correctness and the credibility of mathematical 
models expressed with the help of equations. Experience 
has taught us that pre-processing a system of equations 
pays high dividends by reducing the time for finding in-
consistencies and efficiently correcting them. From the 
user point of view, such techniques are extremely benefi-
cial because they provide guidance during early stages of 
the simulation model building process and do not require 
solving the equations system.  

The paper illustrates that it is possible to localize and 
repair a significant number of errors during static analysis 
of object-oriented equation-based modeling languages 
without having to execute the simulation model. In this 
way certain numerical failures can be avoided later during 
the execution process. The paper proves that the result of 
structural static analysis performed on the underlying sys-
tem of equations can effectively be used to statically de-
bug Modelica simulation models.  

This paper describes one of the first experimental 
studies on how these new static debugging techniques per-
form on erroneous model examples. We have presented an 
empirical evaluation of proposed static analysis based de-
bugging paradigm for equation-based languages. Our 
studies demonstrated that static analysis can dramatically 
reduce debugging time, suggesting the potential of struc-
tural analysis as a highly effective approach. 

Currently, the debugger’s functionality is limited 
mostly due to our inability to compile the full Modelica 
language. Therefore only a limited number of real world 
examples with limited size and complexity have been 
tested. The integration of the presented debugging tech-

niques into the Open Source Modelica framework is un-
derway. In order to provide a complete debugging frame-
work for the Modelica language we intent to integrate the 
proposed structural analysis techniques with  the existing 
debugger for the algorithmic subset of the Modelica lan-
guage proposed by  Pop and Fritzson 2005 [7].  

We claim that the techniques developed and proposed 
in this paper are suitable for a wide range of equation-
based languages and not only for the Modelica language. 
These techniques can be easily adapted to the specifics of 
a particular simulation environment. Our claim is based on 
the close integration of the developed debugging tech-
niques and the compilation process. Most of the existing 
compilers for equation based languages share the same 
principles.   
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