
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

P. Bunus
Linköping University, Sweden
An Empirical Study on Debugging Equation-Based Simulation Models
pp. 281-288

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

An Empirical Study on Debugging Equation-Based Simulation Models

Peter Bunus
Department of Computer and Information Science

Linköping University, Sweden
petbu@ida.liu.se

Abstract

A typical problem which often appears in Modelica mod-
els is when too many/few equations are specified. This
leads to a situation where the simulation model is incon-
sistent and therefore cannot be compiled and executed.
We propose a methodology for detecting and repairing
over- and under-constrained situations based on graph
theoretical methods. Components and equations that cause
the irregularities are automatically isolated, and meaning-
ful error messages for the user are presented. The poten-
tially large number of error fixing alternatives is reduced
by applying filtering rules extracted from the modeling
language semantics.

The paper illustrates that it is possible to localize and
repair a significant number of errors during static analysis
of a Modelica model without having to execute the simu-
lation model. In this way certain numerical failures can be
avoided later during the execution process. The paper
proves that the result of structural static analysis per-
formed on the underlying system of equations can effec-
tively be used to statically debug real models.

Keywords: Modelica, debugging, structural and static
analysis, mathematical modeling, structural validation.

1 Introduction

Mathematical modeling and simulation of complex physi-
cal systems is emerging as a key technology in engineer-
ing. Modern approaches to physical system simulation al-
low users to specify simulation models with the help of
equation-based languages. Such languages have been de-
signed to allow automatic generation of efficient simula-
tion code from declarative specifications. Complex simu-
lation models are created by combining available model
components from user-defined libraries. The resulted
models are compiled in a simulation environment for effi-
cient execution.

Unfortunately, errors are made and inconsistencies are
easily introduced in the simulation models. A significant
part of the model development effort is spent on detecting
deviations from specifications and subsequently localizing
the sources of such errors. A typical problem which often
appears in physical system modeling and simulation is

when too many/few equations are specified in a system.
This leads to a situation where the simulation model is in-
consistent and therefore cannot be compiled and executed.
The user should deal with over- and under-constrained
situation by identifying the minimal set of equations or
variables that should be removed from the system in order
to make the remaining set of equations solvable. For ex-
ample, if there are too many equations in a system of
100 000 equations, which equations should be removed?
Currently the only systematic technique is to remove
equations one by one until the equation that caused the in-
consistency is identified and finally removed from the sys-
tem. It can easily be imagined that, if a static debugger
presents a small subset of over-constraining equations,
from which the user can select the equation that needs to
be eliminated from the overall model can greatly reduce
the amount of time required to get the simulation working.

Currently there are essentially no advanced tools that
can handle the debugging of equation-based languages at
the source code level and provide useful error fixing solu-
tions. The aim of the research presented in this paper is to
considerably improve the situation, especially with respect
to debugging the Modelica language. However, powerful
graph-theoretic methods can help to pinpoint possible
candidates for erroneous equations. A dramatic reduction
in the number of erroneous equation candidates can be
achieved by applying new methods such as semantic fil-
tering.

In this paper we describe an empirical evaluation of
debugging of automated debugging techniques for detect-
ing and repair structural inconsistencies in equation-based
simulation models. We focus on performance of debug-
ging tools that use static analysis tools integrated into a
Modelica compiler where the main purpose was to reduce
the number of debugging alternatives when structural in-
consistencies were present in the model. Static analysis
techniques only involve statically available information,
such as which variables are present in which equations in
and equation-based model. No assumptions regarding the
inputs and outputs of the simulation models are made. The
development of static and dynamic techniques for equa-
tion-based languages have been addressed by our previous
research (Bunus 2004 [1], Bunus and Fritzson 2003 [2],
Bunus and Fritzson 2004 [3]).

The remainder of the paper is organized as follows:
Section 2 presents the problem formulation and a motiva-

An Empirical Study on Debugging Equation-Based Simulation Models

The Modelica Association 281 Modelica 2005, March 7-8, 2005

tional example. Section 3 gives a brief description of the
algorithms for detecting and debugging over-constrained
situations that arise during the modeling phase with equa-
tion-based languages. Section 4 presents an evaluation of
our debugging framework based on several benchmarks.
Section 5 presents the overall architecture of a prototype
debugger developed in the context of a Modelica com-
piler. Finally Section 6 presents our conclusions and fu-
ture work.

2 Problem Formulation and Motiva-
tional Example

Mathematical modeling proceeds by specifying a set of
mathematical equations or functional relations denoted

1{ , }nE e e= … involving a set of variables denoted

1{ , }mV v v= … . In the general case a system of n equation
with m variables or unknowns can be described by the fol-
lowing equality:

1(,)i m ie v v c=… (2.1)

where ic are constants and 1i n= … . Solving the system
of equations E is the problem of finding the set of solu-
tions 1 1{(,) | (,)}m

m nS s s T e s s= ∈… … where T is the do-
main of equations, which fulfill the equality (2.1). The re-
lation (2.1) can be expanded into:

11 1 1 1

1 1

m m

n nm m n

a v a v c

a v a v c

+ =

+ =

"
#

"
 (2.2)

where , 1 , 1
ij

a i n j m= =… … are real coefficients. In a ma-
trix-vector notation, (2.2) has the form: =Av c

where
11 1

1

m

n nm

a a

a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

A

…
%

"

1

m

v

v

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

v # and
1

n

c

c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

c # (2.3)

A necessary condition for the existence and uniqueness of
a solution S is that matrix A is a square matrix (the num-
ber of equations is equal to the number of variables) and
there exists permutations 1 2P P such that 1 2P AP has a non-
zero diagonal. This condition guarantees the structural
singularity of the system of equations. The structural sin-
gularity checks whether the system of equations is well-
posed or not. It is only a necessary but not sufficient con-
dition for the existence and uniqueness of a solution. The
more powerful notion of numerical singularity will guar-
antee the existence and uniqueness of a solution. However
the checking the numerical singularity is as expensive as
solving the system of equations. Therefore when analyz-
ing the system of equations in this stage we assume that
the structural non-singularity is a sufficient abstraction for
implying that the equation system has a unique solution.
Further analysis based on numerical values and numerical
singularities is delayed until the dynamic analysis stage.

If the system of equations is structurally singular we
switch from the problem of finding the set of solutions S
to the problem of finding the maximal subset of equations

1{ , }S tE e e= … where t n< and SE E⊂ if n m> (we
have more equations than variables) or to the to the prob-
lem of finding the maximal subset of variables

1{ , }S kV v v= … where k m< and SV V⊂ if n m< (we
have more variables than equations).

As an example let us consider a Modelica model con-
sisting of a sinusoidal voltage source and a resistor con-
nected together. This model is trivial, but it serves as a
straightforward vehicle for introducing several fundamen-
tal debugging concepts.

 connector Pin
 Voltage v;
 Flow Current i;

end Pin;
model

 TwoPin Pin p, n ;
 Voltage v;
 Current i;

equation

v = p.v - n.v; 0 = p.i + n.i; i = p.i

end
 TwoPin;

model Resistor

extends

 TwoPin;

parameter Real R;

equation

R*i = v;

end Resistor;
model

 VsourceAC

extends

 TwoPin;

parameter

 Real VA=220; parameter
 Real f=50;

protected

 constant Real PI=3.141592; equation

v =VA*(sin(2*PI*f*time));

end
 VsourceAC;

model Ground
 Pin p ;

equation

p.v = 0

end Ground;
model Circuit
 Resistor R1(R=10); VsourceAC AC; Ground G;

equation

connect (AC.p,R1.p); connect (R1.n,AC.n);

connect (AC.n,G.p);

end Circuit;

We introduce an additional equation (i=23) inside the
Resistor component in order to over-constrain the simu-
lation model. The flattened equations corresponding to the
Circuit model is depicted in Figure 1.

 eq1 R1.v = -R1.n.v + R1.p.v
eq2 0 = R1.n.i + R1.p.i
eq3 R1.i = R1.p.i
eq4 R1.i R1.R = R1.v
eq5 R1.i = 23
eq6 AC.v = -AC.n.v + AC.p.v
eq7 0 = AC.n.i + AC.p.i
eq8 AC.i = AC.p.i
eq9 AC.v = AC.VA*sin[2*time*AC.f*AC.PI]
eq10 G.p.v = 0
eq11 AC.p.v = R1.p.v
eq12 AC.p.i + R1.p.i = 0
eq13 R1.n.v = AC.n.v
eq14 AC.n.v = G.p.v
eq15 AC.n.i + G.p.i + R1.n.i = 0

var1 R1.p.v
var2 R1.p.i
var3 R1.n.v
var4 R1.n.i
var5 R1.v
var6 R1.i
var7 AC.p.v
var8 AC.p.i
var9 AC.n.v
var10 AC.n.i
var11 AC.v
var12 AC.i
var13 G.p.v
var14 G.p.i

Figure 1. Flattened equations and variables corresponding
to the Circuit model.

P. Bunus

The Modelica Association 282 Modelica 2005, March 7-8, 2005

It should be noted that the number of equation is greater
than the number of variables and therefore we are facing a
structurally nonsingular problem.

3 Debugging Over- and Under-
constrained Models

The methods proposed in this section present a strategy to
deal with overdeterminancy by identifying the minimal set
of equations that should be removed from the system in
order to make the remaining set of equations solvable. The
idea is to isolate the over-constraining part of the bipartite
graph associated to the underlying system of equations
and to perform reasoning based on specific properties of
the specified subgraph. Efficient graph transformations,
based on rules derived from the semantics of the modeling
language are also performed on the subgraphs. We are go-
ing to show how these rules are automatically derived
from the modeling language semantics and how the asso-
ciated annotations to the equations contribute to the filter-
ing of the combinatorial explosion of possible error fixing
solutions. Those interested in more details may wish to
consult Bunus and Fritzson 2004 [3] or Bunus 2004 [1].

Step 1: Isolating the over-constraining part.

In step 1, from the flattened intermediate form of the
equations the associated bipartite graph is derived and a
maximum cardinality matching is found. The Dulmage
Mendelsohn canonical decomposition (Dulmage and
Mendelsohn 1963 [4]) will lead to two different sub-
graphs: a well-constrained part GW and an over-
constrained part +1

GO as depicted in Figure 2. The maxi-
mum cardinality matching is shown in Figure 2 with bold
edges.

 eq1

eq4

eq5

eq6

eq9

eq10

eq11

eq13

eq14

var1

var3

var5

var6

var7

var9

var11

var13

eq2

eq3

eq7

eq8

eq12

eq15

var2

var4

var8

var10

var12

var14

over-constrained part

well-constrained part

Figure 2. Canonical decomposition of an over-constrained
system.

It can be seen that equation eq11 is not covered by the
found maximum cardinality matching. Therefore equation
eq11 is a non-saturated or free vertex of the equation set,
therefore it is a source for the over-constrained part +1

GO .
Next, starting from eq11, the directed graph can be de-
rived from the undirected bipartite graph, as illustrated in
Figure 3, by exchanging all the matching edges into bidi-

rectional edges and orienting all other edges from equa-
tion to variable nodes. The layout of the directed graphs
derived from the undirected bipartite graphs has been rear-
ranged into a tree representation for the purpose of in-
creasing understandability for the reader of the paper.

eq11

eq6 eq1

var1 var7

var11

eq9

var3

eq13

var9

eq14

var13

eq10

G.p.v = 0

var5

eq4

var6

eq5
R1.i = 23

AC.v = AC.VA*
 sin[2*time*AC.f*AC.PI]

Figure 3. A directed graph associated to the over-
constrained part.

Step 2: Reducing the over-constraining equations
by using structural information.

The general error fixing strategy in the case of over-
constrained equation subsystems is to remove the extra
equations. An immediate fix to the over-constrained part
is to remove one of the equation nodes, which will lead to
a well-constrained part. However, as it can be seen from
Figure 4, not all the equation edges can be safely re-
moved.

eq1

var1

var3

eq13

var9

eq14

var13

eq10

G.p.v == 0

var5

eq4

var6

eq5
R1.i == 23

eq11

eq6

var7

var11

eq9

var3

eq13

var9

eq14

var13

eq10

G.p.v == 0

var5

eq4

var6

eq5
R1.i == 23

eq11

eq6

var7

var11

eq9

Figure 4. The elimination of an unsafe equation node
(eq1) from the over-constrained subgraph (on the left)
leads to two disconnected components (on the right).

By removing an equation node and the corresponding in-
cident edges from the bipartite graph the remaining undi-
rected graph must remain connected. In our particular ex-
ample the set of over-constraining equations that satisfy
this condition is {eq11, eq13, eq10, eq5, eq9}. It should
be noted that the safe removal of equation nodes only re-
fers to the bipartite graph representation of the intermedi-
ate code of the flattened set of equations, and it is influ-
enced by only structural properties of the bipartite graph.
If we would like to further reduce this set of equations,

An Empirical Study on Debugging Equation-Based Simulation Models

The Modelica Association 283 Modelica 2005, March 7-8, 2005

removal criteria derived from the semantics of the model-
ing language would need to be developed and included in
the debugging strategy.

Step 3: Reducing the over-constraining equations
by using semantic information

As we have seen in the previous example not all the over-
constraining equations are possible to remove without
causing further structural failures in the model description.
By taking into account simple rules derived from the lan-
guage semantics we can safely discard some other elimi-
nation alternatives as well.

We note that equation eq11 (AC.p.v = R1.p.v) is
generated by a connect equation from the Circuit
model and the only way to remove the equation eq11 is to
remove the original connect(AC.p, R1.p) equation.
However, removing the above-mentioned equation will
remove two equations from the flattened model since the
connect equation expands into two equations. It is obvi-
ous that this modification cannot be performed by the user
at the original source code level.

In order to provide a mechanism to reason about the
erroneous model under consideration based on language
semantics rules the equations need to be annotated. We
define an annotated equation as a record with the follow-
ing structure:

< Equation,

 Name,

 Description,

 No. of associated equations,

 Class name,

 Flexibility level,

 Connector generated,

 No. of linked equations

>

The Class Name indicates which class the equation comes
from. This annotation is extremely useful in exactly locat-
ing the associated class of the equation and therefore pro-
viding concise error messages to the user in terms of
original source code statements.

The No. of associated eqs. field defines the number of
equations which are specified together with the annotated
equation inside the same model. For an equation that be-
longs to the TwoPin class the number of associated equa-
tions is equal to 3. If one associated equation of the class
needs to be eliminated the value is decremented by 1. Dur-
ing debugging, if the equation R1.i * R1.R = R1.v is
diagnosed to be an over-constraining equation and there-
fore needs to be eliminated, then the elimination is not
possible because the model will be invalidated (the No. of
associated eqs. cannot be equal to 0) and therefore other
solutions need to be investigated.

The flexibility level, in a similar way as defined in
Flannery and Gonzalez 1997 [5], allows the ranking of the
relative importance of the equation in the overall flattened
system of equations. The value can be in the range of 0 to
3, with 0 representing the most rigid equation and 3 being

the most flexible equation. In practice, it turns out that the
equations generated by connections are more rigid from
the constraint relaxation point of view than the equations
specified inside the model. This means that preference is
given to repair strategies that involve the removal of equa-
tions which defines the behavior of a particular compo-
nent and not to topology changes of the circuit given by
the connection equations. We set the flexibility value to 0
for those equations that should not be removed or modi-
fied. These equations are locked for editing which means
that an automatic debugger should not consider any repair
strategy that would involve the modification or the re-
moval of the equations associated to such a component.
For example the equations of components that come from
well tested and trusted libraries can have this value set to
zero.

The Connector generated is a Boolean attribute
which tells whether the equation is generated or not by a
connect equation. Usually these equations have a very
low flexibility level.

The No. of linked equations attribute specifies how
many other equations are linked with the current equa-
tions. Equations that come from connect equations or
from parent objects (such as the TwoPin partial compo-
nent) have this attribute greater than zero. Removing an
intermediate equation that has this attribute greater than
zero will trigger the removal of other intermediate addi-
tional equations equal to the number of linked equations.
This is due to the fact that the removal of an intermediate
equation is only possible by removing the original source
code that generated that equation. By doing this all the
generated intermediate equations by the original equation
will be removed.

It is worth noting that the annotation attributes are
automatically initialized by the static analyzer. These are
incorporated in the front-end of the compiler, by using
several graph representations of the declarative object-
oriented program code. Therefore the user does not need
to manually annotate the source code. A debugger pre-
processor takes care of the automatic generation and ini-
tialization of the annotating code. In this way a mapping
between the intermediate code and original declarative
code is kept during the translation phases.

The annotations associated to the set of equivalent
over-constraining equations {eq11, eq13, eq10, eq5, eq9}
are shown in Table 1.

Table 1. The associated annotations of the remaining
over-constraining equation set
Name Equation No. of

assoc.
eqs.

Class

 name

Flex.

level

Con.

gen.

No.of
linked
eqs.

eq11 AC.p.v=R1.p.v 3 Circuit 1 Yes 1

eq13 R1.n.v= AC.n.v 3 Circuit 1 Yes 1

eq10 G.p.v=0 1 Ground 2 No 0

eq5 R1.i=23 2 Resistor 2 No 0

eq9 AC.v=AC*VA*sin.. 1 VsourceAC 2 No 0

The equation node eq11 was already analyzed and can
therefore be removed from the set. Equation node eq13 is

P. Bunus

The Modelica Association 284 Modelica 2005, March 7-8, 2005

removed as well, for the same reasons as equation eq11.
By analyzing the remaining equations {eq10, eq5, eq9},
one should note that they have the same flexibility level
and therefore candidates for elimination with equal prob-
ability. However, by analyzing the value of the No. of as-
sociated eqs. annotation, equation eq10 and eq9 have this
attribute equal to one, which means that they are the only
equations that define the behavior of the model. Removing
one of these equations will invalidate the corresponding
model component, which is probably not the intention of
the modeler and therefore not acceptable as an error fixing
solution.

By examining the annotations corresponding to equa-
tion eq5 one can see that it can safely be removed because
its flexibility level is high. The removal of eq5 will not
trigger the removal of any other equation since it has no
linked equations (indicated by the value of No. of linked
eqs. annotation which is equal to 0). Moreover, removing
equation eq5 will not invalidate the model since there is
another equation defined inside the Resistor model
(R1.i * R1.R = R1.v) denoted by the value of No. of
associated eqs. annotation which is equal to 2.

Step 3: Outputting the debugging alternatives.

After selecting the right equation for elimination the de-
bugger tries to identify the associated class of that equa-
tion based on the Class name parameter defined in the an-
notation structure. Having the class name and the interme-
diate equation form (R1.i=23), the original equation can
be reconstructed (i=23) to exactly indicate to the user the
equation that needs to be removed in order to make the
simulation model well-constrained. In this case the de-
bugger correctly located the faulty equation previously in-
troduced by us in the simulation model.

When multiple valid error fixing solutions are possi-
ble and the debugger cannot decide which one to choose, a
ranked list of error fixes is presented to the user for further
analysis and decision. In those cases, the user must take
the final decision, as the debugger cannot know or does
not have enough information to decide which equation is
over-constraining. The advantage of this approach is that

the debugger automatically identifies and solves several
anomalies in the declarative simulation model specifica-
tion without having to execute the system.

When debugging under-constrained systems (more
variables than equations are present in the system) two
distinct strategies can be considered. The first strategy
considers the removal of the free variables while the sec-
ond strategy considers the addition of new equations to the
overall system of equations, which must contain the free
variables. Additionally, the second strategy takes into ac-
count extra variables that can be added to the introduced
new equation. New equations can be introduced at differ-
ent levels in the object hierarchy.

4 Experimental Validation

In this paper we are interested in the quality of structural
and semantics filtering rules employed in the proposed
static debugging algorithm for correcting over- and under-
constrained system of equations extracted from simulation
models expressed in the Modelica language.

Firstly, we have modified several working simulation
models by inserting additional equations in the model
definitions at various places, thereby over-constraining the
whole system models. In this first set of experiments we
were interested if over-constraining situations are detected
and how many repair possibilities are reported by the de-
bugger.

A short description of the benchmark programs and
the over-constraining nature for each example is given in
Table 2. The measurements in Table 2. were performed as
follows. We built several Modelica simulation models that
were structurally correct. Then we have modified each ex-
ample by inserting an extra equation in different compo-
nents of the simulation model. In this way the models be-
came over-constrained. During the translation phase the
system of flattened equation and each equation was anno-
tated. In the next step a canonical decomposition was per-
formed on the structurally singular system of flat equa-
tions and the over-constraining graph was isolated. Based
on the over-constraining graph the reduced set of

Table 2. Benchmark program description for over constrained systems.

Test model Description
No.
of
var.

No
of
eq.

Over
contr.
part

Red. over
constr.
part

Semantic
filtering

Debugging
alt.

1
scircuitR

+
A simple electrical circuit model consisting of a resistor connected
in parallel with a continuous voltage source. The Resistor
component is over-constrained by an extra equation.

14 15 9 5 1 1

3
scircuitPin

+
A simple electrical circuit model consisting two resistors con-
nected in parallel with a direct current source. The TwoPin com-
ponent is over-constrained by one extra equation.

20 23 19 15 3 1

2
generatorR

+

A generator circuit model similar where the Resistor compo-
nent is over-constrained by one an extra equation. 49 51 35 22 6 3

1
dcmotorR

+
A direct current motor circuit model where the Resistor com-
ponent is over-constrained by one an extra equation. 36 37 31 29 7 7

An Empirical Study on Debugging Equation-Based Simulation Models

The Modelica Association 285 Modelica 2005, March 7-8, 2005

Figure 5. Number of over-constraining equations obtained after
each reduction step during structural debugging.

over-constraining equations was computed.
This set of equations was further reduced by
using semantic filtering rules. Based on this
final set of equation the error messages are
output to the user. The numbers of debugging
alternatives are shown in the last column of
Table 2. Figure 5 depicts the number of over-
constraining equations obtained after each
reduction step.

Secondly, we investigated the detection
capabilities of the static debugger when un-
der-constrained situation were purposely in-
troduced in the simulation model by deleting
equations or adding extra variables in the sys-
tem. The modifications performed on each
model are described Table 3. The debugging
of the under-constrained system was per-
formed by considering only those corrections
that imply the removal of a free variable from

Table 3. Benchmark program description for under-constrained systems

Test model Description
No
of
eq.

No.
of
var.

Under
contr.
part

Red. over
constr.
part

Semantic
filtering

Debugging
alt.

1
scircuitR

−

A simple electrical circuit model consisting of a resistor connected
in parallel with a continuous voltage source. In the Resistor
component an extra variable has been declared (Real s) and the
equation R*i=v*s was introduced instead of the correct equation
R*i=v.

14 15 8 5 1 1

3
scircuitPin

−

A simple electrical circuit model consisting two resistors con-
nected in parallel with a direct current source. The TwoPin com-
ponent is under-constrained by introducing an extra variable
(Real s) and by exchanging equations 0 = p.i + n.i with
s = p.i + n.i.

20 23 7 4 3 1

2
generatorR

−

A generator circuit model. In the Resistor component an extra
variable has been declared (Real s) and the equation R*i=v*s
was introduced instead of the correct equation R*i=v.

49 51 28 21 3 1

1
dcmotorR

−

A direct current motor circuit model. In the Resistor compo-
nent an extra variable has been declared (Real s) and the equa-
tion R*i=v*s was introduced instead of the correct equation
R*i=v.

37 36 30 28 4 4

the system. Figure 6 displays the number
of under-constraining variables after each
reduction step. After each step during the
structural debugging the number of free
variables that can be removed from the
system is dramatically reduced. It should
be noticed in Figure 6 that the largest re-
duction in the number of free variables
and implicitly in the number of debug-
ging alternatives presented to the user is
achieved by the semantic filtering phase.

We are interested in the quality of
structural and semantics filtering rules
employed in the proposed static debug-
ging algorithm for correcting over- and
under-constrained system of equations
extracted from simulation models ex-

15

8

5

1 1

23

7

4
3

1

51

28

21

3
1

36

30
28

4 4

0

10

20

30

40

50

N
o.

 o
f

va
ri

ab
le

s

No. of flat
variables

No. of under-
constraining
variables

No. of reduced
under-
constraining
variables

No. of
semantically
reduced
variables

No. of
debugging
alternatives

1scircuitR −

3scircuitPin −

2generatorR −

1dcmotorR −

step 1 step 2 step 3 step 4

Figure 6. Number of under-constraining variables obtained after each
reduction step during structural debugging.

15

9

5

1 1

23

19

15

3
1

51

35

22

6

3

37

31
29

7 7

0

10

20

30

40

50

N
o.

 o
f

eq
ua

ti
on

s

No. of flat
equations

No. of over-
constraining
equations

No. of reduced
over-
constraining
equations

No. of
semantically
reduced
equations

No. of
debugging
alternatives

1scircuitR +

3scircuitPin +

2generatorR +

1dcmotorR +

step 1 step 2 step 3 step 4

P. Bunus

The Modelica Association 286 Modelica 2005, March 7-8, 2005

pressed in the Modelica language. Table 4 shows the per-
centage reduction in the number of equations/variables
that need to be examined by user after each step in the de-
bugging process.

Table 4. Percentage reduction of the number of equa-
tion/variables that need to be examined by the user after
each reduction step.
Test model No. of flat

eq./.var

Step1 Step 2 Step3 Step 4

1
scircuitR

+ 15 40.0% 66.7% 93.3% 93.3%
3

scircuitPin
+ 23 17.4% 34.8% 87.0% 95.7%

2
generatorR

+ 51 31.4% 56.9% 88.2% 94.1%
1

dcmotorR
+ 37 16.2% 21.6% 81.1% 81.1%

1
scircuitR

− 15 46.7% 66.7% 93.3% 93.3%
3

scircuitPin
− 23 69.6% 82.6% 87.0% 95.7%

2
generatorR

− 51 45.1% 58.8% 94.1% 98.0%
1

dcmotorR
− 36 16.7% 22.2% 88.9% 88.9%

As can be seen in Figure 5, Figure 6 and from the percent-
age reduction Table 4, the proposed algorithm for debug-
ging over- and under-constrained systems is very efficient
in reducing the number of debugging alternative shown to
the user. On the average, 91% of the irrelevant candidates
were eliminated, which allows the user to look for the bug
among the few remaining candidates, thus dramatically
improving bug localization effectiveness.

5 Implementation

For the previously presented graph decomposition tech-
niques to be useful in practice, we must be able to con-
struct and manage the graph representation of equation-
based specifications efficiently and integrate them into an
automatic or semi-automatic debugging tool. The use of
graph-based tools in structural analysis is of great interest
both in displaying properties of systems of equations and
also in following and performing symbolic manipulations
of variables and equations when modeling with equation-
based languages (Harman 2005 [6]). We show how exist-
ing graph theoretical decomposition techniques can be
adapted and integrated into debugging tools integrated
into simulation environments that employs such lan-
guages.

At this stage we are able to provide an overview of
the proposed framework developed for the Modelica lan-
guage and Modelica-based simulation environments. Even
if we have limited our prototype implementation to the
Modelica language, the developed debugging kernels can
easily be adapted to handle other object-oriented equation-
based languages as well. It is important to note that the
proposed debugging framework can easily be integrated
into the existing Modelica compilers.

AMOEBA (Automatic MOdelica Equation-Based
Analyzer) is the static analysis module that we have de-
signed and implemented in order to attach it to a Modelica

compiler. The tool is able to successfully detect and pro-
vide error-fixing solutions for typical over and under-
constrained situations, which might appear during the
modeling stage using Modelica. Figure 7 show the general
architecture of our static debugger.

Figure 7. AMOEBA integration into the compilation
framework.

Below we present each phase of the static analysis with
the corresponding module:

The flattened equations are transformed into the bi-
partite graph representation by a Graph Mapping module.
The canonical decomposition algorithm applied by the
BLT module in the compiler splits the graph into three dis-
tinct subgraphs corresponding to an over-constrained sys-
tem of equations (too many equations are present), an un-
der-constrained system (too few equations or too many
variables are present in the system) and a well-constrained
system of equations (the number of variables is equal to
the number of equations). A simple heuristic filtering rule
assumes that the well-constrained part obtained after de-
composition will lead to a solvable system of equations
and therefore need not be included in any repair strategy.
If under- or over-constrained situations are detected, this
means that there are some inconsistencies in the model.

The Over- and Under-Constrained System Analyzers
applies the algorithms presented in previous sections, in
order to transform these graphs into a well-constrained
graph and elaborate the necessary program modifications.

The Code Transformer module needs to validate the
program correction: it must assure that there exists a se-
mantically correct source code program that can be trans-
lated into the intermediate program correction. The source
code transformations must be performed only by using
atomic changes at the original source code level. Finally,
the error fixing solution is output by the debugger in terms
of atomic changes that need to be performed on the origi-
nal source code in order to obtain a valid original source
code program that will generate the corresponding pro-
gram modifications at the intermediate code level. When
multiple error fixing solutions exist, the annotations at-
tached to the flattened equations are used in the process of
eliminating some of the modifications and prioritizing the
remaining ones.

The Error Presentation module is responsible for pre-
senting error messages to the user based on the previously

Modelica
Source
Code

Parsing and
Semantic
Analysis

Flat
Modelica
Source
Code

Parse Flat
Code

C code Symbolic
Engine

BLT Form Symbolic
Engine

Code
Generator

Graph
Mapper

Over-Constrained
System Analyzer

Under-Constrained
System Analyzer

Code
Transformer

Error
Presentation

User

AMOEBA

Automatic Modelica
Equation-Based

Analyzer

An Empirical Study on Debugging Equation-Based Simulation Models

The Modelica Association 287 Modelica 2005, March 7-8, 2005

obtained valid source code modifications. Before being
presented to the user, the output is filtered. For example,
all the modifications that would involve atomic changes
on locked components are eliminated and the remaining
corrections are ranked based on equations annotations.
This module handles most of the user interaction neces-
sary for the debugger to complete the missing formal
specification of the program. At this level the user can be
confronted with several error fixing corrections that will
eliminate the symptom of the detected inconsistency at the
intermediate code level. The corrections that most closely
correspond to the programmer's view of the model struc-
ture should be selected.

6 Conclusions

Structural analysis techniques are widely used for assess-
ing the correctness and the credibility of mathematical
models expressed with the help of equations. Experience
has taught us that pre-processing a system of equations
pays high dividends by reducing the time for finding in-
consistencies and efficiently correcting them. From the
user point of view, such techniques are extremely benefi-
cial because they provide guidance during early stages of
the simulation model building process and do not require
solving the equations system.

The paper illustrates that it is possible to localize and
repair a significant number of errors during static analysis
of object-oriented equation-based modeling languages
without having to execute the simulation model. In this
way certain numerical failures can be avoided later during
the execution process. The paper proves that the result of
structural static analysis performed on the underlying sys-
tem of equations can effectively be used to statically de-
bug Modelica simulation models.

This paper describes one of the first experimental
studies on how these new static debugging techniques per-
form on erroneous model examples. We have presented an
empirical evaluation of proposed static analysis based de-
bugging paradigm for equation-based languages. Our
studies demonstrated that static analysis can dramatically
reduce debugging time, suggesting the potential of struc-
tural analysis as a highly effective approach.

Currently, the debugger’s functionality is limited
mostly due to our inability to compile the full Modelica
language. Therefore only a limited number of real world
examples with limited size and complexity have been
tested. The integration of the presented debugging tech-

niques into the Open Source Modelica framework is un-
derway. In order to provide a complete debugging frame-
work for the Modelica language we intent to integrate the
proposed structural analysis techniques with the existing
debugger for the algorithmic subset of the Modelica lan-
guage proposed by Pop and Fritzson 2005 [7].

We claim that the techniques developed and proposed
in this paper are suitable for a wide range of equation-
based languages and not only for the Modelica language.
These techniques can be easily adapted to the specifics of
a particular simulation environment. Our claim is based on
the close integration of the developed debugging tech-
niques and the compilation process. Most of the existing
compilers for equation based languages share the same
principles.

Acknowledgements

This research was supported by Center for Industrial In-
formation Technology (grant CENIIT 05.02) at Linköping
University Sweden.

REFERENCES
[1] Bunus Peter. (2004). Debugging Techniques for Equation-

Based Languages. PhD Thesis. Department of Computer and
Information Science, Linköping University, 2004.

[2] Bunus Peter and Peter Fritzson. (2003). "Semi-automatic
Fault Localization and Behaviour Verification for Physical
System Simulation Models." In Proceedings of the 18th
IEEE International Conference on Automated Software En-
gineering. (Montreal, Canada, October 6-10, 2003).

[3] Bunus Peter and Peter Fritzson. (2004) "Automated Static
Analysis of Equation-Based Components." Simulation:
Transactions of the Society for Modeling and Simulation In-
ternational. Special Issue on Component Based Modeling
and Simulation., vol. 80: 8, August 2004.

[4] Dulmage A.L. and N.S. Mendelsohn. (1963) "Coverings of
bipartite graphs." Canadian J. Math, vol. 10, pp. 517-534.

[5] Flannery L. M. and A. J. Gonzalez. (1997) "Detecting
Anomalies in Constraint-based Systems." Engineering Ap-
plications of Artificial Intelligence, vol. 10: 3, pp. 257-268.

[6] Harman Peter. (2005). " Visualisation of Model Transforma-
tion Algorithms for a Modelica Translator." In Proceedings
of the 4th International Modelica Conference. (Hamburg,
Germany, 7-8 March, 2005).

[7] Pop Adrian and Peter Fritzson. (2005). "A Portable Debug-
ger for Algorithmic Modelica Code." In Proceedings of the
4th International Modelica Conference. (Hamburg, Ger-
many, 7-8 March, 2005).

P. Bunus

The Modelica Association 288 Modelica 2005, March 7-8, 2005

