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Department of Mechanical Engineering  
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Abstract 

In this paper, the system simulation model is dis-
cussed from an engineering design perspective. Spe-
cial emphasis will be given Modelica models, and it 
is exemplified how computational design methods 
operate on the simulation model in order to evaluate 
different concepts. Model based design optimization 
and probabilistic analysis are discussed as examples 
of such computational methods. 
An XML-based information system for representa-
tion and management of design data for use together 
with the Modelica model is further proposed in order 
to simplify the use of computational design methods.  
Finally, an example is presented, where probabilistic 
analysis is carried out on a Modelica model of an 
aircraft actuation system using the proposed and im-
plemented tools and methods.  

1 Introduction 

In the area of engineering design, a substantial part 
of the process consists of manual design work in-
volving the inspiration and creativity of the designer. 
However, a large part of the design process can be 
formalized, and by applying formal design methods, 
these can be implemented in computer software as 
computational design methods. By employing com-
putational methods in early stages of the design 
process, it is possible to acquire valuable informa-

tion. Such methods could for example include model 
based design optimization or probabilistic analysis. 
These computational methods will be described in 
more detail throughout the paper, but common for 
the methods is that they operate on simulation mod-
els in an automatic, iterative way. This implies new 
requirements on the simulation tools as well as on 
the representation and management of data related to 
the computational methods.  

2 Computational design methods 

As indicated in the introduction, a computational 
design method the uses the simulation model as the 
primary source of information.  
The principal similarities between different computa-
tional design methods and how they operate on the 
simulation model are illustrated in Figure 1. With 
this view, the computational methods either operate 
on the inputs to the model (design synthesis), or on 
the outputs from the model (design evaluation). Both 
probabilistic analysis and design optimization can be 
seen as automatic methods that repeatedly execute 
and evaluate the simulation model. 
This way of automatic execution adds specific de-
mands to the simulation environment. From the de-
sign perspective, it is not of interest exactly how the 
model is executed, but it must be valid and must not 
‘fail’ or get ‘stuck’. It also calls for separation be-
tween the actual simulation model and information 
related to perform a design task using computational 

Computational design methodComputational design method

Design synthesis
•Monte-Carlo
•Optimizer
•Etc.

Simulation model

Design evaluation
•Statistical analysis
•Objective function
•Etc

Model parameters Simulation results

Design inputs
- Concept (model) 
- Design variables
- Uncertainties
- Objectives
- Constraints

Design inputs
- Concept (model) 
- Design variables
- Uncertainties
- Objectives
- Constraints

Design outputs
- Feasible? 
- Optimal?
- Robust?

Design outputs
- Feasible? 
- Optimal?
- Robust?

Figure 1. Computational design methods operating on a system simulation model. 
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methods. This is because the same simulation model 
could be used in a wide range of design tasks. 

2.1 Model based design optimization 

A typical example of a computational design method 
is design optimization based on system simulation, as 
described by Krus et al. [4].  
By formulating requirements and desirables as a 
mathematical objective function, design optimization 
can be employed. Parameterized simulation models 
of the system enable an optimization algorithm to be 
used to find the system parameters that maximize the 
objective function while meeting the constraints. The 
optimization algorithm repeatedly modifies specific 
design variables (model parameters), executes the 
model, and evaluates an objective function, see 
Figure 2. 

Design optimizationDesign optimization

Design variables

Optimization 
algorithm

Simulation 
model

Evaluation

x3x2x1

C1

C2

C3

C4

Constraints

Objective function
 

Figure 2. Process for model based design optimization. 

A non-gradient method is specifically appropriate for 
optimization of simulation models since the objec-
tive function is defined from simulation results and 
derivatives of the objective function can not be de-
fined. One example is the Complex optimization al-
gorithm, presented by Box [6], which has been used 
very successfully over a wide range of problems and 
is characterized by simplicity and robustness. 

2.2 Model based probabilistic analysis 

Other important examples of computational design 
methods are based on probabilistic analysis. These 
methods are used not only to assure a technically 
feasible concept, but also to find a robust design 
point by including uncertainty in the models. 
In all stages of the engineering design process, and 
especially in early stages, most available information 
suffers from uncertainty. By using methods for prob-
abilistic analysis, this uncertainty is brought into the 
design process through the use of simulation models. 
This is highly desired since important knowledge 
about the uncertainty is otherwise omitted.  

For example, by taking uncertainty into account, the 
following information can be extracted:  
• The probability of meeting a set of constraints 

and achieving a technically feasible design with 
in the ranges of the design variables, the prob-
ability of feasibility. 

• How much it will be necessary to relax a specific 
constraint in order to have a sufficiently high 
probability of feasibility. 

• The effect of uncertainty in system parameter 
values, i.e. the robustness of the design 

The information above can not be achieved using 
deterministic simulation models with fixed parame-
ter values. Therefore, it is necessary to use probabil-
ity distributions to represent uncertain values on 
model parameters.  
A feasible design is defined as a design that satisfies 
all imposed technical constraints [5]. The examina-
tion of the concept’s feasibility could be seen as a 
probabilistic methodology where the probability of 
finding feasible design alternatives within the design 
space is investigated. This so-called probability of 
feasibility, Pfeas, is an important figure of merit in the 
early phases of design since it indicates whether the 
concept is promising for further analysis such as de-
sign optimization.  
Figure 3 illustrates the process of concept feasibility 
assessment. By assigning normal distributions for the 
design variables and using a sampling-based method 
such as the Monte Carlo simulation together with the 
simulation model, the Pfeas can be calculated given 
the settings of the design variables and the con-
straints.  

Determine Concept FeasibilityDetermine Concept Feasibility

P(feas)>εP(feas)>εRelax active
constraints if possible
Relax active
constraints if possible

N Y

C1

C2

C3

C4

Simulation 
model

x3x2

Design space 
exploration

x1

ConstraintsConstraints

Design variablesDesign variables

UncertaintiesUncertainties
p1

Evaluation

Monte-
Carlo

 
Figure 3. The process of concept feasibility assessment 
[5]. The model code is evaluated repeatedly where the 
design variables are varied within the design range using a 
sampling based method such as Monte-Carlo simulation. 
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  If the total probability of feasibility is too low, the 
constraints must be investigated individually and 
either the active constraints relaxed or the concept 
modified, for example by infusing new technologies 
to the concept and thereby improving its characteris-
tics. Mathematically, the probability of feasibility 
Pfeas for a system with m constraints is defined as [5]: 

∏
=

=
m

i
ifeas PP

1

 (1) 

)0( ≤= ii CPP  (2) 

where Pi is the probability that one specific con-
straint Ci is met. For another formulation using in-
formation content as the figure of merit, see the the-
ory of Axiomatic Design [8] 
The Monte-Carlo simulation used to simulate uncer-
tainty or variability is a rather simple algorithm that 
randomly samples values according to a probability 
distribution. However, more sophisticated methods 
with improved search efficiency can be used as well 
such as Adaptive Importance Sampling (AIS) as de-
scribed by Wu in [11]. 

2.3 Computational design data 

As indicated in the previous sections, computational 
design methods include a wide range of data that is 
not primarily associated the model of the system. As 
can be concluded from Figure 2 and Figure 3, a wide 
range of design related data is required such as  
• Design variables – A subset of the system pa-

rameters that are modified during the design it-
eration. 

• Uncertainties – Many model parameters are un-
certain, which must be handled. 

• Constraints – Measures that must be met in or-
der for the design to be feasible. 

• Objective functions – A mathematical function 
used by an optimization algorithm in order to de-
fine a figure of merit.  

• Process model – In order to accomplish full sys-
tem simulation and optimization involving sev-
eral types of models and codes, it is necessary to 
be able to represent and execute a computational 
sequence. 

The data above is normally not possible to represent 
inside simulation models. It is also the fact that a 
computational design task often includes more than 
one model represented using one specific approach. 
In order to accomplish for example system optimiza-
tion, it is often necessary to include several types of 
models, such as CAD, CFD, financial models, etc. 

Typical is also that integration of already existing, 
so-called legacy codes is necessary. 

3 Modelica and computational data 

The Modelica modelling language is developed in an 
international effort by the Modelica Association [6] 
consisting of members from both industry and the 
academic world with the intention of establishing a 
de-facto standard for system simulation. The Mode-
lica language contains a large number of features 
with extensive support for advanced modelling of 
systems from different engineering domains. The 
modelling principle is object-oriented and equation 
based where different types of equations are sup-
ported. Modelica also enables representation of gen-
eral data as so-called annotations. 
It has been shown several times that Modelica is 
very well suited for modelling of physical systems. 
However, representation of design related data as 
exemplified in previous section is not directly sup-
ported. Even if it would be possible to represent de-
sign data as annotations this is not an attractive solu-
tion since it still not would be generally supported in 
tools available for Modelica. 
One important argument why a separate representa-
tion of design data would be necessary is: 

A design project often contains several models, and 
several types of models. In order to fully assess the 
properties of a certain design, this could include both 
technical domains and others, such as financial mod-
els. A general representation of design data that is 
simple to use together with different model imple-
mentations is therefore necessary. 

The approach taken in this work is to represent the 
data as XML outside the simulation model as illus-
trated in Figure 4. This approach will be further de-
scribed in the next section of this paper.  

VariablesEquations

ParametersComponents

System interfaces

System model 
representation

Modelica

Uncertainties

Design variables
Constraints

Objective functions

Process model

Design project 
representation

XML
 

Figure 4. The system simulation model is represented in 
Modelica, while data regarding the design task is repre-
sented in XML. 
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3.1 XML-based data repository 

In order to facilitate the use of computational design 
methods using models implemented for example as 
Modelica, a design data repository has been created 
where the system data can be represented in a gen-
eral way using XML. An XML document is however 
not very usable without an accompanying XML 
schema [10]. Just as the XML can effectively de-
scribe data, the XML schema defines the structure of 
the XML document. It defines each allowed element 
in a document, the allowed attributes and possibly 
the acceptable attribute values for each element. It 
also defines the occurrences, sequence, and nesting 
of each element.  
The information model developed for this purpose 
has a hierarchical and object-oriented structure in 
order to organize the data in a way that is close to the 
physical system. In order for the information model 
to be as general as possible, generic elements are 
defined such as system, subsystem, variables and 
native data. A top level structure of the data can be 
seen in Figure 5, and the different parts of the data 
model are described in more detail below. 

 
Figure 5. An object oriented and hierarchical structure in 
order to organize the design data. 

The variable element is the important building block 
in the repository. This element is used as a neutral 
representation of both system parameters and design 
variables, see Figure 6. Besides name and default 
value, which are required attributes, the variable con-
tains optional information such as unit, description, 
and data type. With a variable type attribute, it is 
also possible to define whether the variable is con-
trollable, non controllable, or a so-called technology 
factor (described in more detail in [3]). As illustrated 
in Figure 6, the variable element also has sub-
elements that contain additional information such as 
probability distribution and settings if the variable is 
generated by a design algorithm such as Design of 
Experiment (DOE) or is a design variable in an op-
timization algorithm. It is possible to attach these 
sub-elements to all variables in a generic way. 

 
Figure 6. XML Schema representation of the variable 
element used to represent various kinds of system parame-
ters with extensive information such as probability distri-
butions. 

The idea is that probability distributions are defined 
and stored parametrically. It is possible to select 
from typical standard distributions such as uniform 
distribution, normal distribution, triangular distribu-
tion, etc. Custom distributions could also be defined 
as interval values or single values. This means that 
no mathematical functions for the distributions are 
stored in the repository. For example, in the case of a 
normal distribution, the mean value and the standard 
deviation are stored and not the mathematical func-
tion describing the relation between these metrics 
and the probability density function, PDF. 
In Figure 7, some example XML code is visualized 
as represented using the XML editor XML Spy. For 
visualization of the actual XML code, see the exam-
ple in section 5. 

 
Figure 7. Design variable visualized in the XML editor 
XMLSpy. 

4 Integration framework 

A software prototype for collaborative system simu-
lation and computational design has been developed 
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in projects prior to the work presented in this paper; 
see for example [2].  

The framework is based on a Service Oriented Archi-
tecture [7] which means that models and methods 
communicate using so-called web service standards 
such as SOAP and WSDL, see [9]. The standards are 
used to define interfaces between the models and to 
represent the data being exchanged between the 
models, methods and users clients. The framework 
enables different kinds of models to be encapsulated 
as simulation modules without exposing the actual 
content of the model. Only a published interface is 
visible to the outside. The models can also be exe-
cuted in a distributed fashion which enables models 
and methods to be executed from their original loca-
tion. With this approach, both models and methods 
are managed as generic simulation modules which 
are integrated and executed as illustrated in Figure 8. 

Computational 
methods

Computational 
methods

Simulation moduleExcel spreadsheetExcel spreadsheet

Design data 
repository

Design data 
repository

SOAP 
messages

SequencerSequencer

 
Figure 8. Integration framework where a simulation 
model implemented in Modelica is integrated with compu-
tational methods and a design data repository. Inputs and 
outputs are here managed using an Excel spreadsheet. 

A wrapper is created around the simulation model in 
order to publish the model as a simulation module as 
illustrated in Figure 9.  

Web enabled simulation moduleWeb enabled simulation module

Wrapper•Web server
•SOAP engine

SOAP 
messages

Executable code
•Dymosim.exe

Executable code
•Dymosim.exe

model EHA
DCmotor motor;
HydraulicPump pump;
HydraulicPiston piston;

equation
connect(motor.shaft,pump.shaft);
connect(pump.port2,piston.port1);
connect(piston.port2,pump.port1);
end EHA;

 
Figure 9. The Modelica system model is translated and 
compiled using Dymola. The executable code is wrapped 
as web service simulation module. 

In the work presented here, a prototype has been im-
plemented where Matlab constitutes the wrapper that 
communicates with both the simulation model, and 
the web service interface. A more permanent solu-
tion is however intended where XML technology is 

used to dynamically create and parse the input and 
output files to and from the Modelica simulation di-
rectly. This is a very flexible approach which has 
been implemented in previous projects, see [3]. 

Important to note is that this for model integration is 
not intended for high-speed data exchange between 
tightly coupled models. Rather, it is intended for 
automation of sequential (or parallel) computational 
design tasks involving several distributed model. An 
XML-based process model has also been developed 
which can be automatically executed by a so-called 
sequencer. Further details about this framework are 
presented in [2]. 

5 Example – Probabilistic analysis of 
aircraft actuation system 

In this section an example will be presented where a 
probabilistic analysis is carried out using the pre-
sented framework and a simulation model developed 
in Modelica. 

5.1 Electro-hydrostatic actuation system 

The system is an electro-hydraulic system, princi-
pally illustrated in Figure 10. The intention is to 
mount the system inside the aircraft wing in order to 
move the control surfaces of the aircraft. 

Load

DCM HP

xp

Power
electronics

xpref

Power 270 V 
DC-bus

 
Figure 10. A schematic model of an electro-hydrostatic 
Actuation system (EHA) implemented in Modelica. 

Due to the compact design of the system and the 
high power density, the system generates heat that 
can lead to high temperatures and cause damage to 
the system. It is therefore of interest to analyze the 
thermal behaviour of the system during missions of 
the aircraft. In order to accomplish this, a model of 
both the dynamic performance and the thermal prop-
erties of the EHA as well as load forces from authen-
tic missions have been modelled in the Modelica 
language. 

5.2 Simulation model in Modelica  

There are different aspects that are of interest when 
studying actuation systems such as dynamic per-
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formance, how the system responds to a control sig-
nal, or how sensitive the system is to disturbances. 
The models of the system were designed in an ob-
ject-oriented way where all the components were 
modelled using the Modelica modelling language. In 
each component, equations for both dynamic behav-
iour and thermal properties are included and thermal 
properties such as temperature and heat flow are rep-
resented in the connectors.  
The electric motor and the power electronics are also 
designed to include dynamic as well as thermal 
properties. Both hydraulic and electric components 
have equations for thermal properties. Pure thermal 
components have also been added to the model. In 
Figure 11, a graphical representation of the model as 
implemented in Dymola is visualized. 

 
Figure 11. The simulation model as implemented in the 
Dymola simulation tool. 
The system has been simulated in mission of 50 
minutes. In Figure 12, results from simulation can be 
seen. The system was simulated with load and con-
trol signals from authentic mission data. The simula-
tion show that high temperatures will occur both in 
the hydraulic fluid as well as in the motor windings 
during a so-called extreme mission. 

 
Figure 12. Temperatures [K] in the system during a heavy 
mission. Simulation of the Modelica model using Dymola. 
The mission is simulated for 50 minutes (3000 sec). 

5.3 The uncertainties 

From a design point of view, the system includes 
several uncertain parameters that could affect the 
thermal properties in the components. In order to 
keep the example simple, only three parameters in 
the model is selected to illustrate uncertainties in the 
system. 
Normal distributions are selected for the resistance in 
the DC motor and in the power electronics. A normal 
distribution is also set for at speed dependent thermal 
parameter in the motor. 
Table 1. Definition of uncertain parameters. 

System parameter Mean 
value 

Standard 
dev 

Inverter resistance [Ω] 0.35 0.1 
Speed dependent thermal 
constant [rad-1] 

0.5 0.1 

Motor resistance [Ω] 2.5 0.25 

As an example, the representation of the motor resis-
tance is visualized below. Both graphically, and as 
XML code. 

P

DCM.Ra

2.51.75 3.25  
Figure 13. A normal probability distribution defines the 
resistance of the electric DC motor. 
<Variable name="DCM.Ra" info="DC motor resistance"  
                variableType="NonControllable"  
                variabilityType="NormalDistribution"> 
 <Value>2.5</Value> 
 <Distribution> 
  <Normal mean="2.5" stdDev="0.25"/> 
 </Distribution> 
</Variable> 

5.4 The constraints 

A few example constraints are here presented regard-
ing the temperatures in different parts of the system. 
• The temperature of the hydraulic oil should not 

exceed 90°C, 
o C90Oil.TiC1 °≤=  

• The temperature of the DC motor windings 
should not exceed 100°C 

o C100DCM.TiC2 °≤=  

The constraints are evaluated in each simulation in 
order to evaluate the probability of feasibility de-
scribed below. 
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5.5 Evaluating probability of feasibility 

In the application example, probabilistic analysis is 
employed on the system in order to investigate the 
probabilities of meeting the constraints. 
The framework illustrated in Figure 8 is here used 
for the simulations. The simulations are controlled 
from an Excel document, where inputs to the model 
can be entered as well as results from the model 
monitored. 
In each execution of the model, the max temperature 
in the different parts of the system at each simulation 
is stored. By modifying the inputs according to the 
probability distributions of the uncertain parameters, 
variability in the responses is obtained as well. 
The results are investigated by computing a Cumula-
tive Density Function (CDF) for the response of in-
terest. By fitting a standard distribution to the values 
of the responses, the probability of achieving re-
sponses that meet the constraints can be computed, 
see Figure 14. 

Simulation 
response 
values

Simulation 
response 
values

Probabilistic 
analysis

Constraints

0%

100%

Probability

Value
0%

100%

Probability

Value
Constraint value  

Figure 14. The simulation results are extracted from the 
XML repository for analysis. 
Below, the results for the temperatures of the hy-
draulic fluid as well as the DC motor temperature are 
visualized.  
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Figure 15. The probability of meeting constraints on oil 
temperature and DC motor temperature with uncertainty 
in some system parameters. 

For the uncertainties and constraints used in this ex-
ample, the results are the following probabilities: 
• The temperature of the hydraulic oil should not 

exceed 90°C, 
o %48)(C1 =P  

• The temperature of the DC motor windings 
should not exceed 100°C 

o %8)(C2 =P  

This implies that the total probability of meeting the 
constraints (probability of feasibility) is: 

)feas(P )}100DCM.Ti()90Oil.Ti{( ≤≤= UP
 4%=  
It is obvious that this is too low probability for the 
system to be robust and we must investigate if the 
constraint can be relaxed or else we make some 
change to our design. For the purpose of this exam-
ple, we now assume that the constraints cannot be 
relaxed. 
Now assume that we infuse technologies to our con-
cept that increases the ventilation of the EHA mount-
ing area and the increases the transportation of heat 
from the EHA surface. This means that we can as-
sume a technology factor that should affect the prob-
ability of meeting the constraints. 
By modifying our model we can now re-evaluate the 
probabilistic analysis in the same way as above.  
The results in Figure 16 show that the probability of 
meeting the constraints has increased.  
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Figure 16. The probability of meeting constraints on oil 
temperature and DC motor temperature with a modified 
concept. 
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The total probability if feasibility for the modified 
concept is now: 

)feas(P  )}100DCM.Ti()90Oil.Ti{( ≤≤= UP
 81%=  
We can now accept the current concept and move on 
to the next step in the design process, which includes 
further simulation and optimization to achieve an 
optimal design point with respect to both perform-
ance and robustness. This is however beyond the 
scope of this paper. 

6 Discussion and conclusions 

It is important to realize that in a computational de-
sign task, the system simulation model is not the top-
level integrator that accesses and integrates different 
types of data. It is rather a component that is being 
accessed from a design framework at a higher level 
including some computational method. The informa-
tion that the simulation model delivers is then evalu-
ated and integrated with results from several types of 
models. 
Simulation models in industry exists in a wide range 
of representations ranging from old legacy codes 
represented in Fortran code to modern object-
oriented modelling languages such as the Modelica 
language implemented in simulation tools such as 
Dymola. It is important that the computational de-
sign methods can interact with the models regardless 
of implementation. With a design data repository 
implemented in a format that is simple to access by a 
wide range of tools, this interaction is highly facili-
tated.  
The approach presented in this paper uses XML for 
representation of the design data in a format that is 
general and not associated with existing representa-
tions of system simulation models. The advantage is 
that XML is widely supported by a wide range of 
software tools, and that it is simple to access and 
manage the XML data. 
The example presented in this paper is only one sim-
ple illustration of how the simulation model can be 
used in a computational design task. Increased de-
mands for the product developing industry regarding 
faster time to market will make design automation 
more and more important. It is therefore very impor-
tant to continue to define interfaces between the area 
of engineering design and the area of system model-
ling and simulation. 
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