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Abstract PDEs discretization, adopting either a finite volume
method (FVM) or a finite element method (FEM), with

In this paper we present a neModelicamodel for different strategies for single-phase or two-phase fluid

heat exchangers, to be used within TteermoPower flow [5]. Furthermore, a moving-boundary evaporator

library. The novelty of this work is a combined emmodel has been recently added to the library.

ployment of finite elements with grid adaption.

The modelling of a generic single-phase 1-D heat ex- )

changer is discussed, along with its approximation JfathiS Paper we present a new model for single-phase

the Stabilized Galerkin/Least-Squaresethod. The HEs, based on the use of the finite element method

grid adaption procedure is first introduced from a geWith gri.d adaption. The objectives of this work are
eral viewpoint and then within th¥odelica frame- tWofold: to develop a new HE model with high ac-

work. Finally, some preliminary results are shown, Curacy and reduced computational complexity and to
show how complex mathematical techniques can be

successfully used iModelica for the modelling of
1 Introduction distributed-parameters physical systems.

Heat exchangers (HEs) play a relevant role in mal
power-production processes, so that their accur

modelling, at least for control-oriented analysis, 'Snafque: the grid nodes (i.e., the points where the solu-

key task for any .5|mulat|on sur[e. [13]2 tion is computed) change their positions so as to adapt
Accurate modelling of such devices is usually a congs namically to the solution variations. Such model

plex task, the reason being that the control—relevaditn significantly improve the modelling accuracy, by

phenomena are associated with thermal dynamics Pe%oving the non-physical solution oscillations ob-
scribed byPartial Differential Equation{PDEs). On served for the actual FEM model, whilst using fewer
the other hand, different complexity levels of repres,

) . ? es and containing the computational burden.

sentation may be necessary, depending on the specific
simulation experiment to be performed.
Within this framework, the power-plant modelling li-The paper is organized as follows: in Section 2.1 we
brary ThermoPower[5] exploits the Modelica lan- recall the modelling of a generic single-phase 1-D heat
guage modularity features, offering to the users seaxchanger, while in Section 2.2 we discuss its ap-
eral interchangeable component models, with varyipgoximation via theStabilized Galerkin/Least-Squares
levels of detail. method. In the third section the grid adaption problem
As for the HEs, the models currently provided are difs introduced from a general viewpoint, while in Sec-
ferentiated by the numerical scheme employed for tihen 4 we address the moving mesh method on which
the Modelicaimplementation, analyzed in Section 5,

"MOX, Dipartimento di Matematica “F. Brioschi”, j5 hased. Some preliminary numerical results are pro-
;{;tﬁfano'm'Chelem’S'mona'pemtto y@mate.poli vided in Section 6. Finally, the last section draws

tCorresponding authorDipartimento di Elettronica e Infor- SOMe conclusions and outlines possible future devel-
mazione, francesco.schiavo@elet.polimi.it opments.

e proposed model is an improvement of the actual
fylgM model [6], obtained by a@rid adaptiontech-
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2 The Heat Exchanger Model momentum and energy can be formulated as follows:
In the context of object-oriented modelling, it is con- AEJF = 0, 1)
X

venient to split the model of a generic heat exchanger
(HE) into several interacting parts, belonging to three -
different classes [5]: the model of the fluid within a Adt  ox TTdx 2pA°
given volume, the model of the metal walls enclosing on ﬂ‘lh: 1op w
the fluid and the model of the heat transfer between the ot pAdx pot pAT’
fluid and the metal, or between the metal and the outer
world. In this paper, we focus on the modelling of th@here A is the pipe cross-sectional argathe fluid
first class. We improve the framework proposed in [@ensity,w the mass flow-ratep the fluid pressureg
by introducing suitable grid adaption techniques. the acceleration of gravity the pipe heightCs the
The model presented in this paper can represent singlanning friction factorgw the wet perimetely the spe-
phase HEs, which constitute a significative part of tledic enthalpy@. the heat flux entering the pipe across
industrial applications (e.g., the primary side of a Prethie lateral surface. The fluid velocity can be defined
surized Water Reactor nuclear power plant [3]). Howsu = w/(pA). Notice that in (2) and (3) we have ne-
ever, also two-phase flows could be handled as wellglected the kinetic and the diffusion term, respectively.
In the case of water-steam flows it is convenient to
choose the pressure and the specific enthalpy as the
2.1 The Fluid Model thermodynamic state variables, so that the expressions
) ) o . ofthe balance equations have the same form for single-
Let us deal with a compressible fluid within a piP&;p2se and two-phase flows [12]: thus all the fluid prop-
shaped volume/ with a rigid boundary wall, ex- erties, such as the temperatiirghe densityp and the

changing mass and energy through the inlet and Ouggﬁ'tial derivativep,/dh anddp/dp can be computed
flanges, and thermal energy through the lateral Surfa&?functions op andh.

We assume that

low dp dz Ciw
—+ta-+tpg—+o—=ww =0, (2

3

o the longitudinal dimensior is far more relevant 2.2 The Approximation Procedure

than the other two; In view of power generation plant modelling, the most
relevant phenomenon is described by equation (3), so
e the volumeV is “sufficiently” regular (i.e., the that the focus for the present paper is the approxima-
cross-sectional area is uniform avids such that tion of this latter by FEM and grid adaption. Actu-
the fluid motion along is not interrupted); ally, the mass and momentum equations (1) and (2) de-
scribe the fast pressure and flow rate dynamics, while
¢ there are no phase-changes (that is the fluid is thle energy one (3) describes the slower dynamics of
ways either single-phase or two-phase); heat transport by the fluid velocity. These faster modes
are typically not taken into account in HEs modelling
e the Reynolds numbeRe is such that turbulent[6]. In particular, note that, assuming the presspre
flow conditions are assured along all the pipaniform alongx (with possible jumps at the HE bound-
which in turn guarantees almost uniform veloary) and neglecting the inertial terdw/ot in (2), the
ity and thermodynamic state of the fluid acrogstegration of the mass and momentum balance equa-

the radial direction. tions (1) and (2) is reduced to

: . Lap
Notlc_e that,_ when water or steam is assumed as the Wi — Wout = A/ —dx, (4)
working fluid, the last hypothesis does not hold at o ot
very low flow rates (laminar flow regime). However, Pin — Pout = APF +ApH , ()

in practice, most industrial processes never operate in
such conditions. wherewin, Wout, Pin, and poyt are the mass flow-rate

Under the hypotheses above it is possible to define&id Pressure at the HE inlet and outlet, wililg: and
the thermodynamic intensive variables as functions®P+ are the pressure drops due to friction and fluid
the longitudinal abscissa and timet. Within this head, respectively. For further details on the approxi-
framework, the dynamic balance equations for massation for equation (1) and (2) we refer to [6].
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dependent. This unavoidably leads to an increase of
P10 ) PN the number of unknowns since the displacement of the

grid nodes is to be determined as well.
o : As for the test functions involved in tHeALSmethod,
Bit) a2ty Sp1® S S Oty Ol x they are defined by

00 (X,
b =25 PEY

Figure 1: Some typical hat functions

Equation (3) is discretized with the stabiliz@étrov- wherea (0 < a < 1) is a stabilization coefficient. No-
Galerkin method GALS (Galerkin/Least-Squayes) tice that fora = 0 the standard (i.e., non-stabilized)
ing suitable Dirichlet weak boundary conditions at th@ethod is obtained.

inflow [11]. For the reader’s ease, we provide also the expression of
We refer to [6] for further details about the applicatiofe time derivativeb; = 0¢i(x,t)/ot of the basis func-
of the GALSmethod to heat exchangers. tion ¢;, namely

In the following we provide some details about the ap- 5 (X—&_1) 0
— 01— A= 0-1)%i—-1

proximation procedure by means of piecewise linear 7 0_1<x<9,
finite elements of equation (3), while referring to [16]¢-(x ) = 5 (gl Wi

for an exhaustive coverage of the finite element ap- " e '2” ! 5 < X< Biy1,
proximation theory. %i otherwise
We remark that we generalize the stand@ALS Q)

method to the case of time-dependent shape and test

functions, since, using the grid adaption strategy, thet us expand the quantitidés p ,w, @ in terms of the
length of each mesh element varies in time. basis function®; as:
Let the spatial domaifD, L] be subdivided intiN — 1 "

elements identified b\ (> 3) nodes. The length ofyy, ) — Zlhi(t)q)i(x’t)
thei-th element is denoted dgt), while the abscissa =

of thei-th node is indicated in the sequel wift). N T B T
On this partition we introduce the space of the piec®*!) = i;pi Ot =p)" dx1), P=[pr--Pn]",

ﬁ(t)T w(xﬁt% h= [hl e hN]T y

wise linear functions, whose typical basis (hat) func- N
tions are shown in Fig. 1. w(x,t) = lei Ot =wt)T dxt), W= [wy---wy]T,
Their analytical expressions are the following: i=
N
5o(t) — — . —ot)T o=To - o’
brxt) 2&) X o<x<a), %) = 3 @O = @070, o=[or- @I,
0 otherwise (20)
X—0On-1(t) with 6(Xat) - [¢1(Xat)a T 7¢N(X7t)]T'
onixt) — I On-1(t) <X<L, Applying theGALSfinite element method to (3) leads
0 otherwise to the following set oN ODEs:
N L N
Xx—%a(t) . L( h»¢<>w-dx+ ( h‘<|>-) Wjdxt
510 s <xsan,  fy (300w [T 3w
i = i(t) — :
di(x,t) izt) X &) <x< (). /L< ziN=N1Wi¢i ihidtm> bt
0 otherwise Jo \A3iZipidi &  dX
ZiN=1Wi¢i N
(6) o <N higi | Wjdx=
withi=2,---,N—1 and where /‘m AZi1Pidi ‘;
L - L N )
i1 p Wyt @i
_ ————d 227 yd
di(t) = ¢(t), fori=1...N. () -/0 Zi'\'=1f)iti>illJJ X+-/0 (AZiN=1l3i¢i> Vidxs
=
SO e v with = 1. N
Notice that, in view of the grid adaption procedure, the/sain \ ASN i ) ™ ! oo

basis functions defined in (6) are both space and time (11)
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wherehi, is the fluid specific enthalpy at the inflonof FEM, can be cast into the framework wiodel re-
boundaryoQ". Such set of ODEs can be representefiiction i.e., the approximation by a finite dimensional
by the following compact matrix notation: model of a conceptually infinite dimensional one. Sev-
g w1 eral parameters (e.g., the mesh spacing, the degree of
Fh+ KCh: Rp+xY<p+ ;KW, (12) the polynomial finite elements, tuning parameters re-
lated to the discretization procedure) govern the ac-
whereM, Mp, F, C, R Y, K are defined as follows: cyracy of the approximation. As an effective tool
to assess such approximation property, some estima-
tors/indicators, as the local cell residual, are typically

- 1

L L
M;i =/ ¢iwjdx, Mpj =/ bi g; dx, employed [1, 9, 18]. Once the error indicator has been
‘(i N Wby do; 0 computed on a given mesh, the information that it con-
Fji = M *IlledXz tains can be used to generate a better mesh that gives
0 Yie1Pxdk dX more accuracy. This is the basisaafaptive error con-
ZE:J_qu)k trol.
Cii = oon SN b dijdx, Many engineering problems are characterized by solu-

Loy L o tions exhibiting a complex structure, e.g., singularities
R :/ Nijdx, Y;i :/ ————jdx, nearcorners, boundary layers or shocks. In such cases,
0 3 j1PkPk

N
0 Ji1Pkdk the idea is to distribute the mesh spacings according

K — / hin b1 dx to local features of the solution, that is to concentrate
1 Jagi SR PrOk ;0. the elements in the regions where the solution changes

(13) rapidly and, vice versa, to coarsen them where the so-
lution is smoother, with the aim of obtaining a solution
The matrice<C and K, which enforce the boundarysufficiently accurate and with a reasonable computa-
conditions into equation (12), depend on the inflowpnal load.
boundarydQ"™. It can be noted that, as we are consigy sica|ly an adaptive error control procedure consists
ering the 1-D case, the inflow boundary is constitute a discretization method combined with an adaptive

at most, by the pointg = 0 andx = L, depending on : . .
the sign ofw = wi,. Thus the only test functions thatalgorlthm. There are three main types of adaptive tech-

are non-zero at the inﬂow a[m anquN and the Only niqueS for FEM: |) thm'methOd the meSh iS I’efined

non-vanishing entries of the matricBsandK are and coarsened locally according to certamor es-
timators ii) the p-method the polynomial degree is
Wi (1_ G) Wlo > 0 chosen in each element according to sam®othness
Cu = P1 2 ’ indicator; iii) the r-method the element vertices are
otherwise relocated to concentrate them in desired regions on the
basis of amonitor function
WN<1+0‘> Wi 0 In the following we focus on this last philosophy
C _ 2 x=L > U, C .
NN PN which is usually referred to asmoving mesh method
otherwise (14) [7, 10, 14, 15, 17]. In this method, a mesh equation in-
hin|x—0 a volving the nodes speed is solved to compute the mesh
Ky = o1 ( - 2) Wlx=0>0, points location together with the solution of the differ-
0 otherwise ential equation at hand. In principle, starting from a
given mesh, the idea is to move the mesh nodes, while
hin |t a keeping their number fixed, towards regions of rapid
Kan = N < T 2) W= >0, solution variations, e.g., steep wave fronts and shocks.
0 otherwise

3.1 Grid Adaption as a Control Problem

The matrice<® andK are consequently diagonal An interesting point of view to tackle the grid adap-

tion procedure is to state it as a control problem. As a
3 The Grid Adaption Philosophy matter of fact, the grid adaption is based on a feedback
mechanism that can be represented as in Fig. 2.
The discretization of complex phenomena describ®@dthin this framework, theprocessis represented by
by systems of partial differential equations by meaiitse N ODES obtained frofbALSdiscretization, the
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Rin; Win, d)e Fi,i+1 Fi+1,i
MESH R GALS .
sk vy, Kist
Error h,I
Estimation
E=e(h,l)

Figure 3: The spring model for grid adaption

Figure 2: Grid adaption as a control problem  to correct such values so that the constitutive and com-
pleteness constraints are satisfied.

. . On the other hand, when dealing withdaclarative
sensoris represented by some estimate of the dis-

cretization error and theontroller is defined by the anguage such aslodelica a different approach has

) . ) . to be taken: the constitutive and completeness con-
grid adaption strategy. The time-varying boundar P

values for the HEH;, andw;,) and the heat flux enter—fgﬁlgtj ::;/"e tgbt::ir:rgzlrsjssli%allyé furl1f I”seigf;\l iucrr]o;ecimft)r
ing its lateral surfaceqt) are, from the point of view y g a phy PP

of feedback grid adaption, process disturbances, wr]tlrl]g Implementation of the adaption procedure.

et us consider Fig. 3: each element can be identified
the length of the elementg;] can be regarded as the . . g " ,
; . with a spring of lengtlY; and specific elastic constant
(vectorial) control variablé.

: . . ki, with the first and the last spring fixed to the domain
The aim of thecontrol systenis to minimize the es-

) ) ...~ boundariesx =0 andx = L, respectively.
timated error. In this paper we adopt thquidistri- | o F.j be the force that thieth spring exerts on the

mesh adaption strategy): the aim is to dynamically ob-

tain an equidistributed error over the elements. Fj=0 Vj#i-1i+1, (15)

: : _ that means that each spring interacts only with the two
4 The Movmg Mesh Method in Mod adjacent ones. Furthermore, the force that two adja-

elica cent springs exert on each other can be expressed as

The application of th&SALSmethod to equation (3) Fite =kt R =kKialiva. (16)
leads to a set oN ODEs whose unknowns are the

nodal values for the fluid specific enthalpy. MoreSupposing that the spring constarits are non-
over, due to the grid adaption strategy, we have to imegative, an effective choice for the unknowfsn
clude otheN — 1 unknowns, i.e., the lengttfsof the terms of thek; is:

elements. The coupled equations yield the so-called K
DAE-system. li :WL’ Vi=1---N-1. (17)
The mesh point positions have to be calculated in such 2j=1 K
a way that This automatically guarantees the completeness con-
straint as
1) the length of each element is strictly positiv®(- N
stitutive constraint >0Vi=1---N—1,vt >0); i; li= i; ZJN;llk]. L=L. (18)

2) the total length of the elements is equalt¢com- Moreover, if all the spring constants are positive, then
pleteness constrainty ;¢ =L, ¥t > 0). the constitutive constraint is fulfilled as well. It is im-
portant to notice that such strategy is independent of

These constraints can be easily fulfilled when dealigige particular grid adaption procedure at hand.
with imperativelanguages (i.e., algorithm oriented)To make effective the chosen adaption procedure it is

In such a case, a specific grid adaption proceduregcessary to relate the elastic consténts the local
first allowed to yield a mesh characterized by valug¥onitor functiong;, as

for the length¥; “illegal” with respect to the criteria 1

1) and 2. Then a suitable refinement algorithm is used ki = iE Vi=1--- N—-1 (19)
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The strategy we adopt aims at concentrating the gdAdl  Definition of the Residual

pmntg in the dom'aln regions vyhere the mor!ltor fun(1"'he residual definition is a key choice in the grid adap-
tioneis larger. This can be justified by analyzing equisn framework. When using tharclength monitor

tions (19) and (17): the larger the monitor functioRynction, a common choice for the residual is the ap-
the smaller the associated spring constant and, conpsigximate gradient:

quently, the smaller the length of the corresponding
hi1—h  oh
element. 7 = i1 =N Vi=1,---,N—-1. (22

The monitore; is usually defined as a function of a S

‘residual’, identified in the sequel with the symil s choice aims at concentrating the grid points within
directly related to the approximate solution obtaingfle regions where large solution variations occur. This

with the GALSmethod. _implicitly assumes that the discretization error is large
The monitor functiore; = €;({;) can be chosen arbl—in such areas.

trarily, provided that it is definite positive, though it igjowever, in case of problems with a “sharp-but-not-
much more effective when it monotonous as well. ~ steep” solution, it has been shown that trelength
One of the most used monitor function sharing theffonitor function with approximate gradient given by

properties is the so-calleafclength[4], given by (22) performes poorly (see [10]). In such a case, a bet-
ter approximation can be obtained using thevature
g = \/ru(? (20) monitor function (21) with a second order approxima-

tion of the 2hd order spatial derivative:

wherepis a positive coefficient used to “tune” the grid
adaption. - hipg—2h+h g 0%h
I — - 5 77
In [7] it is shown that this choice yields good results & 0x?

when applied to transport equations. . L
Another example of monitor function, successfuIYP\fhere |t.|s'understood thap = hin. ) ]
used in [10], is thecurvaturemonitor function, given N [14], itis shown that, for problems involving more

by than one moving front in the solution, the use of the
& — {14 ue. oq) Curvaturemonitor function can lead to better results
' MG @1 than the use of tharclengthone.
In this paper we show results obtained with grid adap-

Using thearclengthor thecurvaturemonitor function, tion based on these two residual definitions and moni-
particular care has to be taken in the choice of th§ functions.

parametel, since it is a sort of “gain” of the mesh

controller: the largen, the faster the grid adaption ) )

becomes (see Fig. 2). The value of such parameger Modelica Implementation

can either be fixed or tuned by the user. In this latter

case, lower and upper bounds foshould be provided, The developed model has been implemented\tod-
since a low value can make the adaption mechanigfigacomponent calleélowlDfemAdapt which is

too weak and then useless, while a too large value &g to be included within the libraryhermoPower
negatively affect the numerical stability of the adapel- The component is perfectly interchangeable with
tion algorithm. the actual library components for 1-D HEs, since it
The tuning of the parametgihecomes even more critUS€s the same connectors: two flanges for fluid flow
ical when using a fixed time-step explicit method t8nd @ terminal for heat flux (Fig. 4).

solve the resulting non-linear DAE system, which is
often the case when simulating industrial plants in con-
nection with the control system [3]. Such sensitivity
depends on the fact that, somehow, the parameter
regulates how “fast” the grid adaption is: a large value
makes the adaption too fast, thus introducing dynam-
ics with time constants significantly smaller compared

Vi=1---,N—1, (23)

with the fixed time step, resulting in a numerical insta- Flow1DfemAdapt
bility.

The last step to complete the grid adaption scheme is

the definition of the residud} over the elements. Figure 4:Component Icon
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TheModelicaimplementation is quite close to the onwhich is followed by a valve and by an ideal pres-
presented in [6] with some difference in the energure sink. An ideal heat-flux source is connected to
equation and completed with the equations for the gtttk HE distributed heat-flux terminal. Such setup has

adaption. _ _ been selected in order to highlight the differences of
The discretized energy equation contains a new terfie approximation schemes on the HE outlet specific
M#der(h)+(MD+F/A)*h+C/A*h=R*der(p)+ enthalpy.

Y*omega/A*phi+K/A*w; The HE internal pressure is held constant since the

mass flow-rate and the valve opening are set to a fixed
. . value and the sink pressure is constant as well. Thus,
with nested for " loops as shown in [6]. b

The selection of the residual and of the correspondifigPPOsing the specific enthalpy of the fluid within the
monitor function depends by the user via the integdE does not vary substantially, it is possible to assume

where the additional tridiagonal matrMp is coded

parameteResidual that the fluid density is almost constant.
i Residual==1 then In case the heat-flux is s_et to zero as well, it is possible
for i in 1:N - 1 loop to show that the analytical solution for the transport
resfi] = (h[i+1] - h[i]/L]; - ; ; :
el = sqr(L+mues2); equatlon ) isa ramp-wave travelling _along the HE
end for; with constant velocityu. It is then possible to eval-
else , o uate the model approximation performances with an
res[1]=(h[i + 1] - 2*h[i]+hin)/I[i]"2; . S .
erfl] = (L+mu*res[1]2)0.25; a-posteriorierror indicator, evaluating the square de-
for i in 22N - 1 loop viation
resfi] = (h[i+1]-2*h[i]+h[i-1])/[i]"2;
errli] = (1+mu*res[i]"2)°0.25; t . 2
end for: E(x) — / (A(x.t) — hx,t))dt, (24)
end if; 0

Finally, the length of the elements is obtained solvi

n . . .
the followingN — 1 algebraic equations: gq the approximate solutioh from the analytical one

h.
for i in 1:(N - 1) loop The indicatorE is spatially distributed, so we extract
il = et from it two different indicators:
[l = K[i[/sum(K)*L;
end for;

IE:/OLE(x)dx,

6 Simulations OE = E(X)[x=L,

(25)

In this section we show simulation results in order tenoting theintegral error (IE) and theoutput error
evaluate the different performances of the grid adg®E).

tion strategies. All the simulations have been pdfer the sake of approximation, as we compute the
formed within the Dymola [8] simulation environ-square deviatioft(x) at the grid points only, the in-

ment. dicatorlE is evaluated via a linear piecewise interpo-
_ lation.
EnthalpyRamp HeatRamp ValveOpening ) )
The numerical data employed for the HEs modelling
f f are the lengti. = 10m and the cross-sectional area
A=3.14- 10 *n?. The heat-fluxp is set to zero. The
duration={1} duration={1} =1} fluid entering the HE is liquid water at pressype=
10°Pa, with initial specific enthalpyh, = 10°J/Kg

ﬁ
N

R and flow rateni, = 1Kg/s. Thus, the transit time turns

" out to be 3125s.
The time-integration of the system is performed with
Sink a fourth orderRunge-Kuttascheme with a fixed time
stepTs=0.1s. The chosen time step turns out to be ad-
equate for the simulations of the dynamics represented
Figure 5: Reference Simulation Layout by (3) [3].
The first test case aims at checking the effectiveness of
The reference simulation layout is shown in Fig. Bhe grid adaption strategy when abrupt changes of the
consisting in an ideal flow source connected to a HBlution are involved.

will

FluidSource HexAdapt
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10 Table 1 clearly shows that, for the case at hand, the so-
‘ ‘ ‘ ‘ lution obtained with the proposed grid adaption strat-
oms, egy with relatively few nodesN = 10) is a far better
approximation of the exact solution (at least in term
L of the indicatordE and OE) than the ones obtained
with FVM and FEM with a number of nodes = 20

| or N =50. However, the computational overhead due
ol | to grid adaption is not negligible, as highlighted by the

\ CPU time column.

T

=== Exact solution

— FEM +GA (Arc, N=10)
=== FEM (N=20)

M FVM (N=20)

o
a

o
&~
T

.03+

specific enthalpy (J/kg)

=
=4
T

‘ | The results show that the use of the proposed grid

) J | adaption strategy is convenient when the demand on
R the accuracy of the solution is relatively strong. This
099 m = - - = 5 can be obtained by a small number of mesh nodes
time (s)

though the CPU time can increase. Alternatively, stan-
dard FVM or FEM can be employed but a higher num-

ber of nodes is required to obtain the same level of ac-
Figure 6: Approximate enthalpy provided by three differcuracy.

ical sch hal
ent numerical schemes and exact enthalpy The second test case shows that the good results ob-

tained with grid adaption using treclengthmonitor
The time interval of the simulation is chosen dsinction do not hold when theurvaturemonitor func-
[0,60/s. The inflow enthalpyhi, is described by ationis used, as can be seen by the curvesin Fig. 7. The
ramp function with a rising time of 4 starting at 5 simulation time interval is now chosen @80]s. The
The corresponding increment of the enthalpy is of tigflow enthalpyhi, is represented by a function char-
5% of the initial value. acterized by three stages: a raising ramp ftomls
In Fig. 6 the HE outlet specific enthalpy associatdé@t = 2s, a plateau during 18 seconds, a decreasing
with three different numerical schemes is compar&mp fromt = 20stot = 21s. The net increment of
with the exact solution (blue line). In particular théhe enthalpy is the 5% of the initial value, while the fi-
cyan, the red and the green lines correspond to fid value coincides with the initial one. The “gain” of
finite volumes (20 nodes), finite elements (20 nodd§g mesh controller has been chosen equaGo® *
and finite elements with grid adaption based onahe and 35- 10-2 for thearclengthand thecurvaturemon-
clengthmonitor function (10 nodes). The “gain” of thdtor function, respectively. Larger values pffor the
mesh controller has been set to the value3.5- 10~4 Curvature choice lead to numerical instabilities.
after several simulations as a trade-off between accu-
racy and numerical stability. :

x10
Fig. 6 shows that grid adaption witirclengthmon- NS, -
itor function can significantly improve the quality o 1050 o Fem oo raaey
the approximation. On the other hand, to thorough |-~ FAM {20 nodes)
compare the three proposed algorithms, their compt
tional effort has to be taken into account as well, sin
the grid adaption procedure is not cost-free. A fL
comparison of the various methods is summarized

Table 1.

o
R
T

.03

.02

specific enthalpy (J/kg)

2
-

Method | N | CPU time OE IE Ol S,

FVM 20| 0302s | 3.59-107 | 6.98-10’ B v

FEM 20| 0.356s | 7.50-1C°F | 1.71-107

FEM 50| 106s | 2.61-1C°F | 1.65-107 0% 4% 2 s 40 s e 70 8

time (s)

FEM+GA | 10| 0.579s | 4.64-1C° | 8.39-10°
FEM+GA | 15| 1.109s | 4.37-10° | 2.43-10°

Figure 7:Approximate enthalpy provided by four different
Table 1: CPU time, output and integral error  numerical schemes and exact enthalpy
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The CPU time and the values [ andOE are gath- It turns out that grid adaption significantly improves
ered in Table 2. the quality of the solution with respect to FEM or FVM
While for thearclengthmonitor function similar con- when abrupt changes are involved, while the differ-
siderations as in the previous test case hold, we netee is less evident where the solution is smooth.
that the technique based on tlearvature monitor

function does not introduce significant benefits, con- i

cerning both the CPU time and the accuracy (corh- CoONclusions and Future Work

pared, for instance, with the FEM case wiNh= 20). _ _
In this paper we present a new model for 1-D single-

phase heat exchangershtodelica The model, fully
compatible with the ones already available within the
library ThermoPoweris based on an approximation
of the energy balance equation by tBALSfinite ele-
ment method with grid adaption.

The mathematical model and its approximation have
been addressed in detail, as well as the grid adaption
Table 2: CPU time, output and integral error  strategy within the a-causal framewdvlodelica

The effectiveness of the proposed technique has been

Inthe last test case we study the effect of the grid adafizessed on some test cases and compared with the
tion on the approximate solution under a sudden coglznqard Fv and FE methods. The main conclusion is

ing of the lateral surface of the HE. The time interval {g grid adaption turns out to be effective when high

[0,120's. The inflow enthalpyhin is the same as in the, oo racy is required. In more detail, even if the “place-
first case, while at = 60s the heat-flux is decrease

; - < o2 c?nent” of each mesh node is more expansive in terms
with a step variation tag = —795W/nv, i.e. S00N 4t cpy time, a smaller number of nodes is required to
are lost through the lateral surface of the HE.

X X ave guarantee a certain level of accuracy, compared with
Assuming that the fluid density is approximativelg\,n1 and EEM.

constant, the_ exa(?t solutipn for the outlet enthalpy (@$,; .o \work will be devoted to a more theoretically
the delayed inlet increasing ramp followed by a dgbund selection of the optimal value for the “gajn”

creasing ramp starting at= 60s. of the mesh controller. Moreover, the employment of
a dynamical residual will be further investigated.

Method N | CPU time OE IE
FVM 20| 0.515s | 7.55-107 | 1.41-10°
FEM 20| 0.546s | 1.51-107 | 7.97-10°

FEM+GA* | 10 | 0.622s | 2.72-10F | 3.44.10°
FEM+GAT [ 10| 0.719s | 2.54.10" | 1.79-10°

* Arclengthmonitor function
T Curvaturemonitor function

T T
=== Exact solution

— FEM +GA (Arc, N=10)
, === FEM (N=20)

1.05F B L FVM (N=20)
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