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Abstract

In this paper we present a newModelica model for
heat exchangers, to be used within theThermoPower
library. The novelty of this work is a combined em-
ployment of finite elements with grid adaption.
The modelling of a generic single-phase 1-D heat ex-
changer is discussed, along with its approximation via
the Stabilized Galerkin/Least-Squaresmethod. The
grid adaption procedure is first introduced from a gen-
eral viewpoint and then within theModelica frame-
work. Finally, some preliminary results are shown.

1 Introduction

Heat exchangers (HEs) play a relevant role in many
power-production processes, so that their accurate
modelling, at least for control-oriented analysis, is a
key task for any simulation suite [13].
Accurate modelling of such devices is usually a com-
plex task, the reason being that the control-relevant
phenomena are associated with thermal dynamics de-
scribed byPartial Differential Equations(PDEs). On
the other hand, different complexity levels of repre-
sentation may be necessary, depending on the specific
simulation experiment to be performed.
Within this framework, the power-plant modelling li-
brary ThermoPower[5] exploits the Modelica lan-
guage modularity features, offering to the users sev-
eral interchangeable component models, with varying
levels of detail.
As for the HEs, the models currently provided are dif-
ferentiated by the numerical scheme employed for the
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PDEs discretization, adopting either a finite volume
method (FVM) or a finite element method (FEM), with
different strategies for single-phase or two-phase fluid
flow [5]. Furthermore, a moving-boundary evaporator
model has been recently added to the library.

In this paper we present a new model for single-phase
HEs, based on the use of the finite element method
with grid adaption. The objectives of this work are
twofold: to develop a new HE model with high ac-
curacy and reduced computational complexity and to
show how complex mathematical techniques can be
successfully used inModelica for the modelling of
distributed-parameters physical systems.

The proposed model is an improvement of the actual
FEM model [6], obtained by agrid adaption tech-
nique: the grid nodes (i.e., the points where the solu-
tion is computed) change their positions so as to adapt
dynamically to the solution variations. Such model
can significantly improve the modelling accuracy, by
removing the non-physical solution oscillations ob-
served for the actual FEM model, whilst using fewer
nodes and containing the computational burden.

The paper is organized as follows: in Section 2.1 we
recall the modelling of a generic single-phase 1-D heat
exchanger, while in Section 2.2 we discuss its ap-
proximation via theStabilized Galerkin/Least-Squares
method. In the third section the grid adaption problem
is introduced from a general viewpoint, while in Sec-
tion 4 we address the moving mesh method on which
the Modelica implementation, analyzed in Section 5,
is based. Some preliminary numerical results are pro-
vided in Section 6. Finally, the last section draws
some conclusions and outlines possible future devel-
opments.

Modelling Heat Exchangers by the Finite Element Method with Grid Adaption in Modelica

The Modelica Association 219 Modelica 2005, March 7-8, 2005



2 The Heat Exchanger Model

In the context of object-oriented modelling, it is con-
venient to split the model of a generic heat exchanger
(HE) into several interacting parts, belonging to three
different classes [5]: the model of the fluid within a
given volume, the model of the metal walls enclosing
the fluid and the model of the heat transfer between the
fluid and the metal, or between the metal and the outer
world. In this paper, we focus on the modelling of the
first class. We improve the framework proposed in [6]
by introducing suitable grid adaption techniques.
The model presented in this paper can represent single-
phase HEs, which constitute a significative part of the
industrial applications (e.g., the primary side of a Pres-
surized Water Reactor nuclear power plant [3]). How-
ever, also two-phase flows could be handled as well.

2.1 The Fluid Model

Let us deal with a compressible fluid within a pipe-
shaped volumeV with a rigid boundary wall, ex-
changing mass and energy through the inlet and outlet
flanges, and thermal energy through the lateral surface.
We assume that

• the longitudinal dimensionx is far more relevant
than the other two;

• the volumeV is “sufficiently” regular (i.e., the
cross-sectional area is uniform andV is such that
the fluid motion alongx is not interrupted);

• there are no phase-changes (that is the fluid is al-
ways either single-phase or two-phase);

• the Reynolds numberRe is such that turbulent
flow conditions are assured along all the pipe,
which in turn guarantees almost uniform veloc-
ity and thermodynamic state of the fluid across
the radial direction.

Notice that, when water or steam is assumed as the
working fluid, the last hypothesis does not hold at
very low flow rates (laminar flow regime). However,
in practice, most industrial processes never operate in
such conditions.
Under the hypotheses above it is possible to define all
the thermodynamic intensive variables as functions of
the longitudinal abscissax and timet. Within this
framework, the dynamic balance equations for mass,

momentum and energy can be formulated as follows:

A
∂ρ
∂t

+
∂w

∂x
= 0, (1)

1

A

∂w

∂t
+

∂p

∂x
+ρg

dz

dx
+

Cf ω
2ρA3 w|w|= 0, (2)

∂h

∂t
+

w

ρA

∂h

∂x
=

1

ρ
∂p

∂t
+

ω
ρA

φe , (3)

whereA is the pipe cross-sectional area,ρ the fluid
density,w the mass flow-rate,p the fluid pressure,g
the acceleration of gravity,z the pipe height,Cf the
Fanning friction factor,ω the wet perimeter,h the spe-
cific enthalpy,φe the heat flux entering the pipe across
the lateral surface. The fluid velocity can be defined
asu = w/(ρA). Notice that in (2) and (3) we have ne-
glected the kinetic and the diffusion term, respectively.
In the case of water-steam flows it is convenient to
choose the pressure and the specific enthalpy as the
thermodynamic state variables, so that the expressions
of the balance equations have the same form for single-
phase and two-phase flows [12]: thus all the fluid prop-
erties, such as the temperatureT, the densityρ and the
partial derivatives∂ρ/∂h and∂ρ/∂p can be computed
as functions ofp andh.

2.2 The Approximation Procedure

In view of power generation plant modelling, the most
relevant phenomenon is described by equation (3), so
that the focus for the present paper is the approxima-
tion of this latter by FEM and grid adaption. Actu-
ally, the mass and momentum equations (1) and (2) de-
scribe the fast pressure and flow rate dynamics, while
the energy one (3) describes the slower dynamics of
heat transport by the fluid velocity. These faster modes
are typically not taken into account in HEs modelling
[6]. In particular, note that, assuming the pressurep
uniform alongx (with possible jumps at the HE bound-
ary) and neglecting the inertial term∂w/∂t in (2), the
integration of the mass and momentum balance equa-
tions (1) and (2) is reduced to

win−wout = A
∫ L

0

∂ρ
∂t

dx , (4)

pin− pout = ∆pF +∆pH , (5)

wherewin, wout, pin, and pout are the mass flow-rate
and pressure at the HE inlet and outlet, while∆pF and
∆pH are the pressure drops due to friction and fluid
head, respectively. For further details on the approxi-
mation for equation (1) and (2) we refer to [6].
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Figure 1: Some typical hat functions

Equation (3) is discretized with the stabilizedPetrov-
Galerkin method GALS (Galerkin/Least-Squares), us-
ing suitable Dirichlet weak boundary conditions at the
inflow [11].
We refer to [6] for further details about the application
of theGALSmethod to heat exchangers.
In the following we provide some details about the ap-
proximation procedure by means of piecewise linear
finite elements of equation (3), while referring to [16]
for an exhaustive coverage of the finite element ap-
proximation theory.
We remark that we generalize the standardGALS
method to the case of time-dependent shape and test
functions, since, using the grid adaption strategy, the
length of each mesh element varies in time.
Let the spatial domain[0,L] be subdivided intoN−1
elements identified byN (≥ 3) nodes. The length of
the i-th element is denoted as`i(t), while the abscissa
of the i-th node is indicated in the sequel withδi(t).
On this partition we introduce the space of the piece-
wise linear functions, whose typical basis (hat) func-
tions are shown in Fig. 1.
Their analytical expressions are the following:

ϕ1(x, t) =


δ2(t)−x

`1(t)
0≤ x≤ `1(t) ,

0 otherwise,

ϕN(x, t) =


x−δN−1(t)

`N−1(t)
δN−1(t) < x≤ L ,

0 otherwise,

ϕi(x, t) =


x−δi−1(t)

`i−1(t)
δi−1(t) < x≤ δi(t) ,

δi(t)−x

`i(t)
δi(t) < x≤ δi+1(t) ,

0 otherwise,

(6)
with i = 2, · · · ,N−1 and where

δi(t) =
i−1

∑
j=1

` j(t) , for i = 1. . .N . (7)

Notice that, in view of the grid adaption procedure, the
basis functions defined in (6) are both space and time

dependent. This unavoidably leads to an increase of
the number of unknowns since the displacement of the
grid nodes is to be determined as well.
As for the test functions involved in theGALSmethod,
they are defined by

ψi(x, t) = ϕi(x, t)±
α
2

∂ϕi(x, t)
∂x

, (8)

whereα (0≤ α≤ 1) is a stabilization coefficient. No-
tice that forα = 0 the standard (i.e., non-stabilized)
method is obtained.
For the reader’s ease, we provide also the expression of
the time derivativėϕi = ∂ϕi(x, t)/∂t of the basis func-
tion ϕi , namely

ϕ̇i(x, t) =



− δ̇i−1− (x−δi−1) ˙̀i−1

`2
i−1

δi−1 < x≤ δi ,

δ̇i+1− (δi+1−x) ˙̀i
`2

i

δi < x≤ δi+1 ,

0 otherwise.
(9)

Let us expand the quantitiesh, ρ ,w, φe in terms of the
basis functionsϕi as:

h(x, t) =
N

∑
i=1

hi(t)ϕi(x, t) = h(t)T ϕ(x, t), h = [h1 · · ·hN]T ,

ρ(x, t) =
N

∑
i=1

ρi(t)ϕi(x, t) = ρ(t)T ϕ(x, t), ρ = [ρ1 · · ·ρN]T ,

w(x, t) =
N

∑
i=1

wi(t)ϕi(x, t) = w(t)T ϕ(x, t), w = [w1 · · ·wN]T ,

φe(x, t) =
N

∑
i=1

φi(t)ϕi(x, t) = φ(t)T ϕ(x, t), φ = [φ1 · · ·φN]T ,

(10)

with ϕ̄(x, t) = [ϕ1(x, t), · · · ,ϕN(x, t)]T .
Applying theGALSfinite element method to (3) leads
to the following set ofN ODEs:

∫ L

0

(
N

∑
i=1

ḣiϕi

)
ψ jdx+

∫ L

0

(
N

∑
i=1

hi ϕ̇i

)
ψ jdx+

∫ L

0

(
∑N

i=1wiϕi

A∑N
i=1 ρiϕi

N

∑
i=1

hi
dϕi

dx

)
ψ jdx+

∫
∂Ωin

(
∑N

i=1wiϕi

A∑N
i=1 ρiϕi

N

∑
i=1

hiϕi

)
ψ jdx=

∫ L

0

ṗ

∑N
i=1 ρiϕi

ψ jdx+
∫ L

0

(
ω∑N

i=1 φiϕi

A∑N
i=1 ρiϕi

)
ψ jdx+

∫
∂Ωin

(
∑N

i=1wiϕi

A∑N
i=1 ρiϕi

hin

)
ψ jdx, ∀ψ j with j = 1, · · · ,N ,

(11)
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wherehin is the fluid specific enthalpy at the inflow
boundary∂Ωin. Such set of ODEs can be represented
by the following compact matrix notation:

M ḣ+MD h+
1

A
F h+

1

A
Ch = Rṗ+

ω
A

Yφ+
1

A
K w , (12)

whereM, MD, F , C, R, Y, K are defined as follows:

M ji =
∫ L

0
ϕi ψ jdx, MD ji =

∫ L

0
ϕ̇i ψ j dx,

Fji =
∫ L

0

∑N
k=1wkϕk

∑N
k=1 ρkϕk

dϕi

dx
ψ jdx,

Cji =
∫

∂Ωin

∑N
k=1wkϕk

∑N
k=1 ρkϕk

ϕiψ jdx,

Rj =
∫ L

0

ψ j

∑N
k=1 ρkϕk

dx, Yji =
∫ L

0

ϕi

∑N
k=1 ρkϕk

ψ jdx,

K ji =
∫

∂Ωin

hin

∑N
k=1 ρkϕk

ϕiψ jdx.

(13)

The matricesC and K, which enforce the boundary
conditions into equation (12), depend on the inflow
boundary∂Ωin. It can be noted that, as we are consid-
ering the 1-D case, the inflow boundary is constituted,
at most, by the pointsx = 0 andx = L, depending on
the sign ofw = win. Thus the only test functions that
are non-zero at the inflow areψ1 andψN and the only
non-vanishing entries of the matricesC andK are

C11 =


w1

ρ1

(
1−

α
2

)
w|x=0 > 0,

0 otherwise,

CNN =


wN

ρN

(
1+

α
2

)
w|x=L > 0,

0 otherwise,

K11 =


hin|x=0

ρ1

(
1−

α
2

)
w|x=0 > 0,

0 otherwise,

KNN =


hin|x=L

ρN

(
1+

α
2

)
w|x=L > 0,

0 otherwise.

(14)

The matricesC andK are consequently diagonal.

3 The Grid Adaption Philosophy

The discretization of complex phenomena described
by systems of partial differential equations by means

of FEM, can be cast into the framework ofmodel re-
duction, i.e., the approximation by a finite dimensional
model of a conceptually infinite dimensional one. Sev-
eral parameters (e.g., the mesh spacing, the degree of
the polynomial finite elements, tuning parameters re-
lated to the discretization procedure) govern the ac-
curacy of the approximation. As an effective tool
to assess such approximation property, some estima-
tors/indicators, as the local cell residual, are typically
employed [1, 9, 18]. Once the error indicator has been
computed on a given mesh, the information that it con-
tains can be used to generate a better mesh that gives
more accuracy. This is the basis ofadaptive error con-
trol.
Many engineering problems are characterized by solu-
tions exhibiting a complex structure, e.g., singularities
near corners, boundary layers or shocks. In such cases,
the idea is to distribute the mesh spacings according
to local features of the solution, that is to concentrate
the elements in the regions where the solution changes
rapidly and, vice versa, to coarsen them where the so-
lution is smoother, with the aim of obtaining a solution
sufficiently accurate and with a reasonable computa-
tional load.
Typically an adaptive error control procedure consists
of a discretization method combined with an adaptive
algorithm. There are three main types of adaptive tech-
niques for FEM: i) theh-method: the mesh is refined
and coarsened locally according to certainerror es-
timators; ii) the p-method: the polynomial degree is
chosen in each element according to somesmoothness
indicator; iii) the r-method: the element vertices are
relocated to concentrate them in desired regions on the
basis of amonitor function.
In the following we focus on this last philosophy
which is usually referred to asmoving mesh method
[7, 10, 14, 15, 17]. In this method, a mesh equation in-
volving the nodes speed is solved to compute the mesh
points location together with the solution of the differ-
ential equation at hand. In principle, starting from a
given mesh, the idea is to move the mesh nodes, while
keeping their number fixed, towards regions of rapid
solution variations, e.g., steep wave fronts and shocks.

3.1 Grid Adaption as a Control Problem

An interesting point of view to tackle the grid adap-
tion procedure is to state it as a control problem. As a
matter of fact, the grid adaption is based on a feedback
mechanism that can be represented as in Fig. 2.
Within this framework, theprocessis represented by
the N ODES obtained fromGALSdiscretization, the
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Figure 2: Grid adaption as a control problem

sensor is represented by some estimate of the dis-
cretization error and thecontroller is defined by the
grid adaption strategy. The time-varying boundary
values for the HE (hin andwin) and the heat flux enter-
ing its lateral surface (φe) are, from the point of view
of feedback grid adaption, process disturbances, while
the length of the elements (`i) can be regarded as the
(vectorial) control variablè.
The aim of thecontrol systemis to minimize the es-
timated error. In this paper we adopt theequidistri-
bution principle[2] to design the controller (i.e., the
mesh adaption strategy): the aim is to dynamically ob-
tain an equidistributed error over the elements.

4 The Moving Mesh Method in Mod-
elica

The application of theGALSmethod to equation (3)
leads to a set ofN ODEs whose unknowns are the
nodal values for the fluid specific enthalpy. More-
over, due to the grid adaption strategy, we have to in-
clude otherN−1 unknowns, i.e., the lengths`i of the
elements. The coupled equations yield the so-called
DAE-system.
The mesh point positions have to be calculated in such
a way that

1) the length of each element is strictly positive (con-
stitutive constraint: `i > 0∀ i = 1· · ·N−1 ,∀t ≥ 0 );

2) the total length of the elements is equal toL (com-
pleteness constraint: ∑N−1

i=1 `i = L ,∀t ≥ 0 ).

These constraints can be easily fulfilled when dealing
with imperativelanguages (i.e., algorithm oriented).
In such a case, a specific grid adaption procedure is
first allowed to yield a mesh characterized by values
for the lengths̀ i “illegal” with respect to the criteria
1) and 2). Then a suitable refinement algorithm is used

Figure 3: The spring model for grid adaption

to correct such values so that the constitutive and com-
pleteness constraints are satisfied.
On the other hand, when dealing with adeclarative
language such asModelica, a different approach has
to be taken: the constitutive and completeness con-
straints have to be intrinsically fulfilled. Such result
can be easily obtained using a physical approach for
the implementation of the adaption procedure.
Let us consider Fig. 3: each element can be identified
with a spring of length̀ i and specific elastic constant
ki , with the first and the last spring fixed to the domain
boundariesx = 0 andx = L, respectively.
Let Fi, j be the force that thei-th spring exerts on the
j-th one. Usually it is assumed that

Fi, j = 0 ∀ j 6= i−1, i +1, (15)

that means that each spring interacts only with the two
adjacent ones. Furthermore, the force that two adja-
cent springs exert on each other can be expressed as

Fi,i+1 = ki`i Fi+1,i = ki+1`i+1 . (16)

Supposing that the spring constantski are non-
negative, an effective choice for the unknowns`i in
terms of theki is:

`i =
ki

∑N−1
j=1 k j

L , ∀ i = 1· · ·N−1 . (17)

This automatically guarantees the completeness con-
straint as

N−1

∑
i=1

`i =
N−1

∑
i=1

ki

∑N−1
j=1 k j

L = L . (18)

Moreover, if all the spring constants are positive, then
the constitutive constraint is fulfilled as well. It is im-
portant to notice that such strategy is independent of
the particular grid adaption procedure at hand.
To make effective the chosen adaption procedure it is
necessary to relate the elastic constantski to the local
monitor functionεi , as

ki =
1

`iεi
, ∀i = 1, · · · ,N−1. (19)
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The strategy we adopt aims at concentrating the grid
points in the domain regions where the monitor func-
tion ε is larger. This can be justified by analyzing equa-
tions (19) and (17): the larger the monitor function,
the smaller the associated spring constant and, conse-
quently, the smaller the length of the corresponding
element.
The monitorεi is usually defined as a function of a
“residual”, identified in the sequel with the symbolζi ,
directly related to the approximate solution obtained
with theGALSmethod.
The monitor functionεi = εi(ζi) can be chosen arbi-
trarily, provided that it is definite positive, though it is
much more effective when it monotonous as well.
One of the most used monitor function sharing these
properties is the so-calledarclength[4], given by

εi =
√

1+µζ2
i , (20)

whereµ is a positive coefficient used to “tune” the grid
adaption.
In [7] it is shown that this choice yields good results
when applied to transport equations.
Another example of monitor function, successfully
used in [10], is thecurvaturemonitor function, given
by

εi = 4
√

1+µζ2
i . (21)

Using thearclengthor thecurvaturemonitor function,
particular care has to be taken in the choice of the
parameterµ, since it is a sort of “gain” of the mesh
controller: the largerµ, the faster the grid adaption
becomes (see Fig. 2). The value of such parameter
can either be fixed or tuned by the user. In this latter
case, lower and upper bounds forµshould be provided,
since a low value can make the adaption mechanism
too weak and then useless, while a too large value can
negatively affect the numerical stability of the adap-
tion algorithm.
The tuning of the parameterµbecomes even more crit-
ical when using a fixed time-step explicit method to
solve the resulting non-linear DAE system, which is
often the case when simulating industrial plants in con-
nection with the control system [3]. Such sensitivity
depends on the fact that, somehow, the parameterµ
regulates how “fast” the grid adaption is: a large value
makes the adaption too fast, thus introducing dynam-
ics with time constants significantly smaller compared
with the fixed time step, resulting in a numerical insta-
bility.
The last step to complete the grid adaption scheme is
the definition of the residualζi over the elements.

4.1 Definition of the Residual

The residual definition is a key choice in the grid adap-
tion framework. When using thearclengthmonitor
function, a common choice for the residual is the ap-
proximate gradient:

ζi =
hi+1−hi

`i
≈

∂h

∂x
, ∀i = 1, · · · ,N−1. (22)

This choice aims at concentrating the grid points within
the regions where large solution variations occur. This
implicitly assumes that the discretization error is large
in such areas.
However, in case of problems with a “sharp-but-not-
steep” solution, it has been shown that thearclength
monitor function with approximate gradient given by
(22) performes poorly (see [10]). In such a case, a bet-
ter approximation can be obtained using thecurvature
monitor function (21) with a second order approxima-
tion of the 2nd order spatial derivative:

ζi =
hi+1−2hi +hi−1

`2
i

≈
∂2h

∂x2 , ∀i = 1, · · · ,N−1, (23)

where it is understood thath0 = hin.
In [14], it is shown that, for problems involving more
than one moving front in the solution, the use of the
curvaturemonitor function can lead to better results
than the use of thearclengthone.
In this paper we show results obtained with grid adap-
tion based on these two residual definitions and moni-
tor functions.

5 Modelica Implementation

The developed model has been implemented in aMod-
elica component calledFlow1DfemAdapt which is
going to be included within the libraryThermoPower
[5]. The component is perfectly interchangeable with
the actual library components for 1-D HEs, since it
uses the same connectors: two flanges for fluid flow
and a terminal for heat flux (Fig. 4).

Figure 4:Component Icon
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TheModelicaimplementation is quite close to the one
presented in [6] with some difference in the energy
equation and completed with the equations for the grid
adaption.
The discretized energy equation contains a new term:

M*der(h)+(MD+F/A)*h+C/A*h=R*der(p)+
Y*omega/A*phi+K/A*w;

where the additional tridiagonal matrixMD is coded
with nested “for ” loops as shown in [6].
The selection of the residual and of the corresponding
monitor function depends by the user via the integer
parameterResidual:

if Residual==1 then
for i in 1:N - 1 loop

res[i] = (h[i+1] - h[i])/l[i];
err[i] = sqrt(1+mu*res[i]ˆ2);

end for;
else

res[1]=(h[i + 1] - 2*h[i]+hin)/l[i]ˆ2;
err[1] = (1+mu*res[1]ˆ2)ˆ0.25;
for i in 2:N - 1 loop

res[i] = (h[i+1]-2*h[i]+h[i-1])/l[i]ˆ2;
err[i] = (1+mu*res[i]ˆ2)ˆ0.25;

end for;
end if;

Finally, the length of the elements is obtained solving
the followingN−1 algebraic equations:

for i in 1:(N - 1) loop
k[i] = 1/(err[i]*l[i]);
l[i] = k[i]/sum(k)*L;

end for;

6 Simulations

In this section we show simulation results in order to
evaluate the different performances of the grid adap-
tion strategies. All the simulations have been per-
formed within the Dymola [8] simulation environ-
ment.

Figure 5: Reference Simulation Layout

The reference simulation layout is shown in Fig. 5,
consisting in an ideal flow source connected to a HE

which is followed by a valve and by an ideal pres-
sure sink. An ideal heat-flux source is connected to
the HE distributed heat-flux terminal. Such setup has
been selected in order to highlight the differences of
the approximation schemes on the HE outlet specific
enthalpy.
The HE internal pressure is held constant since the
mass flow-rate and the valve opening are set to a fixed
value and the sink pressure is constant as well. Thus,
supposing the specific enthalpy of the fluid within the
HE does not vary substantially, it is possible to assume
that the fluid density is almost constant.
In case the heat-flux is set to zero as well, it is possible
to show that the analytical solution for the transport
equation (3) is a ramp-wave travelling along the HE
with constant velocityu. It is then possible to eval-
uate the model approximation performances with an
a-posteriorierror indicator, evaluating the square de-
viation

E(x) =
∫ t

0

(
ĥ(x, t)−h(x, t)

)2
dt , (24)

of the approximate solutionh from the analytical one
ĥ.
The indicatorE is spatially distributed, so we extract
from it two different indicators:

IE =
∫ L

0
E(x)dx,

OE = E(x)|x=L ,

(25)

denoting theintegral error (IE) and theoutput error
(OE).
For the sake of approximation, as we compute the
square deviationE(x) at the grid points only, the in-
dicatorIE is evaluated via a linear piecewise interpo-
lation.
The numerical data employed for the HEs modelling
are the lengthL = 10m and the cross-sectional area
A= 3.14· 10−4m2. The heat-fluxφe is set to zero. The
fluid entering the HE is liquid water at pressurep =
105Pa, with initial specific enthalpyhin = 105J/Kg
and flow ratewin = 1Kg/s. Thus, the transit time turns
out to be 31.25s.
The time-integration of the system is performed with
a fourth orderRunge-Kuttascheme with a fixed time
stepTs = 0.1s. The chosen time step turns out to be ad-
equate for the simulations of the dynamics represented
by (3) [3].
The first test case aims at checking the effectiveness of
the grid adaption strategy when abrupt changes of the
solution are involved.
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Figure 6:Approximate enthalpy provided by three differ-
ent numerical schemes and exact enthalpy

The time interval of the simulation is chosen as
[0,60]s. The inflow enthalpyhin is described by a
ramp function with a rising time of 1s starting at 1s.
The corresponding increment of the enthalpy is of the
5% of the initial value.
In Fig. 6 the HE outlet specific enthalpy associated
with three different numerical schemes is compared
with the exact solution (blue line). In particular the
cyan, the red and the green lines correspond to the
finite volumes (20 nodes), finite elements (20 nodes)
and finite elements with grid adaption based on thear-
clengthmonitor function (10 nodes). The “gain” of the
mesh controller has been set to the valueµ= 3.5· 10−4

after several simulations as a trade-off between accu-
racy and numerical stability.
Fig. 6 shows that grid adaption witharclengthmon-
itor function can significantly improve the quality of
the approximation. On the other hand, to thoroughly
compare the three proposed algorithms, their computa-
tional effort has to be taken into account as well, since
the grid adaption procedure is not cost-free. A full
comparison of the various methods is summarized in
Table 1.

Method N CPU time OE IE
FVM 20 0.302s 3.59·107 6.98·107

FEM 20 0.356s 7.50·106 1.71·107

FEM 50 1.06s 2.61·106 1.65·107

FEM+GA 10 0.579s 4.64·105 8.39·106

FEM+GA 15 1.109s 4.37·105 2.43·106

Table 1: CPU time, output and integral error

Table 1 clearly shows that, for the case at hand, the so-
lution obtained with the proposed grid adaption strat-
egy with relatively few nodes (N = 10) is a far better
approximation of the exact solution (at least in term
of the indicatorsIE andOE) than the ones obtained
with FVM and FEM with a number of nodesN = 20
or N = 50. However, the computational overhead due
to grid adaption is not negligible, as highlighted by the
CPU time column.

The results show that the use of the proposed grid
adaption strategy is convenient when the demand on
the accuracy of the solution is relatively strong. This
can be obtained by a small number of mesh nodes
though the CPU time can increase. Alternatively, stan-
dard FVM or FEM can be employed but a higher num-
ber of nodes is required to obtain the same level of ac-
curacy.

The second test case shows that the good results ob-
tained with grid adaption using thearclengthmonitor
function do not hold when thecurvaturemonitor func-
tion is used, as can be seen by the curves in Fig. 7. The
simulation time interval is now chosen as[0,80]s. The
inflow enthalpyhin is represented by a function char-
acterized by three stages: a raising ramp fromt = 1s
to t = 2s, a plateau during 18 seconds, a decreasing
ramp fromt = 20s to t = 21s. The net increment of
the enthalpy is the 5% of the initial value, while the fi-
nal value coincides with the initial one. The “gain” of
the mesh controller has been chosen equal to 3.5· 10−4

and 3.5· 10−8 for thearclengthand thecurvaturemon-
itor function, respectively. Larger values ofµ for the
curvature choice lead to numerical instabilities.

Figure 7:Approximate enthalpy provided by four different
numerical schemes and exact enthalpy
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The CPU time and the values ofIE andOE are gath-
ered in Table 2.
While for thearclengthmonitor function similar con-
siderations as in the previous test case hold, we note
that the technique based on thecurvature monitor
function does not introduce significant benefits, con-
cerning both the CPU time and the accuracy (com-
pared, for instance, with the FEM case withN = 20).

Method N CPU time OE IE
FVM 20 0.515s 7.55·107 1.41·108

FEM 20 0.546s 1.51·107 7.97·107

FEM+GA∗ 10 0.622s 2.72·106 3.44·107

FEM+GA† 10 0.719s 2.54·107 1.79·108

∗ Arclengthmonitor function
† Curvaturemonitor function

Table 2: CPU time, output and integral error

In the last test case we study the effect of the grid adap-
tion on the approximate solution under a sudden cool-
ing of the lateral surface of the HE. The time interval is
[0,120]s. The inflow enthalpyhin is the same as in the
first case, while att = 60s the heat-flux is decreased
with a step variation toφe = −795W/m2, i.e. 500W
are lost through the lateral surface of the HE.
Assuming that the fluid density is approximatively
constant, the exact solution for the outlet enthalpy is
the delayed inlet increasing ramp followed by a de-
creasing ramp starting att = 60s.

Figure 8:Effect of a heat-flux decrease (adaption withar-
clengthmonitor function)

In Fig. 8 the approximate solution of the three schemes
FVM (N = 20), FEM (N = 20), FEM+GA (N = 10,
arclengthmonitor function withµ= 3.5· 10−4) is pro-
vided together with the exact HE outlet enthalpy.

It turns out that grid adaption significantly improves
the quality of the solution with respect to FEM or FVM
when abrupt changes are involved, while the differ-
ence is less evident where the solution is smooth.

7 Conclusions and Future Work

In this paper we present a new model for 1-D single-
phase heat exchangers inModelica. The model, fully
compatible with the ones already available within the
library ThermoPower, is based on an approximation
of the energy balance equation by theGALSfinite ele-
ment method with grid adaption.
The mathematical model and its approximation have
been addressed in detail, as well as the grid adaption
strategy within the a-causal frameworkModelica.
The effectiveness of the proposed technique has been
assessed on some test cases and compared with the
standard FV and FE methods. The main conclusion is
that grid adaption turns out to be effective when high
accuracy is required. In more detail, even if the “place-
ment” of each mesh node is more expansive in terms
of CPU time, a smaller number of nodes is required to
guarantee a certain level of accuracy, compared with
FVM and FEM.
Future work will be devoted to a more theoretically
sound selection of the optimal value for the “gain”µ
of the mesh controller. Moreover, the employment of
a dynamical residual will be further investigated.
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