
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

A. Siemers, I. Nakhimovski, D. Fritzson
Linköping University, Sweden
Meta-modelling of Mechanical Systems with Transmission Line Joints in
Modelica
pp. 177-182

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH



Meta-modelling of Mechanical Systems with Transmission Line
Joints in Modelica

Alexander Siemers Iakov Nakhimovski Dag Fritzson
Linköping University, Linköping, Sweden

SKF, Göteborg, Sweden

Abstract

A framework for meta-modelling with Transmission
Line (TLM) joints is presented. The framework is in-
tended to support transient simulations of mechanical
systems using co-simulation of different tools. The ex-
pressive power of the Modelica language is used to
describe the meta-model in an easy to understand, ob-
ject oriented way. A ModelicaXML based translator is
used to convert Modelica code to an XML document
which is accepted as input by the co-simulation en-
gine. The framework prototype for SKF’s BEAST and
MSC.ADAMS is presented here. It is designed to be
general, so that support for other simulation tools can
be easily added. The main focus is on modelling of
co-simulation Meta-Models taking advantage of Mod-
elicas graphical and object-oriented modelling capa-
bilities.
Keywords: simulation; co-simulation; meta-
modelling; multibody; TLM; XML

1 Motivation

In the area of modelling and simulation of mechani-
cal systems one can identify many different classes of
models and corresponding tools. The specialization
leads to different focus for different tools. One might
say that every tool is optimized for a certain kind of
problems. In terms of meta-modelling every tool can
be seen as a black-box handling a particular compo-
nent. A component is a model defined in some spe-
cific language together with some modelling and sim-
ulation tool that can perform a transient simulation of
it. The examples of such components are equation-
based multi-physics Modelica models, general multi-
body models in MSC.ADAMS, models with detailed
contact definitions in SKF’s BEAST, flexible compo-
nents as modelled in FE tools, etc. .
In reality the different components are dependent on
each other. Two components that are in physical in-

teraction form boundary conditions for each other and
some interface can often be defined.
Unfortunately it is often the case that the different
classes of tools are used independently. Every class of
tools is using approximations of the components it has
interface with, that is, simplified models of the bound-
ary conditions. Several time consuming iterations are
often necessary to make the components converge to
similar values on on the common interface. The limi-
tations on the modelling accuracy are thus fundamen-
tal.
The need to bring different components into a com-
plete more tightly coupled simulation is therefore jus-
tified. This allows higher accuracy and preserve the
investments in the components.
Different co-simulation systems have appeared on the
market during the last years. Most of them are focused
on co-simulation of control systems and correspond-
ing mechanical component. The coupled simulations
this paper is focusing on are different. All compo-
nents in our framework are mechanical and they have
forces and motion in the interfaces. What is more im-
portant from numerical point of view, the sub-models
are likely to use different differential equation solvers
with variable time step. Numerical stability, which is
not an issue for discrete time simulations, becomes an
important consideration.
One method that was earlier used to enable closer in-
teraction between such sub-models in a coupled sim-
ulation is transmission lines modelling (TLM). The
TLM uses physically motivated time delays to sepa-
rate the components in time and enable efficient co-
simulation. The technique has proven to be stable and
was implemented for coupling of hydraulical and me-
chanical sub-systems [1], [2].
However, no attempt to design a general coupled sim-
ulations framework was done. In this paper a general
approach to meta-modelling of mechanical systems
using TLM is presented. Modelica language is used
to make such models easy to manage and the frame-

Meta-modelling of Mechanical Systems with Transmission Line Joints in Modelica

The Modelica Association 177 Modelica 2005, March 7-8, 2005



v1 v2

c2

c1

F1 F2

Figure 1: Delay line with the passing wave variables
c1 and c2 and velocity variables v1 and v2.

work is designed to enable simple extension with new
simulation tools.

2 Transmission Line Modelling

TLM method, also called Bilateral Delay Line
Method, exploits the fact that all physical interactions
in nature have finite propagation speed. The properties
of the delay lines were studied in [7]. The method is
briefly described below.

A basic one-dimensional transmission line is shown in
Figure 1. For the mechanical case the line is basically a
long spring with force waves c1 and c2 going between
it ends. The input disturbances are velocities v1 and v2

and the reaction forces from the transmission line F1

and F2.

Note that the spring in our implementation is assumed
to be iso-elastic. That is no cross-term waves are gen-
erated when working in 2D and 3D. See [2] for further
discussions.

If the line delay is set to T and its impedance to Zc
then the govering equations are:

c1(t) = F2(t−T)+Zc v2(t−T )
c2(t) = F1(t−T)+Zc v1(t−T )

F1(t) = Zc v1(t)+ c1(t)
F2(t) = Zc v2(t)+ c2(t)

(1)

The equations show that the two simulation systems
are decoupled with the delay time T . Simulation
framework can utilize this decoupling to enable effi-
cient communications during co-simulation.

The transmission line introduces a parasitic mass
mtlm = Zc T and stiffness ktlm = Zc/T . Since it is of-
ten necessary to have a relatively large delay time (to
enable larger communication intervals) while keeping
the stiffness value, the user needs to be aware of the
large parasitic mass.

3 Simulation Framework

The design goals for the simulation part of the frame-
work were portability, simplicity to incorporate new
simulation tools, computational efficiency. The de-
sign goals were realized by defining following con-
cepts and interfaces:
TLM interface. A named point on a mechanical ob-
ject where position and velocity can be evaluated and
reaction force applied.
TLM manager. The central simulation engine. It is a
stand alone program that reads in a XML definition of
the coupled simulation. It then starts Simulation com-
ponents and provides the communication bridge be-
tween the running simulations. That is the components
only communicate with the TLM manager which acts
as a broker marshalling information between the com-
ponents as required by TLM theory. TLM manager
sees every simulation component as a black box hav-
ing one or several TLM interfaces. The information
is then forwarded between TLM interfaces belonging
different components.
TLM plug-in. A small C ++ library having a single
abstract class representing TLM interface for a spe-
cific simulation tool. The TLM plug-in can be seen by
a simulation component as an external force that de-
pends on position, velocity and time. The implemen-
tation of the plug-in handles the necessary communi-
cations with TLM manager.
Simulation component. Any simulation program that
has incorporated TLM plug-in as a part of its model.
A small script that takes the general parameters as in-
put and starts the specific component is an additional
requirement. This intermediate step is necessary since
TLM manager needs a common way to start all the
components and each tool might have some specific
start procedures.

4 Modelica as Meta-Model Language

Simulations of complete systems where components
are modeled and simulated in different simulation
packages are called co-simulations. The model of a
co-simulation including all system components and its
inter connections we call a meta-model.
The extended markup language (XML) has its strength
in textual data representation and conversion. It is of-
ten the language of choice for communicating infor-
mation between different tools. Those were the rea-
sons behind the decision to use it as the input to the
simulation engine.

A. Siemers, I. Nakhimovski, D. Fritzson

The Modelica Association 178 Modelica 2005, March 7-8, 2005



Readability and edit-ability, on the other hand, are not
the strengths of XML. Design of co-simulation meta-
models requires thus a more powerful modelling lan-
guage or graphical modelling environment. The fol-
lowing requirements were defined for meta-model def-
initions:

• Meta-Models should be based on a standard lan-
guage.

• A graphical model editor should be available for
ease of use.

Modelica with its object oriented modelling capabil-
ities and its standardized graphical notations is thus
perfectly suited. The fact that the Modelica standard
defines graphical notations results in the availability
of graphical model editors, i.e., MathModelica [5] and
Dymola [4]. These editors typically allow easy con-
nection modelling and user interface driven class de-
sign.
It should be mentioned that only Modelicas modelling
capabilities are of interest here. Meaning that there is
no need for Modelica based simulations. The use of
Modelica as meta-modelling language might as well
simplify the integration of Modelica simulations into
meta-model based co-simulations. This, however, is
not within the scope of this work.

4.1 Meta-Model Class Library

A meta-model Modelica package for component and
TLM connection modelling, using Modelicas object
oriented features, has been designed.
Three packages plus a base model class were defined:

The Components package contains classes for the
different simulation components. These are cur-
rently BEAST and MSC.Adams components.

The Connections package contains the TLM con-
nection or joint. Different TLM specific parame-
ters can be specified for each connection.

The Interfaces package contains the corresponding
TLM interface. Each TLM component contains
at least one TLM interface.

The BaseMetaModel class is the base class for each
Meta-Model. It contains Meta-Model specific pa-
rameters.

Different TLM components are defined in the com-
ponents package which are inherited from the sim-
ulation tool specific components, see also Figure 2.

Figure 2: The basic TLM Meta-Model class library.

They add a certain number of TLM interfaces to each
component. TLM connections define data exchange
and synchronization between these components dur-
ing co-simulation. Connections are created between
two TLM interfaces of two TLM components. TLM
interfaces are therefore defined as connectors.
Several base classes define common model parameters
needed by the TLM manager or for correct XML trans-
lation. Specialized child classes modify these param-
eters to their needs. BEAST Components for example
modify the start-method as follows:

model BaseComponent
parameter String Description;
parameter String SimulationFiles;
parameter String StartMethod;

.

.
end BaseComponent;

model BeastComponent
extends BaseComponent

(StartMethod="beast --serial");
.
.

end BeastComponent;

Both component and interface classes contain a type
specifier which is TLM for TLM components and TLM

Meta-modelling of Mechanical Systems with Transmission Line Joints in Modelica

The Modelica Association 179 Modelica 2005, March 7-8, 2005



interfaces. This allows for additional type checking
during model translation and guarantees that TLM in-
terfaces are connected with TLM connections. But is
also useful for future extensions with new connection
types.

4.2 Component Modelling

Component modelling is divided into two steps:

• Component modelling in the specialized environ-
ment. Each component of the multi-scale simula-
tion is modeled in its specific environment. Users
define the TLM interfaces to the model.

• Component modelling in the multi-scale environ-
ment. The component needs to be integrated into
the multi-scale environment. Startup methods,
interfaces, and communication parameters must
be specified.

Co-simulation components are modelled in the mod-
elling environment of the specific simulation tool. To
participate in a TLM co-simulation each simulation
program needs to integrate an TLM plug-in and a way
to model TLM interfaces. In MSC.ADAMS for exam-
ple external forces are connected to a TLM interface,
and BEAST defines so called TLM-ties. The TLM
interfaces are thus part of the simulation model ex-
pressed in the modelling language of the specific pro-
gram.
Simulation components are integrated into the meta-
model by selecting a matching component from the
Modelica Meta-model library. Component type and
number of TLM interfaces have to match.

Figure 3: A MSC.ADAMS car simulation component
in the Modelica environment with four TLM interfaces
at the front tire.

Alternatively can the base components, i.e., Beast-
Component and AdamsComponent, be extended (in-
herited) and a certain number of TLM interfaces be

added. This allows for other extensions as well, e.g.,
selecting appropriate component icons for more intu-
itive modelling, see Figure 3. New components should
be added to the UserComponents package in the Meta-
Model library. This is needed for the XML translator
to work properly.

4.3 Meta Modelling

Meta-Models are created using a graphical Modelica
editor, see Figure 4, where components are dragged
into the model. Every Meta-Model must extend the
BaseMetaModel class that contains Meta-Model
and co-simulation specific parameters. TLM compo-
nents and connections are added to the model and con-
nections are drawn between the TLM interfaces.

Figure 4: A simple BEAST-MSC.ADAMS Meta-
Model.

Several parameters need to be specified for the differ-
ent parts of the model. They are needed by the TLM
manager for correct simulation execution. BEAST and
MSC.ADAMS components, for example, need a sim-
ulation file to be specified, see Figure 5, and TLM con-
nections require correct TLM parameters.
The meta-model description is kept general and works
with any simulation tool that supports TLM connec-
tions. New components can be created by extend-
ing the BaseComponent class or any of the predefined
component classes. Only the start-method for the sim-
ulation tool needs to be specified for new components.
Predefined components can be extended if more TLM
interfaces are required. The number of required TLM
interfaces is application and simulation-model depen-
dent.

A. Siemers, I. Nakhimovski, D. Fritzson

The Modelica Association 180 Modelica 2005, March 7-8, 2005



Figure 5: The BEAST component parameter dialog.

4.4 Meta-Model Translation

The meta-model is translated into XML code to run
in the co-simulation framework. A Modelica to XML
translator has been designed for this purpose. The
translator makes use of ModelicaXML [3] plus some
co-simulation specific translations. The translation is
done in two steps:

1. Translation from Modelica to ModelicaXML

2. Translation from ModelicaXML to the Meta-
Model XML representation

To simplify parsing of the Modelica Meta-Model it is
first translated into a Modelica-XML representation
using the ModelicaXML [3] translator. This repre-
sentation can be parsed and translated with a standard
XML-parser. The libXML2 [6] standard library has
been used to convert the ModelicaXML Meta-Model
into the XML representation required by the TLM
manager.

4.5 Meta-Model Example

An typical example of a BEAST-MSC.ADAMS Meta-
Model is shown in Figure 6. A front wheel bear-
ing hub-unit is connected to the race-car with four
flanges each of which is modelled as a TLM connec-
tion. The components have to be prepared in BEAST
and MSC.ADAMS to contain the TLM interfaces. Af-
terwards they are integrated into the meta-model envi-
ronment by creating component classes with appropri-
ate icons and TLM interfaces in the Modelica package.
Each Meta-Model needs to extend the BaseMetaModel
Modelica class to inherit the global co-simulation pa-
rameters. TLM connections are added between the
TLM interfaces according to the hub-unit flanges. The
complete Modelica model looks like this:

Figure 6: Modelica Meta-Model detailed BEAST hub
unit integrated into a MSC.ADAMS racing-car model.

model BeastHubInAdamsCar
extends MetaModel.BaseMetaModel;
MetaModel.UserComponents.BeastCarCorner

BeastHubUnit(
Description=

"A complete Beast hub-unit",
SimulationFiles="CarCorner.in",
StartMethod="start-beast");

MetaModel.UserComponents.AdamsCarModel
AdamsCar(
Description="A MSC.ADAMS car model",
SimulationFiles="racing_car.cmd");

MetaModel.Connections.TLMConnection TLM1;
MetaModel.Connections.TLMConnection TLM2;
MetaModel.Connections.TLMConnection TLM3;
MetaModel.Connections.TLMConnection TLM4;

equation
connect(AdamsCar.p1,
TLMConnection1.p1);
connect(AdamsCar.p2,

TLMConnection2.p1);
connect(AdamsCar.p3,

TLMConnection3.p1);
connect(TLMConnection1.p2,

BeastHubUnit.p1);
connect(TLMConnection2.p2,

BeastHubUnit.p2);
connect(TLMConnection3.p2,

BeastHubUnit.p3);
connect(TLMConnection4.p2,

BeastHubUnit.p4);
connect(AdamsCar.p4,

TLMConnection4.p1);
end BeastHubInAdamsCar;

Meta-modelling of Mechanical Systems with Transmission Line Joints in Modelica

The Modelica Association 181 Modelica 2005, March 7-8, 2005



Finally the model is converted into the XML repre-
sentation required by the TLM manager by first con-
verting it into ModelicaXML and then into the XML
Meta-Model representation. The XML model looks
like this:

<?xml version="1.0"?>
<Model name="BeastHubInAdamsCar"

StartTime="0"
EndTime="1"
TLMDelay="0.001">

<SubModels>
<SubModel Name="BeastHubUnit"

Description=
"A complete Beast hub-unit"

SimulationFiles="CarCorner.in"
StartMethod="start-beast">

<InterfacePoint Name="p1"
iType="TLM"/>

<InterfacePoint Name="p2"
iType="TLM"/>

<InterfacePoint Name="p3"
iType="TLM"/>

<InterfacePoint Name="p4"
iType="TLM"/>

</SubModel>
<SubModel Name="AdamsCar"

Description=
"A MSC.ADAMS car model"

SimulationFiles="racing_car.cmd"
StartMethod="start-adams">

<InterfacePoint Name="p1"
iType="TLM"/>

<InterfacePoint Name="p2"
iType="TLM"/>

<InterfacePoint Name="p3"
iType="TLM"/>

<InterfacePoint Name="p4"
iType="TLM"/>

</SubModel>
</SubModels>

<Connections>
<Connection From="AdamsCar.p1"
To="BeastHubUnit.p1"
iType="TLM" alpha="0" Zf="0"/>

<Connection From="AdamsCar.p2"
To="BeastHubUnit.p2"
iType="TLM" alpha="0" Zf="0"/>

<Connection From="AdamsCar.p3"
To="BeastHubUnit.p3"
iType="TLM" alpha="0" Zf="0"/>

<Connection From="BeastHubUnit.p4"
To="AdamsCar.p4"
iType="TLM" alpha="0" Zf="0"/>

</Connections>
</Model>

5 Conclusion

A framework for meta-modelling and simulation of
mechanical systems using transmission lines for cou-
pling components was presented. The main features of
the framework are:

• General object-oriented meta-modelling utilizing
the strengths of Modelica

• Stability by applying minimalist approach to the
program design resulting in small portable code

• Extensibility of the framework thanks to the
portable and easy to incorporate software plug-
in.

The framework currently targets SKF’s BEAST simu-
lation tool and MSC.ADAMS.

References

[1] Krus P., Jansson A. Distributed Simulation of
Hydromechanical Systems ’Third Bath Interna-
tional Fluid Power Workshop’, Bath, UK 1990

[2] Krus P. Modelling of Mechanical Systems Us-
ing Rigid Bodies and Transmission Line Joints.
Transactions of ASME, Journal of Dynamic Sys-
tems Measurement and Control. Dec 1999

[3] Pop A., Fritzson P. ModelicaXML:A Modelica
XML Representation with Applications, Model-
ica 2003 Conference

[4] Dymola, http://www.dymola.com, Dynasim AB

[5] MathModelica,
http://www.mathcore.com/products/mathmodelica
Mathcore AB

[6] The XML C parser and toolkit of Gnome,
http://www.xmlsoft.org/

[7] Larsson, J. Interoperability in Modelling and
Simulation, PhD thesis, Link öping University,
Link öping, Sweden, 2003

A. Siemers, I. Nakhimovski, D. Fritzson

The Modelica Association 182 Modelica 2005, March 7-8, 2005




