
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

S.E. Pohl, J. Ungethüm
DLR Stuttgart, Germany
A Simulation Management Enviroment for Dymola
pp. 173-176

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH



A Simulation Management Environment for Dymola

Sven-Erik Pohl∗ Jörg Ungetḧum†

German Aerospace Center (DLR), Institute of Vehicle Concepts
Pfaffenwaldring 38-40, 70569 Stuttgart

Abstract

Building Modelica libraries is a steady process of
adding and refining models. There is rarely a final
version of a library. This leads to the fact that simu-
lation results are difficult to reproduce due to changes
in sub-models. However, reproducible simulation re-
sults have to be provided for solid project work and
scientific research. Using Matlab as a platform a sim-
ulation management environment, called SiME, was
developed. This environment includes general simu-
lation handling, as well as tools for pre- and postpro-
cessing. A HTML-based simulation history contain-
ing parameters and results is included.
Keywords: Modelica tools, simulation management,
Matlab, CVS

1 Introduction

Developing Modelica libraries while at the same time
maintaining several complex models can make back-
ward compatibility difficult. Moreover, keeping spe-
cific library versions is especially important if simula-
tion results were published in research reports or sci-
entific publications. A common practice in software
engineering, a version control system appears to be an
adequate solution to manage the code evolution. How-
ever, if several libraries are involved in the simulation
keeping track of the files becomes tedious. Addition-
ally, linking the versions with the results has to be done
manually.

2 Objectives

A simulation management environment was outlined
to overcome this shortages. The central idea is to au-
tomate and standardize the versioning process. It is

∗sven.pohl@dlr.de
†joerg.ungethuem@dlr.de

necessary to apply versioning not only to the Model-
ica libraries but also to any auxiliary files like pre- and
postprocessing scripts, which are necessary to run the
simulation. The ability for recovering the model and
rerun the simulation is sensible against the complete-
ness and version-correctness of these auxiliary files.
Multiple simulation projects must be supported, even
if libraries or scripts are used and developed concur-
rently. Another objective is a clear and informative
simulation report which includes version information
as well as simulation results.

3 Design

The simulation management environment tends to be-
come a very complex system, as various different
components are needed to reproduce simulation re-
sults. Besides the core model code, parameter lists,
measured data, experiment scripts, documentation and
other auxiliary files must be stored and recreated. For-
mat, size or number of these auxiliary files is not
known in advance. Nonetheless, reliability is major
concern for the simulation management environment.
However, a substantial ambition in the design process
was a straight and simple realization. Therefore, the
Concurrent Versions System (CVS) [1] was employed
as base layer. CVS uses a client/server architecture,
which makes it easy to install and maintain. SiME it-
self consists only of client side scripts and does not re-
quire any additional server software. Therefore SiME
can be used with any CVS server. Due to the use of a
standard version control system, any file within SiME
is accessible using standard tools. Furthermore, con-
current access using SiME and standard CVS clients
is seamlessly possible. The following code fragment
shows the Matlab call of the CVS client.

syscmd=[cvsbin_name,’ ’,cvsopt_str,’ ’,...
cvscmd, ’ ’,cmdopt_str,’ ’];

for i = 1:length(cmdargv)
cmdarg_str = deblank(cmdargv{i});

A Simulation Management Enviroment for Dymola

The Modelica Association 173 Modelica 2005, March 7-8, 2005



Figure 1: Automatically created simulation overview html-page

cmdlen=length(syscmd)+length(cmdarg_str);
[rcc,mesg]=system([syscmd,cmdarg_str]);

end

The CVS command part is defined bysyscmd while
the files to processed are bundled incmdargv .
The core of SiME consists of a few scripts written in
Matlab. Dymola’s simulation results are easily acces-
sible within Matlab. Matlab’s numerical capabilities
are outstanding and within SiME all of its features,
e.g. the data visualization tools are applicable. How-
ever, Matlab is not optimal for string processing and
system command execution. Dedicated scripting lan-
guages like python and Perl are much more comfort-
able in this context.

4 Features

The basic concept of SiME is to organize arbitrary
simulation tasks in projects. Each project consists of
a history of completely reproducible simulation runs.
For example, a project named” hybridcar” is a Mod-
elica library development of a hybrid electric vehi-
cle. The developer uses SiME to protocol the develop-
ing process and to document the evolution steps. It’s
not only possible to directly compare the results but
also to retrieve the complete simulation code, to make
changes if necessary and to re-run the simulation.
The Simulation Management Environment splits each
simulation process into four steps. The initialization
part sets up the simulation run and calls the CVS rou-
tines. Preprocessing, simulation and postprocessing
mainly contain code to handle the simulation applica-
tion (e.g. Dymola) and its results. In a possible fifth

step the complete simulation run can be repeated sim-
ply using the simulation ID.

4.1 Initialization

During initialization a unique simulation ID is gener-
ated and a complete list of all files which are relevant
for the simulation is built. Matlab script dependencies
are collected automatically. However, Modelica and
auxiliary files must be added manually. SiME forces
any file on the list under version control if this was not
done before:

for element=1:counter
[err,errmsg]= fkcvsadd(’’,...
cmdopt,notinrepository(counter));
end;

Afterwards the files are checked in and tagged using
the simulation ID. In that way all files involved in the
simulation process are marked with the simulation ID
and can be retrieved securely. This code fragment il-
lustrates the process of committing and tagging:

for i=1:filenum
% commit files
cmdopt.m = [’automated commit’];
[err.commit(i),errmsg.commit{i,1}]=...
fkcvscommit(’’,cmdopt, ...
remainder(startpos(i):endpos(i)));
% tag files
[err.tag(i),errmsg.tag{i,1}]=...
fkcvstag(tag,’’,’’, ...
remainder(startpos(i):endpos(i)));

end;

4.2 Preprocessing

The initialization routine calls the main simulation
script. From this Matlab script the external simulation

S.E. Pohl, J. Ungethüm

The Modelica Association 174 Modelica 2005, March 7-8, 2005



Figure 2: Automatically created simulation report html-page

application is started. Generally, any application using
the Dynamic Data Exchange (DDE) interface can be
called remotely. In this case Dymola is used. In the
preprocessing part the Dymola model and the model
parameters are defined. For parameter studies an array
of values for each parameter can be provided. A pa-
rameter matrix is then built from the parameter arrays.

4.3 Simulation

Dynasim provides Matlab functions to start Dymola
and execute commands via DDE interface. These
functions are used to establish an interaction between
Matlab and Dymola. The self explanatory code is
shown below:

% Set up experiment
ex=dymoexperiment; % default values ex
ex.StopTime = 0.1; % set StopTime

% Start Dymola
res.start = dymostart(sim.dymolabinpath);

% Load Package
res.load = dymoload(sim.package);

% Check Model
res.check = dymocheck(sim.model);

% Translate Model
res.translate = dymotranslate(sim.model);

for num = 1:sim.parmatrixsize
% Set parameter(s)

dymosetpar(sim,num);
% Simulate Model

res.simulate = dymosimulate(...

sim.model,ex,sim.modelname);
end;
% Close Dymola

dymoexit;

4.4 Postprocessing

Subsequent to the simulation process arbitrary Matlab
scripts can be run to further process the results, e.g. to
generate plots.

A standardized protocol in HTML is generated includ-
ing the history of simulation tasks. An example of
this simulation overview is shown in Figure 1. For ev-
ery simulation task a link to a HTML report is given.
The HTML report (Figure 2) includes in detail all the
parameters used within initialization, preprocessing,
simulation process and hyperlinks to the saved plots.
Additionally, a summary of all error messages and
comments occurred during the runtime is given.

4.5 Re-Run Simulations

To retrieve the complete set of simulation files only the
simulation ID is needed. A MATLAB function will
retrieve the files from the repository. The files are now
ready for manipulation and a new simulation run can
be started.

A Simulation Management Enviroment for Dymola

The Modelica Association 175 Modelica 2005, March 7-8, 2005



Figure 3: The SiME graphical user interface

5 Graphical User Interface

To coordinate the projects and their history a graphi-
cal user interface is added. Figure 3 shows the main
interface window. Projects can be loaded, created and
managed. General information, e.g. directories and
project details, can be edited. The simulation his-
tory of projects can be browsed and simulation re-
sults displayed. New simulation runs can be tested or
launched. Dymola result files can be browsed using
the Matlab GUI provided by Dynasim.

6 Limitations

SiME inherits the limitations of the CVS system. E.g.
the handling of binary files like pictures is not optimal
and reordering of directory structures is difficult and
error prone.
Most of the CVS limitations are overcome by its suc-
cessor, the Subversion [2] system. Subversion reached
release 1.0 in March 2004. Currently little practical
experiences with Subversion are present. However, as
Subversion is downwards compatible to CVS, switch-
ing to Subversion should be possible.
Absolute directory path references might be included
in the model code, like script references in Dymola’s
annotations. These path references become staled
links in the recreated files which cannot be fixed easily.
The Matlab–Dymola communication uses Dymola as
DDE server which is available on MS Windows only.
This prevents the SiME client currently from working
on any other operation system.

Some additional Dymola scripting language com-
mands would be desirable, e.g. retrieving a list of all
Modelica files which are referenced by a model or gen-
erating a screen-shot of the current diagram window.

7 Conclusions

A simulation management environment (SiME) was
developed to provide easy and efficient access to ear-
lier simulation runs. SiME ensures the reproducibility
of simulation results, even if the models involved are
still in development. This facilitates the documenta-
tion, avoids redundant work and is an important con-
tribution for quality assurance.
SiME uses Matlab as scripting language, since Matlab
is used frequently already for pre- and postprocessing.
As backbone server for SiME the Concurrent Versions
System (CVS) was selected, since it is freely available
and extremely reliable. The use of the models outside
of the simulation management is not restricted, so that
the normal, CVS supported model development is not
disturbed.

References

[1] Version Management with CVS. Per Cederqvist.
https://www.cvshome.org/docs/manual/

[2] Version Control with Subversion. Ben Collins-
Sussmann, Brian W. Fitzpatrick, C. Michael
Pilato. http://svnbook.red-bean.com/en/1.1/svn-
book.pdf

S.E. Pohl, J. Ungethüm

The Modelica Association 176 Modelica 2005, March 7-8, 2005




