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Modeling of Interactive Virtual Laboratories with Modelica

Carla Martin Alfonso Urquia Sebastian Dormido
Departamento de Informatica y Automatica, E.T.S. de Ingenieria Informatica, UNED

Juan del Rosal 16, 28040 Madrid, Spain

Abstract

The implementation of virtual-labs supporting runtime
and batch interactivity is discussed and it is illustrated
by means of several case studies. The virtual-labmod-
els have been programmed using Modelica language
and translated using Dymola. The virtual-labviews
(i.e., the user-to-model interfaces) have been imple-
mented using Ejs and Sysquake. This software com-
bination approach allows us to take advantage of the
best features of each tool. Ejs and Sysquake capabil-
ity for building interactive user interfaces composed
of graphical elements, whose properties are linked to
the model variables. Modelica capability for phys-
ical modeling and Dymola capability for simulating
hybrid-DAE models.
In order to implement this approach, the following
tasks have been completed: (1) a novel modeling
methodology, adequate for runtime interactive simu-
lation using Ejs, Simulink and Modelica/Dymola, has
been proposed; and (2) a Sysquake to Dymosim inter-
face has been programmed: a set of functions in LME,
intended to be used by the Sysquake applications.

1 Introduction

A virtual-lab is a distributed environment of simula-
tion and animation tools, intended to perform the in-
teractive simulation of a mathematical model. Virtual-
labs provide a flexible and user-friendly method to de-
fine the experiments performed on the model. In par-
ticular, interactive virtual-labs are effective pedagogi-
cal resources, well suited for web-based and distance
education [1].
Typically, the virtual-lab definition includes the fol-
lowing two parts: themodeland theview. The view
is the user-to-model interface. It is intended to provide
a visual representation of the model dynamic behav-
ior and to facilitate the user’s interactive actions on the
model. The graphical properties of theviewelements
are linked to themodelvariables, producing a bidirec-

tional flow of information between theview and the
model. Any change of a model variable value is au-
tomatically displayed by the view. Reciprocally, any
user interaction with the view automatically modifies
the value of the corresponding model variable.
Two alternative types of interactivity can be imple-
mented:

– Runtime interactivity. The user is allowed to per-
form actions on the model during the simulation
run. He can change the value of the model in-
puts, parameters and state variables, perceiving
instantly how these changes affect to the model
dynamic. An arbitrary number of actions can be
made on the model during a given simulation run.

– Batch interactivity. The user’s action triggers the
start of the simulation, which is run to comple-
tion. During the simulation run, the user is not
allowed to interact with the model. Once the sim-
ulation run is finished, the results are displayed
and a new user’s action on the model is allowed.

1.1 Contributions of this paper

The implementation of interactive virtual-labs is dis-
cussed in this manuscript. Runtime and batch inter-
activity are considered. In both cases, themodelsare
programmed using Modelica language and translated
using Dymola [2]. Theview of the virtual-labs sup-
porting runtime interactivityhas been implemented
using Easy Java Simulations [3] (abbreviated: Ejs.
http://fem.um.es/Ejs/). Theview of the virtual-labs
supportingbatch interactivityhas been programmed
using Sysquake (http://www.calerga.com/).
This software combination approach allow us to take
advantage of the best features of each tool. Ejs
and Sysquake capability for building interactive user-
interfaces composed of graphical elements, whose
properties are linked to the model variables. Modelica
capability for physical modeling, and finally Dymola
capability for simulating hybrid-DAE models.
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The tasks completed to successfully implement this
approach are discussed. In particular:

– Runtime interactive simulation. The communi-
cation between the virtual-lab view (programmed
using Ejs) and the virtual-lab model (C-code gen-
erated by Dymola) is accomplished by using
the Ejs-Simulink and the Dymola-Simulink in-
terfaces. The C-code generated by Dymola for
the Modelica model can be embedded within a
Simulink block [2]. On the other hand, Ejs allows
the model to be partially or completely devel-
oped using Simulink block diagrams. As a conse-
quence, virtual-labs supporting runtime interac-
tivity can be implemented by combining the use
of Ejs, Matlab/Simulink and Modelica/Dymola.

The Modelica model needs to be adequately for-
mulated in order to be: (1) useful as a Simulink
block; (2) able to accept information from the
virtual-lab view; and (3) able to return infor-
mation to the virtual-lab view. As a conse-
quence, a modeling methodology has been pro-
posed. It states how a Modelica model can be
formulated to suitruntime interactive simula-
tion. This methodology has been successfully ap-
plied to program a set of virtual-labs for chemi-
cal process control. One of them is discussed in
this manuscript: the virtual-lab of a double-pipe
heat exchanger. Other virtual-labs are discussed
in [4, 5, 6].

– Batch interactive simulation. A set of Sysquake
functions has been programmed to facilitate data
exchange between the view and the model of the
virtual-lab. These functions synchronizes the ex-
ecution of thedymosim.exefile (generated by Dy-
mola) and the Sysquake application. The com-
bined use of Sysquake and Modelica/Dymola for
virtual-lab programming is illustrated by means
of two case studies.

2 Runtime interactive simulation, by
combining the use of Ejs, Simulink
and Modelica/Dymola

Easy Java Simulations (Ejs) is a open source, Java-
based software tool intended to implement virtual-
labs. It can be freely downloaded from the web-
site http://fem.um.es/Ejs/. Ejs guides the user in the
process of creating themodeland theview, generates

the Java source code of the virtual-lab program, com-
piles the program, packs the resulting object files into
a compressed file, and generates HTML pages con-
taining the virtual-lab as an applet. Then, the user can
readily run the virtual-lab and/or publish it on the In-
ternet.
The view definition is a strong point of Ejs. Ejs in-
cludes a set of ready-to-use visual elements, that the
modeller can use to compose a sophisticated view in a
simple, drag-and-drop way. The properties of the view
elements can be linked to the model variables.
On the contrary, themodeldefinition and simulation
is a weak point of Ejs. Ejs provides its own proce-
dure to define the model, which must be formulated
by the user as a sorted sequence of algorithm clauses
(i.e., assignment statements). Ejs implements some
standard ODE solvers. However, it implements nei-
ther algorithms for symbolic formula manipulation nor
algebraic-loop solvers.
Ejs version 3.3 (release 2004) provides a Ejs to Mat-
lab/Simulink interface. Therefore, Ejs 3.3 supports
the option of describing and simulating the model us-
ing Matlab/Simulink: (1) Matlab code and calls to
any Matlab function can be used at any point in the
Ejs model; and (2) the Ejs model can be partially or
completely developed using Simulink block diagrams.
This significantly improves the Ejs capabilities for
model description and numerical solution. However,
Simulink modeling paradigm (i.e., graphical block-
diagram modeling) exhibits some limitations [7]. It re-
quires explicit state models (ODE) and that the blocks
have a unidirectional data flow from inputs to out-
puts. These restrictions strongly condition the mod-
eling task, which requires a considerable effort from
the modeller.
The use of Modelica language is an attractive alterna-
tive to Simulink, because it reduces considerably the
modeling effort and permits better reuse of the mod-
els. The combined application of Modelica/Dymola
and Ejs to the implementation of virtual-labs in dis-
cussed next.

2.1 Combined use of Ejs, Matlab/Simulink
and Modelica/Dymola

Dymola 5.0 interface to Simulink 3.0 can be found
in Simulink’s library browser: DymolaBlock block
[2]. This block is an interface to the C-code gener-
ated by Dymola for the Modelica code. DymolaBlock
block can be connected to other Simulink blocks, and
also to other DymolaBlocks blocks, in the Simulink’s
workspace window. Simulink synchronizes the nu-
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merical solution of the complete model, performing
the numerical integration of the DymolaBlock blocks
together with the other blocks.
In order to make the Modelica model useful as a Dy-
molaBlock block, the computational causality of the
Modelica model interface needs to be explicitly set [2].
The input variables are supposed to be calculated from
other Simulink blocks, while the output variables are
calculated from the Modelica model.
Ejs 3.3 supports the option of describing and simulat-
ing the virtual-lab model using Simulink. In this case,
the data exchange between the virtual-lab view (com-
posed using Ejs) and the model (Simulink block dia-
gram) is accomplished through the Matlab workspace.
The properties of the Ejs’ view elements are linked to
variables of the Matlab workspace, which can be writ-
ten and read from the Simulink block diagram.
The Modelica model needs to be built to allow the
communication with the virtual-lab view. It needs to
support the discontinuous changes in the value of its
state variables, parameters and input variables which
are the result of the user interaction. In some cases,
several choices of the state variables need to be sup-
ported simultaneously in the model, in order to pro-
vide the user with alternative ways of describing the
state changes. A design methodology for the Mode-
lica model is described in Section 2.2. Further details
can be found in [4, 6].

2.2 Modeling methodology

The model of a perfect gas is shown in Figure 1. The
input flow of gas (F), of heat (Q) and the input tem-
perature (Tin) are input variables. The gas volume (V)
and the heat capacities (CP,CV) are time-independent
properties of the physical system.
In general, different choices of the model state-
variables are possible. Possible choices in the model
shown in Figure 1 include:e1 = {p,T}, e2 = {n,T}
and e3 = {n, p}; where ei represents one particular
choice of the state variables. If the user wants to
change interactivelyp and T, the appropriate choice
is e1 = {p,T}. This is also the right choice if the
user wants to changep and to keep constantT, or of
he wants to changeT and to keep constantp. Like-
wise, the appropriate choice ise2 if the user wants:
(1) to modify interactivelyn andT; or (2) to modify
n and to maintain constantT; or (3) to modifyT and
to maintain constantn. An analogous reasoning is ap-
plied toe3. In general, an interactive model is required
to support state changes that correspond with different
choices of the state variables.

In addition, interactive changes of the model parame-
ters can have different effects depending on the state
variable choice. Consider an instantaneous change in
the gas volume (V) of the model shown in Figure 1. If
the state variables aree1 = {p,T}, then the change in
V produces an instantaneous change in the number of
moles (n), while the pressure (p) and the temperature
(T) remain constant. On the contrary, if the state vari-
ables aree2 = {n,T}, then the change of volume pro-
duces a change of pressure. In this case, the number
of moles (n) and the temperature remain constant. As
a consequence, the interactive model needs to support
different choices of the state variables simultaneously.

An approach to implement this capability is the fol-
lowing. Building the interactive model as composed of
several instantiations of the physical model, each one
with a different choice of the state variables. When
describing an interactive action on the model, the user
selects the adequate state-variable choice according to
his preference. This information is transmitted from
the virtual-labview to the model. Then, the interac-
tive model uses the adequate physical-model instan-
tiation (that with the chosen state selection) for exe-
cuting the instantaneous change in the parameters and
state variables, and for solving the re-start problem.
Finally, these calculated values are used to re-initialize
the other physical-model instantiations. This action
guarantees that all physical-model instantiations de-
scribe the same trajectory.

Modelica capability for state-selection control allows
easy implementation of this approach [8]. Three in-
stantiations of the perfect-gas model (i.e.,perfectGas)
have been defined (see Figure 2): (1)perfectGasSS1,
with e= {p,T}; (2) perfectGasSS2, with e= {n,T};
and (3)perfectGasSS3, with e= {n, p}. The Appen-
dix A provides the Modelica code for the perfect-gas
model.

Two input variables to the DymolaBlock block are
used to carry out the interactive changes in the state:
Istate[:] and CKstate[:] (see Figure 2).

The array Istate[:] contains the values used to re-
initialize the model state. In the perfect-gas model:
Istate[:] = {n, p,T}.

The arrayCKstate[:] is used to trigger the state re-
initialization events, which are performed using the
Modelica operatorreinit. Each variable of the array
CKstate[:] is used to trigger the events in a differ-
ent instantiation of the physical model. The perfect-
gas model contains three instantiations of the physical-
model: perfectGasSS1, perfectGasSS2and perfect-
GasSS3. Consequently, the arrayCKstate[:] has three
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dn
dt =

{
0 empty
F not empty

dU
dt =





0 empty
F ·CP ·Tin +Q not empty andF > 0
F ·CP ·T +Q not empty andF ≤ 0

U = n ·CV ·T
CP−CV = R

n: Number of moles
p: Absolute pressure
V: Volume of the gas
T: Absolute temperature
U : Internal energy
CP,CV : Heat capacities
F : Input flow of gas
Tin: Input temperature
Q: Input flow of heat
R: Perfect gas constant

Figure 1: Model of a perfect gas
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model perfectGasSS1
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SimulinkN

456789:;:9< O5@P M
EjsN

model perfectGas

when change(CKparam[1]) then
reinit({V,Cp},Iparam[:]);

end when;
when change(CKvar[1]) then
reinit({F,Tin,Q},Ivar[:]);

end when;

when change(CKstate[1]) then
reinit(p,Istate[2]);
reinit(T,Istate[3]);

end when;

e = { p , T }

model perfectGasI

when change(CKparam[3]) then
reinit({V,Cp},Iparam[:]);

end when;
when change(CKvar[3]) then
reinit({F,Tin,Q},Ivar[:]);

end when;

when change(CKstate[3]) then
reinit(n,Istate[1]);
reinit(p,Istate[2]);

end when;

model perfectGasI

model perfectGasSS3

model perfectGas
e = { n , p }

Figure 2: Schematic description of the perfect-gas
virtual-lab

components. CKstate[1] triggers the change in the
state-variables ofperfectGasSS1. CKstate[2] andCK-
state[3] trigger the change in the state-variables ofper-
fectGasSS2andperfectGasSS3respectively (see Fig-
ure 2).

The interactive parameters (V, CP) and the input
variables (F, Tin,Q) are defined as constant state-
variables (i.e., with zero time-derivative) in the phys-
ical model [4]. Their values are changed by using
the reinit operator. Four input variables to the Dy-
molaBlock block are used (see Figure 2): two arrays

(Iparam[:], Ivar[:]) containing the new values, and
two arrays (CKparam[:], CKvar[:]) for triggering the
re-initialization events.

The output-variable array of the DymolaBlock block,
O[:] (see Figure 2), contains the variables linked to the
properties of the virtual-labview. Ejs uses the value of
this output array (O[:]) to refresh the simulation view.
The value of the input arrayEnabled[:] is set by Ejs,
and it selects which output is connected to the output
signalO[:]. The output array in the perfect-gas model
is the following:O[:] = {n, p,T,V,CP,Tin,F,Q}.

The Simulink model of the perfect-gas is shown in
Figure 3a. The Modelica model (perfectGasInterac-
tive) is embedded within the DymolaBlock block. The
blocks connected to the DymolaBlock inputs (“MAT-
LAB Fcn” blocks) transmit the value of the input
variables from the Matlab workspace to the Simulink
block-diagram window. The blocks connected to the
DymolaBlock outputs (“To Workspace”blocks) trans-
mit the value of the output variables from the Simulink
block-diagram window to the Matlab workspace. Ejs
reads the value of these output variables from the Mat-
lab workspace and writes the value of the input vari-
ables in the Matlab workspace.

The view of the virtual-lab is shown in Figure 3b. The
main window (on the left side) contains the schematic
diagram of the process (above) and the control buttons
(below). Both of them allow the user to experiment
with the model. The vessel volume, represented in
the schematic diagram, is linked to theV variable. Its
value can be interactively changed by clicking on the
hand picture and dragging the mouse. Three radio but-
tons allow choosing the state variables ({p,T}, {n,T}
or {n, p}). Text fields allow the user set the value of
the state variables (n, p, T), the input variables (F , Tin,
Q) and the parameters (V, CP). The window placed on
the right side of the virtual-lab view contains graphic
plots of the model variables.
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Figure 3: Perfect-gas virtual-lab: a) Simulink model; b) View
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Figure 4: Heat exchanger virtual-lab: a) Physical model; b)Simulink model; c) View
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2.3 Case study I: heat exchanger

The interactive simulation of a heat exchanger has
been implemented, by the combined use of Ejs, Mat-
lab/Simulink and Modelica/Dymola. A mixture of car-
bon dioxide and sulfur dioxide is cooled by water in a
double-pipe heat exchanger [9]. Two modes of opera-
tion are allowed: cocurrent or parallel flow and coun-
tercurrent flow. The convective heat transfer on both
the tube and shell sides are calculated from the Dittus-
Boelter correlation [9]. The center heat exchanger tube
is made of copper with a constant thermal conductiv-
ity, and the exterior of the steel pipe shell is very well
insulated.
The physical model of the heat exchanger has been
composed using JARA. The model diagram is shown
in Figure 4a. JARA is a set of libraries of some funda-
mental physical-chemical principles. JARA was origi-
nally written in Dymola language [10, 11]. Later on, it
was translated into Modelica language. The method-
ology discussed in Section 2.2 was applied in order to
make JARA useful for interactive simulation [5].
JARA is composed of seven model libraries, including
models of:

– Control volumescontaining: (1) an ideal mixture
of an arbitrary number of semi-perfect gases; or
(2) a homogeneous liquid mixture composed of
an arbitrary number of components; or a homo-
geneous solid. The liquid and gaseous control
volumes are considered open systems (i.e., they
can exchange mass and heat with their environ-
ment) and chemical reactions can take place in-
side them. The solid control volumes are con-
sidered closed systems (i.e., they only exchanges
energy, not mass, with their environment).

– Mass transportdue to the pressure and concen-
tration gradient, the gravitational acceleration,
chemical reactions, liquid-vapor phase changes,
etc.

– Heat transportby conduction and convection.

The Simulink model is shown in Figure 4b. The
interactive model of the heat exchanger, written in
Modelica language, has been embedded within the
DymolaBlock block. Observe that the structure of
this Simulink model is completely analogous to the
perfect-gas model, shown in Figure 3a.
The view of the virtual-lab is shown in Figure 4c. The
main window (on the left side) contains: (1) a diagram
of the heat exchanger; (2) buttons to control the simu-
lation run (i.e., pause, reset and play); (3) sliders and a

text field to modify the input variables (i.e., liquid and
gas flows, liquid and gas input temperatures, and mo-
lar fraction ofCO2 andSO2 in the gas mixture); and
(4) checkboxes to show and hide three secondary win-
dows: “Geometry Parameters”, “Modify State” and
“Characteristics”.
The “Geometry Parameters”window contains text
fields that can be used to modify the pipe length
and diameters. The controls placed in the“Modify
State” window allow changing the temperature of the
medium inside each control volume (i.e., the cooling
liquid, the gas mixture or the metal wall). Finally,
“Characteristics” is a window with several plots of the
model variables.

3 Batch interactive simulation, by
combining the use of Sysquake and
Modelica/Dymola

Sysquake is a commercial tool intended to develop
interactive applications [12]. It is based on LME,
an interpreter specialized for numerical computation.
LME is mostly compatible with the language of MAT-
LAB(R) 4.x and it includes many features of MAT-
LAB 5 to 7. It implements graphic functions specific
to dynamic systems (such as step responses and fre-
quency responses) and general purpose functions used
for displaying any kind of data.
Typically, a Sysquake application contains several
interactive graphics, which are displayed simultane-
ously. These graphics contain elements that can be
manipulated using the mouse. While one of these el-
ements is being manipulated, the other graphics are
automatically updated to reflect this change. The con-
tent represented by each graphic, and its dependence
with respect to the content of the other graphics, is pro-
grammed using LME.
The main goal of Sysquake is the interactive manipula-
tion of graphics. The user can define functions, called
handlers, intended to perform different tasks managed
by Sysquake. These tasks include the model initializa-
tion, manipulation of figures and selection of menus.
As input and output, thehandlersuse variables as well
as values managed directly by Sysquake, such as the
position of the mouse. Therefore, only the code neces-
sary for displaying the figures and processing manipu-
lations from the user is required. This results in small
scripts, developed quickly and easy to maintain.
LME can be extended by libraries, composed of re-
lated functions written in LME, or by extensions de-
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Figure 5: Sysquake-Dymosim interface functions

veloped with standard compilers.

3.1 Combined use of Sysquake and Mode-
lica/Dymola

A Sysquake interface to Dymosim (i.e., the executable
file generated by Dymola [2]) has been programmed.
This interface is a set of functions in LME, intended to
be used by the Sysquake applications. These functions
perform the following tasks:

– ThesetExperimentandsetValuesfunctions write
the experiment description to a text file. This
text file is intended to be the input file fordy-
mosim.exe.

– Thedymosimandlinearizefunctions execute the
dymosim.exefile in order to simulate and lin-
earize the Modelica model respectively.

– Thetloadandtloadlin functions: (1) read the out-
put file generated bydymosim.exeafter a model
simulation or linearization respectively; and (2)
save these results as variables to the Sysquake
workspace. These variables can be used by
Sysquake applications.

Next, a brief description of each function is provided
(see Figure 5):

– setExperiment(txtFile, StartTime, StopTime, In-
crement, nInterval, Tolerance, MaxFixedStep, Al-
gorithm). It writes to thetxtFile text file (default
file name:dsin1.txt) the simulation parameters.

– [p, x0, pN, x0N, InputN, outputN] = getinfo. This
function executes thedymosim.exefile (command
dymosim -i) in order to generate the Dymosim in-
put file (dsin.txt). In addition, this function reads

the names of the model variables (i.e., inputs, out-
puts, parameters, states) and their default values
from dsin.txtfile, and saves them as variables to
the Sysquake workspace.

– SetValues(txtFile, pN, p, x0N, x0). The name and
the value of the model parameters and state vari-
ables are written to thetxtFile text file (dsin1.txt
by default).

– dymosim(iFile, oFile). This function executes the
following command: dymosim -d dsin.txt iFile
oFile. The default file name foriFile andoFile
is dsin1.txtanddsres.txtrespectively.

– linearize(iFile, oFile). This function obtains the
linearized model by executing the command:dy-
mosim -l iFile oFile. The default file name for
iFile and oFile is dsin1.txtand dslin.txt respec-
tively.

– [N,s] = tload(oFile). This function reads the re-
sult file, oFile (default file name:dsres.txt), and
stores the signal names and the simulation results
into N (text matrix) ands (numeric matrix) re-
spectively.

– [A,B,C,D,xN,uN,yN] = tloadlin(txtfile). It loads
the linear model generated by dymosim from the
txtfile result file (default file name:dslin.txt) into
the Sysquake workspace.

Next, two case studies are provided to illustrate the use
of this Sysquake-Dymosim interface.

3.2 Case study II: control loop

The interactive simulation of the control loop shown
in Figure 6 is implemented by combining the use of
Sysquake and Modelica/Dymola. The constitutive re-
lation of the hysteresis-based controller in shown in
Figure 7. The setpoint is the composition of two
signals: a piecewise linear function and a sine func-
tion. The model of the control loop has been pro-
grammed using Modelica language and translated us-
ing Dymola. The execution of thedymosim.exefile
generated by Dymola is controlled by the Sysquake
application (i.e., the virtual-labview).
Theviewof the virtual-lab is the Sysquake application
shown in Figure 8. It is composed of four graphics.
Three of them are interactive:

– “Constitutive relation” plot (graphic on the upper
left). The position of the{a,b,c,d,e, f} points of
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Figure 8: View of the control loop virtual-lab

the controller constitutive relation can be changed
by dragging the mouse.

– “Roots” plot (graphic on the lower left). The
plant zeros and poles can be changed by click-
ing on the circles and crosses and dragging the
mouse.

– “Reference” plot (graphic on the lower right).
The shape of the piecewise linear function and
the amplitude and frequency of the sine function
can be modified by clicking on the lines and cir-
cles that appear in the graphic and dragging the
mouse.

Figure 9: View of the heat exchanger virtual-lab

3.3 Case study III: heat exchanger

The heat exchanger virtual-lab described in Section
2.3 supports runtime interactivity. It was imple-
mented using Ejs, Simulink and Modelica/Dymola.
In this section, the heat exchanger model is revisited,
and a virtual-lab supporting batch interactivity is pro-
grammed by combining the use of Sysquake and Mo-
delica/Dymola.
Theviewof the virtual-lab is the Sysquake application
shown in Figure 9. The sliders placed on the upper
left side allow modifying some model parameters: the
pipe length and diameters, and the thermal parameters
of the center heat-exchanger tube.
The graphic on the upper right corner is interactive.
It represents the time-evolution of the inlet temper-
ature of the water. The shape of this curve can be
changed by clicking on one of the points and dragging
the mouse.
The graphics on the lower side of Figure 9 show the
time-evolution of the temperature at certain positions
of the tube and the shell.

4 Conclusions

The feasibility of combining Modelica/Dymola with
Ejs and Sysquake, for implementing runtime and batch
interactive simulations respectively, has been demon-
strated. Ejs and Sysquake are software tools intended
to develop interactive applications. Their strong point
is the programming of the virtual-labview. Work-
ing together with Modelica/Dymola significantly im-
proves the Ejs and Sysquake capabilities formodel
description and simulation. The use of Modelica lan-
guage reduces considerably the modeling effort.
In order to implement this software combination ap-
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proach, a modeling methodology has been proposed
and a Sysquake-Dymosim interface has been pro-
grammed. Several case studies of virtual-labs sup-
porting runtime and batch interactivity have been dis-
cussed.
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APPENDIX A: Modelica code for the
perfect-gas model

model perfectGas
parameter Boolean nIsState, pIsState, TIsState;
Real n (unit="mol", start=20,

stateSelect = if nIsState
then StateSelect.always
else StateSelect.default);

Real p (unit="N.m-2", start=1e5,
stateSelect = if pIsState

then StateSelect.always
else StateSelect.default);

Real T (unit="K", start=300,
stateSelect = if TIsState

then StateSelect.always
else StateSelect.default);

Real V (unit="m3", start=1);
Real Cp (unit="J/(Kg.K)", start=5*R/2);
Real Cv (unit="J/(Kg.K)");
Real F (unit="mol.s-1");
Real Tin (unit="K");
Real Q (unit="J.s-1");
parameter Real R (unit="J/(mol.K)") = 8.31;

protected
Real U (unit="J", stateSelect = StateSelect.never);
Boolean empty (start=false);

equation
// Interactive parameters
der(V) = 0;
der(Cp) = 0;
// Input variables
der(F) = 0;
der(Tin) = 0;
der(Q) = 0;
// State equation
p * V = n * R * T;
// Mol balance
der(n) = if empty then 0 else F;
// Energy balance
der(U) = if empty then 0

else if F>0 then F*Cp*Tin+Q else F*Cp*T+Q;
// Internal energy
U = n * Cv * T;
// Mayer law
Cp - Cv = R;
// Empty-vessel condition
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when F > 0 and pre(empty) or
n < 1e-5 and not pre(empty) then

empty = not pre(empty);
end when;

end perfectGas;

model perfectGasI
extends perfectGas;
Modelica.Blocks.Interfaces.InPort Iparam (n=2);
Modelica.Blocks.Interfaces.InPort Ivar (n=3);
Modelica.Blocks.Interfaces.InPort Istate (n=3);
Real CKparam;
Real CKvar;
Real CKstate;
Modelica.Blocks.Interfaces.OutPort O (n=8);

protected
Boolean CKparamIs0 (start = true, fixed=true);
Boolean CKvarIs0 (start = true, fixed=true);
Boolean CKstateIs0 (start = true, fixed=true);

equation
// Interactive change of the parameters
when CKparam>0.5 and pre(CKparamIs0) or

CKparam<0.5 and not pre(CKparamIs0) then
CKparamIs0 = CKparam < 0.5;
reinit(V, Iparam.signal[1]);
reinit(Cp, Iparam.signal[2]);

end when;
// Interactive change of the input variables
when CKvar>0.5 and pre(CKvarIs0) or

CKvar<0.5 and not pre(CKvarIs0) then
CKvarIs0 = CKvar < 0.5;
reinit(F, Ivar.signal[1]);
reinit(Tin, Ivar.signal[2]);
reinit(Q, Ivar.signal[3]);

end when;
// Output signal

O.signal = { n, p, T, V, Cp, Tin, F, Q };
end perfectGasI;

model perfectGasSS1
extends perfectGasI (nIsState=false,

pIsState=true,
TIsState=true);

equation
// Interactive change of the state variables
when CKstate>0.5 and pre(CKstateIs0) or

CKstate<0.5 and not pre(CKstateIs0) then
CKstateIs0 = CKstate < 0.5;
reinit(p, Istate.signal[2]);
reinit(T, Istate.signal[3]);

end when;
end perfectGasSS1;

model perfectGasSS2
extends perfectGasI (nIsState=true,

pIsState=false,
TIsState=true);

equation
// Interactive change of the state variables
when CKstate>0.5 and pre(CKstateIs0) or

CKstate<0.5 and not pre(CKstateIs0) then
CKstateIs0 = CKstate < 0.5;
reinit(n, Istate.signal[1]);
reinit(T, Istate.signal[3]);

end when;
end perfectGasSS2;

model perfectGasSS3
extends perfectGasI (nIsState=true,

pIsState=true,
TIsState=false);

equation
// Interactive change of the state variables

when CKstate>0.5 and pre(CKstateIs0) or
CKstate<0.5 and not pre(CKstateIs0) then

CKstateIs0 = CKstate < 0.5;
reinit(n, Istate.signal[1]);
reinit(p, Istate.signal[2]);

end when;
end perfectGasSS3;

model perfectGasInteractive
Modelica.Blocks.Interfaces.InPort Iparam (n=2);
Modelica.Blocks.Interfaces.InPort Ivar (n=3);
Modelica.Blocks.Interfaces.InPort Istate (n=3);
Modelica.Blocks.Interfaces.InPort CKparam (n=3);
Modelica.Blocks.Interfaces.InPort CKvar (n=3);
Modelica.Blocks.Interfaces.InPort CKstate (n=3);
Modelica.Blocks.Interfaces.InPort Enabled (n=3);
Modelica.Blocks.Interfaces.OutPort O (n=8);
Modelica.Blocks.Interfaces.OutPort Release(n=1);
perfectGasSS1 SS1 (CKparam = CKparam.signal[1],

CKvar = CKvar.signal[1],
CKstate = CKstate.signal[1]);

perfectGasSS2 SS2 (CKparam = CKparam.signal[2],
CKvar = CKvar.signal[2],
CKstate = CKstate.signal[2]);

perfectGasSS3 SS3 (CKparam = CKparam.signal[3],
CKvar = CKvar.signal[3],
CKstate = CKstate.signal[3]);

equation
connect(Iparam, SS1.Iparam);
connect(Istate, SS1.Istate);
connect(Ivar, SS1.Ivar);
connect(Iparam, SS2.Iparam);
connect(Istate, SS2.Istate);
connect(Ivar, SS2.Ivar);
connect(Iparam, SS3.Iparam);
connect(Istate, SS3.Istate);
connect(Ivar, SS3.Ivar);
Release.signal = {4.0};
O.signal = if Enabled.signal[1] > 0.5

then SS1.O.signal
else if Enabled.signal[2] > 0.5

then SS2.O.signal
else if Enabled.signal[3] > 0.5

then SS3.O.signal
else zeros(size(O.signal, 1));

end perfectGasInteractive;
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