
Proceedings
of the 4th International Modelica Conference,

Hamburg, March 7-8, 2005,
Gerhard Schmitz (editor)

H. Olsson, H. Tummescheit, H. Elmqvist
Dynasim AB; Modelon AB, Sweden
Using Automatic Differentiation for Partial Derivatives of Functions in
Modelica
pp. 105-112

Paper presented at the 4th International Modelica Conference, March 7-8, 2005,
Hamburg University of Technology, Hamburg-Harburg, Germany,
organized by The Modelica Association and the Department of Thermodynamics, Hamburg University
of Technology

All papers of this conference can be downloaded from
http://www.Modelica.org/events/Conference2005/

Program Committee

• Prof. Gerhard Schmitz, Hamburg University of Technology, Germany (Program chair).

• Prof. Bernhard Bachmann, University of Applied Sciences Bielefeld, Germany.

• Dr. Francesco Casella, Politecnico di Milano, Italy.

• Dr. Hilding Elmqvist, Dynasim AB, Sweden.

• Prof. Peter Fritzson, University of Linkping, Sweden

• Prof. Martin Otter, DLR, Germany

• Dr. Michael Tiller, Ford Motor Company, USA

• Dr. Hubertus Tummescheit, Scynamics HB, Sweden

Local Organization: Gerhard Schmitz, Katrin Prölß, Wilson Casas, Henning Knigge, Jens Vasel, Stefan
Wischhusen, TuTech Innovation GmbH

Using Automatic Differentiation for Partial Derivatives of Functions

in Modelica

Hans Olsson1 Hubertus Tummescheit2 Hilding Elmqvist1
1Dynasim AB, Lund, Sweden (Hans.Olsson@Dynasim.se, Elmqvist@Dynasim.se)

2 Modelon AB, Lund, Sweden (Hubertus.Tummescheit@Modelon.se)

Abstract

The Modelica language has been enhanced with a

notation for partial derivatives of Modelica func-
tions. This paper presents how Dymola [4] enables

the use of partial derivatives in certain modeling ap-

plications in the Modelica language. It is shown that
using partial derivatives is natural and supported in

Dymola, and solves several advanced modeling

problems.

1 Introduction

Partial derivatives of functions arise naturally in a

number of modeling applications. Accurate fluid
property functions can be expressed as partial de-

rivatives of a Gibbs- or Helmholtz function with re-

spect to a few variables, e.g. for single-substance

fluids as g(T,p), the Gibbs free energy, or f(T,ρ), the
Helmholtz energy of the fluid, see [3]. Partial de-
rivatives are also required to handle non-linear con-

straints in MultiBody mechanics and contact han-

dling. For contact handling involving parametric sur-

face descriptions, the tangents of each surface is re-
quired to specify the constraint equations for the

contact point. The tangents are the partial derivatives

of the parametric surface description function with

regards to the two independent parameters.

These examples demonstrate that partial derivatives
of functions occur in several modeling domains. Re-

cently, the Modelica Design group took up this need

and a language extension has been made to express

partial derivatives of functions in the Modelica lan-
guage. For this to be actually useful, a Modelica tool

like Dymola has to have efficient techniques to gen-

erate computationally efficient code for the partial
derivatives. In the following sections of the paper we

are going to elaborate on the necessary techniques of

code generation and give a few application examples

of that. The examples are using the implementation

of partial derivative generation in Dymola.

2 Automatic Differentiation of

Modelica Functions

Using the Gibbs-function as an illustrative example,

we will explain how partial derivatives are generated
and used. Since the other thermodynamic properties

of a fluid are described as partial derivatives the

most natural way of expressing these partial deriva-
tives is to directly express them in Modelica and let

the tool, Dymola, differentiate the expressions.

Some simple examples are given in the table:

Property Formula

Specific volume
T

pgv)/(∂∂=

Specific entropy
p

Tgs)/(∂∂−=

Modelica 2.2 has thus been extended with the syn-

tax:

function Gibbs_pp=der(Gibbs, p, p);

function Gibbs_pT=der(Gibbs, p, T);

to express that Gibbs_pp is the partial derivative of

the function Gibbs with respect to p and p, and
Gibbs_pT is the partial derivative of Gibbs with re-

spect to p and T. Dymola’s existing symbolic differ-

entiation of expressions has been extended with a
symbolic variant of automatic differentiation [1],

which works for almost any Modelica function (in-

cluding the Gibbs-functions). It uses forward-mode

automatic differentiation. For systems of equations
and index-reduction Dymola automatically uses ad-

ditional derivatives (time-derivatives), and for index-

reduction they are also constructed automatically.
For the future it is planned to also automatically con-

struct these when needed for Jacobians. Note that

Using Automatic Differentiation for Partial Derivatives of Functions in Modelica

The Modelica Association 105 Modelica 2005, March 7-8, 2005

even if time-derivatives and partial derivatives are

different they share the same underlying framework.

The Gibbs-function is often fitted as a special poly-

nomial in two variables (and some additional expres-

sions). Generating optimized code for these special
polynomials require special care, and is currently

only implemented for the simple case of positive and

negative integer powers. Extending it to handle ra-
tional powers will be straightforward. Due to the

sparseness of the powers a simple use of Horner’s

scheme is not optimal, and obviously the pow-

function is ruled out because of computational cost.

It is important that the automatic differentiation is

done symbolically prior to the code generation since
the code for special polynomials can reuse expres-

sions for computing powers. Later this will be ex-

tended to include intra-function optimizations be-
tween the different partial derivatives. Using code

optimization is the key to making symbolic differen-

tiation an efficient form of automatic differentiation,

see e.g. [2].

2.1 Basics of automatic differentiation

We will here present the basics of automatic differ-
entiation in a general setting, even though we have

only implemented the features needed for partial de-

rivatives of functions. We will then consider the im-
plementation choices, and the special cases in

Modelica.

2.1.1 Forward mode

When performing automatic differentiation real vari-

ables and expressions are replaced by Taylor/power-
series1 (in one variable ‘t’ – representing a direc-

tional derivative) whereas non-reals, e.g. the condi-

tions of if and while-clauses are kept unchanged.

The rules for propagating Taylor-series through

functions and expressions can be found in [6], and

we will here only consider a trivial example

)log()(: yxyxxz +++⋅=

The computation of this expression can be computed

from its corresponding directed acyclical graph by

propagating the numerical values.

1
 For higher order differentials a different scaling of the

coefficients is more efficient – we will ignore that in this

paper.

+ : 2

log : 0

x : 2 y : -1

* : 2

+ : 1

Thus if 1,2 −== yx we get 2=z . For automatic

differentiation we replace the values at the bottom by

Taylor-series and propagate these upwards:

+ : 2+10t+…

log : 0+3t+…

x : 2+t y : -1+2t

* : 2+7t+…

+ : 1+3t+…

Thus if 2/,1,1/,2 =∂∂−==∂∂= tyytxx we ob-

tain 10/,2 =∂∂= tzz and by including higher terms

we would get higher order derivatives. For each node
we only have to consider the values on the arrows

entering it, which lead to efficient computations of

directional derivatives, and is thus efficient for com-

puting both partial derivatives and time-derivatives.

The result of this assignment-statement (in terms of
Taylor-series) can then be used directly in the next

statement in Modelica.

2.1.2 Reverse mode

Reverse-mode automatic differentiation [1] is an ef-

ficient technique for computing the derivative of one

variable with respect to many. Since it is not as effi-
cient for computing partial derivatives we will only

present an example of how it works and not the un-

derlying theory.

Consider the above example and augment the graph

with the partial derivatives for each primitive opera-
tion (using the numerical values). Then start from the

top where 1/ =∂∂ zz , and for each node compute

the sum of the products of nodes above times the

value along the edge.

H. Olsson, H. Tummescheit, H. Elmqvist

The Modelica Association 106 Modelica 2005, March 7-8, 2005

In order to indicate that values are propagated

downwards the arrows have been reversed:

+ : 1

log : 1*1=1

x : 1*1+3*1=4 y : 3*1=3

* : 1*1=1

+ : 1*2+1*1=3

1
1

1

1

2

1
1

The interpretation of the result is that the value at

each node represents the partial derivative of z with

respect to this value: 3/,4/ =∂∂=∂∂ yzxz (which

is consistent with the result above).

To implement reverse mode one first go through the
algorithm once to compute the values for each node,

and then once in reverse order using these values.

This requires that all intermediate results are stored.

2.1.3 Implementation choices

Automatic differentiation can be implemented in

several ways [1, 5], and forward-mode is in general
simpler to implement than reverse-mode. We have

selected to perform forward-mode symbolically in

the Dymola kernel.

Another possibility that has attracted attention re-

cently is to generate code that numerically propa-
gates derivatives e.g. by overloaded operators in C++

or by modifying the code-generation for each primi-

tive operation.

The derivative annotation in Modelica was designed

with this in mind and can thus be used when com-
puting Jacobians for non-linear systems using the

‘time-derivative’ of the function and also internally

to compute partial derivatives.

Furthermore the ‘time-derivative’ functions (i.e.

functions propagating a numerical directional de-
rivative) can be constructed automatically by Dy-

mola by automatic differentiation. This could have

been implemented by modifying the code generation
for each operation to also numerically propagate di-

rectional derivatives.

However, the symbolic variant has the advantage [5]

that:

• Expressions independent of e.g. T do not have to

propagate the derivative of T.

• The symbolic derivative is a new function that

can be manipulated further by Dymola’s kernel

(e.g. to compute another derivative).

• No need to modify the code-generation in Dy-

mola, and the generated code can be compiled

with compilers on realtime platforms where

C++-compilers are not always available.

The fact that the symbolic derivative is a new func-
tion is also used in this paper since it allows us to

present the result of automatic differentiation as

Modelica functions.

2.1.4 Special cases in Modelica

In Modelica, functions can contain simple expres-
sions, matrix expressions, expression with iterators

and if-, while- and for-clauses. The symbolic differ-

entiation handles all of them, which has required

special care, e.g. the rules for simple differentiable
expressions with iterators are (where we use the spe-

cial notation x’= tx ∂∂ /):

• {x(j)+x’(j)*t for j in 1:n}=

{x(j) for j in 1:n}+{x’(j) for j in 1:n}*t

• sum(x(j)+x’(j)*t for j in 1:n)=

sum(x(j) for j in 1:n)+sum(x’(j) for j in 1:n)*t

• product(x(j)+x’(j)*t for j in 1:n)=

product(x(j) for j in 1:n)+sum(product(if j==k

then x’(j) else x(j) for k in 1:n) for j in 1:n)*t+…

The Modelica expert will note that we have not in-

cluded the rules for min- and max-expressions with
iterators, since these are more complex to compute,

often discontinuous, and currently not needed.

If the function being differentiated contains calls of

other functions the directional derivative is propa-

gated through it by its derivative-function, which is
either specified in the derivative-annotation, or con-

structed by Dymola through automatic differentia-

tion of the function (the latter case assumes the

function is non-external).

2.1.5 Non-differentiable functions

A basic limitation of automatic differentiation is that

it can provide a derivative even at points where the

function does not have a derivative. Verifying that a

function with branches (if-statements, if-expressions,
or while-statements) is continuous is a difficult

problem, see [7]. Furthermore in this reference it is

shown that automatic differentiation may produce
incorrect results for specific inputs if the function

contains equality tests on real values.

For functions declared as partial derivatives (as is the

focus of this paper) one can view the continuity as

Using Automatic Differentiation for Partial Derivatives of Functions in Modelica

The Modelica Association 107 Modelica 2005, March 7-8, 2005

the responsibility of the modeler declaring the partial

derivative function. When using automatic differen-

tiation for index-reduction this is not feasible, and
the declarative approach in Modelica is that auto-

matic differentiation for index reduction requires the

function to specify the degree of continuity.

3 Fluid Property Modeling using

Gibbs- or Helmholtz functions

The Gibbs-function is often fitted as a polynomial in

two variables:

g(T,p) = a
i
p
J

iT
K

i

This type of function can be differentiated efficiently

with the implementation of automatic differentiation
in Dymola. The code for expressing the other ther-

modynamic properties has become much shorter than

in previous implementations of fluid properties.
Furthermore, conditions such as the phase equilib-

rium are also expressed as an equation involving the

partial derivatives. Thus it is possible to describe

phase equilibrium conditions, e.g. between gas and
liquid phases, in a completely declarative way, with-

out resorting to special algorithms. Initial numerical

experiments seem to indicate that this works for
typical working fluid in thermodynamic cycles, e.g.

water or refrigerant R134a.

3.1 Definition of Thermodynamic Properties

A complete application example is the definition of

phase equilibrium in two phase fluids. In particular
when validity above the critical point is necessary,

Helmholtz functions are used to describe high accu-

racy thermodynamic surfaces. A typical equation

from [3] is the one for R134a using a dimensionless
Helmholtz energy composed of an ideal (aid) and a

residual term (ares) with the general form:

i

ijj

ii

t

i

i
id

i

ddt
kk

j

j
res

aa
RT

a

n
RT

a

ττδ
δτ

δδτ
δτ

∑

∑ ∑

=

+

− −

++=

−=

+

3

1

11

41

)ln()ln(
),(

)exp(
),(1

Where τ is a reduced inverse temperature and δ is a
reduced density. This Helmholtz function uses frac-
tional powers and for the test implementation it was

more efficient to transform all exponents into inte-

gers via a variable substitution. All properties of in-

terest are then computed by automatic differentiation

using the new syntax form, and by computing the

partial derivatives of a_r(τ,δ) and a_i(τ,δ) first, e.g.:

function ar_t=der(ar, tau);

function ar_tt=der(ar, tau, tau);

function ar_d=der(ar, delta);

and so on for all partial derivatives up to order two.

The properties themselves are then defined as func-

tions of these partial derivatives, e.g. the pressure










∂

∂
+=),(1 δτ

δ
ρρ

res
aRTp

Which results in a nice, compact definition in Mode-

lica:

function pressure "pressure"
 input SI.Temperature T;
 input SI.Density d;
 output SI.Pressure p;
protected

 Real delta = d/DCRIT "dim-less density";
 Real tau = TCRIT/T
 "dimensionless inverse temperature";
algorithm

 p := R*T*d*(1+delta*ar_d(tau,delta));
end pressure;

The Gibbs energy is computed as:

function gibbsEnergy "Gibbs free energy"
 input SI.Temperature T;
 input SI.Density d;
 output SI.SpecificEnergy g;
protected

protected

 Real delta = d/DCRIT "dim-less density";
 Real tau = TCRIT/T
 "dimensionless inverse temperature";
algorithm

 g := R*T*(1+a0(tau,delta)+ar(tau,delta)
 + delta*ar_d(tau,delta));
end gibbsEnergy;

In an equivalent manner, all other properties of inter-

est are defined.

3.2 Declarative Definition of Phase Equilib-
rium conditions

All current Modelica libraries define two phase flu-

ids for dynamic simulation via auxiliary equations,
e.g. splines generated from accurate phase boundary

data, that are a very good approximation to the cor-

rect thermodynamic equilibrium conditions. There is
one fundamental drawback to that approach: the ap-

proximation accuracy is fixed and has to be chosen

quite high to prevent numerical inconsistencies at

tight solver tolerances. From a perspective of a de-

H. Olsson, H. Tummescheit, H. Elmqvist

The Modelica Association 108 Modelica 2005, March 7-8, 2005

clarative, equation based language, a declarative

definition of the phase equilibrium condition has the

advantage that it is always solved to the current ac-
curacy of the numerical solver. This means that in

contrast to current implementations that have a

maximum accuracy that is limited by the accuracy of
the phase boundary approximation, a declarative

definition does not have this drawback. Even though

in Modelica it would be possible to define an itera-
tive scheme to compute phase equilibrium condi-

tions, the algorithm would need the current solver

tolerance as a user-defined input, again an undesir-

able drawback. The declarative definition for phase

equilibrium are the two equations:

),,(),(

),(),(

vapourliquid

vapourliquid

TgTg

TpTp

ρρ

ρρ

=

=

i.e. equality of the pressures and Gibbs energies
computed from the same saturation temperatures and

the liquid and vapour densities ρliquid and ρvapour re-
spectively.

With the property functions defined in the last sec-

tions, the phase equilibrium conditions only need the

variables and equations in the following code frag-

ment:

 SI.Density dl(start = 1500.0) "liquid”;
 SI.Density dv(start = 5.0) "vapour";
 SI.Temperature T(start = 270.0);
equation

 p = pressure(T,d);
 h = enthalpy(T,d);
 pressure(T,dv) = pressure(T,dl);
 gibbsEnergy(T,dl) = gibbsEnergy(T,dv);

From these equations the non-linear solver will com-
pute the liquid and vapour densities for the saturation

temperature T. The equations are taken from the

context of a dynamic control volume model that as-

sumes the pressure p and the enthalpy h as dynamic

states.

3.3 Discussion

These equations have so far been tested in simple

setups, and robustness, speed and convergence were

excellent, provided that the initial values for ρliquid

and ρvapour were close to the initial equilibrium point.

Unfortunately, there are still some unsolved prob-
lems that prevent to use this formulation in many

applications: above the critical point these equations

loose a meaning and it was numerically not possible
to obtain meaningful results for dynamic simulations

that come from a supercritical state and go to a sub-

critical state. The main problem here is that the equi-

librium conditions, for the Helmholtz equation
above, has several non-physical, numerically valid

solutions in the unstable region inside the two-phase

dome.

Dymola can handle inequality-constraints on the so-

lutions of non-linear systems, but we have not yet
determined the best way specify these inequalities in

Modelica, because we need to be sure to find only

the thermodynamically stable solutions outside of the

spinoidal lines. There are inequality conditions on
some partial derivatives for these non-physical solu-

tions, see [3], that could be used to disambiguate

unwanted solutions.

A combination of some auxiliary functions for start

values and to disambiguate non-physical solutions
with the declarative definition of the phase boundary

through equations is likely to be a compromise that

works robustly under all conditions and avoids the

disadvantages of both approaches.

In the test implementation, Jacobians for the non-

linear equations have not yet been derived automati-
cally. This would further improve the robustness and

solution speed. In dynamic simulation, Dymola uses

the last solution point as a start for the next iteration

and that makes the otherwise time consuming equi-
librium iterations quite fast. For large systems of

non-linear equations arising from steady-state prob-

lems, the method of using auxiliary functions for the
saturation pressure and temperature is likely to be

more robust and more flexible. Often the auxiliary

functions can be chosen in a way that explicit
evaluation is possible in cases when the proper ther-

modynamic definition inevitably leads to a non-

linear equation system.

The main advantage of automatic differentiation for

medium properties is the economy of code: the ther-

modynamic surface for R134a, the computation of
the phase boundary and all derived properties is less

than 5% of the amount of code with conventional

programming “by hand” and auxiliary functions rep-

resenting the phase boundary.

Using Automatic Differentiation for Partial Derivatives of Functions in Modelica

The Modelica Association 109 Modelica 2005, March 7-8, 2005

4 Non-linear Constraints in Multi-

Body Mechanics and Contact han-

dling

Partial derivatives are sometimes required to handle

non-linear constraints for contact handling in Multi-

Body mechanics, see also [9].

As a detailed example, we will consider the CAM

mechanism shown below, [8]. The CAM has straight

flanks between the circle segments. The follower is

roller-ended.

The CAM shape will be described by a replaceable
function defining the two dimensional position vec-

tor of every point of the circumference as a function

of a free parameter theta.

partial function shapeFunction
 input Real theta;
 output Real r[2];
end shapeFunction;

The straight flanks CAM can be defined as follows:

function straightFlanksCam
 extends shapeFunction;
 input Real R1=1 "Base circle radii";
 input Real R2=0.5 "Nose radii";
 input Real d=2 "Centre distance";
 import Modelica.Math.*;
protected

 constant Real pi=Modelica.Constants.pi;
 Real fi0;
 Real fi1;
 Real fi2;
 Real L;
 Real x;
 Real y;
 Real thetamod;
algorithm

 thetamod := atan2(sin(theta),
 cos(theta))
 "to get angle in interval -pi..pi";
 fi0 := asin((R1 - R2)/d);

 if thetamod > 0 then
 fi1 := pi/2 - fi0 - thetamod;
 else
 fi1 := - pi/2 + fi0 - thetamod;
 end if;
 fi2 := atan2(R2*cos(fi0), d +
 R2*sin(fi0));
 if abs(thetamod) > pi/2-fi0 then
 x :=R1*cos(theta);
 y :=R1*sin(theta);
 elseif abs(thetamod) >= fi2 then
 L := R1/cos(fi1);
 x := L*cos(theta);
 y := L*sin(theta);
 else
 L := d*cos(abs(thetamod)) +
 sqrt(R2^2 - d^2*sin(abs(thetamod))^2);
 x := L*cos(theta);
 y := L*sin(theta);
 end if;
 r := {x,y};
end straightFlanksCam;

The mechanism can be described by the following

equations (three dimension vectors are used for con-

venience although the mechanism is planar).

{ }

{ }

{ }

() ()

() (() () ()) , ,

() _ ()

() () 0,0,1

()
()

() ()

() _ () , ,

shape

R dist x y z

shape theta

F n Fx Fy Fz

θ

θ

θ θ

ϕ θ θ

θ θ

θ θ

θ
θ

θ θ

ϕ θ

=

⋅ + ⋅ + =

=

= ×

=

⋅ ⋅ =

r

T r n_n

r

n r

n
n_n

n n

T n_n

�

where

r vector to closest point

θ angle to closest point
ϕ angle of CAM

T
Transformation matrix for rota-
tion around z axis

x,y,z position of center of follower

R radii of follower

dist
distance between CAM and fol-
lower

n normal of CAM shape

n_n normalized normal
Fx,Fy,Fz force on follower

F_n normal force

The partial derivative of the replaceable shape func-

tion is needed. The Modelica language has recently
been extended to allow the der-operator to define

partial derivatives of Modelica functions.

H. Olsson, H. Tummescheit, H. Elmqvist

The Modelica Association 110 Modelica 2005, March 7-8, 2005

replaceable function shape =
 shapeFunction;
function shape_theta =

 der(shape, theta);

This allows to write equations in the following form:

r = shape(theta);

r_theta = shape_theta(theta);

A tool needs to use automatic differentiation to ob-
tain the required partial derivative. Dymola generates

the derivative function in Modelica format:

function shape_theta
 input Real theta;
protected

 Real r[2];
public

 input Real R1 := 1 "Base circle radii";
 input Real R2 := 0.5 "Nose radii";
 input Real d := 2 "Centre distance";
protected

 constant Real pi := 3.14159265358979;

 Real fi0;
 Real fi1;
 Real fi2;
 Real L;
 Real x;
 Real y;
 Real thetamod;
 Real theta_d13 := 1;
public

 output Real r_d13[2];
protected

 Real fi0_d13, fi1_d13, fi2_d13;
 Real L_d13, x_d13, y_d13;
 Real thetamod_d13;
algorithm

 thetamod_d13 := theta_d13;
 thetamod := arctan2(sin(theta), cos(theta));
 fi0_d13 := 0;
 fi0 := arcsin((R1-R2)/d);
 if (thetamod > 0) then
 fi1_d13 := -(fi0_d13+thetamod_d13);
 fi1 := 0.5*pi-fi0-thetamod;
 else

 fi1_d13 := fi0_d13-thetamod_d13;
 fi1 := fi0-0.5*pi-thetamod;
 end if;

 fi2_d13 := -((d+R2*sin(fi0))*R2*fi0_d13*
 sin(fi0)+R2*cos(fi0)*R2*fi0_d13*cos(fi0))/
 ((R2*cos(fi0))^2+(d+R2*sin(fi0))^2);
 fi2 := arctan2(R2*cos(fi0), d+R2*sin(fi0));
 if (abs(thetamod) > 0.5*pi-fi0) then

 x_d13 := -R1*theta_d13*sin(theta);
 x := R1*cos(theta);
 y_d13 := R1*theta_d13*cos(theta);
 y := R1*sin(theta);
 elseif (abs(thetamod) >= fi2) then

 L_d13 := R1*fi1_d13*sin(fi1)/cos(fi1)^2;
 L := R1/cos(fi1);
 x_d13 := L_d13*cos(theta)-L*theta_d13*
 sin(theta);
 x := L*cos(theta);
 y_d13 := L_d13*sin(theta)+L*theta_d13*
 cos(theta);
 y := L*sin(theta);
 else

 L_d13 := -(d*thetamod_d13*simplesign(thetamod)*
 sin(abs(thetamod))+d^2*sin(abs(thetamod))*
 thetamod_d13*simplesign(thetamod)*
 cos(abs(thetamod))/sqrt(R2^2-
 d^2*sin(abs(thetamod))^2));
 L := d*cos(abs(thetamod))+sqrt(R2^2-
 d^2*sin(abs(thetamod))^2);
 x_d13 := L_d13*cos(theta)-L*theta_d13*sin(theta);
 x := L*cos(theta);
 y_d13 := L_d13*sin(theta)+L*theta_d13*cos(theta);
 y := L*sin(theta);
 end if;
 r_d13 := {x_d13, y_d13};
end shape_theta;

The dist variable can be used to define a spring act-

ing when there is penetration:

 F_n = if dist < 0 then k*(-dist) else 0;

Consider the follower connected to a mass which is

connected to a spring and damper to ground and that

the CAM is rotating at a fixed angular velocity. For
high speeds, the follower will leave the nose and

bounce back on the flank. Such a case is illustrated

below in several frames from an animation.

It should be noted that the redeclared shape function
is also used to define the parametric surface used for

the animation.

If the contact model also contains damping, the de-

rivative of the shape_theta function is also needed

during index reduction. Such contact models are very
stiff. In certain cases an idealized contact model with

the constraint dist=0 might be sufficient. In such a

case, F_n is the constraint force. Index reduction will
in that case require the second derivative of

shape_theta. It is clear already by inspection of the

automatically generated shape_theta function that

automatic differentiation to obtain this function and
its derivatives saves the modeler much tedious and

error-prone work.

Using Automatic Differentiation for Partial Derivatives of Functions in Modelica

The Modelica Association 111 Modelica 2005, March 7-8, 2005

5 Conclusions

The paper demonstrates that extending Modelica

with partial derivatives of functions is natural and

solves a number of advanced modeling problems.
Dymola automatically handles the differentiation of

the partial derivatives of the functions thus reducing

the work needed by the modeler, while preserving

the efficiency of the generated simulation code.

References

[1] Juedes D.W. (1991): Taxonomy of Auto-
matic Differentiation tools, in Automatic

Differentiation of Algorithms. SIAM

[2] Char B.W. (1991): Computer Algebra as a

Toolbox for Program Generation and
Manipulation, in Automatic Differentiation

of Algorithms. SIAM

[3] Span R. (2000): Multiparameter Equations

of State, an accurate Source of Thermo-

dynamic Property Data. Springer Verlag.

[4] Dynasim (2005): Dymola User’s Manual,

www.dynasim.se

[5] Olsson H. (1993): Applications of auto-

matic and symbolic differentiation in nu-
merical computations. Master Thesis,

Department of Computer Science, Lund In-

stitute of Technology, Lund Sweden.

[6] Rall L.B. (1981): Automatic differentia-

tion: Techniques and applications. vol.
120 of Lecture Notes in Computer Science,

Springer-Verlag.

[7] Fischer H. (1991): Special problems in

Automatic Differentiation, in Automatic

Differentiation of Algorithms. SIAM.

[8] Hannah J., Stephens R. C. (1972): Mechan-

ics of Machines. Second edition, SI units,

Edward Arnold.

[9] Otter M., Elmqvist H., Lopez J.L. (2005):

Collision Handling for the Modelica
MultiBody Library. Modelica’2005 confer-

ence, Hamburg, March 7-8.

H. Olsson, H. Tummescheit, H. Elmqvist

The Modelica Association 112 Modelica 2005, March 7-8, 2005

