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Implementation of Unilateral Multibody Dynamics on Modelica

Ivan I. Kossenko
Moscow State University of Service, Department of Engineering Mechanics

Glavnaya str., 99, Cherkizovo-1, Moscow reg., 141221, Russia

Abstract

The problems of computer modeling and simulation
of dynamics for multibody systems consisting of rigid
bodies with unilateral constraints (MBSUC) are con-
sidered in the scope of the obstacles to overcome ones
related to the variation of structure for equations of
motion. The approach to modeling the MBSUC dy-
namics based on Modelica language is described.
The approach allowing to avoid the growth of the
model structural complexity is described. This ap-
proach actively uses the algorithmic features of Mod-
elica and its Dymola compiler. On this way the large
number of objects corresponding to different closed
systems of DAEs (states of hybrid automata) is re-
placed by only one object. For this object constraint
components vary their states dynamically during the
simulation process.
Another problem of the similar level of complexity re-
lates to the accuracy of simulation is solved here with
the set of special regularization procedures. These
procedures concern particularly transitions of the uni-
lateral constraint: from disconnected state to contact,
from rolling to slipping.
Other methods to improve the quality of the MBSUC
dynamics simulation are also under consideration.
Keywords: unilateral dynamics; multibody systems;
simulation; dry friction; impacts; regularization;
acausal modeling

1 Introduction

Mechanical system subjected to unilateral constraints
exhibits behavior considerably more complicated than
the system subjected to the bilateral ones. One can
find in such a case new dynamical properties con-
nected with irregular character of appropriate systems
of DAEs. Let us develop the approach proposed in [1].
There the Modelica library of classes oriented to sim-
ulation the sparse dynamics of multibody systems has
been developed. We can consider now this library as a

set of the new generation models allowing description
of unilateral constraints.
Let us suppose that some of constraints are unilateral.
For definiteness and simplicity we state the following
assumptions: (a) unilateral constraint is implemented
as a contact of outer surfaces bounding two rigid bod-
ies; (b) surfaces supposed being regular i. e. the nor-
mal vector is always properly defined; (c) the contact-
ing surfaces interact within the model of Coulomb fric-
tion for continuous motions as well as for impacts.
For simplicity we investigate the MBSUC comprising
only two bodies,A, and B. Moreover, we suppose
that the bodyA is a fixed horizontal surface, and the
heavy convex bodyB is bounded by ellipsoidal sur-
face. These assumptions are not obstacles for general-
ity of the developed MBSUC models.

2 Basic Ideas

According to the approach applied in [1] let us repre-
sent the constraint as an object providing information
communications between the objects of bodiesA and
B. Such communications are implemented indirectly
using the kinematic and wrench connectors. Informa-
tion communications are “filtrated” through the mech-
anism of constraint equations encapsulated in the ob-
jectC, see Figure 2.1.

Figure 2.1: Architecture of Unilateral Constraint

Besides the bidirected connections applied in [1] let
us add to the model the set of directed connections.
Assume that these connections are able to transmit
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the impact signals arising in objects of unilateral con-
straints all over the MBSUC, namely throughout its
connected components. These signals play role of
strobing ones for recalculation of velocities in the
MBSUC.
The nature of unilateral constraint allows us to de-
scribe it with the fundamental state variable. This
variable takes one of three values: “Flight”, “Slid-
ing”, “Rolling” at any time instant. The sense of the
enumerated values is transparent. The state “Flight”
means that the constraint is not stretched at the consid-
ered instant, i. e. the bodies aren’t in touch and freely
fly one relative to another. As state variable has one of
values “Sliding” or “Rolling” then bodies supposed to
be in a contact. The difference is that the first state per-
mits the relative slipping of the bodies but the second
one doesn’t.

Example 2.1 Consider the set ofn balls in a billiard
pool. The system comprisesn+1 rigid bodies:n balls
and the surface of the pool table. Vertical surfaces
around the table are neglected for simplicity. All bod-
ies enumerated can encounter mutually, slip, and roll.
The correct description of this MBSUC involves the
specification ofm= n(n+1)/2 unilateral constraints.
Since each constraint can be in one of three states,

then the whole MBSUC comprises3m = 3
n(n+1)

2 states.
For the pool with three balls we obtain the total value
of 36 = 729states.

2.1 Constraint Geometry

Let us use here the same as in [1] the dynamics of a
rigid body translational–rotational motion. However
the representation of mechanical constraint model un-
dergoes here essential changes. We use the so called
complementarity rules [2] as a base for the unified de-
scription of the unilateral constraint. By virtue of com-
plementarity rules any constraint is always defined by
the three scalar equations. In order to derive these
equations let us consider the local geometry of the
problem, see Figure 2.2.
The base body of MBSUC supposed to be connected
with the absolute frameO0x0y0z0 (AF) fixed in the in-
ertial space,Oαxαyαzα is the frameBFα fixed in the
bodyα ∈ {A,B}. The outer surfacesΣα are defined by
the equations

fα (rα) = 0 (α = A,B).

with respect to appropriateBFα whose axes are coin-
cident to the principal central axes of inertia. InAF

Figure 2.2: Area of Constraint

these the equations read

gα (r0) = fα [T∗α (r0− rOα)] = 0 (α = A,B).

HererOA = O0OA, rOB = O0OB, TA, TB are the orthog-
onal matrices determining orientation of theBFA and
BFB with respect to theAF. An asterisk denotes the
matrix transposition. The functionsgA(r0), gB(r0) de-
pend upon the time indirectly through the variablesrA,
rB, TA, TB.
The constraint object of our model has to compute at
each current instant the pointsPA ∈ A andPB ∈ B real-
izing the minimal distance between the bodies. These
points depend on relative orientation of the bodies. By
virtue of above assumptions such points are to be eval-
uated in a unique way. Denote byrPA, rPB the radii
vectors of these points with respect toAF. The sim-
ple geometric reasons imply the following system of
algebraic equations

gradgA(rPA) = λ ·gradgB(rPB) ,
rPA− rPB = µ·gradgB(rPB) ,
gA(rPA) = 0,
gB(rPB) = 0.

(2.1)

The gradients of the functionsgA andgB read

gradgα (rPα) = Tα gradfα [T∗α (rPα − rOα)] , (2.2)

whereα = A,B. The system (2.1) consists of eight
scalar equations with respect to eight scalar variables:
xPA, yPA, zPA, xPB, yPB, zPB, λ, µ, whereλ, µ are auxiliary
variables. The equations (2.1) are in use either without
or with a presence of the contact of bodiesA, B. In the
latter case the equationµ = 0 is in use instead of one
of the surfaces equations.
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According to computational experience it is more re-
liable and convenient to use the equations of con-
straints (2.1) in a differential form. Such an approach
is used frequently also for analyzing of properties of
mechanical systems.
Normal vector

nA = gradgA
/|gradgA| (2.3)

will play an important role in the further course. Nor-
mal for an outer surface of the bodyA is chosen here
for definiteness. One can use the vectornB as well.

2.2 Complementarity Rules

Let us perform a unified description of the unilateral
constraint using kinematic and/or force equations. De-
note byFA the force acting on the bodyA from the
body B. And by FB denote the force acting on the
bodyB from one ofA vice versa. Each force cited acts
at the pointPα, α = A,B. In addition, let us introduce
auxiliary notations

FAn = (FA,nA) , FAτ = FA−FAnnA,

vr = vPA−vPB, vrn = (vr ,nA) , vrτ = vr −vrnnA.
(2.4)

If the bodies are not in touch and the constraint is in
the state “Flight” then the force of reaction is equal to
zero. Thus we have three scalar equations. To unify
the system of constraint equations and to take into ac-
count arbitrary directions of the normalnA let us intro-
duce auxiliary scalar variableκ such that

FAn = 0, FAτ−κnA = 0.

Then the system of four equation with four unknown
variablesFAx, FAy, FAz, κ is obtained.
If the bodies are in touch then the conditionFAn = 0
is substituted by the kinematic onevAn = 0. States
“Sliding” and “Rolling” differ from each other by con-
ditions in a tangent plane. Implementation of the
Coulomb friction model is supposed for the simplicity.
Then the equation of the force balance in the tangent
space reads

FAτ−d ·FAnvrτ
/|vrτ| −κnA = 0, (2.5)

whered is the coeffitient of friction.
For rolling the tangent velocity is:

vAτ−κnA = 0.

2.3 Regularization of the Coulomb Friction

In the case of sliding the model equation (2.5) “works”
properly if the relative velocity isn’t very small. How-
ever the problem of regularization for the equation of
constraint (2.5) arises at the instance of transition from
“Rolling” to “Sliding”. It turns out that one can apply
here the known approximation for Coulomb’s friction
using regularized expression for the tangent force

FAτ−κnA = d

{
FAnvrτ

/|vrτ| as |vrτ|> δ,
FAnvrτ/δ as |vrτ| ≤ δ,

where one supposes thatδ¿ 1.
It is known [3] that in this case the solution of the
regularized problem remains close to the solution of
the original one at the asymptotically large time in-
tervals. Implementation and further simulation show
that this closeness holds with the very high degree of
accuracy. Such an approach resolves completely the
problem of modeling for accurate transitions between
states of “Sliding” and “Rolling”.

2.4 Simulation of Impacts

Let us suppose that the unilateral constraint is allowed
to undergo an impact in any possible states. In state
“Flight” the impact arises at the instant of bodies con-
tact if normal component of the relative velocityvrn

for encountering points is not very close to zero. It
is the case of the so called direct impact. However
in MBSUC consisting of several bodies impact pulses
can propagate through the connected components of
the system and force it to disconnect of any con-
straints. This leads to the switch of the whole MBSUC
to an another state. Such a case we can consider as an
indirect impact.
The constraint model proposed allows the possibility
both direct and indirect impacts. Let us consider the
equations of the impact theory encapsulated in the ob-
jects of the constraint structure, see Figure 2.1. All
these algebraic equations are carried out for all the
time of simulation. From time to time impact events
arising inside the differential part of the whole model
strobe “reading” of impact increments for the veloci-
ties from the impact algebraic subsystem and instante-
neous change of velocities inside the dynamical sub-
system.
Thus the equations

m∆v = S, I∆ωωω = T, (2.6)

are encapsulated in objectsA and B of the “Rigid
Body” class. Here∆v, ∆ωωω are the increments of the
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center of mass velocity and angular velocity of the
body, S, T are correspondingly the total impulse and
angular impulse acting on the rigid body belonging
to MBSUC. Note that the first equation of the sys-
tem (2.6) is written inAF. The second one is written,
as usually, in appropriateBFα.
Constraint object,C in Figure 2.1, encapsulates the
simplest impact model with dry friction and the New-
tonian model for the normal impact

∆vPα = ∆vOα +[∆ωωωα, rPα − rOα ] ,
∆vPαn = (∆vPα ,nA) ,
∆vrn = −(1+k)vrn,
∆vPBn = ∆vPAn−∆vrn,
∆vPατ = ∆vPα −∆vPαnnA,
SAn = (SA,nA) ,
SAτ = SA−SAnnA,

(2.7)

where the restitution coefficient is equal tok.
To make the model of impact with friction more re-
alistic we apply the simplified formula for the impact
impulse. It is similar to the regularized formular for
the tangent force in the case of slipping with dry fric-
tion. Let us note that there exist more realistic models
of impact with the Coulomb friction [4] (see [5] for
comprehensive survey). However they are much more
complicated. These models are suited for the single
impact of two bodies only. But we are interested in a
general case of MBSUC consisting of several bodies
not only of two ones.

2.5 Regularization of Transition between the
States of Flight and of the Contact

The most important property of the model developed
consists of the possibility of exact calculation of im-
pact instants and the instants of the change of state.
This property plays a crucial role for the quality of the
model. The landing on the constraint is possible in
particular if restitution coefficient satisfies the condi-
tion k < 1. In this case time intervals between impacts
tend to zero as well as the amplitudes of jumps after
successive impacts. Thus for exact determination of
the landing instant there exists a technological restric-
tion: limit of smallness for the value of the integrator
time step.
The change of independent variable, which regularizes
the time, gives the resolution of the problem. Indeed,
let us consider approximate model of dynamics in a
vicinity of the landing instant. In this case we can re-
strict ourselves to analysis of the relative motion for
pointsPA andPB in normal direction. Let us assume

that the normal relative accelerationarn = dvrn/dt ap-
proximately is a constant. Then the relative normal
motion of the pointsA andB is similar to the bouncing
ball in field of constant accelerationarn in the vicinity
of the landing instant.
Thus the height of jumps obeys the known formula
h= 0.5v2

rn

/
arn . Hence the instant of transition to con-

tact is defined by the condition whenh becomes less
then the given value of the tolerance for the constraint
feasibility.
The time between two impacts can be also ap-
proximately computed with the known formulaT =
2
∣∣vrn

/
arn

∣∣. This value tends to zero with each new
impact leading to the loss of an accuracy of simula-
tion.
Way out of a situation is the transfer to new indepen-
dent variableτ such that the duration between succes-
sive impacts would stay of order one. The simplest
solution of this problem is the mapt 7→ τ according
to the scalar differential equationdt/dτ = T. Such an
approach is found to be sufficiently reliable. Moreover
it is easy to control the accuracy of the model.

3 Implementation

When constructing the model of MBSUC the main
task is to develop the Modelica code allowing to
switch different constraint states inside the same ob-
ject, see Figure 2.1. It was found the problem can be
resolved using so called acausal [6] approach to build
the system of DAEs for the resulting model. Alterna-
tively if one uses the causal appoach then the structural
complexity of a model code can increase avalanchely.
To make sure of this it is sufficient to remind our ex-
ample about three balls in a billiard pool. If each state
of the mechanical system corresponding to the closed
system of DAEs is instantiated as an object inside the
container of the hybrid automata model then very soon
developer will encounter with the problem of large
complexity even for a number of balls small enough.
Conversely within the acausal approach there exists a
possibility to construct the model of MBSUC at the
same complexity level as for mechanical system sub-
jected to bilateral constraints only. In this case all va-
riety of MBSUC states is provided by internal capa-
bilities of the constraint objects and, as usually it is
implemented with help of an analytical precompiler.

3.1 Connectors

To connect objects we use the classes of kinematic and
wrench ports as before [1]. In addition, new connec-

I. Kossenko

The Modelica Association 16 Modelica 2005, March 7-8, 2005



tors are able to transport data of the velocities incre-
ments and the impact impulses. Codes of the corre-
sponding derived classes read

connector KinematicPortImpacts
extends KinematicPort;
SI.Velocity Deltav[3];
SI.AngularVelocity Deltaomega[3];

end KinematicPortImpacts;

connector WrenchPortImpacts
extends WrenchPort;
SI.Impulse ImpactForce[3];
SI.AngularImpulse ImpactTorque[3];

end WrenchPortImpacts;

To transmit impact signals throughout the MBSUC
one uses standard signal input and output ports:

Interfaces.BooleanInPort,
Interfaces.BooleanOutPort.

from the libraryModelica.Blocks .

3.2 Bodies

This category classes were modified to take into ac-
count the possibility of impacts in MBSUC. The base
classRigidBody considered in [1] has been slightly
rearranged and now reads as

partial model RigidBody
replaceable KinematicPort OutPort;
· · ·
Real Active(start=1);

equation
der (Active) = 0;
der (r) = Active*v;
der (v) = Active*a;
der (q) = Active*0.5*QMult(q,
{0,omega[1],omega[2],omega[3] });

der (omega) = Active*epsilon;
· · ·

end RigidBody;

Dots here mean those parts of theRigidBody class
from the previous version which haven’t been recon-
structed. In addition, one can see easily that the time
of dynamics can be “stopped” here at all. This can be
done with auxiliary variableActive putting its value
equal to zero. In this case the model will be trans-
formed from dynamical to the static one, which is de-
fined by algebraic equations only.
Declarationreplaceable is aimed to provide the
possibility of choice between modes of simulation
with or without impacts.
To implement impact calculations one uses the follow-
ing class

partial model RigidBodyImpacts
extends RigidBody( redeclare

KinematicPortImpacts OutPort);
SI.Velocity Deltav[3];
SI.AngularVelocity Deltaomega[3];
SI.Impulse ImpactForce[3];
SI.AngularImpulse ImpactTorque[3];
Boolean Impact;
SI.Force F1[3];
SI.Torque M1[3];
WrenchPortImpacts InPort1;
BooleanInPort InImpactSignal1;
BooleanOutPort OutImpactSignal1;

equation
F = InPort1.F + F1;
M = InPort1.M + cross (InPort1.P - r,

InPort1.F) + M1;
OutImpactSignal1.signal[1] = false;
Impact = false or

InImpactSignal1.signal[1];
OutPort.Deltav = Deltav;
OutPort.Deltaomega = T*Deltaomega;
OutPort.Deltav = Deltav;
OutPort.Deltaomega = T*Deltaomega;
m*Deltav = InPort1.ImpactForce +

ImpactForce1;
I*Deltaomega = transpose (T)*

(InPort1.ImpactTorque + cross (
InPort1.P - r,InPort1.ImpactForce)
+ ImpactTorque1);

end RigidBodyImpacts;

Since this class is introduced to process impacts then it
possesses at least one wrench port supposed for at least
one unilateral constraint, which is a potential source
of impacts. The class, cited rather its object can be
instantiated in the models being developed according
to any causality principle. In case of the acausal ap-
proach such class is to be completed by the following
model

model RigidBodyImpactsAcausal
extends RigidBodyImpacts;

equation
when Impact then

reinit (v, v + Deltav);
reinit (omega, omega + Deltaomega);

end when ;
end RigidBodyImpactsAcausal;

providing a self-governing possibility of the object to
recalculate velocities at impact. In case of the causal
approach such the calculation should be instantiated
outside the object of the MBSUC state. Note that
in implementations in derived classes for the bodies
of MBSUC we can instantiate any number of wrench
port objects necessary for constraints of the MBSUC
model.
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3.3 Constraints

On the same way as forRigidBody class the base
modelConstraint has been slightly rearranged and
now has the following modified form

partial model Constraint
parameter Integer ConstraintNo = 1;
replaceable KinematicPort InPortA;
replaceable WrenchPort OutPortA;
replaceable KinematicPort InPortB;
replaceable WrenchPort OutPortB;

equation
· · ·

end Constraint;

Then one can construct easily the constraint base
model taking into account impacts of bodies in the
form

partial model ConstraintImpacts
extends Constraint(

redeclare KinematicPortImpacts
InPortA,

redeclare WrenchPortImpacts
OutPortA,

redeclare KinematicPortImpacts
InPortB,

redeclare WrenchPortImpacts
OutPortB);

equation
OutPortA.ImpactForce +

OutPortB.ImpactForce = zeros (3);
OutPortA.ImpactTorque +

OutPortB.ImpactTorque = zeros (3);
end ConstraintImpacts;

Now it is time to construct a base model for the unilat-
eral constraint satisfying our assumptions stated ear-
lier and processing impact events correctly

model UnilateralConstraintAcausal
extends ConstraintImpacts;
parameter Real k;
parameter Real f;
parameter SI.Velocity delta;
UnilateralConstraintState State;
Boolean Impact;
Boolean NormalImpact;
Boolean NormalImpactIndicator;
Boolean ImpactMask;
Real[3] normA;
SI.Impulse ImpactForcen;
SI.Impulse[3] ImpactForcet;
SI.Impulse kappa;
SI.Acceleration[3] arA;
SI.Acceleration[3] arB;
SI.Acceleration[3] rela;

SI.Acceleration relan;
Real Active(start=1);
· · ·

algorithm
when relan > 0 and not ImpactMask

then
ImpactMask := true;

end when ;
when State == 0 and pre (State) <> 0

then
ImpactMask := false;

end when ;
equation
· · ·
NormalImpactIndicator = if mu < 0

and State == 0 and ImpactMask
then true else false;

NormalImpact = edge (
NormalImpactIndicator);

Impact = if noEvent (NormalImpact)
then true else false;

Active*arA = der (vrA);
Active*arB = der (vrB);
rela = arA - arB;
relan = rela*normA;
ImpactForcen = OutPortA.ImpactForce*

normA;
ImpactForcet = OutPortA.ImpactForce -

ImpactForcen*normA;
if noEvent(Impact) then

if relvtsqrt <= delta then
zeros (3) = ImpactForcet +

f* abs (ImpactForcen)*
relvt/delta - kappa*normA;

else
zeros (3) = ImpactForcet +

f* abs (ImpactForcen)*
relvt/relvtsqrt - kappa*normA;

end if ;
else

zeros (3) = DeltavrAt + vrAt -
vrBt - DeltavrBt - kappa*normA;

end if ;
der (Active) = 0;

end UnilateralConstraintAcausal;

State of the constraint is tracked here by the variable
State . If State = 0 then the constraint is discon-
nected. ForState = 1 the constraint is in the state
“Sliding”. And for State = 2 corresponding state is
“Rolling”. In a current version of the MBSUC model
we suppose that at each instant of time it is possible to
occur not more than one impact.
Modelica code presented above has the following fea-
tures:

1. Impact signal is generated if and only if: the con-
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straint be in the state “Flight”,State = 0 ; outer
surfaces of the bodies arrive to the contact,µ< 0;
and a special impact mask is open. This latter
becomes closed for the only case of the smooth
launching from the constraint. The variableµ is
defined according to the differential version of the
system (2.1) such that forµ > 0 the constraint is
disconnected, and the contact begins asµ= 0.

2. Kinematic formulae and expressions for the im-
pact impulses are implemented.

3. The variableActive is applied here to scale the
independent variable as it has been done for the
RigidBody model.

4. The following parameters of problem are applied:
k is the coefficient of restitution at impact,f is
the friction coefficient,delta is the regularizing
parameter for dry friction.

Dots represent the blocks of an equations imple-
menting the functions: (a) impact signal transmission
through the constraint, now under the further devel-
opment; (b) computation of an intermediate variables
according to formulae (2.2, 2.3, 2.4, 2.7)
A key role in the whole model plays the following
class

model
UnilateralConstraintAcausalAddOnRegular

extends UnilateralConstraintAcausal;
parameter SI.Length

ClearanceTolerance;
parameter SI.DampingCoefficient

ConstraintAttraction=1;
SI.Force nu;
SI.Force Forcen;
SI.Force[3] Forcet;
SI.Acceleration Drelvn;
Real StateIndicator;
SI.Length Clearance(start=1);

equation
der (relvn) = Active*(Drelvn + ( if

StateIndicator > 0.5 then -
ConstraintAttraction*relvn else
0));

Forcen = OutPortA.F*normA;
Forcet = OutPortA.F - Forcen*normA;
if StateIndicator <= 0.5 then

State = 0;
Forcen = 0;
Forcet - nu*normA = zeros (3);
if mu > 0 and relan < 0 then

StateIndicator = 0;
else

if Clearance < ClearanceTolerance

then
if relan < 0 then

// Case of launch
StateIndicator = 0;

else
// Case of landing
if relvtsqrt > delta then

StateIndicator = 1;
else

StateIndicator = 2;
end if ;

end if ;
else

StateIndicator = 0;
end if ;

end if ;
else

Drelvn = 0;
if relvtsqrt <= delta then

State = 2;
StateIndicator = if Forcen > 0

then 0 else 2;
Forcet - f*Forcen*relvt/delta -

nu*normA = zeros (3);
else

State = 1;
StateIndicator = if Forcen > 0

then 0 else 1;
Forcet - f*Forcen*relvt/relvtsqrt

- nu*normA = zeros (3);
end if ;

end if ;
der (Clearance) = 0;
when Impact then

reinit (Clearance, 0.5* abs (relvn*
relvn/Drelvn));

end when ;
when StateIndicator > 0.5 then

reinit (Clearance, 1);
end when ;
OutPortA.M = zeros (3);
OutPortA.ImpactTorque = zeros (3);

end
UnilateralConstraintAcausalAddOnRegular;

which implements the real switching of the constraint
states.
The hybrid automata states are controlled by two vari-
ables: StateIndicator and State . The first one
is included into the algebraic loops and has theReal

type. Hence in some sense the states themselves corre-
spond to fuzzy values and are identified by the inequal-
ities. It is clear that such a situation is connected with
the compiler restrictions. The variableState doesn’t
belong to the algebraic loops. It has theInteger

type and doesn’t influence on the switching between
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the states.
In frames of the model under consideration in order
to estimate the maximal clearance between the bodies
during the time from one impact to the next one, the
variableClearance , is introduced to detect the in-
stant of the transition to the state of the bodies contact.
The complementarity rules are also implemented here.

Remark 3.1 We have to perform the regularization of
the independent variable for the case of landing on the
constraint using variablesActive of the bodies and
the constraints objects outside these objects but in-
side the corresponding container of the whole MBSUC
model. In this case we have a possibility for the cor-
rect control over the regularization process because
the change of the independent variable should be to-
tal throughout the MBSUC.

At last, the models implementing the system of con-
straint equations complete a chain of inheritance for
the constraint classes. Namely two classes

SurfacesOfConstraintAcausalDifferential,
EllipsoidAndHorizontalPlaneDifferential.

have been constructed. First one doesn’t depend upon
specific type of the outer surfaces. The second model
implements a specific case of the ellipsoidal surface
and the plane as a surfaces of constraint.

4 Examples

Experimental computations and verification of the
models developed were carried out using a well known
example from classical dynamics: motion of heavy
body on/over the horizontal surface. Visual image of
the MBSUC model is presented in Figure 4.1.

Figure 4.1: Visual Model of MBSUC

The objectHorizontalSurface on the left hand
side of the figure represents model of the base body
describing a horizontal plane fixed inAF. The object

of the heavy rigid body is shown on the right hand side
of the Figure 4.1. And the model of total MBSUC for
our example has the following Modelica code

model MBSAcausalDifferential
· · ·
parameter Period TimeScale=1;
Period deltat(start=1);
Time t(start=0);

equation
· · ·
der (deltat) = 0;
der (t) = deltat/TimeScale;
when ConstraintSurfaces.Impact then

reinit (deltat, min (1,2*abs(
ConstraintSurfaces.relvn/
ConstraintSurfaces.relan)));

reinit (FlySlideRollBody.Active,
min (1,2* abs (ConstraintSurfaces.
relvn/ConstraintSurfaces.relan)));

reinit (ConstraintSurfaces.Active,
min (1,2* abs (ConstraintSurfaces.
relvn/ConstraintSurfaces.relan)));

end when ;
when ConstraintSurfaces.

StateIndicator > 0.5 then
reinit (deltat, 1);
reinit (FlySlideRollBody.Active, 1);
reinit (ConstraintSurfaces.Active,

1);
end when ;

end MBSAcausalDifferential;

To estimate an accuracy of the model developed we
performed a comparison of the results with ones for
the exact model of the hybrid automata built using
causal approach with the three instantiated objects
each corresponding to one state of the mechanical sys-
tem and having a structural complexity of the whole
MBSUC, see Figure 4.1.
The rigid body already considered in one of the exam-
ples of the paper [1] starts its motion from a position
suspended over the surface with the initial data

r(0) = (0,5,0)T , v(0) = (0.05,0,0)T ,
q(0) = (1,0,0,0)T , ωωω(0) = (0,−10,2)T .

(4.8)

Motion is simulated on time segment[t0, t1] = [0,150]
and consists of the several stages of flight alternating
by stages of sliding. Note that sliding followed by
rolling as energy decreases. During several decades
of seconds one can observe easily so called stick–slip
phenomena transferring finally to the pure rolling.
The results of simulation are presented in the Fig-
ures 4.2, 4.3, 4.4. The final part of the projection of the
trajectory for the pointPB of the ellipsoid correspond-
ing to the stick–slip phase is shown in Figure 4.2.
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Figure 4.2: Stick–Slip Oscillations, Contact Point Trajectory

An accuracy of the model is of our special interest.
The accuracy of computation for instants of impacts
and of transitions between the MBSUC states is a
causal point for the models of systems with impacts. In
our example the instant of the first transfer to rolling
at the beginning of stick–slip oscillations has a rela-
tive error of the order10−4. Such an error was ac-
cumulated after several thousands of impacts and sev-
eral transitions between states “Flight” and “Sliding”.
More accurate regularization of the independent vari-
able allows to achieve further reduction of the error. Of
course it needs considerable computational time in ad-
dition. For comparison of physical time variables de-
pending on the regularizing time for the models com-
pared see Figure 4.3. As one can see, physical times
almost coincide for the acausal and causal models. In
addition, it would be interesting to observe the initial
interval of the simulation corresponding to the several
stages of a decrementing bouncing of the body, see
Figure 4.4. Here we can see the screenshot of the body
while it perfoms one of jumps. The image of the fisrt
transfer from the flight mode to the mode of sliding is
presented here in details. One can see in this inserted
fragment the regularizing independent “time” counted

alongx-axis.y-axis represents the variableµ.

Figure 4.3: Physical Times Depending upon Regular-
izing Time

In the case of motion with a contact the switching be-
tween sliding and rolling is observed. For this case
the simulation was performed with the following ini-
tial data

r(0) = (0,1,0)T , v(0) = (0.05,0,0)T ,
q(0) = (1,0,0,0)T , ωωω(0) = (0,−2,2)T .
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Figure 4.4: Stages of Bouncing

During the time oft1− t0 = 150units and after several
hundreds of stick–slip oscillations the relative error ac-
cumulated for state switch instants was equal to10−11.
Thus the absence of impacts during the simulation im-
proves the quality of the model more than in million
times.
For the sliding/rolling mode the absolute error of de-
termination of the contact point does not exceed3 ·
10−5. It was observed that the error grows almost lin-
early. The error in determination of the position of the
point PB in the mormal direction is equal to2 ·10−15,
while for rolling the error of determination of the tan-
gent component of velocity of this point does not ex-
ceed10−7.
Let us consider now the motion of the homogeneous
body bounded by an ellipsoidal surface on the horizon-
tal plane [7]. The coefficient of the Coulomb friction
supposed to be equal tod = 0.01. Let us try to repeat
numerically the following experiment described qual-
itatively by A. P. Markeev.The body touches the hor-

izontal surface by its shortest semi–axis at the initial
instant. Let us put it in rapid rotation. Then the body
tends to the position in which it touches the plane by
its longest semi–axis.

In our example the semiaxes of the body are close one
to another:a1 = 1.2, b1 = 1, c1 = 1.3. Axes of outer
surface ellipsoid coincide with ones of central princi-
pal ellipsoid. Choosing the initial data as in (4.8) with
one exception:r(0) = (0,1,0)T one obtains the result
cited above: the ellipsoid masscenter “rises” progres-
sively from the height of minimal semi–diameter to
one of maximal semi–diameter, see Figure 4.5. The
angular velocity almost holds its direction with respect
to theAF, see Figure 4.6, blue (lower) curve. At the
initial instant this vector is directed along the mini-
mal semi–axis, red (middle) curve is its projection on
the corresponding axis of the body; while on the final
stage the angular velocity is directed along the maxi-
mal ellipsoid semi–axis, green (upper) curve.
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Figure 4.5: Center of Mass Altitude

Figure 4.6: Projections of Angular Velocity

5 Conclusions

Summurizing the results obtained while developing
the class library for the dynamics of the MBSUC let
us enumerate several relevant problems and their solu-
tions.
Problem 1: How one can implement the geometry of
the unilateral constraint?Solution: Use the system of
algebraic equations like (2.1).
Problem 2: How one can ensure the reliability of the
implementation of the constraint?Solution: Use the
differential form of the equations (2.1).
Problem 3: How one can implement impacts in
MBSUC in the acausal manner?Solution: Use the in-
depended algebraic subsystem of equations distributed
throughout the MBSUC model.
Problem 4: How one can implement the dichotomy
flight/contact? Solution: Use the complementarity
rule for the normal force of reaction and the derivative
of the normal relative velocity at the contact point.

Problem 5: How one can implement the dichotomy
slipping/rolling? Solution: Use the regularized tan-
gent force for the Coulomb friction.
Problem 6: How one can implement the exact “land-
ing” on the constraint?Solution: Use the regularizing
independent variable for the total model.
Problem 7: How one can implement switching be-
tween states of the constraint in the acausal manner?
Solution: Use theif clause in combination with the
state variable ofReal type. This variable is included
to corresponding algebraic loop. As a result the struc-
tural complexity of the total model doesn’t increase.

6 Acknowledgement

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, grants 02–01–
00196, SS–2000.2003.1.

References

[1] Kossenko, I. I., and Stavrovskaia, M. S., How
One Can Simulate Dynamics of Rolling Bod-
ies Via Dymola: Approach to Model Multibody
System Dynamics Using Modelica // Proceed-
ings of the 3rd International Modelica Confer-
ence, Link̈opings universitet, Link̈oping, Swe-
den, November 3–4, 2003, pp. 299–309.

[2] Pfeiffer, F., Unilateral Multibody Dynamics //
Meccanica, 1999, Vol. 34, No. 6, pp. 437–451.

[3] Novozhilov, I. V., Fractional Analysis : Meth-
ods of Motion Decomposition. — Boston:
Birkhauser, 1997.

[4] Routh, E. J., A Treatise on the Dynamics of a
System of Rigid Bodies. — London: Vol. 1,
1897.

[5] Ivanov, A. P., Dynamics of Systems with Me-
chanical Impacts. — Moscow: 1997. ISBN 5-
7781-0031-0.

[6] Dymola. Dynamic Modeling Laboratory. User’s
Manual. Version 5.1b — Lund: Dynasim AB,
Research Park Ideon, 2003.

[7] Markeev, A. P., On the Motion of an Ellipsoid
on a Rough Surface with Slippage. // Journal of
Applied Mathematics and Mechanics, Vol. 47,
Iss. 2, 1983, pp. 260–268.

Implementation of Unilateral Multibody Dynamics on Modelica

The Modelica Association 23 Modelica 2005, March 7-8, 2005




