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Preface

The first Modelica Conference took place October 2000 in Lund, Sweden. Since then, Modelica has
been more and more established as a preferred modelling language for complex multi-domain systems.
This is indicated by the high number of registrations from industry and science for the 4th Interna-
tional Modelica Conference which is held between March 7th and 8th 2005 at Hamburg University
of Technology (TUHH). But it is also indicated by the number of excellent papers submitted to the
program committee which made the task of selecting papers for oral and poster presentation very
difficult and, last but not least, by the exhibition during the conference at which around 10 companies
will present themselves. The proceedings contain the papers of the 60 oral presentations and 9 poster
presentations given at the conference. The ability of Modelica as a multi-domain simulation language
is demonstrated impressively by the various fields that are covered, e.g. digital electronic devices,
hybrid electric power trains, waste water processes or thermodynamic applications.

With the special features of the Modelica language, e.g. object-oriented modelling and the ability to
reuse and exchange models, Modelica has become – among other things – a further step towards of an
integrated engineering design process. In some fields Modelica is being used as a standard platform for
model exchange between suppliers and OEM’s, for example in case of vehicle air conditioning systems.

A key issue for the success of Modelica is the continuous development of the Modelica language by
the Modelica Association under strict observance of backward compatibility to previous versions. The
broad base of private and institutional members of the Modelica Association as a non-profit organi-
zation ensures language stability and security in software investments.

The Modelica Conference 2005 was organized by the Modelica Association and by the Department
of Thermodynamics of Hamburg University of Technology (TUHH), Germany. Together with the
entire team of the local organizing committee I would like to wish all participants an excellent and
fruitful conference.

Hamburg-Harburg, March 1, 2005

Gerhard Schmitz
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M. Otter, K.-E. Årzén, I. Dressler, DLR Oberpfaffenhofen, Germany; Lund Institute

of Technology, Sweden: StateGraph-A Modelica Library for Hierarchical State Machines 569
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Abstract

Fuel consumption and emissions are key issues in au-
tomotive development. An intelligent energy manage-
ment helps to improve both factors. Tools for develop-
ing new management strategies can be off-line simu-
lation as well as Hardware-in-the-Loop (HiL) simula-
tion. This paper gives an overview over a joint project
between Dresden University of Technology and the
BMW Group. In this project anEnergyLibrary
containing power train and electrical power net mod-
els is improved.

The paper will describe the thermodynamic
model of the internal combustion engine (ICE),
the alternator model, and the implemented
NeuralNetworkLibrary in more detail. On
the HiL test bench component measurements and new
energy management strategies for the electrical power
net can be tested.

1 Introduction

Legal regulations on fuel consumption and the rising
need of comfort and safety are the main issues in au-
tomotive development.

One main field of interest is the reduction of fuel

consumption by optimizing the auxiliary units, the
warm-up behavior of the internal combustion engine
(ICE) and the electrical power net [4].

The electrical energy management controls the en-
ergy generation, distribution and storage in the electri-
cal power net. It enhances the robustness of the system
and is capable of reducing the fuel consumption.

The interaction between the electrical power net and
the drive train occurs at the alternator. A rising de-
mand of electrical energy leads to an increased driv-
ing torque of the alternator and therefore to an in-
creased fuel consumption. The alternator’s torque de-
mand plays an important role in the dynamic behavior
of the ICE, especially at idle speed.

For fuel consumption the thermal behavior of the
ICE plays another dominant role. Between 10-20%
of the fuel during the New European Driving Cycle
(NEDC) is used for the warm up.

This paper describes some enhancements made to
the BMW model library used for energy flow pre-
diction. The models are derived from measurements
generated on an engine test bench, a Hardware-in-the-
Loop (HiL) test bench, and during vehicle testing.

The presented results were developed in a joint
project of Technische Universität Dresden and BMW
Group.
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2 Approach and Tools

The goal is to model the electrical power net, the aux-
iliary units, and the ICE including its thermodynamic
behavior using Modelica/Dymola.

The overall vehicle model consists of objects of
many different physical domains such as electronics,
mechanics, thermodynamics, hydraulics, pneumatics
as well as control systems and is described in section
3.1.

The model parameters are gained using different
measurement environments:

(i) on an ICE test bench the ICE itself and the auxil-
iary units are measured

(ii) in a test vehicle all internal car data (e.g. CAN),
electrical currents and voltages, pressures, tem-
peratures and torques of engine and auxiliary
units can be recorded.

(iii) HiL test bench for the electrical power net where
single components of the power net, especially
the alternator, can be examined

Using these test environments, realistic inputs for the
HiL test bench and model validation can be generated.

The HiL test bench is especially important since one
can efficiently test new components and control strate-
gies in real time. The interaction with other subsys-
tems in a car can be analyzed.

In real time environments high simulation speed is
crucial. Therefore the models were adapted accord-
ingly by eliminating unnecessary dynamics and expen-
sive computations. Most of the model behavior is rep-
resented using look-up tables or Neural Networks.

At BMW more and more system simulations are
carried out in object oriented simulation environments.
Modelica is currently in use for the simulation of the
electrical power net, the air conditioning, the fuel con-
sumption and hybrid drive trains.

3 Model

As mentioned earlier fuel consumption is the main fo-
cus of the simulations done in this project. In the first
stage the car is simplified to its longitudinal dynam-
ics. The model frame work, the thermodynamic en-
gine model, and the power net are described.

3.1 EnergyLibrary

The developed model library, shown in figure 1 is di-
vided into four main packages:

(i) DriveLine includes Engine , GearBox ,
Tank , Axles , andCargoSystems

(ii) DriveEnvironment includes Tracks ,
Driver , andBusSystem

(iii) AuxiliaryUnits include BeltDrive ,
ClimateUnit , HydraulicUnits , and
PowerNet

(iv) Blocks include non Modelica standard blocks

Each component model (e.g. the ICE) consists of
the following packages:

(i) Basis including templates for icons, connector
(e.g. rotational flanges, bus), and component spe-
cific sub models

(ii) BusSystem including the bus signals that the
component uses for its communication

(iii) Models including various types of models (e.g.
various warm up models). Those models can be
selected viaChoice .

(iv) Record which represents the parameter struc-
ture for the most commonly used models.

Figure 1: Library structure and vehicle model

The main model is assembled by theChoice
blocks of each component model. That way structural
changes in the model can be made comfortably.1 The
top level of the car model and the library structure can
be seen in figure 1.

1For example a change between automatic and manual
GearBox
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The Bus and Record structure are assembled in
a similar tree structure by instantiation. Thus the bus
signals are grouped after simulation in a concise tree
structure as shown in figure 2. We established the
same tree structure in the model library, the simulation
model, the parameters, and the bus system.

Figure 2: Simulation of the New European Drive Cy-
cle showing the structuredBus

The model parameters are managed by a parameter
database which also allows pre-processing.

3.2 Thermodynamic Model of an ICE

The temperature has a major impact on the behavior of
the ICE and the auxiliary units. To be able to simulate
the warm-up phase a thermodynamic model of the ICE
is necessary. Additionally several environmental con-
ditions and different auxiliary loads have to be taken
into account.

Torque Balance

An essential requirement of the model is the determi-
nation of the relevant torques taking into account dif-
ferent auxiliary and engine loads. According to [3] the
torque balance is given by the following equation:

0 = Tind−Tf ric −Taux−Te f f (1)

The indicated engine torqueTind is defined as the
possible drive torque which theoretically can be used
if the engine is mechanically free of losses.Te f f rep-
resents the torque used for the vehicle movement. Be-
side the losses caused by the engine frictionTf ric the

torque of the auxiliary systemsTaux has to be consid-
ered. The load torque of the auxiliary systems is deter-
mined for every relevant unit in separate models. Ad-
ditionally for each torque a temperature dependence is
included. These dependencies are caused by the tribo-
logical behavior.

Thermodynamic Behavior

The thermal behavior of an ICE is defined by its heat
capacities, heat transfers and thermal conductivities as
well as its surrounding conditions. The heat capaci-
ties can be divided into two major groups. There are
constant heat capacities which arise from engine con-
struction and varying heat capacities following from
fluid systems. For the latter ones the oil and the coolant
circuit are relevant. The oil temperature has a direct in-
fluence on the engine frictionTf ric . Therefore it plays
an essential role in ICE fuel consumption.

Although different thermodynamic libraries for
modelling fluid flow already exist in Modelica, none of
them seem able to be run on a real time platform. Due
to that a more basicFluidFlowLibrary was de-
veloped. All fluid systems are described by a station-
ary pressure drop model and defined as an incompress-
ible single medium. Because phase changing of the
medium appears only locally during standard driving
cycles (e.g. NEDC, FTP75) it is not taken into consid-
eration. This has negligible influence on the thermal
behavior of the overall system.

In the FluidFlowLibrary mainly TwoPort -
components are used. The connectors are reduced to
the variables: Pressurep, temperatureT and the flow
variables mass flow rate ˙m and heat flow ratėQ.

connector Port_A
Modelica.SIunits.Pressure p;
flow Modelica.SIunits.MassFlowRate mdot;
Modelica.SIunits.Temperature T;
flow Modelica.SIunits.HeatFlowRate Qdot;

end Port_A;

Besides to the two connectors for the fluid transfer,
a heat portHeatPort A from the standard Model-
ica library was inserted. For each of the control vol-
umes mass and energy balance equations are applied.
The internal energy∆U is calculated with the help of
the enthalpy flowsQ̇in, Q̇out at the connectors and the
heat losseṡQheat at the volume boundary. As a refer-
ence value the mean temperatureTmeanof the volume
is used. Work due to change of volume is not taken
into account.
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model volume
...
equation

...
//energy balance equation
dU=Qindot + Qoutdot + Qheatdot;

// heat transfer equations
Qindot = Port_A.mdot*cp*Port_A.T;
Qoutdot = Port_B.mdot*cp*Port_B.T;

//equations for heat loss
Qheatdot=HeatPort_A.Q_dot;
Tmean=HeatPort_A.T;

//equation for the internal energy
dU = m*cp*der(Tmean);
...
end heater;

The media qualities depending on temperature, e.g.
density, specific heat capacitiescp, are computed for
each volume separately. Either look-up tables or poly-
nomial functions are used for these calculations [6].

Figure 3: Thermodynamic network of the ICE model

Figure 3 shows a part of the thermodynamic net-
work model. It consists of several heat capacities
(i.e. oil, coolant, solid material of the engine) and
their heat transfers. The contact to the rest of the ICE
model and its environment is defined by the standard
HeatPorts , theBus connectors and the earlier de-
scribed ports for the fluid flows (orange). These con-
nectors allow the exchange of oil and coolant between
ICE and other components in the cooling circuit.

3.3 Electrical Power Net

The components of the electrical power net can be di-
vided into four parts:

(i) generators:alternator

(ii) storage devices:battery, double layer capacitor

(iii) converter: DC/DC converter

(iv) loads: seat heating, fan, driving light

Figure 4: Object diagram of a simplified power net

Figure 4 shows the model of a simplified power net.
TheLoads are modelled in three simple ways:

ohmic resistance the resistance is independent of
voltage and current

power sink the consumed power is independent of
voltage and current

current sink the consumed current is independent of
voltage

More effort is needed modelling storage and distri-
bution devices and power sources.

Alternator model

In a conventional power net the alternator is the only
source for electrical power. With regards to modelling
two aspects are of interest:

(i) Fuel consumption caused by the alternator

(ii) Computation of the charge-balance

(iii) Dynamic behavior at changing electrical loads
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The dynamic behavior of the generated current in-
fluences the voltage stability of the power net. It
also causes a dynamic torque which affects the ICE.
Close to idle speeds this torque causes unwanted dis-
turbances in the engines smoothness.

In modern alternators the so-calledLoad Response
Control is used to improve the engine smoothness. It
limits the slew rate of the generator current.

Figure 5: Model of an alternator

Figure 5 shows the connection between the thermal,
mechanical, electrical and control part of the alterna-
tor.

The alternatorCurrentController compares
the reference voltage and the actual voltage and con-
trols the current between the electrical pins.

Part of theCurrentController is theLoad Re-
sponse Controlimplemented employing a rate limiter:

model RateLimiter "Rate limiter"
extends Modelica.Blocks.Interfaces.SISO;
parameter Real RR

"Maximum rising slew rate" ;
parameter Real FR

"Maximum falling slew rate" ;
parameter Real Ts=0.01 "Sampling time" ;
Real x "auxiliary variable";

equation

if initial() then
y = u;
x = 0;

end if ;

der (x) = (u - y)/Ts;
der (y) = smooth (0, noEvent (
if der (x) > RR then RR else if der (x) < FR

then FR else der (x)));
end RateLimiter;

In order to determine the slew rate the input signal
has to be derived once. For discontinuous input func-
tions the derivation is not defined at all times. There-
fore we introduce the auxiliary variablex and the sam-
pling timeTs .

The link between the electrical and mechanical do-
main is realized employing a Neural Network. It eval-
uates the alternator torque in depending on its current
and revolution speed. TheMechanicalLosses
model includes all bearing friction and fan losses.

4 Neural Network Library

At system level mechatronic components mostly ex-
hibit strong nonlinear behavior. Often this behavior is
hard to describe in a mathematical way. Even if it is
described mathematically the models need a high com-
putational power and are not usable on a real time plat-
form. In this case another way of describing this be-
havior can be realized with the help of look-up tables
or Neural Networks [5]. In general Neural Networks
require less memory than look-up tables but employ-
ing lager networks the computational effort will rise.
The lower need of memory is of greater interest for
real time simulation.

To be able to use Neural Networks in Dymola a
NeuralNetworkLibrary was developed. It can
be used to simulate feed-forward networks with up to
two hidden layers.

Figure 6: Parameters of the Neural Network Model

In figure 6 the parameter window of a neural net-
work can be seen. The dimension of the Neural Net-
work is defined as an array nameddim . The user can
choose from zero to two hidden layers. Every layer
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has its own activation function. The weights and bias
values are loaded from a Matlab file during initializa-
tion of the process. The input and the output are vector
ports. The size of the vector depends on the number of
input and output neurons, respectively.

First tests were performed at a dSPACE system to
estimate the performance of the Neural Networks in
comparison to look-up tables. Therefore a real time
simulation was carried out on the HiL test bench de-
scribed in section 5. The look-up table in the genera-
tor model (figure 5) was replaced by a fully connected
Neural Network with two input neurons, one output
neuron and two hidden layers. The first layer consists
of 20 neurons, the second one of 10. As activation
functions the hyperbolic tangent was used.

Using the explicit Euler method for inline integra-
tion the computational need of the Neural Network is
only slightly higher than for look-up tables. But fur-
ther work needs to be done varying the size of the Neu-
ral Network and using different activation functions.

5 Dymola in a HiL environment

For measuring component parameters and testing
strategies for energy management a Hardware-in-Loop
(HiL) test bench was built. It is kept modular so that
the boundary between hardware and software can be
shifted in a certain range. With this concept it is pos-
sible to cut free the complex system of the electrical
power net to different degrees.

Figure 7: Schematic structure of the HiL test bench

In figure 7 a schematic of the test bench structure

can be seen. Two power sources are implemented.
On one hand there is a physical alternator driven by
an electric motor. On the other hand a programmable
current source can be used. To emulate the alternator
behavior the model described in section 3.3 is used.

A dual power net can be realized by using a sys-
tem of three busbars. This way various topologies can
be build up using power sources, storage devices and
power electronics.

Figure 8: Operating and monitoring the HiL test
bench with dSPACE ControlDesk

The HiL computer is based on adSPACE modular
hardwaresystem. The core of this system is aDS1005
where the models are computed on a 500 MHz Pow-
erPC. Further, thedSPACE expansion boxincludes
several boards for analog and digital signal I/O, CAN
interfaces and digital signal processing. The user in-
terface to the real time system is given by the software
dSPACE ControlDesk. In figure 8 a screen shot can be
seen. [1]

The task of thedSPACE systemis both to monitor
and control the HiL test bench and to simulate models
under real time conditions. An electronic controlled
load replaces the electrical consumer load. Its input
is derived from profiles measured in a test vehicle or
from the models described in section 3.3. The other
necessary input data to the HiL environment, e.g. en-
gine speed, surrounding temperature, control voltage
of the generator, are gained in a similar way either by
simulation or measurement.

The main goals for the HiL environment are:

(i) compare the alternator behavior to the alternator
model

(ii) implement the model of the ICE including ther-
mal behavior
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(iii) test energy management strategies

So far the step size for the integration at the real time
system is set to 1 ms.

Figure 9: Example of an HiL simulation result

As an example for HiL simulation figure 9 shows an
experiment using the alternator model. In this case the
components of the power net are the controlled load,
a real battery and the alternator model controlling the
electronic power source. As load current a measured
blinker current with an additional load step at 7 s was
taken. The slew rate of the alternator current was lim-
ited by the earlier describedLoad Response Control.
The difference between load and alternator current has
to be equalized by the battery current. During this time
the voltage drops from alternator voltage (13.5 V) to
the battery voltage (12.6 V).

6 Conclusions

The existing model libraries for automotive power
train and power net were extended for better thermal
engine modeling and electrical real time simulation.
The simulation platform enables us to develop new en-
ergy management strategies and test them under real-
istic conditions. For real time application the Model-
ica/Dymola models are included in a Simulink/dSpace
environment. First tests are done replacing commonly
used look-up tables by Neural Networks to reduce the
size of the real time code without generating computa-
tional overhead.

In automotive every day use the Modelica/Dymola
environment has proved to be a useful tool.
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Abstract 

Due to the increasing electric power demand of fu-
ture vehicles, problems may be expected with the 
voltage stability of the powernet. In conventional 
vehicles, control of the powernet voltage can be lost 
when the loads in the electric powernet request more 
power than can be supplied  by the generator. In that 
case voltage control of the powernet will be lost 
since the generator will not be able to follow the 
voltage setpoint. The voltage of the electric powernet 
will drop to and follow the battery voltage. This will 
go impaired with undesired voltage fluctuations re-
sulting in light flicker and blower motor fluctuations, 
which can be noticed by the vehicle occupants. This 
will have a negative effect on customer perception. 

This paper describes both physical plant models and 
control algorithms, which can be used for simulation 
of the electric powernet. By making use of the 
ModelicaVMA structure that has been set-up by 
Tiller et. al. in [1], a simulation model is set-up in-
cluding detailed models of: (i) a battery, (ii) genera-
tor, (iii) heated front windscreen and (iv) an internal 
combustion engine. In the case of de-icing the front 
windscreen during engine idle, simulations have 
been performed to investigate what the effect is of (i) 
engine idle speed control and (ii) load switching  
compared with the conventional situation. 

1 Introduction  

The average electric power drawn in a conventional 
vehicle, shows a rising trend over the years. This is 
on the one hand caused by the growing amount of 
electric comfort loads but also by the electrification 

of vehicle chassis functions, e.g. Electric Power As-
sisted Steering (EPAS) and Electronic Damping 
Control (EDC). Since the electric powernet will get 
an increasingly important function in the vehicle, 
electric load models will also become increasingly 
important for future vehicle simulations. That the 
Modelica language can be of great benefit in electric 
powernet simulations has already been shown by the 
author in [2], [3] and [4]. That Modelica is also suit-
able for control system development will be shown 
in an application for powernet voltage control during 
engine idle. Based on the ModelicaVMA structure, 
this paper describes physical models and control al-
gorithms, which can be used to investigate voltage 
stability of the electric powernet during engine idle.  

2 Powernet Voltage Stability  

Fig. 1 shows a schematic of the powernet of a con-
ventional vehicle in which the generator voltage is 
the only variable that can be actively controlled. 

 
Fig. 1 Powernet topology for a conventional vehicle in 
which only the generator voltage can be controlled 
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Dependent on the amount of requested electric 
power by the loads, two powernet states can occur: 

1. The powernet state in which the requested elec-
tric power is LOWER than the maximum that 
can be supplied by the generator. In this state 
the powernet voltage will be close to the voltage 
setpoint of the generator: in a conventional ve-
hicle the voltage setpoint (e.g. 13.7V) of the 
generator is above the open circuit voltage of 
the battery (12.7V). Therefore the battery will 
be charged continuously in this state.   

2. The powernet state in which the requested elec-
tric power is HIGHER than the maximum that 
can be supplied by the generator. In this state 
the additional requested power will be drawn 
from the battery. The saturated generator will 
not be able to follow the given setpoint and con-
trol of the powernet voltage will be lost: the 
powernet voltage will be determined by the bat-
tery. This will go hand in hand with voltage 
fluctuations which can be noticeable to the vehi-
cle occupants: e.g. light flicker, changes in noise 
generated by the blower fan. 

In conventional vehicles, the demand of electric 
power is usually highest during winter time when 
the engine is idling and the heated front screen is 
activated. The generator is usually saturated in this 
situation resulting in a loss of control of the power-
net voltage. This paper will investigate means to 
prevent loosing voltage control in this situation by 
using idle speed control or reducing the electric 
power to a load. 

 
Fig. 2   Battery model as described in [3] 

3 Battery 

Fig. 2 shows the battery model that has been de-
scribed by Surewaard in [3]. The issue with this 
model is that overcharging is not well described 
since the overcharging process is difficult to investi-
gate with impedance measurements. The first step 
that is taken in the improvement of the battery model 
is to include the mass transport processes, which 
have been described by Thele in [5]. Mass transport 
processes will have a significant effect on the equi-
librium voltage, also known as Open Circuit Voltage 
(OCV), of the battery. Detailed information on the  
Inclusion and research on the overcharging reaction 
is still in progress at the moment. 

For a lead-acid (PbA) battery the discharge reaction 
that occurs at the positive electrode surface is the 
reaction of sulphuric acid and lead dioxide into lead 
sulphate and water whilst consuming two free elec-
trons: 

OH2PbSOe2H3HSOPbO 24
--

42 +→+++ +  

The discharge reaction that takes place at the nega-
tive electrode surface, is that lead and sulphuric acid 
react to lead sulphate and two hydrogen protons, 
forming two free electrons: 

−++ ++→++ e2H2PbSOHHSOPb 4
-
4  

During charging above-mentioned reaction will take 
place in the opposite direction. 

The reasons for including mass transport processes 
in the battery model are the following processes: 

 

��ACID FORMATION/CONSUMPTION AND 
DIFFUSION  
During discharging, sulphuric acid is consumed 
at the contact surface of both the positive and 
negative electrode. During charging sulphuric 
acid is formed at the electrode surfaces, which 
are in direct contact with the electrolyte. The 
differences in concentration will result in mass 
transport (diffusion) of sulphuric acid. 

 

��CHARGE MIGRATION  
This is the movement of charged particles (ions) 
due to the electric field that exists between the 
positive and negative electrode. HSO4

- ions and 
electrons will be attracted by the positive elec-
trode, H+ protons will be attracted by the nega-
tive electrode.  
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3.1 Electrode Equilibrium Potential and Acid 
Formation/Consumption 

The equilibrium potential of the positive and nega-
tive electrode is dependent on the acid concentration. 
According to Bode in [6], the molarity of sulphuric 
acid can be calculated from the sulphuric acid con-
centration by: 

48
1006.2        

36
1017.2  

24
1055.3

3
1000.1

C

CCCm

⋅⋅

+⋅⋅+⋅⋅+⋅⋅=
   (1) 

in which C represents the acid concentration and m 
the molality. The electrode potential can now be cal-
culated by the following equations: 
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Acid formation/consumption at the electrode surface 
has been modeled with the following equations: 
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in which q+ and q- are the flows of acid ions, t+ the 
transfer number for cations, d the electrode thick-
ness, A the effective electrode surface, F the Faraday 
constant and i the current. 

The above-mentioned equations have been imple-
mented in a Modelica model for the positive and 
negative electrode of which Fig. 3 shows both top 
level icons.  

 

    
(a)       (b) 

Fig. 3  Electrode equilibrium potentials which are depend-
ent on acid concentration: (a) positive electrode, (b) nega-
tive electrode 

In the figures the lower connector is the 'concentra-
tion' connector which has been defined as: 

 

connector ConcentrationNode  

  Modelica.SIunits.Concentration C  

    "Concentration [mol/m3]"; 

  flow Real q(final unit="mol/s")  

    "Diffusive flow"; 

end ConcentrationNode; 

3.2 Electrode Porosity 

Both the positive and the negative electrode have a 
porous structure, thereby increasing the surface area 
of the electrode with the bulk electrolyte. Due to the 
reaction that occurs during (dis)charging, the poros-
ity of both electrodes will change. The maximum 
porosity of the electrode, i.e. the maximum amount 
of open space in the electrode, will be reached when 
the electrode is fully charged. Assuming the elec-
trode porosity to be dependent on the battery State of 
Charge (SOC) and having a volume change as func-
tion of the amount of discharged energy, the elec-
trode porosity has been described in a Modelica 
model. The top level icon of this model is displayed 
in Fig. 4a. 

 

    
(a)      (b) 

Fig. 4  Top level icon of the (a) electrode porosity model 
and (b) electrode-electrolyte diffusion model 

3.3 Acid Diffusion and Charge Migration 

For acid diffusion and charge migration, complex 
diffusion equations have been set-up based on equa-
tions described by Thele in [5]. These equations have 
been implemented in a Modelica model. The  Mode-
lica model, including all equations for acid diffusion 
and charge migration, is displayed in Fig. 4b. Three 
concentration connectors can be seen which from left 
to right represent (i) the positive electrode, (ii) the 
bulk electrolyte and (iii) the negative electrode. 
Since the diffusion processes are temperature de-
pendent, the model contains a thermal connector. 
The inputs to the electrodes are their specific poros-
ities, of which the model is discussed in the previous 
section.  
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3.4 Complete OCV Model 

By combining the submodels that have been de-
scribed in the previous subsections, the OCV model 
can be constructed, which is based on mass transport 
processes. This model is displayed in Fig. 5. 

 
Fig. 5   OCV model including mass transport processes 

The numbered submodels in Fig. 5 are a representa-
tion of: (1) battery parameters, (2) battery state in-
formation to be used for the porosity determination, 
(3) and (4) the equilibrium potential of respectively 
the positive and negative electrode, (5) the diffusion 
processes and charge migration, (6) and (7) the po-
rosity of respectively the positive and negative elec-
trode. Item (8) represents the top level icon. 

The battery model that is described by Surewaard in 
[3] is extended with the OCV model based on mass 
transport processes by defining it as a replaceable. 
The parameter window for the battery model, includ-
ing the replaceable OCV model, is displayed in Fig. 
6. The already 'OCV_Simple' model is extended by 
the model described in this paper: 
'OCV_MassTransportProcesses'. 

 

  
Fig. 6  Zoom of the parameter window of the battery 
model in which the OCV replaceable is highlighted  

4 Heated Front Windscreen 

A component in the electric powernet, which con-
sumes a significant amount of electric power and has 
a relatively long thermal time constant, is the electri-
cal heated front windscreen.   

 

 
 
Fig. 7   Electric heated front windscreen: the area that is 
heated 

The electric heated  front windscreen basically con-
sists of a sandwich of materials: a Polyvinyl Butyral 
(PVB) layer on which the tungsten heating wires are 
placed, sandwiched between two glass layers. A 
schematic of the layered structure is displayed in Fig. 
8. 

 
Fig. 8   Schematic overview of the different layers in an 
electric heated windscreen 

The two-dimensional heat transfer model that is set-
up for the electric heated windscreen is displayed in 
Fig. 9. Basically each material layer is modeled by 
taking the thermal mass in the center of the layer. 
The thermal mass is connected to the outer surface of 
the layer by it by two thermal conduction elements, 
each having half the thickness of the total layer. 

Apart from components of the Mode-

lica.Thermal.HeatTransfer library, two new 
components have been developed: (1) a thermal 
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mass representing the ice layer including the phase 
change from ice to water at 0°C, and (2) a thermal 
wire component, which converts electric power to a 
heat flow. The left and right thermal connectors in 
Fig. 9 represent respectively the inner and outer sur-
roundings of the vehicle. Heat transfer between the 
screen surface and the surroundings takes place via 
both convection and thermal radiation.  

 
Fig. 9   Electro-thermal model for the electric heated 
windscreen 

For the material constants and dimensions, use has 
been made of data supplied by the manufacturer of 
the heated screen and from literature. The model is 
validated by comparing simulated data with in-
vehicle measured data with the electric heated wind-
screen active. The windscreen temperature is meas-
ured with a thermocouple attached to the inner sur-
face of the windscreen (Fig. 10).  

 
Fig. 10   Thermocouple attached to the inner surface of 
the windscreen 

A measurement has been performed where the wind-
screen was initially at room temperature (approx. 
18.5°C). The measured voltage at the terminals of 
the windscreen is used as input for the model. The 
simulated current and temperature have been com-
pared with the measured current and temperature. 
The comparison of these results is displayed in Fig. 
11 (heated windscreen was active in the timeframe 
between 5 and 250 seconds). 

 

 
(a) 

 
(b) 

Fig. 11   Comparison between simulated and measured 
data of the heated windscreen: (a) temperature, (b) current 

It can be seen from Fig. 11 that the simulated results 
correspond well with the measured data. 

5 ModelicaVMA - Vehicle Idle Model 

For the simulations, use will be made of the Vehicle 
Model Architecture (VMA), which is based on the 
description by Tiller in [1]. Since we are interested in 
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the engine idle state of the vehicle, the top level 
VMA model can be simplified to the one displayed 
in Fig. 12. The idle speed model contains the follow-
ing physical plant and controller models: (1) driver, 
(2a) accessory drive, (2b) accessories controller, (3a) 
powerplant, (3b) powerplant controller, (4) transmis-
sion, (5a) electrical system, (5b) electrical system 
controller and (6) top level controller. The models of 
above-mentioned subsystems will be discussed in the 
following subsections. 

 
Fig. 12   Top level VMA model for the engine idle state 

5.1 Driver 

The driver subsystem is represented by item (1) in 
Fig. 12. Since the simulation will be performed with 
the engine idling, the driver subsystem will output a 
closed throttle position. 

5.2 Accessories 

The accessory subsystem and the accessory control-
ler are represented by respectively items (2a) and 
(2b) in Fig. 12. The accessory subsystem includes a 
table lookup based generator model and also in-
cludes the belt losses. The top level icon of the ac-
cessory subsystem is displayed in Fig. 13a. 

5.3 Powerplant 

The powerplant subsystem and controller are repre-
sented by respectively items (3a) and (3b). An exist-
ing Simulink based model of an engine including its 
controllers (e.g. idle speed controller), which is used 
for fuel economy simulations at Ford, is converted to 
ModelicaVMA. The top level icon of the powerplant 
subystem is displayed in Fig. 13b.  

 

 
(a)       (b) 

Fig. 13   Top level icons of (a) the accessory subsystem 
and (b) the powerplant subsystem 

5.4 Electrical 

The electrical subsystem and controller are repre-
sented by respectively items (4a) and (4b) in Fig. 12. 
The model of the electrical subsystem is displayed in 
more detail in Fig. 14 and includes the following 
models: (1) activation signal for the electrical wind-
screen, (2) switch of the electrical windscreen, (3) 
controllable PWM switch, (4) residual electrical 
loads, (5) battery, (6) heated windscreen and (7) top 
level icon of the electrical subsystem. 

 

 
Fig. 14   Electrical subsystem containing battery, 
switches, heated windscreen and residual electrical loads 

The strategy is to initiate the simulation with the 
heated windscreen inactive. After 3 seconds, the 
switch of the electrical windscreen will be closed so 
that it becomes active. The residual electrical loads 
are approximated by in-vehicle measured loads (hav-
ing the electric heated screen inactive): 55A from 0-
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100s, 40A during 100-200s and 20A after 200s. The 
reason for the high load current during the first 200 
seconds is that the glow plugs are active (Diesel en-
gine). 

5.5 Transmission 

The transmission subsystem is represented by item 
(4) in Fig. 12. For the idle speed simulations, it is 
modeled by having a closed clutch having the neutral 
gear engaged. The transmission subsystem includes 
both the engine and gearbox sided inertia and a table 
lookup model for the spinning losses in the neutral 
gear. The top level icon of the transmission subsys-
tem is displayed in Fig. 15a. 

 
(a)      (b) 

Fig. 15   Top level icons of (a) the transmission subsystem 
and (b) a top level controller implementation 

5.6 Top level Controller 

The top level controller is represented by item (6) in 
Fig. 12. Three top level controller models have been 
developed, each having a different voltage control 
strategy. The voltage control strategies will be dis-
cussed in the following section. The top level icon of 
on of the controllers is displayed in Fig. 15b. 

6 Voltage Control Strategies 

The top level controller, which is also known as the 
Vehicle System Controller (VSC), will control the 
idle speed of the engine, the voltage setpoint of the 
generator and if available the PWM frequency of the 
electric heated windscreen. Three control strategies 
will be investigated: 

6.1 Strategy 1 - Conventional 

Conventional 'strategy' where the idle speed is inde-
pendent of the saturation of the generator. The en-
gine idle speed setpoint will be 750 rpm.  

NOTE: the PWM switch as displayed by item (3) in  
Fig. 14 is not used in this strategy since it will not be 
available in a conventional vehicle. 

6.2 Strategy 2 - Idle Speed Control 

This strategy is based on the fact that the maximum 
generator output current can be increased if the idle 
speed is increased. The principle is displayed in Fig. 
16. When the idle speed would be kept constant at 
say 750 rpm,  the maximum output current will be 
approximately 70 A. When however the idle speed 
would be increased, the maximum generator output 
current also increases. Raising the idle speed above 
1500 rpm would no benefits for the generator dis-
played in Fig. 16. 

 

 
Fig. 16   Maximum generator output current as function of 
engine speed 

 

The strategy that is implemented is that if the vehicle 
is in idle, the engine idle speed is controlled to reach 
a generator saturation of 95%. The window in which 
the idle speed is allowed to be changed is limited by 
a lower boundary of e.g. 750 rpm and a upper bound-
ary of e.g. 1500 rpm (cf. Fig. 16). 

NOTE: the PWM switch as displayed by item (3) in  
Fig. 14 is not used in this strategy since it will not be 
available in a conventional vehicle. 

6.3 Strategy 3 - Pulse Width Modulation 

Pulse Width Modulation (PWM) switches can be 
added to specific electric loads in the powernet as 
has been proposed by for instance Graf in [7]. The 
powernet layout for this variant is displayed in Fig. 
17.  
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Fig. 17  Powernet variant in which next to the generator 
voltage also the electric power to a (group of) loads can be 
controlled 

By adding a controllable PWM switch, an additional 
control variable is introduced in the electric power-
net next to the generator voltage. By reducing the 
electric power flowing to (a group of) loads,  the to-
tal requested electric power can be controlled. In this 
way exceeding the maximum electric power that can 
be delivered by the generator can be prevented. Ac-
cording to Rienks [8], an approach is to add PWM 
switches to comfort loads, e.g. seat heating and 
screen heating, since these loads have a relative long 
time constant. Temporarily reducing the amount of 
electric power flowing to comfort loads will not af-
fect customer acceptance as badly as loosing control 
of the powernet voltage and by that cause for in-
stance light flickering.  

In strategy 3, the PWM switch to the electric heated 
screen is controlled in such a way that the maximum 
output current of the generator is not exceeded: the 
power flowing to the heated screen is reduced to 
prevent the generator to saturate and loose control of 
the powernet voltage. The engine idle speed setpoint 
is kept constant at 750 rpm in this strategy. The set-
point for the generator setpoint is set to 95%. 

7 Simulation Results 

One of the advantages of using the ModelicaVMA 
structure is the fact that all models can be redefined 
since they are defined as replaceable. The simulation 
results that will be described in this sections, have 
been obtained by making use of the ModelicaVMA 
structure with the subsystem and controller models 
from Section 5 and the control strategies from Sec-
tion 6. For the model parameters, use has been made 
of real vehicle data (Diesel engine, 120A generator 
and a 400W electrical heated front screen). A 12V 
lead-acid battery parameter set has further been used 
in the simulations: the initial battery State of Charge 

(SOC) is taken 70% and the initial temperature equal 
to that of the frozen windscreen: -3°C. 

For the simulations the initial condition is a vehicle 
that has a frozen windscreen (-3°C, 200µm thick ice 
layer). The electrical heated windscreen will be acti-
vated after 3 seconds after the simulation is initiated. 
The simulation will be stopped when the outer sur-
face temperature of the heated windscreen has 
reached 3°C. The complete simulation will take 
place with the engine in idle state. The output data of 
interest is (i) the cumulative fuel consumption, (ii) 
the voltage of the powernet, (iii) the engine idle 
speed and (iv) the time before the outer surface tem-
perature of the windscreen has reached 3°C. The re-
sults for the three different strategies are as follows: 

7.1 Voltage Stability and Generator Saturation 

 
(a) 

 
(b) 

Fig. 18   (a) Powernet voltage for the three different 
strategies, (b) generator saturation 

It can be seen from Fig. 18a that operating the elec-
tric heated windscreen with the conventional strategy 
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will result in loosing control of the powernet voltage. 
It can be seen in Fig. 18b that this is caused by the 
fact that the generator is saturated in this case. The 
amount of power requested by the electric powernet 
exceeds in the conventional case the power that can 
be delivered by the generator . Therefore the genera-
tor setpoint can not be followed and the powernet 
voltage will drop to the battery voltage. After 200 
seconds the glow plugs will become inactive and the 
generator is from this point on able to supply the to-
tal requested electric power and therefore follow its 
voltage setpoint. 

With the two other strategies (i.e. idle speed control 
and PWM control), the generator saturation can be  
controlled to 95% and therefore the voltage of the 
powernet can be maintained at 14.2V. 

7.2 Effect of Engine Idle Speed Control 

Since the second strategy makes use of engine idle 
speed control to increase the generator output, it is 
interesting to see the difference in the engine speed 
for the three strategies.  Fig. 19 shows this. Where 
the engine speed remains 750 rpm with the conven-
tional and the PWM controlled strategy, the engine 
speed with the idle speed control strategy is in-
creased to improve the generator output. The stepped 
decrease of the engine speed can be explained by the 
residual loads (cf. Section 5.4): 55A from 0-100s, 
40A during 100-200s and 20A after 200s.  

 

 
Fig. 19   The effect of engine idle speed control 

7.3 Effect of PWM Control 

As discussed in Section 6.3, adding a PWM switch 
to the heated windscreen can be used to reduce the 
load and therefore maintain powernet voltage stabil-
ity. Dependent on the amount of power requested, 

the generator saturation is controlled to 95% by 
changing the PWM frequency of the electric heated 
windscreen. Fig. 20 shows the simulated PWM fre-
quency. Again the steps are caused by the reduction 
of the residual loads (as also explained in the previ-
ous section). 

 
Fig. 20   Percentage of maximum load that the electric 
heated windscreen is operated with (PWM) 

7.4 Heating Performance and Fuel Economy 

Other factors of interest are the time before the tem-
perature of the outer surface of the heated screen has 
reached 3°C and how many fuel is used until this 
point is reached. Fig. 21 shows the temperature of 
the outer surface. It can be clearly seen that there is a 
significant difference between the three strategies: 
the strategy with idle speed control is the fastest (to-
tal time is 290 seconds), followed by the conven-
tional strategy (total time is 365 seconds) and the 
PWM controlled strategy (total time is 507 seconds). 

 
Fig. 21   Outer surface temperature of the electric heated 
windscreen. 

The cumulative fuel consumption during the heating 
of the frontscreen is displayed in Fig. 22. The gradi-
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ent for the idle speed control can be explained by the 
fact that the fuel consumption at higher engine 
speeds is larger (due to engine / transmission / gen-
erator losses). The total amount of fuel used is: 50 
gram for the conventional strategy, 52 gram for idle 
speed control and 69 gram for the PWM controlled 
case.  

 
Fig. 22   Cumulative fuel consumption during the heating 
process 

7.5 Summarized Results 

The following table summurizes the results from the 
previous subsections. 

Table 1   Summarized results  

 Conv. Idle 
speed 

PWM 

Stable voltage? (yes/no) NO YES YES 

Time to reach 3°C [s] 365 290 590 

Fuel used [g] 50 52 69 

 

The idle speed control is evidently the preferred so-
lution: no additional components are needed (as 
PWM switches). By controlling the idle speed, the 
voltage can be kept stable, the (time) performance of 
the heated windscreen can be increased and that all 
without paying a fuel penalty compared with the 
conventional strategy. 
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Abstract

The task of steering a vehicle is an exercise which is
usually considered hierarchically in terms of the two
subtasks path planning and path following. With the
driver in the loop some essential man dependent tasks
such as sensing, information processing, and motor
function affect the steering quality. In case of sim-
ulations, the same applies correspondingly for driver
models. In this paper the aim is to investigate vehicle
steering dynamics independent of any driver-related
properties. The path is therefore assumed given by a
reference trajectory together with a speed profile. The
steering angle which is necessary for exact or at least
approximate path following is sought after. This al-
lows for plausible comparative assessment of different
vehicle’s steering dynamics in terms of the demanded
steering effort for a certain maneuver. On the other
hand, this approach requires dynamic inversion of ve-
hicle steering dynamics which represents the main fo-
cus of this paper. Two vehicle models, the common
single track model and a detailed model from the Mod-
elica vehicle dynamics library are investigated. Since
exact inversion of the detailed vehicle model turns out
not to be feasible, approximate inversion is accom-
plished by means of a novel control structure called
inverse disturbance observer. Simulations of a double
lane change maneuver are conducted for illustration.
Finally, wavelet power spectra of the steering angle
signal are used for steering effort assessment.

1 Introduction

In the usual way of simulating vehicle models, a driver
module provides inputs to the vehicle in terms of the
steering wheel angle and gas/brake pedal position. As
a result of this forward simulation, a trajectory of the

vehicle is obtained. With inverse simulation of vehicle
steering dynamics for a given desired trajectory and
velocity profile, the aim is computation of the steering
wheel angle input required from the driver.

Reference trajectories may be defined in terms of the
curvature ρ as a function of the arc length λ. The ref-
erence trajectory of a double lane change maneuver is
presented as an example. For tracking the reference
path with a lateral displacement τ, instead of Carte-
sian coordinates a trajectory based coordinate system
(λ,τ) is employed. In section 2, the representation of
reference trajectories and the trajectory based coordi-
nate system are explained in detail. For developing and
investigation of the concept of vehicle steering dynam-
ics inversion, two vehicle models are considered: the
common linear single track model and a detailed vehi-
cle model from the Modelica vehicle dynamics library.
These models are introduced in section 3.

If some requirements like regularity and uniqueness
of solutions hold, inverse models may be obtained in
Modelica by simply providing equations for the out-
puts and removing an adequate number of equations
for the original inputs. The perfect inverse of the de-
tailed vehicle model from the Modelica vehicle dy-
namics library (using rigid linkages for the suspen-
sions) is easily achieved. However, it turns out that the
detailed vehicle model is non-minimum phase. There-
fore, the inverse vehicle model is unstable and can not
be simulated. To overcome this problem, as a trade-off
we use approximate inversion of models, such that the
resulting system is stable. For this purpose, a novel
high gain control scheme, the inverse disturbance ob-
server [1] is utilized. The inverse disturbance ob-
server combines exact inversion of a simplified model
as feedforward control and high-gain feedback for ro-
bust tracking performance. Simulation results for a
double lane change maneuver illustrate the effective-
ness of the applied approach in section 4.
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Steering dynamics of different vehicles may be com-
pared in terms of the steering inputs being necessary to
perform a specific maneuver. The objective is to estab-
lish a method which can be used to assess the steering
dynamics of vehicles with specific modifications like
active steering control. Therefore, in section 5 the dou-
ble lane change steering inputs are compared for two
single track models with significantly different load-
ing. For analyzing the steering efforts of the two ve-
hicles, wavelet transform is applied. Conclusions on
easiness or difficulty for a driver when driving these
cars can be drawn from wavelet power spectra.

2 Reference trajectories and coordi-
nate system for path tracking

For inverse vehicle simulations investigated in this pa-
per, the vehicle’s speed and a reference trajectory for
the vehicle’s position are given. The reference point
on the vehicle representing its position is assumed to
be located at the center of the front axle. With per-
fect inversion, this reference point exactly follows the
reference trajectory, otherwise the task is to make the
lateral displacement from the reference trajectory as
small as possible. Therefore, this problem is closely
related to the problem of path tracking for automatic
car steering.

2.1 Reference trajectories

In this paper, the reference trajectory is defined in
Cartesian coordinates (xre f (λ),yre f (λ)) as a function
of the arc length λ. Any reasonable trajectory of a ve-
hicle cruising at finite speed may be assumed contin-
uous and at least twice differentiable. With ρ(λ) and
φ(λ) denoting the curvature and the track angle respec-
tively, the following relations hold:




φ′
x′re f

y′re f


 :=

d
dλ




φ
xre f

yre f


 =




ρ
cos(φ)
sin(φ)


 (1)

Our approach is to start from a definition of ρ(λ) and
solve (1) for φ, xre f , and yre f using appropriate initial
conditions. See Fig. 1 for an exemplary definition of
ρ(λ) and the resulting reference trajectory (xre f ,yre f )
for a double lane change maneuver.
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Figure 1: Curvature (left) and reference trajectory
(right) for a double lane change.

2.2 Coordinate system for path tracking

For the mathematics involved with the path track-
ing problem, it is not expedient to describe the vehi-
cle’s position with Cartesian coordinates. Therefore,
rather a trajectory based coordinate system (λ,τ) is
employed, see Fig. 2. It consists of the arc length λ
referring to the point (xre f (λ),yre f (λ)) on the reference
trajectory which is closest to the vehicle and the lateral
displacement τ, also referred to as tracking error. That
is, τ is the signed closest perpendicular distance to the
reference trajectory.

������λ��������λ��

������������������

τ
λ

.

Figure 2: Vehicle position in trajectory based coordi-
nates (λ,τ).

A coordinate transformation between Cartesian co-
ordinates (xveh,yveh) and trajectory based coordinates
(λ,τ) needs to be accomplished. The unit vector
[−y′re f ,x

′
re f ]

T is perpendicular to the reference trajec-
tory and is oriented to the left hand side of the trajec-
tory. Hence, the distance between the position of the
vehicle and the reference trajectory may be written as

[
∆x
∆y

]
:=

[
xveh − xre f

yveh − yre f

]
= τ

[
−y′re f

x′re f

]
. (2)

The coordinate transformation can be done in the fol-
lowing way: Elimination of τ in (2) yields the nonlin-
ear equation

∆xx′re f +∆yy′re f = 0 (3)

which can be solved for λ.
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Using the fact x′2re f + y′2re f = 1 (see (1)) together with
(2) yields

τ = ∆yx′re f −∆xy′re f . (4)

Multiple solutions may exist for equation (3). Only
the closest solution where |τ| has its minimum value is
relevant and is to be selected. This ambiguity makes
evident that the introduced trajectory based coordinate
system is only suitable in a sufficiently narrow vicin-
ity of the reference trajectory. This assumption holds,
since accurate path tracking is aimed at.

Later, the coordinate transformation will be consid-
ered a part of the vehicle models. Linearization, as
may be necessary, is done in the following way. A vir-
tual object exactly following the reference trajectory
as defined in section 2.1 senses a lateral acceleration
given by

ayre f = ρ(λ) λ̇2 (5)

with λ̇ denoting the object’s speed. Under the assump-
tion of small tracking error τ and small chassis side
slip angle the lateral acceleration of a vehicle closely
tracking the reference trajectory with speed v (entail-
ing v ≈ λ̇) can therefore be represented by

ayveh = ayre f + τ̈. (6)

Hence,

τ =
1
s2 (ayveh −ayre f ) . (7)

2.3 Implementation in Modelica

During the simulation the actual value of λ needs to
be solved from equation (3) for each integration step.
This is automatically done by Dymola, provided that
xre f (λ), yre f (λ), x′re f (λ) and y′re f (λ) are known. There-
fore, in our Modelica model we provide look-up tables
depending on λ that contain values for xre f , yre f , and φ
each with the derivative w.r.t. λ. These look-up tables
are pre-calculated from (1) in Matlab, saved to mat-
files, and used in Modelica/Dymola for interpolation
at simulation time. According to our experience, the
selection of the proper solution of (3) does not cause
any problems since the solution for λ is continuously
and monotonically increasing along the followed ref-
erence trajectory.

A special problem occurs with the simulation of per-
fectly inverted vehicle models (see section 4.1). In

general, for inverse simulations executed in Dymola
the given output where required needs to be differenti-
ated one or multiple times w.r.t. time. The look-up ta-
bles we use, however, only provide derivatives w.r.t. λ
since the reference trajectory does not depend on time.
Therefore, if needed the time derivatives are supplied
by special functions1. They are calculated from the ac-
tual value of λ̇ and the corresponding derivatives w.r.t.
λ. If necessary, higher derivatives w.r.t. λ are supplied
in extra columns in the look-up tables. As an example
the Modelica code

dxdlambda = TableFunc.y(tableIDintx, 3,lambda);

is used to retrieve x′re f from the look-up table (referred
to by its identifier tableIDintx, 3rd column stores first
derivative) for the actual value of λ. This is the used
package:

package TableFunc
function y // here y means a generic output

input Integer ID, index;
input Real u;
output Real y;

external "C" y=
dymTableIpo1_my(ID,index,u);

annotation (derivative=ydot);
end y;
function ydot

input Integer ID,index;
input Real u,dudt;
output Real dydt;

protected
Real dydu;

algorithm
dydu :=

dymTableIpo_my(ID,index+1,u);
dydt := dydu*dudt;
annotation

(derivative(order=2)=yddot);
end ydot;
function yddot
... // analogous to ydot
end yddot;
function dymTableIpo_my

input Integer ID,index;
input Real u;
output Real y;

external "C" y=
dymTableIpo1_my(ID,index,u);

end dymTableIpo_my;
end TableFunc;

The C function dymTableIpo1 my provides the table
look up. It corresponds to dymTableIpo1 which can be
found in dymtable.c in the Dymola source directory.
Note the annotations. The standard way of differen-
tiating inputs from look-up tables is thus replaced by
use of the function ydot (yddot respectively) while ap-
plying the chain rule.

1The authors thank Andreas Pfeiffer (DLR) for his helpful sup-
port.
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3 Vehicle Models

Vehicle steering dynamics in this paper are explored
using two models with essentially different levels of
detail. Firstly, for basic considerations the very sim-
ple single track model is implemented in Modelica.
Secondly, for more advanced investigations, a detailed
vehicle model from the Modelica vehicle dynamics li-
brary is used. In both cases, the trajectory which nor-
mally is the output of a driving maneuver is defined
together with a speed profile and the necessary steer-
ing input is asked for. Therefore, both the reference
trajectory and the coordinate transformation as defined
in section 2 are added to the model description.

3.1 The linear single track model

The single track model [2] is a simple linear vehicle
model commonly used in the analysis and control
design of lateral and yaw dynamics. The wheels
of the each axle are considered lumped together in
the center of the vehicle. The roll, pitch, and heave
motions are neglected. In Fig. 3 the single track
model is illustrated. Its major variables and geometric

`r ` f

δ f�

r

v

βCG
Fr

Ff

Figure 3: Single track model.

parameters are

Ff (Fr) lateral wheel force at
front (rear) wheel

ψ yaw angle
r = ψ̇ yaw rate
β chassis side slip angle at

center of gravity (CG)
v speed, i.e. magnitude of

velocity vector at CG
` f (`r) distance from front (rear)

axle to CG
iL steering gear ratio
δ f front wheel steering angle
δS = iLδ f steering wheel angle

Linearizing the tire force characteristics lateral wheel

forces at the front and rear wheels can be written as

Ff (α f ) = µc f 0α f , Fr(αr) = µcr0αr (8)

with c f 0, cr0 being the tire cornering stiffnesses at the
front and the rear wheels, µ the road adhesion factor
and α f and αr the tire side slip angles at the front and
the rear wheels given by

α f = δ f −

(
β+

` f

v
r

)
, αr = −

(
β−

`r

v
r

)
(9)

The mass of the vehicle is m and J is the moment
of inertia w.r.t. a vertical axis through the CG. Under
the assumptions of small side slip and steering angles
and slowly varying velocity the linearized equations of
motion are

[
mv(β̇+ r)

Jṙ

]
=

[
Ff +Fr

Ff ` f −Fr`r

]
(10)

The lateral acceleration of the vehicle at the front axle
is

ayveh = v(β̇+ r)+ ṙ ` f . (11)

For linear considerations, (7) may be used for the lat-
eral position w.r.t. the trajectory based coordinate sys-
tem. Otherwise, the velocity of the vehicle’s CG is

[
ẋCG

ẏCG

]
= v

[
cos(ψ+β)
sin(ψ+β)

]
(12)

The front axle (i.e. vehicle reference point) position is

[
xveh

yveh

]
=

[
xCG

yCG

]
+ ` f

[
cos(ψ)
sin(ψ)

]
(13)

The single track model will be used later as a simple
substitute for the fully detailed standard vehicle dy-
namics model from the Modelica vehicle dynamics li-
brary [3] (which is parametrized as a BMW 3-series
car by default). The corresponding parameters for the
single track model were determined in [4] and they are
also used here: iL = 16.94, l f =1.0203m, lr=1.5297m,
m = 1482.9kg, J = 2200kg m2, c f 0 = 91776N/rad and
cr0 = 77576N/rad. Only dry road conditions are con-
sidered here, therefore µ = 1.

3.2 Detailed vehicle model

The vehicle dynamics library [3] of Modelica provides
models for vehicle dynamics simulation. It consists of
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a detailed mathematical model comprising the multi-
body differential equations. Since this library is freely
available, documented and well known to the Model-
ica user community, no further details are stated here.
In this paper the Modelica vehicle model described
in [4] is used. The standard chassis level 2 vehicle
model is completed by the simple power train model
and brakes. Furthermore, a PI speed controller sets an
adequate gas/brake pedal position and makes the vehi-
cle accurately follow a desired speed profile. Finally,
a wheel slip controller approximates the function of
an antilock braking system (ABS). In the sequel, this
model will be referred to as the detailed vehicle model.

4 Perfect and approximate inversion
of vehicle steering dynamics

The vehicle models used in this paper (see section 3)
are considered as SISO (single input single output)
systems with the steering wheel angle δS being the in-
put and the lateral displacement τ from the reference
trajectory being the output. The ideal conception of
the model inversion process (referred to as perfect in-
version) is to obtain a steering wheel angle signal such
that the lateral displacement τ is always zero. Simula-
tions executed with perfectly inverted models are de-
noted inverse simulations here. Inversion of the longi-
tudinal dynamics (i.e. speed) may in general be consid-
ered as well. Here, however, we focus on steering (i.e.
lateral) dynamics. Along the way, the vehicle speed
v is set or controlled to match a given profile v(λ) or
alternatively v(t). Hence, speed is rather considered a
set varying parameter than an input or output. If per-
fect steering dynamics inversion is not possible, ap-
proximate inversion is aimed at. That is, the resulting
lateral displacement τ and steering wheel angle error
respectively should be as small as possible.

For both models, single track model and detailed
model, we first try to achieve perfect inversion. As will
be shown, this is possible for the single track model. In
contrast, perfect inversion of the detailed model turns
out not to be feasible in terms of a converging simu-
lation. Therefore, a novel high gain control scheme
is applied to approximately invert the detailed model.
This approach may incidentally also be applied to the
task of high fidelity path tracking for real world auto-
matic car steering.

In the course of this section, simulations of the in-
verted models are conducted for the purpose of illus-

tration. Exemplarily, the double lane change maneuver
introduced with Fig. 1 is considered with a constant
speed of 20m/s .

4.1 Perfect inversion of the vehicle models in
Modelica/Dymola

The option of perfect inversion of Modelica models
has already been exploited in a number of applications
such as automatic generation of control laws for the
control of aircraft [5] or industrial robots [6]. Inverse
models may be obtained in Modelica by simply pro-
viding equations for the outputs and relaxing an ade-
quate number of equations for the original inputs. As
pointed out in [6], the derivation of the inverse system
equations may require to differentiate certain parts of
the model equations. Therefore, the model equations
need to be continuous and differentiable. Moreover,
since it may be necessary to the differentiate the given
output signals too, their time derivatives must exist and
be provided up to a certain order. Therefore, as ex-
plained in section 2.3, look-up tables for the trajectory
variables and their derivatives w.r.t. λ are provided in
the models together with functions to form the respec-
tive time derivatives.

With nonlinear models, for a given output not neces-
sarily any solution in terms of input functions does ex-
ist. On the other hand, multiple solutions may exist
for the same inverse simulation problem. So far, we
have not worked on these questions. We have rather
assumed conditions (i.e. moderate lateral acceleration)
which do not cause corresponding problems.

One necessary condition for perfect inversion is that
the considered input/output dynamics of the model is
minimum phase. Otherwise the inverted model is not
stable and therefore inverse simulation is not feasible.

4.1.1 Perfect inversion of the single track model

For investigating the perfect inversion of the single
track model, the implementation of its equations and
its parameters in Modelica as described in section 3.1
is employed. The model includes the reference tra-
jectory look-up tables for the double lane change ma-
neuver and the coordinate transformation (3),(4) intro-
duced in section 2. The set of equations is completed
by τ = 0 and v = 20m/s and thus the number of equa-
tions matches the number of unknowns. The model
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can be successfully translated and simulated. The re-
sulting front steering angle δ f is shown in Fig. 4. The
parameters of the light vehicle are those given in sec-
tion 3.1. For comparison, the simulation is repeated
with a heavy vehicle. Its parameters are the same ex-
cept for double values of mass m and inertia J.
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Figure 4: Front steering angle δ f for the double lane
change maneuver (v = 20m/s) obtained by inverse sim-
ulation of the single track model. Two parameter sets
are used: light vehicle and heavy vehicle. Also results
for the approximately inverted detailed vehicle model
(see section 4.2.2) are shown.

4.1.2 Perfect inversion of the detailed vehicle
model

The detailed vehicle model is inverted in the same way
by adding the equation τ = 0 and by setting the target
value for speed control to 20m/s. The steering wheel
angle is relaxed, i.e. any direct equation for driver
steering input is removed.

We attempted to invert models with different suspen-
sions. With the SimpleSuspension the translation of
the model was successful. However, the integration
in Dymola terminated 0.13s after start of the simula-
tion due to missing convergence of the corrector. With
the MacPhersonSuspension2 Dymola was not able to
differentiate some of the model equations, therefore,
this inverse model could not be translated successfully.
The last-mentioned problem was not investigated fur-
ther since we found out, that the detailed vehicle model
is non-minimum phase which causes stability prob-
lems at any rate when simulating its inverse. This is
also the reason why the inverse simulation using Sim-
pleSuspension did not converge.

For illustration of the non-minimum phase dynamics,
the pole-zero-map of the transfer function from steer-
ing wheel angle δS to lateral displacement τ was inves-
tigated. The transfer function was obtained by lineari-

sation about straight driving (x(λ) = λ, y(λ) = 0, δS =
0, r = 0, ψ = 0, τ = 0, λ̇ = v = 20m/s). The pole-zero
map reveals a fast zero at s ≈ 90 in the right half plane.
The corresponding non-minimum phase behavior can
be explained by the suspension construction of the
steered front axle. It can briefly be depicted imagin-
ing an idle vehicle at zero speed. If the steering wheel
is turned then the front end of the car moves slightly
to the opposite direction due to the suspension’s caster
characteristic. In normal drive operation, this effect
superimposes with the remaining vehicle steering dy-
namics and results in non-minimum phase behavior.
When inverting the model, the right half plane zero be-
comes a fast unstable pole which makes simulation of
the perfectly inverted model impossible. Therefore, in
the next section a stable approximately inverted model
will be generated using accurate path tracking control.
For this purpose, a novel control structure denoted in-
verse disturbance observer is employed.

4.2 Approximate inversion of the detailed ve-
hicle model

4.2.1 Inverse disturbance observer

The inverse disturbance observer (IDOB) was recently
introduced in [1] as a modification of the common dis-
turbance observer (DOB) structure. Basically, both
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DOB (see Fig. 5) and IDOB (see Fig. 6) are two degree
of freedom control structures that combine high-gain
and exact model inversion facilities in a simple config-
uration. The design parameters are an invertible nom-
inal model GN (G̃N respectively) approximating the
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plant dynamics G (which is assumed to be stable) and a
Q-filter which commonly has unity gain and low-pass
properties. Compared with DOB, in the IDOB struc-
ture the block positions of the plant G and the nominal
model GN are simply interchanged (which partly gives
a different meaning to the involved signals). There-
fore, with IDOB the inverted nominal model G−1

N is in
the feedforward part instead of the feedback as it is the
case with DOB.

DOB and IDOB structures are used for different pur-
poses. The aim of the traditional DOB is matching the
dynamics of the controlled system to a nominal model
GN . However, in case of IDOB the aim is matching the
closed loop dynamics to G−1. Therefore, the IDOB
control structure is especially applicable for dynamic
model inversion (in this case G represents the model to
be inverted) and output tracking problems (in this case
G represents a plant).

IDOB combines the facilities of feedforward control
using an inverted nominal model of the plant and high
gain feedback in a very simple structure while pre-
serving the advantages of each principle. In the IDOB
structure G−1

N acts as a feedforward control. The term
G−1

N (s) · yr(s) provides the main portion of the plant
input u(s) where yr is the setpoint for y. The subor-
dinate positive gain feedback loop containing the Q-
filter forces this approximate inversion signal to con-
verge to the perfect inversion signal and also provides
robustness to the inversion process due to its high gain
feedback feature.

The IDOB structure serves as an approximate model
inversion method for a model G if the relation between
the signal yr and the plant input u is considered:

u
yr

=
1

GN(1−Q)+GQ
(14)

Recall that Q is a low pass filter with unity gain. The
frequency interval between zero and the bandwidth
of Q is denoted the frequency operating domain of
the IDOB. In the frequency operating domain, Q → 1
holds and therefore, u → G−1 yr. At high frequencies,
the gain of Q tends to zero, therefore u→G−1

N yr which
at least provides the input signal based on the model
GN . In the case that G is non-minimum phase and
GN is a minimum phase approximation for G, then by
proper choice of the bandwidth of Q the stability of the
IDOB system can be ensured. In practice, the band-
width of Q will be chosen according to a compromise
between (robust) stability and (robust) performance.

It can be concluded from (14) that for approximating

perfect model inversion u = G−1 yr one of the follow-
ing two criteria would be sufficient:

Q → 1 or GN → G (15)

The IDOB structure combines the facilities of both
high gain (subordinate loop with Q → 1) and inversion
with feedforward control GN → G in the same struc-
ture. Also it is important to notice that with the IDOB
structure, the approximate inverse of the model G is
obtained without inverting the model explicitly.

On the other hand, considering y as the output of the
system, IDOB becomes a plant controller for output
tracking:

y
yr

=
G

GN(1−Q)+GQ
(16)

In the frequency operating domain, Q → 1 holds and
therefore, y → yr i.e. good output tracking is achieved.

Due to its similar structure, the IDOB holds the known
robustness properties of the disturbance observer in
terms of disturbance and measurement noise rejection.
Hence, the sensitivity (S) and complementary sensitiv-
ity (T ) functions are the same as with DOB:

S =
y
d

=
GN(1−Q)

GN(1−Q)+GQ
(17)

T =
y
−n

= 1−S =
GQ

GN(1−Q)+GQ
(18)

Within the IDOB frequency operating domain (Q →
1), disturbances are attenuated (S → 0). For high fre-
quencies (Q → 0), noise is attenuated (T → 0).

4.2.2 Application of IDOB for approximate inver-
sion of the detailed vehicle model

As was shown in the last section, the IDOB needs a
nominal model GN . For approximate inversion of the
detailed vehicle model by means of IDOB, the single
track model is adopted as nominal model. It is eas-
ily invertible as already demonstrated in section 4.1.1.
The actual single track model parameters (see section
3.1) were determined for good approximation of the
detailed vehicle model [4].

However, the IDOB may not directly be applied to
approximately invert the whole vehicle model since
IDOB requires a stable plant but the vehicle dynam-
ics with steering wheel angle δS as input and lateral
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Figure 7: Path tracking control with IDOB.
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Figure 8: Lateral acceleration control
with IDOB.

displacement τ as output involves two integrators, see
(7). Based on (5)-(7), for approximate inversion of the
whole detailed vehicle model we adopt a hierarchical
control structure according to Fig. 7:

ays = ayre f − (Kd s+Kp)τ (19)

ayveh = GIDOB ·ays (20)

A subordinate high bandwidth IDOB is used to make
ayveh → ays. The Q-Filter is chosen a first order low-
pass filter with a 0.03s time constant. An outer PD
control loop with lower bandwidth compensates for
the remaining tracking error τ. In the IDOB structure,
henceforth only the stable part of the vehicle dynam-
ics with output ayveh is considered. ay,s is the set point
for the inner IDOB loop and GST M represents the sin-
gle track model adopted as nominal model which cor-
responds to eqns. (8)-(11) . Note that the speed pa-
rameter of G−1

ST M is scheduled with the actual speed of
the detailed vehicle model. δS is the steering wheel
angle signal which is in the focus of interest. The
reference lateral acceleration ayre f may be considered
as a known external disturbance. Therefore distur-
bance feedforward compensation is applied according
to Fig. 7. The resulting transfer function to τ is

τ
ayre f

=
GIDOB −1

s2 +GIDOB (Kds+Kp)
. (21)

Assuming that the bandwidth of the IDOB transfer
function is sufficiently high (GIDOB → 1), the band-
width and damping of the outer PD control loop may
directly be affected by the PD parameters which are
chosen as Kd = 12, Kp = 36.

Fig. 8 shows a simulation result of the approximately
inverted detailed vehicle model performing the dou-
ble lane change maneuver. The results are presented
in terms of the actual vehicle lateral acceleration ayveh

which well tracks the reference lateral acceleration

ayre f by virtue of the proposed IDOB based control.
Remarkably, in this simulation the absolute value of
the lateral displacement τ is less than 1.5mm (not de-
picted here). The steering wheel angle obtained is
shown in Fig. 4 and can be well compared to the light
vehicle single track model.

5 Comparative assessment of the
steering dynamics using model in-
version

In order to track a given trajectory with a given veloc-
ity profile, different vehicles potentially need differ-
ent steering efforts. Therefore, using the inverse sim-
ulation results, steering dynamics of different vehicles
may be compared in terms of the required steering ef-
forts.

To illustrate our approach, the light vehicle and the
heavy vehicle from section 4.1.1 are compared. The
steering angles of these two models necessary to per-
form the double lane change maneuver with a constant
speed of 20 m/s were given in Fig. 4. As it may be
seen in this figure, the magnitude of the heavy vehicle
steering angle is larger than that of the light vehicle
during the maneuver. Moreover, especially in the time
interval ca. [3s,6s] it is recognizable that the heavy ve-
hicle needs to be steered slightly earlier than the light
vehicle to follow the reference trajectory. That is, the
look-ahead-time the driver needs to drive the heavy ve-
hicle is larger compared to the light vehicle.

In the remainder of this section a method is established
to quantify the conclusions mentioned above on the
magnitude and look-ahead-time. Wavelets are used for
appropriate time-frequency analysis of the steering an-
gle signals.
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Figure 9: Wavelet power spectrum of the light
vehicle steering angle using Morlet wavelet func-
tion.
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Figure 10: Wavelet power spectrum of the heavy
vehicle steering angle with Morlet wavelet func-
tion.

5.1 Wavelet transform

Time-frequency analyses map the time domain sig-
nals into a two dimensional representation of energy
versus time and frequency. Wavelet transform is a
time-frequency analysis method that breaks a signal
down into its constituent parts, wavelets, for analy-
sis. Wavelets are oscillatory, scalable functions which
are non-zero only within a limited spatial and Fourier
regime. In the continuous wavelet transform, which is
used in this paper, a wavelet is translated (time-shifted)
through the signal. At each instant (i.e. time grid point)
it is compared with the signal by means of evaluating
the time integral of their product. This procedure is re-
peated for a grid of wavelets with different time scales.
As a result, coefficients representing the similarity be-
tween sections of the signal and the scaled wavelet
are produced. More detailed information on wavelets
and wavelet transform may be found in [7], [8]. The
wavelet transform returns a time-scale representation
of the signal instead of the time-frequency representa-
tion. The scale is proportional to the reciprocal of the
frequency. Large scales correspond to small frequen-
cies and vice versa.

The single track model steering angle signals from
Fig. 4 are now compared in terms of wavelet power
spectra. At every instant, the time-scaled wavelet that
locally best matches with the steering signal yields the
maximum wavelet power spectrum value. Therefore,
the local frequency content of the signal can be esti-
mated from the scale value at which a local maximum
occurs.

5.1.1 Wavelet transform of the steering angle sig-
nals

One of the basic problems in wavelet transform is
choosing the appropriate wavelet function for the anal-
ysis of a given signal. In the wavelet transform of the
steering signals, Morlet wavelet function is used, since
it is recommended [9] for the analysis of time signals
with smooth variations. In Figures 9 and 10 wavelet
power spectra (WPS) of the steering angles of the light
and heavy vehicles are given, respectively.

The two WPS are quite similar in terms of the scale
and time locations of the local maxima, i.e. both sig-
nals have similar frequency contents at corresponding
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Figure 11: Wavelet power spectrum of the light vehicle
steering angle (black lines) and eavy vehicle steering
angle (gray lines) with Morlet wavelet function.
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instants. However, almost throughout the entire time-
scale domain, WPS of the heavy vehicle steering angle
has higher power values compared to the light vehicle.
This shows that the heavy vehicle needs more steer-
ing amplitude compared to the light vehicle all along
the maneuver. This result coincides with the previous
observation in the time-domain.

In Fig. 11 both WPS’s are drawn in the same 2-D
plot to make the differences between them better visi-
ble. The time of the local maxima can be more easily
detected in Fig. 11. The power contour lines of the
heavy vehicle steering angle are shifted to earlier in-
stants by about 0.14s-0.18s compared to the light ve-
hicle. This shows that the look-ahead-time needed to
steer the heavy vehicle is correspondingly larger than
for the light vehicle.

Using continuous wavelet transform with the Morlet
wavelet function we are thus able to quantify the con-
clusions we already made from the time-domain plot
of the steering angles. Another aspect in the compar-
ison of the steering efforts is the frequency content of
the signals. In Fig. 11 it may be noticed that there
are mainly two accumulations of local maximum scale
values which are at scale values 14 and 35. The scale
values 14 and 35 corresponds 0.58 Hz and 0.23 Hz
respectively which are frequencies that prevail in the
signals. From Figs. (9, 10 it may be noticed that the
steering angle of the heavy vehicle contains relatively
higher power values at scale 14.

In other words, the heavy vehicle has to be steered
with higher amplitudes, with a relatively larger portion
of high frequencies and earlier (i.e. with more look-
ahead-time) than the light vehicle. Hence, we con-
clude that the heavy vehicle is more difficult to drive.

6 Conclusions

Exact inversion of simulation models in principle is
supported by Modelica/Dymola. However, it may be
the case that models do not comply with the require-
ments to make inversion feasible. If so, approximate
inversion may be an expedient way to still achieve use-
ful results. High fidelity path tracking was demon-
strated by means of the inverse disturbance observer
based control. This provides a pretty accurate approx-
imation of the steering angle signal which would re-
sult in perfect tracking. The time-scale wavelet power
spectrum of the steering angle signal is an adequate
basis for assessment of the steering effort.
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Abstract 

Modelica is used for the analysis of different kinds 
of thermal storage system for applications in power 
plants and process industry. The analysis includes 
concepts using sensible heat storage media, latent 
heat systems and steam accumulators. The tempera-
ture range for these systems is between 200°C – 
400°C, the maximum thermal power is 100MW. For 
the various storage systems physical models are im-
plemented in Modelica. Modelica is also used for 
system analysis simulating the interaction of the 
storage unit with the other components. The results 
of this system analysis help to improve the efficiency 
y of storage systems significantly. 
Keywords:thermal energy storage; solar power 
plant; steam accumulator 
 

1 Introduction 

Thermal energy storage systems are a promising op-
tion for improving the efficiency of power plants and 
process heat utilization in industry. These systems 
represent an additional tool for energy management 
in thermal processes by bridging the gap between 
demand and availability of energy. At the present 
time the range of proven storage systems for provid-
ing thermal energy at temperatures exceeding 100°C 
is limited. Various solutions have been proposed, the 
selection of a concept strongly depends on the char-
acteristics of the process. The aim of current research 
project is to develop storage systems for commercial 
applications. For three different basic storage con-
cepts Modelica is used to identify the interaction of 
the storage unit with the other components of the 
systems. Using models from the library TechThermo 
Modelica proves to be an effective tool for the analy-
sis of the dynamics of energy storage systems. 

2 Storage systems for solar thermal 
power plants 

2.1 Storage systems using sensible heat 

Solarthermal power plants use concentrated solar 
insolation to drive a thermodynamic power cycle [1]. 
Today’s commercial systems use trough shaped mir-
rors to heat a synthetic oil flowing in absorber pipes 
located in the focus line (Figure 1). At temperature 
up to 390°C the heat transported by the oil is used to 
generate steam to drive a turbine. The total electric 
capacity of these parabolic trough power plants op-
erated in California is 350MW, by continuous opti-
misation the costs for electricity have been reduced 
to 0,14US$/kWh, so parabolic trough power plants 
are the most economic system for large scale genera-
tion of electricity from solar energy. 

Figure 1: Parabolic trough collectors at solar test 
center near Almeria, Spain. 
 
In recent years significant research activities have 
been initiated in Europe to improve the parabolic 
trough technology to promote a market introduction 
in areas like the Mediterranean region. Important 
components for increasing the efficiency of these 
solarthermal systems are systems for the storage of 
thermal energy. These storage systems help to reduce 
the dependence on the course of solar insolation. 
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Figure 2: Schematic of parabolic trough power plant 
with integrated storage unit 
 
One storage concept is based on sensible heat storage 
in solid media [2]. A tubular heat exchanger is inte-
grated into the storage volume. During the charge 
process, hot oil from the solar collectors is used to 
heat up the storage mass; during the discharge cycle 
cold oil enters the storage unit and is heated up. 
Modelica is used for the simulation of the storage 
unit [3]. The results provide the basis for the design 
of a storage test facility and are applied for the de-
velopment of operation strategies. This proves to be 
an ideal application of Modelica since 
 

− the system combines a detailed physical 
model (spatial discretized storage unit) 
with less detailed models for the power 
cycle and the solar collectors 

− Modelica allows continuous and dis-
crete event modelling which is neces-
sary for the analysis of the transition 
from charging to discharging 

− the characteristic duration of a 
charge/discharge cycle is in the range of 
24 hours; the computing time needed by 
Modelica is less than 0.1% of the simu-
lated time interval. 

− the analysis requires modifications of 
the structure of the power plant. The 
graphical interface of Modelica allows a 
quick variation of the number and inter-
action of components. 

− although the storage unit represents a 
non-conventional component, it can be 
modelled by combination of well 
known fundamental physical processes; 
the extent of required additional model-
ling is small 

 
TechThermo was used for the modelling of the stor-
age unit integrated in the parabolic trough power 

plant. More than 90% from the lines forming the 
source code the complete model were taken from 
TechThermo; the additional modelling mostly de-
fines characteristics of the charge/discharge process. 
Figure 3 shows the first model level representing the 
complete power plant with the three main compo-
nents and a control unit that defines the mass flows 
in the system. The focus of the analysis lies on the 
storage model. Due to economic aspects low cost 
materials like concrete are used as storage mass. 
Since these candidate materials usually exhibit low 
values for heat conductivity the temperature of the 
storage mass is not homogenous. 
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Figure 3: Main components of the Modelica model 
of parabolic trough power plant with integrated 
storage unit 
 
Figure 4 shows the model of the storage unit: the 
system is assumed to be composed of parallel tubes 
surrounded by storage material, the radial tempera-
ture distribution and the flow field inside the tube 
should be identical for all tubes at the same axial 
position. Since characteristic lengths of the storage 
unit are in the range of about 500m the assumption 
of a radially symmetric temperature distribution 
around the tubes is necessary to avoid a significant 
increase in computing time resulting from a three 
dimensional calculation of the temperature inside the 
storage mass. The errors resulting from this assump-
tion seem to be acceptable. The storage tube is dis-
cretized in axial direction. Modelica offers the decla-
ration of arrays of components which are intercon-
nected, spatial discretization is done by connecting 
models for a storage segment of length dz in series. 
The number of elements depends on the length of the 
storage unit and varies between 50 and 100. The 
build up of the model of the storage segment is 
shown. The model is composed of a model for the 
fluid volume, the tube and the surrounding storage 
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material, heat is transferred between these three 
models in radial direction. There is also a heat and 
mass flow in axial direction to the neighbouring 
segments. The model for the surrounding storage 
material includes a spatial discretization in radial 
direction to account for the limited thermal heat con-
ductivity of the storage mass. 

L

da

da

di
da

 
Figure 4: Physical storage model composed of par-
allel tubes discretized in axial direction 
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Figure5: Cut-out of the model of a single pipe of the 
storage system discretized in axial direction by se-
rial connection of models for a pipe segment 
 
Figure.5 shows the internal build up of the model for 
the fluid volume: the model is composed of a com-
ponent including the conservation laws for mass and 
energy, two models calculating friction pressure loss 
and a model for the convective heat transfer between 
fluid and tube wall. These components are completed 
by a property model providing the correlations be-
tween the thermal state variables. 
 
The storage model was used to identify the influence 
of material and geometry parameters and provide the 
basis for an economic optimisation. Figure 6 is an 
exemplary diagram for the time course of tempera-
ture at various radial positions in the storage mate-
rial. The simulated time interval includes a charge 
cycle, a break and a discharge cycle. 
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Figure 6: Example for results of storage simulation: 
temperature of storage material at various radial 
positions 
 
The energy provided by the storage unit during dis-
charge is used to generate electricity, so the analysis 
has to consider the transformation of heat into me-
chanical work by the Rankine cycle. The Rankine 
cycle demands heat at different temperature levels, 
the temperature of the oil flowing back to the storage 
unit is also dependent on the temperature of the oil at 
the exit of the storage unit. Modelica was used for 
the simulation of the complete power plant including 
storage and solar collectors. Figure7 shows the elec-
tric energy provided during the discharge process for 
different configurations of the storage unit. The total 
storage mass remains constant. The Modelica results 
show that an optimised operation strategy can lead to 
an increase of storage capacity of about 200%. This 
improvement is achieved by an adjustment of the 
storage unit to the specific requirements of solar col-
lectors and the power cycle [3]. 
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Figure7: Example for system simulation: electric 
power provided by the power plant during the dis-
charge process. 
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The identification of this option to reduce the in-
vestment costs for the storage unit was mainly possi-
ble due to the simulation results.  
 

2.2 Storage systems using latent heat storage 
media 

Solarthermal power plants using thermal oil as heat 
transfer medium in parabolic trough absorber pipes 
have been optimized in recent years, a further pro-
gress demands the modification of the basic princi-
ple. The direct steam generation (DSG) in the ab-
sorber-pipes improves the efficiency of the parabolic 
trough technology by eliminating the synthetic oil 
and the heat exchanger and increasing the maximum 
process temperature [4]. The estimated reduction in 
electricity generation costs is in the range of 25%. 
 
In DSG systems more than 50% of the thermal en-
ergy is needed for the evaporation process which 
takes places at nearly constant temperature. Regard-
ing second law efficiency, a DSG system must be 
able to store and release thermal energy at nearly 
constant temperature, sensible storage systems can’t 
be used. Instead, the utilization of latent heat from 
the melting / solidification process seems a promis-
ing concept for constant temperature storage sys-
tems. 
 
First concepts for latent heat storage systems a simi-
lar to the sensible heat storage systems using con-
crete: a heat exchanger is embedded in the storage 
material (phase change material - PCM). Instead of 
the thermal oil, steam flows in the heat exchanger. 
Modelica is also used for the initial analysis of the 
PCM –storage system. The first model is a modified 
version of the model for sensible heat storage: the 
concrete storage material is replaced by the model 
for the PCM storage material, the thermal oil in the 
pipe volume is replaced by a steam flow. Due to the 
reuse of already existing models, the development 
time for the first model of the PCM storage model 
could be reduced significantly. 
 

3 Steam accumulator systems 

Due to its high volumetric heat capacity and low 
mass specific costs water represents an ideal storage 
medium. Unfortunately, it can’t be applied under 

atmospheric conditions at temperatures exceeding 
100°C. In order to extend the application range of 
water based thermal storage system, water was 
stored in pressurized vessels to increase the satura-
tion temperature. These storage systems are called 
steam accumulators since usually they are intended 
for supplying saturated steam [5]. 
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Figure 8: Cross section steam accumulator 
 
Figure8 shows the cross-section of a steam accumu-
lator. Most of the volume is filled by the liquid phase 
that is covered by the saturated steam phase at the 
top of the vessel. 
Both phases are in thermodynamic equilibrium. If 
the steam is discharged directly from the accumula-
tor, steam is produced by evaporation from the boil-
ing liquid part. The latent heat of evaporation is cool-
ing down the content of the storage vessel. This leads 
to a new thermodynamic equilibrium and accord-
ingly to a lower pressure. To charge the accumulator 
steam is brought into intimate contact with the water 
content, in order to distribute the heat, released from 
the condensing steam, uniformly throughout the liq-
uid. 
 
The main parts of a steam storage installation are: 

- Storage vessel for holding the storage medium 
- Devices for charging and discharging the 

steam 
- Accessories for carrying out the storage opera-

tion 
- Regulators for the automatic control of the 

storage installation 
 
Storage Vessels 
The production costs of the vessel are the most im-
portant item in the total cost. For this reason the de-
sign of the storage vessel is central to the layout of 
the installation as a whole. The best shape provides 
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minimum weight, is simplest to produce and takes up 
the least floor space. From considerations of strength 
the storage vessels are best made circular in cross-
section, i. e. their basic shape is that of a cylinder. 
The ends are elliptic or hemispherical in shape. In 
practice an average length-to-diameter ratio of 4 has 
been found to be the best. 
 
3.1 Charging and Discharging Devices 
 
Indirect steam accumulators use a liquid as the stor-
age medium, so that the steam must be condensed to 
be stored. This can be achieved by blowing it into 
the liquid contained in the accumulator. The incom-
ing steam bubbles condense in the liquid or pass into 
the steam space, depending on the thermodynamic 
equilibrium in the vessel. The bubbles which rise to 
the steam space increase the pressure and lead to a 
higher saturation temperature, so that the next bubble 
might condense. To use the entire storage content, 
the charging process requires circulation. Ruth in-
vented a method that consists of nozzles which turn 
the flow of steam upwards. The nozzles are sur-
rounded by a circulation pipe, wherein the water 
flows upwards. The minimum temperature loss is 
composed of the difference between the steam space 
and the uppermost liquid layer and the difference 
between the saturation temperatures due to the addi-
tional pressure of the water at lower depths. Depend-
ing on the accumulator pressure and the steam intake 
there is a certain depth for the nozzles which mini-
mizes the overall temperature loss. To avoid intro-
ducing charging steam into the storage vessel itself 
an external condenser and evaporator can be used. 
 
3.2 Accessories 
All storage installations require efficient thermal in-
sulation to reduce cooling losses to an economic 
level. The fittings on the pressure vessel itself are the 
safety valve, the anti-vacuum valve and the blow-
down valve. The thermal expansion of the vessel can 
be considerable in all directions and simultaneous 
adjustment must be provided in the piping by smooth 
or curved pipe bends or by bellow-type compensa-
tors. Measuring instruments for indicating the charg-
ing state in the accumulator are of special impor-
tance. 
 
3.3 Regulators 
To maintain a certain state in the accumulator or in 
the piping system regulation by valves is required. 
The regulator can be acting as a reducing valve, 

opening with falling pressure in the downstream con-
trolled piping. It can also be acting as an overflow 
valve with increasing pressure in upstream controlled 
piping. 
 
Figure 9 shows the Modelica model for the varying-
pressure accumulator. The central part of the model 
is the vessel. In the vessel the mass and energy bal-
ance for an open control volume is solved. The 
volumetric and caloric properties are calculated 
within the equation of state model that is connected 
to the vessel model via a thermal state connector. All 
connectors are defined in the TechThermo library. 
To represent the mass of the vessel shell a heat ca-
pacity is connected due a thermal resistance to the 
vessel. The pressure loss of the mass flow during 
charging the accumulator is represented by two 
models. The first is used to calculate the static pres-
sure increase below the water line in the vessel. The 
second model computes the pressure loss of a flow 
due friction with a coefficient called Zeta. 
 
3.4 Simulation Model and Results 

Mass flow
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Pressure loss
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Mass flow
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Pressure loss
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Figure 9: Modelica model of steam accumulator 
 
 
3.5 Mass and energy balance in the vessel 
The energy equation for a control volume that relates 
energy and mass flows has following form 
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If we assume that the changes in kinetic and poten-
tial energy are zero and there is no external work we 
obtain an equation for the internal energy of the con-
trol volume 
 

Qmmmh
dt

dU
outoutinin

&&& +⋅−⋅=  

 
Conservation of mass means that the change of mass 
in the control volume must equal the difference be-
tween the mass entering the system and the mass 
leaving the system 
 

outin mm
dt
dm

&& −=  

 
The specific internal energy in the control volume 
consists of the internal energy of the liquid part and 
the internal energy of the vapour part 
 

vapliq uxuxu ⋅+⋅−= )1(  

 
with the steam quality x in the following form 
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3.6 Thermophysical properties of steam 
The volumetric and caloric properties are calculated 
with the Soave-Redlich-Kwong cubic equation of 
state, the departure function for the cubic equation of 
state, the Antoine saturation pressure correlation and 
the enthalpy of the ideal gas. The results are within 
an error of 5 %.  
A closed system that consists of a liquid and its va-
pour in thermodynamic equilibrium has 1 degree of 
freedom. So if e.g. the temperature is known the 
pressure, the enthalpy, etc. can be calculated in the 
following way. 
For a known temperature the pressure is given by the 
Antoine pressure correlation 
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With the known temperature and the calculated pres-
sure the specific volume of the liquid part and the 

vapour part is received from the Soave-Redlich-
Kwong cubic equation of state 
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by rearrangement to the normal form 
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and using Cardano’s method. R and b are material 
dependent constants. a(T) is a temperature dependent 
variable. 
The enthalpy is estimated with the departure function 
for the Soave-Redlich-Kwong cubic equation of state 
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and a polynomial equation for the enthalpy of the 
ideal gas 
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For the enthalpy of the liquid part the results are not 
satisfying. A better approach is to calculate the latent 
heat of evaporation and subtract it from the enthalpy 
of the vapour. The latent heat of evaporation is re-
ceived from the Antoine vapour pressure correlation 
in combination with the Clausius-Clapeyron equa-
tion 
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The differentiation between the state of superheated 
steam and the state of wet steam is realised by an if-
clause.  
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if (x > 1 and p < p_sat) then 
    x = 1; 
else 
    p = p_sat; 
end if; 

 
 
If the steam is superheated the steam quality x is 
fixed to 1. Else the system pressure is calculated with 
the saturation pressure correlation. 
 
3.7 First Results 

Figure 10: Temperature and pressure rise in steam 
accumulator during charging process 

In Figure 10 first simulation results of the varying-
pressure accumulator model are shown. The vessel is 
charged with superheated steam at a temperature of 
about 550 Kelvin and a pressure of 10 bar. The ini-
tial temperature of the vessel is 373 Kelvin. If the 
vessel is in thermodynamic equilibrium the tempera-
ture of the vessel will not exceed the saturation tem-
perature belonging to the pressure in the vessel. As it 
can be seen, limiting for the charging procedure is 
the pressure of the superheated steam. A bigger 
amount of energy could be stored if an indirect 
charging device is used. 
 

4 Conclusions 

In particular the results of the system analysis of 
storage units prove to be a very useful tool for the 
optimization. For a selected application, the thermal 
energy provided by the storage system must be 

evaluated regarding the requirements of the specific 
process. Often, the duration of a charging / discharg-
ing cycle often exceeds durations of 24h. The capa-
bility of Modelica to simulate efficiently the tran-
sient behaviour of systems over such periods offers 
an important option for optimization.  
Further development will also include steam accu-
mulator with integrated phase change material. This 
concept is intended to increase the storage capacity 
of steam accumulators. Here, most of the needed 
models are already available from the current simu-
lation projects. 
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Abstract

In this paper the modelling of a direct-evaporating
two-stage cooling plant with the refrigerant ammonia
(R717) will be described. The plant model is used to
determine the power consumption as well as the pos-
sible heat reclaim to the domestic hot water system of
the plant. In a sensitivity study important control pa-
rameters of the plant are evaluated for electricity, water
and natural gas consumption. One characteristic oper-
ating point is investigated in an exergy-analysis [1, 2]
to find potential for energy savings.

Keywords: Refrigeration, Exergy-analysis, Heat re-
covery, Ammonia, R717, Two-stage system

1 Introduction

Probably the largest application for industrial re-
frigeration is cooling and freezing of food. Large
plants are needed to provide refrigeration throughout
all seasons of a year covering all production steps
during the processing, storage and transportation.
Most of the plants are built in a direct-evaporating
architecture where the refrigerant is evaporated in
each cold storage or consumer. In contrast to that,
indirect evaporation with a secondary cooling agent is
used for air conditioning systems in large buildings.
The reason for this is a lower pressure loss for liquid
media in extensive pipework.

Historically, ammonia (R717) is one of the best
known refrigerants in industrial applications and
it has suitable properties like a high evaporation
heat at moderate densities and a range of feasible
saturation pressures at common working temperatures
(especially with regard to low temperature applica-
tions). An economical advantage is its low price in

comparison to other refrigerants. Drawbacks are the
flammability and toxicity. Experiences go back to the
19th century whenDavid Boyle (1873) and laterCarl
von Linde (1876) developed the first compression
chillers using ammonia. The chiller created byLinde
was used in breweries for cooling beer.

Since industrial refrigeration plants are operated
many hours per year the energy consumption is
relatively high and therefore capital investment for
increasing the efficiency returns faster than in plain air
conditioning plants which are just seasonally used. A
dynamic simulation is carried out because of the high
refrigerant and water capacity of the plant.

2 Refrigeration Plant Topology and
Functioning

In order to provide cooling capacity at two temper-
ature levels (-10◦C and -35◦C) the compression of
the working fluid is separated into two stages: The
high pressure (13.5 bar/2.91 bar) and the low pressure
(2.91 bar/0.9 bar) cycle, displayed in Fig. 1. The
low pressure compression provided by two screw
compressors (“Booster”, 1→ 2) can be operated
independently while one high pressure compressor
is always needed to reject the waste heat over the
condensers. Therefore, a higher cooling capacity is
always necessary on the high pressure side with three
screw compressors installed (3→ 4). The waste heat
is mainly rejected to the ambience by evaporative
condensers, which incorporate air and water for
evaporative cooling (5→ 6,7).

Since there is a high demand for domestic hot water
(DHW) in the plant during production times (mass
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Figure 1: Simplified plant schematic including the refrigeration and domestic hot water system

flow rates are as high as 8 kg/s) it is convenient to
recover waste heat by cooling compressor oil and high
pressure gas in a water-cooled excess heat exchanger
(4→ 5) and a water-cooled condenser (5→ 8). Those
heat exchangers (HX) are of shell and tube type.
Following German domestic water ordinance the
heat exchangers have to be cooled indirectly to avoid
a contamination with ammonia in case of leakage.
Subsequently, the condensate flow is fed into the high
pressure receiver (V=2 m3, 8 → 9) where it can be
tapped for expansion or cooling the low stage and high
stage screws (9). The latter compressors (3→ 4) just
draw liquid ammonia when the cooling water temper-
ature is too high to ensure an oil temperature of 48◦C.
Like oil the liquid ammonia may be injected into the
suction side of the compressor to decrease the outlet
temperature of the compressed gas. To remove the oil
fraction from the superheated refrigerant vapour, an
oil separator for each compressor is necessary which
is also used as a tank storage.

Unlike in one-stage refrigeration systems, the ex-
panded refrigerant is first stored in a phase separator
(V=11 m3, each) to remove flash gas. This component

is essential in order to supply pure liquid medium to
the pumps and evaporators of each stage. The sepa-
rating vessel on the intermediate pressure level (10,13
→ 3,12,14) is equipped with an intercooler because
of the superheated low stage gas which needs to be
cooled down to saturation conditions before it can
be compressed again by the screws of the second stage.
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Figure 2: p,h-diagram for R717 of the two-stage re-
frigeration system – Arabic numerals with regard to
Fig. 1
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In applications with temperatures below 4◦C a defrost
system has to be applied to each cooling coil which
is in contact with (humid) air. For this purpose
superheated refrigerant tapped before the excess HX
is used occasionally by switching a valve at each
evaporator.

The total cooling capacity of the screw compressors is
847 kW on the low stage (-35◦C) and 2308 kW on the
high pressure side whereof 1461 kW are available for
-10 ◦C consumers. The rated power consumption of
the compressor motors sums up to 200 kW for the
Boosters and 693 kW on the high stage. Accordingly,
the evaporative and water-cooled condensers have a
cooling capacity of 3910 kW (incl. desuperheat HX)
at a saturation temperature of +35◦C.

The capacity control of the system is realised by a
variable valve in the screw compressors which can
throttle the effective mass flow rate at constant speed.
The lowest continuous working point is limited to
10 % of the rated capacity. Below that operation point
the motor is driven in an on-off procedure. Internally,
the oil flow is adjusted so that a constant oil inlet
temperature can be provided. The mass flow rate of
oil is almost of the same magnitude as the refrigerant
flow to ensure a sufficient lubrification, sealing and
cooling. All compressors are organised in a load
dependent cascade, operating as many machines as
needed.

In an analogous manner the three evaporative con-
densers are enabled in an pressure dependent cascade
at operating points ranging from 9 to 12 bar. At
low pressures, the spray water pumps are activated
followed by the ventilation of the cooling towers. The
mass flow rate through the parallel condensers and
cooling towers is adjusted naturally since a lower heat
transfer rate leads to higher pressure losses due to the
rising resistance in one branch.

The refrigeration process is also shown in a logarith-
mic p,h-diagram for NH3 in Fig. 2.

3 Boundary Conditions and Mea-
surements

Since the cooling demand is changing dynamically the
plant is not driven continuously but in a typical load
profile (see Fig. 4) which is dominated on the low pres-
sure side (-35◦C) by shock-cooling of food entities

(2250 hours/a) and on the medium pressure side by
cooling storage rooms at -10◦C (8760 hours/a) (see
Fig. 3). The load profile of the low temperature con-
sumers varies between 30 and 1100 kWth and for the
normal cooling between 100 and 2300 kWth. Thanks
to the data measurement of the plant’s operator the
hourly power and water consumption (see Fig. 4) as
well as the product flow of the plant is known and it is
considered as boundary conditions for the system sim-
ulation. Since the unknown cooling requirement is an
important input variable of the load dependent simula-
tion it has to be calculated from known and assumed
variables like the power consumption and the product
flow. On the low temperature side (LT, 16→ 17) the
refrigeration load can be estimated by the following
equation:

Q̇0, LT = ṅprod ·11 kJ+ Q̇0, aux (1)

where ṅprod denotes the flow rate of product. Each
product entity has a heat capacity of 11 kJ in the corre-
sponding temperature range andQ̇0, aux stands for the
smaller amount of additional refrigeration which av-
erages 30 kW. The refrigeration load for room cool-
ing Q̇0, MT (12→ 13) at an evaporation temperature of
ϑ0 =-10 ◦C results from the following equation

Q̇0, MT = Pel ·COP− Q̇0, LT (2)

applying an average coefficient of performance
COP=3. Despite the fact that the peak load of both
stages sums up to 3,400 kW (see Fig. 3) their occur-
rence is separated. The highest total load is not larger
than 2,450 kW.

Time [h]

Figure 3: Annual load duration curve for refrigeration

Not available are ambient conditions for that time,
so that weather data from a test reference year of the
corresponding region in Germany has been used to
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Figure 4: Typical cooling requirement (t.) and DHW
consumption profile (b.)

calculate the performance of the cooling tower model
(temperature and relative humidity as inputs). The
temperature of the fresh water was assumed to change
in a sinusoidal way between 10◦C at the beginning of
spring and 13◦C in late summer.

The mass flow rate of consumed domestic hot water
(E,F,G) is also dynamically changing. The highest
flow rates occur at the beginning of each production
day (see Fig. 4). Those days are contemporaneously
characterised by a high cooling demand on the low
temperature side because of the necessary product
cooling. This fact combined with a considerable water
demand during production times results in a very
worthwhile potential for heat recovery. On the other
hand the mass flow rate of water in the meantime is
not high enough to provide a sufficient condensation
and cooling capacity.

Important for an economical analysis of an existing
plant are the energy and media prices which are listed

below:

• Electricity cost: 70e/MWh (Compressors, cool-
ing towers, pumps),

• Gas price: 35e/MWh (DHW supply),

• Fresh water cost: 0.89e/m3 (Cooling towers),

• Charge for waste water: 2.29e/m3 (Cooling tow-
ers).

4 Modelling of Plant and Compo-
nents

First of all it should be pointed out, that the modelling
in this case was focused on the simulation of the
refrigeration plant with the integration of the heat
recovery. The models for hydronic systems have been
supplied by the model libraries ofHKSim [3, 4, 5].
Pfafferott has shown that a dynamic simulation of
mobile refrigeration systems is possible [6]. He used
Modelica for modelling of thermohydraulic elements
integrating dynamic energy and mass balances and a
quasistatic impulse balance. Unfortunately, such de-
tailed component models are not suitable for complex
systems, especially when long simulation periods are
investigated. The typical period in the current project
is one week and more in order to detect improvements
and present them in a financial suitable resolution.

When applying the Finite Volume method in fluid
modelling it is important to have a medium property
model for all technical relevant states. This is given by
a fundamental equation of state which was elaborated
by Baehr andTillner-Roth for a few important refrig-
erants [7] also including R717. The two-phase region
has to be modelled by polynomial functions which de-
pend on one thermodynamic state variable (T or p).
It is known that the simulation of the gaseous and
two-phase region can be rather efficiently performed,
when the densityρ (or the specific volumev, resp.)
and the temperatureT are used as states and inputs
to the highly non-linear equations. The dimensionless
Helmholtz-function is defined as:

Φ := f (T,v) · 1
RT

. (3)

Provisions have to be made with regard to the cal-
culation of liquid state properties. In this region the
simulation may become stiff since small changes (or
even integration failures) in temperature at nearly
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Figure 5: Plant model integrating the two stage refrigeration cycles, cooling water circuit and fresh water tank

constant density result in large pressure gradients.
Those gradients lead to small system time constants
due to the linkage of momentum and mass and energy
balance. This is one reason why a state variable
selection of pressurep and specific enthalpyh is
generally preferred. However, with those states an
iterative calculation ofT and v is necessary during
the simulation because the complex property func-
tions can not be transformed symbolically, yet. In
order to optimise the simulation also with respect to
simulation speed it was decided to use a component
related formulation of the balance equations in this
project especially regarding components containing
liquid refrigerant (e. g., refrigerant pumps and other
hydraulic elements). One important and simplifying
assumption is, that industrial plants are operated
more or less continuously even though with variable
utilisation factor. Therefore, heat and mass dissipation
is not taken into account. From this fact follows that
the feed ducts of the evaporators are always passed
through with liquid medium. For those elements the
incompressible formulation of the mass and energy
balance [4] may be used with a constant specific heat
capacityc =4,500 J/(kg·K) and a constant density of
ρ =650 kg/m3.

Very important for achieving a fast and stable simula-
tion is also a component related momentum balance
which should be as simple as possible. A momentum
balance is always needed when a mass shift inside the
system due to pressure gradients has to be calculated.
In other words: It can be expressed ideally and more
efficient if the mass transfer is guarded by a superior
control system. For example, the mass flow through
the expansion valve of each stage is set in order to
realise a constant liquid fill level in the following
phase separator.

The mass flow rates through the parallel passes of the
condenser and cooling towers just depend on the pres-
sure loss across each branch (in steady state always
the same value) which is defined by hydraulic pres-
sure drop correlations. For the quasistatic momentum
balance follows:

0 = pin− pout−∆ploss (4)

∆ploss = ∆p100·
(

ṁ
ṁ100

)2

· ρ100

ρ
. (5)

All parameters indicated by 100 in Eq. 5 refer to one
characteristic operation point. The density factor can
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not be neglected when the liquid fraction is variable
or a dry out of the heat exchanger is possible (here:
condenser). This is often the case in the actual plant
when the cooling water temperature rises due to a low
domestic hot water consumption.

Moreover, component models which show a phase
change like condensers and evaporators should not be
separated into multiple volumes to avoid too many
events during simulation. A promising approach could
be a Moving-Boundary-Model [8] although it was
not implemented in this work because of the frequent
dry out of the condenser and the load dependent
evaporator model (̇Q0 is an input variable).

The heat transfer rate from the refrigerant to the liquid
water in the water-cooled condenser is calculated by a
quasistatic efficiency calculation (P1-NTU) from [9].

Q̇liq = P1 ·Cmin ·
(

T liq
in −T liq

out

)
, C = c· ṁ (6)

P1 =





2

1+ Cmin
Cmax

+

√
1+ Cmin

Cmax

2·coth

(√
1+ Cmin

Cmax

2·NTU
2

) ,

Cmax> 0 & Cmin
Cmax

< 1 & Cmin > 0 .

1

1+coth
(

NTU√
2

) ,

Cmax> 0 & Cmin
Cmax

>= 1 & Cmin > 0 .

(7)

Since the specific heat capacity at constant pressurecp

is equal to infinity in the two-phase region, a crossing
function has to be implemented realising a “chatter-
free” solution when liquid or vapour content is high.
Good experiences were made with a tanh-function
changing its value and derivation steadily at vapour
qualitiesx =0. . . 0.05 andx =0.95. . . 1. The value of
the function is multiplied with the property value for
the specific heat capacity of the property model.

The compressors are modelled in a Super-Model
approach integrating the base compressor model, an
oil separator, the water-cooled oil heat exchanger
(fixed properties for liquid oil) and the auxiliary liquid
ammonia injection (see Fig. 6). Instead, the booster
model incorporates an oil cooling heat exchanger
permanently fed with ammonia.

A determining factor for the power consumption of the
plant is the efficiency of the compressor. The so called
coefficient of performance (COP) mainly depends on

Base compressor
model

Oil separatorOil separator

Generic efficiency
model for ammonia

Oil cooling hx

Liquid R717
injection

Electricity
On/off

Throttle

Cooling water ports

Refrigerant
inlet

Liquid ammonia
inlet

Figure 6: Diagram layer of a high pressure screw com-
pressor model with integrated oil separator, oil cooler
and ammonia injection

the part load control (part load factorϕ) and the ther-
modynamic properties of the refrigerant as well as
the thermodynamic states in the suction and discharge
chamber. The latter mainly result from the actual heat
transfer of all components in the cycle. With regard to
this plant the suction (indexsuc) and discharge (index
dis) pressure is defined by the capacitive component
models (e. g., the excess heat exchanger and the phase
separator in the high pressure cycle, see Fig. 5). In or-
der to calculate the power consumption the mentioned
thermodynamic variables are considered in the calcu-
lation of the total efficiency of the compressor.

COP = fpl

(
∆p,ϕ

(
psuc, pdis,

ṁ
ṁmax

))

· fth
(
psuc, pdis,Q̇

nom
0 ,Pnom

el ,ηmech
)

(8)

The part load functionfpl may be derived from man-
ufacturer data or from literature [10]. For the calcu-
lation of the rated performance (indexrat) at variable
suction and discharge pressures (fth) a determination
of the refrigerant’s properties (specific enthalpiesh,
entropiessand densitiesρ) is carried out. In contrast to
the ratedperformance atfull mass flow rate andvari-
able pressures thenominalperformance denotesone
rated operating point atconstantpressures.

fth =
h0, in−h0, out

his
dis−hsuc

·ηis ·ηmech (9)

ηis =
ṁrat · (his

dis−hsuc
)rat

Pnom
el ηmech

(10)

ṁrat =
ρsuc

ρrat
suc

· ṁnom (11)
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ṁnom =
Q̇nom

0

h0, in−h0, out
(12)

his
dis = h(s(hsuc, psuc) , pdis) (13)

It is assumed that the isentropic efficiency of the com-
pression at nominal mass flow rate ˙mnom is nearly con-
stant for all operating points. In addition, the available
enthalpy of evaporation is assumed to be ideally used.

h0, in = hliq(pc) (14)

h0, out = hvap(p0) (15)

At very low cooling requirements (10 % oḟQrat
0 ) the

control system of the compressors stops the continous
operation and activates a two-point control with a
minimum mass flow rate.

For achieving an efficient simulation only the largest
capacities in the cycle were modelled by control
volumes. Those components are the phase separators
(each 11 m3) and the high pressure receiver (2.3 m3).
Additionally, the high pressure heat exchangers were
also modelled by using dynamic mass and energy
balances in order to stabilise the solution of the
non-linear system of equations during simulation.
The modelling of the intercooler functionality of the
phase separator on the intermediate pressure level is
realised by mixing of all inbound enthalpy flows and
computing saturated enthalpies for all outgoing mass
flows.

A very demanding component from the modelling
point of view is the evaporative condenser which
has three fluid fluxes moving in different directions
(Refrigerant: horizontal, air: bottom-top, water: top-
bottom). A detailed model is described by [11, 12].
More applied to the needs of complex energy system
simulations seems to be the approach ofStabat and
Marchio [13] which offers a promising approach and
some successful validation.

The model of this study is even more simplified by
using the assumption that the air outlet condition
equals always the mean temperature between the
entering refrigerant and the wet bulb temperature
while the relative humidity is constant. The cooling
capacity can be adjusted by a variable mass flow
rate of air. The supplied characteristic curve for the
ventilation yields the power consumption of the motor.

4.1 Validation of the Plant Model

For the validation of the plant model measurement
data has been supplied by the plant operator. The data
displays the power, domestic water consumption and
waste water flow in an hourly interval. Moreover,
some offline-information was collected on a visit of
the plant while the production was on (high cooling
requirement for -35◦C-consumers).
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Figure 7: Comparison of the total power consumption
in January (t.) and September (b.) with simulation
results

The comparison of the power consumption shows a
good agreement. In both simulated periods of one
week in January and September respectively the sim-
ulation result is slightly higher than the measurement.
The relative deviation is less than 7.7 % (Fig. 7).
Obviously, the power consumption of the plant is
overpredicted when the production cooling is off .
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Item Measurement Simulation

29.04.04, 13:00 23.05.03, 13:00

Heat reclaim ϑ [◦C] ϑ [◦C]

HX “Excess”, water 25 / 38 29 / 37

HX “Condenser”, water 20 / 28 17 / 29

HP screw 1, oil 52 45

HP screw 1, gas 70 60

HP screw 3, oil 55 45

HP screw 3, gas 68 63

Receiver pc [bar] pc [bar]

Conden. pressure 11.5 11.7

Aux.

Ambient temp. 20 ◦C 20 ◦C

Table 1: Comparison of temperatures and pressures
for one operating point with comparable boundary and
load conditions

In Tab. 1 some temperatures and pressures displayed
by onboard information systems or thermometers are
listed for one operating point in April. Those val-
ues were compared to the corresponding values of the
plant simulation at a similar load condition of the pre-
vious year. Especially, the simulated saturation pres-
sure in the condensers, responsible for the attainable
heat recovery, matches the value of the measurement.
The same applies for the cooling water temperatures in
the excess and condensing heat exchanger. A greater
deviation can be seen in the gas and oil temperatures of
the high pressure compressors. It must be pointed out
that the position of the oil temperature sensor could
not be clarified. Hence, the model of the oil cooling
unit was not calibrated again but the parameters of the
plant documentation were used.

5 Exergy-analysis of the Refrigera-
tion System

For estimating savings potential it is important to know
where the dominating loss mechanisms of a process
are located. Such losses may be noticed in form of
heat transfer, power decrease, mixing and pressure re-
sistances. For the purpose of a clear description of pro-
cess efficiencies it is necessary to define how much of
an energy portion can be transformed into any other
form of energy. For example, it is not possible to trans-
fer heat from a cooler to a warmer volume in order to
produce power. It is even not permitted by the sec-

ond law of thermodynamics to completely turn heat
into power by reducing the temperature of a medium
to ambient conditions. The exergyE represents that
part of energy which is technically useful and can be
extracted without restrictions to work. The specific ex-
ergye is expressed by:

e = h−h0−T0 (s−s0)︸ ︷︷ ︸
thermal

+0.5(c2−c2
0)︸ ︷︷ ︸

kinetic
+g(H−H0)︸ ︷︷ ︸

potential

(16)

The (specific) exergy always depends on the definition
of ambient conditions indicated by the index 0. It is
not always trivial to select the “correct” ambience
model and the discussion about this issue is not
finished, yet. Nevertheless, the exergy represents a
powerful tool for analysing energy systems.

Item Total change Inner cost
of exergy flow flow

∆Ėtot [kW] K̇ i [e/h]

1→ 2 -62.15 -4.60
3→ 4 -142.42 -10.58
4→ 5 -12.10 -0.90
5→ 6 -92.02 -6.83
5→ 7 -44.30 -3.29
5→ 8 -8.48 -0.63
6,7,8→ 9 2.50 0.19
9→ 10 -23.98 -1.78
10,2,13→ 3,14 -11.96 -0.89
12→ 13 -47.18 -3.50
14→ 15 -4.24 -0.31
15,17→ 1,16 -0.76 -0.06
16→ 17 -195.33 -14.50
Total -642,42 -47.68

Table 2: Inner costs resulting from exergy losses with-
out heat reclaim for one hour continuous operation
(see Fig. 1 for items) – The specific cost for exergy
is 0.074e/kWhex

In order to express the exergy losses in the correspond-
ing components in terms of hourly costs the change of
exergy is calculated first for an characteristic operat-
ing point with active production cooling. The cool-
ing requirement is 485 kW for storage rooms (-10◦C)
and 985 kW for production (-35◦C). At the same time
a domestic hot water consumption of 4.5 kg/s takes
place. Kinetic and potential forms of exergy are ne-
glected and the reference point is set top0 = 1 bar
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Item Thermal change Power Change of Water Waste water Outer
of exergy flow consump. enthalpy flow consump. flow cost flow

∆Ėi [kW] Pel [kW] ∆Ḣ [kW] ṁf r [kg/s] ṁA [kg/s] K̇o [e/h]

1→ 2 104.15 166.30 145.63 0.00 0.00 11.64
3→ 4 255.18 397.60 173.09 0.00 0.00 27.83
4→ 5 -12.10 0.00 -80.64 0.00 0.00 0.00
5→ 6 -53.02 39.00 -1056.08 0.31 0.08 4.58
5→ 7 -25.10 19.20 -494.50 0.15 0.04 2.21
5→ 8 -8.48 0.00 -166.95 0.00 0.00 0.00
6,7,8→ 9 2.50 0.00 0.00 0.00 0.00 0.00
9→ 10 -23.98 0.00 0.00 0.00 0.00 0.00
10,2,13→ 3,14 -11.96 0.00 0.00 0.00 0.00 0.00
12→ 13 -41.18 6.00 485.76 0.00 0.00 0.42
14→ 15 -4.056 0.00 0.00 0.00 0.00 0.00
15,17→ 1,16 -0.76 0.00 0.00 0.00 0.00 0.00
16→ 17 -181.03 14.30 983.26 0.00 0.00 1.00
VII → I -19.03 0.70 -372.68 0.00 0.00 0.05
I → II 5.46 0.00 169.24 0.00 0.00 0.00
III → IV 5.15 0.00 87.59 0.00 0.00 0.00
V → VI 10.52 0.00 115.04 0.00 0.00 0.00
IV,VI → VII -2.08 0.00 0.00 0.00 0.00 0.00
B → C 13.42 0.70 370.97 0.00 0.00 0.05
C→ D -0.68 0.00 0.00 0.00 0.00 0.00
D → E -8.97 0.00 106.32 0.00 0.00 40.93
D → F -25.42 0.00 241.12 0.00 0.00 92.83
D → G -12.85 0.00 89.23 0.00 0.00 34.35

Table 3: Change of exergy and enthalpy flow rate for the refrigerant, power and water consumption, waste
water mass flow rate and outer cost flow invested - power rates and media prices are listed in Sec. 3

andϑ0=12.4◦C (fresh water temperature entering the
plant). The change of exergy and enthalpy with re-
gard to the refrigerant or cooling water flow is shown
in Tab. 3. An increase of exergy (∆Ėi >0) happens in
the compressors and in those heat exchanger volumes
which show a rising temperature (cooling water HX).
Under the assumption of continuous operation for one
hour the plant consumes a total of 643.8 kWh exergy
in form of electricity. This effort has to be compared to
the thermal profit of the plant which is defined by the
exergy provided by the evaporators and the water tank
to the DHW system. Hence, the exergetic efficiencyζ
follows from the ratio of the actual thermal advantage
to the total exergy input (∑Pel):

ζ = ∑ ĖQ

∑Pel
=
|∆Ėi

12,13|+ |∆Ėi
16,17|+ ∆Ėi

B,D

∑Pel
= 0.36

(17)
This value is more plausible than the COP which
equals 2.28 at the same time. If an economical
analysis shall be carried out it is possible to combine
the change of exergy flow rate∆Ėi with outer cost
flows K̇o (see Tab. 3) resulting from power and water

consumption. This method is described as “exergy
costing” by Bejan [1]. In a simplifying approach
it can be postulated that all outer costs are divided
by the exergy input in order to calculate the specific
costs of exergy. With this average value the costs of
internal losses are expressed (see Tab. 2). Generally,
the initial costs (e. g. capital investment) should
also be included but in this case an operating plant
is considered and it should be investigated how the
efficiency could be improved without installing new
components. Therefore, the task was not to compare
different components with different initial costs and
thus this contribution was neglected.

The total amount of all costs for this operation
mode is 48e/h. The largest cost centre in terms
of exergy destruction is encountered in the cooling
towers (10e/h) followed by the expansion valves
(2.10e/h) and the phase separator of the high stage
(0.89e/h) due to the internal heat transfer. Hence,
financial savings can be obtained by reducing exergy
destruction in the evaporative condensers (e. g. by
lowering the saturation pressure or increasing the
mass flow rate through the water-cooled condenser).

Exergy-analysis of a direct-evaporating cooling plant with heat reclaim
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Item Cost flow Revenue Virt. op. profit
K̇i [e/h] Ġ [e/h] Ṗ [e/h]

1→ 2 -4.60 0.00 -4.60

3→ 4 -10.58 4.39 -6.19

4→ 5 -0.90 3.34 2.44

5→ 6 -6.83 0.00 -6.83

5→ 7 -3.29 0.00 -3.29

5→ 8 -0.63 6.46 5.83

6,7,8→ 9 0.19 0.00 0.19

9→ 10 -1.78 0.00 -1.78

10,2,13→ 3,14 -0.89 0.00 -0.89

12→ 13 -3.50 0.00 -3.50

14→ 15 -0.31 0.00 -0.31

15,17→ 1,16 -0.06 0.00 -0.06

16→ 17 -14.50 0.00 -14.50

Total -47.68 14.20 -33.48

Table 4: Costs due to exergy losses and destruction,
revenue of heat recovery and virtual operating profit in
comparison to conventional system for one hour con-
tinuous operation – The specific gain of recovered heat
is 0.039e/kWhth

Useful changes of exergy in the evaporators cost
18e/h so that this can be considered as the minimum
running cost level if the insulation of the rooms or
other consumers could not be further improved.

Up to now the positive impact of the heat reclaim is
missing in this study. To attain the total balance of
costs and revenues the gas savings from the DHW
system are propagatedupstream. By means of cooling
water a total of 371 kW waste heat is recovered from
the ammonia or oil, respectively. This is almost 20 %
of the waste heat produced by the cycle. 115 kW are
contributed by the oil coolers (6 %) and 80 kW (4 %)
by the excess heat exchangers.Helmke [14] even
states a potential of 7.4 % for excess heat and 9.2 %
for oil cooling (only high pressure screws).

The actual heat recovery depends strongly on the
availability of cooling water which has only low
temperatures in case of DHW consumption. In order
to supply the demand of hot water (45◦C, 60◦C and
90 ◦C) a heating capacity of 807 kW is needed.
Assuming an efficiency of 90 % for heating and
specific heat costs of 0.039e/kWhth the running
costs of a conventional plant would be 31.07e/h.
Taking the recovered heat into account the costs for
natural gas drop to under 17e/h and therefore the
heat exchangers for heat reclaim are not representing
a loss of 1.50e/h but a virtual operating profitof

8.20 e/h. In addition, the oil coolers also show a
revenue of 4.39e/h reducing the loss of the HP screws
from 10.58e/h to 6.19e/h. A complete coverage
of the DHW supply by the refrigeration system is
not possible as long as temperatures of more than
60 ◦C are needed. But it would be possible to realise
higher savings (see Tab. 4) if a consumer of 1.913 kW
at a low temperature of approx. 30◦C could be found
or if the temperature level of the high pressure cycle
could be increasedduring production. Moreover,
in future low-exergy consumers and storage systems
will be available for heating systems and buildings so
that more energy can be saved. Currently, 47.68e/h
have to be invested in the refrigeration system (and
16.77e/h in the DHW system, resp.).

6 Improvement Measures and Com-
ponent Optimisation

From the exergy-analysis follows that a higher
condensation pressure offers a higher potential for
heat reclaim. This is only worthwhile if the DHW
consumption is high enough. Therefore a mass flow
depending control for the cooling towers is imple-
mented. During production the saturation temperature
is lifted by a throttling of the tower ventilation from
a max. value of 10 bar to 14 bar. Outside production
times it is important to achieve low condensation
pressures (min. 7 bar) in order to reduce the power
consumption (see Fig.8).

Additionally, the compressor cascade is changed so
that the base requirement in winter is provided by the
smallest compressor because the COP is generally
better with a higher part load factor. In summer the
cascade order remains the same because the base load
for cooling storage rooms is often higher than the
maximum capacity of the smallest compressor.

For both periods in summer and winter the running
costs can be reduced by 4 % (see Tab. 5) due to the
increased heat recovery (≈ 20 %) at a slightly higher
power consumption (1 to 2 %). For those savings there
are basically no large investments needed. Compared
to the running costs of the refrigeration plant (≈
200.000e/a) for one year the possible reduction is
5.000e/a.

The simulation of one week takes 12 hours on a fast
PC (3 GHz processor) due to on/off-control of the
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Figure 8: Impact of the variable cooling tower con-
trol on the condensation pressure in January (t.) and
September (b.)

compressors at part load. If frequent events could be
avoided by a part load function or if a higher plant util-
isation is considered the simulation time would be re-
duced to approximately 1 hour.

7 Conclusions and Outlook

It is possible to simulate even complex refrigeration
plants for longer periods like weeks with a high
amount of unsteady events resulting from a 2-point-
control of some components. A modelling approach
aiming to further reduce events during simulation
(e. g., performance curves for on/off-controlled
elements) would yield faster simulation times for
calculating balances of whole years. Attaining this
goal is important since the boundary conditions profile
(test reference year) has a dominating influence on the
total power consumption.

Mode Jan. act. Jan. mod. Sep. act. Sep. mod.

Power con. 46.285 46.887 60.123 61.319

[kWh]

Fresh water 118 126 346 310

[m3]

Waste water 39 42 115 103

[m3]

Heat reclaim 22.795 27.127 29.966 34.241

[kWh]

Costs 2.557 2.446 3.627 3.487

[e]

Rel. dev. - -4.3 - -3.9

[%]

Table 5: Comparison of power and water consump-
tion, heat reclaim and running costs for one week
in January and September of the actual and modified
plant

When considering multiple consumers (e. g., refriger-
ation at different temperature levels, DHW) the sys-
tem’s control is a key factor for realising an effi-
cient plant operation. In this paper, it was shown
that in even well-designed plants incorporating state-
of-the-art subcomponents savings are attainable with-
out much capital investment. The transient simula-
tion offers a method for a holistic analysis of tech-
nical systems throughout the product-life-cycle. In
combination with an exergy-analysis it is possible to
find optimisation potential for characteristic operating
points. Basically, the implementation of the exergy
method is easy when necessary medium properties are
provided by the control volume models (see Eq. 16).
Nevertheless, the evaluation may become tedious for
complex dynamic systems especially when economi-
cal constraints (energy or exergy costs) have to be con-
sidered. For this purpose capable validation and evalu-
ation methods must be implemented to concisely pro-
vide the information needed for drawing correct con-
clusions and finding effective improvement measures.
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Abstract

The following work is a contribution to dynamic op-
timal control strategies of an activated sludge model.
The model is applied to the waste water treatment
plant (WWTP) in Jena, Germany. The model is imple-
mented using the Dymola software package with the
application of the free available Modelica library
WasteWater. On the basis of this model open-loop
and closed-loop (Model Predictive Control MPC) op-
timizations are applied and the results are evaluated.
The main focus is on the variable operating costs of
the WWTP.

Keywords: waste water treatment, dynamic optimiza-
tion, model predictive control

1 Introduction and problem descrip-
tion

Nowadays new waste water treatment plants are de-
signed for reliability and safety, not for operational
cost efficiency. Further more sustainable sewage man-
agement, which is subject to increasing legal require-
ments, plays an important role. Therefore, the ap-
plication of simulation and optimization methods to
the waste water purification process is necessary. The
principal purposes are the reduction of the load for the
environment (adherence to the limits of the effluent pa-
rameters) with simultaneous minimization of the waste
water treatment costs.
The free available Modelica library WasteWater [1]
was developed and is successfully applied to the
WWTP Jena. In this plant blowers and pumps are
controlled by simple SISO control loops with standard

controllers (usually two-point controllers).
The WWTP Jena is comperatively well equiped with
various on-line measurement devices including COD,
NH+

4 -N, NO−
3 -N and PO3−

4 -P. Only on the basis of this
equipment, investigations concerning dynamic control
strategies become possible.
The cleaning achievement of a WWTP can be eval-
uated with the help of the effluent parameters of the
receiving water. Some of these effluent parameters
(e.g. NH+

4 -N) of the WWTP Jena are considerably be-
low legal limits. As a result the operating costs are
higher than is necessary. The electrical energy costs
of the blowers and pumps, as well as the sludge dis-
posal costs, represent the main part of the variable
costs which are required to operate the WWTP Jena.
The aim of this work is to find optimal trajectories
for blowers and pumps by using dynamic optimization
methods. Mainly dry weather scenarios were chosen
from the stored data for simulation and optimization
purposes. As a result the minimization of the opera-
tion costs of the WWTP, with simultaneous adherence
to the limits of the effluent parameters, becomes pos-
sible. These results are used as a basis for further in-
vestigations concerning closed-loop operation (Model
Predictive Control MPC).

2 Modelling of the WWTP Jena

The dynamic model of the WWTP is of crucial im-
portance for the model-based optimization. There
is a multiplicity of mathematical models, which de-
scribe the waste water purification process. How-
ever, these models are almost exclusively applied for
simulation purposes. Due to the complexity of the
used model an object-oriented approach is worthwhile.

Application of the Modelica library WasteWater for optimisation purposes

The Modelica Association 351 Modelica 2005, March 7-8, 2005



FR

FC

AN/DN(I)

influent

FC FC

FC

FC

N(III) DN(IV) N/DN(V) N(VI)DN(II)

effluent

air

surplus sludge

DO

QRC DO DO

QRC NH4−N
NO3−N

TSS

FQR

COD
NH4−N
NO3−N

QR

QRC

internal recirculation

external recirculation (return sludge)

secondary
clarifier

QR

P−tot

TSS

QRC

NO3−N

AN

primary clarifier

QR

COD
NH4−N
PO4−P

FR

Figure 1: Simplified sytem of the Jena WWTP

The programming language Modelica represents
this object-oriented approach. In this context the soft-
ware package Dymola was used for simulation, since
the C++ code, generated automatically by Dymola, is
particularly suited for optimization purposes. The free
Modelica library WasteWater was used for the im-
plementation of the model of the WWTP Jena. The
library contains the Activate Sludge Models (ASM)
No. 1 to No. 3 [2] and different multi-layer models for
secondary clarifier.
The WWTP Jena is characterised by a connection
size of 145,000 people equivalent (p.e.), a cascade-
type denitrification with pre-clarification, biological
and chemical phosphorus removal and sludge diges-
tion. The bio-gas produced by sludge fouling is used
in a block-type thermal power station of 2x250 kW. A
simplified system of the plant is shown in Figure 1.
Existing control loops (usually two-point controllers)
are isolated in and/or removed from the model for the
optimization process, with the goal being to find opti-
mal trajectories (e. g. the control of the blowers for the
air supply into the nitrification tanks). Both, the phys-
ical limits of the control variables (blowers, pumps)
and the limits of the effluent parameters (e. g. maxi-
mum 1mgNH+

4 /l) must be kept.
The model of the WWTP Jena is implemented by us-
ing the Activated Sludge Model No. 2d of the IWA
task group, which is part of the Modelica library
WasteWater. A summerised description of the model
reads:

dSi

dt
= (Si,in −Si)

Qin

V
− ri, (1)

i ∈ {F,A,NH,NO,PO, I,ALK,N}

dSO

dt
= (SO,in −SO)

Qin

V
+ rO + rair, (2)

dXi

dt
= (Xi,in −Xi)

Qin

V
− ri, (3)

i ∈ {I,S,H,PAO,PP,PHA,AUT,

TSS,MeOH,MeP}

In equation (1) the index i stands for the different
dissolved concentrations such as inert organic matter
(Si), substrate (SF + SA), nitrate nitrogen (SNO), etc.,
and in equation (3) for the particular concentrations,
which are amongst others the heterotrophic (XH) and
autotrophic (XAUT ) biomass. Variables subscripted by
index ’in’, e.g. Si,in, indicate concentrations in the flow
Qin entering a considered tank. Equation (2) describes
the balance of the dissolved oxygen and has an addi-
tional term for the oxygen uptake (aeration rair) caused
by the blowers. The reaction rates ri and rO in the bal-
ance equations (1) - (3) are given by the model matrix
of the ASM No. 2d. It models 19 relevant concentra-
tions (state variables) and 21 processes per tank. The
WWTP Jena model is described by approximatly 3000
equations and 250 state variables. The complete de-
scription and development is available in [2] .

The object oriented approach implemented in
Modelica combines the advantages of a hierachical
model structure and the reusability of model compo-
nents in a multi-domain modelling environment of
complex dynamic systems. The model components
such as nitrification tank, secondary clarifier, blower,
flow mixer, divider and so on have to be defined for all
types of ASM models because of differing variables
and the number of variables. The components are
characterised by internal variables declared indepen-
dently of other components, and by connectors linking
the components.
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3 Optimal control problem

The optimization based control requires the dynamic
model of the WWTP (developed in section 2). The
whole model and control problem transformation pro-
cedure is done automatically by exporting a compiled
flat model representation of the WWTP in C++ from
Dymola [3], that can be used by the optimization
solver Hqp/Omuses [4], [6].

3.1 Open-loop problem

According to the problem described in section 1 dif-
ferent nonlinear optimal control problems can be for-
mulated and solved taking into account different ob-
jective functionals. The main aim of the optimization
is to reduce operating costs, e.g. the electrical energy
cost taking into account the time-dependent electricity
tariff, respectively. The objective functional is min-
imised with respect to the constraints. Restrictions for
the state variables results from legal limits of effluent
concentrations of the WWTP to the receiving water.
The controls are limited due to the maximum installed
pump and blower capacity.
Using the multi-stage control parameterisation tech-
nique described in [4], the continuous optimal control
problem is approximated by a constrained discrete-
time optimal control problem, that reads:

J = F(xK)+
K

∑
k=0

[
ρk

e f k
o,e(x

k,uk,zk)+ f k
so f t+ (4)

ρk
s f k

o,s(x
k,uk,zk)+ρk

oco f k
o,c(x

k,uk,zk)
]

with fo,e - electrical energy costs resulting from time-
dependent tariff and electrical energy demand for
blower and pump operation, fo,s - sludge disposal costs
depending on waste sludge flow rate and composi-
tion, taking into account profit from bio-gas utilisa-
tion, co fo,c - chemical dosage costs (negligible), f k

so f t
- penalty term for soft constraints (slack variables),
ρk

e,ρk
s ,ρk

o - weighting factors, xk - model state vari-
ables, uk - control inputs and zk - non-controllable in-
puts (e.g. inflow and concentrations).
The electrical energy costs can be formulated as fol-
lows:

fo,e =
Z te

t0
c(t) · pel(t)dt (5)

with c(t) - time dependent tariff and pel - electrical
energy depending on the air supply into the nitrifica-
tion tanks. A linear connection between the electrical

energy and the amount of air flow into the nitrifica-
tion tanks could be determined. The blowers responsi-
ble for the air supply into the nitrification tanks N(III),
N/DN(V) and N(VI) (Figure 1) represent the main part
of the variable electrical energy costs. The costs result-
ing from pumps are negligible.
The constrained discrete-time optimal control problem
is numerically solved as a large-scale and structured
nonlinear programming problem in the state and con-
trol variables.

3.2 Closed-loop problem

The Model Predictive Control (MPC) offers the pos-
sibility to merge an optimal control problem solution
into a closed-loop. One substantial advantage in com-
parison to simple control loops is in the treatment of
constraints for the controls and the state variables. In
this work a nonlinear MPC is considered with an eco-
nomic cost function. There is no setpoint because of
external input dynamics. The MPC algorithm can be
summerised in the following steps:

1. Set: k̂ = 0

2. State estimation: Get the current states x k̂|k̂ using
past measurements, e.g. Nonlinear Moving Hori-
zon State Estimator (NMHSE).

3. Prediction: Get a prediction of the non-
controllable inputs zk|k̂ (reads: inputs at the time
k calculated at the time k̂), k ∈ [k̂, k̂ + K − 1]
for a given horizon K (prediction horizon) using
the process model (summerised description equa-
tions (1) - (3)).

4. Optimal control problem: Calculate the future
control signal uk|k̂,k ∈ [k̂, k̂ + K − 1] by solving
an optimal control problem (reference to section
3.1 and equation (4)) with subject to the process
model and the constraints.

5. Applying: Send the control signal uk̂|k̂ to the pro-
cess.

6. Shift: k̂ = k̂ +1 and go back to step 2.

Many linear MPC approaches have found successful
applications and important issues such as online com-
putation, robustness and stability are well addressed.
Within nonlinear MPC, research is still in progress.
Therefore, and since the implemented WWTP Jena
model has more than 250 state variables with only 10
measureable outputs, the following application of the
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Figure 2: Open-loop optimization results (control signals, electrical energy costs and effluent value for NH+
4 -N)

MPC to the model of the WWTP Jena is only consid-
ered on nominal conditions. It is assumed that an exact
model of the existing plant is beeing used without any
disturbances and that all state variables are available.
Because of these assumptions the state estimation is
not considered in this work. However, a succesful ap-
proach of the nonlinear moving horizon state estimator
to an activated sludge model can be found in [7] and
an application of MPC for an ASM No. 1 can be found
in [8].

For further investigations on the WWTP Jena model
it is advisable to reduce the number of state vari-
ables. This can be done for example by using a simple
secondary clarifier instead of a multi-layer secondary
clarifier.

Another simplification is made by assuming that the
non-controllable inputs can be determined exactly and
so the prediction (step 3) is not applied. Only on-line
measured data of the WWTP Jena is used. When ap-
plying the MPC algorithm to the real plant investiga-
tions regarding the prediction of the non-controlable

inputs (inflow and concentrations) are still necessary.
In this context it is also important to examine how pre-
diction errors affect the results of the applied trajecto-
ries. The legal limits of the effluent parameters of the
WWTP must always be guaranteed.

4 Results

Primarily dry weather scenarios are considered in the
open-loop investigations. The main point is the mini-
mization of the electrical energy costs taking into ac-
count the effluent parameter limits of the WWTP.
Figure 2 shows the results of an open-loop optimiza-
tion process. The optimal trajectory of one of the
blowers is presented in comparison to the trajectory
resulting from the control by the basic control loops
(Figure 2 upper left). The different electrical energy
tariffs (HT - high tariff and LT - low tariff) are marked
by vertical lines. A piecewise constant approxima-
tion of the control variables was chosen to support
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Figure 3: MPC results (effluent value for ammonium and control signal of the blower for the air supply)

the use of the tariffs more efficiently. In the right
lower part of Figure 2 the effluent parameter of ammo-
nium (NH+

4 -N) is represented. It shows that the cho-
sen upper constraint for ammonium (1mgNH+

4 -N/l)
becomes active. With optimal trajectories of the blow-
ers the electrical energy costs can be reduced by more
than 10 % (Figure 2 lower right). It is even possible
to achieve a higher reduction of the electrical energy
costs (up to 15 %) by including additional control vari-
ables (e.g. the pump for the sludge recirculation, Fig-
ure 2 upper right) in the optimization process.

The legal limit for the effluent parameter NH+
4 -N is

about 10 mg/l and therefore much higher than the ap-
plied limit of 1 mg/l. However, all investigations are
considered with dry weather scenarios. The limit for
NH+

4 -N is reduced in order to guarantee that the le-
gal limit can be kept even under uncertain conditions.
With a higher limit for NH+

4 -N (e.g. 5 mg/l) the elec-
trical energy costs can be reduced by more than 20 %.

In addition the sludge costs are taken into account and
the control variable responsible for the sludge removal

is included in the optimization process. However, it
is necessary to limit the total suspended solids (TSS)
in the secondary clarifier, otherwise too much sludge
would be removed from the whole process. The inves-
tigations also consider the bio-gas utilization and the
profit obtained. Further results can be found in [5].

The results of the open loop investigations (due to dif-
ferent scenarios) can be merged with the help of the
Model Predictive Control (MPC) into a closed-loop.
The influence of the prediction horizon and the step-
size on the results is examined. For all further in-
vestigations a data record is used, which contains dry
weather data and a rain event.

It can be shown that the prediction horizon is of lit-
tle importance for optimization results, taking into ac-
count the electrical energy costs. Different prediction
horizons from 0.5 days up to 5 days are examined,
with stepsizes from 0.25 days up to 1 day. The results
(electrical energy costs) are nearly the same. Figure 3
shows the results with a prediction horizon of 2 days
and a stepsize of 1 day. The upper part of Figure 3 rep-
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resents the control signal of one of the blowers. The
resulting effluent parameter NH+

4 -N is presented in the
lower part of Figure 3. With occurrence of the rain
event (day 8) the chosen upper constraint can not be
kept by using the implemented simple control loops.
Only by applying Model Predictive Control strategies
can the constraint for NH+

4 -N be kept.
In the case of dry weather (day 1 to day 5) it is possible
to save approxamately 11 % on electrical energy costs.
During the entire investigation period of 10 days it is
even possible to save more than 12 % with the optimal
trajectories. The following control variables are taken
into account: the control of the blowers, the control of
the recirculation of the sludge and the control of the
return sludge. With the control of the return sludge
and the recirculation it becomes possible to shift acti-
vated sludge at short notice (from the biology into the
secondary clarification and in reverse). However, alto-
gether no TSS is extracted from the process.
Also investigations concerning all costs (electric en-
ergy costs and sludge costs) are examined. In this case
the optimization horizon has substantial influence on
the results. The control for the sludge removal is of
substantial importance. In the case that the rain event
is not predicted early enough too much sludge is ex-
tracted from the process and with the occurrence of the
rain event it is not possible to keep the necessary clean-
ing achievements (constraints, e.g. 1mgNH+

4 -N/l) of
the water since insufficient biomass is available in the
tanks. Only prediction horizons smaller than 6 days
could be investigated since the computer capacity was
exhausted at this point.

5 Summery and conclusion

In this work the dynamic optimization method was ap-
plied to a WWTP model. With the help of the library
WasteWater an ASM No. 2d model of the WWTP Jena
was examined and evaluated. Different scenarios were
provided and mainly dry weather data were used for
simulation and optimization. The influence of differ-
ent control variables was investigated by using open-
loop optimizations. These results could be used in
a closed-loop by applying Model Predictive Control
strategies. It could be shown that regarding the electri-
cal energy costs more than 10 % can be saved in com-
parision to existing simple control loops. However, to
apply the results and the MPC strategy to the real plant
further investigations are still necessary. The predic-
tion of the non-controllable inputs is not implemented
yet or the state estimation for the state variables.
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Abstract

The paper presents a concept and its implementation
software modules to obtain ready to run real-time sim-
ulation code directly from Modelica models. Basi-
cally, a Modelica special model building block has
been developed supporting the definition of the real-
time input /output variables, their communication with
external tasks or systems (e.g. a real hardware and
software controller), and the scheduling of the periodic
execution of the simulation task. The special module
links to the real-time operating system (Linux with ex-
tension RTAI) through a special purpose C library. The
real-time simulation of a 7-DOF space robotic arm is
presented as a test case.

1 Introduction

Real-time simulation systems are mainly used for test-
ing and check out of control electronics and other com-
ponents of complex systems (“hardware-in-the-loop”
simulation), like power plants, aircraft, vehicles, as
well as for training of plant operators, aircraft pilots,
and astronauts.
In real-time simulators model inputs must be acquired
from external devices each sample time and model
equations must be solved within fixed time intervals,
so that a selected subset of computed variables can be
output the next sampling time. To implement real-time
communication with external world and to schedule
model execution exactly each sampling time, the simu-
lation software relies on system primitives whose calls
are added to the model solution code. Usually, an ef-
fort is also necessary to simplify model equations most
demanding from the point of view of computational
burden.
Commercial tools exist that allow to adapt off-line
models to real-time simulations on dedicated hard-
ware. A typical situation consists in porting Simulink
models to dedicated hardware using the Matlab Real
Time Workshop [2] or the dSPACE TargetLink [6].

Simulink and also Dymola [1] models can be inter-
faced with dSPACE hardware to allow hardware in the
loop simulations. Tools [6] exist also to assist the pro-
duction of special Simulink models whose simulation
can be run on multi-processor hardware.
On the other side, research efforts are spent to port
the simulators obtained with open-source modeling
tools like MBDyn [3] on real-time [5] possibly dis-
tributed platforms, like RTnet [4]. And also, efforts are
spent to generate parallel code from Modelica mod-
els [10][11], to be eventually executed on supercom-
puter platforms [12].
This paper deals with the problem of obtaining ready
to run real-time simulation code directly from Mod-
elica models, so that already available models can be
executed in real-time, and all the powerful Modelica
libraries and the features and tools of a Modelica ed-
itor / compiler, such as Dymola, can be exploited for
the development of new models.
The way this goal has been achieved is illustrated in
this paper. In Section 2 the simulation platform re-
quirements and main features are discussed. In Sec-
tion 3 the proposed real time extension to Modelica
is described. In Section 4 a test case of the real-time
software modules is presented. A detailed open loop
model of the Spider arm, a seven degrees of freedom
Italian space manipulator, is exploited. The real-time
simulated robot arm can also be controlled through
a real-time software controller running on a second
workstation. A short description of this software con-
troller is given in Section 5.

2 The simulation platform

2.1 Requirements

The real-time dynamic simulation software should:

• satisfy the constraints of periodic real-time exe-
cution;

• be able to interface itself with external processes,
possibly with hardware;
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• be easily derived from models developed for the
off-line simulation.

2.2 Real-time execution platform

The purpose of obtaining a real-time application im-
poses the choice of an operating system capable of
supporting the execution of real-time processes.
The Linux operating system extended with the Real
Time Application Interface (RTAI) [7] has been cho-
sen. This operating system supports the execution of
real-time processes, it is open-source, and it is widely
used among the scientific community and in the Euro-
pean research centers.

2.3 Interoperability issues

Many custom libraries are available for Linux / RTAI.
For the purposes of this project, the COMEDI (COn-
trol and MEasurement Device Interface) [8] library,
developed by the open-source community, is particu-
larly interesting. By means of a set of standard inter-
faces, COMEDI allows to manage the communication
with hardware boards, and so provides a valid support
for the data exchange on hardware channels. Actually,
a device driver equipped with the COMEDI interface
(see Section 5.2) has been exploited. This driver al-
lows the access to an Ethernet board masking it as an
acquisition board for analog and digital signals.

2.4 Real-time model generation

The dynamic models for the off-line simulation were
developed in Dymola [1], a Modelica editor and com-
piler. In order to make as easy as possible the produc-
tion of real-time models, it has been investigated the
possibility of deriving the real-time models directly
from the off-line models developed in Dymola. After
having analyzed the features of Dymola, it has been
found possible to use it also for the development and
the compilation of real-time models. So, it is possible
to both reuse the off line models by rapidly adapting
them to the real-time simulation, and to build up some
new model from scratch, with the advantage to use all
the model libraries and the graphical instruments of
such application.

2.5 Numerical integration issues

The features and the performances of the real-time nu-
merical solvers available in Dymola have been ana-
lyzed in order to determine the most appropriate al-
gorithm for the case study. It has been found that in

order to obtain the maximum processing speed and to
avoid the risk of a non convergent solution it is advis-
able to select the Inline Integration method applied to
the Implicit Euler algorithm.

3 Real-time Modelica extension

3.1 Real-time components

A Modelica component has been developed that al-
lows to transform any Modelica model into a model
suitable for real-time simulation. This Modelica com-
ponent, is a Modelica block that is called ModRTAI,
and it can be used in the graphical user interface of Dy-
mola as a normal building block of simulation models.
ModRTAI uses a library of functions, called LibRTAI,
which has been also developed within this project. Li-
bRTAI has been entirely developed in the C language
and contains the functions which allow the simulation
code to access the RTAI and COMEDI libraries.
More precisely, by adding to the model development
environment both a ModRTAI component and the Li-
bRTAI library it is possible to perform the activities
mentioned in the project requirements:

• Periodic execution at precise clock ticks of the
simulation task, through access to the RTAI ap-
plication programming interface;

• Management of the communication with the ex-
ternal world, through access to the interface of a
COMEDI driver.

3.2 Porting a model to real-time

By means of the two modules which have been devel-
oped it is possible to obtain a Modelica model suitable
for real-time simulation under Linux / RTAI. Given an
off-line Modelica model, the ModRTAI block allows
to select the signals which are input to the model (to
be acquired from the external world), and the signals
which are the output of the model (to be sent to the ex-
ternal world). The ModRTAI block also allows to set a
parameter that states the frequency of the periodic task
running the simulation. This parameter indicates how
much time is left to the numerical solver to evaluate the
transient related to one sampling interval. Only if such
parameter is equal to the sampling interval, the simula-
tion time should match the physical time elapsed since
the instant in which the simulation itself was started;
otherwise the simulation time develops slower than the
physical time of a factor equal to the ratio between the
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task scheduling period and the sampling step of the
transient.
The Modelica model has to be compiled with Dy-
mola under Linux, having selected the Inline Integra-
tion option and the Implicit Euler as integration algo-
rithm. The functions library LibRTAI should be in-
stalled on the workstation onto which the model is
compiled. The simulator which is generated in such
way is called Dymosim, as a normal simulation binary
file obtained by means of compiling with Dymola a
Modelica model. The only difference is that the Dy-
mosim binary obtained in such way is runnable in soft1

real-time under Linux / RTAI. Figure 1 resumes the
steps for porting a Dymola model into real-time.

Figure 1: Development of a real-time Modelica model
using Dymola

In order to allow the data exchange with external pro-
cesses, the Dymosim simulator should be run on a
workstation on which the COMEDI library is installed,
and the drivers of the peripheral board onto which
should flow the data signals in input and output to
the simulator are installed too. By now, the simula-
tor has been tested using an Ethernet communication
board, which directs the signals to another worksta-

1In Linux / RTAI a hard real-time process runs in the Linux
kernel space and has more strict timing constraints, while a soft
real-time process runs in the Linux user space and has more loose
timing constraints. In Section 4 it is explained why the soft real-
time solution has been preferred.

tion. The Ethernet board, equipped with drivers with a
COMEDI interface, emulates a data acquisition board,
as described in Section 5.2.
The entire procedure has been tested using a model
of the Spider robotic arm with detailed descriptions
of motors and transmissions (see Section 4), which
was developed in a former research [14][13]. In this
model the outputs are the seven motor positions, while
in input the model receives the seven motor current set-
points, and a digital signal controlling the brakes that
in the home position block the motors axes. Experi-
mental results about the performance of the Dymosim
real-time simulator obtained with this model will be
illustrated in Section 4.

Figure 2: The simulation process execution cycle.

3.3 The simulator process

The real-time execution of the simulation code has the
purpose of computing, at the chosen frequency, the so-
lution that represents the evolution of the model state.
The output of the model should be passed to an exter-
nal control unit, which could be another workstation
running the control procedure, or a dedicated hard-
ware controller. The control system, on the basis of
the received data, computes a control action that is sent
to the workstation on which the real-time simulator is
running. The simulator evaluates the new model state
on the basis of the received input. This elementary cy-
cle, illustrated in Figure 2, is executed till the end of
the simulation.
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Figure 3: Modelica scheme of the transmission of the real-time Spider robot model.

At every wakeup of the periodic process, the simulator
has to evaluate within a maximum time span2 the next
model status, and the corresponding outputs. This time
span is equal to the scheduling period of the simulator
process. Since the control loop should be closed on
a digital (either hardware or software) regulator, it is
mandatory that at any wakeup the simulator process is
fed with inputs sampled at a constant frequency, and in
the same way it yields as output some signal sampled
at a constant frequency. This leads to the necessity to
use a fixed step algorithm for the numerical integra-
tion, just as the Implicit Euler algorithm is.
As it has been said in Section 3, in order to synchro-
nize with real-time a standard Dymosim process, and
in order to exchange the model inputs and outputs with
the external world, some calls to the external C func-
tions implemented in the LibRTAI have been added in
the ModRTAI block. These functions are:

• RTAIGetInputSample(...)

• RTAIGetData(...)

• RTAIPutOutputSample(...)

At every step, when the numerical solver tries to solve
all the equations of the model, these three C func-
tions are called in this order. The first and the third
ones assign the external input variables to the vector
of model inputs, and the vector of model outputs to
the external output variables. By means of these two
functions, the data are only put in some internal buffer
of the LibRTAI module. Instead, the real data ex-
change with the external process / hardware is done
by RTAIGetData(...).

2There is no way to set a constraint on a Dymola numerical
integrator forcing it to yield a result at every step within a physical
maximum time. The missed deadline is checked by comparing the
theoretical time in which the result should have been yield with
the time in which the Dymosim process has actually released the
control.

If initial() or terminal() are true in the Mod-
elica code, RTAIGetData(...) respectively per-
forms the initialization or the finalization of the the
real-time process associated with Dymosim; otherwise
such function performs the real data exchange and then
it suspends the process.
During the initialization, the RTAI
rt_task_init(...) function is called
to initialize a new RTAI task, and the RTAI
rt_task_make_periodic(...) function
is called to make this task a periodic one. Other
RTAI APIs are called to set the real-time sched-
uler, and to initialize and start the RTAI timer at
the chosen frequency. During the finalization, the
rt_task_delete(...) function is called, and
the RTAI timer is stop. During a normal periodic call,
the RTAI rt_task_wait_period() is called at
the end of RTAIGetData(...) in order to suspend
the periodic task.

4 Experimental results

As it has been said in Section 3.2, the proposed sys-
tem has been tested on a detailed model of the Spi-
der robotic arm [13][14] consisting of a total of more
than 12,000 equations listed at compile time. The
robot model includes a seven degrees of freedom me-
chanical chain, built with the old Modelica MultiBody
library, and an array of seven servomechanisms, each
of which featuring the dynamics of a brushless two-
phase motor, an analog current controller, an elastic
transmission with backlash and a brake on the motor
axis. A detailed scheme of the elastic transmission
used in the servomechanisms is shown in Figure 3.
The tests have been done running the simulation on a
workstation, and a control action playback on another
workstation. More precisely, the control action was
not computed during the simulation, but it was a record
of the control action of a simulated control system dur-
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ing an off-line simulation of the same command given
to the robot. The real-time model has been tested on a
3GHz Pentium IV workstation with 512Kb of 2nd level
cache. This processor ensures enough computational
power to simulate the model with an integration step
of 1ms3 and a wakeup period of 1.5ms for the corre-
sponding scheduled process.
It has been experienced an average of 1% of faults,
i.e. periods in which the simulator has not been able
to evaluate the corresponding model transient. The
graph in Figure 4 shows the CPU time not used by
the simulator at each period, during the first 2 seconds
of a simulation. A move command was simulated,
and the command execution was started at 1.1s, which
explains why at this instant the free CPU time dramat-
ically decreases.

Figure 4: CPU idle time during simulation. Simulation
time (in seconds) on x-axis; CPU idle time (in seconds)
on y-axis.

This result proves that the model is still not ready to
be simulated in a time equal to the physical time on
the testing workstation, since the transient computa-
tion occupies half of the CPU time if the robot is still,
but practically all the CPU time if the robot is mov-
ing. In order to reach the purpose to simulate with a
scheduling period of 1ms, it is mandatory to simplify
the model, or to use a more powerful workstation.
The graph in Figure 5 shows the physical time span
between two subsequent process wakeups in the same
simulation as before. Figure 6 shows a detail of the
graph in Figure 5. The maximum variation of the
wakeup period is of 40%, while the average variation
is of 1.34%. The picks of variation in the schedul-

3This is equal to the sampling frequency of a typical axis con-
trol cycle of an industrial robot controller.

ing period are a consequence of the beginning of large
transients, due to the motion start, but the continuous
period variation during the movement and also before
the beginning of the movement, are due to the soft real-
time nature of the chosen scheduler.

Figure 5: Dymosim task scheduling interval. Simu-
lation time (in seconds) on x-axis; scheduling interval
(in seconds) on y-axis.

Figure 6: Dymosim task scheduling interval: detail.
Simulation time (in seconds) on x-axis; scheduling in-
terval (in seconds) on y-axis.

The choice of a soft real-time scheduler has been im-
posed by the nature of the executable binary code gen-
erated by Dymola. In fact, the Dymosim native code
executes some operating system calls that do not ex-
ploit the RTAI API4. The OS calls of Dymosim impose
a continual switch from a real-time context to a non-

4For example, all mathematical functions in the numerical in-
tegrator do not call the RTAI API.
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realtime context. If the simulator is declared hard real-
time at process startup, the continual context switch is
from hard real-time to non-realtime, while if the sim-
ulator is declared soft real-time at process startup, the
continual context switch is from soft real-time to non-
realtime. The first kind of switch is much more time
consuming than the second kind, and leads to worse
performances.

5 Real-time control

5.1 The software control application

Within the same project framework, a real-time soft-
ware control system [16] has been developed which
emulates several functionalities of robot controllers.
This control application can be easily adapted to in-
teract with simulations of robotic arms driven at joint
level. Thanks to the adoption of COMEDI drivers
(which have standard interfaces, as stated in section
Section 5.2), the control system can control without
distinction a physical system, or a model based simula-
tion of the system itself, provided that the two systems
have the same number of input and output channels,
disposed in the same order.
The software control system can be coupled with the
real-time simulator, and each one of these two appli-
cations can be used as test bench when adding new
features to the other one. So, the software control sys-
tem can be used to test new and more refined robot
models, and to analyze their behavior, if compared to
the behavior of the corresponding real robot, while the
real-time simulator can be used to test some innovating
control solutions, without taking the risk of damaging
the robot hardware.
The Linux / RTAI operating system has been chosen
for the control application too, for the same reasons
explained in Section 2.2. To support the design of
the control application, the OROCOS (Open RObot
COntrol Software) [9] framework has been chosen.
The control application is by now capable of execut-
ing the position control in joint space for a six5 de-
grees of freedom robot. The OROCOS control ap-
plication can execute a standard control cycle, with
signals exchanged in Real-Time with the controlled
system; moreover, it can publish the variables inter-
nal to the controller and the signals received from the
controlled process. Internal variables are published to
non-realtime applications external to the controller, for

5Due to this limitation, the cross tests with the Spider model
have been done blocking the seventh joint of the robot.

reporting purposes. Also, the OROCOS control ap-
plication can accept the robot motion commands from
a program script, or from some external non-realtime
application.

5.2 The closed-loop data acquisition

Both the control and the simulation applications
should be able to transmit and to acquire signals on
a hardware communication channel. In order to make
any application unaware of the presence of hardware
or software on the other side of the control loop it
has been decided to implement COMEDI drivers for
the communication boards. The COMEDI package
has been chosen because it is an open-source prod-
uct widely used in the field of automation. Indeed
COMEDI provides a standard for drivers of DAQ
(Digital AcQuisition boards) under Linux.
A COMEDI driver for 3COM 3C90x(B) [15] Ethernet
boards and a COMEDI driver for COMAU BIT3 AT
CARD [15] boards of the COMAU C3G-9000 con-
troller have been developed. Both boards are accessi-
ble from real-time processes: the first one is used by
now for the data exchange between the OROCOS con-
trol system and the Dymosim simulated process, while
the second one (whose driver is still in a test phase)
will be used for the data exchange with all robots sup-
ported by the COMAU C3G-9000 controller.

6 Conclusions and future work

A design concept and the related implementation soft-
ware for obtaining real time simulation code from
standard Modelica / Dymola models and related soft-
ware has been presented. They permit to develop
ready to run real time simulation code by fully exploit-
ing the powerful libraries and tools that Modelica / Dy-
mola make available for the model development phase.
The real time simulation of a detailed model of a 7-
DOF space arm has been afforded as a test bench for
the software, and has proved its versatility and correct-
ness.
With reference to the class of mechatronic systems
models, additional work has to be spent to speed up
model execution by refining or simplifying models of
those phenomena that most affect the computational
burden, like, for instance, non linear friction at low
speed. Indeed, while the model exploited for the ac-
tual tests can be simulated in a time which is of the
same order of magnitude of physical time on a high-
end mono-processor system, models including friction
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equations are much slower and cannot be proposed for
the purposes of real-time simulations. An alternative
approach would be to move on a multi-processor plat-
form, provided that a Modelica compiler tool for par-
allel code generation is adopted.
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SCICOS: a general purpose modeling and simulation environment
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Abstract

Partial support for Modelica is now provided by the
general purpose dynamical system simulator Scicos.
In particular it is now possible to use component mod-
els in Scicos diagrams where the dynamics of the com-
ponent has been described in Modelica. This paper
presents this new extension of Scicos.
KEYWORDS: Dynamic system simulation; Simulation
software; Component level modeling; Scilab; Model-
ica

1 Introduction

Scicos is a Scilab1 toolbox for modeling and simu-
lation of dynamical systems [1, 2]. Scicos provides
a hierarchical graphical editor for the construction of
complex dynamical systems, a simulator and a code
generator. For many applications, the Scilab/Scicos
environment provides a free open-source alternative to
Matlab/Simulink and MatrixX.
Very general dynamical systems, including hybrid sys-
tems, can be modeled in Scicos [3, 4, 5, 6]. A typical
Scicos diagram is presented in Fig. 1. This diagram
is used to evaluate the performance of an observer by
simulation; the simulation results are given in Fig. 2.
The model of Fig. 1 is composed of ”explicit” blocks,
i.e., block with explicitly identified inputs and outputs.
Modeling with such blocks is called system level mod-
eling. Component level modeling, on the other hand,
allows the use of ”implicit” blocks which are blocks
with port connections which a-priori are not labeled
as inputs or outputs [7]. Implicit blocks are essential
for constructing models which include physical com-
ponents such as resistors, capacitors, etc., in electric-
ity, or pipes, nozzles, etc., in hydraulics. They are also
useful in many other areas such as mechanics and ther-

�
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†Corresponding author (ramine.nikoukhah@inria.fr)
‡ M. Najafi, R. Nikoukhah are with INRIA-Rocquencourt, Do-

maine de Voluceau, 78153 Le Chesnay Cedex, France
1Scilab is a free open-source software for scientific computa-

tion, see www.scilab.org and www.scicos.org.

Figure 1: A system modeled in Scicos.

Figure 2: Simulation result of model of Fig. 1 in Sci-
cos.

modynamics. In Modelica community implicit blocks
are called acausal [13].

Contrary to explicit blocks, implicit blocks cannot be
modeled as black box objects. The equations realiz-
ing the behavior of an implicit block must be available
to the compiler for system reduction and code genera-
tion. To describe the behavior of these blocks in Sci-
cos, the Modelica language has been adopted.
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2 Modelica and Scicos

Even though Modelica is a rich language having the
capacity to handle continuous-time and discrete-time
behaviors, for the start, we are mainly using Modelica
and implicit blocks to model continuous-time dynam-
ics; only minimal support is provided for discrete-time
behavior. The discrete-time behavior, in the Scicos en-
vironment, is provided via explicit blocks.
The addition of implicit blocks has been done without
changing significantly Scicos formalism. Even though
implicit blocks can be used anywhere inside a Scicos
diagram, they are grouped and replaced with a single
block in a precompilation phase [7]. The mechanism,
which can be compared to the way an amesim2 or
Dymola3 model is integrated in Simulink, is com-
pletely transparent to the user.

Figure 3: Scicos diagram containing both types of
blocks.

Consider for example the Scicos diagram in Fig. 3.
Here we have a fluid level control system. To model
this system in a natural way, a hydraulic source, a reg-
ulated valve, a container, a tube, and a well have been
used. The container has a built-in level sensor which
makes the interface with the explicit part of the system,
similarly the valve is regulated through an input signal
from the explicit part of model. The controller and the
display mechanism have been implemented using ex-
plicit blocks and the blocks in gray are implicit blocks
that have been developed in Modelica language.

2.1 Scicos architecture

To illustrate our method, a simple flowchart given in
Fig. 4 shows how Scicos and Modelica interact. A
designer can select blocks from either standard or im-
plicit toolboxes. Blocks in implicit toolbox have been

2www.amesim.com
3www.dymola.com

developed using Modelica language. As shown in the
flowchart, if the model contains an implicit block, af-
ter a series of automatic preprocessing steps, implicit
part of model is abstracted into a standard block with
explicit input/outputs; the resulting model can then be
simulated by Scicos [7].

Standard Blocks Implicit Blocks

MODELICA 
Language

xd=f(x,u)
y=g(x,u)

Block Construction level

are standard?
No

(ODE/DAE solver)

Simulation

compiling scicos diagram

All blocks

Create modelica model
of the implicit part

Model design Design level

Toolbox

Compile level

Simulation level

Yes

Modelica to C translator

Create a new block

Incrementally linking the

new block with scicos

Figure 4: system flowchart

2.2 Available implicit toolboxes

To be able to use implicit blocks in addition to ex-
plicit ones in Scicos, several new features have been
added to Scicos. So far, only two palettes with implicit
blocks are available for testing purposes: the electri-
cal and the thermodynamics palettes. The thermo-
hydraulic toolbox and available blocks are shown in
Fig. 5.
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Figure 5: Thematic toolbox

2.3 New link and port type

Implicit blocks or components are interfaced via spe-
cial links associated with physical quantities such as
current or voltage in electronics, or, flow or pressure
in hydraulics. It would be meaningless for a link rep-
resenting a voltage to be connected to another link rep-
resenting the output value of a PID controller. To dis-
tinguish between these two, two different link types
have been defined: explicit and implicit links that in-
terconnect explicit and implicit ports respectively. In
Fig. 6 we have a hydraulic container which has four
implicit ports (marked IP) representing liquid outlets
and an explicit port (marked EO) representing a liquid
level sensor output.

Figure 6: An implicit block can have implicit and ex-
plicit ports.

2.4 Compiling a mixed diagram

To compile and simulate a model containing implicit
blocks, Scicos groups all implicit blocks into a single

block having explicit inputs and outputs. Then it gen-
erates a Modelica code expressing the behavior of the
new block and save it in a temporary file. This file
is then processed by modelicac 4 which translates
this Modelica code into a C-code describing the be-
havior of the new Scicos block. Once the C-code is
compiled and incrementally linked in Scilab, Scicos
sees this new block as a standard explicit block; see
Fig. 7. At the end of this procedure, the model is no
longer implicit because all blocks are standard explicit
blocks, so the model can be compiled and simulated
as usual. It should be noted that this procedure is com-
pletely transparent to the user [7].

Figure 7: In a precompilation phase, all implicit blocks
are grouped to form an explicit block.

2.5 New numerical Solver

Most of the time, after generating C code for im-
plicit part of the model, we end up with a set of
Differential-Algebraic Equations (DAE) that no longer
can be integrated via ordinary differential equation
solvers. It is for this reason that the DAE solver
DASKR [8, 9, 10, 11, 12] has been incorporated into
Scicos.

3 Modelicac, a Modelica compiler

Modelicac (acronym of ”Modelica compiler”) is a
compiler for the subset of the Modelica language we
felt necessary to handle in order to cover the needs of
simulating hybrid models under Scicos. Modelicac is
an external tool, i.e. it is independent of Scilab, so

4A Modelica compiler and C code generator written in
Objective Caml and included in the Scilab distribution.
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one may use it like an ordinary compiler e.g., like a C
compiler. By default, modelicac comes with a module
that generates C code for the Scilab target. However,
since modelicac is free and open source, it is possible
to develop a code generator for another target.

3.1 Modelicac development

Modelicac has been developed in Objective Caml5

which is a functional programming language devel-
oped at INRIA since 1985. This language is dis-
tributed with two compiler-development tools (i.e.,
Ocamllex and Ocamlyacc) that offer some nice facil-
ities to build compilers. Furthermore the Objective
Caml compiler is free and open source, that’s why we
adopted it to develop modelicac [16].

3.2 Modelica compilation using modelicac

Modelicac is invoked for two purposes: compiling ba-
sic models from libraries and generating code for the
target simulation environment. To fulfill the first task,
like generating an object file with a C compiler, mod-
elicac is invoked with the appropriate options from the
command line to generate an object file with ”*.moc”
extension to be used later. The second task of mod-
elicac is compiling the ”main” Modelica model (here
provided by Scicos) and generating a code for the tar-
get (here, a C code). In this phase instead of generating
an object file, modelicac performs several simplifica-
tion steps to generate a code as compact as possible. In
Fig. 8 a simple flowchart shows how modelicac gener-
ates a C file from modelica model of a Scicos diagram.

3.3 Supported Modelica subset

As said previously, the current version of modelicac
(1.x.x) does not handle the full set of Modelica lan-
guage constructs. It actually allows only the descrip-
tion of physical models at ”equation” level. A phys-
ical model is built as the aggregation of sub-models
or basic types with constraints between variables, and
explicit event declarations (”When”). Currently mod-
elicac has the following main limitations:

� Only ”Real” data type is supported.
� Inheritance is not currently supported.
� ”Algorithm” is not supported but it can be defined
as an external C function.

5caml.inria.fr

compilation
Modelica

Simplification

Code generation

Internal Flat Model

Modelica
Libraries

*.moc

"Close" model

"Open" models

Modelica file
generated by scicos

*.mo

*.c

Figure 8: Modelicac translation flowchart

3.3.1 Modelica source files

Modelica source files must contain only one class dec-
laration, introduced either by the ”class” keyword or
by the ”function” keyword. So a Modelica source file
may define one of the following things:

� An ”open” model is a model with free variables.
There are more variables than equations (e.g. the
model of a resistor in electrical library). The open
models are introduced by the ”class” keyword,

� A ”close” model is a model with equal number of
variables and constraints. It is also introduced by the
”class” keyword,

� An external function, introduced by the ”function”
keyword.
Of course, only closed models can be simulated. In
order to find classes in the host file system hierarchy,
it is required that the name of the file be the same as
the name of the enclosed class. To compile the ”close”
model modelicac searches the libraries used in the cur-
rent compilation directory and also in user-defined di-
rectories.
The following source code describes a simple resistor
enclosed in a ”Resistor.mo” file:

class Resistor
Pin p, n;
parameter Real R "Resistance";
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equation
R*p.i = p.v - n.v;
p.i = -n.i;

end Resistor;

An instance of ”Resistor” has two ”connectors” (”p”
and ”n”), that have their own potentials and flows vari-
ables (here, the voltage and the current, respectively).
A resistor has also a resistance parameter imposed by
the component through the first equation. The second
equation simply states that the current that flows in the
resistor through ”p” is equal to the current that flows
out through ”n”.

3.4 Model simplification

The following tasks are fulfilled by modelicac to sim-
plify and generate a C source file from a Modelica
source code and library object code files:

� Obtaining a flat model by replacing an aggrega-
tion of sub-models by the set of all their variables
and equations merged together and replacing connec-
tion equations by ordinary equations. Symbolic ma-
nipulations in modelicac are performed using classical
acyclic graph manipulation techniques

� Simplification of trivial or unnecessary equations us-
ing symbolic manipulations e.g. in the following sys-
tem ���� ���

cos � x ��� sin � y �	� 0
cos � x ��
 sin � y �	� 0
z 
 x 
 y � 0
f � x � y � z � v �� 0

the first two equations are fully non-linear and only
the numerical solver can solve the system for x and y.
But the third equation is trivial and z can be obtained
in terms of x and y, so in the rest of equations z is
replaced by x � y. Most of the variables used to con-
nect Modelica components (”connection variables”),
are eliminated in this way.

� Causality analysis, i.e. computation of system’s Ja-
cobian matrix. It will be explained further.

3.4.1 Causality analysis

Causality analysis performs a few operations in order
to find the so-called ”strongly connected components”
of a system of equations viewed as a directed bipartite
graph [13]:

1. Constructing a bipartite graph whose nodes on
the left represent variables in the system and

whose nodes on the right represent constraints be-
tween variables (i.e., equations). There is an edge
between a left-side node and a right-side node if
and only if the variable represented by the left-
side node appears in the equation represented by
the right-side node.

2. Finding a coupling (using the Ford and Fulkerson
method for instance)

3. Giving the edges an orientation depending on the
results of the previous step. Edges that link two
coupled nodes are all oriented in a given direction
(either left-to-right or right-to-left) and the other
ones in the opposite direction.

4. Finding strongly connected components in the re-
sulting oriented graph (using Tarjan’s algorithm
for instance)

5. Sorting the resulting nodes in a topological order.

Each strongly connected component represents a sub-
system of the whole system and it is now possible to
perform symbolic simplification steps in order to re-
duce the number of variables in the system.

3.4.2 Modelicac simplification strategy

Symbolic simplifications typically involve variants of
the Gauss method (to solve linear systems) and sim-
ple symbolic simplification methods based on a set of
predetermined patterns (for efficiency reasons) to try
to solve the remaining equations. In modelicac we fo-
cused on the second class of simplification methods.
The problem when trying to solve a set of non-linear
equations is to determine a coupling in the bipartite
graph described above that triggers as many simpli-
fications as possible. So the Ford and Fulkerson (or
equivalent) method is not enough for our purposes: in-
stead of taking the first encountered coupling, we want
in addition that the coupling satisfy a given criterion
(e.g. maximizing the potential number of simplifica-
tions in the system). Hence the use of a variant of the
Hungarian method which can be seen in modelicac as
a method for finding a coupling based on an additional
constraint called the ”satisfaction”. Practically, that is
done in modelicac by associating a set of pairs (vari-
able, weight) with each equation: given an equation,
each weight indicates whether the equation is ”easy” to
solve with respect to its associated variable or not. For
instance, if an equation contains only one variable, the
weight associated with that variable is low whereas the
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weight associated with any other variable is infinite.
Since modelicac associates low weights with variables
that appear in linear systems, the Hungarian method
”discovers” linear systems by itself and symbolic sub-
stitution techniques, when applied to those linear sys-
tems, achieve the same effect as Gaussian elimination.
Even though we did not consider the Gaussian elimi-
nation algorithms in modelicac, we got good results.

3.5 A complete (yet simple) example

First, we present the Modelica source code of a few
electrical models from electrical library and then show
how to use these models to construct and compile elab-
orated electrical models with modelicac.

3.5.1 Connectors

In Scicos libraries ”connectors” are the most basic
open models. Each particular domain (e.g., electrical,
hydraulic, etc.) has a its own connectors that connect
two or more models and exchange quantities. The are
two connector types:

� Internal connectors, that allow connection of two
Modelica components, such as ”p” and ”n” pins used
in electrical resistor model.

class Pin
Real v;
flow Real i;

end Pin;

� External connectors, that allow communication of
a Modelica component with an external environment
(Explicit part of model in Scicos environment, for in-
stance). Instances of ”InPutPort” and ”OutPutPort”
are examples of these connectros types

class InPutPort
input Real vi;

end InPutPort;

class OutPort
output Real v;

end OutPort;

These types of connectors are used in sensor and actu-
ator blocks that can be seen in Fig. 3 and 9.

3.5.2 Electrical component classes

These models include the ideal resistor, capacitor, in-
ductor, sinusoidal voltage source and ground.

class Ground "Ground"
Pin p;

equation

p.v = 0;
end Ground;

class Capacitor
Pin p, n;
Real v;
Real i;
parameter Real C "Capacitance";

equation
C*der(v) = i;
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end Capacitor;

class Inductor "Ideal electrical inductor"
Pin p, n;
Real v;
Real i;
parameter Real L "Inductance";

equation
v = L*der(i);
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end Inductor;

class VsourceAC "Sin-wave voltage source"
Pin p, n;
Real v;
Real i;
parameter Real VA=220 "Amplitude";
parameter Real f=50 "Frequency";
parameter Real PI=3.1415926 "PI";

equation
v = VA*2*PI*f*time;
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end VsourceAC;

3.5.3 ”Main class”

In order to perform the simulation of an electrical cir-
cuit one normally has to describe the circuit using
Modelica by defining the components involved (i.e.
giving their names and the value of their parameters)
and the connections to establish. Then, modelicac
should be invoked with the appropriate options and ar-
guments. This task is done by Scicos, provided that
the appropriate library exist in Scicos;
In fact it is not necessary to write any Modelica code
to build a circuit: one can assemble components using
the Scicos editor and then Scicos automatically builds
the Modelica source code from the graphical specifica-
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Figure 9: An electrical circuit modeled in Scicos.

tion and invokes modelicac to convert Modelica code
into C code. In Fig. 9 there is a model of an electrical
circuit modeled in Scicos. Here is its Modelica class
automatically generated by Scicos:

class imppart_rlc
parameter Real P1=0.0001;
parameter Real P2=0.1;
parameter Real P3=25.0;
parameter Real P4=0.2;
parameter Real P5=50.0;
Inductor B1(L=P1);
Capacitor B2(C=P2, v(start=P3));
Ground B3;
VoltageSensor B4;
CurrentSensor B5;
Resistor B6(R=P4);
VVsourceAC B7(f=P5);
OutPutPort B8;
OutPutPort B9;
InPutPort B10;

equation
connect (B5.p,B3.p);
connect (B7.p,B3.p);
connect (B2.p,B1.p);
connect (B4.p,B1.p);
connect (B6.n,B1.p);
connect (B2.n,B1.n);
connect (B4.n,B1.n);
connect (B5.n,B1.n);
connect (B7.n,B6.p);
B4.v = B8.vi;
B5.i = B9.vi;
B10.vo = B7.VA;

end imppart_rlc;

For this model modelicac generates a C code. This C
code is incrementally linked with Scicos to be used as
a standard block.

/*
number of discrete variables = 0
number of variables = 3
number of inputs = 1
number of outputs = 2
number of modes = 0

number of zero-crossings = 0
I/O direct dependency = false
*/

#include <math.h>
#include <scicos/scicos_block.h>

void rlc(scicos_block *block, int flag)
{

double *rpar = block->rpar;
double *z = block->z;
double *x = block->x;
double *xd = block->xd;
double **y = block->outptr;
double **u = block->inptr;
double *g = block->g;
double *res = block->res;
int *jroot = block->jroot;
int *mode = block->mode;
int nevprt = block->nevprt;
int property[3];
/* Intermediate variables */

double v0,v1;

if (flag == 0) {
res[0] = x[1]-xd[0]*rpar[0];
res[1] = x[0]+xd[1]*rpar[1]-x[2];
v1=get_scicos_time();
res[2] = x[1]+x[2]*rpar[3]+sin(6.28318530718*v1*rpar[4])*u[0][0];

} else if (flag == 1) {
if (get_phase_simulation() == 1) {

y[0][0] = x[1]; /* main.B8.vo */
y[1][0] = -x[2]; /* main.B9.vo */

} else {
y[0][0] = x[1]; /* main.B8.vo */
y[1][0] = -x[2]; /* main.B9.vo */

}
} else if (flag == 2 && nevprt < 0) {
} else if (flag == 4) {

x[0] = 0.0; /* main.B1.i */
x[1] = rpar[2]; /* main.B2.v */
x[2] = 0.0; /* main.B6.p.i */
Set_Jacobian_flag(1);

} else if (flag == 6) {
} else if (flag == 7) {

property[0] = 1; /* main.B1.i (state variable) */
property[1] = 1; /* main.B2.v (state variable) */
property[2] = -1; /* main.B6.p.i (algebraic variable) */
set_pointer_xproperty(property);

} else if (flag == 9) {
} else if (flag == 10) {

v0 = Get_Jacobian_parameter();
res[0] = -rpar[0]*v0;
res[1] = 1.0;
res[2] = 0.0;
res[3] = 1.0;
res[4] = rpar[1]*v0;
res[5] = 1.0;
res[6] = 0.0;
res[7] = -1.0;
res[8] = rpar[3];
res[9] = 0.0;
res[10] = 0.0;
res[11] = sin(6.28318530718*get_scicos_time()*rpar[4])
res[12] = 0.0;
res[13] = 0.0;
res[14] = 1.0;
res[15] = 0.0;
res[16] = 0.0;
res[17] = -1.0;
res[18] = 0.0;
res[19] = 0.0;
set_block_error(0);

}
return;

}

Conclusion

The use of Modelica in Scicos provides a versatile
modeling and simulation tool.
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Abstract 

Model validation is a crucial aspect of the develop-
ment of any dynamic system that uses computer 
aided engineering (CAE). 

The ease of applying model validation techniques is 
dependent on the structure of the model, and this is 
often dependent on the CAE tool used. 

The Modelica language is both well-structured, and 
independent of any CAE tool.  As such it exhibits 
many features that make it ideal in the application of 
model validation techniques. 

This paper considers various aspects of the Modelica 
language and how they relate to the implementation 
of a model validation tool. 

The validation of a vehicle model is presented as an 
example of how the features of the Modelica lan-
guage are used in the validation process. 

Finally, future developments of the Modelica lan-
guage that would enhance the performance of any 
model validation tool are identified. 

1 Introduction 

Model validation should be an essential ingredient in 
any dynamic system development that uses Com-
puter Aided Engineering (CAE) methods. 

Comprehensive checks against test data should be 
made for even the most rudimentary model in order 
to identify any errors and invalid assumptions in the 
model.  These should then be corrected in order to 
gain sufficient confidence in the CAE results. 

The term ‘model verification’ is used to describe the 
process by which the behaviour of the model is 
checked against test data. 

The term ‘model validation’ is used to describe the 
process by which a model, and/or a real system, is 
corrected so that the model and system’s perform-
ance match. 

Model verification is thus a prerequisite for, and an 
essential part of model validation. 

The problems with implementing model validation 
stem from the limitations of existing model verifica-
tion techniques.  These revolve around the compari-
son of simulation results with test data. 

1.1 Existing approach to model verification 

The comparison of simulation results against test 
data can be carried out in two ways: either using time 
histories; or using frequency responses/statistical 
data. 

The comparison of time histories is notoriously diffi-
cult due to the following drawbacks: 

1. All inputs to the model must be known. 

2. Any errors in a model get magnified during 
the simulation since they are integrated to 
generate future time histories. 

3. Any error space, calculated by taking the dif-
ference between the real and virtual results, 
will not normally have a single minima. 

The above drawbacks in model verification mean 
that any attempt at model validation must, at best, 
utilise slow global optimisation tools. The require-
ment for assumptions to be made for unknown inputs 
will also have a detrimental impact on the model 
validation process. 

Although the comparison of frequency responses and 
statistical data generally overcome these drawbacks, 
both methods suffer from two further shortcomings: 

1. Lack of resolution. 

2. Concealment of non-linear effects by statis-
tical processing or Fourier transformation. 

These particular shortcomings result in poor model 
verification and therefore subsequent attempts at 
model validation will not characterise the complex 
behaviour of a dynamic system.  This detailed in-
formation is vital when analysing system perform-
ance. 

1.2 Example, a spring-mass system 

Consider a mass, on a non-linear spring and damper, 
subject to a disturbance input at the free end as 
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shown in figure 1.  This system has a very simple 
mathematic representation, and yet highlights all the 
limitations of current model verification techniques 
and their impact on model validation. 

 
Figure 1: Example dynamic system 

For the purpose of this example it will be assumed 
that the only measurement made during a test of the 
real system is that of the acceleration of the mass. 

Considering the use of time history methods, and 
assuming the input to the system is known, it can 
immediately be shown that the error space between 
the measured and simulated accelerations does not 
have a single minima when the mass parameter is 
varied (figure 2). 
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Figure 2: Verification error against mass 

Considering frequency response methods, it can be 
seen that the frequency response of the system does 
not clearly represent the non-linearity of the spring 
characteristic, since it is lost within the measurement 
noise (figure 3). 
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Figure 3: Measured frequency response of system 

The more complex a system, the more problematic 
the limitations associated with current model verifi-
cation techniques become. 

These limitations mean that implementing a model 
validation technique for a complex dynamic system 
is almost impossible. 

In order to develop a proper method for model vali-
dation, a robust model verification technique must 
first be developed that does not exhibit any of the 
drawbacks described above. 

1.3 A new approach to model verification 

The limitations of current model verification tech-
niques all stem from the fact that it is the results of a 
model simulation that are compared to test data, 
rather than the model itself. 

Any new approach to model verification must there-
fore compare the model itself to test data rather than 
the outputs of any analysis.  This requires that the 
model must be independent of the analysis carried 
out on that model. 

In order to achieve this, the model must be driven 
directly by the test data, and not by a set of inputs 
predetermined by the formulation of the model. 

It is always possible to reformulate any model so that 
it can be driven by any arbitrary data, as long as 
there is sufficient data measured about the real sys-
tem; it is just a matter of matching the number of 
equations to the number of pieces of information 
required to solve those equations. 

When model verification is approached in this way, 
the requirement to know all inputs to the model is 
immediately removed.  Instead, these inputs are de-
rived as part of the model verification process. 

In addition, the test data to be used can be differenti-
ated and integrated prior to any analysis.  As a result, 
errors do not get magnified by integration within the 
model and error spaces become well-behaved, exhib-
iting a single minima. 

Finally as this approach is not statistical in nature, 
and does not use Fourier transforms, non-linearities 
are preserved, as is the resolution of the data. 

The Modelica language has several features that are 
ideally suited to implementing a model verification 
technique based on the approach outlined above.   
Firstly, the equations of the model can be rearranged 
and manipulated as required. Secondly, the Modelica 
language includes only information about the model 
itself and not the analysis of that model. 

Spring Characteristic 

Force 

Displacement 
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1.4 A new approach to model validation 

The model verification approach outlined in section 
1.3 gives a measure of how well the model matches 
the physical system.  This measure can be thought of 
as determining the ‘error’ between the model and the 
physical system, and as stated above this measure is 
‘well-behaved’ exhibiting only a single minima at 
the point where the behaviour of the model and 
physical system agree. 

The aim of any model validation process is to ensure 
that the behaviour of the model of a system matches 
that of its physical counterpart.  In this approach, this 
is achieved by minimising the above error to an ac-
ceptable level. 

In order to completely validate a model it is neces-
sary to address two distinct issues: parameter identi-
fication and model structure development. 

Parameter identification is concerned with tuning the 
parameters of the model to minimise the error be-
tween the model and physical system, whereas 
model structure development examines whether 
changes to the components or equations of the model 
would reduce this error. 

By using the model verification approach discussed 
above, in conjunction with a fully parameterised 
model that allows replacement and updating of its 
individual components, it is possible to implement 
both parameter identification and model structure 
development techniques. 

The Modelica language has several features that en-
able both parameter identification and model struc-
ture development to be implemented.  This ensures 
that a robust and comprehensive method of model 
validation can be applied to Modelica models. 

2 Features of the Modelica language 
relevant to Model Validation 

There are many features of the Modelica language 
that make it ideal for implementing the approach to 
model verification and model validation described 
above.  These features are discussed under six head-
ings.  The first four relate to requirements identified 
in sections 1.3 and 1.4: 

 For model verification it is important that the 
model is separate from any analysis of that 
model. 

 For parameter identification the model must 
be fully parameterised. 

 For model structure development compo-
nents must be replaceable with other repre-
sentations of that component. 

 For model structure development the equa-
tions of the model must be available in an 
accessible form. 

The following additional features are necessary for 
the control of the model validation process: 

 In order to produce a meaningful result from 
the model verification analysis, weighting 
factors must be applied to quantities within 
the model 

 In order to control the model validation 
process, attributes need to be associated with 
the quantities, components and equations of 
the model. 

2.1 Separation of the model and analysis 

A model in which simulation and/or integration are 
integral parts of the model is of limited use when 
implementing model validation technologies, as 
these models will inherently suffer from the prob-
lems outlined in section 1.1. 

Although the Modelica language has been designed 
to produce models that will be simulated (integrated 
against time) the formulation of these models does 
not explicitly require this.  Furthermore there is no 
necessity for the integrators to be included within the 
formulation of the model. 

Modelica models can therefore be analysed in ways 
other than by simulation techniques, such as tech-
niques based on the model verification and valida-
tion approaches described above. 

2.2 Model parameterisation 

Full model parameterisation requires that any pa-
rameter of the model can be given a new value and 
the model re-executed, without the need for exten-
sive recompilation.  In this way the sensitivity of the 
model to parametric changes can be quickly assessed 
by the model validation analysis. 

Parameters within a Modelica model are identified as 
such by the keyword parameter, used in the defini-
tion of that quantity.  This allows such quantities to 
be treated appropriately, and the model checked for 
consistency. 

This information can also be used to produce a full 
parameterisation of the model.  Such a parameterisa-
tion would require that each parameter of the model 
was stored independently of the equations of the 
model, rather than hard coded into those equations. 
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There is no specific requirement in the Modelica 
language for models to be parameterised, and there-
fore this becomes an implementation issue; the lan-
guage itself carries all the necessary information for 
a full parameterisation of the model. 

2.3 Replaceable components 

Being able to replace the model of a component with 
different variations of that model allows different 
component models to be assessed as to their suitabil-
ity to model a particular physical sub-system. 

This, in turn, allows intelligent trade offs to be made 
between the simplicity of individual sub-component 
models and the accuracy of the model as a whole. 

Replaceable components have been part of Modelica 
since its first documented version.  These allow 
components or sub-components of a model to be re-
placed with different variations of the same compo-
nent.  For example a model of a resistor can be re-
placed with a model of temperature sensitive resistor. 

2.4 Availability of model equations in an acces-
sible form 

In a Modelica model, components are described by a 
series of equations.  These equations are written in a 
standard form that can be interpreted, simplified and 
re-arranged as necessary. 

The accessibility to these equations means that 
changes to the basic formulation of the model can be 
made, and the impact of such changes assessed with 
respect to the behaviour of the model. 

In Modelica models, equations are grouped together 
under the definitions of the components that they 
represent.  This makes the user-selection of equa-
tions to be assessed straightforward. 

2.5 The association of weighting factors with 
quantities within the model 

In order to generate a representative error from the 
model verification process described in section 1.3, it 
is important that all the errors across the model are 
scaled appropriately during the model verification 
process.  This ensures that all measurement errors 
and all modelling errors are treated equivalently, 
rather than giving emphases to those quantities with 
a high nominal value. 

For example, in a car, if both suspension force and 
wheel movements were measured as part of a test, it 
would be incorrect to assume that an error of 1N in 
the suspension force was equivalent to 1m of deflec-
tion in the suspension.  In fact, it may be more ap-

propriate to make 5kN of suspension force equiva-
lent to 10mm of suspension deflection.  Weighting 
factors of 5000 and 0.01 would therefore be applied 
to these quantities respectively.  In fact, in most 
cases it makes sense to weight a given quantities er-
ror by the nominal value of that quantity. 

Such scaling values can usually be determined from 
the nominal attribute of quantities within the model, 
but this is sometimes not the case, as will be dis-
cussed in section 4. 

2.6 Attributes for control of the model valida-
tion process 

Control attributes are required to mark quantities, 
components and equations as being included or ex-
cluded from the model validation process. 

In certain situations it does not make sense for a 
quantity, a component or an equation of a component 
to be assessed as part of a model validation exercise.  
For example, it does not make sense to change an 
equation that directly implements a physical law, 
such as Newton’s Second Law. 

In such cases, it is useful to mark these quantities, 
components, and equations within the model, so that 
they can be automatically excluded from any model 
validation analysis. 

Annotations, with their relatively free form, are an 
ideal way of marking such quantities, equations and 
components, and feeding extra information about the 
model into the model validation process. 

Using annotations in such a way enables all the im-
portant information about the validation process that 
relates to the model to be contained within the model 
itself. 

3 Example: Validation of a model of 
a Racing Car. 

The validation of a model of a racing car against test 
data is presented.  The technique used is based on the 
model validation approach described above. 

The model used for the validation exercise is shown 
graphically in figure 4. 

The data used for the validation is taken from a test 
of the car on a chassis dynamic test rig and consists 
of data for: 

 Forces applied by aerodynamic loading ac-
tuators 

 Displacements and Forces applied by road 
input actuators 
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 Accelerations of the body and wheels 

 Forces in the four pushrods 

 Displacements of the four dampers 

 Height, roll and pitch of the body of the car 

 
Figure 4: Model of a racing car. 

The model validation technique used here is, in gen-
eral, an iterative process where the largest causes of 
error are removed first, followed by the second larg-
est, and so on.  Each time a source of error is re-
moved, other smaller errors become apparent in the 
model. 

In this example, one iteration of parameter identifica-
tion and one iteration of model structure develop-
ment is presented, together with the overall model 
validation results. 

3.1 Parameter Identification 

Using the model verification technique described in 
section 1.3, a time history of the error between the 
model and measured data can be derived. 

This error is analysed with respect to the model, us-
ing a cause and effect analysis, to determine which 
parameters are most likely to be causing the error 
between the model and the physical system.  Fur-
thermore the sensitivity of each parameter to the er-
ror is also calculated. 

Table 1 shows a sample of results of such an analy-
sis. 

Table 1: Results of Parameter Identification analysis 

Parameter Correlation Sensitivity 
Car.Front.AntiRollBar.Stiffness 0.945 165.7 
Car.Front.Suspension.Stiffness 0.856 1443 
Car.Rear.AntiRollBar.Stiffness 0.832 -40.54 

   
 

The values in the column labelled ‘correlation’ de-
termine the likelihood that a particular parameter is 
causing the error between the model and the physical 

system.  In this case therefore, it is most likely that 
the error is caused by the front anti-roll bar, however 
it may also be caused by the front springs or the rear 
anti-roll bar. 

The choice of parameter can usually be made using 
the sensitivity index and engineering judgement.  
This parameter can then be adjusted, either automati-
cally, or by the user, to a new and better value. 

A new table of results similar to table 1, but with one 
of the modelling errors removed can then be calcu-
lated and the next iteration made. 

3.2 Model Structure Identification 

As an example of the development of the model 
structure, the rear dampers of the vehicle will be 
considered. 

The model of these non-linear dampers includes an 
equation that specifies the force generated by each 
damper due to the velocity across the dampers. 

The characteristics of this equation can be checked 
by removing the equation from the model, or turning 
the equation off, and treating the force generated by 
the damper as a continuous input to the model. 

The model verification process will then generate a 
damper force against time that minimises the error 
between the model and real system. 

The true characteristic of the non-linear damper can 
be examined by plotting the damper force against 
damper velocity.  The form of the original equation 
can be checked and revised by considering the shape 
of this characteristic versus that generated by the 
equation it replaced. 

The results for the model validation example are 
shown in figure 5, with both the left and right 
damper characteristics plotted. 

 

 
Figure 5: Identified Damper characteristic 

There is good agreement between both the left and 
right dampers, and the expected characteristic. 

Comparing the verification errors for the model with 
the damper equation turned on and turned off enables 
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the error attributable to that component to be quanti-
fied. 

3.3 Model Validation Results 

In this example model validation, an initial error of 
0.3 was reduces to a final error of 0.01.  The model 
validation process was stopped at this point as it was 
decided that the model was of sufficient accuracy for 
its intended purpose. 

The reduction in error can be broken down into 3 
categories, listed in table 2. 

Table 2: Errors with model 
Error due to incorrect calibration of sensors 0.18 

Error due to incorrect parameters 0.07 

Error due to invalid assumptions 0.04 

4 Future Developments of the Mode-
lica Language for model validation 

Although the Modelica language has many features 
that make it an excellent choice for modelling sys-
tems that will be validated against test data, it was 
originally designed for modelling systems to be 
simulated.  As such there are two areas where small 
changes or developments of the language would im-
prove the validation of Modelica models; these are 
extensions to the Real attributes and annotation 
specification. 

Two further issues are discussed: the interpretation 
of Modelica models and the pre-resolution of con-
straint equations.  The resolution of these issues 
would benefit both model validation and simulation 
tools. 

4.1 Extension of the Real type, to include a sen-
sitivity attribute 

Although weighting factors can be currently entered 
using the nominal attribute of Real quantities, there 
is no possibility to enter sensitivity values.  There are 
two cases in which sensitivity is an issue that need to 
be properly addressed when applying model valida-
tion techniques. 

Firstly, some quantities have a large value, but a 
small range; for example, damper lengths as meas-
ured on racing cars.  A damper may have a static 
length of approximately 20 cm, but a variation in this 
length of between 18 and 22 cm.  In this example, 
the nominal value of 20 cm should not be used as a 
weighting factor for the error in the damper length; 
instead a value of 4 cm should be used.  If it was 

possible to attribute a sensitivity of 4 cm to this 
quantity, this could be used to weight any errors at-
tributed to the damper length. 

Secondly, it is possible to have quantities that al-
though have a large range, are very sensitive to 
variations in their value.  Good examples of such 
quantities are the wheel speeds of a racing car and 
the forward velocity of that car.  When calculating 
the tyre force, using standard models such as Pace-
jka, the difference is taken between the forward ve-
locity of the car, and the velocity of the tread of the 
tyre relative to the vehicle.  This gives the slip of the 
tyre on the ground.  Changes in slip of only 1% of 
the speed of the vehicle can result in large forces 
being generated by the tyre.  In this case the nominal 
value for the velocity of the car would be 50 m/s, 
whereas the sensitivity should be 1% of this at 
0.5m/s. 

For simulation tools sensitivity has not been a prob-
lem as the equations are all solved to 0, and toler-
ances, both relative and absolute are used to deter-
mine accuracy.  However, such sensitivities may be 
useful for giving the user a greater degree of control 
of tolerances in specific situations. 

4.2 Specific annotations for model validation 

In section 2.6, attributes for equations and compo-
nents were discussed.  It was noted that the annota-
tion mechanism in Modelica is suited to the re-
quirements of indicating which equations were to be 
included in any model validation analysis. 

As with the drawing of graphics and icons for com-
ponents, it would be useful to include any specifica-
tion of annotations within the Modelica specifica-
tion, so that all model validation tools could use a 
common source of models. 

4.3 Interpretation of Modelica models 

Another area of development of the Modelica lan-
guage is to consider whether it is possible to interpret 
(or Just-In-Time compile) Modelica models rather 
than pre-compile them. 

For the purposes of model validation, interpretation 
offers many benefits over compilation as changes to 
equations within the model can be assessed more 
quickly without the need for recompilation of the 
model. 
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4.4 Pre-resolution of constraints 

It is possible in some cases to pre-solve constraint 
equations and generate lookup tables for their solu-
tions.- 

For example, a double wishbone suspension on a 
race car, if modelled with solid elements, will have 5 
states and 4 constraints.  These constraint equations 
can be easily removed and lookup tables inserted.  
This reduces the size of matrices within the model 
validation tool and speeds up the entire model vali-
dation process. 

5 Conclusions 

Model validation should be an essential ingredient in 
any dynamic system development that uses Com-
puter Aided Engineering (CAE) methods.  The 
choice of CAE tools should reflect this, and so it is 
important with any modelling language develop-
ment, such as that of the Modelica language, to con-
sider whether the underlying structure of the lan-
guage is suitable for the implementation of such 
techniques. 

The Modelica language uniquely combines several 
features that make it an excellent base for the im-
plementation of model validation techniques. 

References 

[1] Dorling R.J. ADS Trackside User Manual. 
Advanced Dynamic Systems Limited, 2004. 

[2] Modelica Association. Modelica – A Unified 
Object-Orientated Language for Physical 
Systems Modeling – Language Specifica-
tion, Version 2.1 

 

Model Validation and the Modelica Language

The Modelica Association 381 Modelica 2005, March 7-8, 2005



The Modelica Association 382 Modelica 2005, March 7-8, 2005



Session 5a

Engines

The Modelica Association 383 Modelica 2005, March 7-8, 2005



The Modelica Association 384 Modelica 2005, March 7-8, 2005



Monte Carlo Simulations for Evaluating Engine NVH Robustness  
 John J. Batteh       Michael M. Tiller  Adam Goodman 

Ford Motor Company, Research and Advanced Engineering 
{jbatteh, mtiller}@ford.com, akgood@umich.edu 

Abstract 

This paper describes the use of a design-
oriented engine cycle simulation model in Modelica 
for evaluating robustness of engine NVH (Noise, 
Vibration, and Harshness) to noise factors.  This pa-
per highlights the novel use of the cycle simulation 
model for analytic robustness studies using Monte 
Carlo simulations.  The Monte Carlo simulations 
allow the robustness of a statistically significant en-
gine population to be examined upfront in the prod-
uct development process.  The paper also discusses a 
flexible, extensible tool that was developed in con-
junction with the Modelica models to streamline the 
description, execution, and results post-processing 
from the simulations.       
Keywords: engine cycle simulation; NVH; Monte 
Carlo simulations; Fourier analysis 

1 Introduction 

Engine NVH is typically one of the vehicle at-
tributes that contributes strongly to customer satis-
faction and perceived quality [1].  The customer ex-
periences the NVH characteristics of the vehicle via 
multi-sensory feedback.  Radiated noise, steering 
wheel vibration, and seat track vibration are just a 
few of the common audible and tactile feedback 
mechanisms. 

The vehicle NVH characteristics related to the 
engine result from the coupling of the dynamic en-
gine torque with the transfer characteristics of the 
vehicle.  The vehicle transfer function is affected by 
many different system-level design attributes, such 
as the design of the engine mounts and engine block, 
the vehicle frame design, and the vehicle stiffness, 
just to name a few.  The design of the individual 
components and the overall system design are crucial 
for the development of a system that meets the func-
tional requirements while maintaining acceptable 
NVH characteristics. 

NVH evaluation is often performed on hard-
ware components, primarily early prototypes.  Due 

to the cost and limited availability of prototypes 
early in the design process, the evaluations are nec-
essarily restricted in scope and usually at the nominal 
design.  While more extensive evaluations can be 
performed on hardware later in the design process, 
the impact of the evaluations on the design is often 
limited due to the additional cost and potential pro-
gram timing impact of design changes further down-
stream in the product development process.  Fur-
thermore, evaluating the impact of the manufacturing 
process and capability on the vehicle NVH is ex-
tremely difficult with prototype hardware due to the 
lack of a statistically significant population.   

A robust product design requires the evaluation 
of the nominal design performance and sensitivity 
with respect to noise factors.  This paper presents an 
analytic approach for evaluating engine NVH ro-
bustness to noise factors.  The advantages of analytic 
NVH evaluation are many.  Analytic evaluations are 
a cost-effective way of assessing NVH attributes up-
front in the design process where changes are most 
easily accommodated.  In addition to being costly, 
"cut and try" hardware experimentation can be ex-
tremely resource-intensive and time-consuming.  
Analytic evaluations can provide data in a more 
timely manner and allow for streamlining the NVH 
audits via batch simulations, parallel computing, and 
automated data collection and post-processing.  Be-
cause even the noise factors can be set and accu-
rately measured in the analytic models, the resulting 
data can clearly show the impact and interactions 
between the various factors.    In addition, an ana-
lytic robustness evaluation can easily include the 
impact of manufacturing capability on the resulting 
NVH, thereby providing the opportunity for an opti-
mal design including the effects of the manufactur-
ing process for a statistically significant population 
representative of that in the hands of the customers.  
Furthermore, a detailed knowledge of the nominal 
design and its sensitivity to noise factors can lead to 
the feeding forward of additional requirements or 
control actions for the manufacturing process by the 
product development team to ensure robust product 
delivery to the customer.   
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2 Engine NVH Analysis 

Engine NVH can be quantified in many differ-
ent ways.  One typical way of assessing engine NVH 
due to combustion torque is via calculation of the 
standard deviation of Indicated Mean Effective Pres-
sure (SDIMEP) in the engine, essentially a measure 
the variation in the combustion event amongst the 
various cylinders.  An engine with good NVH char-
acteristics would typically have uniform combustion 
and thus similar power output from the various cyl-
inders.  However, past work has shown that SDIMEP 
does not often correlate well with engine NVH met-
rics observed by the customer [1].  A new technique 
for evaluating combustion variation called Combus-
tion Torque Uniformity [1]-[2] is applied in this 
work.  This approach examines the frequency con-
tent of the engine torque to analyze combustion non-
uniformity.  This section describes the models and 
techniques used to analytically calculate Combustion 
Torque Uniformity metrics for a V6 engine subject 
to noise factors.   

2.1 Cycle Simulation 

At the heart of the analytic engine NVH meth-
odology is the cycle simulation model.  This model 
describes the detailed thermodynamics of the breath-
ing, compression, combustion, and expansion of the 
gas mixture.  Figure 1 shows the Modelica represen-
tation of the GESIM predictive cycle simulation 
model [3]-[4].   

The details of the cycle simulation submodels 
influence the types of noise factors that can be con-
sidered in the NVH analysis.  The cycle simulation 
model used in this study includes the following sub-
models: 

• Multi-zone, predictive combustion based 
on thermodynamics and bulk fluid motion 

• Pseudo-species formulation with detailed 
mixture property calculations for the 
thermodynamic media 

• Gas exchange across the valves with the 
valve lift kinematically determined from 
the cam position and the valve lash 

• Detailed thermal response models for the 
block, head, and piston 

• Intake reservoir boundary conditions in-
cluding the pressure, temperature, and 
composition  

GESIM has previously been used to simulate cycle-
to-cycle variability based on factors related to the 
physics of early flame development [5].   

 
Figure 1.  GESIM cycle simulation cylinder 

 
The cycle simulation model shown in Figure 1 

can be inserted into predefined engine templates to 
simulate multi-cylinder engines [4], [6].  The multi-
cylinder engine templates use a replaceable cyl-
inder model that is instantiated locally.  The specific 
engine to be simulated is created by extending the 
appropriate engine template (i.e. single cylinder, I4, 
V6, etc.) and redeclaring the cylinder model.  Figure 
2 shows the dual-plenum V6 engine configuration 
with each cylinder as the GESIM cycle simulation 
model shown in Figure 1.   
 

 
Figure 2.  V6 (dual plenum) engine configuration 
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The test case for the engine NVH simulations is 
shown in Figure 3.  This model is an extension of our 
existing flexible dyno template [4] and has previ-
ously been used for detailed powertrain NVH simu-
lations [7].  Figure 4 shows the code required to 
modify the dyno template to simulate a V6 engine 
with GESIM cylinders.  The engine geometry data is 
specified by the redeclare of the EngineData 
package.  The user defines the test conditions to be 
simulated by specifying the engine speed, spark tim-
ing, and intake conditions via the engine controller.  
An additional block was added to the top-level 
model to perform the Fourier analysis of the result-
ing engine torque and will be discussed in greater 
detail in the next section.   
 

 
Figure 3.  Engine NVH test case 

 
model EngineNVH  

  extends DynoSetup( 

  redeclare package EngineData = MyEngine, 
  redeclare model CylinderModel = GESIM, 

  redeclare model Configuration =   

    V6DualPlenum(redeclare model          

                 CylinderModel= CylinderModel)); 
… 
end EngineNVH; 

Figure 4.  Code excerpt from engine NVH test case 

2.2 Fourier Analysis 

The Combustion Torque Uniformity technique 
[1]-[2] analyzes the harmonics of the engine torque 
waveform.  The torque order content above the 0th 
order and less than the firing frequency is computed 
via Fourier decomposition.  The 0th order torque con-
tent represents the work done on the crankshaft while 
the magnitude of the other harmonics are non-zero as 
a result of non-uniform combustion events.   The 

magnitude (An) and phase (φn) of the nth order har-
monic [1] is given by the following Fourier represen-
tation: 
 ( )nin nA φθ +cos  (1) 

where θi is the crank angle.  The code excerpt in 
Figure 5 illustrates the Modelica implementation of 
the discrete Fourier transform calculations.   
  
model OrderAnalysis  
… 
  for m in 1:num_order loop 

    s_sum := 0; 

    c_sum := 0; 

    for i in 1:no_pts loop 

      s_sum := s_sum + waveform_sample[i]* 

        sin(4*pi*order[m]*(i - 1)/no_pts)*2/no_pts; 

      c_sum := c_sum + waveform_sample[i]* 

        cos(4*pi*order[m]*(i - 1)/no_pts)*2/no_pts; 

    end for; 

    s_sum_temp[m] := s_sum; 

    c_sum_temp[m] := c_sum; 

    mag[m] := if (order[m] == 0 or order[m] == no_pts) 

       then 0.5*((s_sum)^2 + (c_sum)^2)^0.5 else  

       ((s_sum)^2 + (c_sum)^2)^0.5; 

    phase[m] := if atan2(-s_sum, c_sum)*rad2deg < 0 

       then 360 + atan2(-s_sum, c_sum)*rad2deg else  

       atan2(-s_sum, c_sum)*rad2deg; 

  end for; 
… 
end OrderAnalysis; 

Figure 5.  Code excerpt from order analysis model 

 
The analysis can be performed either on the 

torque from a multi-cylinder engine model or via the 
superposition of the calculations from individual cyl-
inders.  The following equation can be used to calcu-
late the contribution to the engine harmonic from an 
individual cylinder based on the cylinder phasing 
and firing order: 
 ( )nA inn ψφ −cos  (2) 
where An is the magnitude of the nth order harmonic 
for the ith cylinder, φn is the phase of nth order har-
monic for the ith cylinder, and ψi is the firing angle 
for the ith cylinder.    

As an example of a typical engine torque signa-
ture, Figure 6 shows the simulated engine torque 
from one firing cycle of a uniform V6 engine along 
with the torque from cylinder 3.  The engine torque 
shows the 6 distinct firings and superposition of the 
resulting torque pulses from the individual cylinders.  
Note that the torque pulse from each cylinder is iden-
tical as there was no noise introduced in the geome-
try or operating conditions for the individual cylin-
ders.  Figure 7 shows the simulated engine torque for 
the same V6 engine as in Figure 6 but with the intro-
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duction of noise into the operation conditions such 
that cylinders 1-3 are still operating at a stoichiomet-
ric air-fuel (AF) ratio of 14.6 while cylinders 4-6 are 
now operating lean at AF=16.  In comparing both the 
engine and cylinder torques from Figure 6 and 
Figure 7, it is clear that the resulting torque signa-
tures are different and could lead to the excitation of 
different vehicle NVH modes when coupled with the 
transfer function of the vehicle.  Table 1 shows the 
torque harmonics for Cylinders 3 (AF=14.6) and 4 
(AF=16) from the engine in Figure 7.  Note that the 
lean cylinder has lower torque magnitudes as ex-
pected.   
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Figure 6.  Torques from a uniform V6 engine 
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Figure 7.  Torques from a V6 engine with cylinders 1-3 

operating at AF=14.6 and cylinders 4-6 at AF=16 
 

Table 1.  Cylinder torque harmonic calculations 

Torque Harmonics 
Cyl. 3 

AF=14.63 
Cyl. 4 
AF=16 

Mag [N.m] 5.64 4.72 
0 

Phase [deg] 0 0 
Mag [N.m] 20.61 18.81 

0.5 
Phase [deg] 336.3 335.8 
Mag [N.m] 7.79 6.10 

1 
Phase [deg] 332.7 335.1 
Mag [N.m] 17.15 15.98 

1.5 
Phase [deg] 265.9 262.1 
Mag [N.m] 14.91 13.57 

2 
Phase [deg] 266.7 264.0 
Mag [N.m] 14.57 13.36 

2.5 
Phase [deg] 247.9 245.0 
Mag [N.m] 10.82 9.55 

3 
Phase [deg] 245.6 243.4 

 

2.3 Methodology 

A key advantage to analytical engine NVH 
analysis is the ability to evaluate a statistically sig-
nificant engine population.  Rather than simulate a 
large number of V6 engines with a multi-cylinder 
engine model subject to various noise factors in the 
individual cylinders, it is far more computationally 
efficient to simulate a large number of single cylin-
der engines using the Monte Carlo method [8] to 
choose the value of the noise factor(s) for each run 
and then "virtually" assemble the single cylinders 
into a V6 engine.  The following methodology was 
used to perform the analytic engine NVH analysis 
(see Figure 8): 

1. For the given engine, build and calibrate the 
single cylinder cycle simulation model. 

2. For the operating condition of interest, con-
figure the Monte Carlo simulations by de-
termining the noise factors and their distribu-
tions (i.e. from manufacturing process capa-
bility, etc.). 

3. Perform the Monte Carlo simulations with 
the single cylinder model to generate a li-
brary of single cylinder results. 

4. Assemble multi-cylinder engines from li-
brary of single cylinder results. 

5. Analyze engine population and calculate sta-
tistics of interest. 
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Figure 8.  Engine assembly methodology 

3 NestedAnalysis Toolkit 

While considerable effort is made in these kinds 
of analyses to capture the appropriate level of detail 
in the models, it is important not to lose sight of the 
bigger picture.  Ultimately, the simulation of the un-
derlying model is simply a means of generating data.  
Such data can then be used in a variety of ways.  For 
example, frequently models are used as the basis of a 
design optimization process whereby the simulation 
evaluates perspective designs according to a set of 
objectives or constraints.   

For this reason, an analysis tool, called the 
NestedAnalysis Toolkit, has been developed inter-
nally that can be used to construct models of the 
complete analysis.  The term “nested” refers to the 
fact that complete analysis is composed of a hierar-
chy of other analyses.  For example, in quality and 
robustness analyses it is quite common to try and 
minimize the variation of a products performance 
with respect to uncontrollable noise factors. 

Figure 9 shows how such an analysis could be 
represented graphically.  At the bottom of the hierar-
chy are individual simulations.  Each simulation 
represents slightly different conditions.  The condi-
tions are generated automatically based on statistical 
information about the noise factors being considered 
and their impact on the inputs to the simulation.  Af-
ter these simulations are completed, the results are 
compiled and analyzed to produce statistical infor-
mation.  This statistical information can then be used 
in subsequent analyses (i.e. an optimization process 
in this case) to minimize the variation. 

The construction of these analyses was origi-
nally described in Python [9].  The descriptions were 
essentially declarative in nature, and the analysis 
engine would use the declarative descriptions of the 
analysis to coordinate the complete analysis.  In or-
der to make the toolkit more useful to end users, a 
graphical user interface was developed.  Using the 
new interface, users constructed the analyses graphi-
cally in a hierarchical manner.  The goal of the user 
interface was to show users a representation that was 
intuitive, like the overview shown in Figure 9.  

Figure 10 provides screenshots from a sample Monte 
Carlo analysis of a Dymola1 [10] transient model, in 
this case the TwoMasses example from the Mode-
lica Standard Thermal library.   

While support for running simulations gener-
ated from Dymola was a key feature of the toolkit, 
the toolkit architecture was developed to accommo-
date a range of different types of analyses.  For ex-
ample, support for using Excel spreadsheets within 
the framework was easily added.  Furthermore, each 
plug-in added to the framework was developed spe-
cifically to support each analysis type.  So, for ex-
ample, the support for Dymola simulations was able 
to automatically construct lists of input parameters 
and results and display them for the user to choose as 
either inputs or outputs in the nested analysis.  In 
addition, the toolkit has an extensible architecture for 
adding node analyses.  Currently the architecture 
supports Monte Carlo analysis, full factorial Design 
of Experiments (DOE), and some optimization func-
tionality. The vision is to be able to develop new 
analysis plug-ins as needed.  Some examples of pos-
sible additional analysis plug-ins are sensitivity 
analysis, Latin hypercube sampling, and fractional 
factorial DOEs.      

There is a fundamental philosophical principle 
in our toolkit that bears some explanation.  We do 
not rely on the simulation tools themselves to pro-
vide these capabilities.  There are two reasons for 
this approach.  First, we want our analysis capabili-
ties (Monte Carlo analyses, optimization, etc.) to 
work with multiple tools, not just Dymola.  Further-
more, we do not want to distract simulation tool de-
velopers with functionality that we consider to be 
“above” the simulator.  That being said, we recog-
nize that there are also great advantages to having 
these capabilities integrated into a simulation tool as 
well. 

 
Figure 9.  Building blocks for hierarchical analyses 

 

                                                      
1 Dymola is a trademark of Dynasim AB 

Monte Carlo Simulations for Evaluating Engine NVH Robustness

The Modelica Association 389 Modelica 2005, March 7-8, 2005



 
(a) Analysis construction 

(b) Monte Carlo factor selection 

(c) Output variable selection 

Figure 10.  NestedAnalysis Toolkit GUI screenshots for 
a Monte Carlo analysis of a Dymola transient model 

4 Results 

The methodology described in Section 2.3 was 
used to simulate the effects of valve lash variation in 
a sample V6 engine at a fixed operating condition.  
Valve lash is an important design variable as it af-
fects the timing and duration of the valve events, the 
maximum valve lift, and the overlap between valves.  
Thus, it directly impacts breathing, mixture prepara-
tion, and combustion.  Since there is some variation 
in the lash of each cylinder in the assembled engine 
due to the manufacturing process, it is highly desir-
able to understand the NVH effects of this variability 
in the engine population.  

The NestedAnalysis Toolkit described in Sec-
tion 3 was used to establish and perform the simula-
tions with Dymola [10].  One hundred single cylin-
der Monte Carlo simulations were performed with a 
normal distribution for the variation in valve lash. 
From the library of 100 single cylinder runs, 10,000 
V6 engines were assembled and analyzed. Each en-
gine was assembled by randomly choosing 6 cylin-
ders from the library (see Figure 8).  To determine an 
appropriate number of engines to assemble to repre-
sent the engine population, the number of assembled 
engines was increased until the overall engine popu-
lation statistics converged. To examine the sensitiv-
ity of the engine population to the process capability, 
the Monte Carlo simulations were conducted with 
four different standard deviations for valve lash.  
Figure 11 shows three of the simulated valve lash 
distributions (note that all distributions are normal 
but with different standard deviations).   

Figure 12 shows the results of the engine popu-
lation analyses for the various valve lash distribu-
tions. Figure 12a-b shows the histograms of the 1.5 
order torque in the assembled engine populations for 
σ = 0.02 mm and 0.01 mm, respectively.  Figure 12c 
shows the engine population statistics for 1.5 order 
torque.  Note that as the standard deviation of the 
valve lash increases, there is both a larger mean 1.5 
order torque and more variability in the engine popu-
lation as indicated by the error bars showing ±1σ 
levels.  Understanding the sensitivity of the engine 
population NVH characteristics to valve lash leads to 
the ability to optimize the lash centering and manu-
facturing process capability to optimize engine popu-
lation robustness.  Furthermore, given a specification 
on the various torque magnitudes, the analysis would 
also yield information as to the fraction of engines in 
the population that would meet the specifications.   

While the sample simulations shown here con-
sidered a single noise factor with a normal distribu-
tion, the approach is general and can be used with 
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multiple noise factors and a variety of distributions.  
Currently the Monte Carlo analysis plug-in supports 
normal, log normal, uniform, beta, exponential, 
gamma, and Pareto distributions, and the additions of 
new, user-defined distributions are trivial.  Further-
more, simulations with multiple noise factors can be 
analyzed with existing statistical techniques to iden-
tify main effects and interactions between the fac-
tors. 
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Figure 11.  Simulated distributions for valve lash 
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(c) Engine population statistics 

Figure 12.  1.5 order torque analysis for engine 
population due to valve lash variation 

5 Conclusions 

This paper discusses a methodology for analyti-
cal NVH simulations using the Combustion Torque 
Uniformity technique.  A novel simulation approach 
using a design-oriented cycle simulation model and 
the Monte Carlo method for simulating the effects of 
noise factors allows the robustness of a statistically 
significant engine population to be analyzed upfront 
in the design process.  In addition, the approach al-
lows for multiple noise factors to be simulated ac-
cording to various distributions to examine design 
sensitivities and interaction effects.  The ability to 
analytically simulate an entire engine population 
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leads to the opportunity for the optimization of the 
engine design coupled with the manufacturing proc-
ess capability to deliver the most robust product to 
the customer.  Furthermore, the flexible, descriptive 
NestedAnalysis Toolkit has been developed to 
streamline the description, execution, and results 
post-processing from these sorts of robustness stud-
ies.   
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Dynamic Simulation of a Free-Piston Linear Alternator in
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Abstract

This paper presents the modeling and simulation of a
novel development of a free-piston engine in Model-
ica. The investigated concept is a combination of a
combustion process and a linear alternator designed
to provide clean, efficient energy in a compact en-
gine. To study the features of free-piston engines a
Modelica library is outlined containing basic and ad-
vanced component models. Detailed sub-models are
investigated in order to design and improve hardware
components. Control strategies are developed and dy-
namically tested within the Modelica simulation. Dy-
mola/Modelica was found to be the best tool to exam-
ine the dynamic system behavior.
Keywords: free-piston engine, linear alternator, power
electronics, control strategies

1 Introduction

The free-piston linear alternator proposed by the Ger-
man Aerospace Center (DLR) - Institute of Vehicle
Concepts (IFK) combines a two stroke combustion en-
gine with a linear alternator. An adjustable gas spring
is used to reset the piston assembly (Figure 1). The
engine is designed to enable new degrees of freedom
for advanced optimization of the combustion process.
In contrast to conventional crankshaft engines the free-
piston design offers mainly three degrees of freedom
to improve engine performance:

• variable stroke

• variable compression ratio

• variable piston velocity

∗sven.pohl@dlr.de
†markus.graef@dlr.de

Figure 1: The free-piston linear alternator concept

These key features allow for designing a combustion
process with low emissions and development towards
homogenous charge combustion ignition (HCCI). The
variable stroke and variable compression ratio can be
used to optimize the combustion process for part load
conditions. The goal is to achieve a compact elec-
tric power engine with high efficiency and reduced
emissions at low costs. The free-piston linear alterna-
tor aims towards automotive application as auxiliary
power unit as well as power generator in hybrid elec-
tric vehicles.

2 Modeling Objectives

At IFK a hardware demonstrator is currently being
built to investigate the functionality of the free-piston
linear alternator. In parallel to the hardware compo-
nents a dynamic simulation model of the complete sys-
tem is developed using Modelica. A Modelica library
is outlined with the following objectives:

• specify hardware components

• develop control strategies

• analyze the combustion process

• evaluate operation modes
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Figure 2: Modelica assembly of free-piston linear alternator

• design dynamic system behavior

The investigation of the operation modes and their dy-
namic transitions are of special interest since know-
ledge of system reaction on changes in the parameters
is not available. Due to Dymolas dynamic modeling
capability parameter influence on stroke, compression
ratio and piston motion are a simulation focus.

3 Modelica Architecture

A Modelica library was outlined to provide basic and
advanced components for free-piston engine model-
ing. A major scope is the compatibility with Modelica
standard libraries and with future standards of thermo-
dynamic modeling.
The free-piston linear alternator model can be built
from library components. Figure 2 shows the sim-
ulation setup. The control systems, the thermody-
namic models of combustion cylinder and gas spring
are shown. The electrical system consists of the linear
alternator and the power electronics. On a sub-layer
the physical effects are modeled in detail: The mass
flows into and out of the cylinders can be observed,
the combustion process is modeled, heat transfer ef-
fects are investigated and the thermodynamic proper-
ties describe the state of the cylinders.
The FixedShape from theMultibody library is

extended to visualize the motion of the piston assem-
bly. The cylinder pressures are visualized by changing
the cylinder color. Figure 3 shows the 3D representa-
tion of the free-piston linear alternator. The combus-
tion cylinder is shown on the left, changing color dur-
ing combustion. The linear alternator is shown in the
middle next to the gas spring cylinder on the right. The
animation is not only helpful for presentation purposes
but also enables the developer to analyze the dynamics
of the free-piston linear alternator model.

Figure 3: Modelica visualization of free-piston linear
alternator

3.1 Interfaces

Modelica provides connector definitions for most
physical domains. However, a common thermody-
namic connector is not yet available. Thus, pressure
and temperature are the two potential variables, mass
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flow rate as well as heat flow rate are chosen to be
the flow variables. Additionally, to satisfy multi-phase
flow conditions, the mass fraction for each species is
added. From this information all necessary thermody-
namic properties can be calculated. A code fragment
of the connector definition is shown below:

connector CombustionGas
parameter FKLG.Types.NumberOfSpecies nX;
SI.MassFraction X[nX] "Mass fraction";
SI.Pressure P "Gas pressure";
SI.Temperature T "Gas temperature";
flow SI.MassFlowRate mdot "Mass flow rate";
flow SI.HeatFlowRate Hdot "Heat flow rate";

end CombustionGas;

For an ideal gas for example, the number of species
equals one and the mass fraction is consequently unity.

Complex models tend to exchange a fair amount of in-
formation leading to components with several connec-
tors and connections. To reduce the connection com-
plexity a bus system is defined as an assembly of other
connectors. Defining a bus currently becomes tedious
since every signal has to be added by hand. The fol-
lowing code fragment shows the bus implementation
for combustion, gas spring and linear alternator:

connector Bus
import SI = Modelica.SIunits;
import MoIn = Modelica.Blocks.Interfaces;

// Combustion
MoIn.RealSignal c_pressure (redeclare

type SignalType = SI.Pressure);
MoIn.RealSignal c_temperature (redeclare

type SignalType = SI.Temperature);
MoIn.RealSignal c_position(redeclare

type SignalType = SI.Position);
MoIn.BooleanSignal c_burning;
...
// Gas Spring
MoIn.RealSignal s_pressure(redeclare

type SignalType = SI.Pressure);
MoIn.RealSignal s_temperature(redeclare

type SignalType = SI.Temperature);
MoIn.RealSignal s_massflowOut(redeclare

type SignalType = SI.MassFlowRate);
...
// Linear Alternator
MoIn.RealSignal force(redeclare

type SignalType = SI.Force);
end Bus;

3.2 Base Models

Defining base models for components enables the user
to implement further models with the same exter-
nal connections but different content. Such a base
model may contain variable declarations, connectors

and common equations. Another benefit from this dec-
laration is the use of selection boxes in higher level
models to switch between all models extended from
the base model. In that way the user can change the
setup of complex models by simply selecting differ-
ent components from a list. At this time gas proper-
ties, fuel models, heat transfer models and combus-
tion models are implemented using the base model ap-
proach.

4 Thermodynamical System

The free-piston linear alternator model is divided into
the sub-models of combustion cylinder, linear alterna-
tor, gas spring and controls. These components are
built from basic thermodynamic components, like con-
trol volumes, valves and pipes. Detailed sub-models
concerning heat transfer and piston blowby are added
to the cylinder model. The gas spring model is vali-
dated with experimental data. Both, heat transfer and
blowby model are successfully obtained using other
simulation software.

4.1 Combustion Modeling

Generally, the simulation of combustion is a highly
complex process involving several disciplines such as
thermodynamics, heat transfer, chemical kinetics, and
fluid motion.
Since the compression ratio and the stroke of the free-
piston alternator is not constant through out the oper-
ation, a major task is to define an appropriate com-
bustion model. To describe the operation modes of the
combustion process it can be divided into several com-
bustion processes with differing strokes and compres-
sion ratios. In other words the free-piston linear alter-
nator contains several conventional combustion cylin-
ders with the same diameter but varying stroke and
compression ratio. The challenge is to find a repre-
sentative physical process that best describes the com-
bustion behavior with a minimum of input parameters
since experimental data is not yet available. Thus,
a rough approximation of the combustion process is
needed. As a starting point the combustion compo-
nents presented by Tiller [2] can be used. The cylin-
der gas is modeled as a single phase ideal gas lead-
ing to a straightforward formulation of all connected
components such as valves and pipes for the gas ex-
change. This is not a truly satisfying solution yet and
a more detailed combustion model is currently under
construction.
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Figure 4: Electrical system of linear alternator

4.2 Medium Models

Three property models for perfect air, ideal air and
an air/exhaust gas mixture were implemented as
base layer for the gas spring and combustion com-
ponents using Modelicasreplaceable notation.
The air/exhaust gas properties use the correlations by
Zacharias [4]. To reduce computation time the prop-
erty model was transferred into Modelica.

4.3 Heat Transfer Models

As described in section 3.1 the cylinder wall heat loss
models are extended from a base heat transfer model.
Two basic approaches for the wall heat loss are avail-
able. The first handles the cylinder heat loss for idle
running engines based on the approach by Huber [1].
Secondly, for a firing engine, the approach by Woschni
[3] is implemented.

4.4 Orifice Flow Models

A general orifice flow model using the isentropic flow
formulation found in textbooks is extended for valve
modeling.

Commonly, a small gas leakage between piston and
cylinder exits the cylinder. This blowby gas flow is
based on the orifice flow model. The effective area
is implemented as a parameter and is validated using
experimental data in case of the gas spring.

5 Mechanical System

The mechanical system is represented by the piston
where the equation of motion is solved. Additionally, a
spring-damper system mechanically prevents the pis-
ton from reaching the cylinder heads or the cylinder
pressure from rising above a critical value.

6 Electrical System

The electrical system consists of the battery, the inter-
mediate circuit, the power electronics module and the
electromechanical model for the linear alternator.
The control unit demands a specific force from the lin-
ear alternator. This signal is mapped into a set-valueiq
for the inverter control. The inverter control generates
PWM-signals for the IGBT-B6-Modul using thedq-
transformation. The IGBT is modeled as a diode and
a switch. The free wheeling diode is put in parallel to
the IGBT. The diode itself is described with 3 charac-
teristic curves, a straight line for the negative branch,
a 3rd grade polynomial equation for the forward char-
acteristics and a straight line for describing the system
beyond the normal operation area.
The linear alternator is described with maps for the
flux linkage and the inductance matrix for every posi-
tion. This data is impressed on the equivalent circuit
of a permanent magnet machine, composed of a resis-
tor, an inductance and a voltage source for the induced
voltage for all 3 phases.
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The generated force is calculated after adq-
transformation of the real currents with the inverse
F-iq map described in the beginning. As a result
the linear alternator force is simulated under dy-
namic conditions including all time constants influ-
encing the over-all system. In addition the Model-
ica inverter control model will be used in combina-
tion with the dSPACE box for controlling the con-
structed hardware. The power electronics are mainly
modeled using theModelica.Electrical and
Modelica.StateGraph packages.

7 Control System

Disconnecting the piston from the crankshaft requires
a new approach to system control since the continu-
ous shaft motion is not available. In fact developing
control strategies is the most challenging task in the
free-piston linear alternator design process.

Figure 5: Simulation setup for co-simulation

In conventional engines it is needless to mention that
the crankshaft returns the piston to the starting point
of a cycle. In a free-piston engine the piston not nec-
essarily returns to the same point. The piston position
is strongly dependent on the states in the cylinders and
the energy converted by the linear alternator. A piston
motion control is developed by adjusting the converted
energy of the alternator such that the piston returns
to its starting point. To account for all losses occur-
ring during the cycle the cylinder pressures are taken
as calculation basis. It should be noted that the lin-
ear alternator can be actively used to control the piston
motion. Hence, the linear alternator control can accel-
erate or slow down the piston to either influence the
combustion process or prevent the piston from crash-
ing.
In order to level the power output the energy released
by the combustion process is converted by the linear

alternator partly in the expansion phase and partly in
the compression phase. Thus, the gas spring is used
as temporary energy storage. This ”force split strat-
egy” also effects the piston motion depending on the
amount of energy converted in each phase. The simu-
lation results presented in this paper are based on an
equal energy conversion in expansion and compres-
sion phase. Extracting the energy in both, compres-
sion and expansion phase also reduces the linear al-
ternator size and consequently piston weight. The

Figure 6: Comparison of piston velocities for crank
shaft engine versus a free-piston linear alternator

variable volume of the combustion cylinder demands
for flexible valve and ignition timing. An ”electronic
camshaft” needs to be implemented to control valve
and ignition timing according to the operation mode.
For that purpose a virtual camshaft angle is introduced
to coordinate the timing issue.

8 Simulation Results

In the remainder of this section two simulation ap-
proaches are shown investigating the potentials and
challenges of a free-piston engine.

8.1 Step 1: Co-Simulation

In a first step the combustion process is simulated
externally and the combustion thermodynamics are
loaded into the free-piston linear alternator model (see
Figure 5). In an iterative process the result is then
used to re-simulate the combustion process until con-
vergence. In that way the combustion process can be
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simulated in detail with a well validated programm.
Due to unknown inlet and exhaust measures only the
high-pressure part of the combustion cycle is investi-
gated.

Figure 6 compares the piston velocity of a free-piston
linear alternator in respect to a conventional crank
shaft engine. As a result of the degrees of freedom of a
free-piston alternator the piston velocity is a function
of the system states.

The fundamental advantage of the proposed free-
piston engine over a conventional engine is empha-
sized by Figure 7. In the left figure a comparison of
the engines at full load conditions is displayed. Both
processes show about the same performance. How-
ever, in part load conditions, shown in the right fig-
ure, the conventional engine keeps its stroke and com-
pression ratio and the maximum pressure is quite low.
Due to the variability of the free-piston linear alter-
nator the stroke is lowered and the compression ratio
is adjusted such that the cylinder pressure reaches a
sufficiently high value. The performance in part load
conditions of the free-piston linear alternator is conse-
quently higher. This first approach shows the potential
of a free-piston linear alternator in terms of combus-
tion enhancement.

8.2 Step 2: Dynamic Simulation

A transient simulation is performed applying the Mod-
elica model shown in Figure 2 and described in the
sections above. Similar to many simulation tasks us-
ing DAE-solvers the free-piston linear alternator simu-
lation needs solid start values. A solution to this task is
to define a starting sequence where the linear alterna-
tor actively follows a fixed path for a few cycles before
switching to a general operating mode. In the start-
ing sequence the linear alternator simulates the pis-
ton motion of a crankshaft engine. During operation
the system depends on the states in the cylinders and
the energy converted by the linear alternator as well as
the combustion process. The operation mode, e.g. the
power output, can be changed by adjusting the system
variables during the simulation process. The dynamic
change in the system variables directly influence the
operation mode. Figure 8 displays the change of op-
eration mode from full load to part load conditions.
The piston stroke is reduced and the compression ratio
rises while the power output decreases as expected.

9 Conclusions

Examining the concept of a free-piston linear engine
two main fields of interest for simulation are detected:
Firstly, the development and testing of solid control
of the free-piston system before applying it to hard-
ware. On a second level the components involved in
the system, namely the gas spring, the linear alterna-
tor and the combustion process can be studied in the
free-piston context.
The dynamic simulation shows promising results. The
system behavior as well as the cylinder conditions
can be investigated, even when changing the operation
mode. Developing control strategies is found to be a
challenging task since solid piston control and an elec-
tronic camshaft are needed to ensure principle func-
tioning of the free-piston assembly. Control models
have been implemented and tested successfully.
Hardware components, such as valves and injectors,
naturally have dead times which effect their reaction
time. A predictive control to time the events in ad-
vance will be a focus of further development. Addi-
tionally, future efforts will be made to extend the free-
piston linear alternator model in order to form a solid
model to be built into a hybrid electric vehicle.
In order to implement a complex model of the free-
piston linear alternator in the different levels of detail,
subcomponents and components were modeled using
Modelica. The system analysis was performed using
Dymola. Both, the language formulation of Modelica
and the powerful capabilities of Dymola were found to
meet the expectations.
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Figure 7: Comparison of combustion pressure at full (left figure) and part (right figure) load conditions for a
crank shaft engine versus a free-piston linear alternator

Figure 8: Piston position (left) and power output for dynamic Simulation
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Abstract

Parabolic trough power plants are a very promising op-
tion for the generation of electricity from renewable
energy resources. The Modelica library ’DissDyn’ is
developed to study the transient behaviour of the two-
phase flow inside the absorber tubes of such plants.
Equations are based on a homogeneous equilibrium
model for the pipe flow with axial discretization. The
advantages of manually transforming the equations
into explicit state space form are shown. The models
are validated with analytical solutions and measured
data. Using test signals for disturbances in solar irra-
diation important information on the liquid loads on
field separator and drainage system are gained. By
adding feed-forward control schemes it is shown that
these loads can be reduced significantly.
Keywords: solar thermal power plant; two-phase
flow; simulation; renewable energy; absorber tube

1 Introduction

One way of generating electricity from renewable en-
ergy resources is the collection of solar radiation to be
used in solar thermal power plants. Today’s only com-
mercially operated solar power plants in the Mojave
Desert in California are based on a parabolic trough
collector field. A synthetic oil is heated in the ab-
sorber tube and generates steam of 10 MPa/370◦C in
a heat exchanger unit. The steam is used to run a
conventional steam turbine. Current research activi-
ties [1] are dealing with the direct solar steam (DISS)
generation in the absorber tube itself. Improvements
are expected by omitting the heat exchanger unit and
allowing for higher steam temperatures thus leading
to an increase in turbine efficiency. To avoid ma-
terial problems caused by an undefined end of the
evaporation section the collector loop is divided into
two sections, see fig. 1. The evaporation section is
run with a water surplus which has to be separated

from the steam before the entrance into the superheat-
ing section. In the current design realized at a DISS
test loop in Almeria (Spain) a maximum of 1.2 kg/s
of superheated steam at 3 to 10 MPa and 400◦C is
obtained from one collector loop. For the first pre-
commercial power plant with this technology the dy-
namic behaviour of the system determines the design
of key components like compact field separators and
the underlying drainage system. A dynamical simula-
tion tool based on the Modelica language is developed
to study the effect of irradiation disturbances and to
evaluate different control strategies. For the assembly
of the final system and the numerical integration the
Dymola program is used.

pre-heating/evaporation

recirculation line

irradiation

feed water line turbinecondensor

super-
heater

buffer

compact phase separator

Figure 1: Configuration of a parabolic trough solar
power plant with direct steam generation

2 Two-phase flow model equations

The central part of the model library is the fluid dy-
namical model of the two-phase flow in the absorber
pipes. In the following the underlying assumptions
and model equations are presented. For complex mod-
els it is advantageous and in this case necessary that
the selection of state variables is done by the program-
mer and not by the symbolic transformation tool Dy-
mola. It is shown that the combination of pressure and
specific enthalpy is the best choice for the state vari-
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ables of the fluid elements. The benefits of this manual
selection of states and transformation of equations are

• stable and numerically efficient simulation

• independence of system assembly

• reliable initialization procedure

• well defined closure equations.

2.1 Conservation equations

Depending on the location along the collector loop dif-
ferent flow regimes are found in the absorber tube.
Starting with single-phase liquid flow in the preheat-
ing part the flow changes into two-phase flow as soon
as saturation conditions are reached. In the super-
heating section the flow is again single-phase. Su-
perheating conditions also occur in the evaporator sec-
tion when the end of the evaporation section drys out
due to irradiation transients. Therefore the simulation
model must be able to simulate the flow in the three
regimes but also the transition between them. With a
length of about 1000 m pressure losses in each loop
are significant Fluctuations in irradiation cause large
changes in mass flow and, as a consequence, in abso-
lute pressure in the field. For this reason it is neces-
sary to use pressure-dependent properties for the fluid.
It is assumed that the flow is homogeneous over the
pipe cross-section. In the two-phase region equal ve-
locities and temperatures of water and steam phase
are assumed (homogeneous equilibrium model). The
simulation model is intended to study effects result-
ing from mass and energy transport which are much
slower than the propagation of changes in pressure.
Therefore infinite velocity of propagation is assumed
for the pressure. This reduces the momentum equation
to a stationary momentum balance for frictional pres-
sure losses. The fundamental equations for conserva-
tion of mass, energy and momentum for the control
volume shown in fig. 2.1 thus yield

∂ρ
∂t

+
∂
∂z

(ρw) = 0 (1)

∂
∂t

(ρu)+
∂
∂z

(ρwh) =
Q̇
V

(2)

∂p
∂z

= ∆p . (3)

The system is completed by the energy equation

AW ρW cW
TW

∂t
= Q̇ext − Q̇ (4)

for the surrounding pipe wall.
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Figure 2: Three control volumes for pipe flow.

2.2 Selection of states

Two variables are sufficient to fully describe the state
of the fluid element. The careful choice of the state
variables is of essential importance since it determines
the structure of the final system of equations. For this
work the state variables pressure p and specific en-
thalpy h are chosen for the following reasons. All
fluid properties can be expressed as a polynomial func-
tion of p and h. Using temperature T instead of h
is not possible since temperature and pressure are di-
rectly linked in the two-phase region. The steam frac-
tion ẋ can not be used since it is not defined in the
single phase regions. Friction losses cause a conver-
sion of mechanical into thermal energy while the sum
of both h = u + p/ρ stays the same. By using spe-
cific enthalpy as a state, pressure loss terms can easily
be defined by just changing the pressure and leaving h
constant. The most important advantage of this selec-
tion is that spatially discretized systems will result in a
set of de-coupled equations while a choice of e.g. mass
flows and specific enthalpy leads to a coupled system.
Using the fluid property functions

ρ = ρ(p, h) (5)

u = u(p, h) (6)

and average fluid velocity

w =
ṁ

0.25 π d2 ρ
(7)

the system of equations (1) to (2) can be rewritten ex-
plicit in the time derivatives

∂h
∂t

= fh
(
h, p, Q̇, ṁ

)
(8)

∂p
∂t

= fp
(
h, p, Q̇, ṁ

)
. (9)

T. Hirsch, W. Steinmann, M. Eck

The Modelica Association 404 Modelica 2005, March 7-8, 2005



From these equations explicit state space form can be
obtained by replacing ṁ with an inverse pressure loss
relation and Q̇ with a correlation for heat transfer.

2.3 Fluid properties

Properties of fluids are defined for three re-
gions, namely single phase water (region 1), two-
phase water-steam (2) and single-phase steam (3) in
the range 3 MPa < p < 12 MPa and 100 ◦C < T <
500 ◦C. Since state variables p and h are pre-selected
all properties can be expressed as polynomial function
of these variables. In the two-phase region the steam
fraction x is defined as

x =
h−h′

h′′
−h′ . (10)

with the specific enthalpies at saturation implemented
in polynomial form

h′(p) = a0 +a1 p+a2 p2 +a3 p3 (11)

h′′(p) = A0 +A1 p+A2 p2 . (12)

The density in liquid and gas phase is approximated
by polynomials of pressure and enthalpy

ρl(p,h) = b0(p)+b1(p)h+ . . .+bn(p)hn (13)

ρg(p,h) = B0(p)+B1(p)h+ . . .+Bn(p)hn(14)

with the coefficients

bi(p) = bi,1 +bi,2 p+ . . .+bi,m pm (15)

Bi(p) = Bi,1 +Bi,2 p+ . . .+Bi,m pm . (16)

Note that for the homogeneous model the steam frac-
tion x based on the control volume is the same as the
steam quality ẋ based on the mass flows of the two
phases. The mixture density in the two-phase region is
then given by

ρ(p, h) =
(

1
ρ′ + x

(
1
ρ′′ −

1
ρ′

))−1

(17)

ρ′ = ρl(p,h′(p)) (18)

ρ′′ = ρg(p,h′′(p)) . (19)

This approach guarantees a continuous transition be-
tween the three regions. The calculation of tempera-
ture as function of pressure and enthalpy requires that
for a fixed pressure exactly the same temperature is ob-
tained when approaching the saturation line from the
liquid region and the gas region. For this reason poly-
nomial approximations are set up relativ to saturation
conditions,

Tl(p,h) = T ′ + c0(p)+ c1(p)(h−h′)+ . . . (20)

Tg(p,h) = T ′ +C0(p)+C1(p)(h−h′′)+ . . .(21)

For the calculation of the saturation temperature An-
toine’s law

T ′ =
TB(

TA − log10

( p
100

)) −TC (22)

with the constants TA= 8.1, TB=1656.39, TC=223.2 is
used.
To complete the set of fluid property functions poly-
nomial approximations for the dynamic viscosity, spe-
cific heat capacity, heat conductivity and surface ten-
sion have been derived for both phases. These quanti-
ties are needed for the calculation of pressure losses,
and heat transfer coefficients. Table 1 gives an
overview on the order of the polynomials and the ac-
curacy achieved. High accuracy is desired for satura-
tion enthalpies to reduce the errors in calculating very
small steam fractions.

Table 1: Polynomial order of property functions and
accuracy in the range 3...11 MPa, 500...3500 kJ/kg

Variable Order in p Order in h Rel. error
h′ 3 0.2%
h′′ 3 0.02%
ρl 3 2 2%
ρg 2 3 0.5%
ηl 2 4 1%
ηg 1 2 1%
λl 2 3 1%
λg 2 3 1%
cp,l 2 3 1%
cp,g 2 4 1%
Tl 1 3 0.5%
Tg 3 3 0.5%

σ (T ′) 3 1%

2.4 Spatial discretisation

Regarding the whole collector loop, mass flow and
specific enthalpy at the inlet and pressure at the outlet
are given as boundary conditions. For the spatial dis-
cretization of equations (8) and (9) an upwind scheme
is applied for mass flow and specific enthalpy. Pres-
sure losses are concentrated downstream of the control
volume. Thus the equations yield for control volume i

∂hi

∂t
= fh

(
hi,hi−1, pi, Q̇i, ṁi, ṁi−1) (23)

∂pi

∂t
= fp

(
hi,hi−1, pi, Q̇i, ṁi, ṁi−1) . (24)
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2.5 Pressure loss

The mass flow terms in equations (23) and (24) have
to be expressed as function of the state variables. This
is realized by the inverse pressure loss relation

ṁi = ṁi (
pi, pi+1, hi) . (25)

To avoid implicit equations a pressure loss correlation
which can be solved analytically for ṁ is used [2].

2.6 Heat transfer

The heat flux Q̇ between wall and fluid is defined with
the wall temperature TW and the fluid temperature T in
control volume i

Q̇i = αi π d l
(
T i

W −T i )
. (26)

The heat transfer coefficient α can be calculated in
terms of the state variables

αi = αi (hi, pi, ṁi) (27)

with ṁi given in equation (25).

Replacing mass flow and heat flow terms in equa-
tions (23) and (24) the final simulation equations in
explicit state space formulation are obtained

∂hi

∂t
= fh

(
hi,hi−1, pi, pi−1, pi+1, T i

W

)
(28)

∂pi

∂t
= fp

(
hi,hi−1, pi, pi−1, pi+1, T i

W

)
.(29)

3 The DissDyn library structure

The library contains fluid-dynamic models for two-
phase flow in heated pipes as well as models for
components like tanks, phase separators, valves and
pumps. Models are added to convert the direct normal
irradiation into a heat flux on each absorber section.

3.1 Connector definitions

There are four different types of connectors currently
defined in the library:

MassFlow
m dot [kg/s] mass flow
h [J/kg] specific enthalpy
p [Pa] pressure

AmbData
t amb [◦C] ambient temp.
v wind [m/s] wind speed
alpha wind [deg] wind direction

SolarIrr
altitude [deg] altitude angle
azimuth [deg] azimuth angle
I Dir [W/m2] direct irradiation
I Diff [W/m2] diffuse irradiation

ParabolIrr
cosphi(n) [-] cos(φ)
alpha tr(n) [deg] track angle
I Dir(n) [W/m2] direct irradiation

This list is completed by the standard Modelica
Signal connector. All fluid-dynamic components
can be linked using the same connector MassFlow.
This connector is based on the definitions in the
TechThermo library developed at the institute [5]. The
other three connectors are used to transfer information
on solar irradiation and related quantities like incident
angles.

3.2 Solar irradiation models

The transformation of direct irradiation coming from
the sun into heat flux on the absorber tubes can be sub-
divided into three steps as illustrated in fig. 3. In the
SolarIrradiation model altitude and azimuth
angles of sun position are calculated based on the day
of the year, time of day and geographical latitude and
altitude. This component is prepared for the imple-
mentation of functions predicting the intensity of di-
rect as well as diffuse solar irradiation throughout the
day. At present, the magnitude of direct irradiation is
specified by an external signal source.
In the second stage the irradiation finally reaching the
individual collector is reduced by cloud coverage or
by taking the collector out of focus. In the model
ParabolicField the position and orientation of all
collectors in the field is stored which is used to calcu-
late the optimum track angle and the resulting incident
angle for each collector individually. The magnitude
of direct irradiation specified via the SolarIrr con-
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Absorber 2

Absorber i

1
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Figure 3: DissDyn-components used to model the path
of solar energy from sun to absorber tubes

nector is reduced by a cloud coverage and focus infor-
mation of the collector. The focus signal of each col-
lector (range 0 to 1) can be read via the Modelica sig-
nal connector. Varying cloud coverage is represented
using an one-dimensional cloud coverage signal that
can be moved with arbitrary speed and direction over
the collector field as shown in fig. 4

coverage
s

vcloud

collector field

x

y

one-dimensional
cloud field

0
1

Figure 4: Cloud coverage

The final stage is the transformation of irradiation
reaching the collector into the effective heat flux on
the absorber tube. This task is implemented in the
absorber model where efficiency data for the indi-
vidual collectors are stored.

3.3 Absorber and pipe models

The model equations for two-phase flow in pipes pre-
sented in section 2 are used to construct models for
simple pipe flow and for the flow in absorber pipes
of parabolic trough collectors. The spatial discretiza-
tion can be defined by the number n of axial ele-
ments along the pipe section. This is shown schemat-
ically in fig 5. For the computation of heat losses
the ambient temperature is given via the AmbData-
connector. The absorber models have another con-
nector ParabolIrr by which information on actual
irradiation, incident angle and theoretical track angle
is provided. Since these values are constant along
one collector each absorber model is intended to

AmbData

21 3 4 5 6 7 8 9 n...

(only absorber)

M
a
s
s
F
l
o
w

M
a
s
s
F
l
o
w

ParabolIrr

Figure 5: Structure of absorber and pipe model

represent one collector. A row of collectors is com-
posed of a number of identical collectors and their in-
terconnecting pipes. For convenience reasons a model
collector Row is defined which holds a set of
absorber and pipemodels connected in series. All
relevant geometrical parameters for the absorber
and pipe model can be defined in this top level
model. The irradiation and ambient data information
is passed to each component as depicted in fig. 6.

AmbData

Pipe 1-2

ParabolIrr

Coll 1 Coll 2 . . . Coll n

M
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w

M
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Figure 6: Collector Row model as a collection of
absorber and pipe models

3.4 Fluid system components

The set of fluid models is completed by fluid system
components like

• phase separator

• T-junction for flow combination and distribution

• control valve

• pump

• tank .

Except of the phase separator model all of these com-
ponents are based on stationary conservation of mass
and energy.

3.5 Control system components

To implement control functionality Modelica control
models and specialized models are used. These mod-
els are linked by Modelica Signal connectors. Al-
though these models can in principle be constructed
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from Standard Modelica blocks new models are de-
fined in order to have direct access to all relevant vari-
ables within one model.

4 Validation

The validation of the fluid dynamic models is done in
two steps. First the simulation results with different
spatial discretization are compared with analytical so-
lutions available under special assumptions like con-
stant pressure. Since these assumptions are not valid
in the real system a direct comparison with measured
data from the DISS test loop is needed in the second
step.

4.1 Analytical models

Under some assumptions the set of conservation equa-
tions can be solved analytically by Laplace transfor-
mations [3], [4]. Using the same simplifications for
the simulation the correct implementation and consis-
tence of the simulation model can be checked.
Fig. 7 shows a comparison of transfer function in
terms of amplitude and phase response for a 20 m ab-
sorber pipe section under two-phase conditions. For
this comparison the reaction to a 1% step in irradia-
tion with a spatial resolution of 1 element and 20 ele-
ments have been simulated. The corresponding trans-
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Figure 7: Transfer function of a 20 m two-phase ab-
sorber section: calculated with analytical model (-),
simulated with discretization 1 element (- -), 10 ele-
ments (· · ·)

fer function is derived by Laplace transformation of
the change in specific enthalpy at the outlet. While the
simulation with just one element has large deviations
from the analytical solution a much better agreement
is obtained with high resolution of 20 elements indi-
cating the consistence of the simulation model.
Comparison in the time domain plottet in fig. 8 shows
that for high resolution nearly exact agreement is ob-
tained. This means that the remaining deviations in
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Figure 8: Step response to a 1% change in irradiation
for a 20 m two-phase flow absorber

amplitude and phase angle at frequencies of more
than 1/s are not serious for the system since the contri-
bution of these frequencies is very small. Although the
resolution with 20 elements gives nearly exact agree-
ment the simulation with 5 elements is also very close
to the analytical solution.
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Figure 9: Simulated step response to changes in irra-
diation of -500 W/m2 at t=1500 s and +500 W/m2

at t=3500 s. 100 m evaporator section with resolution
of 2.5 m (-), 10 m (- -), 33 m (-.-), 100 m (. .)

In Fig. 9 simulation results are shown for a 100 m
evaporator section with large changes in irradiation.
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These results are obtained without the simplifying as-
sumption of constant pressure. The curves show that
the result with the coarse resolution of 10 m is quite
close to the one with fine resolution. Comparisons are
preformed for the preheating and superheating section
as well giving similar results.

4.2 Comparison with measured data

Especially the assumption of constant pressure along
the absorber is not fulfilled if multiple collectors are
connected in series. The comparison with the analyt-
ical models on the basis of constant pressure is there-
fore not sufficient to validate the model. For this task a
direct comparison with measured data from the DISS
test loop is performed for several test days. As an ex-
ample the reaction of the 500 m collector row (425 m
preheater/evaporator, 75 m superheater) to irradiation
fluctuations is shown in fig 10 in terms of inlet pres-
sure, steam mass flow and steam temperature.
Though there is a small deviation in the absolute value
of inlet pressure the dynamic behaviour is well pre-
dicted. Steam production and temperature are in good
agreement which is also observed in the other test con-
figurations. Both the check with analytical models and
the direct comparison with measured data show that
the model assumptions, especially the homogeneous
equilibrium model are valid for this application.

5 Transient simulation of a collector
loop

The simulation model is used to simulate the reaction
of a collector loop to changes in irradiation. Since the
dynamical behaviour is dominated by the amount of
liquid evaporated, the 800 m boiler section alone is
analyzed in the first step with the superheater replaced
by an adequate pressure loss term. Constant boundary
conditions for feed water flow and enthalpy as well
as recirculation flow and enthalpy are imposed at the
collector inlet. At the outlet of the field the pressure is
fixed at 7 MPa.
Using measured irradiation data as input for the sim-
ulation is not useful when looking on general system
behaviour. Moreover comparison of results with other
researchers requires the same set of input data. This is
avoided if a simple test signal is chosen which repre-
sents the main characteristics of real irradiation distur-
bances. In this work three single disturbances in series
are used as a test signal, see fig. 11. This signal is de-
fined only by the two parameters interval length ∆t and

change of intensity ∆I. The time constant of the collec-
tor system is closely linked to the residence time in the
boiler section. Since the residence time for an 800 m
boiler is approximately 700 s a series of short distur-
bances provokes an overlap of the system reactions.
By using the test signal with three ramps the effects of
this overlap can be studied. On the other hand, if long
intervals are chosen a single isolated disturbance can
be analyzed.
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Figure 10: Measured (-) and simulated (· · ·) DISS
plant operation on June 26, 2001. Spatial Resolu-
tion 10 m.

5.1 Simultaneous disturbance on all collec-
tors

Fig. 12 shows the simulation results in terms of steam
and water mass flow at the exit of the evaporator sec-
tion. Irradiation disturbances act simultaneously on
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Figure 11: Test signal of three consecutive irradiation
disturbances.

all 8 collectors of the boiler. Three studies with three
different interval lengths are carried out. The inten-
sity for short interval length is 100%, for long inter-
vals only 70% in order to avoid reverse flow in the
pipes. From the steam signal it can be seen that it
takes about 700 s after the last disturbance to reach
again stationary conditions. With a maximum interval
length of 240 s all curves represent a superposition of
individual reactions.
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Figure 12: Reaction of the 800 m evaporator section to
simultaneous irradiation disturbances on collectors 1-8
according to fig. 11. Plotted are steam and water mass
flow at the exit of the evaporator. Feed water 1.2 kg/s,
recirculation 0.25 kg/s, irradiation 875 W/m2, outlet
pressure 7 MPa.

The water flow shows large peaks with the maxima
located short time after the rising edge of the dis-
turbance. Since constant feed flow is injected at the
entrance of the collector water accumulates in the

system while irradiation is reduced. With increas-
ing steam production this additional water is blown
out and causes temporarily high liquid mass flux. In
the ∆t=30 s case two peaks appear in the water mass
flow signal. The first one immediately after irra-
diation increases and the second one with a delay
of about 700 s just before stationary conditions are
reached. While for short intervals (∆t=30 s, 120 s) the
second peaks of the three disturbances overlap and
form one large peak the single peaks can be identi-
fied for longer interval length (∆t=240 s). The max-
imum in liquid flow reached in this configuration is
about 2.5 kg/s which is 8 times the nominal value. This
results are very important to define the operating con-
ditions for the layout of the compact field separator
and the underlying drainage system.

5.2 Local disturbances

Small clouds can cause a local shading of just a num-
ber of collectors. Simulations are performed with as-
suming local shading of two collectors at a time. The
same test signal is used as before. An additional con-
figuration with a recirculation mass flow of 1.0 kg/s
instead of 0.25 kg/s is simulated to estimate the im-
pact of recirculation flow on the system dynamics.
Fig. 13 shows the results for a local shading of the pre-
heating section (collectors 1 and 2). From the steam
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Figure 13: Reaction of 800 m evaporator section to lo-
cal irradiation disturbance on collectors 1/2 according
to fig. 11. Plotted are steam and water mass flow at the
exit of the evaporator. Feed water 1.2 kg/s, recircula-
tion 0.25 kg/s (-) / 1.0 kg/s (· · ·), irradiation 875 W/m2,
outlet pressure 7 MPa.

production it can be seen that the system reacts very
slow. Since the fluid velocity is very small it takes a
long time before the change in specific enthalpy leads
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to a significant change in steam production. With in-
creased recirculation flow the residence time in the
preheating section gets smaller and reactions become
faster and more distinct. This effect can be seen clearly
in the water flow in the case ∆t=240 s. Although the
integral value of liquid pushed out of the absorber
is the same for both recirculation flows the temporal
distribution differs. Since evaporation starts further
downstream when collectors 1 and 2 are shaded liq-
uid is stored in the system. This leads to a temporarily
reduced liquid mass flow in the rest of the evapora-
tor and, as a consequence, to a short period of dryout
at t=500 s. By increasing the recirculation flow the
danger of superheating at the end of the evaporator is
reduced. On the other hand much higher liquid peaks
have to be accepted.
If the local shading is concentrated on collectors 4
and 5, see fig. 14, the reaction becomes faster and
the peaks higher. At long intervals there is only weak
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Figure 14: Reaction of 800 m evaporator section to lo-
cal irradiation disturbance on collectors 4/5 according
to fig. 11. Plotted are steam and water mass flow at the
exit of the evaporator. Feed water 1.2 kg/s, recircula-
tion 0.25 kg/s (-) / 1.0 kg/s (· · ·), irradiation 875 W/m2,
outlet pressure 7 MPa.

overlapping of the single reactions. Compared with
the shading of the pre-heater the reaction time now de-
pends on the residence time in the two-phase region
which is much shorter. Since the whole evaporator is
nearly at the same temperature a change in steam pro-
duction requires no heating or cooling of the absorber
tube walls. The difference between small and high re-
circulation is small since recirculation mass flow has
only minor impact on the average velocity. Compared
to shading of collectors 1/2 the maximum liquid mass
flow has nearly doubled and the dryout effect is much
more critical. Even increasing the recirculation mass

flow can not avoid long periods of dryout.
Lokal Shading at the end of the evaporator in collec-
tors 7/8, see fig. 15 is characterized by very small re-
action time. The recirculation mass flow has no effect
on the result. Water mass flow reaches its steady-state
values very fast with nearly no dynamical overshoot-
ing.
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Figure 15: Reaction of 800 m evaporator section to lo-
cal irradiation disturbance on collectors 7/8 according
to fig. 11. Plotted are steam and water mass flow at
the exit of evaporator. Feed water 1.2 kg/s, recircula-
tion 0.25 kg/s (-) / 1.0 kg/s (· · ·), irradiation 875 W/m2,
outlet pressure 7 MPa.

6 Combination with control system

A central task of the control system is to inject as much
feed water as can be evaporated according to the actual
irradiation. A standard feed-back control loop based
on a liquid level control in the buffer tank reacts very
slow to changes in irradiation. A much faster reaction
is possible if measured irradiation is used to calculate
the necessary feed flow. Another method is to mea-
sure the actual steam production and use this signal
for the feed water pump. Due to model errors both ap-
proaches are not able to reach a specified set point in
the buffer level so in any case an additional level con-
troller is necessary. To analyze the potential of these
forward control schemes simulations have been per-
formed. Fig. 16 shows the results for a configuration
of an uncontrolled system, a configuration with feed-
forward control based on the irradiation measurement
and a configuration with feed-forward control based
on the steam production.
From the feed water signal the time lag between irradi-
ation based and steam production based approach can
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be seen. For liquid and gas mass flow at the evapora-
tor outlet this lag has nearly no effect. The steam pro-
duction gets more continuous with the feed-forward
control. There is a significant reduction of maximum
liquid peaks and as a consequence in buffer mass com-
pared to the uncontrolled system. The reason is that
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Figure 16: Comparison of uncontrolled (-) system
with feed-forward control based on irradiation sig-
nal (· · ·) and steam production (-.-). Recircula-
tion 0.25 kg/s, DNI 900 W/m2.

less water accumulates in the pipes that has to be
pushed out when irradiation again increases. In the
presented disturbance configuration both feed-forward
schemes give similar results. If local shading of
the pre-heating section is used the irradiation based
approach reacts much faster then steam production
changes. This leads to a contradictionary effect for the
buffer level. As a preliminary result it can be stated

that the feed-forward control has shown high potential
in reducing the necessary buffer size without signifi-
cant negative side-effects.

7 Conclusions

A Modelica library for two-phase flow in parabolic
trough collectors is developed and successfully vali-
dated against analytical models and experimental data.
For the transient simulation of these complex system
it is necessary to manually select the state variables
and to transform the equations into explicit state space
form. Only with this approach it is guaranteed that ini-
tialization and numerical integration are reliable with-
out loosing much of the flexibility the Modelica lan-
guage offers. The library is used at the institute to sim-
ulate the reaction of parabolic trough collector loops
with direct steam generation to fluctuations in solar ir-
radiation.
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Abstract

The implementation of advanced control systems to
optimize the overall performance of Central Receiver
Solar Thermal Power Plants is nowadays a priority
research line in CIEMAT-PSA. The development of
dynamic models for use in simulation and control of
this kind of power plants is presented in this arti-
cle, focused on the CESA-I solar plant. The devel-
oped model is based in the thermohydraulic modelling
framework ThermoFluid, and the main components of
the system are presented as well as the respective mod-
elling assumptions. A typical operating cycle is simu-
lated and the results are shown and commented.

1 Introduction

This paper presents the current status of the research
performed within the framework of modelling and
simulation of Central Receiver Solar Thermal Power
Plants (CRSTPP). The work is mainly oriented to the
development of dynamic models of solar energy plants
to be used in the design of automatic control systems
aimed at optimizing global performance. The models
presented in this article are focused on the solar part,
excluding typical components of power plants like tur-
bines or generators.
The system used as test-bed plant is the CESA-I fa-
cility, a CRSTPP belonging to the CIEMAT (Centro
de Investigaciones Energéticas, Medioambientales y

Figure 1: CESA-I solar plant at PSA

Tecnológicas - Research Centre for Energy, Environ-
ment and Technology), public organism owned by the
Spanish Ministry of Science and Education. This so-
lar plant is located at the Plataforma Solar de Almerı́a
(PSA), South-East Spain. A join project between
CIEMAT-PSA, the University of Almerı́a (UAL), the
National University of Distance Education (UNED)
and the University of Seville (US) is being carried out
in order to develop models and control systems to au-
tomatically control these kind of plants. This test-bed
plant can be seen in figure 1.

The model presented in this paper will be used in the
design of hybrid model predictive control and intelli-
gent control schemes to optimize plant performance,
even under start-up and shutdown situations and in the
presence of highly variable load disturbances due to
the daily cycle of solar radiation and passing clouds.
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2 Central Receiver Solar Thermal
Power Plants

In this section an overview of the basic components
and operating procedures for a CRSTPP is introduced.
Figure 2 shows an explicative diagram of a general
CRSTPP.

Figure 2: Schematic diagram of a CRSTPP

The operation of this kind of plants is based in the con-
centration of incoming solar energy using a heliostat
field that reflects the incident solar radiation onto a
(typically volumetric) receiver (theoretically onto an
optical point in the 3-D space). As the sun posi-
tion changes during the day, each heliostat of the field
(composed of 300 heliostat in the case of the CESA-I
plant) has to change its position in real time according
to the selected aiming point on the receiver, as differ-
ent aiming points can be selected in order to achieve
a uniform temperature distribution on the receiver [7].
The receiver is located at the top of the tower (84 m
height in CESA-I) and acts as an energy exchanger,
receiving solar energy and transferring it to a thermo-
hydraulic circuit with air medium, see figure 2. The
system is also composed by an energy storage tank, an
air/water-steam heat exchanger (evaporator), blowers
and valves. The combined action of the blowers let to
feed either the storage tank or the heat exchanger with
hot air. The evaporator is formed by the primary cir-
cuit and a secondary one with subcooled inlet water
and with superheated steam outlet. A measurement of
the overall concentrated input radiation, a controlled
water pump and an outlet controlled valve define the
main boundary conditions for the system. The final
objective of the model is to predict the transient be-
haviour of the thermodynamics variables associated to
the thermohydraulic output power of the evaporator
(mainly temperature, pressure, and specific enthalpy),
when the external disturbances (concentrated solar ra-
diation, ambient temperature, and wind speed and di-
rection) and controllable inputs (both at the solar field

level: number of operating heliostats and aiming point
strategy followed, and at the tower level: mass flow
rate demanded by the blowers, inlet water flow and
outlet pressure valve position) change.

3 Modelling of CRSTPP

In this paper we will concentrate in the thermohy-
draulic part of the system, skipping the heliostat field
and assuming a known input radiation power in the re-
ceiver as a consequence of the radiation reflected in
the heliostat mirrors and the aiming-point strategy fol-
lowed [7]. This assumption introduces an error in the
estimated irradiation due to the difficulties that exist in
getting accurate high concentrated radiation measure-
ments.
Due to the fact that the main phenomena are related
to thermofluids, the Modelica language has been used
to develop these models including the ThermoFluid li-
brary ([12],[6]) as a framework over which create own
libraries and final component models. The authors
think that this library is an important reference in the
framework of object oriented modelling of thermofluid
systems with Modelica, and its existence makes a non-
sense to develop libraries in the same level of mod-
elling of thermohydralic systems.
The work analyzes each of the components of the ther-
mohydraulic circuits of air and water-steam and ex-
plain the modelling assumptions, trying to justify each
one as they are oriented to get, by means of the sym-
bolic manipulations that Dymola tool performs, a not
high index DAE system for the complete model, in
which the number of nonlinear algebraic loops is min-
imized. For this purpose, all the components are clas-
sified, following the modelling methodology derived
from the Finite Volume Method (FVM) [10], in Con-
trol Volumes (CV in ThermoFluid nomenclature) and
Flow Models (FM in ThermoFluid nomenclature). In
some cases information about the future control sys-
tem architecture to be implemented is introduced in the
modelling phase. An example of components that are
modelled using this kind of information are the blow-
ers in the air circuit, in which a cascade control will
help avoid the multivariable nonlinear dependence of
the constitutive equations and let consider them like
quasi ideal flow rate generators. Due to the existence
of components whose internal implementation may
vary depending on the modelling hypotheses, the poly-
morphism and the Modelica language constructs re-
placeable/redeclare have been specially used in some
of them, for example in the evaporator.
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Figure 3 shows the developed Modelica model of the
system.
The following components are shown: blowers, stor-
age tank, solar receiver, evaporator, control valve,
sensors, pipes and connections. All of them are
directly instantiated and parameterized, or inherited
from ThermoFluid classes. It can be seen how the
air circuit is composed of a solar receiver, tubes, tank,
and evaporator; and the water steam circuit with a wa-
ter pump, a control valve, tubes, and reservoirs with
boundary conditions. In both circuits the mass trans-
fer connections have been drawn with solid and thick
lines, while colors are used to describe hot fluid (red),
cold fluid (blue), and hot steam (grey). Input-Output
causal connectors appear to access variables of interest
for control purposes like:

Output variables. Boolean indicator for satu-
rated/superheated vapor, several pressures and
temperatures in both media circuits, stored
energy in the tank, mass flow rate in the tank,
mean temperature in the tank, etc.

Input variables. Actuators setpoints: blowers 1 and
2, water pump; and boundary conditions: pres-
sure and temperatures of water inlet, estimated
inlet concentrated radiation, ambient temperature
and pressure, wind velocity.

3.1 ThermoFluid usage

The thermohydraulic interface is formed by connec-
tors from ThermoFluid for single component media
and steady-state momentum balance statement. Due to
the fact that the dynamics of momentum balance are of
no interest for control purposes in the time scales stud-
ied at present, the stationary formulation version of
ThermoFluid has been used in all the thermohydraulic
classes utilized.
The modelling methodology adopted from the begin-
ning for the design of the classes was: if there exists
any class in ThermoFluid that implements the physi-
cal phenomenon to model, use it with the correspond-
ing parameters; if not, design the classes using inher-
itance from the high level partial classes from Ther-
moFluid; in other cases then use proper ThermoFluid
interfaces and base classes and develop the compo-
nent class with the lacking behavior expressed in dif-
ferential and algebraic equations from first principles.
In the next subsections the most important components
models will be detailed and the modelling hypotheses
will be explained and justified.

3.2 Blowers and Pumps

In this kind of active FM [12], the authors decided to
make a simplifying assumption based on the gained
experience in control of Parabolic Trough Fields with
thermal oil as medium, case of Acurex field of
CIEMAT-PSA [4], [5], and water-steam as medium
in DISS facility [16], [13]. This assumption is that
the water pump and blowers are controlled in a cas-
cade scheme [3] with a local control loop whose dy-
namics is much faster than the rest of the thermohy-
draulic system. This assumption has been experimen-
tally validated in blowers and water pump, and helps
simplifying these components models until the possi-
bility of state them as quasi-ideal mass flow rate gener-
ators. This approximation lets avoiding the consuming
time work of fitting the nonlinear multivariate curves
of the pumps and blowers. So, the algebraic equation
for these components is ṁ = ṁre f , where ṁre f is the
setpoint of the local pump/blower control loop and is
assigned in a connector to the model, as can be seen in
figure 3.

3.3 Solar Receiver

This component receives energy from the heliostat
field, that concentrates solar radiation in different aim-
ing points to avoid large spatial temperature gradients
that could damage the component. This aiming point
strategy is a research line at present, [7], and is imple-
mented in the heliostat field real time control system.
The total energy flow reflected by the heliostats and
concentrated in the receiver is nowadays estimated, be-
cause the practical difficulties in the measurement of
this variable. Therefore, a mean solar concentrated
input power is used for modelling purposes. This
assumption introduces uncertainty in the model, that
makes not to expect from the adjusted and validated
model a precision beyond that of the inlet power. Nev-
ertheless, it is expected that this uncertainty will de-
crease in the near future with the development and im-
plementation of new sensors and by re-calibrating the
model with new operating data.
Figure 4 shows the Modelica model composed, in a
major number, of ThermoFluid components. This is
the model of the system in which the strongest sim-
plifications have been made, due to the internal de-
sign of the system. From a system level point of view,
the receivers are composed of an arrangement of solid
ceramic cups that receive inlet radiation. Due to hy-
draulic depression caused by external pumping ele-
ments (blowers 1 and 2), an air mass flow rate from
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Figure 3: Modelica model of CESA-I CRSTPP

the environment is established and heated when pass-
ing through the ceramic cups. The cups are mod-
elled by wall classes, the air mass and energy con-
servation by concentrated parameters CV’s and the
medium model for air from medium models. The ex-
ternal boundary conditions are modelled by reservoir
componentes representing external pressure and tem-
perature. The conduction-convection and radiation en-
ergy flow from receiver to atmosphere is modelled by
heat transfer classes with the extensions of include ex-
pressions for empirical correlations obtained by exper-
imentation. The convection heat transfer between the
CV and the cup array is based in empirical correlations
too. The radiation and convection are modelled using
the Stefan-Boltzmann Law and Newton Cooling Law
[9], in which the radiation conductance in the former
case, and the heat transfer coefficient, in the latest, are
the variables to identify by means of adjusted correla-
tions. The three input connectors represent: concen-
trated solar radiation in the receiver (radin), deriva-
tive of atmospheric pressure and derivative of ambient
temperature, respectively. The former is the estimated
concentrated solar radiation, and the second and third
are used as sources of uncertainties to the model. The
derivative of the pressure lets simulate experimented
effects that wind gusts could cause in the pressure and
temperature close to the receiver. The explicit mod-
elling of disturbances caused by wind are important

Figure 4: Modelica model of CESA-I receiver

for control purposes of the temperature of the air leav-
ing the receiver to the circuit.

3.4 Storage Tank

The aim of the storage tank is to accumulate energy to
let the plant operate when irradiation decreases during
a time interval (limited by the tank capacity and lay-
out). The tank can be defined by three states, depend-
ing on the mass flow rates of the blowers, see figure
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Figure 5: Schematic diagram of the air circuit

5, and assuming enough incoming power from the re-
ceiver and negligible energy losses to the environment
from the tank:

Loading: ṁ1 > ṁ2. The energy stored in the tank is
increasing.

Unloading: ṁ1 < ṁ2. The energy stored in the tank
is decreasing.

Standby: ṁ1 ≈ ṁ2. The stored energy does not vary
noteworthily.

The tank is filled with a solid media that is exposed
to thermal contact with air that flows through the tank.
Between the air and the solid media there is an energy
exchange by convection phenomena that is described
by the Newton Cooling Law and the energy conserved
in the air flow and the solid media. Due to the spatial
distribution of the tank, it is modelled as a parameter
distributed system in the direction of the major dimen-
sion of the tank. This results in a system of partial
differential equations (PDE) formed by:

- Differential formulation of mass and energy con-
servation through the air volume in contact with
the media, in the domain defined along the major
spatial dimension of the tank. See [11].

- Differential formulation of energy conservation
of the solid media, in the domain defined along
the major spatial dimension of the tank. See [11].

To solve the PDE system stated, it is necessary
to spatially discretize the equations. ThermoFluid
provides partial classes [12] in which the dis-
cretization with the Finite Volume Method (FVM)
([10]) is applied. One of these classes is Ther-
moFluid.PartialComponents...Volume2PortDS pT,
which implements this mass, energy and static
momentum conservation equations in a volume
spatially discretized in n subvolumes. For the solid
media, there exists final use classes that imple-
ments energy conservation in distributed solids,
ThermoFluid.Components.HeatFlow.Walls.

Figure 6: Model of the Storage Tank

To close the system of equations it is mandatory to in-
troduce the heat transfer coefficient between the air
flow and the solid media. This coefficient depends
of heat transfer correlations using adimensional fluid
numbers (Reynold, Prandtl, Pecklet,...), geometry of
the contact surface and thermodynamic and transport
properties of the fluid (air in this case). Some of the
correlation parameters strongly depend on the experi-
mentation and parameter adjusting phase of the mod-
elling work. See [11].
The tank model, designed using ThermoFluid compo-
nents, is shown in figure 6, where the discretized air
volume component (DiscAirVolume), the solid media
component (FillMedia) and the component modelling
the heat transfer coefficient1 can be observed.
The additional variables that are get out through output
connectors for control purposes are:

- En : total stored energy in the solid media with
respect to a reference level.

- T0 : spatially averaged temperature of the solid
media.

- ṁ : air mass flow rate through the tank.

3.5 Evaporator

The evaporator in CESA tower is a counterflow air-
water/steam hex, in which the water/steam flow is he-

1In this version of the model, the heat transfer coefficient is
supposed to be constant. Including a dependence of this coef-
ficient using correlations does not pose any additional difficulty,
but redesigning a discretized volume for air, polymorphic with the
first one, with one variable and one equation for the heat transfer
correlation, e.g., Dittus-Boelter [11].
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licoidal configured through the air flow. For mod-
elling effects, this components has been considered as
a counterflow hex composed of one pipe with air me-
dia, one pipe with water-steam media and a wall let-
ting thermal interaction. The simple arrangement can
be seen in figure 7.
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Figure 7: Discretized model of the Evaporator

The length of the water/steam pipe is 1440 m. and un-
der normal operating conditions the inlet water is in
subcooled region and the outlet vapor is superheated;
thus the dynamical conditions will vary along the pipe
depending on the thermodynamic and transport prop-
erties of the water/steam. The configuration shown
in figure 7 is fully discretized in n CV’s in which
mass,energy, and momentum balances are applied2.
The number of CV’s, n, is a trade off between ac-
curacy and computing cost, so the final choice is the
minimum n that models dominant dynamics for con-
trol purposes. Nowadays we are working with values
in the interval [10,15]. The wall and the air pipe are
discretized with the same discretization level.
In the development of experimental correlations
classes for the heat transfer coefficients sliding mod-
els and chattering have appeared with some frequency
around the phase changes of water/steam CV’s. This
phenomena are manifested with more frequency when
CV’s pass from subcooled (region 1 in IAPWS-IF97
standard for water/steam properties, [15]) to saturated
(region 4 in IAPWS-IF97), due to the discontinuities
present in the heat transfer coefficients in the limit
boundary between water and walls. To avoid those
cases in which chattering causes troubles to the sim-

2Momentum conservation is stated in staggered CV’s with re-
spect to those ones which state mass and energy conservation;
[10], [14] and [12].

ulation, another polymorphic evaporator model has
been developed, in which the subcooled and saturated
regions of water/steam pipe are replaced by an equiv-
alent Moving Boundary Model (MBM) [8]. Figure 8
shows this mixed discretized and MBM model, where
the MBM component has been designed with Ther-
moFluid interfaces to be connected with the rest of
components.
Although the mixed model lowers the likelihood of
finding chattering in the integration process, it is theo-
retically less accurate, and experimentally it is harder
to find consistent DAE initial conditions and the valid-
ity range of the model is more limited than that of the
fully discretized one.
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Figure 8: Mixed Moving Boundary and Discretized
model of the Evaporator

With the help of replaceable/redeclare constructs and
the choices annotations ([2], [1]), the switching be-
tween fully discretized and mixed MBM-discretized
models in instantiation time easies the modelling
work.

3.6 Simplified model

Some components of the compound model have been
introduced to maintain the structure and topology in
the model similar to the real system, following the
object oriented approach. Some of them, like pipes,
actually introduce additional differential equations in
the model that could be eliminated due to the fact that
the parameters of the real plant make their time con-
stants and delays too low when compared to the rest of
components. Eliminating the pipes implies assuming
negligible energy losses and fast dynamics in the mass
conservation due to the low real volume, which is rea-
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sonable. The model could be simplified from figure 3
to the one shown in figure 9.
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Figure 9: Simplified model of figure 3

4 Simulation

This section shows representative simulation results
using the simplified plant model of figure 9, when the
system executes the cycle detailed below, that repre-
sents a typical operation case:

1. Initial state: the storage tank is unloaded, the air
circuit is at ambient conditions and the water cir-
cuit is in subcooled region.

2. At time = 0s, an input power of 10MW is re-
flected from the heliostat field in the receiver and
the storage tank begins to accumulate energy. No
power is delivered to the evaporator.

3. At time = 2000s, all the energy from the receiver
is delivered to evaporator and the storage tank en-
ergy level remains unchanged.

4. At time = 15000s, the power from the heliostat
field is zero (due to a passing cloud, for exam-
ple) and all the energy delivered to the evaporator
comes from the storage tank.

The results of this simulation are shown in figure
10. The first graph presents the input power radia-
tion (Power Rad) from the heliostat field. The sec-
ond the mass flow rates in blowers 1 (mdot Blower1)
and 2 (mdot Blower2), delivering energy to the stor-
age tank or evaporator in each time interval. The third
graph shows the load/unload cycle of the storage tank;

it can be seen how the dominating time constants for
load/unload are different and that the accumulated en-
ergy can be enough to maintain the outlet superheated
steam during some time. The fourth graph presents the
outlet evaporator water/steam temperature; this aug-
ments when the blower2 works until the solar radia-
tion exists, then begins to fall at low rate while stored
energy remains in the tank. When the energy com-
ing from the tank is not enough to maintain the super-
heated steam, it get saturated and then subcooled. The
last graph presents the IAPWS-IF97 regions crossed
by outlet water/steam travel during this simulation; it
can be seen that initially the water is subcooled (region
1), then enters in saturation (region 4), then enters in
superheated (region 2); when the solar radiation dis-
appears at time = 15000s, the storage tank maintains
the superheating state some time until the steam enters
in saturation again (region 4), and finally come back
to subcooled water (region 1) as during the beginning
of the process. At present, no real plant data are al-
lowable for model calibration and validation purposes.
Conducted tests are planned to validate each one of the
components of the model.

5 Concluding remarks and Ongoing
work

This article shows the development of a model of a
CRSTPP using the methodology of object oriented de-
velopment of thermofluid systems. The major part of
the components are based in the ThermoFluid frame-
work for thermohydraulic modelling. The CRSTPP
components and main operation principles have been
described. For the main components, the modelling
hypotheses and the composition Modelica diagrams
developed with the Dymola tool have been presented.
References to the underlying physical phenomena
have been made in these composition diagrams, with-
out entering in detail of quantitatively describing them
through differential and algebraic equations; instead,
the basic bibliography and the ThermoFluid classes
that implements them have been referenced. Finally,
a simplified model showing a typical operation cycle
with a real perturbation introduced by clouds has been
simulated.
The ongoing works to develop consists in the adjust-
ing of the main block models parameters based in the
experimental results of the real plants, by means of
working separately with each shown component with
its proper boundary conditions. In this work, the val-
idation of empirical correlations for heat transfer and
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Figure 10: Simulation results.
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pressure loss will be an important issue.
The final aim is to develop control and automatic op-
eration systems that help operating in the most au-
tonomous way this kind of plants, in the presence of
large disturbances. Automatic start-up and shutdowns
of the plants is one of the main objectives in this direc-
tion.
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Abstract

The paper presents the application of the Modelica lan-
guage to the modeling, simulation, and control of the
new IRIS nuclear power plant, under development by
an international consortium. The plant model, devel-
oped by using components from the ThermoPower li-
brary, as well as custom-built nuclear components, is
described, as well as the digital control system model,
which will eventually become very realistic. Special
emphasis is put on the use of inheritance and replace-
able objects for the management of a family of model
variants over the project life-time. Selected simulation
results are included.

1 Introduction

The IRIS project [3] involves 21 organizations from
10 countries and refers to the design of an innova-
tive, light water reactor with a modular, integral pri-
mary system configuration. The reactor pressure ves-
sel houses the nuclear fuel, control rods and con-
trol rods drive mechanisms, but also all the ma-
jor reactor coolant system components, including the
coolant pumps, the steam generators and the pressur-
izer (Fig.1).
IRIS is basically a PWR (Pressurised Water Reactor):
in the primary loop, liquid water is heated by the nu-
clear fuel rods in the core, and is then sent by the
pumps to the primary side of heat exchanger; the sec-
ondary loop actually generates steam which is sent to
turbines to produce power.

∗Dipartimento di Ingegneria Nucleare “E. Fermi”CESNEF,
{antonio.cammi,marco.ricotti }@polimi.it

†Dipartimento di Elettronica e Informazione,
{casella,schiavo }@elet.polimi.it

‡Corresponding author

Figure 1: The IRIS Reactor

Compared to conventional PWR plants, however, IRIS
has a set of distinctive features, which directly affect
the control system design:

• the integral configuration requires a large water
inventory in the primary loop, whose residence
time is much greater than usual;

• a helicoidal once-through steam generator is em-
ployed on the secondary side, which has a very
short residence time, compared to the more
widespread U-tube recirculating steam genera-
tors;

• sprayers are not available to reduce the pressure
in the primary loop during fast transients.
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The control strategy must take these facts into account,
and a dynamic simulation tool is essential to ensure
that the control objectives can be achieved.

Highly detailed dynamic simulators have been devel-
oped for the IRIS reactor [6]. Such simulators, based
on the complex computational fluid-dynamics code
namedRELAP[10], are perfectly suited for accident
analysis and safety-oriented evaluations of the reac-
tor design features. On the other side, due to the
amount of the details involved, they cannot be profi-
ciently used for control-oriented dynamic simulation.

Within this framework, the use of the Modelica lan-
guage offers a viable solution, allowing the develop-
ment of dynamic simulators that are detailed enough
for control-oriented analysis and yet with limited com-
putational requirements.

To provide the required capabilities for the analysis,
specific models for nuclear reactor components have
been developed, to be applied for the dynamic simula-
tion of the IRIS integral reactor, albeit keeping general
validity for PWR plants. In addition to that, specific
digital control blocks have been developed, so that a
complete model of the plant and of its digital control
system is available.

The paper is organized as follows. An overview of the
plant model is presented in Section 2, while in Sec-
tion 3 the models specifically developed for nuclear
components are analyzed in detail. Section 4 contains
an overview of the plant digital control system and, in
Section 5, the problem of managing a library of plant
models with different detail levels is tackled. Section 6
presents some closed-loop simulation results. Finally,
Section 7 draws some conclusions and outlines possi-
ble future developments.

2 Plant Model

The model of the IRIS plant basically describes the
primary circulation loop, i.e. the reactor coolant loop,
and the secondary loop, i.e. the once-through evapo-
rators, along with the feedwater and turbine systems.
Most of the required models have no specificnuclear
features, and were thus borrowed from the general-
purpose ThermoPower library, designed for the mod-
elling of generic thermo-hydraulic power plants; the
library is an open-source project, described with more
detail in [4]. The only notable exceptions are the reac-
tor core and the pressurizer, which are described in the
next section.

Figure 2: Plant flow diagram

2.1 Primary loop

The primary loop (see Fig. 2) starts with the pressur-
izer (top of the diagram); the pressurizer is connected
by a pressure-loss component to the upper mixing vol-
ume, taking into account the mass and energy bal-
ances. Starting from the top of the diagram, counter-
clockwise, the centrifugal pump model can be found,
followed by another plenum model. The primary side
of the heat exchanger between the primary and sec-
ondary loop is then encountered, modelled by three
cascaded, finite-volume pipe models; the middle one
describes the section where the coolant is actually in
contact with the secondary side tube bundle. Proceed-
ing onwards, other two plenum models followed by a
pressure loss can be found, leading to the inlet of the
core model (see next Section). This in turn is followed
by another pressure loss, another plenum, and the two
riser sections, modelled by two pipes having different
diameter. The loop is closed by a simple model of
the chemical and volume control system (CVCS), ba-
sically a mixer and an ideal flow source. The fluid in
the whole loop is one-phase water, with the exception
of the steam filling the upper pressurizer dome.

The heat transfer between the primary and secondary
loop is modelled by two heat transfer modules and
by the thermal model of the tube metal mass. The
primary-side heat transfer coefficient is held constant
to its nominal value, since the Reynolds and Prandtl
numbers does not vary substantially; on the secondary
side, the heat transfer coefficients can be computed ac-
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cording to different laws, e.g. Chen’s correlation, or
much simpler, empirically tuned curves.

2.2 Secondary loop

The secondary loop is composed of the feedwater sys-
tem, the helical coil once-through steam generator and
the turbine system. The once-through generator is rep-
resented by a finite-volume, 10-node model of the two-
phase fluid flow, assuming homogeneous flow, i.e. the
same velocity for the liquid and vapor phases.
Currently, the feedwater system is represented by an
ideal flow source, whose flow rate is determined by
the control system, and whose enthalpy is a function of
the plant load level, determined from balance-of-plant
calculations. The turbine system includes a simplified,
linear model of the high- and low-pressure turbines,
plus simplified models of the connection to the grid,
including an idealized synchronous generator, local
loads, and a grid model. The latter ones are included
to provide suitable boundary conditions for the (much
slower) plant dynamics; therefore, they only model ac-
tive power flows, neglect the electro-mechanical dy-
namics, and assume perfect synchronism between the
generator and/or the grid.
In the near future, it is planned to replace the feed-
water and turbine system models with more realistic
counterparts, including steam bleedings and conden-
sate train, to better represent the actual steam genera-
tor dynamics under large load variations. On the other
hand, the finite-volume fluid evaporator model could
be replaced by a simpler version, with moving bound-
aries between the liquid, 2-phase, and vapor sections,
and an averaged description of each section.

3 Nuclear Components

TheModelicamodels for “nuclear” components have
been developed to provide solutions which are suitable
both for “general” use and specifically for the IRIS nu-
clear plant modelling. The main components are the
core, (with separate models for the point kinetic neu-
tronic generation, the fuel thermal dynamics and the
moderator, as depicted in Fig. 3) and thepressurizer;
the main modelling principles are summarized here,
for more details see [1, 2].

3.1 Point Kinetics Neutronic

The point kinetic neutronic model describes the dy-
namics of the neutron generation processes in the
core. The model is based on standard point kinetic

Figure 3: The Core Model Internal Structure

dynamic balance equations, describing the evolution
of the neutronic population and of the precursor con-
centration. Reactivity feedback from coolant density,
fuel Doppler effect, and rod insertion are accounted
for. The dynamic terms can be switched off, to obtain
a simplified static model, neglecting the fast dynamics.
The neutronic power generated into the fuel is propor-
tional to the neutronic populationn, which responds to
the point reactor kinetics balance equations :

dn

dt
=

ρ−β
Λ

n+
6

∑
i=1

λi ci

dci

dt
=

β
Λ

n−λici i = 1, · · · ,6 ,

(1)

wherec is the precursor concentration leading to a
delayed neutron source,ρ is the total reactivity of the
core,β is the fraction of delayed neutrons,λ is the de-
cay constant of the precursors andΛ is the character-
istic period of the reactor or mean neutron generation
time.
Reactivity feedbacks are taken into account as well, by
considering linear or non linear feedback coefficients,
always negative, for the coolant density effect (αc), the
fuel Doppler effect (α f ), the effect of the boron con-
centration (αB) into the primary fluid as a neutronic
poison and the level of insertion of the control rod
banks into the core (αCR). These relations are

ρ = ρCR+ρ f +ρc +ρB ,

ρ f = α f
(
Te f f −Te f f0

)
,

ρc = αc

(
1

vc
−

1

vc0

)
,

ρB = αB (C−C0) ,

(2)

whereTe f f andTe f f0 are the instantaneous and refer-
ence effective fuel temperature, respectively, obtained
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from the fuel model,vc andvc0 are the instantaneous
and reference specific volumes of the coolant,C and
C0 are the instantaneous and reference boric acid con-
centration in the coolant. The boric acid concentration
in the coolant depends mainly on the control rods in-
sertion.

The reference values are those corresponding to the
nominal, full power operation of the reactor.

3.2 Fuel model

The fuel model describes the dynamics of the thermal
power generated within the core by the nuclear chain
reactions. The neutronic generation model and the fuel
model are linked by a connection between twoMod-
elicastandardHeatPort , where the connectors vari-
able are the total power generated and the fuel tem-
perature. AThermoPowerDHTdistributed heat trans-
fer connector is used as well, as an interface with the
moderator, modelled by a 1-D flow model.

The model is based on the application of the time de-
pendent Fourier equation (in monodimensional cylin-
drical geometry) to the three fuel zones: pellet, gap
and cladding (Fig. 4).

Figure 4:Fuel pellet radial scheme for heat transfer mod-
elling

The main assumption of the model is to consider only
the radial heat transfer, thus disregarding both the ax-
ial and the circumferential diffusions. Fourier’s equa-
tion is discretized radially in five zones, and longitudi-
nally in a user-decidable number of segments (N). For
the pellet, gap and cladding the corresponding balance

equations read:

ρpcp,p
∂Tp

∂t
=

1

r

∂
∂r

(
rkp

∂Tp

∂r

)
+q

′′′
,

∂
∂r

(
kg

∂Tg

∂r

)
= 0 ,

ρccp,c
∂Tc

∂t
=

1

r

∂
∂r

(
rkc

∂Tc

∂r

)
.

(3)

whereρ is the density,cp is the specific heat,T is the
temperature,k is the thermal conductivity,q′′′ is the
volumetric source term,r is the radial dimension andt
the time, while the subscriptsp, g andc stand for the
pellet, the gap, and the cladding, respectively.
The heat transfer model is represented in Fig. 4, with
the pellet discretized into three zones of equal volume.
Eqs.(3), together with the conditions of heat flux van-
ishing at the pellet center and the continuity of the
temperatures and heat fluxes at the three boundaries
pellet-gap-cladding-coolant allow the determination of
Tp(r, t), Tg(r, t) andTc(r, t).
In addition to the above equations, five correlations
synthesizing the dependance ofcp,p, kp, cp,c andkc as
a function of the fuel temperature and ofkg as a func-
tion of both the reactor power and the burn-up have
been adopted.
The condition at the cladding-coolant interface is de-
termined by the distributed heat transfer connector
variables.
Finally, the effective fuel temperature, used to evalu-
ate the Doppler feedback contribution on neutronics,
is defined as follows:

Te f f =
4

9
T|r=0 +

5

9
T|r=R . (4)

3.3 Moderator

The core moderator is modelled by the ThermoPower
library Water.Flow1D , with a small extension to
make the fluid density available to the point kinetics
model. The coolant model has the same number of
volumes as the fuel. The convective heat transfer be-
tween the two components is calculated at each node
by

φmod = −φc ,

φmod = γ(Tc−Tmod) ,
(5)

whereφmod andφc are, respectively, the moderator and
the fuel cladding heat flux,γ is the heat transfer co-
efficient, andTmod andTc are the moderator and fuel
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cladding temperatures. DetailedRELAPsimulations
have shown that the heat transfer coefficient is approx-
imately constant for all the operating conditions the
control system is concerned with.

3.4 Pressurizer Model

The pressurizer model is based on a lumped param-
eter approach, which is appropriate to the IRIS case.
Both water properties in the liquid volume and in the
steam volumes are assumed as homogeneous, at equal
pressure but not at thermodynamic equilibrium.
The model is based on two groups of dynamic mass
and energy balance equations, the first for the liquid
phase and the second for the vapor phase inside the
tank. Mass and energy transfer between the two phases
is provided by bulk condensation and surface conden-
sation of the vapor phase, and by bulk boiling of the
liquid phase. Additional energy transfer can take place
at the surface if the steam is superheated.
External interfaces are provided for connections to the
hydraulic loop by a bottom flange and to a safety cir-
cuit by a safetyflange; also available are a heating
power command input and a level signal probe output.
The heating power input is processed by a limiter and
a low pass filter block to simulate the delay in heating
effect and the limited heaters power. The resulting ef-
fective heating power signal drives the production of
saturated steam by the heaters at a rate correspond-
ing to the difference between the enthalpy of the liquid
holdup and the enthalpy of saturated steam. For sim-
plicity, the corresponding steam flow enters directly
the steam holdup, without causing heating of the liq-
uid holdup.
The bottom flange’s flow enters directly the liquid vol-
ume; its pressure is increased depending on the liquid
holdup’s level.
The metal wall dynamics is taken into account, assum-
ing uniform temperature. Heat transfer takes place be-
tween the metal wall and the two phases and between
the wall and the external ambient at fixed temperature.

4 Control

The control design of the IRIS nuclear power plant is
a complex task, with objectives that, depending on the
plant operating conditions, vary from the management
of start-up sequences to the recover from turbine or re-
actor trips and to the grid power/frequency regulation
at full nuclear power.

Classic design concepts, for early nuclear units, re-
lied on separate control systems for each control loop,
and limited signal interaction between the loops [9].
This simplified the design of each loop, particularly
with analog control systems where each interconnec-
tion added hardware expense. On the other side, the
current trend is for more integrated systems that can
take advantage of coordinating the different control
loops [7]. This allows for more effective plant control,
but complicates the control system failure analysis. A
viable solution for IRIS is the choice of a hierarchical
control system, as depicted in Fig. 5.

Figure 5:Control system architecture

At the top level is located a supervisory control system
with the following functions:

• Establish the plant electric power reference sig-
nal. Such reference signal will be used to derive
reference and/or feedforward signals for the other
major control loops.

• Monitor plant conditions and deter-
mine/coordinate the appropriate operating
modes for the major control systems.

The control sub-systems have different settings and a
varying structure (i.e., different inputs and different
controller structure) depending on the specific operat-
ing mode of the plant.
All the operating modes to drive the plant during the
non-emergency maneuvers have been designed [8];
nevertheless, only the “full-power” control mode (nu-
clear flux from 20% to 100%) has been fully imple-
mented, simulated and tested yet, so, from here on, the
description will cover only such operating mode.

4.1 Supervisory Control

The supervisory control system uses the normalized
desired power as an input signal to derive the refer-
ence and feedforward signals for the lower-level con-
trol systems. On the base of the desired power the tem-
perature and nuclear flux reference for the reactor con-
trol are derived, along with a pressure reference for the

Object-Oriented Modeling, Simulation and Control of the IRIS Nuclear Power Plant with Modelica

The Modelica Association 427 Modelica 2005, March 7-8, 2005



turbine and steam dump control systems and with the
flow rate reference for the feedwater control. The sig-
nals to be fed to the lower systems are derived from
the desired power reference with linear filtering and
through look-up tables based on steady-state plant bal-
ances.

4.2 Reactor Control

The aim of the reactor control is to control the coolant
temperature, and thus the reactor nuclear power, by
driving the control rods stepping system. As a matter
of fact, the reference is a temperature signal coming
from the upper level, while the measurements include
the core coolant average temperature (obtained as the
mean between the temperature at the core inlet and the
one at the core outlet) and the nuclear neutron flux (ob-
tained through special sensors enclosed within the core
shielding).
The temperature error, with suitable dynamic compen-
sation, is used to generate an error signal for determin-
ing the speed request for the control rods, along with
a power mismatch signal which is used to improve the
stability and the velocity of the reactor control system
response. The power mismatch signal (i.e. the dif-
ference between the reference and the measured neu-
tronic flux) is fed into a rate compensation filter, to
eliminate steady-state influence, and then into a non-
linear, power-dependant gain, to improve low-power
response while avoiding high frequency excitation of
the rod stepping system.
The combined error signal enters a rod speed pro-
gram that features a small dead band to avoid high
frequency rod stepping. The speed request thus gen-
erated is then serviced by a servo control system em-
bedded within the control rods drive mechanism. This
servo is currently described by a high-level behav-
ioral model, which could be eventually replaced by a
physical-based model.

4.3 Turbine Admission Valve Control

The turbine system for the IRIS power plant has not
been completely designed yet and it is reasonable to
assume that the turbine supplier will provide most of
the requirements for the turbine control system; how-
ever, the design must be compatible with the overall
IRIS plant control strategy. The most important con-
straint is that the IRIS turbine control will have the
responsibility for controlling steam pressure by acting
on the turbine admission valve (TAV).

The control is based on a PID, its input being the refer-
ence pressure signal coming from the supervisory con-
trol system and the actual steam pressure measured at
the turbine inlet, with suitably low-pass filtering ac-
tion. The PID output is then summed to the amplified
frequency mismatch (i.e., the difference between the
actual generator frequency and the desired frequency),
with the gain depending on the grid droop setting. The
resulting signal is fed to the TAV drive system after be-
ing filtered by a non-linear algebraic function, which
is an approximate inverse of the TAV characteristic.

4.4 Steam Dump Control

The steam dump control system must control steam
pressure when the turbine admission valve control is
not doing so, and must provide a backup in all other
cases. Experience shows that a simple PID control per-
forms well, particularly if the system uses hydraulic
steam dump valves, as it will be in the IRIS case.
The controlled variable is the steam dump valve open-
ing, while the controller inputs are the pressure refer-
ence (from the upper level) and the turbine inlet steam
pressure (low-pass filtered). Additional steam-dump
action is available in case of need: the power refer-
ence, filtered through a rate compensator and a suit-
able gain, is added to the steam dump valve control
signal, to provide a faster response in case of sudden
changes in the requested power (e.g., when a reactor or
a turbine trip occur and the supervisory control system
instantaneously lowers the power reference).

4.5 Feedwater Control

The feedwater control system directly controls the
feedwater flow in the secondary side by acting on a
valve located at the feedwater pumps. The structure is
based on two PID controllers in cascade configuration.
The inner loop acts to control feedwater flow to the ref-
erence value obtained from the supervisory control. In
the ideal case with perfect settings in the supervisory
controller, this would result in the plant operating at
the desired power, at least in steady state. Of course,
such an open loop control on power would be sensi-
tive to parameter variations, so the outer loop provides
a trim signal to adjust feedwater flow to achieve the de-
sired power by the action of a PID controller with the
reference and the actual power as inputs. The feedwa-
ter valve control signal is then filtered by a non-linear
algebraic function, which is an approximate inverse of
the valve characteristic.
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4.6 Digital PI controller

Models for digital PI and PID controllers, in ISA form,
have been implemented. Here, for the sake of brevity,
only the PI development is briefly showed: the PID
model development is quite similar.
The model is based on the standard industrial ISA for-
mulation, with the output calculation formula obtained
with a Tustin discretization:

CS(s) =Kp

(
(bSP(s)−PV(s))+

1

TI s
(SP(s)−PV(s))

)

⇓

(
Tustin: s=

2

Ts

z−1

z+1

)

CS(z) =SP(z)
a0 +a1 z−1

1−z−1 +PV(z)
b0 +b1 z−1

1−z−1

(6)

with

a0 =
2 Kp b TI +Kp Ts

2 TI
, a1 =

−2 Kp b TI +Kp Ts

2 TI
,

b0 =
−2 Kp b TI −Kp Ts

2 TI
, b1 =

2 Kp b TI −Kp Ts

2 TI
.

The complete controller model includes also advanced
features likemanualandtrackingworking mode, out-
put saturation, and anti wind-up mechanism.
The resulting block has two boolean inputs (automatic
and tracking switch signals), four discrete real inputs
(set-point, process value, manual and tracking signals)
and a discrete real output (control signal).
The Modelica implementation exploits the language
features for digital blocks, using discrete variables and
with the instructions enclosed within a sampling loop:

when {initial(),sampleTrigger} then
...
[PI computations]
...
end when;

The anti wind-up mechanism is implemented via an
auxiliary variable:

CSwind=pre(CS)+a0*SP+a1*pre(SP)+b0*PV+
b1*pre(PV);

whereCswind is the auxiliary variable,CS the con-
trol variable, SP the set-point andPV the process
value.
The actual control value is chosen depending on the
controller logic state (automatic, manual or tracking)
and on the saturation values, e.g. :

if AUTO then
if CSwind >= CSmax then

CS = CSmax;
CSport.signal[1] = CSmax;

elseif CSwind <= CSmin then

CS = CSmin;
CSport.signal[1] = CSmin;

else
CS = CSwind;
CSport.signal[1] = CS;

end;
else

...

where the parametersCSmaxandCSmin, are the up-
per and lower saturation limits for the control action.
With this implementation structure, the controller inte-
gral state is automatically updated at every execution
cycle so to be coherent with the last output sample.

5 Model Management through the
project life-cycle

Object-oriented features such as inheritance and re-
placeable components are often described as key fac-
tors in the development of reusable model libraries.
In fact, they can also be extremely useful for the
proper management of families of application models
throughout an engineering project’s lifetime, as it will
be explained in this section with reference to the IRIS
project.

5.1 Requirements

During the IRIS project lifetime, a considerable num-
ber of model variants will have to be built and ana-
lyzed; some of them will become obsolete and will
have to be discarded, while others should be kept con-
sistently up-to-date. The motivations of the model
variants are now briefly discussed.
Depending on the specific simulation to be performed,
different accuracy vs. computational load trade-offs
are required. Reference simulations should be per-
formed with the maximum level of accuracy and de-
tail, and cross-checked with the results of the refer-
ence simulations performed with the certified RELAP
code. When performing simulations around a certain
operating point, some approximations could then be
introduced, which are only valid for that operating re-
gion; it should be possible to easily check simplified
versions against their more accurate counterparts.
Some of the plant parameters (e.g. the pump character-
istics, or some plenum volumes) are not yet definitive,
and could change in the future; when one of such pa-
rameters is changed, it is essential that all the current
model variants are updated consistently.
Once the initial phase of the control system design has
been carried out, a systematic simulation campaign
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must be performed to check that the operational con-
straints (i.e., the activation thresholds of the protection
system) are never violated in all the predicted oper-
ating conditions and transients; thousands of different
simulation runs can be required. To carry out this task,
the simplest and fastest possible variant of the plant
model should be used.
It should be also kept in mind that the plant mod-
els will be developed, used, and maintained by dif-
ferent people over a wide time span (several years)
and at widely spaced sites (US, Europe). For instance,
the model presented in this paper will be presumably
frozen for some months, and then possibly resumed
when the project will enter the commercial phase. It
is therefore essential to avoid building a plethora of
distinct models, differing only by some details, which
would be extremely difficult to maintain and document
consistently.

5.2 Implementation

The top-level structure of the simulator is represented
in Fig. 6: the TGFWS block contains the Tur-
bine/Generator/Feedwater system model; the NSSS
block contains the Nuclear Steam Supply System
model, i.e. the nuclear reactor, with the primary and
secondary loops. The two are connected to each other
by thermo-hydraulic connectors. The control side is
represented by the CS (Control System) block, col-
lecting all the control loops, and the SS (Supervi-
sory system) block, which generates the set points for
the CS based on the plant load request. Three bus
connectors carry the sensor, actuator, and reference
signals. This structure is common to all the possi-
ble variants of the model, and thus contained in the
IRISSimulatorBase partial model. Different ver-
sions of the simulator can be instantiated by select-
ing the actual content of each block; for instance, one
could use the simplified TGFWS model described in
Section 2, or a more detailed one.
The NSSS model contains a replaceable model
(HelicalCoil ) for the secondary side of the once-
through steam generator, which can be implemented
by either the finite-volume or the moving boundary
model, and by adding through inheritance the desired
equations to compute the heat transfer coefficient.
Besides that, it is possible to vary dramatically the
degree of detail and the computational load of the
model by changing the number of nodes in the core
and once-through generator models, as well as by
redeclaring the medium models in the primary and
secondary loop components. The default medium

Figure 6: The Base Simulator Model

models are the IF97-based water models taken from
Modelica.Media , but it is possible to use much
faster models, based either on table interpolation or on
equation-based simplified medium models. The ther-
modynamic conditions of the fluid in the primary loop
conditions vary in a rather narrow range (140 to 160
bar, 270 to 330 degrees Celsius), so that extremely
simplified models can still be acceptable; the fluid con-
ditions in the secondary loop vary in a broader range,
from subcooled liquid to superheated steam, albeit in a
narrow pressure range around 58 bar, due to the pres-
sure control system action.

Last, but not least, if an incompressible fluid model is
adopted for the primary loop, the fast pressure states
caused by the small compressibility of the fluid, cou-
pled with the small hydraulic resistances around the
circulation loop, are automatically avoided, without
any need to change the component models. This is es-
sential to allow the use of the faster explicit integration
algorithms (e.g. forward Euler).

The simulation suite is then organized as a small li-
brary (Fig. 7), containing the “empty” base models,
and the actual models of the different parts, without
any unnecessary duplicate of data. Any specific vari-
ant of the simulation model can be instantiated from
this library by using suitable modifiers. For exam-
ple, the variant V2 of the simulator, using a simple
incompressible water model for the primary loop, 7
nodes in the core model, a finite volume model of the
steam generator with 15 nodes using Chen’s correla-
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Figure 7: Iris Simulation Suite

tion for the heat transfer coefficient, the variant V1 of
the TGFWS, and the variant 2 of CS and SS, is instan-
tiated as follows:

model IRISSimulator_V2
extends IRISSimulatorBase(

redeclare Plants.NSSS_V1 NSSS(
redeclare package PrimaryMedium =

Media.SimpleIncompressibleWater,
Core(N = 7),
redeclare Plants.HelicalCoilFVChen

HelicalCoil(N=15)),
redeclare Controls.CS_V2 CS,
redeclare Controls.SS_V2 SS,
redeclare Plants.TGFWS_V1 TGFWS);

end IRISSimulator_V2;

IRISSimulatorBase is the empty base model de-
scribed at the beginning of the section, and its four
replaceable componentsNSSS, TGFWS, CS, SS
are of typeNSSSBase, TGFWSBase, CSBase and
SSBase, which again only contain the interfaces. The
NSSS model in turn contains the replaceable steam
generator modelHelicalCoil .

In this way, it is straightforward to maintain a con-
sistent state for a potentially large family of simulator
variants, as well as documenting all of them efficiently.

6 Simulation

The results of a closed-loop simulation, obtained with
the tool Dymola ([5]), are now presented. The refer-
ence transient is a filtered step variation of the electri-
cal load reference, from 90% to 100% and then back
to 90%. Although such a rude transient will never
be performed on the actual plant, it is usually em-
ployed to assess the overall dynamic response of the
control system, in terms of speed of response, damp-
ing, overshoot, and so on. The normalized transients
of the neutron flux (representative of the generated nu-
clear power) and of the generated electrical power are
shown in Fig. 8, along with the reference power signal.
The responses are well-damped and with limited over-
shoot. The neutron flux transient takes into account
the effect of the step-by-step actuation mechanism, as
well as of the dead-band included to avoid persistent
chattering around a specific operating point. The cor-
responding normalized transients of some control vari-
ables (i.e. TAV opening, feedwater flow rate, and rod
insertion) are shown in Fig. 9.

Figure 8: Normalized response to a step load variation:
measured variables

7 Conclusions and Future Work

In this paper, the application of Modelica to the
study of the control system of the new IRIS nuclear
power plant has been presented; this is also the first
industrial-scale application of the ThermoPower Mod-
elica library.
The well-behaved nature of the closed-loop transients
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Figure 9: Normalized response to a step load variation:
control variables

has confirmed that the new reactor concept will not
pose exceedingly difficult problems to the control en-
gineers, compared with already existing PWR plants.
On the other hand, the availability of a detailed dy-
namic model will allow the study of more advanced
control concepts, to cope with situations such as. e.g.,
load/frequency control in small grids, or improved
management of blackout transients.
The object-oriented features of the Modelica language
(replaceable classes in particular) have been fully ex-
ploited to allow the efficient management of all the
variants of the plant simulator, which will be needed
throughout the project’s life-time. The structure of the
simulation suite will allow an easier re-use and exten-
sion of the models developed so far, when the project
will eventually enter the detailed engineering phase,
prior to the construction of the first plant.
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Abstract 
In this paper we present the first comprehensive debug-
ger for the algorithmic subset of the Modelica lan-
guage, which augments previous work in our group on 
declarative static and dynamic debugging of equations 
in Modelica. This replaces debugging of algorithmic 
code using primitive means such as print statements or 
asserts which is complex, time-consuming and error- 
prone.  

The debugger is portable since it is based on transpar-
ent source code instrumentation techniques that are 
independent of the implementation platform. 

The usual debugging functionality found in debuggers 
for procedural or traditional object-oriented languages 
is supported: setting and removing breakpoints, single-
stepping, inspecting variables, back-trace of stack con-
tents, tracing, etc.  

1 Introduction and Related Work 
Most language development environments provide 
some kind of support for debugging and profiling.  

Such techniques have also been developed for Mode-
lica at the prototype level with regards to supporting 
declarative debugging of equation-based models [1, 2]. 
The presented work complements the existing debug-
ging work with the first (to our knowledge) portable 
debugger for the algorithmic part of the Modelica lan-
guage. The debugger is part of the Open Modelica pro-
ject [3, 4].  

There are several techniques for creating debuggers. 
Most of them are not portable and rely heavily on 
knowledge of the operating system and the underlying 
machine [5].  

The approach we use in this paper is based on source 
code instrumentation of the intermediate representation 
in the compiler, similar with the work described in [6-
8]. One can view the Modelica algorithmic code as an 
event generator and the debugger as a collector of these 
events that reacts to them accordingly. 

The compiler has intimate knowledge of the Modelica 
code in its internal representation. We augment this 

representation with debugging nodes (or sites) that ac-
tually performs calls to the debugging functions. We 
have introduced a new compiling phase in the compiler 
where we walk on the internal representation and aug-
ment it with calls to several debugging functions im-
plemented in C.  

We have experimented with several ways of augment-
ing the internal compiler representation with debug 
nodes in order to search for the best memory consump-
tion vs. speed of the debugger. These augmentation 
choices deal with the way the variables and code posi-
tion is passed to the debugger functions. 

The paper is structured as follows: This section pre-
sented an introduction and related work. Next section 
presents a debugging session on a short Modelica ex-
ample, concentrating on the debug functionality. Also 
the debugger commands are introduced here. Details 
about the debugger are presented in detail in Section 3. 
Section 4 presents our conclusion and future work. 

2 A debugging Session 
This section presents the debugger functionality pre-
senting a debugging session on a short Modelica exam-
ple. The functionality of the debugger is presented us-
ing pictures from the Emacs debugging mode for Mod-
elica (modelicadebug-mode).  

2.1 The Debugger Commands 

The Emacs Modelica debug mode is implemented as a 
specialization of the Grand Unified Debugger (GUD) 
interface (gud-mode) from Emacs [9]. Because the 
Modelica debug mode is based on the GUD interface, 
some of the commands have the same familiar key 
bindings.  

The actual commands sent to the debugger are also 
presented together with GUD commands preceded by 
the Modelica debugger prompt: mdb@>.  

If the debugger commands have several alternatives 
these are presented using the notation: alterna-
tive1|alternative2|....   
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The optional command components are presented us-
ing notation: [optional]. 

In the Emacs interface: M-x stands for holding down 
the Meta key (mapped to Alt in general) and pressing 
the key after the dash, here x,  C-x stands for holding 
down the Control (Ctrl) key and pressing x, 
<RET> is equivalent with pressing the Enter key and 
<SPC> with pressing Space key. 

2.1.1 Starting the Modelica Debugging 
Subprocess 

The command for starting the Modelica debugger under 
Emacs is the following: 
M-x modelicadebug <RET> executable <RET> 

2.1.2 Setting/Deleting Breakpoints 
A part of a session using this type of commands is 
shown in Figure 1 below. The presentation of the com-
mands follows. 

 
Figure 1: Using breakpoints 

To set a breakpoint on the line the cursor (point) is at: 
C-x <SPC> 
mdb@> break on file:lineno|string <RET> 

To delete a breakpoint placed on the current source 
code line (gud-remove): 
C-c C-d  
C-x C-a C-d 
mdb@> break off file:lineno|string <RET> 

Instead of writing break one can use alternatives 
br|break|breakpoint. 

Alternatively one can delete all breakpoints using: 
mdb@> cl|clear <RET> 

Showing all breakpoints: 
mdb@> sh|show <RET> 

2.1.3 Stepping and Running 
To perform one step (gud-step) in the Modelica code: 
C-c C-s  
C-x C-a C-s 
mdb@> st|step <RET> 

To continue after a step or a breakpoint (gud-cont) in 
the Modelica code: 
C-c C-r  
C-x C-a C-r 
mdb@> ru|run <RET>  

Examples of using these commands are presented in 
Figure 2. The example uses an extended version of 
Modelica [10] and is briefly described in Section 3.1. 

 
Figure 2: Stepping and running 

2.1.4 Examining Data 
There are no GUD keybindings for these commands 
but they are inspired from the GNU Project debugger 
(GDB) [2].  
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To print the contents/size of a variable one can write: 
mdb@> pr|print variable_name <RET> 
mdb@> sz|sizeof variable_name <RET> 

at the debugger prompt. The size is displayed in bytes. 
Variable values to be printed can be of a complex type 

and very large. One can restrict the depth of printing 
using: 
mdb@> [set] de|depth integer <RET> 

Moreover, we have implemented an external viewer 
written in Java called ModelicaDataViewer to 
browse the contents of such a large variable. To send 
the contents of a variable to the external viewer for in-
spection one can use the command: 
mdb@> bw|browse|gr|graph var_name <RET> 

at the debugger prompt. The debugger will try to con-
nect to the ModelicaDataViewer and send the con-
tents of the variable. The external data browser has to 
be started a priori. If the debugger cannot connect to the 
external viewer within a specified timeout a warning 
message will be displayed. A picture with the external 
ModelicaDataViewer tool is presented in Figure 3 
below: 

 
Figure 3: External variable browser 

If the variable which one tries to print does not exist in 
the current scope (not a live variable) a notifying warn-
ing message will be displayed. 

Automatic printing of variables at every step or break-
point can be specified by adding a variable to a display 
list: 
mdb@> di|display variable_name <RET> 

To print the entire display list: 
mdb@> di|display <RET> 

Removing a display variable from the display list: 
mdb@> un|undisplay variable_name <RET> 

Removing all variables from the display list: 
mdb@> undisplay <RET> 

Printing the current live variables: 
mdb@> li|live|livevars <RET> 

Instructing the debugger to print or to disable the print 
of the live variable names at each step/breapoint: 
mdb@> [set] li|live|livevars [on|off]<RET> 

Figure 4 shows examples of some of these commands 
within a debugging session: 

 
Figure 4: Examining data 

2.1.5 Additional commands  
The stack contents (backtrace) can be displayed using: 
mdb@> bt|backtrace <RET> 

Because the contents of the stack can be quite large, 
one can print a filtered view of it: 
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mdb@> fbt|fbacktrace filter_string <RET> 

Also, one can restrict the numbers of entries the debug-
ger is storing using: 
mdb@> maxbt|maxbacktrace integer <RET> 

For displaying the status of the Modelica runtime: 
mdb@> sts|stat|status <RET> 

The status of the extended Modelica runtime comprises 
information regarding the garbage collector, allocated 
memory, stack usage, etc. 

The current debugging settings can be displayed us-
ing: 
mdb@> stg|settings <RET> 

The settings printed are: the maximum remembered 
backtrace entries, the depth of variable printing, the 
current breakpoints, the live variables, the list of the 
display variables and the status of the runtime system. 

One can invoke the debugging help by issuing: 
mdb@> he|help <RET> 

For leaving the debugger one can use the command: 
mdb@> qu|quit|ex|exit|by|bye <RET> 

A session using these commands is presented in Figure 
5 below: 

 
Figure 5: Additional commands 

3 The Debugger Implementation 
This section presents the debugging strategy in detail. 
We first start with two examples on how the debugger 
instruments the code, and then we enter into the details 
of the implementation. The examples illustrate Mode-
lica algorithmic code and some of the new extensions 
of the Modelica language like pattern matching and 
union type declarations on a simple expression evalua-
tor example. 

3.1 Example Applications to Debug 

In this section we present two examples of Modelica 
algorithms. 

3.1.1 Bubble Sort function 
The first example application we present for debugging 
is a BubbleSort function: 
function bubbleSort 

  input Real [:] unordElem; 
  output Real [size(unordElem, 1)] ordElem; 
  protected  
    Real tempVal; 
    Boolean isOver = false; 
  algorithm 
    ordElem := unordElem; 
    while not isOver loop 
      isOver := true; 
      for i in 1:size(ordElem, 1)-1 loop 
       if ordElem[i] > ordElem[i+1]  
       then   
          tempVal      := ordElem[i]; 
          ordElem[i]   := ordElem[i+1]; 
          ordElem[i+1] := tempVal; 
          isOver := false; 
       end if; 
      end for; 
    end while; 
 end bubbleSort; 

The instrumented version of this function is presented 
below: 
function bubbleSort 

  input Real [:] unordElem; 
  output Real [size(unordElem, 1)] ordElem; 
  protected  
    Real tempVal; 
    Boolean isOver = false; 
  algorithm 
 Debug.register_in("unordElem",unordElem); 
 Debug.step(...); 

  ordElem := unordElem; 
 Debug.register_out("ordElem", ordElem); 
 Debug.register_in("isOver", isOver);

  Debug.step(...);   
  while not isOver loop 
      isOver := true; 
      Debug.register_out("isOver", isOver); 
      Debug.register_in("ordElem",ordElem); 
      Debug.step(...); 
      for i in 1:size(ordElem, 1)-1 loop 
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       Debug.register_out("i", i); 
       Debug.register_in("i", i); 
       Debug.register_in("ordElem[i]", 
                         ordElem[i]); 
       Debug.register_in("ordElem[i+1]", 
                         ordElem[i+1]); 
       Debug.step(...); 
       if ordElem[i] > ordElem[i+1]  
       then   
         Debug.register_in("i", i); 
         Debug.register_in( 
           "ordElem[i]", 
            ordElem[i]); 
         Debug.step(...); 
         tempVal := ordElem[i]; 
         Debug.register_out( 
           "tempVal", 
           tempVal); 
         Debug.register_in("i", i); 
         Debug.register_in( 
               "ordElem[i+1]", 
               ordElem[i+1]); 
         Debug.step(...); 
         ordElem[i] := ordElem[i+1]; 
         Debug.register_out("i", i); 
         Debug.register_out( 
               "ordElem[i]", 
               ordElem[i]); 
         Debug.register_in("i", i); 
         Debug.register_in( 
               "tempVal", 
               tempVal); 
         Debug.step(...); 
         ordElem[i+1] := tempVal; 
         Debug.register_out("i", i); 
         Debug.register_out( 
               "ordElem[i+1]", 
               ordElem[i+1]); 
         Debug.step(...);
         isOver := false; 
         Debug.register_out("isOver", 
                            isOver); 
         Debug.step(...);
       end if; 
      end for; 
      Debug.register_out("i", i); 
      Debug.register_out( 
               "ordElem", 
               ordElem); 
      Debug.step(...);
    end while; 
    Debug.register_out("isOver", isOver); 
    Debug.register_out("ordElem",ordElem); 
    Debug.step(...);
 end bubbleSort; 

As presented above, the debugger instruments all 
statements using the defined functions from the Debug 
package. A statement is analyzed for input and output 
variables which are registered with the debugging 
framework using register_in and register_out 
functions.  The function step verify internally if we 
have to stop at a breakpoint or continue without stop-
ping and also is responsible for parsing user commands 
addressed to the debugger. The instrumentation is bet-
ter than what a programmer/user would do with print or 

assert statements because it provides better control 
through stop/inspect functionality. As one can see the 
code grows quite much when is instrumented, but this 
does not affect the final version of the code. For de-
bugging purposes the user is rather interested in cor-
rectness of the code than in the speed/size of the code. 

3.1.2 An expression evaluator 
The second application is an expression evaluator im-
plemented in the algorithmic Modelica subset extended 
with support for recursive tree data structures and a 
case-expression construct that allows pattern-matching 
and tree traversal. These language extensions are de-
scribed in a companion paper [10] and are independent 
of the implemented debugger described here. For the 
sake of completeness we make present the extensions 
briefly in the following. 

The declaration of an abstract syntax tree (AST) data 
type Exp for representing simple expressions: 
uniontype Exp 
 record RCONST Real x1; end RCONST; 
 record PLUS  Exp x1; Exp x2; end PLUS; 
 record SUB   Exp x1; Exp x2; end SUB; 
 record MUL   Exp x1; Exp x2; end MUL; 
 record DIV   Exp x1; Exp x2; end DIV; 
 record NEG   Exp x1;         end NEG; 
end Exp; 

The union type declaration above is defining record 
constructors for the nodes of the simple expression rep-
resentation. Examples of expressions represented in 
this way can be found in the following table: 

 
Expression Modelica constructor form 

1+2 PLUS(RCONST(1),  

     RCONST(2)) 

1-2/3 SUB(RCONST(1), 

    DIV(RCONST(2), 

 RCONST(3))) 
Table 1: Representing simple expression trees 

To be able to evaluate simple expression trees we need 
an evaluation function. The evaluation function will 
apply pattern matching on the constructors of the ex-
pression language and then perform the actual evalua-
tion on the components of the constructor.  

Below we present the evaluation function eval of our 
simple expression evaluator: 
function eval 
  input  Exp   exp_1; 
  output Real rval_1; 
algorithm 
 rval_1 := 
  match exp_1 
    local Real v1,v2; 
          Exp  e1,e2; 
    case RCONST(v1) then v1; 
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    case PLUS(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1+v2; 
    case SUB(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1-v2; 
    case MUL(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1*v2; 
    case DIV(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1/v2; 
    case NEG(e1) equation 
      v1 = eval(e1); 
      then -v1; 
    else 

  assert("Bad expression!"));   
   end match; 
end eval;  

This function has as input an expression in the form 
presented in Table 1, second column. The expressions 
are represented as trees using constructors defined in 
the union type Exp.  A model that uses this function is 
presented below: 
model Example 
  Exp exp=PLUS( 
           SUB(RCONST(4), 
               MUL(DIV(RCONST(16), 
                        RCONST(2)), 
                   RCONST(3))), 
           RCONST(10)); 
  Real result; 
algorithm 
  result := eval(exp); 
end Example 

The first component of the Example model defines a 
simple tree that corresponds to 4-16/2*3+10 expres-
sion. We used this simple expression in the examples 
and figures in Section 2. 

The instrumented code of the eval function is pre-
sented below. The debugging code is underlined to be 
more visible: 
function eval  // instrumented version 
  import Modelica.Debugging; 
  input  Exp     exp_1; 
  output Real realval_1; 

algorithm 
Debug.register_in(”exp1”, exp_1); 
Debug.step(...); 
realval_1 := 
  match exp_1 
    local Real v1,v2;  
    Exp e1,e2; 
    case RCONST(v1) equation 
       Debug.register_out("v1", v1); 
       Debug.step(...); 
      then v1; 
    case PLUSop(e1,e2) equation 
       Debug.register_out("e1", e1); 
       Debug.register_out("e2", e2); 
       Debug.register_in("e1", e1); 
       Debug.step(...); 
       v1 = eval(e1); 

       Debug.register_out(“v1”, v1); 
       Debug.resister_in(“e2”, e2); 
       Debug.step(...);   
       v2 = eval(e2); 
       Debug.register_out(“v2”, v1); 
       Debug.register_out(“v1+v2”,v1+v2); 
       Debug.step(...);   
      then v1+v2; 

 ... 
    else 
 Debug.step(...);  

assert("Bad expression!"));   
  end match; 
Debug.register_out(“realval_1”,realval_1); 
Debug.step(); 

end eval; 

As one can see, debugging code is added for each vari-
able. This style of debug code instrumentation can be 
changed into one where all the debugging calls are col-
lapsed into just one call Debug.step(...) with more 
arguments specifying in or out variables. We have ex-
perimented with different debug instrumentation styles 
in order to choose the best speed vs. memory consump-
tion for the debugger. 

The following instrumentation functions are inserted 
into the generated code: 

• The functions: Debug.register_in("name", 

var) and Debug.register_out("name", var) 
register in a data structure the variables which are 
live at a certain moment during the execution.  

• The Debug.step(...) function then performs a 
query of this data structure to show which variables 
are available in the current context.  

• The function Debug.register_in(...)  regis-
ters variables that are used in the next statement or 
expression.  

• The function Debug.register_out(...) regis-
ters variables that result from the execution of the 
previous statement or expression. 

Note that the debug instrumentation functions are low-
level C functions that do not fulfill the Modelica re-
quirement of being mathematical functions. 

3.2 Overview 

In this section we present the compilation path fol-
lowed by the compiler when instrumenting the code 
with debugging calls. The debugger is actually the ex-
ecutable generated by the compiler when instructed to 
generate debugging calls before and after each relevant 
Modelica statement or expression.  

Figure 6 presents both the normal compilation path 
performed by the compiler when compiling algorithmic 
code and also the path followed by the compiler when 
compiling algorithm sections that include debugging 
information. 
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Modelica Code
function eval
input Exp;
output Real realval_1;

algorithm
...

end eval;
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Figure 6: Normal compilation (left) and compilation 

with debug support (right) 

An overview of our debugging strategy is presented on 
the right side of Figure 6. The path taken by the debug-
ger comprises several more steps in order to instrument 
the Modelica AST with debug nodes and live variable 
information.  Also, the runtime system is extended with 
several data structures that support debugging and a 
parser for the debugger commands. 

3.3 Augmenting the Modelica AST with Debug 
Call Nodes 

The modified Modelica parser saves additional position 
information about each statement or expression. This 
information is used by the debug instrumentation phase 
in order to generate calls to the debugger functions with 
exact information on where the current execution is 
taking place.  

We use a very simple and effective algorithm when 
instrumenting the ModelicaAST with debug nodes. We 
sketch a pseudo code of this algorithm below: 
foreach ModelicaAST expression or  
        statement Node  
 if not filter(Node)  

 else 

 then select next Node; 

bles_in = collect_variables(Node); 

 

egister_out(variables_out); 

 

The c be instructed to generate debugging 

ing 
t

ered using a debug function 

• are collected in a list and passed to 

ode); 

 

egister_out(variables_out); 

 

The c be instructed to generate debugging 

ing 
t

ered using a debug function 

• are collected in a list and passed to 

  varia
  variables_out = collect_variables(Node);   variables_out = collect_variables(Node); 
  position = collect_position(Node);   position = collect_position(Node); 
  construct new tree with these nodes:  construct new tree with these nodes:
    Debug.register_in(variables_in);     Debug.register_in(variables_in); 
    Debug.step(position);     Debug.step(position); 
    Node;     Node; 
    Debug.r    Debug.r
  replace Node with the new tree;   replace Node with the new tree; 
 end else;  end else; 
end foreach;end foreach;

ompiler can ompiler can 
nodes only when reaching certain nodes that are con-
form to a filter. Using this facility one can tell the com-
piler to perform debug instrumentation only on a cer-
tain function or a certain statement of the code. In this 
way the delay in the execution speed introduced by the 
debugging code can be kept to a minimum.  

We have experimented with several ways of creat

nodes only when reaching certain nodes that are con-
form to a filter. Using this facility one can tell the com-
piler to perform debug instrumentation only on a cer-
tain function or a certain statement of the code. In this 
way the delay in the execution speed introduced by the 
debugging code can be kept to a minimum.  

We have experimented with several ways of creat
he added debug nodes: 

• Each variable is regist

he added debug nodes: 

• Each variable is regist
call either as in or out variable, as in the pseudo 
code presented. 
All in variables 

call either as in or out variable, as in the pseudo 
code presented. 
All in variables 
a single function call. The same approach is used 
also for out variables. This has an impact on mem-
a single function call. The same approach is used 
also for out variables. This has an impact on mem-
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ory consumption, but uses fewer function calls, so it 
is faster. 

• The in and out variables are collected in two lists 
which are passed as arguments to the step function 
directly. 

The best speed vs. memory consumption is highly de-
pendent on the algorithmic code. However one can ex-
periment with all these choices and choose the best de-
bug instrumentation way for a specific code. 

3.4 Short Presentation of the Debugger Library 

The debugger library contains several functions imple-
menting the actual debugger functionality and data 
structures for bookkeeping of breakpoints, live vari-
ables, call stack, types of live variables, etc. The library 
is implemented in C. 

The debugger library has the following available func-
tions: 

• Debug.step(...) function with fixed parameters 
file_name, lineno, columno, func-

tion_name, next_statement is stopping the 
execution of the algorithmic code if a breakpoint is 
reached or one step was performed and waits for 
commands from the user. If the commands are not 
step or run it waits for more commands from the 
user in a cycle. Additional parameters like the live 
variables can be also passed to the De-

bug.step(...) function depending on the debug 
instrumentation choice.   

• Debug.register_in(...)  function and De-
bug.register_out(...) function are used only 
when no live variables are passed to the De-
bug.step() function. These functions are register-
ing variables, either each variable at a time or sev-
eral variables as a list. 

• Debug.parse_command() is called by De-

bug.step() either at a step or when a breakpoint 
is reached. 

• Debug.execute_command() is called by the De-
bug.parse_command() when the user issues a 
command. Depending on the command several 
other functions are executed. 

• Debug.set_breakpoint() adds the breakpoint 
into the breakpoint list. 

• Debug.delete_breakpoint() deletes the break-
point from the breakpoint list. 

• Debug.clear() and Debug.show() clears or 
shows all current breakpoints, respectively. 

• Debug.print_variable() prints the specified 
variable to the debugger output. 

• Debug.print_livevars_names() prints the 
names of the variables available in the current con-

text. The distinction between in (parameters) and 
out (results) variables is made when printing vari-
able names. 

• Debug.browse_variable() connects to the ex-
ternal viewer, and sends on demand the value of a 
variable.  This function stops the debugger until the 
external viewer is done with the browsing. 

• Debug.set_print_depth() sets the depth of 
variable printing.  

• Debug.max_remembered_stack_entries() 
will set the maximum number of entries of the 
logged stack trace. 

• Debug.display_variable() will add the dis-
play variable to a display list to be printed at each 
step or breakpoint.  

• Debug.undisplay_variable() performs the in-
verse action of the Debug.display_variable(). 

• Debug.display() prints the list of variable names 
present in the display list.  

• Debug.undisplay() clears the display list. 
• Debug.stack_add_node() pushes a node name 

on the stack trace.  
• Debug.stack_remove_node() pops a node name 

from the stack trace. 
• Debug.status() prints status information on the 

extended Modelica runtime, e.g., garbage collec-
tions performed, amount of allocated memory, etc. 

• Debug.settings() prints the current debugger 
settings.  

More functions are actually present in the debug library 
(dealing with variable – type mapping, connection to 
the external viewer, etc). Here we have only presented 
a limited set which has direct connections with the de-
bugger commands presented in the paper. 

4 Conclusions and Future Work 
We have presented a portable and highly configurable 
debugger for extended Modelica algorithmic code. De-
bugging of large algorithmic Modelica codes is now 
possible using our debugger.  

As future work we consider extension of the current 
debugging scheme and also tighter integration of the 
debugger with other Modelica tools. 

Integration with declarative equation debugger tech-
niques [1, 2] will be provided in the future, in order to 
address debugging of the entire Modelica language 
from a central debugger.  

We have also started work to integrate the debugger 
and the OpenModelica [3] compiler within the Eclipse 
Development platform [11] which will provide inte-
grated editing, navigation, simulation and debugging 
for the Modelica language.  
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Abstract 
This paper presents ModelicaDB, a tool that provides 
several kinds of queries on repositories of Modelica 
models.  

The Modelica language has a growing user commu-
nity that produce a large and increasing code base of 
models.  

However, the reuse of models within the Modelica 
community can be greatly hampered in the future if 
there are no tools to address a number of management 
issues (i.e. scalable searching, analysing, crossreferenc-
ing, checking, etc) of such a large repository of models.  

We try to address these issues by providing the Mode-
lica community with a ModelicaDB database for stor-
ing models and services for quering this database to 
perform a wide range of model engineering tasks in a 
scalable fashion. 

In the long-term, this work also aims at providing in-
tegration between Modelica tools and advanced product 
development processes that rely on database technol-
ogy. 

1 Introduction 
The long-term goal of this work is to efficiently inte-
grate Modelica modeling simulation environments into 
the overall product development process for products 
that require advanced systems engineering [2].  

There are many engineering processes that precede 
modeling and simulation, and which output information 
that defines structure, configuration, and input parame-
ter data to simulation models of the product. 

The following are of particular importance: 

• The implementation structure of the product that de-
fines its hierarchical division into different subsys-
tems, their components with parameter values, and 
component interconnections. 

• Run-cases derived from the product requirements, 
which define critical behaviour that the product 
must achieve, and for which alternative implemen-

tation structures’ behaviour is evaluated with simu-
lation.  

Given these, the simulation model designer can select 
valid component models from Modelica libraries for 
the components in the implementation structure, and 
verify that the simulation component’s parameter 
values are compatible and transferable from the infor-
mation in the provided implementation structure. 

With valid component models assigned and mappings 
of their parameters, other tools can assemble a final 
simulation model setup for execution and post-
processing of the simulation results for evaluation 
analysis in subsequent engineering processes. 

One purpose of ModelicaDB is to provide fast access 
to possibly relevant component models in Modelica 
Libraries, such that the assignment work can be 
speeded up with automation tools. 

In many cases, a matching model component will not 
be available and ready for use in the Modelica Librar-
ies, so the task of selecting component models is aug-
mented by writing new ones or assembling valid 
component models from other components in the Mod-
elica library. 

Such work is a creative design task, which is signifi-
cantly aided if the designer has tools for searching, ana-
lysing, crossreferencing, and checking the libraries.  

The used libraries have been developed by experi-
enced library developers, and contain valuable design-
pattern knowledge of how to properly design and im-
plement models, components and libraries. With fast 
browsing and navigation tools, the designer can quickly 
find similar designs to the one that is needed, study 
how they are used/reused as components in other simu-
lation models, and get a good understanding of how to 
build a new simulation component. 

The continuous development and improvement of 
Modelica libraries by the Modelica design group and 
similar efforts within companies, indicates that tools 
with ModelicaDB functionality would be valuable to 
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the Modelica community [7] for many other purposes 
than we intend here.  

Preliminary statistics from the Modelica 2.1 and 
Modelica 1.5 libraries definitely show that this kind of 
tool would be helpful for many engineers for grasping, 
sharing, reusing, and following the large efforts in 
simulation model development work that is being si-
multaneously conducted by many people.  

The following sections of the paper provide statistics 
from the current releases of the Modelica libraries, ex-
amples of use-cases for ModelicaDB, an overview of 
the product development process and the intended role 
of ModelicaDB, the functionality in the user interface 
of ModelicaDB, an example of an SQL-query on the 
database and finally results, experiences, future work 
and conclusions. 

2 Statistics from Modelica Standard 
Libraries 

Preliminary analysis of the Standard Modelica 1.5 and 
2.1 libraries give the following statistics: 

 
Modelica Library V 1_5 V 2_1 V 2_1+ 
Source files 36 87 144
Imports 93 286 343
Class definitions 910 1447 3141
Components 1628 4636 6915
Equations 1055 2768 3262
Algorithms 99 633 1290
      
Component_refs 30304 60838 92636
Expression_lists 14736 23715 25354
Real literals 4413 5833 33158
      
Comments  1720 4755 5649
String Comments 1322 3722 5611
      
Annotations 1326 3120 5093
String literals 3503 7218 13350
Integer literals 33187 59604 67373
Other  88991 157760 235806
Total elements: 183323 336422 499125

 

The number columns show the Modelica language 
element count from different releases of the Modelica 
standard libraries. Modelica 1_5 was downloaded from 
the public library page [8]. Modelica 2_1 and 2_1+ 
were obtained from the Modelica CVS repository 
2004-11-15.  

V 2_1+ includes the following libraries: Modelica, 
ModelicaReference, ModelicaTest, Modelica_Fluid, 
Modelica_Interpolation, Modelica_Media and Teach-
ingMaterial. 

The source code directory contents of the libraries was 
converted to a single xml file for each library release by 
ModelicaXML, which then were preprocessed for im-
port into ModelicaDB.  

The Imports row is an indicator of reuse. The Compo-
nent_refs row gives the count of the uses of a compo-
nent variables in expressions.  

The Comment row is a higher level parse node for 
String_comments and Annotations . 

String literals and Integer literals are heavily used 
within annotations, especially for graphical object an-
notations in Modelica diagrams. 

The above statistics shows that the size of the standard 
libraries is substantial. Commercial Modelica develop-
ment tools [1],[3] provide user interfaces with  tree 
views of the package hierarchy, connection diagrams, 
and string based text searches, for quick navigation in 
the libraries. 

ModelicaDB adds additional search facilities and 
other types of tree views on the libraries, that can help 
to speed up the task of creating a new simulation com-
ponent that efficiently reuses existing component mod-
els and design-pattern knowledge.  

3 Use-Case Examples for ModelicaDB 
The following section briefly describes use-cases that 
illustrate use of additional types of views on Modelica 
library structures. The views are computed in Modeli-
caDB, and presented in a tree- or list- based user inter-
face that enables quick navigation with pointing and 
clicking. 

3.1 Finding Relevant Simulation Components 

The following example use cases illustrate subtasks in 
the process of finding reusable components and code 
sections for building a new simulation component. 

• Finding component models with knowledge of the 
SI-units their instances will need. 

• Finding component models with knowledge of their 
connectors. 

• Finding equations with knowledge of the type of the 
variables used in the expression. 

• Finding algorithms with knowledge of their function 
call parameters. 
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3.2 Finding Relevant Component Using a 
Categorization Tree 

Categorization trees are an “add-on” feature to Mode-
lica libraries, implemented with annotations.  

Categorization trees allow a user to with a few clicks 
down the tree find a set of relevant component models. 
The categorization tree itself is an aid for remembering 
where to find certain components. 

Modelica objects can be annotated with a category, 
which makes them easier to find with the aid of a cate-
gory system (also known as classification system, fo-
cusing on some aspect).  Examples of categories are 
“Electrical Components”, “Motors”, “Transistors”, 
“Capacitors” etc.  

A category system is organized into a tree, where the 
root category node contains all Modelica objects that 
have that type of category or any of its sub categories. 
Sub nodes in the category tree increase the specializa-
tion in the categorization. Leaf nodes in the categoriza-
tion tree usually justify their existence if there are 5-25 
component models under this node. 

There are many standardized categorization systems 
used in industry. Classification trees applied on electri-
cal components are specified by IEC [22], and applied 
in succeding industrial standards like RosettaNet Tech-
nical Dictionary which contains a much larger library 
of classes [18]. ISO-31 [23] categorizes quantities and 
units into 13 chapters and is well known from the Mod-
elica SIunits in the standard libraries. There are other 
examples of large classifications systems for standard 
terms used in e-business. 

Commercial design tools for the design processes 
immediately before simulation, like process and in-
strumentation diagrams (P&ID), electrical design and 
control system design usually contain a categorization 
system for reusable components in their component 
library catalogues. 

The following use cases examples can be well sup-
ported with a classification tree. 

• Finding a component model for a certain purpose. 
• Finding connectors for a certain purpose. 
• Finding equations for a certain purpose. 

The category method of finding Modelica components 
requires a library administrator to manually organize or 
load a standardized categorization tree , and then anno-
tate the component models with their classifications, 
see section 3.7. 

Once the classification tree structure is decided, pat-
tern maching searches in the Modelica repository can 
be used to populate the categories. For example, a clas-
sification tree for equations that compute a value of a 
certain SIunit type, can be organized according to ISO-

31 and the standard SI-units library, and populated with 
equations whose left hand side variable matches the 
corresponding SIunit type category. 

3.3 Verifying that a component is trustworthy 
Simulation results must be accurate in order to pro-
vide correct decision support to the product design 
process. The following use-cases illustrate ways the 
engineer can determine this. 

• Finding examples of usage 
• Computing statistics of reuse in other models 
• Computing statistics of use of certain design pattern 

The last use-case applies when the engineer has de-
signed a new simulation component, and wants to 
check to what extent others library developers have 
used a similar design pattern. Such statistics can indi-
cate if this is a good way to solve the problem, and can 
direct more detailed searches for gaining further confi-
dence, or ideas of how to improve a design. 

3.4 Finding relevant design patterns 
There are many ways to solve a type of problem. 
Some of these may prove to be better than others and 
tend to re-occcur in many places as design patterns. 
The characteristics of components that play a certain 
role in the re-occuring interconnection structure of 
the design pattern, can be used as search criteria. 

3.5 Finding relevant naming conventions and 
documentation 

Following naming conventions is important for effi-
cient communication in a large community.  Naming 
conventions usually vary between different engineer-
ing disciplines due to the history of their body of 
knowledge and decisions made by library authors. 
When extending or reusing a library, it is valuable to 
follow the relevant conventions to ease reuse within 
the community.  The use-cases below illustrate how 
this could be supported. 

• Finding Naming Conventions for Variables and 
Parameters 

Pattern search of sorted listings of variable names for a 
certain type of SI-unit variable, which may play a cer-
tain role in an equation. 
• Finding References to Literature and Documenta-

tion 

Searching documentation strings of pattern matched 
components for references (e.g. brackets or other text 
patterns that indicate a reference) 
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3.6 Checking that the New Component Follows 
Design Rules 

Engineering domains may pose restrictions on simu-
lation models that are not possible to enforce directly 
in Modelica. The same applies for company specific 
design rules that accumulate from experience, and 
quality assurance procedures that reduce the cost for 
errors and maintenance.  
The following use-cases are simple examples of de-
sign rule checking. 

3.6.1 Checking Naming Conventions for 
Classes, Components 

Pattern search and listing of Modelica object identifiers 
names in a model that do not follow a certain style, or 
convention. 

3.6.2 Checking Complete Documentation 

Pattern search that for instance all components in a 
class have a comment string etc. 

3.6.3 Checking Use of SIunits 

Pattern search for variables whose type is not derived 
from SIunits, and are not an array index or similar. 

3.7 Managing Product Specific Library Devel-
opment 

While developing a complex product that requires sys-
tems engineering, much can be gained by reducing the 
number of variants of a certain type of simulation com-
ponent. 

The following use cases show how a library developer 
can direct the users to the best components for various 
purposes, and identify targets for refactoring amongst 
existing components. 

3.7.1 Finding Candidate Components for Cate-
gorization 

Various pattern searches that detect component features 
that make them interesting for a certain classification, 
and perhaps exclude already classified components 

3.7.2 Finding Duplicates or Variants of the 
Same Models 

Duplicates or variants of the same models can be found 
by pattern searches that compares component sets of 
variable types  and equation patterns within a class 
definition. Patterns that detect the same equations, 
based on variable types, where the variables themselves 
just have different names. 

3.8 Additional Analyses and Metrics 

Michael Tiller presented analyses and metrics in [21], 
which inspire development of additional reporting ap-
plications which can be computed with SQL-queries on 
ModelicaDB. 

3.9 Automatic Composition and Configuration 
of new Models  

ModelicaDB augments the work presented in [12] on 
automatic composition and configuration of new mod-
els. Using ModelicaDB,  designers can compose new 
models by blending template like models with configu-
ration information stored in other sources (text or XML 
files, databases, etc) to create new models which are 
configured accordingly.   

4 The ModelicaDB Context and 
Architecture 

Figure 1 shows the role of ModelicaDB amongst some 
of its surrounding engineering processes, connected 
with major workflow arrows. Engineering tools 
(FMDesign, ModelicaDB, ModelicaXML, Modelica 
Simulation tool) support some of the processes. Engi-
neering models are stored in files (Simulation program, 
Modelica libraries) and in databases (FMDesign data-
base, ModelicaDB database). 

 
Figure 1. ModelicaDB in its context 

The ModelicaDB front-end and database are described 
in more detail below. We start by briefly describing the 
role of the other tools in the integrated framework [15]. 

FMDesign is a tool for designing product concepts 
with the aid of integrated requirement trees, function-
means trees, product concept trees, and implementation 
trees. The implementation tree specifies the product 
structure and its interacting components on a level that 
is detailed enough so its behaviour can be modeled and 
simulated. 

The simulation is deferred to one of the existing Mod-
elica Simulation Tools [1][3][10]. All manual editing of 
simulation models are performed in one of these tools, 
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and the component models are stored in Modelica Li-
braries. The simulation program is generated from the 
configuration information stored in the implementation 
tree for the product concept.  

4.1 ModelicaXML Files 

ModelicaXML is a program that converts Modelica 
source code into XML-files [1]. Recent additions to 
ModelicaXML is functionality for converting a whole 
Modelica Library stored in a directory structure into 
one XML-file. The size of the created files for the stan-
dard Modelica libraries version 1.5 and 2.1 is 16 MB 
and 30 MB respectively.  

4.2 ModelicaDB Front-End Tool 

This tool parses the ModelicaXML file and builds an 
object structure in primary memory which can be syn-
chronized or stored into tables in the ModelicaDB da-
tabase.  

The tool also contains a graphical user interface, for 
fast navigation of the component model level Modelica 
language constructs.  

More detailed constructs like expressions are mod-
elled as parse nodes in the database.  

Appendix A shows the class diagram for the UML-
model [6] that serves as design specification of Modeli-
caDB. [20] documents the whole UML-model that was 
used for generating most of the ModelicaDB specific 
source code that implements the front end and database.  
The core specification for designing the ModelicaDB 
UML model was the ModelicaXML DTD [11]. The 
reference work used for its documentation was [4] and 
[9]. 

The user interface displays the results of queries spe-
cific for the use-cases described in section 3 such that 
found Modelica objects can be quickly inspected, and 
further navigated, including retrieving and displaying 
the original Modelica source code from the files. Sec-
tion 5 gives an overview of the user interface. 

4.3 ModelicaDB Database 

This is a relational database that is used for processing 
declarative SQL-queries that do complex searching, 
compute the analyses, crossreferences, and checks. 

The structure of the database is given in the UML 
class diagram in Appendix A. The database schema can 
be downloaded from [20] . 

The benefit of using an SQL-database instead of navi-
gating parse trees, is that the SQL database optimizer in 
cooperation with indexes on tables can compute com-
plex queries much faster on a large library, than a tradi-

tional procedural or object-oriented program which 
navigates the parse tree structures.  

The performance benefit of a database is first noticed 
when the number of stored language objects exceed a 
certain breakpoint. 

Writing SQL-queries may be tricky at first, but usu-
ally results in little code for a complex task. With a 
reusable set of SQL-queries for various types of 
searches and analyses, a new query variant can quickly 
be written using copy and modify, while verifying that 
it produces expected results by executing it with pare-
meters that match a small but well known example 
model. 

5 ModelicaDB Functionality 
This section gives a walkthrough of ModelicaDB front-
end functionality available in its user interface. An 
UML class diagram of the user interface design is 
given in Appendix B. Tree views have a look and feel 
similar to the windows file explorer, where the folder 
icons indicate the class restriction or other meta-classes 
shown in the UML-diagram in Appendix A. When an 
object shown in a tree view is double-clicked, a form 
appears which shows the objects attribute values and 
direct relationships to other objects. 

5.1 ModelicaRepository Main Window 

This window allows the user to open a Modelica re-
pository file stored in a fast binary format. The user can 
also login to the database, load the complete repository 
for caching at the local workstation or synchronize the 
cached version with the latest changes in the database. 

The main window provides a category tree for finding 
suitable Modelica models, and open a Modelica Model 
window for these. 

Two different types of catalog windows can also be 
opened from the Modelica repository window. The 
class catalog window shows categorization trees for 
Modelica classes, that are organized according to a 
suitable standard, which allows engineers to quickly 
find relevant component models for a certain type of 
product component. Section 3.2 gave a use-case exam-
ple.  

5.2 ModelicaModel Window 

The ModelicaModel window provides navigation of all 
Modelica objects that are recursively owned by a Mod-
elicaModel object, see Appendix A. 

In ModelicaDB, a ModelicaModel object is the root of 
all packages and component models that are assembled 
within one particular ModelicaXML file. Different ver-
sions of the Modelica Standard Libraries, are for exam-
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ple rooted in different ModelicaModel objects in the 
ModelicaRepository. 

The window provides import functionality for Mode-
licaXML files, and various menu commands for search-
ing, analyzing, crossreferencing, and checking selected 
Modelica objects. 

Below the command menu, the window shows the 
package hiearchy tree which can be expanded down to 
class definitions, their components, equations and algo-
rithms.  

A separate class browser window can be opened for a 
selected class, which shows its inheritance hierarchy as 
a tree. Classes that have no superclasses are shown as 
parallel root node sorted by the identifier name. Classes 
that are extended from multiple superclasses, are rooted 
in the first declared superclass in the tree. The second 
and remaining extended superclasses are listed together 
on the level below the class with special object icon, 
followed by the subclasses that extend the class. Icon 
superclasses can optionally be filtered away, with a 
special view setting. 

A separate model browser can be opened for a class or 
component, and shows its part-of structure as a tree. 
When expanding a component node in the tree, its de-
fining class is shown on the level below, and can be 
further expanded in a similar way. 

The Modelica model window also provides access to 
various types of two dimensional diagrams, which lay 
out various structures and interconnections of 
component models in different views, and are intended 
as support for seminar discussions on library design 
and refactoring issues. These diagrams are still in their 
early design stages, and need some prototype iterations 
to become useful. 

5.3 Report Window for Result Sets 

Result sets from searches, analyses, crossreferences and 
checks, are displayed as interactive report listings in a 
separate report window with numbered rows. Each row 
is associated with one object in the Modelica database. 
If the row is double clicked further details about this 
object can be inspected in a form. A report row may 
optionally contain a short text message that further ex-
plains the reasons for including its associated object in 
the report.  

Examples of result rows, and their text messages for 
two use cases is given below. 

5.3.1 Finding Component Classes with 
Knowledge of the SI-units Their Instances 
Will Need 

This is a simple use-case that also can be executed in 
existing Modelica tools, for instance using the Search 

facility in Dymola or evaluating a pattern search ex-
pression in a MathModelica document cell. This use 
case can be a benchmark for comparing the time it 
takes the user to complete the use-case with various 
user interface implementations. 

An instance of this use-case in the ModelicaDB front-
end can be as follows: 

1) The user has opened the ModelicaModel window on 
the Modelica 2.1 standard library. In one of the  tree-
views the users selects the Modelica object that repre-
sents Modelica.SIunits.Resistance, which is defined as: 

type Resistance = Real ( 
    final quantity="Resistance", 
    final unit="Ohm", 
    min=0); 

2) The user issues the Report command from the win-
dows top menu, and gets a list of all use cases that can 
be reported in a dialog box. 

3) The user selects “Find component declarations for 
predefined types”, which is the short name for this use 
case. 

4) The ModelicaDB front-end processes the query and 
presents the result rows for the found components in 
the Report window sorted according to the component 
variable name. There they can be clicked for further 
inspection in a form, or set in the focus of one of the 
available browser window types which better shows a 
Modelica objects surrounding context. 

5.3.2 Computing Statistics of Use of Certain 
Design Patterns 

This is a more complex use-case that illustrates the 
benefit of storing large Modelica libraries in a rela-
tional database. 

The use-case instance is checking to what extent other 
designers have created component models that uses the 
simulation model of Electromotoric force Mode-
lica.Electrical.Analog.Basic.EMF in direct 
connection with a current sensor component of Mode-
lica.Electrical.Analog.Sensors.CurrentSen
sor.  

1) The user has opened the ModelicaModel window on 
the Modelica 2.1 standard library, and opened the 
package hierarchy tree down to Mode-
lica.Electrical.Analog.Basic. The users se-
lects the EMF class with a first click, and then adds the 
CurrentSensor class to the selection by shift-clicking 
it in another model browser window showing the 
Electrical.Analog package.  
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2) The user issues the Report command from the win-
dows top menu, and selects “Sum connected component 
uses.”. 

 3) The ModelicaDB front-end generates an SQL-query 
with attribute value information from the selected ob-
jects as restricting search criteria, sends the query to 
ModelicaDB and displays the result below in a Report 
window. 
0001 ModelicaModel Modelica1_5: count=1 
0002 ModelicaModel Modelica2_1: count=1 

6 SQL-Query Example 
The following example show the SQL-queriey for the 
use case described in 5.3.2.  
select mmFound.name, count(*) 
from class cl1, 
     class cl2, 
     class clFound, 
     modelicamodel mmFound, 
     component co1, 
     component co2, 
     equation eqFound, 
     parsenode pn1, 
     identifierreference ir1, 
     identifierreference ir2 
where cl1.identifier = 'EMF' 
  and cl1.lowid = co1.classifier_lowid 
  and ir1.modelicaobject_lowid = co1.lowid 
  and ir1.parsenode_lowid = pn1.lowid 
  and pn1.nodeType='equ_connect' 
  and ir2.parsenode_lowid = pn1.lowid 
  and ir2.lowid != ir1.lowid 
  and ir2.modelicaobject_lowid = co2.lowid 
  and co2.lowid != co1.lowid 
  and co2.classifier_lowid = cl2.lowid 
  and cl2.identifier = 'CurrentSensor' 
  and pn1.modelicaelement_lowid = 
eqFound.lowid 
  and eqFound.class_lowid = clFound.lowid 
  and clFound.model_lowid = mmFound.lowid 
group by mmFound.name 

The query returns the name of the found Modeli-
caModel objects, and counts the number of connect 
equations in the found model, that refers to components 
that are declared as classes with the name ‘EMF’ and 
‘CurrentSensor’. 

7 Results and Experience 
A first prototype version of ModelicaDB has been im-
plemented that verified the approach. More work is 
required to cover more advanced features of the Mode-
lica language. 

Most of the implementation work was rather strait-
forward, once the UML models in Appendix A, and 
underlying detailed specifications [20] were completed. 
The exception was the currently 408 mapping rules that 

convert the parsed ModelicaXML elements into con-
nected object structures according to the UML model in 
the ModelicaDB front end, so they can be stored in the 
database. 

The Modelica grammar and ModelicaXML structures 
contain many details and requires several passes to re-
solve all references. This also involves searching the 
name spaces according to the static and dynamic 
lookup functions (Chapter 3 in [4]), and resolving iden-
tifier references to imported classes in libraries that are 
not in the current ModelicaXML file. 

 Other issues that require more work are: 
•  ModelicaXML-to-ModelicaDB mapping rules, 

which are currently initially generated from pre-
processing of large representative ModelicaXML 
files, and then manually extended with actions that 
specify how priority sorted matching patterns of 
XML-elements are stored into objects in the Mode-
licaDB front-end. To get better verification of full 
grammar functionality coverage, the rules should be 
generated directly from the ModelicaXML DTD, or 
another formal Modelica grammar specification, but 
such an approach requires more research. 

• How to represent modifications in ModelicaDB, so 
the users SQL-query pattern searches also hit modi-
fied classes, without the need for expensive process-
ing of modification “deltas” in parse node trees. 

Some other interesting research results that came out of 
this work are 

• Identification of semantic equivalent functionality 
between the Modelica language and the industry 
standard ontology languages UML and Rosettanet 
technical Dictionary [13]. Thus it is definitely pos-
sible to reuse relevant ontologies originating from 
other modeling languages for exchanging existing 
product data with Modelica simulation model de-
velopment tasks. Other more distant future applica-
tions can be inferred from [5]. 

New technical results are: 

• Formalized Modelica simulation model interchange 
format in the form of a DTD, for Modelica 2.1. This 
DTD contains 88 language elements, and is de-
scribed in [11] and [9]. The latest version has some 
small modifications and can be downloaded from 
the reference URL at [11]. 

• Extensions of the ModelicaXML tool for packaging 
directory structures containing Modelica source 
code libraries into one XML-file. 

• UML-model of the Modelica database. 
• Implementation of a relational database for search-

ing, analysing, cross-referencing and checking of 
Modelica libraries [20]. 
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8 Future work 
Future work will be determined after members of the 
Modelica Design group and involved researchers at 
Linköping University have tested ModelicaDB proto-
types and given recommendations for future work. 

9 Conclusions 
This paper reports work on ModelicaDB – a tool that 
provides database storage and query of Modelica mod-
els. We believe that given proper integration with engi-
neering product development tools, ModelicaDB will 
be of great value on finding related product models, 
quick access through categorization, and assisting with 
a number of other related tasks.  

A first prototype of the tool has been implemented. A 
full database schema has been designed and tested 
against queries, a Modelica library parser that converts 
libraries into XML form has been implemented. The 
main remaining task is completing the set of rules that 
map ModelicaXML elements to ModelicaDB objects. 
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Abstract

Version 2.0 of the PowerTrain library will be released
in March 2005. This article presents the new release,
which is enriched by optional consideration of 3D ef-
fects, a simpler signal bus concept, new components
and example models for flexible drivelines, 4wd driv-
elines and hybrid vehicles. In addition, various new
driver models have been added.

1 Introduction

The PowerTrain library [6] is a licensed Modelica
package providing components for modelling vehicle
powertrains. It is also used for the modelling of gear-
boxes with speed and torque dependent losses. The
available components range from simple, easy to use
parts to very sophisticated components. All the com-
ponents are open and can be extended and modified by
the user.
In December 2002, version 1.0 was finished and since
then several new developments have been incorporated
into the library. In addition, new concepts in the Mod-
elica language have been applied leading to improve-
ments aimed at delivering better interoperability be-
tween the different automotive model libraries avail-
able. These are described in Section 3. In Section 4,
new fields of application are described and new driver
models are presented in Section 5.

2 Previous library status

In the past, the library provided standard and planetary
gearboxes with speed and torque dependent losses,
table-based engine and simple driver models, and
components required to model the longitudinal dy-
namics of vehicles, as well as a range of detailed exam-
ples. Version 1.0 of the library contained 45 reusable

components and 10 examples, cf. Figure 1. A num-
ber of components originally developed for the Power-
Train library have been incorporated into the Modelica
standard library (version 1.5) since they are of general
interest.

Figure 1: Components of the PowerTrain library and
some sublibraries

A very important property of the PowerTrain library is
the robust and efficient handling ofspeed and torque
dependent friction[8] as illustrated in Figure 2, which
occurs when considering gear mesh efficiency (due to
gear teeth friction) and bearing friction. This novel
type of friction handling was used in many compo-
nents in version 1.0, especially for planetary gears,
Ravigneaux gears, Lepelletier gears, extended Simp-
son gears and differential gears.
Large system models often become difficult to under-
stand as there can be a large number of signals that
need to be passed between the model’s top-level com-
ponents. To overcome this problem, the PowerTrain
library used a signal bus as shown in Figure 3. The
idea was that all the signals that have to be exchanged
by the components are included on the bus. The com-

The PowerTrain Library: New Concepts and New Fields of Application

The Modelica Association 457 Modelica 2005, March 7-8, 2005



ωA

∆τ τΑ

τΑ

(a) Dependency on speedωA

ωA = 0

∆τ

τΑ

∆τmax1, ωA > 0

∆τmin2, ωA < 0
∆τ(ωΑ=0)

(b) Dependency on torqueτA

Figure 2: Speed and torque dependent friction∆τ

ponents are then simply connected to the bus and do
not have any signal connections to other components.
Another common modelling problem is that models
with varying levels of detail are required for differ-
ent tasks. To reduce the number of different models
that need to be saved a model architecture was imple-
mented that would allow components contained in the
top-level objects to be easily swapped for other com-
patible models with different levels of detail. The abil-
ity to swap the components was realized by making
use of the replaceable model features of Modelica. As
a consequence, only one model, cf. Figure 3, is neces-
sary to model many different driveline configurations.

Figure 3: Model Driveline consists of a typical drive-
line from which all the main variants provided in the
library can be selected, e.g., three different types of de-
tailed automatic gearbox models but also user-defined
gearboxes. The components need only a single con-
nection to thesignal busin order to exchange signals
among them.

The gearbox and shaft components can be animated,
see Figure 4 for an example, which is useful for plau-
sibility checking and demonstration purposes. Ani-
mation can be switched off by a parameter. In this
case, the complete animation code is removed from a
model in order to get efficient simulation code, e.g.,
for hardware-in-the-loop simulations.
A number of control systems as shown in Figure 5
were included in the library. These are used to con-
trol the engine and transmission models. The control

Figure 4: Animation of 6-speed automatic gearbox of
Lepelletier type

systems for automatic transmissions are implemented
in such a way that they support any number of gears.
The driver interacts with these controllers by setting
the gearbox mode to be used (P, R, N, D, 1, 2, 3, . . . ).

Figure 5: Control units included in the library

Several sophisticated example models are provided
which serve as a starting point in developing user-
specific models. Especially, examples are provided for
power consumption calculation and analysis of shift
strategies based on detailed models of 4- and 6-speed
automatic gearboxes

3 New concepts and components

Several new concepts and components have been in-
corporated into version 2.0 of the PowerTrain library.
They are described in the following sections.

3.1 Incorporation of 3D effects

In [9], a concept for reproducing the three-dimensional
(3D) mechanical effects of one-dimensionally (1D)
modelled powertrains has been presented. The idea
is to model transmission elements with their mostly
1D rotating behaviour in a convenient way with 1D
model components. Due to the simplicity of the
1D equations, this results in very efficient simula-
tion code. When these 1D components are mounted
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on systems moving in 3D space using the Model-
ica.Mechanics.MultiBody [7] library a number of im-
portant effects, such as support torques and gyroscopic
torques, are missing. By including adaptor models and
a 3D inertia component it is possible to incorporate
these missing effects.
These 3D effects are incorporated in version 2.0 of
the PowerTrain library. By default, 3D effects are
turned off to get fast simulations, which is especially
important for real-time purposes [3, 10]. The 3D ef-
fects can be turned on through the use of a parameter.
This has been implemented using the new Modelica
featureconditional declarationsthat have been intro-
duced in version 2.2 of the Modelica language speci-
fication. The idea is illustrated using the example in
Listing 1 and the object diagram in Figure 6.

Listing 1: Example demonstrating conditional decla-
rations
model DampedInertia

import Modelica.Mechanics.Rotational;

extends Rotational.Interfaces.TwoFlanges;

parameter Boolean damping= true ;

Rotational.Inertia inertia;
Rotational.Damper damper(d=10) if damping;
Rotational.Fixed fixed if damping;

equation
connect (inertia.flange_a, flange_a);
connect (inertia.flange_b, flange_b);
connect (damper.flange_a, fixed.flange_b);
connect (damper.flange_b, flange_b);

end DampedInertia;

Figure 6: Object diagram of modelDampedInertia

The declaration of the componentsdamperandfixedis
dependent on the Boolean parameterdamping. These
components are instantiated only ifdampinghas the
value true. Otherwise these components are not instan-

tiated and the connect statements referring to them are
ignored. The advantage in comparison to simply set-
ting the damping coefficientd of damperto zero is that
the equations of the disabled components are removed
from the model and from the generated code, leading
to more efficient simulations.
This feature is now used to incorporate 3D effects into
the PowerTrain library. To include 3D effects into the
components, a MultiBody connector is required but for
the simple 1D case, it is desirable to remove these con-
nectors. Therefore, the base class shown in Listing 2
was implemented which is inherited by the affected
components of the PowerTrain library.

Listing 2: Base class for components with optional 3D
effects
partial model ThreeD

import Modelica.Mechanics.MultiBody;
parameter Boolean enable3D= true ;
MultiBody.Interfaces.Frame_a

frame_a if effectiveEnable3D;
protected

outer MultiBody.World world;
parameter Boolean effectiveEnable3D=

world.enable3D and enable3D;
end ThreeD;

This base class allows the 3D effects to be switched on
or off in two ways:

• The base class provides a Boolean parameteren-
able3D, which can be used to disable the 3D ef-
fects for a particular component.

• It is also possible to enable the 3D effects for
all the components within a model by use of a
single global setting. This is implemented using
the inner-outer concept of Modelica, which is al-
ready used in the MultiBody library for provid-
ing global settings (e.g. for default animation and
gravity field). These definitions are set in the in-
ner componentworld which must be added to the
top level of the model. All the components within
a model access the global settings through a re-
spective outer componentworld. The component
MultiBody.World has been extended by adding a
Boolean parameterenable3D.

Both parameters have to be true for the 3D behaviour
to be modelled. If either of them is false then the 3D
MultiBody frame_aas well as the additional equations
for modelling the 3D effects are removed and only 1D
behaviour is modelled. The described base class is
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used throughout the PowerTrain library when 3D ef-
fects might be included. By default, only 1D behav-
iour is modelled and all the code for the 3D effects is
removed during the code generation phase. By inher-
iting from this class, it is easy to enable 3D effects and
then place the complete powertrain models onto 3D
moving parts without neglecting any 3D effects.
Figure 7 shows a model which combines compo-
nents of the PowerTrain and the VehicleDynamics li-
brary [2]. The 3D effects are modelled in the pow-
ertrain. First investigations, see Figure 8, of such a
model have been performed in [5].

Figure 7: Powertrain model with 3D effects combined
with vehicle dynamics model

Figure 8: Animation of a joint powertrain and vehicle
dynamics model

3.2 Expandable connectors

The signal bus concept introduced in version 1.0 of
the PowerTrain library was not easy to extend to user-
specific needs. The recommended method for chang-
ing the signal bus was to extend from the library and
simultaneously replace the bus with a user-defined bus,
ending up in a complicated structure.
For theVehicle Model Architecturedescribed in Sec-
tion 3.4 an improved bus concept —expandable con-
nectors— has been developed and included in ver-

sion 2.2 of the Modelica language specification. In
the simplest case, an expandable connector is merely
an empty connector, see Listing 3. This connector
class can be instantiated in different components, e.g,
Source and Integrator in Listing 3, and it is possible to
connect to components in the expandable connector,
even though they are not defined in the class defini-
tion of the bus. The various connect statements are
evaluated at compile time and the union of all refer-
enced variables is used to build the actual bus connec-
tor. During translation a check is made to ensure that
every signal read from the bus is defined exactly once.

Listing 3: Example package demonstrating bus reali-
sation using anexpandable connector
package BusTest

import Modelica.Blocks;

expandable connector Bus
end Bus;

model Source
Bus bus;
Blocks.Sources.Sine sine;

equation
connect (sine.y, bus.dq);

end Source;

model Integrator
Bus bus;
Blocks.Continuous.Integrator integrator;

equation
connect (integrator.u, bus.dq);
connect (integrator.y, bus.q);

end Integrator;

model Example
Bus bus;
Source source;
Integrator integrator;

equation
connect (bus, source.bus);
connect (bus, integrator.bus);

end Example;
end BusTest;

A simulation result of modelExamplein Listing 3 is
shown in Figure 9. Although the bus connector was
defined as empty, the two contained variables can be
plotted.

The concept of expandable connectors leads to an
enormous gain in flexibility. The bus definition in the
PowerTrain library has been changed to that shown in
Listing 3. This allows a user to extend the bus in a
very convenient way: Just a connection must be drawn
between a signal port and the bus, see Figure 10. In
addition a variable name on the bus must be provided.
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Figure 9: Simulation result of modelBusTest.Example

Figure 10: Example modelPowerTrain.ControlUnits.-
ShiftSchedule

3.3 New gears with losses

In the previous version of the PowerTrain li-
brary, the two componentsGears.PlanetPlanetand
Gears.PlanetRingwere provided so that any type of
planetary gearbox could be constructed. These ele-
ments have been improved so that speed and torque
dependent losses are now taken into account. An ex-
ample is shown in Figure 11 where a planetary gear of
the Wolfrom type, with losses, is constructed using the
PlanetPlanet and PlanetRing components.

Figure 11: Object diagram of Wolfrom type planetary
gearbox with losses implemented using the improved
PlanetPlanet and PlanetRing components

The overall gear ratio and efficiency of a plan-
etary gearbox constructed using these basic ele-
ments can be calculated using the modelPower-
Train.Examples.WolfromEfficiencyshown in Fig-
ure 12, provided that the number of teeth on each of
the gearwheels and the efficiencies of each mesh (gear

teeth contact) are known.

Figure 12: Object diagram of test model to determine
gear ratio and gear efficiency between axis A and B of
the Wolfrom planetary gearbox

The gear ratio and the gear efficiency between axis A
and B are computed as follows:

• At the output (axis B) a unit torque is applied as
a load.

• At the input (axis A) a unit acceleration is applied
for 1 s. This means that the speed of axis A starts
at zero, and rises linearly to 1 rad/s during the
first 1 s of the simulation and then remains con-
stant at 1 rad/s. Since the speed is constant, the
inertias inside the gear do not have an effect for
the power distribution.

• To avoid possible problems with the non-
uniqueness of solutions of friction elements when
forcing the wheel to rotate according to the de-
sired acceleration, the forced movement of the
flange is not directly required. Instead, the ac-
celeration component drives a very stiff spring
which in turn drives the gear flange.

• The gear ratio is the ratio of the angular veloci-
ties of flange_A and flange_B at the end of the
simulation (say at 2 s).

• The gear efficiency is the ratio of the cut-torques
of flange_A and flange_B divided by the gear ra-
tio.

• The above two numbers can most easily be deter-
mined from the simulation, in Dymola, by click-
ing in the plot window onAdvancedand then set-
ting t = 2 in the input fieldTime. This displays the
values of all variables in the variable browser at
t = 2.
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Figure 13: Screenshot of Dymola showing example model on Vehicle Model Architecture basis

It would not be possible to determine these values us-
ing a static model where the gear shafts are not ro-
tating. This is because the friction between the teeth
would be in the stuck mode and the friction torques
are thencomputed implicitly from the requirement
that the shaft accelerations are zero. This is correctly
described by the Modelica model and therefore does
not allow the efficiency to be calculated using a static
model.

3.4 Vehicle Model Architecture

Within Ford Motor Company’s Powertrain Research
Department an architecture for modelling of vehicles
has been developed and reimplemented in Modelica.
The resulting Modelica package was presented in [11]
and is freely redistributable in source code form. In
order to promote interoperability with other libraries
in the automotive area, this architecture will be used in
the PowerTrain library. An example model following
this architecture is shown in Figure 13.

4 New fields of application

Version 2.0 of the PowerTrain library has been ex-
tended by including a wider range of driver models
and new components in a number of new application
areas. Example models demonstrating the usage of the
new components have also been included in the library
and these are described below.

4.1 Flexible driveline models

An area of increasing interest is the modelling of vi-
brations and oscillatory responses within the whole
powertrain. These effects are required when attempt-
ing to simulate driveability, shift quality or other sim-
ilar effects that are likely to introduce oscillatory
torques into the powertrain system. The study of
these effects has required the development of addi-
tional driveline component models that include addi-
tional effects such as stiffness, damping and backlash.
The first key component required was the flexible
shaft, which introduces the ability to model the twist-
ing of a shaft, such as the propshaft or driveshafts. In
it’s simplest form the flexible shaft consists of two ro-
tational inertias connected by a linear spring-damper.
In this form the shaft can be used to model low fre-
quency effects such as shuffle, which occurs in the
2..10 Hz range.
The flexible shaft can easily be adjusted to model
higher frequency effects as it can contain a variable
number of spring-dampers and inertia components.
This is possible through the use of a parametern to
specify how many spring-damper blocks the flexible
shaft model should contain. The effective stiffness
and damping of each spring-damper block is adjusted
based on the parametern. The flexible shaft contains
n+ 1 inertias and the total inertia of the shaft is evenly
distributed across these. The implementation of the
flexible shaft is shown in Listing 4.
When developing a model to simulate driveability or
shift quality it is important to include the reaction of
the powertrain within the vehicle. As the entire pow-

C. Schweiger, M. Dempsey, M. Otter

The Modelica Association 462 Modelica 2005, March 7-8, 2005



Listing 4: Flexible shaft implementation
model FlexibleShaft

extends Modelica.Mechanics.Rotational.Interfaces.TwoFlanges;

parameter PowerTrain.Types.TorsionalStiffness c=1 "Stiffness";
parameter PowerTrain.Types.TorsionalDamping d=0 "Damping";
parameter Modelica.SIunits.Inertia J=1 "Inertia";
parameter Integer n(min=1) = 1 "Number of spring-dampers";

Modelica.Mechanics.Rotational.Inertia inertia[n + 1]( each J=J/(n + 1));
Modelica.Mechanics.Rotational.SpringDamper springDamper[n]( each c=c * n, each d=d);

equation
connect (flange_a, inertia[1].flange_a);
for i in 1:n loop

connect (springDamper[i].flange_a, inertia[i].flange_b);
connect (springDamper[i].flange_b, inertia[i + 1].flange_a);

end for ;
connect (inertia[n + 1].flange_b, flange_b);

end FlexibleShaft;

ertrain is suspended within the vehicle by a number of
mounts it can move within the vehicle and have a sig-
nificant impact on the overall vehicle response. Pre-
viously the PowerTrain library did not consider these
effects and a number of components have been devel-
oped specifically for this task.
Within the PowerTrain library an example has been in-
cluded showing how to model the reaction of a dif-
ferential on its mounts for a rear-wheel drive vehi-
cle. In this example the driveline is modelled using
the 1D flexible shaft for the propshaft and driveshafts,
the differential is modelled using MultiBody compo-
nents and is connected to the appropriate shafts via the
Shaft1D_MBS, see Figure 14.
The Shaft1D_MBS model is used to couple 1D rotat-
ing components directly to components in the Multi-
Body library. This component relates the rotational
speed and torque in the 1D connector to the speed and
torque on the specified axis in the MultiBody connec-
tor.
The differential component is modelled using the
MultiBody library and reacts the torques in the driv-
eline onto the differential mount points. The actual
differential mounts form part of the chassis subsystem
and are discussed below. The differential includes the
rotating inertias of the various internal components,
backlash referred to the diff input and the mass, inertia
and geometry of the complete differential assembly.
The type of mounts typically used to suspend the pow-
ertrain within the vehicle are designed to react forces
in the x, y and z directions and they leave the power-
train free to rotate. These have been modelled using a
series of three ActuatedPrismatic joints that are used
to react the forces applied to the mount in three direc-
tions. A spherical joint is used at the side of the mount

Figure 14: Driveline model that includes the move-
ment of the differential on its mounts

that should be connected to the driveline component
being suspended.
A number of tyre slip models have been included in
the new version of the PowerTrain library. The avail-
able slip models include a simple linear slip model, a
Pacejka slip model and the Rill slip model. These have
been implemented for longitudinal slip only and con-
sider the vertical load acting on the tyre.

4.2 4wd drivelines

A growing number of vehicles are being developed
with all-wheel drive, e.g. sports utility vehicles (SUV)
and commercial vehicles. There are a wide-range of
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Figure 15: Some of the differential models available in the PowerTrain library. Clockwise from the top-left,
conventional differential, simple active differential, torque vectoring differential, viscous differential

possible ways to deliver an all-wheel drive vehicle and
components have been included to enable the mod-
elling of the most common types and some of the most
advanced. Available models include simple open dif-
ferentials, viscous differentials, and two types of active
differential. The various differential models have all
been implemented as 1D rotational systems with only
the conventional differential described previously us-
ing a MultiBody approach.

All the differential models provided are based around
the use of an epicyclic differential unit. The differ-
ent configurations of active and passive locking mech-
anisms are then placed around this core epicyclic unit
and work in different ways to control the behaviour of
the differential. Figure 15 shows four of the differen-

tial models available.
For the simple active differential and the torque vec-
toring differential control systems have also been pro-
vided. An example of a four-wheel drive vehicle, that
uses three of these simple active differentials, has been
added to the library. In this case, the control system
has been designed to control each differential sepa-
rately with the sole objective being to maximise trac-
tion. Each differential controller looks at the output
shaft speeds from its differential and acts to reduce the
difference in speed. It should be possible for some slip
to occur between the shafts to allow for cornering and
this can be defined through the controller parameters.
In addition to the range of differential models, a power
take-off (PTO) style transfer box has been provided. In
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some four wheel drive applications this type of transfer
box is used instead of a centre differential. The key
difference between using a differential and a PTO style
transfer box is that the ratio between the input and each
output shaft is fixed in the PTO style box whereas this
ratio can vary when a differential is used.

4.3 Hybrid vehicles

With several automotive manufacturers and suppliers
working on hybrid vehicles, there was a necessity to
provide corresponding models in order to support con-
cept studies in this area. Models have been included
for batteries, motors and the associated controllers to
meet this need.
The objective is to deliver models suitable for concept
study work so that minimal data is required to develop
a working model of a hybrid concept and to test out
the functionality. Two hybrid vehicle examples have
been included, one based on a vehicle using an Inte-
grated Starter-Generator (ISG) and another based on a
series-parallel hybrid style vehicle similar to theToy-
ota Prius. Both examples have been configured to run
drive cycle simulations.
The battery model included in the PowerTrain library
is based on the Saft capacitance model, which was
originally developed in P-Spice [4] and has also been
used in the Advisor [1] simulation tool. Figure 16
shows the circuit diagram used for the battery model.
CapacitorCb is very large and represents the ability of
the battery to store charge chemically, the capacitorCc
is small and represents the surface effects of a spiral-
wound cell. The three resistances represent the termi-
nal resistance (Rt), end resistance (Re) and capacitor
resistance (Rc).

Figure 16: Circuit diagram of the battery model

The power electronics required to transfer energy from
the battery to the electric motor have been simplified
so that the simulation performance is maintained. An
accurate model of the power electronics would require
a large number of high frequency effects to be mod-

elled and this would limit the suitability of the library
for concept studies.

5 Other enhancements

This section describes the driver models, which have
been added to the library, and changes concerning ta-
bles.

5.1 New driver models

The range of driver models provided with the Pow-
erTrain library has been expanded to cover a wider
range of tests. In addition to the existing cycle driver
there are now driver models designed to carry out per-
formance tests and driveability tests. There are also
variants for use with both manual and automatic gear-
boxes.
The cycle driver models are based around the use of a
PI controller that actuates either the brake or accelera-
tor pedal to control the vehicle speed so that it follows
a defined speed-time profile. A number of drive cycles
are included by default such as the NEDC, EPA City
and Highway cycles. It is possible to define your own
additional drive cycles for use with the driver model.
By varying the PI gains, the behaviour of the driver
can be altered allowing the driver model to be tuned
to match a range of different driving styles. The ver-
sion of the cycle driver used with manual gearboxes
also controls the clutch pedal and gear lever. The shift
points are usually defined in the drive cycle to occur
at particular points in time and driver starts to change
gear at these points.
The driveability driver models are used to perform tip-
in and tip-out tests in fixed gears, or fixed gearbox
mode in the case of automatic transmissions. The tests
start with the driver controlling the vehicle speed to an
initial value and then accelerating and decelerating the
vehicle between defined speeds using only the throttle.
The brakes will not be used to decelerate the vehicle.
For manual gearbox vehicles it is normal to define the
tip-in and tip-out speeds as engine speeds. Due to the
effect of the torque converter, it is more usual to de-
fine the tip-in and tip-out speeds using vehicle speed
for automatic gearbox equipped vehicles.
The performance driver is used to perform standing
start acceleration tests. The version used with auto-
matic gearboxes can perform both an idle start or stall
start acceleration test. In both versions the accelera-
tor pedal position for the acceleration test can be de-
fined so it is possible to assess the part-throttle accel-
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eration performance as well as the wide open throt-
tle (WOT) performance. The version used with man-
ual gearboxes will change gear when a defined engine
speed is reached. If in-gear acceleration times are re-
quired the driveability driver model should be used and
the tip-in and tip-out speeds set to be the minimum and
maximum speeds for the given gear.

5.2 Replaceable tables

All tables in the library have now been declared as re-
placeable. This change was made as many customers
do not often have data in a form that is compatible with
the tables in the Modelica standard library. Instead,
they are forced to use their own, proprietary data for-
mat and their own table implementations. It was dif-
ficult for them to use these in combination with the
PowerTrain library in the past.

6 Conclusions and Outlook

Version 2.0 of the PowerTrain library offers several
new features, which open many new applications.
New Modelica language elements allow a clean im-
plementation of the new features and make it easier for
users to adapt the library to their own specific needs.
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Development of a Modelica Heavy Vehicle Modeling Library
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Abstract

Physical modeling for simulation of fuel consumption
and other dynamic behavior in heavy vehicles can be
useful in many areas from concept design to sales sup-
port. Similar models of vehicle subsystems are needed
in many applications, it would thus be beneficial to
have access to a library of reusable vehicle subsys-
tem and component models to avoid repeated imple-
mentation. A solution based on a model architecture
and a supporting Modelica library for structured stor-
age of models and components is proposed. The work
has been focused on promoting modeling practices en-
abling reuse, but we have also tried to maintain as
much freedom as possible for the modeler.

1 Introduction

There exist a number of different proposals for vehi-
cle modeling architectures in Modelica (for example
[5] and [2]. The aim of this project has been to cre-
ate a complete system with both a hierarchical model
structure defining the interfaces between subsystems
on several levels, and a model library. The library is
used to store sub-system interfaces along with avail-
able implementations and required supporting compo-
nents such as connector definitions. The system is in-
tended to be used for various research and develop-
ment efforts within Scania CV AB. Since development
projects may have very different aims, and be focused
on different subsystems, it is unlikely that the library
will provide a final model for the task. Hopefully, ex-
isting versions of most sub-systems can be used to-
gether with new models specific to the current prob-
lem. A key consideration in the work has been to build
a system which is suitable for use by both experienced
and novice modelers. The project is rather applied in
its nature, and the article is intended to describe our
experiences.

2 Architecture Concerns

2.1 Multi-domain Library

One much hailed property of the Modelica language
is its multi-domain modeling capability. Components
from model libraries describing different domains can
be used together in the same model. However, the
majority of available libraries are focused on one do-
main. In most cases this is a natural partitioning. In
this project the common denominator has not been the
engineering domain, but rather the system to be de-
scribed. The purpose of the library is to store com-
ponent models, defined through the partitioning of the
described system into physical sub-systems.

A design goal has been to keep all available mod-
els in one central location, easily accessible to every-
one. Existing models use an in-house media library to
represent air- and coolant flows. This domain specific
library is thus also needed by users of the new model
library. It was decided to place it within the new li-
brary. This issue is further discussed in section 4.2.3

Figure 1: Heavy truck model in DymolaTM .
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2.2 Heavy Vehicles

Most existing vehicle model libraries are designed pri-
marily for cars. Heavy vehicles have a number of sub-
systems which are not present in passenger cars. Par-
ticularly the engine/transmission system includes de-
vices like an exhaust brake and possibly a retarder.
Further, the cooling system also has a more prominent
role than in cars, and coolant is often used both by the
engine and the transmission.

2.3 Model Variants

Since this library is designed to be used in many dif-
ferent projects, there is a need to handle different vari-
ants of component models. Supporting different model
variants, while attempting to preserve compatibility
and avoid hidden interdependences has been one of
the greatest challenges in this work. In some cases it
will be necessary to create an entirely new model to be
used instead of one already in the library, but substan-
tial changes in behavior can be achieved without going
that far. The library supports three ways of changing
model behavior, listed in the order they should be con-
sidered.

Some models depend on data found in external pa-
rameter files or lookup tables. Theses can easily be
changed at run-time without any need to modify or re-
compile the actual model. When models are added,
this approach should be considered for any data that
needs to be changed frequently. Recompilation be-
tween simulation runs is not only time consuming, it
also assumes the presence of a licensed installation of
the compiler.

Numerical parameters which are not set through
data files can still be influenced at run-time. The simu-
lation reads an initial state file, where values different
from the default ones can be specified for real, integer
and Boolean model parameters. This solution requires
less complex source code than the data file approach,
and is advantageous when only a few parameters need
to be accessible. This approach would mainly be use-
ful in creating an end-user application where the user
should for example be allowed to choose between dif-
ferent tire models in an external GUI.

When a new model structure is needed, and even
redeclaration of submodels is not enough, an entirely
new model should be created. To make the new model
usable in other projects, the existing base classes
should be used to define the interfaces. If it is neces-
sary, additional base classes can be created to supply
extra connectors. The new model should of course be

documented and made as flexible as possible with pa-
rameters and replaceable components used appropri-
ately.

We have designed the library with fundamental
base classes as blueprints for the physical subsystems
and their major components. Only the interfaces re-
quired for simple implementations of the models are
included. Additional base classes can be used to add
more connectors if required by more advanced mod-
els. We have opted not to define a completely fixed
architecture where all connections are always identi-
cal, but rather a supporting framework for developers
intending to create reusable models. See also section
3.2.

2.4 Signaling Bus

A key issue in an architecture which contains both
physical plant and controller models is the handling
of electrical signals. The controllers need to exchange
data among themselves and they need to exchange
signals with sensors and actuators. For our applica-
tions the actual signaling behavior is not that impor-
tant, an ideal communications model is sufficient. For
the communication between a plant and its controller,
standard library inports and outports are used. The
communication between the controllers was a tougher
case. Two implementations of the same controller may
not have the same signaling needs, thus it must be pos-
sible to change the set of signals sent between control
units.

Separate input and output ports for all links be-
tween control units in the vehicle would create an un-
decipherable graphical mess. Some type of signal-
ing bus is needed. Both the standard library bus con-
nectors and the type of bus used in the vehicle mod-
eling architecture proposal by Tiller et. al [5] were
evaluated. We did not find enough information about
the inter-controller communication in the Tiller paper
to implement that system. Our main problem was
to find a way of having compatible connectors in all
controllers, without modifying the code of every con-
troller when a signal was added to the bus. The Mod-
elica standard library bus does not solve that problem,
since it requires all signals to be declared in the con-
nector. Eventually we chose a simpler solution based
on a common connector called ”CAN” with a replace-
able variable, called ”protocol”, which contains all the
signals. The protocol variable can easily be redeclared
into a type which contains exactly the signals broad-
cast on the bus in a particular model. Different imple-
mentations of the CAN connector are used for differ-
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ent signal buses in the vehicle.

Most of our control units are implemented through
external function calls, thus the drawback of having no
convenient graphical way of converting a signal from
inport/outport to bus format is minor. See listing 4 for
an example of how the electronic control unit models
use the CAN bus. The connected control unit model is
shown in figure 2.

Listing 1: The CAN connector base class.

partial connector CANBase
"Basic connector for modelling CAN
comunincation"
replaceable Protocols.Interfaces

.ProtocolBase protocol
"Protocol to be used" ;

end CANBase;

Listing 2: Implementation of the general CAN bus
connector.

connector CAN_s
"General control system

communication bus connector"
extends CANBase;
annotation (...);

end CAN_s;

Listing 3: A part of the definition of a CAN protocol.

record ProtocolStd
extends Interfaces.ProtocolBase;
Real EngineSpeed

"Speed of engine in rpm" ;
Real EngineTemp

"Engine temperature in deg C" ;
...

end ProtocolStd;

Listing 4: Sample usage of the CAN bus in the engine
control unit.

...
/ * I/O mapping (sensors/actuators) * /
engineSpeed = inport[ENGINE_SPEED];
outport[FUELING] = fueling;
outport[EXHAUST_BRAKE_ON] =

CAN.protocol.ReqExhaustBrake;
...
/ * Write CAN values * /
CAN.protocol.EngineSpeed = engineSpeed;
CAN.protocol.EngineTemp = engineTemp;
CAN.protocol.ActualEngineTorque =

inport[ACTUAL_ENGINE_TORQUE];
CAN.protocol.ActualExhaustBrakeTorque =

inport[EXHAUST_BRAKE_TORQUE];
...

Figure 2: Engine management system electronic con-
trol unit.

Figure 3: Directory structure for non-model files.
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3 Usability Concerns

3.1 Non-model Files

The model library itself is relatively easy to distrib-
ute to the users. It is sufficient to copy the directory
structure containing all the models to an appropriate
place in the file system and load the library into Dy-
mola. To get a nice working environment, where all
external files are found by the system and the library is
included in the Dymola GUI, takes a little more effort.
In addition to the library directory tree our completed
system consists of a directory structure on a higher
level in the file system. This tree contains the model
library itself and all external function source code and
model data files for the. A work directory for the user
is also provided. Data file paths and external source
code links (through include annotations in functions)
in the model library are given with relative paths, mak-
ing sure that the files are found if the work directory is
used.

If the user starts Dymola with the script provided
with the library, an included configuration file is used
to make sure that the heavy vehicle library automati-
cally is included in the model browser.

3.2 Top Level Model

It is anticipated that a significant part of the work done
with the library will be carried out in project form by
people with little or no previous Modelica and/or mod-
eling experience. As a result overly complicated and
abstract language constructs have been avoided. The
suggested method of putting together a vehicle for a
particular task is to select those sub-system models
which are most suited and add them to a new model.
A ”master” model with most components declared as
replaceable would enable new versions to be created
with fewer lines of code, but the added abstraction has
been deemed to be more difficult to handle than the
extra coding. Future enhanced modeling tools may re-
verse this decision, but today we think that the ability
for the novice modeler to fully understand his or her
source code is warrants some code duplication.

The master model approach is best suited when it
is anticipated that all implementations of a sub-system
will be absolutely compatible. While this is a nice as-
sumption we don’t think that it will be valid in our
case. The range of intended applications for the vehi-
cle library is so broad that some modifications also to
the structure and interfaces certain components will be
necessary in many projects. Real-time simulation of

components as parts in simulink models is one exam-
ple where non-standard shortcuts have been very effi-
cient. Strict adherence to the interfaces is certainly op-
timal from a reusability perspective, but we have not
yet found a set of interfaces which have been practical
to use in every application. Further work may bring us
ever closer to that goal.

3.3 Concurrent development

Traditionally one of the main obstacles to reuse of
Modelica models created in previous projects has been
that new functionality has been spread through many
subsystems, rather than contained in one. When de-
velopers in two projects have enhanced different sub-
systems they also have modified many others in the
process, making it difficult to incorporate enhanced
components from different projects in the same model.
Hopefully, the new library will promote solutions
where components to a higher degree are created as
self contained units.

A version control repository is used to make sure
that two different groups do not accidentally make si-
multaneous conflicting changes. If only a particular
sub-tree is checked out with write privileges the devel-
oper is encouraged to find solutions within that sub-
system. The version control repository also supports
named versions of the library to be created, which is
useful to make sure that the exact model versions used
in a project or application will always be available.
The model library code is managed and provided to
users in the same way as other source code in the orga-
nization. Users across various departments and groups
can thus use a code management system which they
are already accustomed to.

3.4 Choice Annotations

A number of Modelica entities can have choice anno-
tations, which allow the model user to select appropri-
ate parameter values easily in a modeling GUI. This
feature has been used in many places where the pa-
rameter is not a physical quantity. For examples file
name parameters used to specify data files are declared
to be of a certain filetype. Each filetype has an associ-
ated list of suggested file names. In figure 4 the drop-
down box for retarder model selection is shown.

The signal bus protocol used throughout the vehi-
cle is determined by the type of a replaceable variable.
The final setting of the type is propagated to the vehi-
cle level, making it easy to change the type of every
bus connector. Available protocols are presented in a
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Figure 4: The result of a choice annotation to aid in
the selection of a retarder model

list, but it is still up to the user to choose one which
contains exactly the set of signals that is being broad-
cast by the currently used set of control units.

4 Model and Library Structure

Figure 5: Top level packages in the vehicle library

4.1 Hierarchical levels

The created vehicle model structure defines multiple
levels. The vehicle is built from physical components
which also have a defined substructure. The support-
ing library mimics that same substructure. For ex-
ample control units for subsystems are included in

the subsystems modules themselves, to reduce the re-
quired number of components and connections in the
top level model. In most cases one controller model
and one or more interconnected plant models make up
a subsystem. The top level subsystems cover the same
areas as corresponding groups in the research and de-
velopment organization. Local development of models
by experts in various fields is thus simplified.

4.2 Library Structure

4.2.1 Color Coding

The vehicle library has been created with the same ba-
sic structure and package naming conventions as the
Modelica standard library. Additionally the various
package types have been color coded to make navi-
gation in the package tree easier. Packages contain-
ing interfaces, sensors, icons and examples are made
green. Data records are kept in red subpackages, and
test models in yellow. Ordinary packages are a slightly
darker shade of blue than the standard package icon.

4.2.2 Packages

Figure 6: The ”axle” package with subpackages in the
library browser.

Each physical subsystem has its own top level
package for all its components, interfaces, etc. Ad-
ditionally there are packages for examples, interfaces,
icons, examples and tests on the top level. For an
example of a top-level package see figure 6. Com-
plete vehicle models, which can be used as compo-
nents together with environment models from the am-
bient package, have a category of their own. To avoid a
very deep tree structure these various types have been
put at the same level in the hierarchy.
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4.2.3 The Common Sub-tree

There are a number of models required for the model-
ing of a complete vehicle which do not clearly belong
in any particular subsystem. Base classes for elec-
tronic control units, the signal bus connectors and the
media library used for coolant and air modeling are a
few examples. These functions are kept under a sub-
tree called ”Common”. While it may seem more nat-
ural to create a separate library at least for the media
components we prioritized keeping the entire model li-
brary self contained. The only external dependencies
are the Modelica Standard Library and accompanying
ModelicaAdditions library.

4.3 Physical Subsystems

The physical subsystems with the interfaces described
are used in the current models. As it is impossible to
foresee exactly what applications the vehicle library
will be used for in the future, unused connectors are
not included on speculation. More connectors are
likely to be added in the future. To preserve current
base classes this can be done through additional base
classes as described in section 2.3.

4.3.1 Ambient

Figure 7: A vehicle model with the ambient compo-
nent.

The ambient category is used to represents the en-
vironment around the vehicle. Models of this type
supply data about surrounding temperature, air pres-
sure and other environment constants. These models
are also used to keep track of the road parameters such
as slope and speed limit. Through the Modelica in-
ner/outer construct one ambient component is acces-
sible to all the other components in a model, which
makes this the ideal place for any data that needs to
be globally shared. Each model should have exactly
one ambient component. The ambient interface has

one input connector which is used to communicate the
position of the vehicle. A vehicle and ambient combi-
nation can be seen in figure 7.

4.3.2 Auxiliaries

Figure 8: A model representing the auxiliary units.

Auxiliaries are components like the cooling fan,
AC compressor, electric generator etc. These are gen-
erally mounted somewhere on the front side of the
engine, and traditionally obtain their operating power
through a mechanical link. It is recommended that any
generator model is placed among the auxiliaries, and
not in the electrical system. Separate models for each
auxiliary unit are placed within this container. Sub-
trees in the library contain models related to the vari-
ous units. The auxiliaries are connected to the electri-
cal system and the engine, an implementation can be
seen in figure 8.

4.3.3 Axle

Figure 9: Truck model with full trailer and four axles.
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The axle models contain tires, brake actuators and
a final gear for driven axles. They are always con-
nected to the chassis and the brake CAN bus. The
axles generate a retardation force due to the rolling re-
sistance in the wheels, and possibly due to the wheel
brakes. Driven axles have an additional connector
which allows the power train to transfer torque to the
axle, and propel the vehicle. The number of axles in a
vehicle configuration varies; it has to match the num-
ber of axle connectors on the chassis and all trailer
models used. The vehicle shown in figure 9 thus re-
quires four axles. An air interface could be added to
simulate air-powered brake actuators.

4.3.4 Brake System

The brake system is a container for the brake man-
agement system and any related plants except for the
brake actuator, which are represented at their physi-
cal location in the axle modules. The brake system is
attached to the vehicle signaling bus and the brake sig-
naling bus. Additional connections are likely in future
more developed brake system models.

4.3.5 Chassis

The chassis models represent the frame of the truck.
Cargo, axles and trailers attach to the chassis. The base
class has the connectors for wheel axles and a draw
bar. Derived classes add either a fifth-wheel (where
the semi-trailer is attached) for tractor configurations,
or a cargo attachment point for rigid trucks.

4.3.6 Driver

The driver model is responsible for overall control of
the vehicle. Decisions to accelerate or decelerate de-
pending on the surroundings are made by the driver.
Depending on the vehicle, different control signals
may be required. A manual transmission requires the
driver to select an appropriate gear, while the GMS
handles that duty for an automatic or automated man-
ual transmission. In cruise control mode, the EMS
controls the fueling, in driver demand mode the throt-
tle is controlled directly by the driver. The driver logic
depends on the control units used in other parts of the
vehicle. The driver interface is very simple with only
one connector, which is used to attach it to the CAN
bus.

To control a vehicle from an external model (e.g. in
Simulink) input and output ports are needed. In such
a case input and output ports could be added to the

driver interface. The driver model would then take the
commands received from the external input and con-
vert them to appropriate CAN signal values. The re-
sulting action of the truck would be sent back through
the output port.

4.3.7 Electrical System

The electrical system is included to enable studies of
electrical energy flows. It could for instance be used to
study battery operating conditions or effects of using
electrically powered accessories instead of mechani-
cally powered ones. The electrical system package
is primarily intended for components without a simu-
lated direct mechanical connection to the vehicle. The
interface specifies a single special connector, see sec-
tion 4.4

4.3.8 Engine

Figure 10: Engine with cooling system.

The engine (figure 10) is one of the larger sub-
systems, particularly when cooling system behavior is
taken into account. The engine model contains sub-
models for both the power plant itself and any radi-
ators and other cooling system components found in
close proximity to it. The power plant model often
includes an exhaust brake. The engine connectors re-
quired differ depending on the aspects considered. The
base interface defines rotational mechanical connec-
tions to the auxiliaries and the transmission. The en-
gine is connected to the vehicle signaling bus and the
electrical system. An additional base class provides
coolant hoses which allow coolant to flow in a circuit
through other vehicle systems.
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4.3.9 Trailer

The trailer is in many ways rather similar to the chas-
sis. They are both rigid bodies represented as point
masses with forces acting on them through transla-
tional connectors. The base model is a semi-trailer
which can be attached to the back of a tractor. Through
the use of a dolly, the semi-trailer gets a second axle
and can be used as an independent full-trailer, this
configuration is shown in figure 9. A trailer connects
to two axles, a towing vehicle and possibly another
trailer. A semi-trailer connects to one axle, a tractor or
dolly, and can be used to pull a trailer.

4.3.10 Transmission

Figure 11: Transmission model with coolant flow.

The transmission includes a gearbox, which can be
of any type. There is also a gear management system
which has to be compatible with the gearbox used. A
retarder, a type of hydraulic brake which acts on the
drive shaft, is often included as well. The retarder gen-
erates a lot of heat, and a complete cooling system rep-
resentation needs a connection to it. A transmission
model with coolant flow is shown in figure 11. The
Transmission has rotational mechanical connections to
the engine and any driven axles. It is also connected
to the vehicle signaling bus. An optional base class
provides coolant hoses.

4.4 Special Connectors

Whenever it has been possible standard library con-
nectors have been used in the models. In some places

however we have seen the need to use special connec-
tors which can carry all the information of a certain
type between two components with only one connect
statement. This has been the case for the signal bus
and the electrical connectors. The electrical connec-
tor contains two electrical pins. All components con-
nected to the electrical bus are connected in parallel,
and adapters are used between the standard electrical
pin connectors and our electrical connector. In the fu-
ture it is envisioned that the electrical system model
may contain multiple circuits and voltage levels in the
electrical connector, making the advantages of using it
higher. The single voltage electrical bus connector is
shown in listing 5.

Listing 5: Electrical bus connector with single voltage
level.
connector ElectricalSingleVoltage

"Connector class for a single voltage
electrical system"

extends Interfaces.ElectricalBase;

Modelica.Electrical.Analog.Interfaces
.PositivePin p;

Modelica.Electrical.Analog.Interfaces
.negativePin n;

end ElectricalSingleVoltage;

The signal bus connector (also described in section
2.4) allows for relatively simple transfer of many (cur-
rently around 20) control signals between the various
electronic control units in the vehicle. There is a sec-
ond signal bus, using another identical connector ex-
cept for the color and protocol, used to connect the
brake system to the actuators on the axles. The media
library used for the cooling system contains general
hose connectors which can carry the simulated media.

5 Sample Vehicle Models

To validate the new architecture two slightly differ-
ent vehicle models were used in the new framework.
Both models share the same overall structure, but one
version contains a thermodynamic cooling system rep-
resentation (this model is seen in figure 1), while the
other has no cooling system model at all (figure 12).
The two models require different controllers and plant
models for the engine and transmission. These are the
systems which are affected by the inclusion of coolant
flow. All other controllers and plant models are iden-
tical in the two versions.

The two sample models illustrate the idea of this
vehicle model architecture very well. It isn’t possi-
ble to generate the two versions from the same ready-
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Figure 12: Heavy truck model without any cooling
system.

made template only through redeclare statements. On
the other hand, the same base classes and connectors
are used for all common interconnects. In this way
vastly differing projects can still use some of the same
components. We hope that this middle ground be-
tween a completely rigid architecture and a collection
of independently created models with some similari-
ties but many differences will prove useful.

In this particular case it would of course be rather
easy to create a common vehicle model, which through
replaceable subsystems could be used to generate ei-
ther model. However, we do not know enough today
about what will be required tomorrow to incorporate
all possible variations. Thus we have chosen to let the
modelers of the next project and the one after that de-
cide how to best handle their particular challenges.

The vehicle model with cooling system represen-
tation give rise to a non-linear equation system which
needs to be solved iteratively at every time step. This
makes simulation very slow, a performance hit of
about 100 times compared to the simpler model was
observed. The vehicle without a cooling system can be
simulated four hundred times faster than real time on
a standard laptop (PentiumTMM, 1.6 GHz, 1 Gb ram).
The performance difference alone is ample justifica-
tion to have two vehicle model variants.

6 Limitations

During our work we have faced many compatibility
issues which cannot be directly attributed to model de-

sign. Phenomena may in themselves lead to varoius
solver requirements (such as the cooling system case).
Existing PID controllers in external code often have
strict sample time needs. Each of these special con-
siderations needs to be explicitly stated in documen-
tation. Documenting every important aspect is a real
challenge.

Novice users of Modelica and Dymola often have
trouble deciphering the error messages that are output.
A nearby expert who can guide through the minefield
of rookie mistakes is an invaluable asset for anyone
new to the field. Similarly it is anticipated that our
library will require some previous knowledge of the
tools, despite our intentions to make it simple to use.

7 Conclusion

Our proposed library imposes less rigid structural con-
trol than most other vehicle architectures. Generally it
does not include connector which are not used. An ef-
fort has been made at creating something which works
well in the local situation. The system is not primarily
intended for exchange of models with external devel-
opers. Attention has also been given to a number of
practical issues related to working (updating, installing
etc.) with the system.

There are many similarities between this work and
the vehicle model architecture (VMA) project [6].
With some modifications many of our components
could be used in VMA utilising appropriate wrappers.
One key difference is the localisation of control units.
We have chosen to place them inside the subsystems
they control, while the VMA places them at the top
level. The future development of the VMA project will
be observed with great interest.

8 Future Work

We foresee a continued study of the actual use of the
new models to find areas where the architecture can be
improved. Inclusion of a wider range of component
models is also a likely continuation. More documen-
tation and tutorials to aid users would be beneficial.

The work described was carried out with Dymola
5.1b, but the project has since been upgraded to ver-
sion 5.3b and Modelica Standard Library 2.1. Cer-
tain components have also found use in real-time
hardware-in-the loop simulations using Simulink.

The recently proposed relaxations of the connector
equivalency requirements in Modelica opens up inter-
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esting options for improved handling of the CAN com-
munication.
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Linköping, Sweden: Licentiate thesis, Dept.
of Electrical Engineering, Link̈oping University,
2001.

[5] Tiller M., Bowles P., and Dempsey M. Develop-
ment of a vehicle model architecture in Model-
ica.Proceedings of the 3rd International Model-
ica Conference, pages 75–85. The Modelica As-
sociation, 2003.

[6] Vehicle Model Architecture, de-
veloped at Ford Motor Company,

http://www.modelica.org/projects/vma. 2005-
01-31.

P. Bengtsson, H. Jansson, N. Pettersson, T. Sandberg

The Modelica Association 476 Modelica 2005, March 7-8, 2005



Evaluation of Motor and Battery Requirements for Hybrid-Electric 
Powertrains during Cranking 

Michael M. Tiller 
Research and Advanced Engineering, Ford Motor Company 

mtiller@ford.com 

Abstract 

Hybrid electric vehicles (HEVs) are an emerg-
ing technology for improving fuel economy and 
emissions.  However, hybrid powertrains are expen-
sive to manufacture because of the sophisticated 
electronics required.  In particular, the motor and 
battery requirements must be carefully considered 
because of the cost and weight of these components. 

For this reason, it is important to conduct an up-
front analysis to determine the minimum require-
ments for the motor and battery [1].  Such an analy-
sis ensures that the requirements for the vehicle (ac-
celeration, fuel economy, etc) can be met while mini-
mizing the incremental cost to the consumer. 

This paper describes the development of engine 
and transmission models used to perform such an 
analysis for a research vehicle project.  The model 
must take into account several important effects such 
as crankshaft position, engine damper design, motor 
design, control strategies and so on.  The multi-
domain modeling capabilities of Modelica allow us 
to formulate a model with which all these important 
effects can be captured [2]. 

This paper will show that such a model is not 
only capable of helping hardware designers evaluate 
the performance of different electrical components 
but also allows experimentation with various control 
strategies for controlling the launch clutch and drive 
motor.  

 

Keywords: System engineering, hybrid electric, 
VMA 

1 System Engineering Process 

Development of a complete vehicle is a daunt-
ing task.  There are numerous regulations and con-
straints on the development process.  In addition, 
while the attributes of the vehicle as a whole (per-
formance, fuel economy, emissions, etc) may be 

specified, there is a complex relationship between 
the design specifications for individual components 
and the performance of the entire vehicle system. 

For this reason, system engineering principles 
are used to formalize the design process [3].  As part 
of this process, requirements are identified during the 
early stages of development.  These requirements are 
then used to define performance targets for each of 
the vehicle subsystems (and, in turn, their constituent 
components).  The process is often represented by 
the system engineering “V” shown in Figure 1. 

For the application described in this paper, we 
are concerned with the initial requirements cascad-
ing.  Based on fuel economy analysis, we know what 
size motor and battery are required and how much 
power they need to handle.  However, fuel economy 
is only one attribute to be considered.  Because we 
would like to eliminate the cost and weight associ-
ated with a dedicated starter motor, we also need to 
verify that the motor and battery combination we 
have chosen will be sufficient for starting the engine. 

 
Figure 1: System Engineering Process 

While it is possible to rely on “rules of thumb” 
or knowledge-based engineering solutions to deter-
mine requirements for conventional vehicles, it is 
nearly impossible to apply these to research projects.  
In such cases, physically-based models of the under-
lying systems with sufficient levels of detail and fi-
delity can be created that reasonably approximates 
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the response of a physical incarnation of the design.  
Because design specification details should result 
from this process, such models need to be detailed 
enough to capture the effects of design changes.  We 
term such models “design-oriented” models.  In or-
der to capture such effects it is typically necessary to 
make first-principles based models of the various 
components and use constitutive relationships based 
on design parameters (e.g. compliance, inertia, me-
chanical limits, etc) to characterize these compo-
nents. 

2 Powertrain Architecture 

This section describes some of the relevant de-
tails about the powertrain architecture.  This analysis 
was conducted for a research vehicle.  Many of the 
components were relatively new and they had never 
been used in this particular configuration before.  For 
this reason, models were necessary to analyze the 
requirements and determine component specifica-
tions. 

The overall vehicle model used the Modelica 
Vehicle Model Architecture library [4].  Starting 
with the conventional vehicle architecture (shown in 
Figure 2), specific models for the engine and trans-
mission were supplied that captured the physical ef-
fects required for the analysis of engine cranking.  
The remainder of this section will discuss each 
model in detail. 

 
Figure 2: Vehicle Model Architecture 

2.1 Engine Model 

Modeling engines can be quite complicated 
because many factors contribute to the dynamics of 
the engine [5].  Because, in this application, our goal 
is to reach a critical engine speed in order to begin 

injecting fuel, we do not need to be concerned with 
the combustion dynamics of the engine.  Instead, we 
focus on only those dynamics that are present before 
fueling begins. The engine model used is shown in 
Figure 3 and includes typical crank-angle based dy-
namics.  For our analysis, two effects are particularly 
important. 

The first effect involves the engine design it-
self.  In particular, the compression ratio of the en-
gine and the valve timing will determine exactly how 
much “resistance” is felt as we try to crank the en-
gine.  The engine configuration we are studying is a 
V-6 configuration so for every 720 degrees of mo-
tion in the crankshaft we will go through 6 compres-
sion events.  These events normally correspond to 
the compression of the air-fuel mixture in prepara-
tion for combustion and the amount of work that 
must be done in order to perform such compression 
is strongly influenced by the compression ratio and 
valve timing of the engine. 

The other effect we consider is friction.  Fric-
tion is very sensitive to both engine speed and ambi-
ent thermal conditions.  Friction is extremely hard to 
quantify because of the various non-linear effects 
involved (viscosity, thermal expansion, wear) and 
the fact that it is typically only calculated under 
steady state conditions for normal operating points.  
Because our analysis was conducted for an engine 
that was still in a prototype stage (without complete 
friction data), we will assume a conservative friction 
relationship and show how sensitive our results are 
with respect to this estimate. 

 
Figure 3: Engine Model 
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2.2 Damper Model 

While the damper model is technically part of 
the transmission model, its design and behavior can 
be described independently of the other transmission 
components.  The purpose of the “damper” is to pre-
vent engine torque fluctuations from being propa-
gated into the transmission and driveline.  In addition 
to preventing these vibrations from being “felt” by 
the driver of the vehicle, the isolation also protects 
downstream components from experiencing torque 
reversals between combustion events leading to gear 
rattle and other NVH phenomena. 

The damper design must be concerned with 
two kinds of dynamics.  The first is the normal en-
gine “torque signature” under steady operating con-
ditions.  In these cases, the damper should be as effi-
cient as possible in transmitting energy to the trans-
mission (to avoid a fuel economy penalty) but still 
isolate the fluctuations of the engine so they do not 
lead to downstream disturbances.  The other mode 
involves damping of large scale disturbances (i.e. 
those that might occur as a result of pressing the ac-
celerator pedal).  It is desirable that in such circum-
stances the damper should “extract” energy so that 
these disturbances are quickly damped out. 

These two, seemingly contradictory, goals are 
accomplished by a design, shown in Figure 4, that 
combines a compliant (typically multi-stage) spring 
in parallel with a hysteretic element surrounded by 
inertia elements on either side.  Because of the back-
lash deliberately designed into the damper, the hys-
teresis is only triggered for large deflections (deter-
mined by the magnitude of torque carried by the ele-
ment and the compliance of the spring).  As a result 
when large disturbances are generated by the engine, 
the hysteresis loop removes the energy, via friction, 
as heat. 

The damper must be tuned so that the natural 
frequency of the driveline is below the idle speed of 
the engine to avoid excitation of resonances in the 
driveline.  However, there is also a dynamic aspect 
to this tuning.  Because of the multi-stage design of 
the spring, large deflections result in the stiffer stage 
of the spring being involved.  This increases the “ef-
fective stiffness” of the device and, as a result, raises 
the effective natural frequency.  This leads to an in-
teresting phenomenon.  As you approach the natural 
frequency of the spring (for small deflections) from 
below, the spring will start to resonate.  If this reso-
nance leads to deflections that are large enough, the 
stiffer stage of the spring will begin to participate 
and the natural frequency will increase.  If the natu-
ral frequency increases that means that a greater por-

tion of the engine cranking will occur below the 
natural frequency and more resonance will occur.  If 
this process is gradual enough, the resulting dynam-
ics can become quite violent.  To avoid this, it is de-
sirable to move through the resonance as quickly as 
possible. 

 
Figure 4: Damper Model 

2.3 Transmission Model 

Ultimately, the purpose of this analysis is to 
establish the power and torque requirements to crank 
the engine in this vehicle.  Because the electric motor 
used for this process is contained in the transmission 
[6], the transmission plays an unusually key role in 
the starting process for this vehicle.  A schematic of 
the transmission is shown in Figure 5. 

 

 
Figure 5: Transmission Model 

The design of the gearbox itself is not particu-
lar important here because the transmission will not 
be engaged during our analysis (although it would be 
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in a further assessment of “rolling starts”).  What is 
important is the engagement of the motor clutch (i.e. 
the clutch that connects the motor to the engine).  
Another important factor is the additional inertia of 
the motor rotor.  Although it would be nice to choose 
how much inertia to include in the rotor, this is 
largely determined by packaging constraints and the 
performance targets of the motor. 

It is important to note that all torque used to 
start the engine must come from the electric motor in 
the transmission.  There is no starting motor on the 
accessory side of the engine as there is in a conven-
tional powertrain.  This means that the motor design 
must be able to deliver tractive torque (when driving 
the vehicle) or cranking torque (when starting the 
engine).  Because the peak power requirements are 
different, these two goals do not necessarily lead to 
similar designs for the motor. 

2.4 Control 

Starting the engine involves several discrete 
phases [7].  These stages are shown at the top of 
Figure 6.  For our analysis we assume that before the 
engine is started the electric motor is disconnected 
from the engine (i.e. the motor clutch is disengaged) 
and the engine is completely at rest (phase 1).  Be-
fore this motor clutch is engaged, the controller uses 
a PID strategy to bring the motor speed up to a speci-
fied value (phases 2 and 3).  Once that setpoint has 
been achieved, the motor clutch is engaged (phase 
4).  As the clutch is engaged, torque is transmitted to 
the engine.  The critical issue is making sure that the 
engine “turns over”.  In practice, this means that suf-
ficient starting torque must be delivered to the engine 
to overcome the resistance caused by the first com-
pression event in the engine (phase 5).  The PID 
strategy attempts to hold the motor speed at the same 
setpoint during this process (phases 2-5).  Once the 
engine has reached the desired speed (phase 6 and 7), 
the motor torque requirement is considerably re-
duced because it only needs to maintain the desired 
speed. 

The control strategy relies on sensing two dif-
ferent speeds, the motor speed and the engine speed.  
The motor speed is known to a great degree of accu-
racy with very little delay.  Unfortunately, the same 
cannot be said of the engine speed.  The engine 
speed sensing relies on a traditional engine speed 
sensor which is relatively low resolution (as com-
pared to the motor speed), is unreliable at low 
speeds, and is subject to considerable lag due to its 
design and implementation. 

Using the information about the motor and 
engine speed, the control strategy can use two actua-
tors, the electric motor and the launch clutch.  The 
control strategy can specify the torque to be gener-
ated by the motor and the pressure applied to the 
launch clutch.  Physically, this clutch pressure trans-
lates into a “clutch capacity” (i.e. how much torque 
can be transmitted through the clutch).  As a result, 
the clutch is also effectively a torque actuator.   

 

 
Figure 6: Baseline Analysis Results 

3 Validation and Interpretation 

While the use of models in system engineering 
to assist with target cascading and requirements 
analysis is useful, establishing the validity of the 
models used in the process is difficult.  This is be-
cause, by the nature of the process, the system being 
engineered has not been built yet.  Because design-
oriented models are built using first principles, they 
do not rely heavily on empirical data.  Instead, de-
sign data can be used to directly characterize the 
model. 

In our case, there was existing data showing 
how similar hardware and control strategies func-
tioned on a research prototype [7].  As a result, our 
validation focused on making sure that the response 
from our models matched, qualitatively, the response 
from actual hardware (albeit different hardware). 

Figure 6 shows a typical result.  Interesting 
qualitative features shared with in-vehicle test re-
sults: 

• Saturation of motor torque during phase 2 

• Magnitude of ‘parasitic’ loses during phase 3 

• Motor torque limited to clutch capacity in 
phase 4 and 5 

• “Brake” torque required in phases 6 and 7 

A key feature of Figure 6 is the transition from 
phase 4 to phase 5.  The boundary between these 
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phases is defined as the point where the engine 
crosses the first compression event.  Of particular 
importance during this event is the deceleration of 
the engine.  If the engine speed approaches zero, the 
engine may stall (i.e. the vehicle will fail to start). 

4 Analysis 

4.1 Baseline results 

Figure 6 shows a baseline response for our 
system.  We can see the various phases of the control 
strategy and the results clearly indicate a successful 
starting of the engine (i.e. the engine achieved the 
critical speed necessary to begin fueling).  We also 
see no evidence of any serious resonance in the 
driveline during cranking. 

While such results highlight the important fea-
tures of the experiment, there are other results that 
are available to us in our design-oriented model that 
are also useful.  For example, these results confirmed 
that response of our damper did not exceed any of its 
design constraints (i.e. maximum deflections, maxi-
mum torque, energy dissipated, etc). 

Another interesting feature of the simulation is 
the deflection of and torque transmitted through the 
engine mounts.  While not particularly interesting for 
target setting and requirements analysis of the elec-
tric motor and battery, the  model could be used for 
an additional analysis involving target setting and 
requirements analysis for the engine mounts. 

4.2 Friction Sensitivity 

 
Figure 7: Friction Sensitivity 

As mentioned previously, friction is a com-
plex quantity to measure and it changes as a function 
of engine operating conditions.  As such, we would 
like our analysis to be as robust as possible to our 

friction estimate.  For this reason, it is useful to un-
derstand the sensitivity of our baseline response to 
different amounts of friction.  From Figure 7, we see 
results of several different simulated experiments 
with different amounts of friction.  All conditions are 
identical between Figure 6 and Figure 7 except the 
amount of friction.  As the amount of friction is in-
creased, the important feature to notice in Figure 7 is 
the dip in engine speed during the first compression 
event.  Although the baseline case shows a success-
ful start, an increase in friction of only 25% leads to 
an unsuccessful result.  From this we can see that 
there is significant sensitivity to friction.  This analy-
sis can help us establish an upper bound on accept-
able friction. 

4.3 Crankshaft Position Sensitivity 

Another important factor in cranking an en-
gine is the initial position of the crankshaft.  Ideally, 
the engine should be given as much time as possible 
to build up momentum as it approaches the first 
compression event.  As shown in Figure 8, by taking 
our baseline case and “backing up” the starting posi-
tion of the crankshaft we can significantly increase 
our tolerance to friction (and thereby improve our 
robustness to friction). 

 
Figure 8: Crankshaft Position Sensitivity 

The difficulty in this approach is that we can-
not directly control the crankshaft position prior to 
starting the engine.  So this analysis only gives us 
information about the fact that the results are sensi-
tive to initial crankshaft position and highlights a 
need to understand the statistical variation in engine 
shutdown patterns (something we could also use the 
model to study in detail). 
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4.4 Performance Limits 

Sections 4.2 and 4.3 addressed noise factors in 
the engine starting process and established sensitivi-
ties to help us gage the robustness of the procedure.  
Now we will turn our attention to the control strategy 
itself to see what we can achieve with the sensors 
and actuators we have available. 

We will focus on two cases which we will la-
bel “Best Case” and “Worst Case”.  The “Best Case” 
scenario is important because it shows us how much 
excess capability we have in our electric motor under 
the best circumstances.  This excess capacity gives 
us some metric by which we can gage the potential 
of the system to implement rolling starts (i.e. starting 
the engine while the vehicle is moving).  The “Worst 
Case” scenario helps us to gage the limits of our de-
sign by trying to start the engine under very difficult 
circumstances. 

Let us first consider results from the “Worst 
Case” analysis shown in Figure 9.  For this analysis 
we have specified that the setpoint for motor speed 
control during phase 3 (see Figure 6) should be twice 
the speed at which the engine should be started.  This 
“overspeed” gives us additional momentum (built up 
during phases 2 and 3) that we can use to generate 
additional torque.  Our “Worst Case” corresponds to 
the green line in Figure 9.  What this result shows us 
is that by using a clutch with a torque capacity of 
350 N.m., we can still start the engine in the face of 
200% more friction than the baseline case.  Note that 
the additional torque used to crank the engine comes 
from sacrificing momentum in the motor rotor as 
exhibited by the deceleration of the motor rotor dur-
ing motor clutch engagement. 

 
Figure 9: Worst Case Scenario 

Looking at Figure 10, we see the results of 
our “Best Case” scenario.  In this case we assume 
that the amount of friction to be overcome has been 
reduced by 40% (due, for example, to engine warm 

up).  In such a case we see that we no longer need to 
use all of our motor torque to start the engine (as 
demonstrated by the difference in the two traces at 
the bottom of Figure 10).  This is important because 
it means that we could provide some drive torque to 
the wheels (through the transmission gearbox) and 
still have enough torque left over to crank the engine.  
This analysis gives us some indication of how much 
excess is available (i.e. that could be used to move 
the vehicle forward)1. 

 
Figure 10: Best Case Scenario 

5 Conclusions 

The analysis in this paper supports the idea that 
this particular system is relatively robust with respect 
to the motor and battery requirements.  While the 
response of the system is sensitive to friction and 
crankshaft position, the control strategy and the ac-
tuators available to it can handle the most extreme 
cases with enough of a safety margin. 

From the analysis presented in this paper, we 
can see how design-oriented models can be used to 
guide the development of both hardware and soft-
ware in the vehicle development process.  Although 
this paper shows how this process was applied to a 
hybrid electric vehicle, the principle holds not only 
for other types of vehicles but for many product de-
velopment activities in general.  The key is the abil-
ity to quickly develop design-oriented models to help 
with upfront evaluations.  This not only saves time in 
the development process but can save a considerable 
amount money by reducing or even eliminating the 

                                                      
1 Of course, there are significant issues with starting the 
engine under such circumstances without causing signifi-
cant (i.e. driver perceptible) driveline disturbances.  How-
ever, this is beyond the scope of this paper (although not 
beyond the scope of this model). 
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need for prototype hardware that might have to be 
fabricated to support real-world testing aimed at an-
swering the same questions. 
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Abstract

In desiccant air conditioning systems, moist air is de-
humidified by means of a desiccant wheel. Water
vapour is absorbed by desiccant material as humid air
passes through the wheel. Using this technology, con-
siderable energy savings can be obtained compared to
conventional air conditioning systems. To evaluate the
performance of the desiccant assisted air conditioning
process, a model library has been developed. In this
paper, control volume models for humid air and des-
iccant material are implemented and finally the ope-
ration of the desiccant wheel is simulated. Comparison
of the dynamic and steady state results to open litera-
ture, manufacturer data as well as experimental result
is used to validate the model.
Keywords: air conditioning; desiccant wheel; sorp-
tion; rotating heat exchanger, modelica

1 Introduction

In a desiccant assisted system, moist air is first dehu-
midified using a desiccant wheel, see figure 1. The
wheel consists of a honeycomb structure, which is
coated with desiccant materials such as silica gel or
lithium chloride. Water vapour is absorbed by the des-
iccant material as humid air passes through the wheel.
The moisture is released when the desiccant is regener-
ated by heating. For regenerating the desiccant wheel,
heat input at relatively low temperatures (e.g. 60-
70◦C) is required, depending on the desiccant mate-
rial. Using desiccant technology, the cooling demand
can be reduced to 30% of that of a conventional sys-
tem [2]. The energy demand for air conditioning is
thus shifted from electrical to thermal energy, primary
energy consumption is reduced as well and waste heat
can be used.
The performance of the desiccant wheel depends on

∗email: casas@tu-harburg.de, Tel:+40 4042878 3079

Figure 1: Desiccant wheel for air conditioning systems

several parameters, like ambient air condition (tem-
perature and humidity), regeneration air, volume flow
rates and rotation speed. Other wheel specific param-
eters are geometry structure and sorption properties of
the material.

In order to predict heat and moisture transfer in the
desiccant wheel, conservation equations for energy
and mass need to be postulated. Convective heat and
mass transfer are described by lumped coefficients,
whereby heat and moisture transfer are coupled by the
equilibrium condition of the desiccant material, the
so called sorption isotherm. Conservation equations,
heat and mass transfer, the sorption isotherm as well
as thermodynamic state equations for air and desiccant
material result in a complex, non-linear, differential al-
gebraic system of equations (DAE).

Several solutions for such DAEs have been provided in
different works. [6] introduces the concept of charac-
teristic potentials, whereby the DAE is rewritten based
on these new independant variables. Using heat and
mass transfer analogy, a numerical solution for the
DAE can be provided. Other authors solved the DAE
by linearization and Laplace-Transformation [7], us-
ing a finite difference method [14], or finite volume
method with a Gauss-Seidel iteration algorithm [13].
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As this short literature review shows, providing a solu-
tion for the combined heat and mass transfer problem
in the desiccant wheel requires expert knowledge of
the applied numerical methods as well as good pro-
gramming skills. In addition, governing equations
have to be rewritten in a very abstract form (for ex-
ample using dimensionless variables).
A limitation of most of the methods available in the
open literature is, that they can not be used for des-
iccant materials with discontinuities in their sorption
isotherms (e.g. lithium chloride), unless the solver al-
gorithm is extended or rewritten [9]. Hence, in case of
lithium chloride as desiccant material, numerical solu-
tion methods based on heat and mass transfer analogy
mentioned above can not be applied.
In this work Modelica/Dymola was used to overcome
these limitations and to provide a component oriented
modeling approach which offers a high level of flexi-
bility with respect to boundary settings.

2 Physical Model

In air conditioning systems, or thermodynamics sys-
tems in general, a working fluid (e.g. air, water) flows
through several components (e.g. ventilators, heating
or cooling coils). Components can be modeled by al-
gebraic equations or by partial differential equations.
In this case, a distributed approach with higher dis-
cretization may be necessary. A control volume for
humid air is therefore needed.

2.1 Humid air

The model for humid air described here is based on
following assumptions:

(1) Humid air is an ideal mixture, Dalton’s Law of
Partial Pressures is valid.

(2) Air flow is incompressible.

(3) Constant specific heat capacities for dry air, water
vapour and liquid water.

(4) Heat conduction in flow direction is neglected.

Balance and state equations will be postulated for a
control volume according to figure 2. The control
volume model is assumed to be connected to other
models, whereby heat and humidity or air can be ex-
changed.
Specific values (e.g. enthalpy h, internal energy u)
used in the equations below are defined with respect

Figure 2: Air control volume

to dry air mass. Water content or absolute humidity of
air x is defined as the ratio of water to dry air mass,

xi =
Mw,i

Mi
(1)

The energy balance for an i control volume can be
written as

∂Ui

∂t
= Q̇con,i + ṁi−1 ·hi−1 − ṁi ·hi

+ṁw,con,i ·hw,con,i (2)

Q̇con,i is the sensible heat flux and hw,con,i denotes the
enthalpy of the exchanged moisture. Consequently the
term ṁw,con,i · hw,con,i equals the latent heat flux. The
dry air mass balance is given by the simple equation

∂Mi

∂t
= ṁi − ṁi−1 . (3)

Water balance results in the relationship

∂Mw,i

∂t
=

∂xi

∂t
·Mi = ṁw,con,i + ṁi−1 · xi−1 − ṁi · xi .

(4)
The dynamic caloric state equation can be obtained
from the ideal gas equations,

∂ui

∂t
=

∂hi

∂t
−R ·

∂ϑi

∂t
. (5)

Thereby, enthalpy of humid air is

hi = cp,a ·ϑi + xi · (cp,wv ·ϑi +∆hV ) (6)

and its derivative

∂hi

∂t
= cp,a ·

∂ϑi

∂t
+(cp,wv ·ϑi +∆hV )

·
∂xi

∂t
+ xi · cp,wv ·

∂ϑi

∂t
. (7)
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From this follows

∂ui

∂t
= (cp,a −Ra + xi · (cp,wv −Rw)) ·

∂ϑi

∂t

+(cp,wv ·ϑi +∆hV ) ·
∂xi

∂t
. (8)

Dynamic equations for air states may not be needed for
every final component model. Hence, it makes sence
to implement steady equations

∂ui

∂t
= 0 and

∂xi

∂t
= 0 (9)

to be used instead. With an appropriate parameter, the
developer may be able to decide if dynamic or steady
state equations are to be used.

2.2 Desiccant material and supporting struc-
ture

First, a control volume for the supporting structure ac-
cording to figure 3 is defined. Since the wheel has to
be discretized in axial and eventually also in tangential
direction, it is advantageous to choose a “pie piece” of
the wheel. The control volume will be connected later
to the humid air model using the heat flux and moisture
connectors. Following assumptions are made:

(1) The homogeneous, uniform wheel consists of
supporting material (e.g. cellulose) and desiccant
material (mass fraction χ) both with constant spe-
cific heat capacities cr and cs.

(2) Axial heat conduction is neglected.

(3) Humidity transport and diffusion in the wheel is
neglected.

(4) Heat and mass transfer between air and matrix
can be described by lumped transfer coefficients.

Figure 3: Convective heat and moisture transfer

The mass of the matrix material in a control volume V
follows from

Mi = Vi ·ρr , (10)

where ρr is the density of the supporting structure.
The humidity ratio in the desiccant material is defined
as

qi =
Mw,i

χ ·Mi
. (11)

The change of water in control volume can be calcu-
lated from

∂Mw,i

∂t
= Mi ·χ ·

∂qi

∂t
= ṁw,con,i , (12)

whereby ṁw,con,i equals the sorbed or desorbed water.
The energy balance results in

∂Ui

∂t
= Q̇con,i + ṁw,con,i ·hw,con,i . (13)

As for the air side, Q̇con,i is the sensible heat, ṁw,con,i ·
hw,con,i the latent heat transferred with the moisture.
Enthalpy of sorbed water vapour comprises heat of
sorption, which consists of heat of vaporization and
binding enthalpy,

hw,con,i = ∆hS,i + cp,wv ·ϑa,i

= ∆hB,i +∆hV + cp,wv ·ϑa,i . (14)

Binding enthalpy ∆hB,i depends on the desiccant ma-
terial properties and is supposed to be known from ex-
perimental data.
From the enthalpy of wet material

hi = (cr + cs ·χ+χ ·qi · cw) ·ϑi (15)

follows the dynamic state equation

∂ui

∂t
= (cr + cs ·χ+χ ·qi · cw)

∂ϑi

∂t

+ χ ·qi · cw ·ϑi ·
∂qi

∂t
. (16)

The convective heat transfer between air and desiccant
material (see figure 4) can be described using New-
ton’s Law of Cooling,

Q̇con,i = αi ·Ae,i · (ϑa,i −ϑi) (17)

Ae,i denotes the effective heat transfer area, ϑa,i is the
fluid temperature and αi the local heat transfer coeffi-
cient. The effective heat transfer area can be written as
the ratio of Volume to specific surface

Ae,i =
V
ω

, (18)
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Figure 4: Convective heat and moisture transfer

Table 1: Geometry data for desiccant wheel
2b 2,0 mm
2a 3,4 mm
c 0,125 mm
U 8,84 mm
A 3,4 mm2

Dh 1,539 mm
ω 2600 m2/m3

ρr 129,5 kg/m3

whereby specific surface can be calculated from rotor
geometry, refer to table 1.
The Nusselt-Number Nu = α ·Dh/λ and thus also the
heat transfer coefficient for laminar flow in sinusoidal
ducts can be obtained from numerical work [8, 12, 1,
11].
In analogy to (17), convective mass transfer could be
described by

ṁw,con,i = βi ·ρa,i ·Ae,i · (xa,i − x|y∗=0) . (19)

βi denotes thereby the mass transfer coefficient and
x|y∗=0 is the moisture content of the boundary layer
at the surface of the desiccant material. Hence con-
centration difference (xa,i −x|y∗=0) is the driving force
for convective moisture transfer. It has to be assumed,
that the boundary layer is in equilibrium with the wall
with respect to temperature and moisture content, for
instance water content of the boundary layer x|y∗=0

equals xeq := f (q,ϑw), namely the water content of
air at equilibrium with desiccant of water load q and
temperature of matrix ϑ.
Sorption equilibrium is given by the sorption isotherm

qeq = q(pwv,ϑ) (20)

describing the equilibrium moisture content of desic-
cant for a constant temperature depending on vapour
partial pressure. The function q(pwv,ϑ) is usually
given as a correlation of measurement data. Another
equivalent formulation is

peq = p(q,ϑ) (21)

denoting the equilibrium partial pressure for a known
moisture content and temperature.

For most solid desiccants (e.g. silicagel), the sorp-
tion isotherm is continuous. For lithium chloride,
depending on water content, sorption isotherm slope
changes discontinuously due to phase changes of the
system (LiCl hydrate formation). As figure 5 shows,
for the interesting temperature range of 20−90◦C, the
LiCl-water system can consist of dilute solution, sat-
urated solution with monohydrates or anhydrous LiCl
and monohydrates. Figure 6 shows sorption isotherms
from experimental data [5] and the developed corre-
lation used in this work, as well as other correlations
[3].

Figure 5: Phase diagram for the system LiCl-water
(based on [10])
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Figure 6: Sorption isotherms for the system LiCl-
water

W. Casas, K. Prölß, G. Schmitz

The Modelica Association 490 Modelica 2005, March 7-8, 2005



It should be noticed, that for implementation in Mod-
elica, appropiate crossing functions should be used to
avoid numerical instabilities during simulation and to
reduce computation time.
If the sorption equilibrium equation (21) is known, xeq

in (19) follows to

xeq,i =
Ra

Rw
·

peq,i(q,ϑi)
(p− peq,i(q,ϑi))

(22)

To determine the convective mass transfer coefficient
in (19), the Lewis number Le = a/D12 may be used to
relate the two convective transfer coefficients [4]

α
β

=
λ

D12 ·Len = ρ · cp ·Le(1−n) . (23)

It has to be pointed out, that the relationship given
above can only be used, if convective mass transfer
at the surface dominates the overall mass transfer re-
sistance. Other moisture transport mechanisms in the
material (e.g. pore diffusion) are thus neglected.

3 Modelica implementation

The humid air and desiccant models were imple-
mented in a Modelica library. The base model of the
desiccant wheel RotPair is built up from two pairs
of each one air and desiccant wall model instances,
see figure 7. Each air and desiccant wall component
is divided into n elements (control volumes). The two
model pairs represent two opposites “pie pieces” of the
desiccant wheel (see figure 3), so one model pair is in
the regeneration and the other in the process air stream.
After half a revolution, the boundary conditions (air
inlet) changes, since the pie piece goes from process
to regeneration side. Therefore, auxiliary models have
to be used and outer connectors can not be joined di-
rectly to air models. In addition, during regeneration,
the first element (i = 1) of the desiccant wall model
is connected to the last element of the correspond-
ing air model (i = n). Boolean signal connectors are
used to change the connection order in the desiccant
wall model according to the angular position of the pie
piece in the wheel.
Higher discretisation in tangential direction (more “pie
pieces”) can be used, but computation time increases
drastically. In addition to increased number of equa-
tions in the system, more state events are gener-
ated during simulation each time boundary conditions
change. Discretisation in tangential direction makes
hence only sence, if inlet conditions change with time

Figure 7: RotPair Desiccant wheel base model (di-
agramm layer)

rapidly. In that case, outlet conditions have to be com-
puted as a mean value from m pie elements. If only
one pie element is simulated, and inlet conditions are
constant, air outlet conditions result as mean value for
half a revolution and is therefore integrated over time,
e.g. for temperature

ϑ̄out =
1
∆t

Z t+∆t

t
ϑ dt (24)

Figure 8 plots the temperature of both pie piece con-
trol volumes at the process air outlet side and the cal-
culated time mean value according to equation above.
Concerning axial discretisation, best compromise is
obtained with n = 10 . . .15 for a wheel width of 250
mm.
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Figure 8: Mean value computation for rotating speed
1/3 rpm (∆t = 90 s)

Figure 9 shows the structure of the RotPair model.
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Figure 9: Structure of the model

The DesiccantWall model consists of several
classes containing balance equations and material
properties. In order to use the same model with other
desiccant materials (e.g. Silicagel) or for simula-
tion of rotary heat exchangers (no mass transfer at
all), some classes are replaceable. For instance, the
MassEquilibriumModel containing the descrip-
tion of the sorption isotherm can easily be exchanged,
as well as the latent (sorption) heat model.

4 Simulation results

In this section, first dynamic simulation results will be
shown and compared to open literature. Subsequently,
results from steady state simulation will be discussed
and a total system simulation will be presented.

4.1 Dynamic simulation

The Modelica model described in this paper was used
to simulate the dynamic behaviour of a rotary LiCl
dehumidifier, see figure 10. The matrix is assumed
to be at a regenerated state with uniform temperature
ϑinit = 75◦C and water load of qinit = 0.3 kg/kg. The
air flows through the matrix with an inlet temperature
ϑa,in = 25◦C and humidity xa,in = 15 g/kg. Initial con-
ditions and other parameters chosen here correspond
to those used in [9], so simulation results can be com-
pared.
The temperature and water content profile of the ma-
trix with respect to the axial coordinate are shown in
figure 11a,b. Each curve corresponds to one time snap-
shot. Figure 11c,d shows the temperature and moisture
content of outlet air during the process.

Figure 10: Test model for dynamic simulation

At the beginning of the process, the hot matrix is
cooled down very fast, since sensible heat exchange
due to high temperature differences between matrix
and air dominates. It can be seen that outlet tempera-
ture of air rises very quickly (inlet 25◦C, outlet 73◦C).
But after a few seconds, the temperature in the matrix
remains at 56◦C. At this temperature, a phase change
in LiCl-water system from hydrate to saturated solu-
tion occurs. Equilibrium condition changes and sorp-
tion rate decreases, resulting in a rising outlet moisture
content of the air. The next phase change from satu-
rated solution to unsaturated solution occurs at 46◦C.
During this process, outlet air states stay nearly con-
stant. When only unsaturated solution remains, the
sorption rate drops and air outlet states approach the
inlet conditions rapidly.
Simulation results show good agreement with theoret-
ical simulations in [9]. Differences in temperature and
moisture content appear, which could be due to differ-
ent equations for the description of sorption isotherms
between [9] and the present work.

4.2 Steady state simulation

Figure 12 shows the air outlet moisture content of the
air for a LiCl rotary dehumidifier (diameter 895 mm,
V̇ = 2300 m3/h) at constant process air inlet tempera-
ture ϑa,in = 32◦C and rotation speed 1/3 rpm depend-
ing on inlet humidity and regeneration temperature.
For comparison, manufacturer data is plotted in dashed
lines.
As can be seen, outlet humidity decreases at higher
regeneration temperatures, but there is a deviation of
approximately 0,5 g/kg between simulation and man-
ufacturer data. Besides of that, outlet humidity ac-
cording to manufacturer appears to decrease linearly
with respect to regeneration temperature, whereas sim-
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Figure 11: Dynamic simulation results: a) matrix tem-
perature and b) water content, c) air outlet temperature
and d) water content
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Figure 12: Air outlet water content and temperature
for different regeneration temperatures, comparison
between simulation and manufacturer data

ulated humidity approaches a limiting value at ϑa,reg =
68◦C and decreases again for higher temperatures.
This behaviour is in full agreement with the sorp-
tion isotherm: for temperatures at around 60 . . .65◦C
LiCl saturated solution forms at the regeneration side.
Lower matrix water load does not result in higher sorp-
tion potential according to sorption isotherm. Only if
water load is reduced under a certain value, anyhdrous
LiCl can form and sorption potential is higher. Al-
though there is a limit for outlet humidity – if regen-
eration temperature is high enough, so that the whole
matrix can be dryed (q → 0), increasing regeneration
temperature does not affect outlet humidity. This be-
haviour is in agreement with simulation results for
higher temperatures (e.g. 80◦C, not shown in figure
12). Manufacturer data seems not to comply with this
limit and there is no data available for higher regener-
ation temperatures.
In terms of outlet temperature, simulation results show
good agreement with manufacturer data. Deviation
averages to 1◦C and is even lower for high regener-
ation temperatures. Simulated temperature is higher
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than reference data, which can be explained due to
higher dehumidification in the simulation. This leads
to higher latent heat flux and therefore to the increased
outlet temperature.
Figure 13 shows air outlet humidity for different ro-
tating speeds at constant process and regeneration air
inlet conditions. For low speeds, the matrix remains a
long time on process air side and dehumidification ca-
pacity is exhausted before the drying period ends. At
increasing speeds and shorter time periods, air dehu-
midification is higher and reaches a maximum value
(lowest outlet humidity). For higher speeds, the pro-
cess is dominated by heat transfer, thus dehumidifica-
tion rate sinks. From figure 13 follows, that optimal
rotating speed should be u ≈ 0.3−0.5 rpm for this in-
let conditions.
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Figure 13: Air outlet water content for different desic-
cant wheel rotating speeds

As figure 14 shows, process air state changes change
from adiabatic dehumidification (h ≈ const) to simul-
taneous mass and heat recovery from regeneration air
at higher rotating speeds (u ≥ 5 rpm). This effect is
also known as enthalpy recovery and is used in prac-
tice in winter operation mode, to recover heat and hu-
midity at different temperature and humidity levels be-
tween process and regeneration air. Hence, in winter,
dry outside air can be humidified and heated by en-
thalpy recovery. Enthalpy recovery can be controlled
by changing rotating speed.

4.3 Comparison to experimental data

Within the scope of a research project, experiments
have been carried out at TUHH. Measured process and
regeneration air states were used as input for the sim-
ulation. Figure 15 shows the inlet temperatures and
simulated outlet water content and experimental re-
sults. Deviation between experiment and simulation
ammounts approx. to 1 g/kg.

Figure 14: Air state changes for dehumidification and
enthalpy exchange
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Figure 15: Simulation of LiCl desiccant wheel and
comparison to experimental data

It has to be taken into account, that experimental re-
sults for outlet water content are calculated from rel-
ative humidity measurement and temperature. But at
higher temperatures, e.g. for outlet process air, the ac-
curacy for humidity measurement (±3% r.H.) results
in an absolute error ∆x = 0.8 g/kg. Simulation’s devi-
ation from experimental results is thus nearly between
accuracy range. Furthermore, air flow measurement
used as input for the simulation contains also approx.
5− 10% error. In addition, there is actually air carry
over effect and air leakages which are not taken into
account in the model. For high pressure differences
between regeneration and process air, air flows directly
from one side to the other making it difficult to deter-
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Figure 16: Desiccant assisted air conditioning plant

mine actual air state changes. Time delay in process
outlet response for the simulation is an effect of mean
value computation (90 s mean value). As stated above
in section 3, tangential discretization should be used
for changing inlet conditions.

4.4 Desiccant AC plant simulation

The presented Modelica models were used to simu-
late the performance of a desiccant air conditioning
plant, see schematics in figure 16. The plant model in-
cludes models for reading climate data, heat exchanger
(heater and cooler) and fan models as black box mod-
els, as well as models for temperature and humidity
control.
Outside air first flows through the desiccant wheel,
beeing subsequently pre-cooled using a rotating heat
exchanger and finally cooled to supply air temperature.
Air leaving the room passes first the rotating heat ex-
changer and is heated to regeneration air temperature
in order to take the moisture out of the wheel. Tem-
perature sequence controller regulates first the rotating
speed of the rotating heat exchanger and secondly the
cooling capacity of the cooler. Humidity control in-
creases heat input in regeneration air heater if actual
humidity higher than set value.
Figure 17 shows results for supply temperature and
regeneration air temperature needed for dehumidifica-
tion during a week in summer operation mode. Supply
set value (19◦C) can be mantained for the operation
hours of the plant. As expected, regeneration air tem-
perature varies with outside air humidity due to higher
dehumidification load. For the simulation period, the

calculated temperature of regeneration air remains un-
der 60◦C. This is advantageous, since low temperature
heat sources can be used for the dehumidification pro-
cess. Supply air humidity can be maintained within
desired humidity level (8-9 g/kg). The resulting heat-
ing and cooling capacity can be seen in figure 18. The
regeneration air heater has a heating capacity of 15
kW, whereas for cooling 7 kW are needed. Integrating
capacity results in heating and cooling energy demand
for the simulated period, e.g. 843 kWh heating, 434
kWh cooling demand.
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Figure 17: System simulation: temperatures and water
content
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Figure 18: System simulation: heating/cooling capac-
ity and demand

5 Conclusions

In this paper, a Modelica model for the simulation of
air dehumidification by means of a desiccant wheel has
been presented. The model is based on a finite vol-
ume approach for air and desiccant material. Heat and
mass transfer are described by lumped convective co-
efficients. The model was tested for LiCl as desiccant,
but can be used for other availabe desiccants, if equi-
librium equations (sorption isotherm) are provided.
Transient simulation results are in good agreement
with open literature. A comparison to manufacturer
data was carried out. It turned out that available man-
ufacturer data is not plausible for higher regeneration
temperatures, whereas simulation returns a plausible
behaviour according to desicant material properties.
Other components have also been modeled and used
to calculate heating and cooling demand of a desiccant
assisted air conditioning system.
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Abstract 

This paper presents a model to determine pressure, 
temperature and humidity in designated compart-
ments of an aircraft fuselage based on the evaluation 
of mass and heat flow balances under various envi-
ronmental and operational boundary conditions. A 
library has been developed, containing all necessary 
modules and aircraft templates for modeling differ-
ent aircraft types. Based on an aircraft template the 
end-user establishes a customer cabin layout, speci-
fies simulation and operation conditions and evalu-
ates the results. The program code, the library and 
the application of the template is easily understand-
able and structured to minimize errors. 
This paper briefly describes how the Modelica mod-
eling language was used for the calculation of the 
fluid properties and the solution of the mass and en-
ergy balances. Furthermore the implementation of an 
aircraft system is shown with a focus on data man-
agement. Improvement potential for the use of Dy-
mola/Modelica for this type of application is identi-
fied. 
Keywords: Thermal and Fluid Effects; Aircraft Fu-
selage Model; Thermodynamic Library. 

1 Introduction 

Consideration of the comfort felt by passengers and 
crew is of great importance in the design phase of 
air-conditioning system for an aircraft. Currently 
there are no agreed common standards for thermal 
comfort in the aircraft cabin, due to insufficient 
knowledge of the interaction of several parameters 
such as temperature, air speed and air humidity. 
These parameters all influence thermal comfort. 
In addition, customers increasingly demand variety 
and flexibility of cabin layouts. Special compart-
ments for example crew rest compartments or special 

customized installations in the cabin, such as coffee 
bars, stair-houses and beauty salons, can be installed 
at various locations in the aircraft cabin. 
In order to obtain a better understanding of the ther-
mal and fluid effects in the whole fuselage a highly 
detailed simulation model has been developed by 
Airbus, named Overall Fuselage Flow Model 
(OFFM). 
 
This model will support the work being carried out 
in the subproject Individual Seat Climatisation (ISC) 
of the research project Friendly Aircraft Cabin Envi-
ronment (FACE). For the ISC subproject realistic 
boundary conditions are needed. The aim of ISC is to 
optimize the percentage of people that are satisfied 
with thermal comfort in aircraft cabins. 
The simulation model is intended to provide bound-
ary conditions for detailed CFD simulations. 
The tool ultimately selected, Dymola/Modelica, best 
fulfills the tool requirements, such as connecting 
elements to networks, managing a high number of 
components without increasing complexity, available 
flow and heat libraries and accessibility to source 
code. For the simulation Modelica version 2.1 and 
Dymola version 5.3a are used. 

2 Model Description 

The modeled fuselage consists of all compartments 
inside the pressurized fuselage. The model bounda-
ries related to the mass flows are the total air inlet 
into the mixer unit and the total air outlet flow of the 
fuselage. The temperature boundaries are the air 
temperature at the compartments’ air outlets i.e. in 
the cabin, flight deck, forward and aft cargo com-
partment and temperatures for all adjacent, unpres-
surized compartments, for example main and nose 
landing gear, wing box and the skin temperature. 
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2.1 Description of Aircraft Air-Conditioning 
Systems 

The environmental control system (ECS) supplies 
conditioned air to maintain the desired temperatures, 
ventilation rates and pressurization within the cabin 
zones and flight deck.  

 
Figure 1: General Design of Environmental Control 

System 
The ECS consists of the air-conditioning packs, the 
mixer unit, the air distribution/recirculation system 
and the pressurization system, including the associ-
ated fans. These different systems are shown in fig-
ure 1 for the A340-500/600. 
The pneumatic system provides hot, pressure regu-
lated bleed air from the engines (or Auxiliary Power 
Unit APU or external sources) to the air-conditioning 
packs. 
Two air-conditioning packs, consisting of heat ex-
changers, compressor, water extraction and turbine, 
located in the unpressurized area below the center 
wing box provide conditioned air to the mixer unit. 
In the mixer unit, installed under the cabin floor in 
front of the center wing box, the conditioned air is 
mixed with recirculated and filtered cabin air (ex-
tracted out of the cabin at floor level through dado 
panels), which is fed by recirculation fans to the 
mixer unit. 
The air from the mixer unit is distributed to the cabin 
temperature control zones (for the A340-500/600 
eight cabin areas are defined), the flight deck and 
cargo compartments. The independent temperatures 
for the different compartments can be achieved by 
directing hot trim air from the hot air manifold to the 
distribution ducts. In addition ventilation is provided 
for the electrical and electronic racks (E/E). 
The cabin pressure is regulated automatically by the 
outflow valve position depending on the required 
cabin pressure change rate and differential pressure 
between cabin and ambient. 

2.2 Conceptual Model Design 

The overall fuselage flow model (OFFM) determines 
air mass flows, pressures, heat flows, temperatures 
and humidity of the entire aircraft fuselage for dif-
ferent ground and flight conditions. 
For the one dimensional mass and heat flow calcula-
tion, the fuselage volume is divided into individual 
control volumes, such as flight deck, cabin, crown, 
E/E bay, cargo compartment, etc., see figure 2 and 
figure 3. 

 
Figure 2: Aircraft Compartments in the Fuselage –  

Cross Section Overview 
The modules include different thermo-fluid compo-
nents, which cover the physical/mathematical de-
scription for the mass and heat flow within the fuse-
lage. 
The fuselage airflows are simulated by calculating 
the condition of the air within, and the pressure loss 
between these discrete volumes. For the heat flows 
all relevant heat sources and sinks, the heat exchange 
with adjacent control volumes and enthalpy flows 
are considered. 
The release of humidity through metabolic processes 
is considered depending on the passenger load and in 
relation to the outside air flow per occupant provided 
to the cabin. 
The simulated aircraft model consists of a federation 
of aircraft modules and overlaying system modules. 
The aircraft modules are divided into fuselage stan-
dard modules and layout modules. Fuselage standard 
modules consider all aircraft modules, which are 
layout-independent. For example the following mod-
ules do not differ for one aircraft type with different 
system and cabin layouts: crown, triangle area, E/E 
bay, bilge, etc. 
The cabin area is subject to various layouts such as 
different galley/lavatory positions and seat layouts 
(first, business and economy class). Nevertheless 
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several cabin area modules or parameters are layout-
independent such as ceiling air outlets, cabin length, 
fuselage diameter, doors and the zone classification. 
Consequently the specific layout modules are cabin 
installations such as galley, lavatories, seat rows, 
staircases and the utilization of the lower deck com-
partments. The whole or partial volume of the cargo 
compartments can be occupied e.g. with crew rest 
compartments. 
The system modules contain the air supply and air 
extraction system, the cabin pressurization system 
and several individual fans. An example for the sys-
tem implementation is given in detail for the air sup-
ply system in chapter 5. 
The interaction between the system and the aircraft 
standard modules or specific layout modules is con-
sidered in two different ways; either by port connec-
tions or by a value assignment via variable names. 
No additional inputs in the system modules by the 
user are necessary. 
With the aircraft standard modules, layout specific 
modules and the system modules a specific aircraft 
layout can be built, as shown in figure 3. 

 
Figure 3: Principle Aircraft Template – Top View 

Therefore a template is provided by the model de-
veloper containing all fuselage standard modules, 
system modules and an User Input Parameter Win-
dow (parameter dialog). This aircraft template is the 
basis for the user to create a new layout by imple-
menting the layout specific modules and entering the 

input values and boundary conditions for the simula-
tion for different cabin, system and environmental 
conditions. The data management of the model in 
detail is described in chapter 4. 
The simulation model offers the possibility of calcu-
lating 

- isothermal or non-isothermal conditions, 
- with dry or humid air and 
- with different flow resistance laws. 

 
For this application only the steady state results are 
of interest. 
The implementation of the above described system 
and compartment modules results in a large and 
complex model, so that the model must be modular, 
adaptable and user-friendly. It is therefore important 
that the developer and the end-users can easily han-
dle the model. 

2.3 Library Structure 

A special library is developed to establish a model of 
the fuselage. It consists of the control volume, the 
basic components for flow and heat such as flow and 
heat resistances, constant pressure sources/sinks and 
the property models for dry and humid air. Derived 
from these general basic elements a specific library 
section was created containing the aircraft modules. 
One of the most important principles for the devel-
opment of the library was simplicity, comprehensi-
bility and reusability. In this respect the ThermoFluid 
[1] library was proofed to be too complicated. More-
over the Modelica_Fluid and Modelica_Media were 
not available when starting this project. 
The OFFM library contains 6 main packages. Each 
package contains sub-packages, as described be-
low. 

1. General 
- Additional Units, 
- Functions, 
- Parameter, 
- Constant and 
- General Material Properties. 

2. Icons - Icon Definitions 
3. Interfaces - Flow and Heat Ports 
4. Components  

- Control Volume, 
- Mass Flow Source, 
- Pressure Source, 
- Pressure Loss, 
- Heat Source, 
- Const. Temperature and 
- Heat Resistances. 
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5. Media – Dry Air and Humid Air 
6. Aircraft_Models - contains packages for 

each aircraft type with the following sub-
packages: 
- aircraft specific Data (Flow/Heat/Boundary 

Conditions), 
- layout-independent modules (aircraft stan-

dard modules and the corresponding assem-
blies), 

- aircraft complete (aircraft template) and 
- layout-dependent modules (Cabin, Lower 

Deck and System). 

3 Implementation of Physical-
Mathematical Description 

3.1 Mass and Energy Balances 

For the mass balance all internal mass flow sources 
and mass flows resulting from the control volumes 
differential pressures must be identified. Each con-
trol volume contains one definite flow port at which 
the sum-to-zero equations for all incoming and out-
going masses are automatically generated, due to the 
flow prefix. In the same flow port the enthalpy 
flows are determined correspondingly. 
Additionally each control volume contains one defi-
nite heat port, where all heat flows resulting from 
internal heat sources and all heat flows transferred 
across the borders of the control volume are sum-
mated. 
In the control volume the average value of pressure 
and temperature is calculated by solving the mass 
and energy balances, as depicted in figure 4 (the 
equations in the control volume are completed by 
humidity here not shown).  

 
Figure 4: Mass and Energy Balances 

The models are developed in such a way that it is 
possible to run a simulation under isothermal or non-
isothermal conditions. The variable includeEner-
gyBalance is Boolean and can be set to true or 

false, depending on whether the energy balance is 
used or not. The Modelica implementation is as fol-
lows: 

——————————————————————————————————————————— 

… 
if (includeEnergyBalance) then 
 der (H)= FlowPort.H_dot + Heat 
       Port.Q_dot; 
 H = if (includeHumidAir) then 
   humidAir.cp*m*T) 
  else (dryAir.cp*m*T); 
else 
 der(H) = 0; 
 T = T_0; 
end if; 
… 
——————————————————————————————————————————— 

3.2 Pressure Loss 

The pressure loss between the control volumes is 
described by the following equation: 

mmkmkp 21 &&& ⋅⋅+⋅=∆ ,              (3.1) 

with  k1 = Linear Flow Coefficient, 
k2 = Quadratic Flow Coefficient. 

k1 and k2 are calculated values based on flight test 
evaluation. 
For the calculation of the mass flow the following 
equation is implemented: 
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with  fdir as an indicator of the flow direction, it 

can reach the value 1 for design flow and –1 
reversal flow, 
the thermo root function from the free 
library ThermoFluid [1], with a linear inter-
polation near 0. 

The scale of the parameters is given in the following: 
The flow resistance values varies between 102-105 
Pa s2/kg2 depending on there location, whereas the 
pressure difference between the control volumes is in 
a range of 0.1 Pa up to 10 Pa which results to mass 
flows from 0.001 kg/s up to 0.01 kg/s. 
 
The leakage flow from aircraft fuselage to ambient is 
calculated by the pressure vessel equation: 
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3.3 Fluid Properties 

In the following section the calculation principle of 
the fluid properties for dry and humid air is de-
scribed. The package Media contains the following 
classes separated for dry and humid air: 
- Declaration and initialization of the fluid property 

variables such as specific enthalpy, thermal con-
ductivity, dynamic viscosity, gas constant and 
specific heat capacity in a record and 

- a block containing inputs and outputs and an 
equation part. The input of the block for dry air is 
the temperature and for humid air additionally the 
pressure and water content. The outputs are the 
property values. The equation part contains the 
empirical correlation based on [2] to calculate the 
fluid properties as a function of inputs.  
The block class is used instead of a function in 
order to avoid differentiation of functions. 

In the following paragraphs the interaction of the 
above referenced block and record class is de-
scribed for dry air. Each model, where the fluid 
properties are needed, contains an instance of the 
record and block in the declaration part in the fol-
lowing way: 

——————————————————————————————————————————— 

OFFM.Media.Dry_Air.DryAirProp 
   Dry_air(T=T); 
OFFM.Media.Dry_Air.DryAirRec dryAir= 
   DryAir.DryAirRec; 
——————————————————————————————————————————— 

In the block class DryAir the values of the fluid 
property variables are calculated, depending on the 
temperature and are written to the record dryAir. 
For humid air the fluid properties are calculated in 
the same way, but as a mixture of two ideal gases, air 
and water vapor. 
The equations, which must be considered in a de-
scriptive physical-mathematical model, for example 
in the flow resistance model, are the following: 

——————————————————————————————————————————— 

… 
OFFM.Media.HumidAir.HumidAirProp 
HumidAir(T=T,x= 
 if (includeHumidAir) then 
 x  
 else 0,p=p_upstream); 
OFFM.Media.HumidAir.HumidAirRec 
 humidair=HumidAir.HumidAirRec; 
OFFM.Media.DryAir.DryAirProp 
                       DryAir(T=T); 
OFFM.Media.DryAir.DryAirRec dryair= 
   DryAir.DryAirRec; 
… 
——————————————————————————————————————————— 

 

For the inputs of the block class the upstream val-
ues are used. 
The variable includeHumidAir is Boolean and 
can be set to true or false, depending on whether dry 
or humid air is called for. The fluid properties are 
called up from the corresponding record by means of 
an if-expression, as shown in the following: 

——————————————————————————————————————————— 

cp = if (includeHumidAir) then  
  (humidAir.cp) else (dryAir.cp); 
——————————————————————————————————————————— 

Additionally for the calculation of humid air the 
equations for the water content of saturated air and 
for the pressure of saturated water vapor in air are 
relevant (Antoine Equation). The pressure of satu-
rated water vapor in air is described by two different 
equations, one for the vaporization and the other for 
sublimation. At a temperature of ϑ=0.01°C [3] solid, 
liquid, and vapor phases of water coexist in equilib-
rium and a discontinuity occurs between these two 
curves. To establish a continuous function for the 
pressure of saturated water vapor in air the curve for 
vaporization is extended up to a temperature of 
ϑ=0.0045°C and the curve for sublimation is only 
valid up to this point. 
The following approaches are used for improvement 
and to avoid numerical problems: 

1. The Horner Scheme is applied to the poly-
nomial for the fluid properties calculation. 
This has the advantage that in the converted 
representation no exponentials are used, only 
multiplications and summations. 

2. if-expression is used in preference to if-
clause for conditional statements. 

4 Data Management 

The data is divided into internal parameters and user 
inputs, as shown in figure 5. 
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Figure 5: Input and Output Parameters 
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The first section in this chapter will discuss the data 
management of the internal parameters and is fol-
lowed by the user inputs. The model outputs are not 
further discussed. 
Internal Parameters: The internal parameters are 
classified into parameters, which are valid in general 
or only for a specific aircraft type. General parame-
ters are e.g. the fluid and material properties and are 
structured in the library in the package General (see 
section 2.3). Specific aircraft type data are for exam-
ple geometry data and flow resistance values and are 
contained in the package Aircraft Specific Data. All 
these data are stored in a record. 
In addition the aircraft environmental parameters, 
such as ambient pressure, temperature, humidity or 
the external heat transfer coefficient, as well as the 
boundary temperatures, such as the skin temperature 
or the temperature of the unpressurized compart-
ments, belong to the internal parameters. All of them 
are functions and mostly depend on the flight condi-
tion, for example on Mach number and altitude. 
The calculation of the aircraft skin temperature de-
pending on the absorbed solar radiation and hence on 
the location of the fuselage surface is described here. 
There are six skin temperatures, three for the upper 
fuselage (crown, cabin left side and right side) and 
three for the lower fuselage (bilge, triangle area left 
side and right side) whereby the calculation distin-
guishes between ground and flight condition. De-
pending on the angle β of solar radiation the ab-
sorbed radiative heat on the aircraft skin is a function 
of the polar coordinate ϕ. The direct sunbeams irra-
diate one half of the skin surface of the fuselage, the 
other half is irradiated by diffuse sunbeams. The dif-
fuse radiation can be neglected. In figure 6 the ab-
sorbed radiative heat by solar radiation collected per 
projected surface area is shown. This radiative en-
ergy curve is a cosine function, which is at its maxi-
mum where it meets the irradiation angle and its 
minimum at the point where the solar radiation con-
tacts the aircraft skin tangential. In case of a cloudy 
day solar radiation energy is attenuated by clouds. 
This is taken into consideration by the factor 
ω, below altitudes of 22000ft. The average radiative 
energy G  for each area can be depicted (see figure 
6) and determined by following equations: 
 proj0energy,rad AGQ ⋅⋅ω=&               (4.1) 

  with  ( )altitudefG0 = ,                          (4.2) 

   ( ) sproj Adr1A
2

1

⋅ϕϕ
∆Φ

= ∫
ϕ

ϕ
.            (4.3) 

The surface area, which can be calculated for the 
aircraft skin, is ∆Φ⋅⋅⋅= LDA 2

1
s , with 

12 ϕ−ϕ=∆Φ . For r(ϕ) two different functions are 
defined for the shady (1) and sunny (2) side of the 
fuselage, depending on the polar coordinate and irra-
diation angle. 
(1) For ϕ > (β+90°) and ϕ < (β-90°)    r(ϕ)= 0. 
(2) For (β-90°) ≤ j ≤ (β+90°)               r(ϕ)=cos(β-ϕ). 
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Figure 6: Aircraft Skin Temperature 
The implementation in Modelica is difficult, because 
the integral is not varying with time but with the po-
lar coordinate ϕ. So, for each range the integral is 
solved manually depending on the angle of solar ra-
diation. 
User Inputs: The parameter input of the user takes 
place in the parameter dialog, as shown in figure 7. It 
is contained in the aircraft template. The content of 
the parameter dialog is stored in a record. The 
statements in Modelica are set by dialog-
annotations and can be found in [4]. 

 
Figure 7: Parameter Dialog for User Inputs 

User inputs are all operating conditions such as flight 
conditions, environmental control conditions and the 
simulation conditions, where the user has the possi-
bility to choose whether the simulation shall run un-
der isothermal or non-isothermal conditions and with 
or without the consideration of humidity. 
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In the parameter dialog the user has different possi-
bilities to make his inputs. For example for the tab 
Flight Conditions, the user can choose, whether he 
wants to specify the ISA day or the temperature as an 
input. Depending on the setting of the parameter 
ISA, the corresponding input field is enabled. 
It is also possible to enter a value directly in a field. 
To avoid errors, these input values are checked for 
example against minimum and maximum values. 
Another possibility consists in the selection of an 
input in the context menu from a set of predefined 
values or replaceable models. For this a pull down 
menu is available. Figure 7 shows replaceable mod-
els for the solar constant, which is a function of alti-
tude and depends on the different climatic zones. 
The user can choose whether the calculation shall 
run with a solar constant for tropic, temperate or for 
north temperatures. 
The default values are predefined values for a cruise 
flight under normal operation conditions, with the 
maximum number of passengers and non-isothermal 
simulation conditions. 

5 System Implementation 

The different aircraft systems as mentioned in chap-
ter 2.1 are implemented in the aircraft template. It is 
arranged in such a way that only those system mod-
ules are visible, where the user is required to give 
inputs. As an example the air supply system is cho-
sen. Figure 8 depicts the air supply system for the 
A340-500/600, which consists of the mixer and the 
cabin air supply calibration module. 

 
Figure 8: Air Supply System 

The recirculation mass flow and the outside supply 
mass flow [depending on the source - ram air, APU 
or Engine (Pack Flow)] are input mass flows to de-
termine over the flow resistance values the mass 
flows into the cabin, flight deck and forward/aft 
cargo compartments. The flow resistance values can 

be set in the parameter dialog (tab Environmental 
Control System). 
The air supply system supplies the air to the cabin 
along the whole length of each zone by four air out-
lets per two frame bays. On the right and left hand 
side of the aircraft fuselage one ceiling air outlet and 
one lateral air outlet position are defined, see figure 
9. The ceiling outlets are not affected by any installa-
tions in the cabin; however the number and position 
of the lateral outlets depends on the cabin interior 
layout. 

 
Figure 9: General Ventilation in the Cabin -  

Cross Section Overview 

Depending on a customer layout the simulation 
model will be established by dragging and dropping 
the layout specific modules from the library into the 
aircraft template. The installations in the forward/aft 
cargo areas must be connected to the mixer unit. If a 
port of the mixer unit is unconnected e.g. the Lower 
Deck Facility (LDF) port, this means that the LDF is 
not installed in the cargo compartment by the user. 
If a port of the mixer module is not connected the 
mass flow in the flow resistance model of the mixer 
unit shall be considered to be zero. To achieve a zero 
mass flow the variables at the not connected port of 
the mixer unit must have the same values as the vari-
ables at the port from the mixer control volume. 
The modeling of such a condition in Modelica re-
veals to be difficult, and a complex solution has been 
chosen as presented hereafter. 
The DeadEndPipe, see figure 10, represents a 
pressure source with the following Modelica 
code. 

 
Figure 10: Unconnected Port 
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——————————————————————————————————————————— 

model DeadEndPipe  
 extends OFFM.Icons.Flow.DeadEndPipe; 
 import SI = Modelica.SIunits; 
 SI.Pressure p; 
 SI.Temperature T; 
 SI.MassFraction x; 
 parameter Boolean asSource=false; 
equation 
 if asSource then 
  a.T = T;    a.p = p;   a.x = x; 
 else 
  a.H_dot  =0;   a.m_dot  =0;    
  a.m_dot_x=0; 
 end if; 
end DeadEndPipe; 
——————————————————————————————————————————— 

The number of connections of the flow port X is 
checked in the DeadEndPipe model by the following 
class parameter statement: DeadEndPipe1 (as 
Source=cardinality(PortX==1). If there is no 
additional connection at the flow port X, the tem-
perature T, pressure p and the water content x of the 
DeadEndPipe model are set to the values from the 
flow port a of the flow resistance model. From there 
they will be transmitted to the flow port b of the flow 
resistance model. 
The cabin area is established with the specific cabin 
layout modules, such as galleys, lavatories, seat rows 
and special crew rest compartments. The individual 
supply mass flows for each cabin area is assigned by 
variables and not by a graphical connection. The rea-
sons for that are the high number of connections, that 
have to be done by the end-user and the calculation 
of the mass flow supplied to each seat row as part of 
the total supplied airflow for one area. Each seat row 
module contains a specific number of air outlets, 
which varies from layout to layout, so the total num-
ber of air outlets in one area is depending on the 
number of installed seat rows within this area. The 
interface from the air supply system to the cabin is 
shown in figure 11. 
 

 
Figure 11: Interface to Cabin (I) 

The implementation in Modelica proves to be quite 
complicated. For calculation of the total supply mass 
flow to an area, the number of seat rows in this area 

need to be considered. In a first step the number of 
air outlets is not considered so that the supply mass 
flow per seat row is assumed to be constant. 
The determined total supply mass flow for each area 
is written in an array, in the air supply system model, 
as follows: 

——————————————————————————————————————————— 

inner Real m_dot_supply[8]= 
{m_dot[area1], 
m_dot[area2], …, m_dot[area8]}; 
——————————————————————————————————————————— 

Then the mass flow per seat row can be calculated as 
follows: 

——————————————————————————————————————————— 

model SeatRow 
 outer Real m_dot_supply [8]; 
 outer Integer no_SeatRow[8]; 
 parameter Integer area; 
 Real m_dot; 
equation 
 m_dot=m_dot_supply[area]/ 
   no_SeatRow[area], 
end SeatRow; 
The mass flow m_dot must be divided and forwarded to the 
two internal mass flow sources in one seat row. 
——————————————————————————————————————————— 

The number of seat rows per area is currently an user 
input parameter in the main parameter dialog. After 
establishing the layout, the user must manually count 
the seat rows per area and the resulting number must 
be set in the parameter dialog. This can easily lead to 
the error that the entered numbers and the numbers 
of inserted seat rows are not equal. At the moment 
there is no possibility known how to count models 
with the same attribute, e.g. the seat rows in one 
area. 
In order to identify the area in which a seat row is 
positioned, the seat row module receives the attribute 
Area, e.g. a seat row in area 2: Area=2. This pa-
rameter must be entered by the user in a parameter 
dialog, which appears by double-clicking on the 
component SeatRow. An improvement for the user 
is the graphical position in the diagram layer, defined 
by a component, which can be used to set parame-
ters. So the parameter Area could be set automati-
cally to one, two etc. if the seat row is in a defined 
position range on the diagram layer. 
If in the second step additionally the number of air 
outlets shall be considered it is necessary to enter the 
total number of air outlets per area in the parameter 
dialog and additional the numbers of the individual 
air outlets in each seat row (double clicking on the 
component SeatRow). 
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The mass flow per air outlet for all seat rows in one 
area then can be calculated in the supply system 
model: 

——————————————————————————————————————————— 

m_dot_perAirOutlet=m_dot_supply[area]/ 
no_SeatRow[area]/no_AirOutlets; 
——————————————————————————————————————————— 

The mass flow for each seat row can then be deter-
mined by the multiplication of the mass flow per air 
outlet and the number of air outlets of each seat row. 
Up to now it is insufficiently solved, how to forward 
the parameter no_AirOutlets from the Seat 
Row to the air supply system. The problem is that 
the parameter must accessed by dot-notation – Com-
ponentName.Parameter. The automatically given 
component name, by dragging it into the model, is 
not known, alternatively if the user enters a given 
component name and the programmer links all, er-
rors may occur when translating the model, if a 
component name of a seat row is used, where no seat 
row is installed, for example if a toilet or galley is 
inserted instead of a seat row. An ideal solution 
would be if Modelica language provides the possibil-
ity to access parameters or variables by a wild card 
as “class name.*.parameter/variable”. 
Currently the found solution consists in additional 
modules which are implemented into the aircraft 
template - in this way the name of the new module is 
known - where the number of air outlets and the cal-
culation of the mass flow for each seat row will be 
done. For the user this results in an additional ex-
pense of establishing connections. The additional 
modules are shown in figure 12. 

 
Figure 12: Interface to Cabin (II) 

 
 
 
 
 

6 Model Application 

6.1 Typical Application Procedure 

The package Aircraft Model is the basis for the 
user. It contains for each aircraft type a specific li-
brary and the corresponding aircraft template, see 
figure 13. For the user only the layout specific com-
ponents and the aircraft templates are of interest. For 
investigation of a new aircraft layout the user can 
select the template of the desired aircraft type out of 
the library. 
The layout specific components need to be imple-
mented into the aircraft template by the user, corre-
sponding to a specific customer layout. For each 
dropped layout specific module in the cabin area the 
user has to set the following parameters: Area, in 
which the module is located, number of passengers 
in the module and the number of air outlets. The lay-
out dependent connections to the standard fuselage 
modules, the connections between the layout specific 
modules and the connections to the system modules 
need to be established. 

 
Figure 13: Aircraft Template with Cabin Layout 

Modules 
Afterwards the main parameter dialog has to be filled 
out and the system configuration has to be entered 
and checked. Therefore the user has to work very 
carefully und systematically so that no inputs will be 
forgotten. 
If this procedure has been done the user can check 
the model and run a simulation. The post processing 
is done in Matlab. 

6.2 Improvement Potential 

The capability of the tool Dymola/Modelica to simu-
late even complex systems is given. In section 4 and 
5 some examples for improvement are already given. 
 
In general there are the following suggestions for 
improvements based on the experience gained by 
developing this model. 
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1) Read Only 
In this application case a large number of packages 
and sub-packages in the library shall be protected 
against changes by the users. They shall not be hid-
den in order to allow transparency and completeness, 
so ideally it would be possible to declare parts of the 
code as ‘read only’. 
2) Auto Connect 
Another point is the number of connections that have 
to be done by the end-user. For each seat row the 
user has to make several connections. The possibility 
of auto connecting would make sense. An idea was 
to insert a new variable AutoConnect and the de-
mand to specify each seat row with a predefined 
name. All connection statements are now written in 
the source code, inside an if-clause, which shall be 
valid if the AutoConnect is set to true. This approach 
is only possible if all seat rows are inserted, for 
which the connect statements are defined. Even if 
in one case instead of a seat row, a toilet/galley com-
bination is inserted, and although the AutoConnect is 
set to false, when translating the model an error mes-
sage appears. The reason for that is, that the compiler 
recognizes the connect statement in the if-clause. 
3) Check-Possibility 
Finally the need for a check-possibility shall be 
pointed out. There are several cases, where the user 
is required to give input values in the parameter dia-
log e.g. for the calculation of the supplied mass flow 
the parameter total no_ofPassengers is needed. 
Also when dragging a seat row in the aircraft tem-
plate, for each seat row the number of passengers to 
consider the heat dissipation. There is at the moment 
no possibility to check at the end, if the values of 
total number of passengers (parameter dialog) is 
identical to the sum of passenger declared for each 
seat row by the user. 

6.3 Model Numerical Characteristics 

Several models of the aircraft fuselage with a differ-
ent level of discretization have been established, to 
run simulations using the Dassl-Solver. The least 
coarse level of discretization without occurring nu-
merical problems was the discretization of the cabin 
in its eight areas. 
The first approach for a more detailed discretization 
was a cross section of the fuselage over two seat 
rows. Depending on the simulation time this results 
to numerical oscillations or it is not possible to reach 
steady state results. One of the reasons is that the 
system is stiff, due to the large difference between 
time constants. 

Since the Dassl-Solver seems not to be able to solve 
such a system, first attempts were made with the 
RadauIIa-Solver out of Godess (Generic Ordinary 
Differential Equation Solver System), which is lead-
ing to an improvement. 

7 Conclusions & Future Work 

A short overview of the aircraft systems and the con-
cept of the model and its library are given in this pa-
per. 
The emphasis of this paper is to demonstrate the 
challenges of providing a complex, user-friendly 
simulation model and potential solutions. 
The additional requirement of providing a template 
to an end-user for his applications causes problems 
as described in section 6.2. The difficulty appears 
due to the fact, that the programmer does not know, 
which kind of library component the end-user needs 
at which place in the provided template and that the 
activities of the end-user shall be reduced to a mini-
mum. 
The development of the library and the models is an 
on-going process. It is planned to extend the library 
to consider effects for advanced modeling, such as 
the consideration of a human body with environment 
dependent heat release rather then as a constant heat 
source or the consideration of radiation from sur-
faces. 
One of the next steps of modeling is to establish the 
complete aircraft based on a customer layout. Up to 
now there are several components and partial fuse-
lage models, which have been verified. The whole 
development of the aircraft simulation model is sub-
ject of the validation and verification process. 
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Abstract 

This paper is about instance creation in Modelica. 
Despite the conceptual simplicity of Modelica's ob-
ject-oriented framework, instance creation in Mode-
lica requires surprisingly complicated procedures. 
Hence, it takes considerable effort to develop a 
Modelica processor for extracting all variables, equa-
tions and algorithms from a given Modelica class. 
This paper is meant to reduce this effort by present-
ing key representations and algorithms for instance 
creation. To ease reading and verification, instance 
creation is developed for a fragment of Modelica, 
called SimpleModelica. Building on the representa-
tions and procedures given here, the implementation 
of instance creation (flattening) for full Modelica 
should be straightforward. However, that ultimate 
procedure is not given here, since it is loaded with 
technical details, described in the (100 pages) Mode-
lica language specification. 

1 SimpleModelica 

The syntax of SimpleModelica is defined as follows 
 

class_definition : [ encapsulated ] class IDENT class_specifier 
class_specifier :  { element ";" } end IDENT |  

"=" name [ class_modification ] 
element : import_clause | extends_clause |  

class_definition | component_declaration  

import_clause :  import ( IDENT "=" name | name ["." "*"] ) 
extends_clause : extends name [ class_modification ] 
component_declaration : name IDENT [ modification ] 

modification : class_modification [ "=" expression ] | "=" expression 
class_modification : "(" [ argument { "," argument } ] ")"  
argument : element_modification | element_redeclaration 

element_modification : name [ modification ] 
element_redeclaration : redeclare  

(class_definition | component_declaration) 
expression : NUMBER | STRING | true | false | name 

name : IDENT [ "." name ] 
 

As usual, [x] stands for zero or one, and {x} for zero 
or more occurences of x, while | denotes alternatives. 

SimpleModelica is a proper subset of Modelica. 
Omissions w.r.t. Modelica are: arrays, most prefixes, 
equation and algorithm section, class categories, ex-
pressions involving functions, comments, and anno-
tations. An example of SimpleModelica is 

 
class Ele1000 = Ele(Resistor.r=1000); 
class Ele 
   class Resistor 

      Real r = 1; 

   end Resistor; 

  

   class Circuit 

      Resistor r1; 

      Ele.Resistor r2; 

   end Circuit; 

end Ele; 

 

These class definitions will be used throughout the 
paper as illustrating example. 

2 Representations 

The procedure for instance creation operates on data 
structures as defined by the UML diagram shown in 
Fig 1. An instance of the shown classes is called 
term here, while an instance of a Modelica class is 
simply called instance.  

2.1 Abstract syntax tree 

A Modelica parser may use the classes shown in 
double-framed boxes to create an abstract syntax tree 
(AST) from a given SimpleModelica class definition. 
Fig 2 shows the AST that such a parser creates for 
the class definitions Ele and Ele1000 given above. 

In the algorithm for instance creation, the Modelica 
class tree is represented by the constant ROOT, which 
is a ClassDefinition with no id and no parent that 
contains all top-level class definitions (typically 
packages).  
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Moreover, the constant GLOBAL is a ClassDefinition 
with no id and no parent that contains following 
built-in ClassDefinitions 

 (1) primitive types RealType, IntegerType, String-
Type, BooleanType, e.g.  
 class RealType 
 end RealType; 
 class StringType 
 end StringType; 

(2) predefined types defined using these primitive 
types, e.g. 
 class Real 
   RealType value;//accessed without dot-notation 
   StringType unit;  
   RealType min;  
   RealType max;  
 end Real; 
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Fig 1: Classes used to implement instance creation 
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Fig 2: AST for classes Ele1000 and Ele 

2.2 Implicit classes: IClass 

An implicit class is a class that has no explicit defini-
tion in the Modelica class tree. In the example above, 
class Ele1000.Circuit is implicit, because the AST of 
Ele1000 does not contain a ClassDefinition named 
Circuit. Class Circuit is only inherited to Ele1000 
through its base class Ele. Nevertheless, class 
Ele1000.Circuit can be instantiated, and the resulting 
instance differs from the result of instantiating class 
Ele.Circuit: Ele1000.Circuit.r1.r = 1000 while 
Ele.Circuit.r1.r = 1.  

In other words: Ele1000.Circuit and Ele.Circuit are 
two different classes. In general, a class A may mod-
ify its base classes, which may modify all elements 
inherited by A from these base classes, including 
inherited classes. 

To deal with implicit classes, a Modelica class is 
represented here by a tuple <ClassDefinition def, 
Modification mod, Class parent>, see Class in Fig 1. 
A ClassDefinition def from the Modelica class tree is 
complemented with a Modification mod that modi-
fies this definition and a parent class that overrides 
the definition's parent. Subclasses of Class are 
ClassDefinition (for which mod is always null, and 
def refers to the ClassDefinition itself) to represent 
classes from the Modelica class tree, and IClass to 
represent implicit classes. The example Modelica 
classes are hence represented by the following terms  
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Modelica class term is a def, mod, parent 
Ele ClassDef. Ele, null, ROOT 

Ele.Resistor ClassDef. Ele.Resistor, null, Ele 

Ele.Circuit ClassDef. Ele.Circuit, null, Ele 

Ele1000 ClassDef. Ele1000, null, ROOT 

Ele1000.Resistor IClass Ele.Resistor, (r =1000), Ele1000 

Ele1000.Circuit IClass Ele.Circuit, null, Ele1000 

A ClassDefinition is created by the Modelica parser, 
while an IClass is created by the procedure for class 
name lookup during instance creation. 

2.3 Qualified references: QRef 

Modelica supports a use before declare policy for the 
components of a class. Moreover, there may be cy-
clic dependencies between components: to instanti-
ate component a, we may need access to component 
b, and vice versa. This raises the question what kind 
of object the lookup of a component reference should 
return during instance creation. The referenced com-
ponent (an instance) may not yet exist. To cope with 
this, we decide that lookup of a component may also 
return a pair <host, ref> where host is an Instance, 
and ref is a Reference, such that ref.id is the id of an 
instance in host.parts. This pair is called qualified 
reference, QRef for short. A QRef asserts that the 
host contains - or will contain - the referenced in-
stance, and it represents this referenced instance. The 
host may still be under construction at the time the 
QRef is created, i.e. may not yet actually contain the 
referenced instance. Using QRefs, we can represent 
an instance before it actually exists. In contrast to a 
Reference, the meaning of a QRef does not depend 
on its context, but only on the host. This is why 
QRef s are called 'qualified'. 

2.4 Qualified and unqualified modifications 

A Modification is called qualified, if all its Refer-
ences have been replaced by QRefs. A qualified 
modification does not depend on its context, because 
all references have been looked up in some scope. In 
other words, the meaning of an unqualified modifica-
tion depends on its context, while the meaning of a 
qualified modification does not. 

ComponentDeclaration and Extends have unquali-
fied modifications, while the modification of IClass 
is qualified or null, and the modification of ClassDe-
finition is always null. Example 
  class P 
    class Ele2000 =Ele(Resistor.r=r2k); 
    Real r2k(unit="Ohm")=2000; 
  end P 

The extends clause "=Ele(Resistor.r=r2k)" of 
the short class definition Ele2000 is not qualified, i.e. 

the Modelica parser returns an Extends that contains 
the Reference "r2k".  

The same holds for Modifications occurring in com-
ponent declarations, such as (unit="Ohm")=2000. 

In contrast, the Class returned by class lookup of 
P.Ele2000.Resistor is an IClass with parent 
P.Ele2000 and with the qualified modification 
(r = QRef(host = x, ref = "r2k")), where x is an in-
stance of class P. Recall that a short class definition 
such as P.Ele2000 does not define its own scope, and 
hence "r2k" has to be looked up in the scope of P. 

2.5 Instances 

The objective of instance creation is to derive an ob-
ject - called instance - that contains all inherited and 
locally declared components of a given Modelica 
class, with all occurring modifications applied. Fig 3 
shows an instance of class Ele1000.Circuit. 
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Fig 3: Instance of Modelica class Ele1000.Circuit 

3 Algorithm for Instance Creation 

Informally, instance creation as implemented below 
proceeds as follows 

• take the term representing the class to be in-
stantiated, e.g. class definition Ele.Circuit 
shown in Fig 2, 

• replace each extends clause found in the class 
by the parts of an instance of the specified base 
class, 

• replace each component declaration found in 
the class by an instance of the component type. 

• The term resulting from all these replacements 
is called instance, see e.g. Fig 3. 
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In this context, a key algorithm is the procedure to 
lookup (resolve) a reference such as 'Resistor'. 
Lookup retrieves or computes the referenced compo-
nent (a named instance) or class. 

3.1 Name lookup 

The following two procedures show how lookup 
works in principle, roughly on the level of detail as 
in the Modelica specification [1]. However, the pro-
cedure for instance creation given in section 3.2 uses 
an extended version, that (1) collects and merges 
class modifications encountered during lookup to 
support implicit classes (IClass) and (2) returns a 
Component (QRef) instead of a ComponentDeclara-
tion, in case the reference refers to a component. Un-
fortunately, these extensions make the code for 
lookup less easy to understand. Therefore we also 
present a simplified version of name lookup here. 

 
lookupName(Class c, Reference ref, Boolean  
isFirst) →→→→ NamedElement 
1. x ← lookupIdent(c, ref.id) 
2. if (x = null and isFirst) 
3.    x ← import(c.def, ref.id)  
4. end if  
5. if (x ≠ null) 
6.    if (ref.next = null) return x 
7.    else if (x isa Class) 
8.      return lookupName(x, ref.next, false)  
9.    else  
10.       assert x isa ComponentDeclaration 
11.       xc ← the ClassDefinition that contains x 
12.       type ← lookupName(xc, x.type, true) 
13.       return lookupName(type, ref.next, false) 
14.    end if 
15. else if (isFirst) 
16.       if (c.def is encapsulated or c = ROOT) 
17.          return lookupName(GLOBAL, ref, true) 
18.       else if (c.parent ≠ null) 
19.          return lookupName(c.parent, ref, true) 
20.       end if 
21. end if 
22. error "ref not found" 
This procedure looks up the given reference in the 
scope of the given class, and either returns the first 
named element (class definition or component decla-
ration) found, or signals a "ref not found" error.  

The procedure searches the sequence of parents, until 
an encapsulated class or the unnamed root class of 
the Modelica class tree is reached. In both cases, 
search is continued (line 17) in the global scope that 
contains the predefined elements, such as Real, 
String, and time. Only the first identifier (as indi-
cated by the isFirst argument) of a name is looked up 
using the import clauses of the class, see lines 2, 3, 4. 

E.g. when looking up reference A.B in the scope of 
class C, then A may be imported by C, but import 
clauses of A are ignored when looking for B in the 
scope of A in line 8. 

 
lookupIdent(Class c, String id) →→→→ NamedElement 
1. if (c.def.elements contains  
2.    a NamedElement e with e.id = id) 
3.    return e 
4. else  
5.    for each Extends ext in c.def.elements  
6.       if (ext.type.id = id) return null 
7.       end if  
8.       base ← lookupName(c, ext.type, true) 
9.       e ← lookupIdent(base, id) 
10.       if (e ≠ null) return e 
11.       end if  
12.    end for  
13.    return null 
14. end if  
Searches class c and its base classes for a named ele-
ment with the given id. If id names a local or inher-
ited named element of c, returns that element, returns 
null otherwise. This search does neither use imports 
nor parent classes. A tricky part of the algorithm is 
the test in line 6, which terminates a circular attempt 
to lookup a base class of c. 

3.2 Instance creation for SimpleModelica 

This section presents a set of procedures that imple-
ment instance creation for SimpleModelica. 

instantiate(Reference name) →→→→ Instance 
1. c ← lookupClass(ROOT, name, null) 
2. ic ← elaborate(c, new Instance()) 
3. ic ← replaceQRefs(ic) 
4. ic ← removeDuplicates(ic) 
5. return ic 
This procedure instantiates the given class and re-
turns the resulting instance. The class is specified by 
name. This way, also an implicit class (such as 
Ele1000.Circuit) can be instantiated. In line 1., the 
class name is looked up in the scope of the unnamed 
root of the Modelica class tree. In line 2., the entire 
instance tree is created. However, component refer-
ences occurring in modifications are replaced by 
QRefs, not by the referenced instances, see section 
2.3. In line 3., ic is the root of the completed instance 
tree. All referenced instances should have been cre-
ated by then. Consequently, all QRefs can now be 
replaced by the referenced instances. In line 4., du-
plicate instances added through multiple inheritance 
are removed from the instance.  
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elaborate(Class c, Instance host) →→→→ Instance 
1. for each Extends ext in c.def.elements 
2.    base ← getClass(c, ext, c.mod, host)  
3.    host ← elaborate(base, host) 
4. end for 
5. for each ComponentDeclaration decl  
6. in c.def.elements 
7.    if (redeclare(c.mod, decl.id) ≠ null) 
8.       decl ← redeclare(c.mod, decl.id)  
9.    end if 
10.    qmod ← select(c.mod, decl.id) 
11.    type ← getClass(c, decl, qmod, host) 
12.    comp ← elaborate(type, new Instance()) 
13.    comp.id ← decl.id 
14.    add comp to host.parts 
15. end for 
16. host.value ← c.mod.value 
17. return host 
This procedure adds for each inherited or locally de-
clared component of the given class c an elaborated 
instance to the given host. In an elaborated instance, 
each component reference is represented by a QRef 
(see section 2.3), but not yet by the referenced in-
stance. During elaboration, modifications are merged 
in the correct order. Redeclaration of a component is 
processed in lines 7 - 9.  
 

getClass(Class c, Element e, Modification qm, 
Instance host) →→→→ Class 
1. type ← lookupClass(c, e.type, host) 
2. qmod ← qualify(c, e.mod, host) 
3. qmod ← merge(qm, qmod) 
4. return createClass(type, qmod) 
This auxilliary procedure returns a base class (if e is 
an Extends) or component type (if e is a Compo-
nentDeclaration) used during elaboration or lookup. 
 

createClass(Class c, Modification qmod) →→→→ Class 
1. qmod ← merge(qmod, c.mod) 
2. if (qmod = c.mod) return c 
3. else return new IClass(c.def, qmod, c.parent) 
4. end if 
This auxilliary procedure merges the qualified modi-
fication of the given class with the given qualified 
modification qmod, where elements of qmod over-
ride elements of c.mod. Returns either the given 
class (e.g. if qmod = null), or a new IClass (see 2.2). 

 
lookupClass(Class c, Reference name, Instance 
host) →→→→ Class 
1. x ← lookup(c, name, true, host) 
2. if (x isa Class) return x 
3. else error "not a class" 
4. end if 

Look for the given class name in the scope of class c. 
The host is either null, or an elaborated instance of c. 
The given host may be under construction, i.e. not 
yet completely elaborated. If lookup should require 
to instantiate c (e.g. to access a component of c that 
occurs in a modification, see r2k in the example in 
section 2.4) the host, if given, is used. Otherwise, c is 
elaborated on demand. 
 
lookup(Class c, Reference ref, Boolean isFirst, 
Instance host) →→→→ Class or Component 
1. x ← lookup(c, ref.id, host) 
2. if (x = null and isFirst) 
3.    x ← import(c.def, ref.id)  
4. end if  
5. if (x ≠ null) 
6.    if (ref.next = null) return x 
7.    else if (x isa Class) 
8.       return lookup(x, ref.next, false, null) 
9.    else  
10.       assert x isa QRef 
11.       return new QRef(x.host, ref) 
12.    end if  
13. else if (isFirst) 
14.       if (c.def is encapsulated or c = ROOT)  
15.          return lookup(GLOBAL, ref, true, null) 
16.       else if (c.parent ≠ null)  
17.          return lookup(c.parent, ref, true, null) 
18.       end if 
19. end if  
20. error "ref not found" 
Similar to procedure lookupName, defined in section 
3.1. However, if ref names a component, the compo-
nent is returned (as QRef), not its declaration. 

Again, if isFirst is false, then only locally declared or 
inherited elements are found, i.e. import clauses, the 
parent of c as well as the global scope are ignored. 

 

The next procedure looks up in class c for a local, 
inherited or redeclared class or component with the 
given id. Returns null, if no such class or component 
is found. This does not use imports or c's parent. If id 
names a component, the component is returned (rep-
resented by a QRef), and not (like procedure look-
upIdent defined in section 3.1) the corresponding 
component declaration. 

Lines 5 and 25 handle the case that id names a class 
that is redeclared by the qualified modification 
c.mod. If id names a component which is redeclared 
by c.mod, this redeclaration is either treated during 
elaboration of c in line 11, or in lines 19-20 in case 
the component is inherited from a base. 

If id names a class inherited to c, then c becomes the 
new parent of this class (line 24).  
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lookup(Class c, String id, Instance host) →→→→ Class 
or Component 
1. if (c.def.elements contains  
2.      a NamedElement e with e.id=id)  
3.    if (e isa ClassDefinition) 
4.       if (redeclare(c.mod, id) ≠ null)  
5.          e ← redeclare(c.mod, id) 
6.       end if 
7.       return createClass(e, select(c.mod, id)) 
8.    else 
9.       assert e isa ComponentDeclaration 
10.       if (host = null)  
11.          host ← elaborate(c, new Instance()) 
12.       end if  
13.       return new QRef(host, new Reference(id)) 
14.    end if 
15. else  
16.    for each Extends ext in c.def.elements  
17.       if (ext.type.id=id) return null 
18.       end if  
19.       base ← getClass(c, ext, c.mod, host) 
20.       e ← lookup(base, id, host) 
21.       if (e ≠ null) 
22.          if (e isa Class) 
23.             if (redeclare(c.mod, id) = null)  
24.                e ← new IClass(e.def, e.mod, c) 
25.             else e ← redeclare(c.mod, id) 
26.             end if 
27.             return createClass(e, select(c.mod, id)) 
28.          else return e 
29.          end if  
30.       end if  
31.    end for 
32.    return null 
33. end if  
A tricky part of this procedure is the test in line 17 
which terminates a circular attempt to lookup a base 
class of c. 

 

import(ClassDefinition c, String id) →→→→ Class or 
Component 
1. for each Import imp in c.imports  
2.    if (imp matches "import A.B.C" and id="C")  
3.      return lookup(ROOT, "A.B.C", true, null) else 
4.    if (imp matches "import C = A.B" and id="C")  
5.      return lookup(ROOT, "A.B", true, null) else 
6.    if (imp matches "import A.B.*")  
7.       ab ← lookupClass(ROOT, "A.B", null) 
8.       e ← lookup(ab, id, null) 
9.       if (e ≠ null) return e  
10.       end if  
11.    end if  
12. end for  
13. return null 
Searches the import clauses of the given class defini-
tion for a named element with the given id. Returns 
the first matching class or component, or null if no 
match was found. 

removeDuplicates(Instance host) →→→→ Instance 
Remove all duplicate instances (instances with same 
id) from the given instance and return the resulting 
instance. Duplicates are caused by multiple inheri-
tance. It is an error if two duplicate elements are not 
equivalent. Example: 
  class A Real x = 1; end A; 
  class B Real x = 2; end B;  
  class C  
    extends A;  
    extends B; // error  
  end C; 
  class D  
    extends A;  
    extends B(x = 1); // ok 
  end D; 
Before application of removeDuplicates, instances of 
C and D contain a duplicate component x. The pro-
cedure removes x from D, but signals an error for C, 
because components x = 1 and x = 2 are not equiva-
lent. 

 

qualify(Class c, Modification mod, Instance host) 
→→→→ Modification 
Lookup each Reference contained in the given un-
qualified modification in the scope of the given 
class, replace it with the resulting Class or QRef, and 
return the resulting qualified modification. See 2.4. 
The given host is either null or, if available, an 
elaborated instance of class c to be used as argument 
for name lookup in the scope of class c.  
 

replaceQRefs(Instance host) →→→→ Instance 
Replace each QRef contained in the given instance 
by the referenced Instance and return the resulting 
instance. It is an error if an instance referenced by a 
QRef is not found in the QRef's host. (For unre-
stricted Modelica, this method also performs dy-
namic lookup of the inner component, in case a 
QRef references an outer component.) 
 

redeclare(Modification env, String id) →→→→ 
NamedElement 
1. if (env.redeclarations contains x with x.id = id)  
2.    return x  
3. else return null 
4. end if  
If the given modification redeclares an element with 
the given id, return the element. In the AST gener-
ated by a parser, the parent of a redeclared class is 
the class that contains the redeclaration.  
Example:  
class A = B(redeclare class C = D); 
In the corresponding AST, the parent of C is A. 
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select(Modification env, String id) →→→→ Modification 
1. if (env.modifications contains x with x.ref.id = id) 
2.    if (x.ref.next = null)  
3.       return x.mod 
4.    else  
5.       mod ← new Modification() 
6.       em ← new 
7.          ElementModification(x.ref.next, x.mod)) 
8.       add em to mod.modifications 
9.       return mod 
10.    end if  
11. else return null 
12. end if  
If the given modification modifies an element with 
the given id, this procedure returns the corresponding 
modification. Otherwise returns null.  
Examples:  
• select( (R.r =10), "r") returns null 
• select( (R.r =10), "R") returns (r =10) 
• select( (r =10), "r") returns =10 
• select( (r), "r") returns null 
 

merge(Modification env, Modification mod) →→→→ 
Modification 
1. if (env=null) return mod 
2. else if (mod=null) return env 
3. else 
4.    result ← copy of env 
5.    for each ElementModification em  
6.    in mod.modifications 
7.       if (select(env, em.ref.id) = null)  
8.          add em to result.modifications 
9.       end if 
10.    end for 
11.    for each NamedElement e  
12.    in mod.redeclarations 
13.       if (redeclare(env, e.id) = null)  
14.          add e to result.redeclarations 
15.       end if 
16.    end for 
17.    if (env.value = null) 
18.       result.value ← mod.value 
19.    end if  
20.    return result 
21. end if 
Merge the given modifications, where elements in 
env beat (override, replace, update) elements in mod, 
and return the resulting merged modification.  

The merge operation is associative, not commutative, 
and merge(null, m) = merge(m, null) = m for every 
Modification m. See [1] for a more detailed specifi-
cation of the merge operation. 

Examples: 

• merge( (x=1,y=2), (x(min=6)=3, z=4)=5 )  
returns the modification (x=1, y=2, z=4)=5 

• merge( (x), (x=1) ) returns (x=1) 

3.3 Extension to Arrays 

SimpleModelica can be extended to arrays by adding 
(updating resp.) the follwing syntactic definitions. 
 

class_specifier :  { element ";" } end IDENT |  
"=" name [ subscripts ] [ class_modification ] 

component_declaration : name [ subscripts ] IDENT [ modification ] 

element_modification : [ each ] reference [ modification ] 
expression : NUMBER | STRING | true | false | reference |  

"{" expression { "," expression } "}" 

reference : IDENT [ subscripts ] [ "." reference ] 
subscripts : "[" (":" | expression) { "," (":" | expression) } "]" 

 

Example: 
   class P =Real[2](unit={"x","y"}); 

   class A 
      Real[n,n+1] a; 
      Real[:] b(each min=1)={2,n,4}; 
      Integer n = 3; 
   end A 

A challenge introduced by arrays is the need to 
evaluate expressions during instance creation. 

• The parameter expressions that specify array size 
must be evaluated, and return positive integer 
sizes. E.g. to instantiate component a in class A, 
expressions n and n+1 must be evaluated. 

• The modifier of an array must be split in order to 
get one single modifier for each array element. 
E.g., to instantiate b in class A, b's modification 
is split into three modifiers (min=1)=2, 
(min=1)=n, and min(=1)=4. 

To represent arrays, we use a new class Array, which 
extends Instance (see Fig 1) and defines the fields 
elementType, subs, and mod where  

• elementType is a Class  

• subs is a qualified subscripts expression defining 
the array size, e.g. [3, 4] 

• mod is an optional qualified array modification, 
e.g. (unit = {"r", "g", "b"}) = {1, 2, 3}. 

Expansion of arrays is delayed until the class being 
instantiated has been elaborated and hence array size 
expressions can be evaluated. After expansion of an 
array a, the field a.parts (inherited to Array from In-
stance) contains the array elements. 

A notable feature introduced by arrays are compo-
nent references that cannot be resolved to a unique 
component during instance creation. 

Example:  
 Real a[:] = {10, 20}; 
 Real b = a[if (time<1) then 1 else 2]; 

The value of b cannot be identified with a unique 
array element during instance creation. 
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The following procedures extend instance creation as 
presented so far to arrays. 

instantiate(Reference name) →→→→ Instance 
1. c ← lookupClass(ROOT, name, null) 
2. ic ← elaborate(c, new Instance()) 
3. ic ← expandArrays(ic) 
4. ic ← replaceQRefs(ic) 
5. ic ← removeDuplicates(ic) 
6. return ic 
The only difference to the procedure given in 3.2 is 
the inserted line 3, which expands arrays contained 
in ic by evaluating array size expressions and creat-
ing and inserting the corresponding array elements. 

 
elaborate(Class c, Instance host) →→→→ Instance 
1. for each Extends ext in c.def.elements 
2.    if (ext.subs ≠ null) 
3.       return createArray(c, ext, c.mod, host) 
4.    else 
5.       base ← getClass(c, ext, c.mod, host)  
6.       host ← elaborate(base, host) 
7.    end if 
8. end for 
9. for each ComponentDeclaration decl  
10. in c.def.elements 
11.    if (redeclare(c.mod, decl.id) ≠ null) 
12.       decl ← redeclare(c.mod, decl.id)  
13.    end if 
14.    qmod ← select(c.mod, decl.id) 
15.    if (decl.subs ≠ null) 
16.       comp ← createArray(c, decl, qmod, host) 
17.    else 
18.       type ← getClass(c, decl, qmod, host) 
19.       comp ← elaborate(type, new Instance()) 
20.    end if 
21.    comp.id ← decl.id 
22.    add comp to host.parts 
23. end for 
24. host.value ← c.mod.value 
25. return host 
The only difference to the elaboration procedure 
given in 3.2 are lines 2-5 and 15-17, which treat the 
case that a short class definition or component decla-
ration contains subscripts. 

 
createArray(Class c, Element e, Modification qm, 
Instance host) →→→→ Array 
1. elementType ← lookupClass(c, e.type, host) 
2. qsubs ← qualify(c, e.subs, host) 
3. qmod ← merge(qm, qualify(c, e.mod, host)) 
4. return new Array(elementType, qsubs, qmod) 
This auxilliary procedure creates an array with the 
given fields. The returned array is not yet expanded, 
but it represents (is equivalent to) an expanded array. 

 

expandArrays(Instance host) →→→→ Instance 
1. if (host isa Array) 
2.    expr ← left-most expression in host.subs  
3.    next ← host.subs without left-most expression 
4.    n ← vectorSize(expr, host.mod) 
5.    for i in 1 to n 
6.       modi ← split(host.mod, i, n) 
7.       if (next = null) 
8.          ci ← createClass(host.c, modi) 
9.          xi ← elaborate(ci, new Instance()) 
10.       else 
11.          xi ← new Array(ci, next, modi) 
12.       end if 
13.       add expandArrays(xi) to host.parts 
14.    end for 
15. else  
16.    for each Instance comp in host.parts 
17.       replace comp by expandArrays(comp) 
18.    end for  
19. end if 
20. return host  
This procedure expands all arrays contained in the 
given host, and returns the resulting expanded in-
stance. 

 

split(Modification qmod, Integer i, Integer n) →→→→ 
Modification 
Splits the given qualified modification into n parts 
and returns the ith part of it. Example:  

• split( (each unit="V"), 7, 10) returns (unit="V") 
• split( ={x, x+y, y}, 2, 3) returns = x+y 
Note that Modelica arrays have a 1-based index, i.e. 
the first array index is 1 and not 0. 

 
vectorSize(Expression qexpr, Modification qmod) 
→→→→ Integer 
Determine vector size based on the given qualified 
integer-valued expression and the given qualified 
vector modification. This requires evaluation of 
qexpr, as well as evaluation of expressions occuring 
in qmod. Returns a positive integer, or signals an 
error. The following examples assume that parameter 
n evaluates to 3 

• vectorSize(2, null) returns 2 
• vectorSize(n, null) returns 3 
• vectorSize(:, { x }) returns 1 without eval of x 
• vectorSize(:, null) signals an error 

3.4 Extension to unrestricted Modelica 

To extend instance creation to full Modelica, the fol-
lowing remains to be done 

• match outer references with the corresponding 
inner reference in the instance tree 
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• add qualified equations and algorithms to an 
instance, expand for clauses in equation sec-
tions and connect predicates i.e. generate the 
corresponding equations 

• validate semantic constraints, e.g. (1) asser-
tions associated with a class category,  
(2) type constraints of the Modelica type sys-
tem, (3) constraining clause for redeclaration, 
(4) restrict modification to public and non-
final elements of a class  

The extension of the above algorithms to most of 
these features should be straightforward. 

4 Application 

Modelica's object-oriented approach to modeling 
opens new ways for systematically validating (mod-
els of) engineered systems, e.g. with respect to be-
havior in the presence of component faults and for 
alternative input scenarios. We have implemented 
instance creation as presented here for a large frag-
ment of Modelica. This Java implementation (based 
on JavaCC, see [5]) is part of a bigger effort to de-
velop a tool for automated simulation which, in a 
nutshell,  

• instantiates a given annotated Modelica model 

• extracts for each component of the system the 
corresponding fault modes (e.g. ok, stuckOpen, 
stuckClose) as indicated by specific annotations 

• extracts information about the intended use of 
the system (inputs of the model) 

• extracts information about specified, i.e. desired 
behavior of the system 

• uses the extracted information to autonomously 
drive a large number of simulation runs, during 
which component faults are dynamically inserted 
and resulting behavior is classified w.r.t. speci-
fied behavior. The executable used for simula-
tion is generated by Dymola. 

Modelica applications like this one require access to 
instantiated Modelica classes. Modelica simulators 
such as Dymola do not currently offer an API to ac-
cess instances, which currently forces application 
developers to implement instance creation on their 
own. This paper may help to reduce the required ef-
fort in the future. 

5 Related Work 

The Modelica specification [1] is available for free 
from www.modelica.org. The specification states 

that it defines the static semantics of Modelica in 
terms of a procedure for instance creation. Unfortu-
nately, this is done in a quite informal way. No 
pseudo code is given, and no auxiliary representa-
tions (such as Instance, QRef, IClass) are explicitly 
defined. It would be helpful to complement the 
specification with a precise procedural definition of 
instance creation in the future. This paper may be a 
starting point. 

Pelab at Linköping University has developed a RML 
specification [3] for a fragment of Modelica, which 
can be used to automatically generate [4] a procedure 
for instance creation. However, for a human reader 
interested in a procedural view on Modelica, e.g. to 
understand name lookup or to implement flattening, 
the RML specification (several thousand lines of de-
clarative rules) is less helpful. 

The design of Modelica was influenced by the The-
ory of Objects by Abadi and Cardelli [2]. This book 
defines various calculi (similar to Lambda-calculus) 
to model object-oriented languages. The calculi are 
composed from equational theories, called frag-
ments. Based on these calculi, a procedure for in-
stance creation in Modelica could perhaps be derived 
on formal grounds as follows 

• define an equational theory E of objects  
• direct the equations to convert E into a term 

rewrite system such that a term may be a Mod-
elica class definition, and the irreducible term 
derived from that by a finite number or reduc-
tions is an instance of that class. 

This is basically the idea underlying Pelab's RML 
specification. In this paper, we have chosen a less 
formal approach. 
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Abstract 
The need for integrating system modeling with tool 
capabilities is becoming increasingly pronounced. For 
example, a set of simulation experiments may give rise 
to new data that are used to systematically construct a 
series of new models, e.g. for further simulation and 
design optimization. Using models to construct other 
models is called meta-modeling or meta-programming. 

In this paper we present extensions to the Modelica 
language for comprehensive meta-programming, in-
volving transformations of abstract syntax tree repre-
sentations of models and programs. The extensions 
have been implemented and used in several applica-
tions, are and currently being integrated into the 
OpenModelica environment. 

1 Introduction 
Meta-programming (meta-modeling) is writing pro-
grams (models) having other programs (so called ob-
ject-programs) as inputs or results. A program can for 
instance take another program as input data, perform 
computations on the program by traversing its internal 
structure (the abstract syntax of the program) and return 
a modified program as output data.  

Often, the object program language and the meta-
programming language are the same, like for instance 
in LISP, in Mathematica, or in the Java reflection 
mechanism. This is also the approach we have taken for 
Modelica. Thus, a language needs some way of repre-
senting the object program as data.  

A simple approach is to use text strings as program 
representation. However, this has the disadvantage that 
not even simple structural (syntactic) correctness can be 
guaranteed. Another problem is low performance. 
Thus, this approach is only suitable for simple and less 
demanding tasks. 

Another solution is to encode the object program us-
ing structured data types of the meta-programming lan-
guage. This basically means that data types for the ab-
stract syntax are defined in the language itself. This 

approach has the benefit of ensuring correct syntax of 
object programs. It is used in for instance Java reflec-
tion where the class java.lang.Class is the data 
type for a Java class. The class has methods to query a 
Java class for its methods, members, interfaces, etc.   

In a previous paper (Aronsson et.al., 2003) we pre-
sented an approach of quoted Modelica code combined 
with built-in predefined Modelica types to handle cer-
tain syntax classes, like for instance TypeName for a 
Modelica type name or VariableName for a Modelica 
variable name. However, this does not give full flexi-
bility and meta-programming power, since the abstract 
syntax tree representation cannot be fully manipulated 
in the meta-programming language itself. That work 
should be seen as a precursor and initial stage for the 
work presented in this paper. 

2 Tree Data Structures 
What are then the needs for data structures and opera-
tions for full meta-programming capabilities? One of 
the most common examples of programs that manipu-
late and produce other programs are compilers, which 
translate programs in some language into the same or 
another language.  

The most common data type representation for pro-
grams in compilers are tree structures, and typical op-
erations are transformations of such trees into trees dur-
ing the translation process. Lists are a special case of 
tree data types, but are typically given special support 
in many symbolic programming languages.. 

Tree data types have two interesting properties: 

• Union type – a tree data type is typically the union 
of a number of node types, each representing a tree 
node. 

• Recursive type – the children of a tree node may a 
type which is the tree data type itself. 

A small expression tree, of the expression 12+5*13, is 
depicted in Figure 1. Using the record constructors 
PLUS, MUL, RCONST, this tree can be constructed by the 
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expression PLUS(RCONST(12), MUL( RCONST(5), 
RCONST(13)))

 

 
Figure 1. Abstract syntax tree of the expression 12+5*13. 

Union types and recursive types are currently missing 
from the Modelica language, which so far has been a 
conscious decision in order to avoid heap-allocated 
objects. 

However, with the increased relevance of meta-
modeling, the time may now be ripe for a possible ex-
tension such as the introduction of the uniontype re-
stricted class construct. The example below declares a 
small expression tree type Exp containing 6 different 
node types represented as ordinary Modelica record 
types. 
uniontype Exp 
  record RCONST Real x1; end INT; 
  record PLUS  Exp x1; Exp x2; end PLUS; 
  record SUB   Exp x1; Exp x2; end SUB; 
  record MUL   Exp x1; Exp x2; end MUL; 
  record DIV   Exp x1; Exp x2; end DIV; 
  record NEG   Exp x1;         end NEG; 
end Exp; 

The uniontype restricted class construct currently has 
the following properties: 

• Union types can be recursive, i.e., reference them-
selves. The is the case in the above Exp example, 
where Exp is referenced inside its member record 
types. 

• Union types are currently restricted to contain only 
record types. This restriction may be removed in the 
future. 

• Record declarations declared within a union type 
are automatically inherited into the enclosing scope 
of the union type declaration. 

• A record type may only belong to one union type. 
This restriction may be removed in the future.  

This is a preliminary union type design, which however 
is very close to (just different syntax) similar constructs 
in functional languages such as Haskell, Standard ML, 
OCaml, and RML. 

3 Tree Transformation Operations 
Regarding operations on trees, most languages support-
ing tree transformations provide a kind of pattern 

matching and transformation construct. Therefore we 
propose the introduction of match-expressions in the 
Modelica language. A trivial example of match-
expression is presented below: 
  String str; 
     ;  Real x
algorithm 
  x :=  
    match str 
      case "one"   then 1; 
      case "two"   then 2; 
       
      else   0; 

case "three" then 3; 

    end match; 

The string variable str is matched against the constant 
patterns "one", "two", etc., returning the correspond-
ing value from each branch in the match-expression. A 
default value can be returned from the optional else-
branch if no other branch matches. 

The general form of the proposed match-expression 
is as follows: 
match <expr>  <opt-local-decl> 
  case <pat-expr> <opt-local-decl> 
    <opt-local-equations> 
    then <value-expr>; 
  case <pat-expr> <opt-local-decl> 
    <opt-local-equations> 
    then <value-expr>; 
  ... 
  else <opt-local-decl>  
    <opt-local-equations> 
   then <value-expr>; 
end match; 

The then keyword precedes the value to be returned in 
each branch.. The local declarations started by the lo-
cal keyword, as well as the equations started by the 
equation keyword are optional.There should be at 
least one case...then branch, but the else-branch is 
optional. 

The match-expression introduces several new con-
cepts in Modelica: 

• Pattern expressions, <pat-expr>, which may ref-
erence unbound local pattern variables declared 
within the match-expression. 

• Optional local variable declarations, <opt-local-
decl>. These variables are local and have a scope 
within the match-expression or within a specific 
branch of the match-expression if they are declared 
within such a branch. 

• Optional local equations, <opt-local-
equations>, which are solved locally within the 
match-expression, and where the unbound un-
knowns to be solved for have been declared in local 
variable declarations. 

    

PLUS 

    

MULRCONST 

RCONST RCONST 12 

5 13 

P. Fritzson, A. Pop, P. Aronsson

The Modelica Association 520 Modelica 2005, March 7-8, 2005



An example of a match-expression within the function 
eval shows its usage in a simple expression tree 
evaluator. The local variables v1,v2,e1,e2 have scope 
throughout the whole match-expression. Pattern vari-
ables such as e1 and e2 are belong to pattern expres-
sions that are matched against tree expressions. For 
example,  PLUS(e1,e2) is matched against 
PLUS(RCONST(12), MUL( RCONST(5), 

RCONST(13))) depicted in Figure 1, thereby binding 
e1 and e2 to the children of the PLUS node, in this 
match e1 to RCONST(12) and e2 to MUL( 

RCONST(5), RCONST(13)). 
function eval 
  input  Exp   exp_1; 
   R
algorithm 
output eal rval_1; 

 rval_1 := 
  match exp_1 
    local Integer v1,v2; 
          Exp     e1,e2; 
    case RCONST(v1) then v1; 
 
    case PLUS(e1,e2) equation  
      v1 = eval(e1;  eval(e2) = v2; 
      then v1+v2; 
 
    case SUB(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2; 
      then v1-v2; 
 
    case MUL(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1*v2; 
 
    case DIV(e1,e2) equation 
      v1 = eval(e1);  v2 = eval(e2); 
      then v1/v2; 
 
    case NEG(e1) equation 
      v1 = eval(e1); 
      then -v1; 
   end match; 
end eval;  

Note that the match-expression just like other expres-
sions can be used in three contexts: inside equations, 
inside algorithm sections, and inside functions. 

As usual in Modelica the equations are not direc-
tional, e.g. the two equations v1 = eval(e1) and e-
val(e1) = v1 are equivalent. 

There are some design considerations behind the 
above match-expression construct that may need some 
motivation. 

• Why do we have local variable declarations within 
the match-expression? The main reason is clear and 
understandable semantics. In all three usage con-
texts (equations, algorithm sections, functions) it 
should be easy to understand for the user and for the 
compiler which variables are unknowns (i.e., un-
bound local variables) in pattern expressions or in 

local equations.  
  Other variables that are bound to values might 
have been declared in some class, or be protected 
variables in a function. Without the simple rule that 
local unknowns must be declared locally, it would 
be hard to discover the difference between variables 
that are unknowns and still can receive values, and 
other variables which already have values.  
  Another reason for declaring the types of local 
variables is better documentation of the code – the 
modeler/programmer is relieved of the burden of 
doing manual type-inference to understand the code. 

• Why local equations instead of assignment state-
ments? The match-expression is an expression con-
struct that can be used in the three contexts, includ-
ing expressions in equations which are declarative. 
Having non-local assignments inside expressions 
would make the expressions nondeclarative. 

• Why match-expressions and not match-statements? 
The match-expression is more important since it can 
be used in all three contexts, and therefore has been 
designed first. An analogous match-statement with-
out local equations can be designed at a later stage. 

• Why the keywords match ... case instead of  
switch ... case as in Java? The current choice of 
keywords is inspired by the languages Modelica, 
Java, and Mathematica, and is just a matter of taste 
– it is easy to change to other keywords. However, it 
is probably good style to indicate the increase power 
of the match-expression compared to the switch-
statement by a different keyword. 

• Why the then keyword before the returned value? 
We have experimented with various syntax designs, 
and the code becomes easier to read if there is a 
keyword before the returned value-expression, es-
pecially when it is preceded by local equations. The 
keyword cannot be return since that means return 
from a function. The then keyword is used in a 
similar way in Modelica if-then-else expres-
sions. Note that most functional languages use the 
in keyword instead in this context, which is less in-
tuitive. However, the in keyword has more of a set 
or array element membership meaning in Modelica. 

Local equations in match-expressions have the follow-
ing semantics: 

• Only algebraic equations are allowed, no differen-
tial equations 

• Only locally declared variables (local unknowns) 
declared by local declarations within the match-
expression are solved for.  
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• Equations are solved one by one in the order they 
are declared. (This restriction may be removed in 
the future). 

• If an equation or an expression in a case-branch 
fails, all local variables become unbound, and the 
next branch is tried. (There is some discussion 
whether the semantics of trying the next case-
branch after a fail should be kept). 

3.1 Example of Symbolic Differentiation 

To make the following example of symbolic differen-
tiation more realistic, we add a few expression nodes to 
the Exp data type, including a function call node CALL 
whose argument list has the type list<Exp>, see Sec-
tion 4.1. 
record IDENT String name; end IDENT; 
record CALL  Exp id; list<Exp> args; 
  end CALL; 
record AND   Exp x1; Exp x2; end AND; 
record OR    Exp x1; Exp x2; end OR; 
record LESS  Exp x1; Exp x2; end LESS; 
record GREATER Exp x1; Exp x2; 
  end GREATER; 

An example function difft performs symbolic differ-
entiation of the expression expr with respect to the 
variable time, returning a differentiated expression. In 
the patterns, _ underscore is a reserved word that can be 
used as a placeholder instead of a pattern variable when 
the particular value in that place is not needed later as a 
variable value. The as-construct: id as IDENT(_) 
in the third of-branch is used to bind the additional 
identifier id to the relevant expression. Both tuples 
with syntax (expr1,expr2,....), see Section 4.2, 
and lists are used in the example. 

We can recognize the following well-known deriva-
tive rules represented in the match-expression code: 

• The time-derivative of a constant (RCONST()) is 
zero. 

• The time-derivative of the time variable is one. 
• The time-derivative of a time dependent variable id 

is der(id), but is zero if the variable is not time 
dependent, i.e., not in the list tvars/timevars. 

• The time-derivative of the sum (add(e1,e2)) of 
two expressions is the sum of the expression deriva-
tives. 

• The time-derivative of sin(x) is cos(x)*x' if x 
is a function of time. 

• etc... 

We have excluded some operators in the difft exam-
ple because of limitations of space in this paper. 
 
function difft "Symbolic differentiation 
    of expression with respect to time" 
  input  Exp expr; 

  input  list <IDENT> timevars; 
   E
algorithm 
output xp diffexpr; 

 diffexpr := 
  match (expr, timevars) 
    local Exp e1prim,e2prim,tvars; 
          Exp e1,e2,id; 
// der of constant 
    case(RCONST(_), _) then RCONST(0.0);  
// der of time variable 
    case(IDENT("time"), _) then 
      RCONST(1.0);  
// der of any variable id 
    case difft(id as IDENT(_), tvars) then 
      if list_member(id,tvars) then 
        CALL(IDENT("der"),list(id)) 
      else 
        RCONST(0.0); 

 // (e1+e2)’ => e1'+e2'  
    case (ADD(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then ADD(e1prim,e2prim); 

 // (e1-e2)’ => e1'-e2' 
    case (SUB(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then SUB(e1prim,e2prim); 
// ( 2)’ => e1'*e2 + e1*ee1*e 2' 
    case (MUL(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then PLUS(MUL(e1prim,e2), 
              MUL(e1,e2prim)); 

 // (e1/e2)’ => (e1'*e2 - e1*e2')/e2*e2 
    case (DIV(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then DIV(SUB(MUL(e1prim,e2), 
                 MUL(e1,e2prim)), 
             MUL(e2,e2)); 

 // (-e1)' => -e1' 
    case (NEG(e1),tvars)  equation 
      e1prim = difft(e1,tvars); 
      then NEG(e1prim); 
// sin(e1)' => cos(e1)*e1' 
   case CALL(IDENT("sin"),list(e1)),tvars) 
      equation e1prim = difft(e1,tvars); 
     then MUL(CALL(IDENT("cos"),list(e1)), 
             e1prim); 

// (e1 and e2)’ => e1'and e2'  
    case (AND(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then AND(e1prim,e2prim); 

// (e1 or e2)’ => e1' or e2'  
    case (OR(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then OR(e1prim,e2prim); 

// (e1<e2)’ => e1'<e2'  
    case (LESS(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
      e2prim = difft(e2,tvars); 
      then LESS(e1prim,e2prim); 

// (e1>e2)’ => e1'>e2'  
    case (GREATER(e1,e2),tvars) equation 
      e1prim = difft(e1,tvars); 
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      e2prim = difft(e2,tvars); 
      then GREATER(e1prim,e2prim); 

// .etc .. 
  end match; 
 
end difft; 

4 Lists and Tuples 
List and tuple data types are common in many lan-
guages used for meta-programming and symbolic pro-
gramming. 

4.1 Lists 

The following operations allows creation of lists and 
addition of new elements in front of lists in a declara-
tive way. Extracting elements is done through pattern-
matching in match-expressions shown earlier. 

• list – list(el1,el2,el3, ...) creates a list 
of elements of identical type. Examples: list()– 
the empty list, list(2,3,4) – a list of integers. 

• nil – denotes an empty reference to a list or tree. 
• cons – the call cons(element, lst) adds an ele-

ment in front of the list lst and returns the result-
ing list. Also available as a new built-in operator :: 
(coloncolon), e.g. used as in: element::lst. 

Types of lists and list variables can be specified as fol-
lows:

• list – list<type-expr> is also a list type con-
structor, e.g. :  

  type RealList = list<Real>;  

• Direct declaration of a variable rlist that denotes 
a list of real numbers: 
list<Real>    rlist; 

4.2 Tuples 

Tuples can be viewed as instances of anonymous re-
cords. The syntax is a parenthesized list. The same syn-
tax is used in extended Modelica presented here, and is 
in fact already present in standard Modelica as a re-
ceiver of values for functions returning multiple results. 

• An example of a tuple literal: 
 (a, b, "cc")  
• A tuple with a single element has a comma in order 

to have different syntax compared to a parenthe-
sized expression: (a,)  

• A tuple can be seen as being returned from a func-
tion with multiple results in standard Modelica: 

 (a,b,c) := foo(x, 2, 3, 5); 
• Access of field values in tuples is achieved via dot-

notation, tupvalue.fieldnr, analogous to 

recvalue.fieldname for ordinary record values. 
For example, accessing the second value in tup: 
tup.2 

The main reason to introduce tuples is for convenience 
of notation. You can use them directly without explicit 
declaration. Tuples using this syntax are already pre-
sent in the major functional programming languages. 

A tuple will of course also have a type. When tuple 
variable types are needed, they can for example be de-
clared using the following notation: 
type VarBND  = record<Ident, Integer>; 

or directly in a declaration of a variable bnd: 
record<Ident, Integer>   bnd; 

The tuple type used in the match-expression of the pre-
vious simple eval function is record<Exp,Exp>. 

5 Positional Type Parameters 
Class definitions in Modelica allow type parameters, 
declared as replaceable local types, e.g.: 
class C2 = C(redeclare class 
                ColoredClass = BlueClass); 

Using a shorter angle-bracket syntax for positional type 
parameters similar to what is used in other object-
oriented languages such as C++ or Java, this can be 
expressed as: 
class C2 = C<BlueClass>; 

We have used this syntax in several places throughout 
this paper, including a call to a polymorphic function in 
Section 7. 

6 Expression Evaluator with Envi-
ronments 

The previous small expression evaluator presented in 
Section 3 could only handle constant expressions. The 
following example can handle expressions with vari-
ables. It demonstrates a different representation of ex-
pression trees, with BINARY nodes that are parameter-
ized in terms of the operator, and thereby can handle 
several binary operators in a single of-branch in the 
match-expression. First we give the type declarations: 
type Ident  = String; 

uniontype Exp 
  record RCONST Real x1; end RCONST; 
  record IDENT  Ident x1; end IDENT; 
  record BINARY Exp x1; BinOp op; Exp x2;  
  end BINARY;    
  record UNARY  UnOp x1; end UNARY; 
  record ASSIGN Ident x1;  Exp x2;  
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    end ASSIGN; 
end Exp; 

uniontype Bin  Op 
  record ADD end ADD; 
  record SUB end SUB; 
  record MUL end MUL; 
  record DIV end DIV; 
end BinOp; 

uniontype UnOp 
 record NEG end NEG; 
end UnOp; 

uniontype Value 
  
end Value; 
record REALval Real x1;  end REALval; 

The following eval function can handle evaluation of 
expressions with variable references. It calls the 
lookup function for access of variable references, and 
apply_binop for evaluation of binary operators. 
type Ident  = String; 

function eval  
         // Evaluation of expression exp  
         // in an environment env 
  input  Env   env_1; 
  input  Exp   exp_1; 
  output Value value_1; 
algorithm 
 value_1 := 
  match (env_1,exp_1)  
    local Real v,v1,v2; 
         String   id; 
         Env      env; 
         Exp      e1,e2; 
         Boolean  v3; 
         BinOp    relop; 
 // Real constant 
    case (_,REALval(v)) then REALval(v);  
           
 // able identifier ivari d 
    case (env,IDENT(id)) equation                  

The next example is polymorphic since the array ele-
ment type Type_a is not fixed. It is a replaceable type, 
which makes it possible to apply arr_map to arrays of 
any element type. For example, applied to an array of 
strings, with the addA function that adds "A" to the end 
of a string:        v = lookup(env,id); 

      then REALval(v); 
 
// If id not declared, give an error 
// message and fail through error 
    case (env,IDENT(id)) equation 
      v = not lookup(env,id);               
      print("Error - undef variable: "); 
      print(id);  print("\n"); 
      then fail() 
 
 // expr1 binop expr2 
    case (env, BINARY(e1,binop,e2)) 
      equation 
        eval(env,e1) = REALval(v1);          
        eval(env,e2) = REALval(v2); 
        v3 = apply_binop(env,binop,v1,v2); 
      then REALval(v3); 
 
  end match; 
end eval;  
 

7 Function Parameters 
A common and rather useful language feature not yet 
present in standard Modelica is the ability to pass func-
tion parameters. For example, passing the add1 func-
tion to a mapping function that applies it to each ele-
ment: 

arr2 := arr_map_int(add1, {2,3,5,8}) 

returns: 

{2,4,6,9} 

We propose the following style of declaring a function 
that accepts a function formal parameter, exemplified 
through an example. The only syntax extension is to 
allow the declaration of a function without body, here 
Functype, which allows us to declare the type signa-
ture of the function formal parameter func. 
function arr_map_int 
  "Map over an array of integers" 
   function Functype 
     input Integer x1; output Integer x2; 
  end                     FuncType;           
input replaceable function c     fun

                         extends FuncType; 
  input  Integer[:] inarr; 
  output Integer[size(inarr,1)] outarr;              
algorithm   
  for i in 1:size(inarr,1) loop 
    outarr[i] := func(inarr[i]); 
  end for; 
end arr_map_int; 

arr3 :=  
  arr_map<String>(addA, {"foo","fie"}) 

returns: 

{"fooA","fieA"} 

The definition of the arr_map function: 
function arr_map 
"Map over an array of elements of Type_a" 
    replaceable type Type_a; 
     
      input Type_a x1; output Type_a x2;  

function Functype  

   end Functype;                             
  input replaceable function func 
                       extends FuncType; 
  input  Type_a[:]  inarr;  
  output Type_a[size(inarr,1)] outarr;              
algorithm  
  for i in 1:size(inarr,1) loop 
    outarr[i] := func(inarr[i]); 
  end for; 
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end arr_map; 

The semantics of function parameters include the fol-
lowing: 

• Functions can be passed as actual arguments at 
function calls. 

• Type checking done on the function formal parame-
ter type signature, not including the actual names of 
inputs and outputs to the passed function. 

8 Exception Handling 
The design of exception handling capabilities in Mode-
lica is currently in a preliminary phase. The following 
constructs are being discussed: 

• A try...catch statement or expression. 
• A raise(...) call for raising exceptions. 

The statement variant has approximately the following 
syntax: 
try  
  <statements> 
  ... 
catch <x> then 
  <statements> 
  ... 
end try; 

The syntax of the expression variant is as follows: 
try  
  <expression> 
catch <x> then 
    <ex
end try; 

 pression> 

This design is still very preliminary, several issues need 
to be determined, and no implementation has yet been 
produced. 

9 Conclusions 
It has been demonstrated how Modelica can be ex-
tended with data structures and operations that are typi-
cally needed for comprehensive meta-programming and 
symbolic transformations. The extensions are declara-
tive and preserve the declarative and equation-based 
style of Modelica. Recursive data types, lists, and tree 
pattern matching in match-expressions with local equa-
tions can be naturally integrated into the current Mode-
lica 2.1 language. A implementation of most of this 
functionality has been tested on a number of examples, 
including those in this paper, and is currently being 
integrated into the OpenModelica compiler. 

We believe that the combination of the modeling 
power and numeric capabilities of the current Modelica 
language, combined with symbolic transformation ca-

pabilities of the new extensions, will make Modelica 
into a very powerful meta-modeling and meta-
programming language for the future. 
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Abstract 

The current GENSIM project, which is being con-
ducted by a consortium of six Fraunhofer Institutes, 
is developing the generic simulation tool MOSILAB 
for the analysis of mixed time-continuous / time-
discrete (hybrid) models of heterogeneous technical 
systems. One major innovation here in terms of 
simulation technology is the mapping of state-
dependent changes in the model structure (model 
structural dynamics). This enables, for example, 
simulation experiments to be conducted with models 
of variable modelling depth. The modelling descrip-
tion language in the project MOSILA is based on 
Modelica, which was extended syntactically in terms 
of an adequate description of the model structural 
dynamics. The simulation tool is composed of a ker-
nel and an integrated development environment and 
will be available in spring 2005 as a first prototypical 
implementation. The usability of the simulation tool 
is tested and evaluated in the GENSIM project by 
means of three use cases in the application areas fuel 
cell systems, hygrothermal building analysis and cut-
ting tool systems. 
Keywords: MOSILAB; Generic simulation tool; 
Model structural dynamics; object-oriented 

1 Introduction 

A heterogeneous technical system shows in depend-
ency of its state a different physical behaviour. For 
example the physical behaviour of a starting plane in 
the different phases of rolling, taking off and flying 

can be described with different sets of physical ef-
fects, like the air and roll friction on the earth and the 
aerodynamic laws in the sky. An adequate simulation 
model for such a technical system needs also a high 
level of flexibility and adaptation in its model struc-
ture and in its equation system.   
The innovative goal of the GENSIM project is to 
develop a new generic simulation tool for hybrid 
models, which supports model structural dynamics. 
Model structural dynamics in this context means, the 
model structure (the number and types of equations) 
can change during the simulation experiment in de-
pendency of events, which are triggered from the 
state of the model self or its environment.  
The object- and equation-oriented simulation lan-
guage Modelica (http://www.modelica.org) offers in 
principal a good language concept for modelling 
technical systems with structural dynamics.  For this 
reason Modelica was chosen as the language basis 
for the GENSIM simulation tool. Because the actual 
specification of Modelica is limited to fixed model 
structures during the simulation experiment, some 
syntactical extensions were made in GENSIM to ob-
tain the possibility for describing model structural 
dynamics in a compact form.  

2 Modelica Language Extension  

The modelling description language MOSILA 
(Modelling and Simulation Language), which is 
specified and used in the GENSIM project, is based 
on Modelica. From the view of the modeller 
MOSILA is mainly an extension of Modelica. 
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Thereby existing models and also the disposable 
Modelica standard library can be reused within the 
GENSIM simulation tool directly or with a small 
effort of adaptation. 
However the means of expressions of Modelica, par-
ticular for the description of variable model struc-
tures, are not powerful enough yet for using special 
simulation technologies, e.g. variable modelling 
depth. Therefore some syntactical extensions are 
added in MOSILA. These extensions where influ-
enced by the UMLH [1], an adaptation of the UML 
[2] for the context of hybrid systems. 

2.1 Dynamical object structures 

Dynamical object structures were introduced to rep-
resent variable models during the simulation experi-
ment. Thus, it becomes possible to extend the static 
model tree with dynamical objects during discrete 
phases of an experiment, which them self can spawn 
complex model trees. Since objects represent state 
attributes and behaviour in form of equations, the 
underlying equation system can be changed in size 
and quality when a structural change takes place. 
After such changes a new equation system will be 
derived for the following continuous phase. 

2.2 Object-oriented Statecharts 

To ease the description of structural changes, an 
adequate syntax for the control of discrete model 
switches were realised on the base of object oriented 
statecharts. Figure 1 shows a statechart controlling 
the mode switches of a landing device: 

 
Figure 1: Statechart of a landing device 

At the beginning the device enters the mode “mov-
ing” and within its sub-mode “falling”. If the booster 
is enabled (depending on the decend speed), than it 
enters the “slowDown” mode until the booster is dis-
abled. When the device reaches the ground the 
“moving” mode is left and “stop” is entered. 

To simplify the modelling process direct support for 
these statechart descriptions was introduced in 
MOSILA as a special section of a model class. This 
extension is based on the Modelica type system: 
Each state is introduced by a state declaration. 
Within such declarations sub-states and transitions 
between these sub-states can be specified. Depend-
ing on the base type of a state two kinds of state 
compositions can be declared: Within an active XOR 
state only one direct sub-state is active at each time 
instant. Within an active AND state all its direct sub-
states are active. Therefore, parallel and sequential 
processes can be comfortably modelled. Actions 
which have to take place during switching transitions 
are defined within the associated transition defini-
tion. Figure 2 shows the MOSILA implementation of 
the above introduced statechart: 
model System 
... 
statechart 
 state SystemSC extends State; 
  state Moving extends State; 
   state SlowDown extends State; 
    exit action 
     body.remove(boost); 
    end exit; 
   end SlowDown; 
 
   State falling, start(isInitial=true); 
   SlowDown slowDown; 
 
   transition start -> falling end transition; 
 
   transition t2 : falling -> slowDown  
    event sw guard sw==1 action 
    body.add(boost); 
   end transition; 
 
   transition t3 : slowDown -> falling  
    event sw guard sw==0 
   end transition; 
  end Moving; 
 
  State stop,start(isInitial=true); 
  Moving moving; 
 
  transition t1 : start -> moving action     
   body.add(gr);  
  end transition; 
 
  transition t4 : moving -> stop  
   event landed action 
   body.remove(gr); 
  end transition; 
 
 end SystemSC;  
end System; 

Figure 2: Implementation of a statechart for the con-
trol system of the landing device 

The state space for action statements, e.g. assign-
ment, is given by the surrounding type definitions, 
and thus the statechart acts on the attributes of the 
associated class.  
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2.3 Dynamical behaviour 

Further, the extended language concept offers an 
infrastructure, which enables the extension of (basic) 
model by effects in form of behavioural objects. For 
this purpose the action language is extended by the 
operations “add()” and “remove()”, which con-
nect/disconnect the given argument (behaviour ob-
ject) to the target object (base object). To extend un-
derlying balance equations, a new connector type 
“sum” is introduced. The semantics of this connector 
type is like zero sum (“flow”), but with a negatively 
signed base attribute. Thus, balance equations can be 
extended by terms, which are encapsulated by ob-
jects. The following implementation (Figure 3) 
shows the environment of the landing device: 
 
connector FPort 
 sum Real F=0; 
 Real m=0; 
end FPort; 
partial model BodyInterface 
 FPort p; 
end BodyInterface; 
model Body extends BodyInterface(p.m=100); 
 Real a=0, v=0, s=100; 
equation 
 der(v) = a; der(s) = v; a = p.F / p.m; 
end Body;  
model Gravity 
 extends BodyInterface; 
 parameter Real g=9.81; 
equation 
 p.F = - p.m * g; 
end Gravity; 
 
model Boost 
 extends BodyInterface; 
 discrete Boolean empty=false; 
 Real m; 
equation 
 p.m = m; 
 empty = (not m>20); // = if m>20 then false else 
true; 
 der(m) = if empty then 0 else -10; 
 p.F = if empty then 0 else 1200; 
end Boost; 
model System 
 Body body; 
 Gravity gr; 
 Boost boost; 
 event discrete Integer sw=0; 
 event discrete Boolean landed=false; 
 
equation 
 sw = if body.v < -5 then 1 else if body.v >= 0 
then 0 else pre(sw); 
 
 landed = ( body.s <= 0 ); // = if body.s <=0 
then true else false; 
... 
end System; 
 

Figure 3: Implementation of the dynamical behav-
iour of the landing device 

The base model “Body” and the effects “Gravity” 
and “Boost” have the same interface “BodyInter-
face”, which introduces the variables to con-
nect/disconnect during add/remove operations. The 
attribute “F” has “sum” quality since it is used to 
model a (dynamically changed) balance equation. 
The events “sw” and “landed”, which drive the 
above introduced statechart, are modelled within the 
top level class “System” as special discrete variables. 

3 The MOSILAB Simulator 

3.1 MOSILAB Architecture 

The GENSIM simulation tool MOSILAB (Modeling 
and Simulation Laboratory) includes the simulation 
kernel (consisting of a model compiler, a runtime 
system and a numerical solver framework) and an 
IDE (Interactive Development Environment), the 
interface to the user of the simulation system. It sup-
ports him both in the modelling process with the help 
of graphical UML and text editors and during the 
simulation experiment.  

MOSILAB- IDE

MOSILA-
Compiler

gcc/g++ 
Compiler
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Figure 4: Data flow within MOSILAB 

Figure 4 shows the data flow within the MOSILAB 
tools: Beside experiment definitions, the models also 
developed within the IDE are stored as MOSILA 
model classes. Together with the MOSILA standard 
library, these MOSILA models are compiled to C++ 
classes by the MOSILA compiler. Using the GNU 
gcc/g++ compiler, the executable simulator is built 
from these C++ representations and the simulator 
kernel classes. 

3.2 Numerical solver framework 

The numerical solver framework of MOSILAB fea-
tures general functions such as the construction of 
the numerical model based on the modelling descrip-
tion, the main simulation control loop and is able to 
integrate different numerical algorithms. 
The simulator kernel library contains some basic al-
gorithms for solving nonlinear implicit differential-
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algebraic equations (DAE): the EULER backward 
formula and trapezoidal rule as simple methods from 
standard textbooks, and IDA, a powerful public-
domain DAE solver for sequential and parallel com-
puters [3]. IDA is a successor of DASSL, a well es-
tablished DAE solver [4, 5]. IDA provides a routine 
that computes consistent initial conditions from a 
user's initial guess for a class of problems - a very 
important feature for simulating systems with model 
structural dynamics. The integration method in IDA 
is a variable-order, variable-coefficient BDF method 
(backward differentiation formula). The nonlinear 
systems are solved with some form of NEWTON 
iteration.  
But the library is an open one: according to the re-
quirements of a dedicated MOSILAB implementa-
tion or of special problem requirements, additional 
solvers may be implemented, e.g. data-flow or event-
oriented methods, or simplified solvers for linear 
state-space equations in explicit form. 
Such a tailored algorithm, which is implemented in 
the GENSIM project, is the Plug-Flow method [6, 9]: 
A so called plug flow model uses finite mass ele-
ments ∆m=m’·∆t and finite energy elements 
∆Q=Q’·∆t with a fixed time step, allowing the mass 
flow through closed and opened networks to be 
traced. This guarantees a fast calculation of the ob-
ject chain. The plug is initiated in a “pump” or “ven-
tilator”-object, then shifted through the branched 
network and is returned to the origin (pump or venti-
lator). This mechanism allows simple modelling of 
flow delay effects and mass balance at the second 
call of the pump/ventilator in one time step. Due to 
the decentralised solver method the state equations 
of each object are calculated with the updated mass 
flow of the previous object. 

3.3 MOSILAB Configurations 

MOSILAB can be configured in to act in three 
modes: 

a) The generated simulator is represented by a 
single, monolithic C/C++ application. This 
option has the smallest memory footprint 
and only few dependencies on the underly-
ing platform, so it is most useful e.g. for em-
bedded applications. However, the function-
ality w.r.t. dynamic parameterization at run-
time is limited. 

b) The simulator is represented by a shared ob-
ject file which can be dynamically linked to 
a main program which controls the simula-
tion. MOSILAB uses the Python language 
and interpreter (http://www.python.org) as 

its central mechanism for experiment con-
trol. The simulator is loaded as an “exten-
sion” into the interpreter, and “experiment 
scripts”, written in Python, access the simu-
lator API via a Python-level interface. 

c) The simulator acts as a service. In this mode, 
the simulator is linked with appropriate li-
braries to publish its API via standard 
TCP/IP-based protocols such as SOAP [5] in 
a web or grid services framework (e.g. the 
upcoming release 4 of the Globus Toolkit 
[6]).  In this mode, the simulator can easily 
be controlled in protocol-based, platform-
independent manner, and it is easy to deploy 
multiple (and potentially large numbers of) 
“simulator service instances” in a coordi-
nated way in a heterogeneous network or 
Grid, for instance to solve an optimization 
problem. Python-based experiment control 
support is available in this mode as well – a 
(Python) client library is used to talk to the 
simulator’s API over the network in this 
case. The simulator maintains a run-time 
representation of the model object hierarchy 
(as defined in the source and evolving ac-
cording to the structural variability of the 
model). This run-time model can be inquired 
via introspection features of the simulator 
API, so (using the synchronisation features 
offered by this API, too) experiment scripts 
are able to follow the structural changes over 
the entire course of a simulation run. This 
way, if special reactions to model structure 
changes are needed, which cannot be formu-
lated in the model itself due to their com-
plexity, such reactions can easily be imple-
mented in the experiment script. 

3.4 Simulator Coupling 

Besides the service-oriented approach to coarse-
grained coupling of simulation components de-
scribed in item c) above, MOSILAB also supports 
simulator coupling on a fine-granular level. In addi-
tion to implementing the standard external function 
interface defined in Modelica, special interface sup-
port is being developed to support coupling with the 
widely used simulator MATLAB/Simulink and cer-
tain specialized simulators relevant to the pilot appli-
cations (e.g. CFD and FEM tools). These develop-
ments, too, build on the flexible simulator API of-
fered by MOSILAB’S simulation kernel.  
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4 The MOSILAB Development Envi-
ronment 

The MOSILAB Development Environment (MOSI-
LAB-IDE) supports the user during the modelling 
process and the simulation experiment. 
In the modelling mode the user can choose between 
three graphical UMLH-editors (class diagrams, col-
laboration diagrams and statecharts) and a text edi-
tor. While the graphical views give the user an intui-
tive overview about the structure and the logic of a 
complex model, the text editor offers the user fea-
tures like syntax highlighting for implementing the 
MOSILA/Modelica models. 
In the experiment mode of the MOSILAB-IDE the 
user can define the root model for the simulation ex-
periment, can parameterize model variables and can 
choose and configure a suitable numerical solver. 
Furthermore he can define a subset of model vari-
ables, which should be observed during the simula-
tion experiment. The observed variables are the basis 
for different types of post-processing. Figure 5 
shows a screenshot of the prototypical implementa-
tion of the MOSILAB-IDE. 

 

Figure 5: MOSILAB-IDE in the modelling mode 

5 Applications 

In the GENSIM project model libraries for the three 
technical application areas fuel cell systems, hy-
grothermal building analysis and cutting tool systems 
are developed. On their basis different use cases 
should be analysed. In each use case the methodo-
logical possibilities of the model structural dynamics 
will be evaluated: For example cutting tool system 
models are developed, which can activate different 
physical sub models for tools und working pieces in 

dependency of the system state during the simulation 
experiment (e.g. contact between the tool and the 
working piece exists or not).  

5.1 Fuel cell systems 

The future structure of power grids will consist of a 
huge fraction of decentralised power generators. Es-
pecially the low voltage grid will be penetrated by 
small and medium photovoltaic systems, medium 
combined heat and power units based on natural gas 
or bio fuels as well as residential fuel cell co-
generation power systems. Dynamic simulation of 
the entire low voltage grid offers the possibility of 
analysis and optimisation of the grid in terms of di-
mensioning and system management. 
If cogeneration systems (e.g. residential fuel cell sys-
tems) are regarded, thermal aspects have to be con-
sidered. The ecologic and economic evaluation of 
these innovative energy supply systems needs effi-
cient models due to seasonal effects and the neces-
sity of simulation runs in the range of one year [9, 
10]. 
Model structural dynamics allows the investigation 
of a huge number of grid connected residential fuel 
cell cogeneration systems in combination with other 
decentralised energy systems such as photovoltaic, 
small wind turbines, bio mass systems, etc. in a very 
efficient way. In this approach the model depth is 
defined by the operating point and the operating be-
haviour respectively. 

 
Figure 6: Definition of the single layers of the resi-
dential fuel cell system representing the model depth. 
The current model depth will be switched in depend-
ence of boundary conditions and control actions. 

As showcase the model structural dynamics of a fuel 
cell system is described in the following section. In a 
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first approach four layers of abstraction are defined, 
shown in figure 6. The current layer will be 
switched, if discrete events (e.g. caused by a state 
variable crossing a threshold) require the change of 
the model depth. In case of a stationary operating 
point of the fuel cell system, it is sufficient to repre-
sent this device with a simple characteristic curve. 
As soon as boundary conditions (e.g. cooling tem-
perature) are changing or the operating point is 
changed by a controller, more detailed models are 
needed to reproduce the transient behaviour in an 
accurate way. 
Furthermore, critical system states can require de-
tailed models, with which even single cells can be 
investigated. As an example flooding effects at low 
operating temperatures or at high load currents shall 
be mentioned. If a system simulation tool is able to 
reproduce even such effects, efficient control strate-
gies can be developed to reduce or even avoid sys-
tem failure. In this project the coupling with external 
FEM tools are planned to fulfil these demands. 

5.2 Hygrothermal building analysis 

In the area of Building Physics hygrothermal models 
of building envelopes to compute coupled transport 
processes of heat and moisture for one- or multidi-
mensional cases are widely used. In those models 
however the boundary conditions of heat and mois-
ture have to be user-defined before starting the simu-
lation. 

 
Figure 7: Coupled hygrothermal physical effects in 
the building envelope  

A model that would take into account a multizonal 
building or even only a single room and the building 
envelope in detail – thus rendering the definition of 
the inner boundary conditions for the envelope un-
necessary – is still to be defined. Such a model 
would allow analysing cases with strong reciprocal 
effects between the climate in the room and the be-
haviour of the building components (see figure 7). 
For example the influence of moisture buffering and 

non buffering surfaces of the components in combi-
nation with different ventilation strategies can be 
investigated to consider the efficiency of thermal 
drying and ventilation strategies to keep the indoor 
climate (especially the humidity) in a favourable 
range. 
For this reason Fraunhofer IBP and FIRST started 
the development of such a new hygrothermal build-
ing model within the GENSIM project. Fraunhofer 
IBP can make use of its extensive experiences with 
the development and experimental validation of the 
simulation tool WUFI [11] for the detailed simula-
tion of hygrothermal behaviour of building compo-
nents. Fraunhofer FIRST has long-year modelling 
experience in the area of thermal building simulation 
with the generic and object-oriented simulation envi-
ronment SMILE [12]. 
The goal in GENSIM is the development of a Mode-
lica /MOSILA model library, which will contain 
models of one- and of two-dimensional coupled heat 
and moisture transport within wall constructions, a 
thermal/optical window model, a hygrothermal air 
volume model, a thermal/optical room model, an 
environment model for the climatic boundary condi-
tions as well as an inhabitant model. From these 
models it is possible to set up configurations of 
rooms or whole buildings in a very flexible way by 
using the object-oriented modelling method. For ex-
ample figure 8 shows UMLH-class diagram for an 
outside thermal wall model, which is a part of the 
model library building for hygrothermal building 
simulation. 

 
Figure 8: UMLH-Class diagram for an outside ther-
mal wall model   

The efficiency of the model structural dynamics 
should be evaluated for the coupled transport proc-
esses of heat and moisture in wall constructions: For 
example, if the gradient of temperature or moisture 
becomes greater then a limit-value, the level of dis-
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cretisation of the wall model will be set on a higher 
value or the other way around. 
During the project the hygrothermal building model 
will be validated on test houses. Two rooms which 
are identical both geometrically and in respect of 
solar gain and outdoor climate, however differ ex-
tremely in the sorption behaviour of their wall sur-
faces are used to validate the building model (see 
figure 9).  

 
Figure 9: Test rooms for validating the hygrothermal 
building model 

This is to be done by measurements of the energy 
and moisture balance in both rooms during cycles of 
heating and cooling as well as humidification and 
dehumidification. 

5.3 Cutting tool systems 

The development of high performance cutting proc-
esses requires, along with suitable machine tools and 
clamping devices also specially balanced and de-
signed cutting tools. Safety and precision are the es-
sential criteria at the judgment of tools for the high 
speed processing. Numerical simulations offer the 
possibility to evaluate different variants already in 
the outline process without existing samples. A 
proved method is the analysis of the tool behaviour 
under operating conditions with the finite element 
analysis (FEA). 
 

 

 
Figure 10: Cutting tool modelling in the framework 
of MOSILAB 

The complexity of requested models depends on 
workpiece and the shaped elements and also from the 
type of the tool and its loading. Complex cutting 
tools consist of several components. Due to relative 
motions of the components under high centrifugal 
force load, cutting forces and clamping stresses, the 
tool models are highly non-linear and heterogeneous.  
Different stages of the loading by clamping, cen-
trifugal and cutting forces cause structural dynamic 
model behaviour and require corresponding changes 
of model parameters or even switching between dif-
ferent types of models (Figure 10). In the GENSIM 
project analytical models of complex cutting tools 
will be developed to be integrated in MOSILAB. 
FEA will deliver the parameters of these models. 
Respecting the complex structural dynamics differ-
ent sets of sub-models are required to compile ade-
quate cutting tool models. In addition to this, a spe-
cial interface for FEA and MOSILAB data transfer 
will be developed for these types of cutting tools, 
which can not be simulated by a homogenous ana-
lytical model.  

 

Figure 11: Example of a complex cutting tool 

The simulation of cutting tool behaviour in the GEN-
SIM project covers the complex tool – starting from 
the cutting edge up to the spindle interface (see fig-
ure 11). The behaviour of the cutting tool in use is 
determined by the statically and dynamical compo-
nents of the cutting force. These loads are essential 
boundary conditions to investigate the structural dy-
namics of the cutting tool itself. 
To get these loads, the cutting process itself is simu-
lated using another FE-model. Here a small section 
of the cutting process is represented in which the 
chip formation happens. As seen in figure 12 the 
outer edge of the cutting tool and the upper layer of 
the workpiece are modelled. 
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 Figure 12: Simulation of the machining process 
Through the simulation continuous or segmented 
chip formation can be described and the distribution 
of the resulting cutting forces can be calculated con-
nected to the simulation time. Here from a three-
dimensional load vector is determined, which acts on 
the cutting edge of the tool.  
Within MOSILAB the simulation models should be 
combined to a simulation tool which describes the 
model structural dynamic of the interaction between 
cutting process and tool holder. For that a library 
with different combinations of tool holder, cutting 
tool material and workpiece material will be pro-
vided by MOSILAB. If in the cutting process the 
cutting force reaches limits, which indicate a mean-
ingful influence on the tool holder (vibrations for 
example) the simulation depth can be changed [13]. 
This enables analysing changes in behaviour of the 
tool holder caused by microscope events happening 
in the region of chip formation. Also the results of 
the tool holder simulation are useful to include 
changes in the boundary conditions of cutting proc-
ess caused by displacement of the tool holder itself. 

6 Conclusions 

The important results of the GENSIM project are the 
Modelica language extension for an adequate de-
scription of model structural dynamics, the new ge-
neric simulation tool MOSILAB and three model 
libraries of different technical applications: 

a) Modelica language extension MOSILA: 
The new modelling description language 
MOSILA, which is mainly an extension of 
Modelica, is able to describe simulation 

models with a time depending model struc-
ture during the simulation experiment. This 
was realised by using dynamical object 
structures together with object-oriented 
statecharts for the language specification. An 
example for this new simulation technology 
in MOSILA is an adaptive simulation model 
containing a set of physical sub-models, 
from these some are activated or not in de-
pendency of the state of the model self. 

b) Simulation tool MOSILAB: The new de-
veloped generic simulation tool for hybrid 
systems, which includes a model compiler, a 
runtime system and a numerical solver 
framework, is able to translate MOSILA or 
Modelica models to an executable simula-
tion program. Hereby the user is supported 
by the MOSILAB development environ-
ment, which offers possibilities for the 
graphical and textual modelling process, for 
simulation experiments and for post-
processing. On the one hand the scalable 
software architecture of MOSILAB can gen-
erate small simulators as monolithic C/C++ 
applications. On the other hand simulator 
configurations with more flexibility for the 
simulation experiment are possible by load-
ing MOSILAB and the compiled model li-
braries as an extension in a python inter-
preter, while the simulation experiment is 
formulated in the script language Python. 
Current research activities in the GENSIM 
project will show that MOSILAB can also 
act as a service in web or grid frameworks 
and can by coupled with other simulation 
tools like MATLAB/Simulink.  

c) Model Libraries: Three model libraries for 
the technical applications fuel cell systems, 
hygrothermal building analysis and cutting 
tool systems are developed and validated in 
GENSIM. In each application area the effi-
ciency of the model structural dynamics are 
analysed. In relation to its time dynamics, 
the analysed systems in GENSIM overlap 
the millisecond- to second-scale (cutting tool 
systems), the second to hour-scale (fuel cell 
systems) and the hour to year-scale (hy-
grothermal building analysis). For these rea-
sons these application areas together are also 
a suitable test bed for the numerical basis of 
the simulation tool MOSILAB. 
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Abstract
According to the IEEE 1164 standard the Model-
ica.Electrical.Digital library was developed which uses
nine-valued logical signals. The first stage of extension
contains basic gate devices, sources, delay devices, and
convertes. The main principles of implementation are
demonstrated as well as some examples which show
some possibilities of usage. Using converters, the elec-
trical digital components are capable of interacting
with the components of other Modelica libraries.

1 Introduction

The Modelica language [1], [2] already allows the for-
mulation of logic behaviour using both the predefined
Boolean variable type (true, false) and Boolean opera-
tors (or, and, not). For many applications these
possibilities are sufficient. However, the description of
complex digital electronic behaviour requires a very
extension of the simple Boolean logic. The reason is
that some of the properties of electronic circuits  have
to be transmitted to the logic approach, e.g. the exist-
ence of an unknown signal state, of different signal
strengths etc..

Considering the VHDL language, the IEEE 1164
standard [3], [4], [5], [6], [7] is generally accepted and
widely used for the description of digital electronic de-
vices. It is based on nine-valued logical signals and
defines the behaviour of simple and more general dig-
ital devices including time-dependencies. Due to the
importance of  this standard the digital electronic li-
brary should be developed in accordance with it.

In this paper an overview is given on the devices avail-
iable. Details of the implementation are presented as
well as some questions of the usage in combination
with other libraries. Many examples give an impression
of the actual state of the library. 

2 Overview

The nine digital signal values are 'U' (uninitialized), 'X'
(forcing unknown), '0' (forcing 0), '1' (forcing 1), 'Z'
(high impedance), 'W' (weak unknown), 'L' (weak 0),
'H' (weak 1), '-' (don’t care). 

The library is devided into:
• delay models (transport, inertial, sensitive inertial)
• basic gates without delay (Not, And, Nand, 

Or, Nor, Xor, Xnor)
• basic gates including intertial delay (InvGate, 

AndGate, NandGate, OrGate, NorGate, XorGate,
Xnorgate, BufGate)

• sources (Set, Step, Table, Pulse, Clock) 
• converters (for connections with Boolean, and with

Real, and for the restriction of the digital logic val-
ues to ’X01’ or to ’X01Z’ or to ’UX01’)

• auxiliary subpackages of interface definitions and
tables

• examples

The model definition can be seen in the library. Some
of the models are explained in detail within the next
paragraph. The icons of some models can be seen in
Fig. 1. Most of the icons correspond to the European
standard [8].

The digital library will be developed in at least two
steps. The first step contains the devices mentioned
above. Components like flip-flops, transfer gates,
memories (RAM, ROM), and multiplexers are still
missing. The behavioural models of these components
will be added within the second step of library develop-
ment. At the present stage such devices must be
composed using the available gates. Examples of such
compositions can be found in the example subpackage.

3 Details of Implementation
The basic idea was to offer a library of digital logic de-
vices which can be placed and connected by the user to
model a digital logic scheme. Otherwise, Modelica also
allows to create models in a netlist like way by instan-
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tiating and connecting devices on a text level. In both
cases, a network of digital devices can be described on
its connections where digital logic signals are transmit-
ted. In this paragraph the behavioural modelling of
some devices is shown exemplarily.

Since the number of logic values is limited signals do
not change continuously but at discrete event times.
Furthermore, nothing has to be differentiated. To calcu-
late the output of digital devices an intensive usage of
the algorithm section is necessary in the models. The
simulator’s task is not to solve a DAE but a system of
algebraic equations at discrete event time, whose di-
mension is normally high and which contains lots of
conditional clauses.

3.1 Signals and Connectors

The nine logic values are coded using an integer logic
type:

  type Logic = Integer 

  record LogicValue 
    constant Integer min=1;

 constant Integer max=9;
 constant Logic 'U'=1 "Uninitialized";
 constant Logic 'X'=2 "Forcing Unknown";
 constant Logic '0'=3 "Forcing 0";
 constant Logic '1'=4 "Forcing 1";
 constant Logic 'Z'=5 "High Impedance";

 constant Logic 'W'=6 "Weak    Unknown";
 constant Logic 'L'=7 "Weak    0";
 constant Logic 'H'=8 "Weak    1";
 constant Logic '-'=9 "Don't care";

  end LogicValue;

The sequence coded in this record corresponds to the
IEEE 1164 sequence. This way simplifies the adapta-
tion of  logic value tables from the standard. Later on
this record definition could be replaced by an enumer-
ation type definition.

At the connections (ports) of the devices logic values
are transmitted. Therefore, connectors are defined
which only need a logic value signal. Since in most cas-
es the signal flow direction is well defined, input and
output connectors are specified:

  connector DigitalSignal=Logic 
  "Digital port (both input/output

 possible)";
  connector DigitalInput=input DigitalSignal; 
  connector DigitalOutput=

output DigitalSignal;

The signals at the connectors are scalar ones. If vectors
of signals are needed vectors of connectors have to be
defined. This idea is taken over from the Model-
ica.Blocks library. The usage of both scalar and vector
connectors can be seen at the following partial model
for multiple input - single output devices which is used
for modeling of Basics and Gates:

Figure 1:   Components of  the Modelica package Modelica.Electrical.Digital.
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  partial block MISO  
 import D = Modelica.Electrical.Digital;

   parameter Integer n(final min=2) = 2 
                         "Number of inputs";
  D.Interfaces.DigitalInput x[n];

 D.Interfaces.DigitalOutput y; 
  end MISO;

3.2 Basics

In the Basics subpackage the simple logic operations
Not, And, Nand, Or, Nor, Xor, and Xnor are modeled.

The Not model is a single-input-single-output model.
The logic input value, which is an integer between 1
and 9, specifies the row in the NotTable in which the
output value can be found that negates the input value.
The Modelica text of the Not device is:

  model Not 
    import D = Modelica.Electrical.Digital;
    import L = D.Interfaces.LogicValue;
    extends D.Interfaces.SISO;
  protected 
    D.Interfaces.Logic  
 auxiliary(start=L.'0');
  equation 
    auxiliary = D.Tables.NotTable[x]; 
    y = pre(auxiliary);
  end Not;

The NotTable is defined in the IEEE 1164 standard:

input: U X 0 1 Z W L H -
output: U X 1 0 X X 1 0 X

Regarding that the input code is used as index in the
NotTable array, this is described in Modelica:

  constant D.Interfaces.Logic  
  NotTable[L.max]=  

{L.'U',L.'X',L.'1',L.'0',L.'X',
 L.'X',L.'1',L.'0',L.'X'};

In the model the result is not put to the output directly
but the pre-operator is applied to an intermediate vari-
able. This is necessary to avoid algebraic loops which
can appear in some cases. Therefore, the pre-operator
is generally used.

As an example with multiple inputs the And model is
explained. The source code is without any annotations:

model And  
  import D = Modelica.Electrical.Digital;
  import L = D.Interfaces.LogicValue;
  extends D.Interfaces.MISO;
protected 
  D.Interfaces.Logic 

auxiliary[n](each start=L.'U');
equation 
  auxiliary[1] = x[1];

  for i in 1:n - 1 loop
    auxiliary[i + 1] =
    D.Tables.AndTable[auxiliary[i],x[i + 1]];
  end for;
  y = pre(auxiliary[n]);
end And;

The And model inherits the MISO partial model (c.f.
3.1). Within a loop to the first two input signals the and
operation is applied. To the result and the next input
signal the and operation is applied again, until all in-
puts are combined. Like in the Not model the pre-
operator is used . The and-operator is realised using the
AndTable. The code numbers of the input signals de-
fine the position (both row and line number) in the
matrix where the result can be found. Written in an ab-
breviated form the AndTable is:

input1 U X 0 1 Z W L H -

i U U U 0 U U U 0 U U
n X U X 0 X X X 0 X X
p 0 0 0 0 0 0 0 0 0 0
u 1 U X 0 1 X X 0 1 X
t Z U X 0 X X X 0 X X
2 W U X 0 X X X 0 X X

L 0 0 0 0 0 0 0 0 0
H U X 0 1 X X 0 1 X
- U X 0 X X X 0 X X

In the models Nand, Nor, and Xnor the NotTable is ap-
plied to the result of the And-, Or-, and Xor-tables
respectively.

3.3 Delays

In the library there are three delay models. The trans-
port delay model is an application of the Modelica
delay operator. The input signal is delayed by delay-
Time exactly as it is. The output of the model can be
specified for the time interval between zero and delay-
Time. The algorithm section of the TransportDelay
model is:

algorithm 
  x_delayed := integer(delay(x, delayTime));
  y := if delayTime > 0 then 
         if time >= delayTime then x_delayed
         else y0 
       else x;

Another type of delay models is the inertial delay. In
the InertialDelay model the input value must keep con-
stant for the delayTime interval before it is passed on
the output. The Modelica code of the inertial delay is:

block InertialDelay
  import D = Modelica.Electrical.Digital;
  import I = D.Interfaces;
  import L = D.Interfaces.LogicValue;
  extends DI.SISO;

Standard Package Modelica.Electrical.Digital

The Modelica Association 541 Modelica 2005, March 7-8, 2005



  parameter Modelica.SIunits.Time 
delayTime=0 ;

  parameter DI.Logic y0=L.'U';
protected  
  DI.Logic y_auxiliary(start=y0, fixed=true);
  DI.Logic x_old(start=y0, fixed=true);
  discrete Modelica.SIunits.Time   
  t_next(start=delayTime, fixed=true);
algorithm 
  when delayTime > 0 and change(x) then
    x_old := x;
    t_next := time + delayTime;
  elsewhen time >= t_next then
    y_auxiliary := x;
  end when;
  y := if delayTime > 0 then y_auxiliary 

 else x;
end InertialDelay;

If the input signal x changes its value, the variable
t_next is set to that time at which the output should
change, that means at time + delayTime. If the time
reaches t_next without another input change then the
input change becomes active at the output. Otherwise if
x changes before t_next, t_next is increased due to the
new input change. In Fig. 2 an example of an inertial
delay with delayTime=1s is shown. Input changes
smaller than 1s are neglected.

A generalization of the inertial delay is the sensitive in-
tertial delay InertialDelaySensitive. For rising and
falling edges different delay times can be specified.
With a delay table it is decided whether a signal chang-
ing is regarded as rising (1) or falling (-1) or indifferent
(0). Indifferent changes are not delayed. The delay ta-
ble used in this library is:

after  U  X  0  1  Z  W  L  H  -

b U  0  0 -1  1  0  0 -1  1  0
e X  0  0 -1  1  0  0 -1  1  0
f 0  1  1  0  1  1  1  0  1  1
o 1 -1 -1 -1  0 -1 -1 -1  0 -1

r Z  0  0 -1  1  0  0 -1  1  0
e W  0  0 -1  1  0  0 -1  1  0

L  1  1  0  1  1  1  0  1  1
H -1 -1 -1  0 -1 -1 -1  0 -1
-  0  0 -1  1  0  0 -1  1  0

3.4 Gates

In the Gates subpackage there are collected the Inv-
Gate, AndGate, NandGate, OrGate, NorGate, XorGate,
XnorGate, and the BufGate. Each of the gates is graph-
ically composed by a basic logic model whose output
is delayed by a sensitive inertial delay. The InvGate
consists of a Not model with delayed output. As a spe-
cial case the BufGate consists only of a sensitive
inertial delay. For the sake of completeness the Buf-
Gate should belong to that subpackage. In Fig. 3 the
composition of Gates is demonstrated considering the
AndGate as an example. The strange connecor at the
left hand site is an interim solution of painting vectors
of connectors.

3.5 Sources

The sources Set, Step, Table, Pulse, and Clock are not
borrowed from the standard but written as nice-to-have
sources. The Set source simply sets a logic value. Step
steps one-time from one value to a second value at a
given time. The Table source follows a user specified
value-time-table. The essential part of the Modelica
code of the Table model is (after checking the accept-
ance of parameters):

algorithm 
  y := y0;
  for i in 1:n loop
    if time >= t[i] then
      y := x[i];
    end if;
  end for;
end Table;

Figure 2:   Inertial delay example

Figure 3:   AndGate
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With the Pulse source arbitrary pulsing between two
values can be created. The Pulse parameters are shown
in Fig. 4. 

The Clock source is a simplified Pulse source without
counting the number of periods which pulses between
’0’ and ’1’. The code for generating the pulsing behav-
iour of Clock is:

  Modelica.SIunits.Time t_i
    (final start=startTime) 
    "Start time of current period";
  Modelica.SIunits.Time 
     t_width=period*width/100;
algorithm 
  when sample(startTime, period) then
    t_i := time;
  end when;
  y := if time < startTime or 
        time >= t_i + t_width
  then L.'0' else L.'1';
end Clock;

3.6 Converters

The IEEE 1164 like converters LogicToUX01,
LogicToX01Z, and LogicToX01 map the nine-valued
digital logic to the limited sets of values {’U’, ’X’, ’0’,
’1’}, {’X’, ’0’, ’1’, ’Z’}, or {’X’, ’0’, ’1’} respectively.
The mapping is done with conversion tables. E.g. the
conversion table for LogicToX01 is:

input: U X 0 1 Z W L H -
output: X X 0 1 X X 0 1 X

The following converters are not from the IEEE 1164
standard. 

The BooleanToLogic converter maps the Boolean input
to Logic according to the following table (t - true, f -
false):

input: t f
output: 1 0

The LogicToBoolean converter maps the Logic input
to the Boolean output according to the following table
(t - true, f - false):

input: U X 0 1 Z W L H -
output: f f f t f f f t f

Further conversions are possible between Real and
Logic values. In the LogicToReal converter the Real
output jumps to a real number wich can be defined by
the user for each of the nine logic values. The default
values are:

input:  U  X  0  1  Z  W  L  H  -
output: .5 .5  0  1 .5 .5  0  1 .5

The RealToLogic converter has two limits: an upper
limit, and a lower limit. If the input x is x > upper limit,
an upper_value is chosen, If x < lower limit, a lower
value is chosen, otherwise the middle_value is chosen.
The limits and the values are parameters of the convert-
er. In Figure Fig. 5 a sine curve is converted to logic
using the default parameters (lower_limit=0,
upper_limit=1, lower_value=’0’, upper_value=’1’,
middle_value =’X’).

4 Usage

The components of the electrical digital library can be
combined to form more complex models. This is possi-
ble on the text level, or in a graphical way.
Since complex devices like flipflops, multiplexers,
memories, ... are still missing, such components have
to be composed using the set of basic gates. In the ex-
ample package some of these components are
available.
Furthermore, the user can  modify the models by
changing the description, adding pins, introducing pa-
rameters, fixing parameters...
The signal strengh according to the IEEE 1164 strength
table is not modeled yet, since no resolution function is
implemented. This will be added in a later version of
that library.

Figure 4:   Pulse Source Parameters

Figure 5:   Default Real to Logic Conversion
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Sometimes it is possible that algebraic loops occur
which can be not solved by the simulator. In such cases
often the inclusion of additional delay components
helps.
The whole variety of the possibilities of the library us-
age is not presented.  Some aspects of the library usage
are demonstrated in the examples. 

5 Examples
The examples are part of a validation suite, some of
them are furthermore part of the library example sub-
package.  They show some of the possibilities of the
library. Since the library is developed recently further
tests e.g. with ’large’ logic designs  are necessary. Test
examples were developed using wellknown textbooks
[9], [10], [11]. All examples presented here were simu-
lated using the simulator Dymola5.3a [12].

5.1 Logic Equivalence

This simple example tests the logic equivalence
 by modeling both sides

 and of the logic
equation with basic components. 

The following Modelica text shows the circuit descrip-
tion without graphical instructions. The instantiation of
library components can be seen as well as the usage of
parameters. Once instantiated the devices are connect-
ed in the equation part.

model LogicEquivalence 
  import DD=Modelica.Electrical.Digital;
  DD.Basic.And And1, And2, And3;
  DD.Basic.Or Or1, Or2(n=3);
  DD.Basic.Not Not;
  DD.Sources.Table TabB

(x={3,3,4,4,3,3,3,3,3,4,4,4,4,3,3},
t={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14});

  DD.Sources.Table TabA
(x={3,3,4,4,4,4,4,3,3},
t={0,1,2,3,4,5,6,7,8},);

  DD.Sources.Table TabC
(x={3,3,4,3,3,4,3,3,3,3,4,3,3,3,4,3,3},
t={0,1,2,3,4,5,6,7,8,9,10,11,

12,13,14,15,16});
  DD.Interfaces.Logic X, Y;
equation 
  connect(TabA.y, And1.x[2]);
  connect(TabA.y, Not.x);
  connect(TabB.y, And1.x[1]);
  connect(TabB.y, And3.x[2]);
  connect(TabC.y, And2.x[1]);
  connect(TabC.y, And3.x[1]);
  connect(And1.y, Or1.x[2]);
  connect(And1.y, Or2.x[3]);
  connect(And2.y, Or2.x[2]);

  connect(And2.y, Or1.x[1]);
  connect(AndB3.y, Or2.x[1]);
  connect(Not.y, And2.x[2]);
  X = Or2.y;  Y = Or1.y;
end LogicEquivalence;

More instructive is the graphical representation like
Fig. 6 which is normally used to model digital circuits:

The simulation result are the outputs X and Y of both
Or components which are equivalent. Furthermore the
input values of TabA, TabB, and TabC are shown
which correspond to A, B, and C:

AB AC BC∨ ∨ AB AC∨=
X AB AC BC∨ ∨= Y AB AC∨= Figure 6:   Logic Equivalence Circuit
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5.2 Half-Adder

A half-adder can be found in the Examples.Utility
package. It is composed according to Fig. 8 using gates
with a delay of 0.5s. 

Starting with ’Unknown’ at the signal inputs a and b,
and testing all combinations with ’0’ and ’1’ the behav-
iour is as expected, c.f. Fig. 9.

5.3 JK-Flip-Flop

A JK-Flip-Flop (with inputs j, k, and clock) is com-
posed according to Fig. 10. It uses a static RS-Flip-
Flop which is shown in Fig. 11. Both components are
in the Examples.Utitlies package of the Digital library.

The results in Fig. 12 show the behaviour of the JK-
Flip-Flop: If J is ’0’ (coded by 3), the output q follows
K,  if both inputs are ’1’ (coded by 4), the output is
clocked, if J is ’1’ and K is ’0’ the output becomes ’0’.

Figure 8:   Half-Adder
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Figure 9:   Half-Adder, Results

Figure 10:   JK-Flip-Flop
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5.4 Adder with Counter

Two half-adders described in 5.2 and an or gate can be
combined to a full-adder which is able to add two digits
including a carry bit from a preceding full-adder. In
Fig. 12 the schematic of the full-adder is shown.

The JK-Flip-Flop described in Fig. 10 can be com-
bined to a counter. Depending on the number of Flip-
Flops the number of digits can be chosen. Figure
Fig. 13 shows the schematic of a three-bit-counter.

Within the schematic of Fig. 14 the three-bit-counter
output is taken as input of a full-adder. The full-adder
sums up the three outputs of the counter. The result can
be found in Fig. 15.

Figure 12:   Results of the JK-Flip-Flop

Figure 12:   Full-Adder Schematic
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6 Summary

The digital electric library presented is part of the Mo-
delica standard library. In this paper the devices  and
their principles of implementation are explained. Some
examples show the usage of this library.

Although tested during development a wide usage is
desirable to get extensive experiences. Especially large
designes are needed as well as mixed applications with
other physical domains.

Once the first version of the digital library is accepted
it will be extended by behavioural models of flip-flops,
latches, transfer gates, tristate devices, multiplexers,
and memories. A discussion on principles will be ex-
pected concerning the introduction of a resolution
function at general nodes.

This work was supported by the Sonderforschungsbe-
reich 358, Teilprojekt D4 of the Deutsche
Forschungsgemeinschaft. We are grateful to Dr. Peter
Schwarz, and Dr. Martin Otter for encouraging this
work, and to our students Teresa Schlegel, Liane Jaco-
bi, and Hagen Staemmler for implementing and testing.
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Abstract

This paper presents two libraries, the basic Ma-
chines library which is released with Modelica
standard library 2.1 as well as an ExtendedMa-
chines library, both for modelling electric ma-
chines. The basic library provides the basic ma-
chines types such as dc machines, three phase in-
duction machines, three phase permanent magnet
synchronous machines and three phase reluctance
machines. The three phase machine models are
implemented on basis of space phasor theory. By
contrast, the extended machines library models
the winding topology of polyphase induction and
permanent magnet synchronous machines. Such
machine models can be used to simulate machines
with arbitrary phase number such as large six
phase induction machines or machines with wind-
ing asymmetries or even winding faults. The used
winding models of the ExtendedMachines library
are flexible enough to consider even higher field
harmonics in future impementations.

1 General

Each of the presented machine models considers
linear inductors. This means that neither satu-
ration effects nor skin effects are considered yet.
Iron losses such as eddy current and hysteresis
losses are not taken into account. All resistive
parameters are assumed to be constant, there-
fore machines are modeled without thermal behav-
ior. Friction and ventilation losses are not consid-
ered. For the basic Machines library symmetrical
three phase windings are assumed for induction
machines, synchronous machines and reluctance
machines. The extended library supports an arbi-
trary number of stator and rotor phases including
possible asymmetries.

Any leakage inductances and ohmic resistors of the
windings are modelled as discrete elements. These

elements are connected between machine termi-
nals (MultiPhase plugs or regular pins) and the
air gap model.
All quantities accessible at the electrical and me-
chanical connectors are shown in physical units,
not as p.u. values. This allows the coexistence of
different machines in a complex system model.

2 Basic Machines Library

The basic elements of the Machines libraries are
the air gap models. These elements model the
magnetic main flux in the air gap including in-
duced voltages and the electromagnetic torque
generation. This torque is directed to a mechan-
ical flange connector representing the shaft as
well as to a second mechanical support connector,
representing the housing respectively the machine
legs or flange where the reaction torque is notice-
able. The airgap’s flange is connected to the ro-
tor’s inertia, which is connected to the machine’s
flange (i.e. shaft). The airgap’s support now is
implicitly fixed but allows to add a support con-
nector for the whole machine in the next release.
Adding a support connector for the whole ma-
chine, besides the rotor’s inertia also the stator’s
inertia will be needed as a parameter.
The Basic Machines library is structured as fol-
lows:

• BasicMachines.AsynchronousInduction-

Machines containing machine models

• BasicMachines.SynchronousInduction-

Machines containing machine models

• BasicMachines.DCMachines containing ma-
chine models

• BasicMachines.Components contains ele-
ments like air gaps, squirrel cage and perma-
nent magnet
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• Sensors provides voltage and current RMS
sensors (using space phasor functions), elec-
trical and mechanical power sensor, as well as
a sensor calculating the phase angle between
the rotor and the rotating field. Voltage and
current RMS sensors actually calculate the
1√
2
-fold of the magnitude of the current and

voltage space phasor, respectively. The out-
puts of these sensors equal the RMS values of
the currents and voltages for sinusoidal and
stationary operation (only).

• SpacePhasors.Components provides the ba-
sic transformation element between three
phase instantaneous voltages and currents
and their space phasor representation, includ-
ing zero sequence system

• SpacePhasors.Blocks implements space
phasor transformation blocks to support the
design of controllers

• SpacePhasors.Functions provides the same
functionality as blocks but implemented as
functions for use in initial equations

• Interfaces defines the space phasor connec-
tor as described later as well as some partial
machine models, defining the common me-
chanical connectors

• Examples demonstrate the usage of the ma-
chine models as well as some utilities (used
for the examples)

All machine models ensure correct initialization
and efficient integration by using appropriate
stateSelect-modifiers.

2.1 DC Machines

For the dc machines an air gap model is used which
evaluates the (perpendicular) two axis equations
of the armature and field excitation circuit. The
air gap model has two electric pins, for the ar-
mature and the field excitation circuit each. The
mechanical connectors flange and support are
connected with the rotor’s inertia and the implic-
itly fixed housing, respectively. The equations of
the air gap model considers

• the induced voltage of the armature (electro-
motive force and emf va.i, respectively) due
to magnetic field and rotor movement,

• the voltage drop of the excitation winding due
to the time derivative of the magnetic main
flux, and

• the electromagnetic torque which is directed
to flange and support.

The armature voltage equation reads:

va = Raia + La
dia
dt

+ va.i (1)

where Raia and La
dia
dt are modelled as discrete el-

ements and va.i is calculated by the air gap model.
The excitation voltage equation reads:

ve = Reie + ve.i (2)

where Reie is modelled as discrete element and the
induced (inner) voltage ve.i is calculated by the air
gap model. Excitation voltage equation (2) is used
for electrically excited dc machines, only.
The air gap model uses the following voltage equa-
tions:

va,i = TurnsRatio · ψeω (3)

ve,i =
dψe
dt

(4)

as well as the flux linkage equation:

ψe = Leie (5)

and the torque equation:

τ = TurnsRatio · ψeia (6)

Parameter TurnsRatio (between armature and
excitation winding) is calculated internally from
rating plate values. For an electrically excited dc
machine the defining equation is:

va,nom −Raia,nom =TurnsRatio

· (Leie,nom)ωnom (7)

Therefore the electrical parameters of the dc ma-
chine models are the armature resistance Ra and
field excitation resistance Re (except permanent
magnet machine), armature inductance La, field
inductance Le (except permanent magnet ma-
chine) as well as nominal values from the rating
plate: va,nom, ia,nom, ωnom and ie,nom (only for
electrically excited dc machines).
The Machines library provides the following types
of dc machines:
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• DC ElectricalExcited: model of an electri-
cally excited dc machine which can either be
connected as separate excited or shunt ex-
cited machine.

• DC SeriesExcited: model of an electrically
excited dc machine with series excitation; the
only to difference to DC ElectricalExcited

is a modified assignment of parameters due to
different rating plate data.

• DC PermanentExcited: the magnetic field
is provided by a permanent magnet which
is modelled internally as a constant current
source in the field excitation circuit.

2.2 Induction Machines

All three phase machines of the basic Machines
library rely on space phasor theory [1]. For each
system of three instantaneous voltages v1, v2 and
v3 a space phasor (indicated by underline) can be
defined:

v =
2

3
(v1 + ej2π/3v2 + e−j2π/3v3) (8)

The factor 2
3 in this equation is an arbitrary factor

which is due to normalization reasons. Similar to
(8) a space phasor of three instantaneous currents
can be defined. The current space phasor can be
interpreted as a vector representing the fundamen-
tal harmonic of the magnetomotive force (mmf) of
the three phase currents. The direction of the pha-
sor represents the phase angle, the length of the
phasor represents the peak value of the fundamen-
tal mmf.
Therefore a space phasor connector is defined in
the library. Both the voltage and the current space
phasors are combined in the SpacePhasor con-
nector. Real and imaginary part of voltage and
current are stored in two elements of an array, re-
spectively.
Space phasor theory is not restricted to any wave-
forms of voltages and currents in the time domain.
Due to a given winding topology mainly the fun-
damental space harmonics of the electromagnetic
quantities such as flux density and the mmf are
physically present [2]. The harmonics of the elec-
tromagnetic quantities refer to the spatial domain
along the tangential direction in the air gap. The
restriction of space phasor theory is, that it only
takes the fundamentals of these quantities into ac-
count. Higher harmonic components cannot be
considered.

The mathematically correct formalism of space
phasor theory requires a third transformed quan-
tity, because the three original quantities (index
1,2 and 3) have to be linearly transformed into
three transformed quantities. The third quantity
is the zero sequence component:

v0 =
1

3
(v1 + v2 + v3) (9)

Any zero sequence quantity does not contribute
to the fundamental of the main field due to the
symmetry of the windings.
From (8) and (9) we determine the equations for
back transformation:

v1 = v0 + Re (v) (10)

v2 = v0 + Re
(

e−j2π/3v
)

(11)

v3 = v0 + Re
(

ej2π/3v
)

(12)

Transformations (8) and (9) and
(10)–(12) are modelled in element
SpacePhasors.Components.SpacePhasor.
To describe the machine’s behavior, first we need
an equation for the stator voltages of the three
phases (i ∈ [1, 2, 3]):

vSi = RSiSi +
dψSi
dt

(13)

Applying transformation (8) – neglecting the zero
sequence system at the moment – on (13), we ob-
tain the stator voltage space phasor equation in
a stator fixed reference (coordinate) system (indi-
cated by index (S)):

vS(S) = RSiS(S) +
dψ

S(S)

dt
(14)

It is possible to split the stator flux linkage ψ
S(S)

into main flux ψ
m(S)

and leakage flux:

ψ
Sσ(S)

= LsσiS(S) (15)

This leads to:

vS(S) = RSiS(S) + LSσ
diS(S)

dt
+

dψ
m(S)

dt
(16)

Similarly we obtain the rotor voltage equation us-
ing space phasors in a fixed rotor reference (coor-
dinate) system (indicated by index (R)):

vR(R) = RRiR(R) + LRσ
diR(R)

dt
+

dψ
m(R)

dt
(17)
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The main flux linkage depends on the sum of sta-
tor and rotor phase current, formulated in a com-
mon reference (coordinate) system:

ψ
m

= Lm (iS + iR) (18)

At last we need an equation for the electromag-
netic torque; this may be done by setting up power
balance:

pel = vS1iS1 + vS2iS2 + vS3iS3

+ vR1iR1 + vR2iR2 + vR3iR3 (19)

After some transformations we obtain:

pm = melωm (20)

τel =
3

2
p Im

(

iSψ
∗

m

)

(21)

In the latter equation p represents the number
of pole pairs. This equation is valid in any ar-
bitrary reference frame. To avoid transformation
of (16) to the rotor fixed reference frame, or, al-
ternatively to transform (17) to the stator fixed
reference frame – obeying the product rule of dif-
ferentiation – the ohmic resistors RS and RR as
well as the leakage inductances LSσ and LRσ are
modelled as discrete three phase elements outside
the air gap. The next element of the modelled
voltage equation transforms the three phase sys-
tem into space phasors which are connected with
the air gap model (fig. 1).

The air gap model using the stator fixed refer-
ence frame BasicMachines.Components.AirgapS
transforms the rotor current space phasor iR(R)

to the stator fixed reference frame and calculates
main flux linkage ψ

m(S)
from (18). Then it is pos-

sible to calculate
dψ

m(S)

dt and – after the transfor-
mation of ψ

m(S)
to the rotor fixed reference frame

– the term
dψ

m(R)

dt .

The air gap model using the rotor fixed refer-
ence frame BasicMachines.Components.AirgapR
transforms the stator current space phasor iS(S) to
the rotor fixed reference frame and calculates main
flux linkage ψ

m(R)
from (18). Then it is possible

to calculate
dψ

m(R)

dt and – after transformation of
ψ
m(R)

to the stator fixed reference frame – the

term
dψ

m(S)

dt .

Additionally, both air gap models calculate the
electromagnetic torque from (21).
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Figure 1: Asynchronous induction machine with
squirrel cage; basic Machines library

The angular displacement between the rotor and
the stator reference frame is:

γ =

∫

ωmdt (22)

The transformation of a space phasor from a rotor
fixed coordinate system to a stator fixed reference
frame is performed by:

ψ
m(S)

= ψ
m(R)

ejγ (23)

The inverse transformation therefore is:

ψ
m(R)

= ψ
m(S)

e−jγ (24)

Although the zero system quantities do not con-
tribute to the fundamental of the main field,
they may give rise to additional leakage flux link-
age components, though. Therefore, zero se-
quence connector zero is also provided in the
SpacePhasor transformation model. If the zero
sequence component connector is grounded, which
is the regular case, no additional leakage flux link-
ages are taken into account [3].
Standard machine parameters are stator and rotor
resistance Rs and Rr, stator and rotor leakage in-
ductance Lsσ and Lrσ, the main inductance Lm
as well as the number of pole pairs p and rotor
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inertia J . The following models of asynchronous
induction machines are provided in the Machines
library:

• AIM SquirrelCage (asynchronous induction
machine with squirrel cage): The squirrel
cage is modelled as equivalent two axis wind-
ing model in the rotor circuit; the rotor is not
accessible.

• AIM SlipRing (asynchronous induction ma-
chine with wound rotor winding and slip
rings): The rotor is equipped with a sym-
metrical rotor winding; this winding topology
requires an additional parameter TurnsRatio
which represents the effective ratio of stator
to rotor turns of the respective three phase
windings.

2.3 Permanent Magnet Synchronous

Machine

The permanent magnet synchronous machine has
the same stator winding topology as an asyn-
chronous induction machine. Since the developed
models are equipped with a damper winding, ro-
tor winding topology is comparable with a squirrel
cage induction machine. Synchronous machines
without damper cage have to have control in or-
der to work stable; they are therefore not provided
in the current basic Machines library.
Saliencies of the rotor are considered through dif-
ferent main field inductances in the d- and q-axis
(direct and quadrature axis) Lmd and Lmq. We
have to use the rotor fixed reference frame to con-
sider these saliencies correctly.
Currently there are only two models provided:

• SM PermanentMagnetDamperCage: The per-
manent magnet is modelled by means of a
superimposed constant current source in the
direct axis.

• SM ReluctanceRotorDamperCage (synchro-
nous induction machine with reluctance ro-
tor): The rotor has a squirrel cage; electro-
magnetic torque in synchronism is generated
due to saliencies of the rotor only.

3 Extended Machines Library

The ExtendedMachines library models are not re-
stricted to three phases and symmetrical windings.
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Figure 2: Extended model of a squirrel cage in-
duction machine

The focus of this library is polyphase asynchro-
nous and synchronous induction machines. The
provided types of machines are squirrel cage and
slip ring asynchronous induction machines as well
as permanent magnet synchronous machines. For
each of these models two implementations are pro-
vided. The symmetrical implementation assumes
symmetrical windings in the stator and rotor of
the polyphase induction machines. The winding
topology implementation models the topology of
each stator and rotor winding including possible
asymmetries and winding faults. For these rea-
sons, space phasor theory is not applicable to the
ExtendedMachines library models any more.

3.1 Voltage Equations

It is assumed that neither the number of phases
of the stator ms nor the number of phases of the
rotor mr is restricted to three.

The voltage equations of the machines are mod-
elled graphically. The used models which repre-
sent the partial voltage drops are based on equa-
tions, though. Stator voltage equation for each of
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the i ∈ [1, 2, ...,ms] stator phases is:

vSi = RSiiSi + LSσi
diSi
dt

+

mS
∑

j=1

LSi,Sj
diSj
dt

+
d

dt

mR
∑

j=1

LSi,RjiRj (25)

In this equation LSi,Sj represents the mutual
inductance between the stator phases i and j.
For i = j this term equals the self induc-
tance of stator phase i. The voltage drops
across the inductances LSi,Sj are modeled through
VoltageEquations.SelfInductance. The sylla-
ble Self was chosen due to the fact the linkage
refers to only one machine side (either stator or
rotor), although mutual linkages are taken into
account. The instance viss of such model is im-
plemented in the graphical model of the squirrel
cage induction machine, which shown in fig. 2.

The mutual inductance LSi,Rj between a stator
phase i and a rotor phase j is dependent of the
rotor angle (22). The voltage drops across this in-
ductances with respect to the stator and rotor side
(linkage) are processed in the instant visr (fig. 2)
of VoltageEquation.MutualInductance. This
model computes torque and is connected with the
mechanical shaft (flange) and the support which is
currently fixed. Once the basic Machines library
provides a support connector of the machine, the
ExtendedMachines library will provide such a con-
nector, too.

Rotor voltage equation has basically the same
structure as (25):

vRi = RRiiRi + LRσi
diRi
dt

+

mR
∑

j=1

LRi,Rj
diRj
dt

+
d

dt

mS
∑

j=1

LRi,SjiSj (26)

This equations have to be applied to each
phase of the rotor winding. The voltage drop
across mutual inductances is processed in in-
stant visr, the voltage drops across the mutual
and self inductances LRi,Rj of the rotor side are
processed in virr, which is also an instant of
VoltageEquations.SelfInductance.

The air gap model of the basic Machines library
is equivalent to the models viss, visr and virr

in fig. 2.

For a slip ring induction machine the voltage drop
across the rotor resistances RRi and the rotor

leakage inductances LRσi can be modeled in ac-
cordance with the stator model. For the squir-
rel cage asynchronous induction machine of fig. 2
these voltage drops are replaced by a sophisticated
model of the cage with mr = Nr rotor bars. This
model takes the connection of the bars and end
rings of the real squirrel cage into account.

The effort of the ExtendedMachines models is the
determination of parameters. In accordance to [4]
each inductance of the stator side is designed in
the fashion of:

LSi,Sj = LwSiwSjξpSiξpSj Re(ξzSiξ
∗
zSj) (27)

In this equation L represents a base inductance,
wSi is the number of turns of phase i, ξpSi is the
pitch factor of phase i and ξzSi is a complex wind-
ing factor which considers the topology of phase
winding i with respect the stator reference frame.
The inductances of the rotor side are based on
equivalent equations. The mutual inductances of
the stator and rotor inductances have to take the
rotor angle (22) into account:

LSi,Rj = LwSiwRjξpSiξpRj Re(ξzSiξ
∗
zRje

−jγ) (28)

The only difference between this equations and
(27) is the rotational phasor e−jγ . The induc-
tances of (28) depend on the rotor angle (22) and
are therefore time dependent. Rotor skewing is
not considered. In (28) the rotor or stator skew-
ing is not considered.

So far only the first order space harmonics waves
(fundamental) are taken into account. The ma-
chine models are going to be extended for higher
space harmonics; this will be implemented in the
near future.

3.2 Symmetrical Winding Models

The pitch factors of the symmetrical winding mod-
els are set to one without having any restrictions.
The symmetrical topology is considered by

ξzSi = e−j2πi/mS , (29)

the product of the number of turns and the base
inductance is derived from the magnetizing induc-
tance Lm which is a (symmetrical) machine para-
meter.

The implemented models with respect to a sym-
metric winding are:
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Figure 3: Topology of 7/9-pitch symmetrical three phase stator winding, phase 1

• AIM SlipRing: Same parameters as basic
Machines library; arbitrary numbers of sta-
tor and rotor phases are supported; symmet-
ric winding

• AIM SquirrelCage: Same parameters as ba-
sic Machines library; arbitrary number of sta-
tor phases and rotor bars is provided; sym-
metric stator winding; rotor may be modelled
asymmetrically by overwriting rotor parame-
ters

• SM PermanentMagnetDamperCage:
Same parameters as SM Permanent-

MagnetDamperCage of the basic Machines
library; arbitrary number of stator phases
is supported; stator inductances are not
constant due to the saliency of the rotor,
which is considered; the rotor is equipped
with a damper cage with an arbitrary
number of bars; damper cage may be mod-
elled asymmetrically by overwriting rotor
parameters

• SM PermanentMagnet: Same parameters
as SM PermanentMagnetDamperCage, without
parameters of the damper cage, though

3.3 Winding Topology Models

The winding topology models can handle
polyphase machines and even stator asymmetries
and stator faults. For now, the only assumption
with respect to winding topologies is, that the coil
pitch of each winding has to be equal. Further de-
velopments will consider coils with unequal coil
pitches, too. However, the coil pitches of sta-
tor and rotor windings do not have to be equal,
though.

Structure wise there is no difference between the
symmetrical implementation the topology imple-
mentation. Just the handling and pre-calculation
of machine parameters is different. An example
of the topology of one phase winding (phase 1)
of a symmetrical three phase machine is shown
in fig. 3. The location of each coil of the phases
in terms of multiples of stator slots is indicated
by matrix yS [i, j]. The first index i indicates the
phase, the second index j represents the of the
number of the coil. The first row (phase 1) of
this matrix with respect to the depicted winding
in fig. 3 is:

yS [1, :] = [1, 2, 3, 19, 20, 21, 10,

11, 12, 28, 29, 30]

Since the orientations of the coils are not equal,
matrix e is defined, which defines the orientation
of each coil. In our example the first row (phase
1) of this matrix is:

e[1, :] = [ + 1,+1,+1,+1,+1,+1,

− 1,−1,−1,−1,−1,−1]

The orientation e[i, j] of a certain coil corresponds
with the location ys[i, j] and the respective num-
ber of turns (each coil has 12 turns):

wcS [1, :] = [12, 12, 12, 12, 12, 12,

12, 12, 12, 12, 12, 12]

If the magnetic field caused by any coil is oriented
up, the respective element in e equals +1, other-
wise it equals −1. Parameter ycs = 7 means that
the coil pitch is seven slots. The total number of
stator slots Ns is a model parameter, too.
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For phase i the winding factors are:

ξcSi = sin(p
ycsms

Ns
) (30)

ξzSi =
1

wSi

∑

j

e[i, j]e−jpyS [i,j] 2π

Ns (31)

The number of turns of i ∈ [1, 2, ...,ms] is:

wSi =
∑

j

wcS [i, j] (32)

Depending on the machine type, winding factors
and the numbers of turns for the polyphase sta-
tor and rotor winding are derived in the initial
sections of the machine models. These parame-
ters are passed to the graphically modelled voltage
equations as shown in fig. 2.
Currently the following machines with winding
topology are modelled:

• AIM SlipRingWinding: Same parameters as
AIM SlipRing; additionally, winding topol-
ogy of stator and rotor winding has to be
provided through data vectors which deter-
mine the exact orientation and arrangement
of each coil.

• AIM SquirrelCageWinding: Same parame-
ters as AIM SquirrelCage; additionally wind-
ing topology of stator has to be provided
through data vectors which determine the ex-
act orientation and arrangement of each coil;
rotor topology has to be provided by the num-
ber of bars and the ratio of bar to end ring
resistance as well as the ratio of bar to end
ring leakage reactance; a symmetrical cage is
predefined, certain parameters can be over-
written in the parameter window, though.

• SM PermanentMagnetWinding: Same para-
meters as SM PermanentMagnet of the basic
Machines library; arbitrary numbers of sta-
tor phases are supported; stator inductances
are not constant due to the saliency of the ro-
tor, which is considered; additionally winding
topology of stator has to be provided through
data vectors which determine the exact orien-
tation and arrangement of each coil; the ma-
chine has no damper cage.

• SM PermanentMagnetDamperCageWinding:
Same parameters as SM PermanentMag-

netWinding; arbitrary numbers of stator
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Figure 4: Direct start on line of squirrel cage in-
duction machines; AIMC1 from basic Machines
library, AIMCE1 from ExtendedMachines library

and rotor phases are supported; additionally
winding topology of stator has to be provided
through data vectors which determine the
exact orientation and arrangement of each
coil; the machine has a damper cage; a
symmetrical cage is predefined, certain para-
meters can be overwritten in the parameter
window, though, in order to simulate an
asymmetrical damper cage.

4 Example

To show the usage of the libraries, we will demon-
strate simulation of starting an asynchronous in-
duction machine with squirrel cage direct on line.
Figure 4 presents the model using the basic Ma-
chines library as well as the ExtendedMachines li-
brary:
Each AIM SquirrelCage-model connected in delta
is electrically connected through one three phase
switch to a three phase sinusoidal voltage source
from the MultiPhase library. Mechanically each
machine is connected to an individual load, con-
sisting of an inertia and a load torque which is
quadratic dependent on speed. Standard machine
parameters are used. Load inertia is the same
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Figure 5: 1√
2
-fold of the magnitude of the cur-

rent space phasor of the modelled squirrel cage
machines (a) Machines library, (b) ExtendedMa-
chines library
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Figure 6: Electrical torque of the modelled squir-
rel cage machines (a) Machines library, (b) Ex-
tendedMachines library

as the machine’s inertia, and nominal load torque
and speed are the same as the machine’s rated val-
ues. After 0.1 seconds the switch is closed, high
starting currents build up the magnetic field and
each motor is able to develop starting torque, ac-
celerating the inertias. The extended machines
models was simulated with symmetrical stator
windings and 28 rotor bars. The resulting currents
of each machine are shown in fig. 5, the electrical
torques are shown in fig. 6. These results demon-
strate that both machine models have the same
operational behavior.

5 Conclusions

The structure and basic equations of the basic Ma-
chines library using space phasors as well as the
ExtendedMachines were presented. The Extend-
edMachines library deals also with polyphase ma-
chines with arbitrary numbers of stator and ro-
tor phases as well as asymmetrical or even faulty
windings. The simulation results of both models
were compared and match qualitatively and quan-
titatively.

Further developments will focus on:

• Implementation of a mechanical support con-
nector representing the housing

• Additional machine types like electrically ex-
cited synchronous machines

• Modelling of iron, friction and stray losses

• Modelling of saturation effects of main and
leakage inductances

• Modelling of skin effect in deep rotor bars

• Coupling of the electromagnetic models with
thermal models [5]

• Modelling of higher field harmonics in space
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Abstract 

A Modelica library for modeling of electro-magneto-
mechanical actuators and drives is presented in this 
paper. The model components in this library are 
suited for actuator design itself as well as for 
dynamic simulation of complete drive systems. For 
modeling of the magnetic subsystem of actuators and 
drives, the concept of magnetic flux tubes is used in 
this library, leading to a network model of the 
actuators magnetic subsystem. Both the method of 
magnetic flux tubes and the developed library will be 
presented below. As an example, modeling of an 
industrial solenoid actuator will be explained. 
Keywords: Magnetic library; Magnetic flux tube; 
Magnetic network; Solenoid Actuator 

1 Introduction 

Electromagnetic motors and actuators convert 
electrical energy via a magnetic field into 
mechanical work (or vice versa for generators). 
Different physical effects are utilized for this energy 
conversion, depending on the structure of the 
electromagnetic device. It is necessary to arrange the 
interactions in the electro-magneto-mechanical 
energy conversion process carefully during actuator 
design in order to achieve an optimal solution. Also, 
not only the actuator itself but also the environment 
of the system to be developed must be considered 
during design, too. For example, the efficiency of 
electromagnetic actuators and drives can be 
significantly increased by means of electronic 
circuits for excitation and control. The complexity of 
the above design task requires utilization of 
computer-based modeling and simulation techniques  

for both: 
• design of the distribution of the magnetic field 

inside the actuator, and  
• dynamic simulation of the complete drive 

system. 
Latter task can be accomplished e. g. with the multi-
domain model description language Modelica and 
accompanying simulation environments, where the 
system to be simulated is described with a set of 
differential and algebraic equations (DAE).  
The problem for the design of magnetic actuators is, 
however, that the distribution of the magnetic field is 
described by partial differential equations 
(Maxwell’s equations). Calculation and optimization 
of such field distributions and resulting integral 
quantities such as magnetic forces is necessary 
during actuator design. Finite Element Analysis 
(FEA) is a valuable tool for this task. However, the 
high computational effort of FEA restricts its use in 
most cases to stationary field calculations. Dynamic 
simulation of a complete system incorporating a 
detailed model of the actuators magnetic field and 
detailed models of the feeding electronics and the 
mechanical load to be moved is not possible with 
reasonable effort using FEA. 
To overcome the difficulties described above, the 
method of magnetic flux tubes can be used for 
actuator and system design [1]-[4]. This method 
allows a simplified description of the magnetic field 
inside a magnetic device so that the field distribution 
can be described with a set of algebraic equations 
rather than with the precise partial differential 
equations. With this approach, the field distribution 
in a magnetic actuator can be simulated together with 
neighboring subsystems in one DAE system with 
little computational effort. The accuracy is 
reasonable for coarse design of actuators and for 
system simulation.  

A Magnetic Library for Modelica

The Modelica Association 559 Modelica 2005, March 7-8, 2005



2 Magnetic Flux Tubes 

A magnetic flux tube is a defined volume inside a 
magnetic field with homogenous distribution of the 
magnetic field strength H and the magnetic flux 
density B within this region (Fig. 1).  

s

A(s)

l

Φ
Φ

H, B

Vmag

 
Fig. 1 Magnetic flux tube 

Presuming that the principal distribution of the 
magnetic field inside a magnetic device is known, 
the magnetic field in the complete device can be 
divided into a network of flux tubes. For each flux 
tube element, a magnetic potential difference Vmag is 
defined as an across variable: 

    (1). lHdsV
s

mag == ∫H

The magnetic flux Φ through each cross sectional 
area A of a flux tube is calculated as follows: 

     (2) ∫=Φ
A

dAB

With the above across variable Vmag and the flow 
variable Φ, a magnetic reluctance Rmag can be 
defined analogue to resistive network elements in 
other physical domains: 

 
∫

∫
=

Φ
=

A

smag
mag dA

ds
V

R
B

H
   (3). 

Homogenous distribution of B and H through each 
cross section inside a flux tube is one of the 
assumptions of the flux tube approach. Hence, 
equation (2) simplifies to 

     (4). )()( sAsB=Φ

Maxwell’s constitutive equation  

 HB ro µµ=     (5) 

describes the material properties (µ0 - permeability 
of vacuum, µr - relative permeability, see 
section 3.2). With the equations (3)-(5), the general 
formula for a magnetic reluctance of any shape can 
be given: 

 ∫=
Φ

=
s r

mag
mag sAs

dsV
R

)()(0 µµ
  (6). 

For a prismatic or a cylindrical volume of length l 
and cross sectional area A with the magnetic flux 
entering and leaving the region through its end 
planes, equation (6) simplifies to 

 
AB

lR
r

mag )(0 µµ
=    (7). 

As for the above example, equations for the 
magnetic reluctance of other common geometries 
can be found.  
Similar lumped elements with the same magnetic 
flow and across variables can be defined for sources 
of a magnetic potential difference Vmag (see 
section 3.3) or for sources of a magnetic flux Φ, if 
needed. For a magnetic network consisting of at least 
one source and one reluctance element, the field 
distribution in a magnetic device can be calculated 
with little computational effort according to 
Kirchhoff’s laws. 

3 Structure of the Magnetic Library 

Based on the concept of magnetic flux tubes, a 
Modelica library for modeling of magnetic 
components and devices has been developed. The 
structure of this library is shown in Fig. 2. Its 
sublibraries and model components are described 
only in short in this section; a more detailed 
description of selected model components can be 
found in section 4, where usage of the library 
elements is explained with an example.  

3.1 Interfaces Sublibrary 

A domain specific magnetic connector was defined: 

connector MagneticPort 
     Modelica.SIunits.MagneticPotentialDifference V_mag  
         "Magnetic potential at the port"; 
     flow Modelica.SIunits.MagneticFlux Phi  
         "Magnetic flux flowing into the port"; 
end MagneticPort; 
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Fig. 2 Structure and sublibraries of the Modelica 
 Magnetic library 

 
Based on the connector definition above, a base 
model for all reluctance elements and selected source 
elements is used throughout the library: 

partial model MagneticFluxTube  
        "Component with two magnetic ports p and n and  
         magnetic flux Phi from p to n" 
     PositiveMagneticPort p "Positive magnetic port"; 
     NegativeMagneticPort n "Negative magnetic port"; 
     Modelica.SIunits.MagneticPotentialDifference V_mag  
        "Magnetic potential difference between the two ports"; 
     Modelica.SIunits.MagneticFlux Phi  
        "Magnetic flux flowing from pin p to pin n"; 
equation 
     V_mag = p.V_mag - n.V_mag; 
     0 = p.Phi + n.Phi; 
     Phi = p.Phi; 
end MagneticFluxTube; 

3.2 Basic Sublibrary 

Most magnetic devices contain ferromagnetic 
components that carry the magnetic flux imposed by 
one or more coils or permanent magnets to a 
working air gap where the desired magnetic force (or 
torque for rotating machines) is generated. This is 
because of the high relative permeability of 
ferromagnetic material compared to that of vacuum 
or air (µr = 1). However, the relative permeability for 
each point of a ferromagnetic material is not constant 
but depends on the actual magnetic field strength H 
respectively the actual magnetic flux density B of 
this point [2], [4]. The so called commutation curve 
B(H) of a steel commonly used in magnetic devices 
is shown in Fig. 3 as an example. According to 
equation (5) this results in the characteristic shape 
µr(H) of Fig. 3. Proper modeling of this nonlinear 
relationship is crucial for the accuracy of flux 
calculations and hence for the resulting magnetic 
forces. In engineering practice, the relationship µr(B) 
is often used instead of µr(H).  
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Fig. 3 Magnetic flux density B vs. magnetic field 
 strength H and corresponding relative per-
 meability µr for steel 1.0715 (9SMn28) 
 
For the nonlinear reluctance elements in the Basic 
sublibrary, the relationship µr(B) is approximated 
with a function [4]. The Material sublibrary contains 
the coefficients of this function for different 
ferromagnetic materials. It is planned to implement 
additional possibilities to describe the relationship 
µr(B), e. g. spline interpolation.  

3.3 Sources Sublibrary 

The source elements ConstantMagnetomotiveForce 
and SignalMagnetomotiveForce both are ideal 
sources of a magnetic potential difference Vmag. They 
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are intended for use in stationary flux calculations 
where no coupling between the feeding electrical and 
the magnetic subsystem is needed and where 
dynamic effects of this coupling need not to be 
considered.  
The source element ElectroMagneticConverter 
couples the electrical subsystem of a electromagnetic 
drive system with the magnetic subsystem, i. e. with 
the network of magnetic flux tubes. Two equations 
are needed to describe this coupling [4]: Faraday’s 
law  

 
dt
dwuind
Φ

−=     (8) 

and   

wiVmag ⋅=     (9). A

Equation (8) describes the voltage uind induced in a 
coil due to a change of the flux linkage wΦ inside 
this coil with respect to time (w – number of coil 
windings). In most electromagnetic devices, the coil 
flux Φ is a nonlinear function of both the coil 
current i (due to saturation effects in ferromagnetic 
components) and the position x respectively ϕ of the 
device’s moving component: Φ = f(i, x) for 
translational actuators and Φ = f(i, ϕ) for rotating 
electrical machines. The dependencies of the coil 
flux Φ on both current and position are intrinsically 
accounted for in actuator models according to the 
flux tube approach as will be obvious from the 
example in section 4.  
Equation (9) describes the magnetic potential 
difference Vmag fed into a network of flux tubes due 
to the coil current. This equation is derived from 
Ampere’s law.  
The Sources sublibrary is completed by a model of a 
permanent magnet. It is made up of a series 
connection of an ideal source of a magnetic potential 
difference Vmag and the linear (µr = const.) reluctance 
of the permanent magnet [2], [3]. 

4 A Solenoid Actuator as an Example 

Solenoid actuators offer a very robust and simple 
structure, a good force to mass ratio with respect to 
dynamic behavior and stroke and a low price. For 
that reasons they are widely used as drive element in 
a huge diversity of applications, e.g. in locking 
mechanisms throughout automation and automotive 
engineering, in fluidic valves or in relays and 
switchgear.  

The principal structure of an electromagnetic 
actuator is shown in Fig. 4. Depicted is an industrial 
DC solenoid for applications throughout automation. 
The cross-sectional view above shows a solenoid of 
the Saia-Burgess STA series that will be used as 
modeling example [5]. In contrast to the depicted 
actuator with a conical pole shape, the modeled 
solenoid STA 195205-129 has a plane pole face as 
shown in the schematic view below.  
 

rmature

FLoad

Yoke Coil Air gap

Fmag

Magnetic flux path

Stroke xarm
0

 

Fig. 4 Cross-sectional view and principal structure 
 of a typical solenoid actuator [5] 
 
The working principle of solenoid actuators is based 
on reluctance forces [2], [4]: The magnetic flux Φ 
generated by a current in the coil goes through a 
working air gap where a magnetic force is developed 
due to the gradient in relative permeability µr on the 
boundaries between the ferromagnetic parts with 
µr >> 1 and the air with µr = 1. 
The force-stroke characteristics of electromagnetic 
actuators can be widely influenced and shaped 
according to applications needs by variation of the 
geometry of pole and armature. Typically however 
for most electromagnetic actuators is a highly 
nonlinear force-stroke characteristic Fmag(xarm) with a 
minimum force at the armature rest position 
(maximum air gap length) and a strong increase in 
magnetic force towards minimum air gap length [2]. 

4.1 Model of the Solenoid 

The graphical representation of the Modelica model 
of the actuator is shown in Fig. 5. It consists of the 
electrical subsystem (coil) on the left side with the 
electro-magnetic converter, the magnetic network 
based on the method of flux tubes in the middle, and 
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the mechanical subsystem that models the armature 
dynamics on the right side. At the right flange 
connector, additional models from the Translational 
library of the Modelica Standard library can be 
attached, e.g. a mass to be moved, a return spring or 
process forces. 
 

Coil terminal

Translational
armature
flange 

Armature mass with stoppers
(differential equation of motion)

Magnetic network

Coil terminal

Fig. 5 Graphical representation of the  Modelica 
 model of the solenoid 
 
The electrical subsystem with the current i, the 
voltage across the coil terminals vcoil, the magnetic 
flux Φ enclosed by each of the w windings, and the 
winding resistance Rcoil is described with the 
following equation (see also equation (8)):  

 
dt
dwRiv coilcoil
Φ

+=              (10). 

For voltage controlled operation of the solenoid, vcoil 
is the voltage of the driving voltage source.  
The magnetic network of Fig. 5 is intentionally kept 
simple in this example. In Fig. 6 the network is 
shown over a field plot of the actuators magnetic 
field obtained from FEA.  
 

RmAirGap(x)RmFeArm(i) Θ = iw

RmAirParasitic RmStray RmFeYoke(i)

Fig. 6 Magnetic network over a FEA field plot of 
 the sample actuator (line of symmetry at the 
 bottom) 

The magnetomotive force Θ is fed into the network 
by the electro-magnetic converter. It is an ideal 
source of a magnetic potential difference Vmag 
according to equation (9). The two ferromagnetic 
reluctance elements RmFeArm(i) and RmFeYoke(i) 
represent the ferromagnetic components of the 
actuator. They are calculated from the actuators main 
dimensions with equation (7). Due to the nonlinear 
B(H)-relationship of ferromagnetic materials, they 
depend on the solenoid current i. The steel 1.0715 
with the B(H)-characteristic of Fig. 3 is used in both 
reluctance elements. An approximated function µr(B) 
derived from that material data is used for 
calculation of both reluctance values with 
equation (7).  
Three reluctance elements through air are present in 
this magnetic network model: RmStray is a simple but 
yet effective description of the stray flux of the 
solenoid. Despite the simple structure of the 
actuators magnetic network it should not be omitted 
in the model. This is because of the large ratio of 
total actuator length to outer diameter of the sample 
actuator. Typical for solenoids with such a geometry 
is that part of the magnetic field lines close without 
going through the working air gap RmAirGap.  
The reluctance of the working air gap is calculated 
with equation (7), where air gap length l is identical 
with the armature position xarm. The magnetic or 
reluctance force Fmag that is generated at the 
boundaries between the ferromagnetic armature 
respectively the pole and the air is calculated with 
Maxwell’s formula [2], [4]: 

 
A

Fmag
0

2

2µ
Φ

=               (11), 

where A is the cross sectional area of the air gap 
respectively the area of the pole face. The developed 
force Fmag is fed as driving force for the armature 
mass into the mechanical subsystem of the actuator 
model, where acceleration, velocity and armature 
position xarm are calculated from the differential 
equation of motion.  
The magnetic network is completed with the 
reluctance RmAirParasitic. This element describes the 
parasitic air gap in the non-ferromagnetic slide 
guiding for the armature.  

4.2 Force-Stroke Characteristics 

An important criterion that characterises an actuator 
is its force-stroke characteristics. For the solenoid 
model, this characteristic Fmag(xarm) was calculated 
with a quasi-static enforced movement of the 
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armature (Fig. 7). This is in accordance to real force-
stroke measurements on actuators.  
 

Fig. 7 Quasi-static enforced armature movement 
 for calculation of the force-stroke 
 characteristics 
 
Simulated and measured curves for the sample 
actuator are compared in Fig. 8. Simulation was done 
with the magnetic network model of Fig. 5. 
Measured data was taken from the catalogue of the 
manufacturer. For comparison, the force-stroke 
characteristic obtained from FEA at different 
armature positions is included in this diagram, too.  
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Fig. 8 Comparison of measured and simulated 
 force-stroke characteristics of the sample 
 actuator 
 
Reasons for the differences between the three curves 
are: 

• limited accuracy of the force-stroke measure-
ment especially at small air gaps due to de-
flection of the load cell and the mounting rack, 

• simple structure of the magnetic flux tube 
model in this example (e. g. no additional stray 
reluctance around the working air gap), 

• neglect of additional parasitic air gaps 
especially in the FEA model, e. g. between yoke 
lid and yoke, 

• differences between the simulated and the real 
material characteristics µr(B) for the 
ferromagnetic yoke and the armature.  

Despite the differences between measurement and 
simulation with the magnetic network model, the 
flux tube approach is well suited for coarse design of 
magnetic devices and estimation of force-stroke 
characteristics respectively torque-angle 
characteristics for rotational devices prior to further 
design steps. 

4.3 Simulation of a Pull-in Movement 

The main advantage of a modeling approach based 
on magnetic flux tubes compared to a design 
approach using FEA is the little computational effort 
of flux tube models that allows for extensive 
dynamic simulations during both actuator and system 
design. To illustrate the capabilities of magnetic 
network models for dynamic simulation, a pull-in 
stroke of the armature was simulated with the 
network model of the sample solenoid of Fig. 5. In 
Fig. 9, simulated coil current i and armature position 
xarm are shown together with measured data after a 
voltage step from 0 to 13.2 VDC at time t = 0 was 
applied. The armature was in horizontal position, no 
additional mechanical load was attached to it.  
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The characteristic current drop during the pull-in 
stroke of the armature results from the increase of 
the solenoids inductance as the armature moves into 
the solenoid. This is due to the decrease of the air 
gap reluctance and the increase of the total magnetic 
flux during the movement. 
Differences between the measured and the simulated 
curves can be explained with the simple structure of 
the network model. Higher accuracy of the solenoid 
model can be achieved with a more detailed 
magnetic network, if needed.  

5 Conclusions 

Basic magnetic network elements in Modelica were 
already presented in [6]. The model elements 
described in this paper are intended for modeling of 
rotating electrical machines. The magnetic elements 
(e.g. linear magnetic resistance, electro-magnetic 
converter) are described in terms of integral machine 
parameters. Differently from the approach in [6], the 
model components of the newly developed Magnetic 
library are defined in terms of their geometric 
dimensions and their material properties. They are 
hence suited for modeling of the geometry of 
magnetic components during actuator design, but for 
system simulation of the actuator together with its 
neighboring subsystems, too.  
A dynamic model of a general purpose solenoid was 
presented to illustrate the concept of magnetic flux 
tubes as well as usage of the library. Modeling of the 
dynamic properties of solenoids during actuator 
design is of vital importance in many sectors. For 
example, electromagnetic injection valves in 
automotive applications must actuate in as little as 
1 ms, and proportional solenoids that drive valves in 
fluidic applications operate at frequencies above 
100 Hz.  
Future work on the Magnetic library will focus on 
the following issues: 

• refinement of implementation details, e. g. the 
description of material properties with tables 
and spline interpolation, 

• estimation of eddy current losses for flux tube 
elements with electrical conductivity, 

• implementation of additional models for 
magnetic devices, e.g. for solenoids with 
different pole shapes, electrodynamic drives or 
small rotating motors.  

Preferably, the latter models shall be scalable, so that 
device manufacturers can easily build models for 

each product within a product family with different 
sizes. On the other hand, system engineers can use 
these models for simulation of complex mechatronic 
systems, e.g. in automation industry or in automotive 
applications. 
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Abstract 

The new library Modelica.StateGraph is a free 
Modelica package providing components to model 
discrete event and reactive systems in a convenient 
way. It has a similar modeling power as Statecharts, 
but avoids some deficiencies of Statecharts by using 
elements of JGrafchart and by using Modelica as an 
“action” language. An overview of the StateGraph 
library is given, the available components and an 
application example. The implementation of the 
library in Modelica is sketched, especially the 
needed extension to Modelica that will be available 
in release 2.2 of the Modelica language. 

1 Introduction 

This section shortly discusses discrete event formal-
isms and the relationship to the StateGraph library. 

Grafcet [3], or the industrial alias Sequential 
Function Charts (SFC), is a state-transition based 
computational model that has been widely accepted 
in the industrial automation industry for representing 
sequential control logic. It is defined in the standards 
IEC 848 and IEC 61131-3. States are represented by 
steps to which actions can be associated, and the 
steps are interconnected by transitions with associ-
ated Boolean conditions or event expressions. The 
activity in a Grafcet diagram flows downwards from 
the top of the diagram. It supports alternative 
branches, parallel branches, and repetition. Hierar-
chies are supported in the form of macro steps.  

Although Grafcet has the same formal power of 
expression as an ordinary state machine, it is cum-
bersome to use for representing larger state-machine 
oriented models. For these applications the State-
charts formalism is better suited [6]. Statecharts use 
a syntax that is similar to ordinary state machines 
and supports hierarchical states through the concept 
of superstates, a considerably more powerful concept 
than the macro steps of Grafcet. 

Grafchart is the name of a graphical language 
aimed at supervisory control applications developed 
at Lund University [1]. It combines the function 
chart formalism of Grafcet with the hierarchical 
states of Statecharts. It also supports parameterized 
function chart procedures. Through this the best con-
cepts from both Grafcet and Statecharts are com-
bined. JGrafchart is the name of a Java implementa-
tion of Grafchart [2]. It is a combined graphical edi-
tor and run-time system, and can be viewed as a soft-
PLC. It is also possible to use JGrafchart only as a 
graphical editor generating executable code. In [4] 
code generation from JGrafchart to Modelica is pre-
sented. Code generation has also been provided to C 
and Java. 

The StateGraph library is based on a subset of 
JGrafchart. Besides minor modifications to arrive at 
a suitable Modelica implementation, the essential 
difference is to use Modelica as an “action” lan-
guage. The “single assignment rule” of Modelica 
makes it completely different to the action languages 
used in the formalisms from above. It will be shown 
that this has significant advantages. 

2 Users View 

In this section the components of the StateGraph li-
brary are introduced by examples to show how it can 
be used in applications. 

2.1 Steps and Transitions 

The basic elements of StateGraphs are steps and 
transitions as shown in the next figure. Steps repre-
sent the possible states a StateGraph can have. If a 
step is active the Boolean variable active of the step 
is true. If it is deactivated, active = false. At the ini-
tial time, all ordinary steps are deactivated. The Ini-
tialStep objects are steps that are activated at the 
initial time. They are characterized by a double box 
(see next figure at the left). 
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Transitions are used to change 
the state of a StateGraph. When 
the step connected to the input of 
a transition is active, the step 
connected to the output of this 
transition is deactivated and 
when the transition condition be-
comes true, then the transition 
fires. This means that the step 
connected to the input to the tran-
sition is deactivated and the step 
connected to the output of the 
transition is activated. The transi-
tion condition is defined via the 
parameter menu of the transition 
object. Clicking on object "transi-

tion1" in the above figure, results in the following 
menu:  

 
In the input field "condition", any type of time vary-
ing Boolean expression can be given (in Modelica 
notation, this is a modification of the time varying 
variable condition). Whenever this condition is true, 
the transition can fire. Additionally, it is possible to 
activate a timer, via enableTimer (see menu above) 
and provide a waitTime. In this case the firing of the 
transition is delayed according to the defined wait-
Time. The transition only fires if the condition re-
mains true during the waitTime. The transition con-
dition and the waitTime are displayed in the transi-
tion icon.  
In the above example, the simulation starts at ini-
tialStep. After 1 second, transition1 fires and step1 
becomes active. After another second transition2 
fires and initialStep becomes again active. After a 
further second step1 becomes active, and so on.  
In Grafchart, Grafcet and SFC the network of steps 
and transitions is drawn from top to bottom. In 
StateGraphs, no particular direction is defined, since 
Modelica models do not depend on the placement of 
components and connection lines. Usually, it is more 
practical to define the network from left to right, 

since it is easier to read the labels on the icons. The 
example from above has then the following layout: 

 

2.2 Conditions and Actions 

With the block TransitionWithSignal, the firing 
condition can be provided as Boolean input signal, 
instead as entry in the menu of the transition with 
block Transition, see example in the next figure:  

 
Component "step" is an instance of "StepWithSig-
nal" that is a usual step where the active flag is avail-
able as Boolean output signal. To this output, com-
ponent "Timer" from library "Modelica.Blocks.-
Logical" is connected. It measures the time from the 
time instant where the Boolean input (i.e., the active 
flag of the step) became true up to the current time 
instant. The timer is connected to a comparison 
component. The output is true, once the timer 
reaches 1 second. This signal is used as condition 
input of the transition. As a result, "transition2" fires, 
once step "step" has been active for 1 second. Of 
course, any other Modelica block with a Boolean 
output signal can be connected to the condition input 
as well, especially blocks of the Modelica.Blocks.-
Logical library, see next figure. The Logical library 
will be extended in the future. It is also easy for a 
user to define his own, specialized logical blocks. 
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Instead of using logical blocks, via the Mode-
lica.Blocks.Sources.SetBoolean component any type 
of logical expression can be defined in textual form, 
as shown in the next figure:  

 
With the block "SetBoolean", a time varying expres-
sion can be provided as modification to the output 
signal y (see block with icon text "timer.y > 1" in the 
figure above). The output signal can be in turn con-
nected to the condition input of a TransitionWith-
Signal block.  
The "SetBoolean" block can also be used to compute 
a Boolean signal depending on the active step. In the 
figure above, the output of the block with the icon 
text "step.active" is true, when "step" is active, oth-
erwise it is false (note, the icon text of "SetBoolean" 
displays the modification of the output signal "y"). 
This signal can then be used to compute desired ac-
tions in the physical systems model. For example, if 
a valve shall be open, when the StateGraph is in 
"step1" or in "step4", a "SetBoolean" block may be 
connected to the valve model using the following 
condition:  

step1.active or step2.active 

Via the Modelica operators edge(..) and change(..), 
conditions depending on rising and falling edges of 
Boolean expressions can be used when needed.  
In Grafchart, Grafcet, SFC and Statecharts, actions 
are formulated within a step. Such actions are dis-
tinguished as entry, normal, exit and abort actions. 
For example, a valve might be opened by an entry 
action of a step and might be closed by an exit action 
of the same step. In StateGraphs this is not possible 
due to Modelicas "single assignment rule" that re-
quires that every variable is defined by exactly one 
equation. Instead, the approach explained above is 
used. For example, via the "SetBoolean" component, 
the valve variable is set to true when the StateGraph 
is in particular steps.  
This feature of a StateGraph is very useful, since it 
allows a Modelica translator to guarantee that a 
given StateGraph has always deterministic behav-
iour without conflicts. In the other methodologies 
this is much more cumbersome. As an example, in 
the next figure a critical situation in Stateflow is 
shown (Mathworks Stateflow is similar to a State-

graph but has, e.g., a slightly different visual appear-
ance, and is integrated in Mathworks Simulink): 

 
The two substates “fill1” and “fill2” are executed in 
parallel. In both states the variable “openValve” is 
set as entry action. The question is whether open-
Valve will have value 0 or 1 after execution of the 
steps. Stateflow changes this non-deterministic be-
haviour to a formally deterministic one by defining 
an execution sequence of the states that depends on 
their graphical position. The light number on the 
right of the states shows in which order the states are 
executed. In the figure above this means that “open-
Valve=0” after leaving the two states. If the second 
state “fill2” is changed a little bit graphically 

 
“openValve=1” after “fill1” and “fill2” have been 
executed. This is a dangerous situation because (a) 
slight changes in the placement of states might 
change the simulation result and (b) if the parallel 
execution of actions depends on the evaluation order, 
errors are very difficult to detect. 
Note, similar problems occur in other StateGraph 
variants, SFC, Grafcet and Graphcharts: Variables 
are changed according to an evaluation sequence of 
the simulator. It seems not possible to provide an 
easy-to-grasp rule about evaluation order of actions 
that are executed in parallel. Therefore, either the 
simulator just uses an internal evaluation order, or 
non-obvious rules are present as in Stateflow that do 
not solve the underlying problem. 
In a StateGraph, such a situation is detected by the 
translator resulting in an error, since there are two 
equations to compute one variable. The user is 
forced to reformulate the network by explicitly de-
fining priorities. For example, if “fill1” and “fill2” 
are steps that are executed in parallel, there might be 
a “SetBoolean” block that defines: 
  openValve =  
     if fill1.active then 1 else 
     if fill2.active then 0 else 2 

Therefore step fill1 has a higher priority as step fill2.  
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In a Stategraph or Graphchart it is difficult to modu-
larize a sub chart if the used actions reference vari-
ables in an outer scope: Assume, for example, that a 
state machine “control” has the following hierarchy:  

control.superstate1.step1 

Within "step1" a Statechart would, e.g., access vari-
able "control.openValve", say as "entry action: 
openValve = true". This typical usage has the draw-
back that it is difficult to use the hierarchical state 
"superstate1" as component in another context, be-
cause "step1" references a particular name outside of 
this component.  
In a StateGraph, there would be typically a "SetBoo-
lean" component in the "control" component stating:  
openValve = superstate1.step1.active; 

As a result, the "superstate1" component can be used 
in another context, because it does not depend on the 
environment where it is used. 
The disadvantage of the StateGraph approach is that 
the user might not be able to formulate the network 
directly as desired. For example, in order to fill a 
tank usually several actions are necessary, e.g., to 
close one valve and to open another one. In a SFC all 
actions to “fill a tank” would be defined as actions to 
a “fill_a_tank” step and this might be more conven-
ient for the user. For example, copying or deleting a 
“fill_a_tank” step would require only a change at one 
place in a SFC whereas it would require changes at 
several places in a StateGraph. 

2.3 Parallel and Alternative Execution 

Parallel activities can be defined by component 
StateGraph.Parallel and alternative activities can be 
defined by component StateGraph.Alternative. An 
example for both components is given in the next 
figure. Here, the branch from "step2" to "step5" is 
executed in parallel to "step1". A transition 

 
connected to the output of a parallel branch compo-
nent can only fire if the final steps in all parallel 
branches are active simultaneously. The figure above 
is a screen-shot from the animation of the State-
Graph: Whenever a step is active or a transition can 

fire, the corresponding component is marked in 
green color.  
The three branches within "step2" to "step5" are exe-
cuted alternatively, depending which transition con-
dition of "transition3", "transition4", "transition4a" 
fires first. Since all three transitions fire after 1 sec-
ond, they are all candidates for the active branch. If 
two or more transitions would fire at the same time 
instant, a priority selection is made: The alternative 
and parallel components have a vector of connectors. 
Every branch has to be connected to exactly one en-
try of the connector vector. The entry with the lowest 
number has the highest priority.  
Parallel, Alternative and Step components have vec-
tors of connectors. The dimensions of these vectors 
are set in the corresponding parameter menu. E.g. in 
a "Parallel" component:  

 
Currently in the Modelica tool Dymola the following 
menu pops up when a branch is connected to a vector 
of components in order to define the vector index to 

 
which the component shall be connected. There are 
discussions to improve the Modelica language to 
handle such situations more conveniently. 
Note, alternative branches can also be defined with-
out the “Alternative” component by just connecting 
several transitions to the outputs of the same step as 
shown in the next figure: 
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2.4 Composite Steps 

A StateGraph can be hierarchically structured by 
using a component that inherits from State-
Graph.PartialCompositeStep. An example is given 
in the next figure:  

 
The CompositeStep component contains a local 
StateGraph that is entered by one or more input tran-
sitions and that is left by one or more output transi-
tions. Also, other needed signals may enter a Com-
positeStep. The CompositeStep has similiar proper-
ties as a "usual" step: The CompositeStep is active 
once at least one step within the CompositeStep is 
active. Variable active defines the state of the Com-
positeStep.  
Additionally, a CompositeStep has a suspend port. 
Whenever the transition connected to this port fires, 
the CompositeStep is left at once. When leaving the 
CompositeStep via the suspend port, the internal 
state of the CompositeStep is saved, i.e., the active 
flags of all steps within the CompositeStep. The 
CompositeStep might be entered via its resume port. 
In this case the internal state from the suspend transi-
tion is reconstructed and the CompositeStep contin-
ues the execution that it had before the suspend tran-
sition fired (this corresponds to the history ports of 
Statecharts or JGrafcharts).  
A CompositeStep may contain other Compo-
siteSteps. At every level, a CompositeStep and all of 
its content can be left via its suspend ports (actually, 
there is a vector of suspend connectors, i.e., a Com-
positeStep might be aborted due to different transi-
tions).  
The CompositeStep can be used in the same way as a 
superstate in Statecharts. In a superstate it is possible 
to enter the state in different ways ending up in dif-
ferent internal states. This can be modeled in a 
StateGraph or a Graphchart by having multiple input 
transitions, each leading to a different internal step. 

In a superstate it is possible to exit a superstate in 
different ways depending on which internal state that 
is active. This is modeled in a StateGraph or Graph-
chart by associating different output transitions to the 
different internal steps. In a superstate it is, finally, 
also possible to exit the state independently from 
which internal state that is active. This is achieved 
with the suspend port here. The conditions connected 
to the transitions attached to the suspend port can 
also be conditioned by the status of the internal steps 
of the CompositeStep. In this way it is possible to 
suspend the step if a certain condition holds and 
unless a certain internal step is active. The history 
arcs in Statecharts correspond to the resume port. 
Superstates with parallel subparts, so called XOR 
superstates, can be modeled using parallel constructs 
inside the CompositeStep. 
In addition to using CompositeSteps for modeling 
hierarchical states they can also be used to simply 
aggregate a part of a larger StateGraph. This can be 
useful to improve the structure 

2.5 Execution Model 

The execution model of a StateGraph follows from 
its Modelica implementation: Given the states of all 
steps, i.e., whether a step is active or not active, the 
equations of all steps, transitions, transition condi-
tions, actions etc. are sorted resulting in an execution 
sequence to compute essentially the new values of 
the steps. If conflicts occur, e.g., if there are more 
equations as variables, of if there are algebraic loops 
between Boolean variables, an error occurs. Once all 
equations have been processed, the active variables 
of all steps are updated to the newly calculated val-
ues. Afterwards, the equations are again evaluated. 
The iteration stops, once no step changes its state 
anymore, i.e., once no transition fires anymore. 
Then, simulation continuous until a new event is 
triggered, i.e., when a relation changes its value.  
With the Modelica "sampled(..)" operator, a State-
Graph might also be executed within a discrete con-
troller that is called at regular time instants. In a fu-
ture version of the StateGraph library, this might be 
more directly supported.  

3 Example of a Tank Controller 

In this section a more realistic, still simple, applica-
tion example is given, to demonstrate various fea-
tures of the StateGraph library. This example shows 
the control of a two tank system from [4]. In the fol-
lowing figure the top level of the model is shown.  
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This model is available as Modelica.StateGraph.-
Examples.ControlledTanks. In the right part of the 
figure, two tanks are shown. At the top part, a large 
fluid source is present from which fluid can be filled 
in tank1 when valve1 is open. Tank1 can be emptied 
via valve2 that is located in the bottom of tank2 and 
fills a second tank2 which in turn is emptied via 
valve3. The actual levels of the tanks are measured 
and are provided as signals level1 and level2 to the 
tankController.  
The tankController is controlled by three buttons, 
start, stop and shut (for shutdown) that are mutually 
exclusive. This means that whenever one button is 
pressed (i.e., its state is true) then the other two but-
tons are not pressed (i.e., their states are false). The 
buttons could be implemented as dynamic elements 
that react when clicking on them. In the example, 
they are implemented with logical tables, i.e., block 
Modelica.StateGraph.Temporary.RadioButton, in 
order that the result of the simulation is reproducible.  
When button start is pressed, the "normal" operation 
to fill and to empty the two tanks is processed:  
1. Valve 1 is opened and tank 1 is filled. 
2. When tank 1 reaches its fill level limit, valve 1 is 

closed.  
3. After a waiting time, valve 2 is opened and the 

fluid flows from tank 1 into tank 2. 
4. When tank 1 is empty, valve 2 is closed.  
5. After a waiting time, valve 3 is opened and the 

fluid flows out of tank 2 
6. When tank 2 is empty, valve 3 is closed  
The above "normal" process can be influenced by the 
following buttons:  

• Button start starts the above process. When this 
button is pressed after a "stop" or "shut" opera-
tion, the process operation continues.  

• Button stop stops the above process by closing 
all valves. Then, the controller waits for further 
input (either "start" or "shut" operation). 

• Button shut is used to shutdown the process, by 
emptying at once both tanks. When this is 
achieved, the process goes back to its start con-
figuration. Clicking on "start", restarts the proc-
ess. 

The implementation of the tankController is shown 
in the next figure. When the "start" button is 
pressed, the stateGraph is within the CompositeStep 
"makeProduct". During normal operation this 
CompositeStep is only left, once tank2 is empty. Af-
terwards, the CompositeStep is at once re-entered. 
When the "stop" button is pressed, the "makePro-
duct" CompositeStep is at once terminated via the 
"suspend" port and the stateGraph waits in step "s2" 
for further commands. When the "start" button is 
pressed, the CompositeStep is re-entered via its re-
sume port and the "normal" operation continues at 
the state where it was aborted by the suspend transi-
tion. If the "shut" button is pressed, the stateGraph 
waits in the "emptyTanks" step, until both tanks are 
empty and then waits at the initial step "s1" for fur-
ther input.  

 
The opening and closing of valves is not directly 
defined in the StateGraph. Instead via the "set-
ValveX" components, the Boolean state of the 
valves are determined. For example, the output y of 
"setValve2" is computed as:  
y = makeProduct.fillTank2.active  
    or emptyTanks.active 
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i.e., valve2 is open, when step "makePro-
duct.fillTank2 or when step "emptyTanks" is active. 
Otherwise, valve2 is closed. The main part of the 
composite step “makeProduct” is shown in the next 
figure. Step “fillTank1” is left, once the highest level 

 
for the tank is reached (level1 > limit). The State-
Graph remains in step “wait1” during the defined 
“waitTime”. Afterwards, step “fillTank2” remains 
active until tank1 is empty (level1 < 0.001). After a 
waiting phase, the “emptyTank2” step is entered. 

4 Implementation 

In this section the implementation of the most impor-
tant parts of the library is sketched. 

4.1 Steps and Transitions 

Steps and transitions are implemented according to 
the method described in [7][5] to define Petri nets 
with an equation based language. 
A transition has one inPort and one outPort connec-
tor and is basically defined by the following equa-
tions (if no timer is present): 
  fire = condition and  
            inPort.available and not 
            outPort.occupied; 
  inPort.reset = fire; 
  outPort.set  = fire; 

Note, that the inPort connector of a transition con-
sists of the Boolean variables “available” and “reset” 
and the outPort connector consists of the Boolean 
variables “occupied” and “set”. The above equation 
states that “fire = true”, if (1) the firing condition is 
true, (2) the inPort step is active and (3) the outPort 
step is not active. The “fire” value is reported to the 
two steps to which the transition is connected. 
A step has a vector of input and a vector of output 
connectors. It is basically defined as: 
    active = pre(newActive); 
 newActive = anyTrue(inPort.set) or active  
             and not anyTrue(outPort.reset) 

The function “anyTrue(..)” returns true, if any ele-
ment of the input vector is true. The step becomes 
active in the next iteration when one of the transi-
tions connected to the inPort connectors fires (set = 

true if a transition fires). The step remains active if it 
was active and no transition connected to the outPort 
connectors fires (reset = true, if a transition fires). 
A step reports its active flag to the transition con-
nected to its first outPort by the equation: 

outPort[1].available = active; 

In order to make sure that only one of the transitions 
connected to the outPorts can fire, the active flag is 
hidden to the second outPort transition if the first 
transition decides to fire and sends a reset condition: 
   outPort[2].available =  
          outPort[1].available and not  
          outPort[1].reset; 

The general case can be written in Modelica as 
  for i in 1:size(outPort,1) loop 
    outPort[i].available =  
       if i == 1 then active else  
         outPort[i-1].available and not  
         outPort[i-1].reset; 
  end for; 

A step needs to signal to its inPort transitions 
whether it is possible to activate it or whether it is 
about to become active via transitions with higher 
priorities. This is described as 
  for i in 1:size(inPort,1) loop 
    inPort[i].occupied =  
      if i == 1 then active else  
         inPort[i-1].occupied or 
         inPort[i-1].set;   
  end for; 

The inPort and outPort connectors contain appropri-
ate “input” and “output” prefixes of the connector 
variables, in order that steps can only be connected 
to transitions and vice versa. Furthermore, the anno-
tation “Hide = true” is set on all connector variables, 
in order that these variables do not show up in the 
plot browser, because these are internal variables that 
are of no interest for the user of the StateGraph li-
brary. 
In a parameter menu of a component usually only 
variables are displayed that are declared as parame-
ters. In the parameter menu of a transition, addition-
ally the time varying variable “condition” is dis-
played as shown in section 2.1. This is implemented 
by adding the annotation “Dialog” to the variable 
declaration: 
  Boolean condition annotation(Dialog); 

Usually, the “Dialog” annotation has additional sub-
entries, such as “group” or “tab”. However, if no 
subentries are present, this annotation just means to 
include the variable in the parameter menu. 
In a JGraphchart there is a timer associated with 
every step by providing the time difference between 
the actual time and the time when the step became 
active via variable “t”. In a StateGraph no time vari-

StateGraph-A Modelica Library for Hierarchical State Machines

The Modelica Association 575 Modelica 2005, March 7-8, 2005



able is associated with a step, but an optional timer is 
provided in a transition and via the connector “ac-
tive” of a step a timer from the Logical library can be 
attached to the step. This provides similar functional-
ity as for a JGraphchart. One reason for this change 
was to improve the efficiency. For example, in a 
transition the following code fragment to define a 
timer is present: 
  if enableTimer then 
    when enableFire then 
      t_start = time; 
    end when; 
    t_dummy = time - t_start; 
    t = if enableFire then t_dummy else 0; 
    fire = enableFire and  
           time >= t_start + waitTime 
else 
  ... 
end if; 

A Modelica translator triggers an event when time 
reaches “t_start + waitTime”. Since “t_start” is a 
variable that is set in the same scope in a when 
clause and “waitTime” is a parameter, a Modelica 
translator can easily trigger a time event.  
The situation is different, if the when clause “when 
enableFire then t_start = time; end when” is present 
within a step and the relation “time >= t_start + 
waitTime” is present in another component, e.g., in a 
“condition” of a transition. A Modelica translator 
will then usually trigger a state event because in the 
scope of the relation it is not known that “t_start” can 
change its value only at event instants. 

4.2 Parallel and Alternative Execution 

The parallel component has the following icon 

 
and consists of 4 connectors. The “inPort” and out-
Port” connectors allow only a connection to transi-
tions. The “split” and “join” connectors are vectors 
of connectors that are drawn in a quite “lenghty” 
format to resemble the usual visual layout of parallel 
execution in SFC. They allow only a connection to 
steps. After dragging this icon in a model, it is usu-
ally enlarged until the desired elements can be placed 
between the “split” and the “join” connectors. 

Besides appropriate “assert” statements to guarantee 
the desired connection structure, the Parallel compo-
nent consists of the following equations only: 
 n = size(split,1); 
 split.set  = fill(inPort.set, n); 
 join.reset = fill(outPort.reset,n); 
 inPort.occupied  =anyTrue(split.occupied); 
 outPort.available=allTrue(join.available); 

The second and third equation report the “set” and 
“reset” flags of the inPort and outPort connectors to 
the “split” and “join” connectors. The two last equa-
tions perform the synchronization of the parallel 
branches: Via function “anyTrue(..)” it is defined 
that the input transition can only fire if none of the 
steps connected directly to the “split” connector ar-
ray is active. Via function “allTrue(..)” it is defined 
that the output transition can only fire if all steps 
connected directly to the “join” connector array are 
active. 
The implementation of the “Alternative” component 
is performed in a similar way. 
Both the Parallel and the Alternative component 
have the (slight) disadvantage that they can be mis-
used. For example, in a Parallel Component it is pos-
sible to connect from a step in the parallel branches 
to a transition that is connected to a step outside of 
the Parallel component, see the example in the next 
figure: 

 
It would be desirable to prevent such types of net-
works in a StateGraph. However, it seems not possi-
ble to formulate a corresponding restriction with the 
Modelica language. There are currently Modelica 
scripting functions under development that allow to 
traverse a Modelica model and extract information 
about the model. It might be that such functionality 
will allow to detect such undesirable networks. 
These types of function charts are also known as un-
safe or unreachable. In commercial SFC editors it is 
common that the editor makes it impossible to enter 
these types of charts, rather than including these 
global constraints in the language itself. 

 

inPort outPort

join split 
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4.3 Composite Steps 

A composite step is a model that extends from Par-
tialCompositeStep. The icon and diagram layer of 
this superclass is shown in the next figure: 

 
There is one default “inPort” and “outPort” connec-
tor on the left and right side. More connectors to en-
ter and leave a composite step may be added. In the 
icon layer a vector of “suspend” and a vector of “re-
sume” connectors is present. These connectors are 
not visible in the diagram layer and therefore it is in 
the graphical editor not possible to connect a compo-
nent in a composite step to them. The “suspend” and 
“resume” connector instances are not visible in the 
diagram layer of a composite step, because the un-
derlying connector classes have an empty diagram 
layer. 
A composite step is active, if at least one step in the 
composite step is active, and a composite step is de-
activated, and also all steps in the composite step, if 
a transition fires that is connected to one of the “sus-
pend” connectors. This means a communication 
channel between a composite step and all steps 
within a composite step is necessary. This is imple-
mented by having a connector 
   connector CompositeStepStatePort 
     Boolean suspend; 
     Boolean resume;  
     flow Real activeSteps; 
   end CompositeStepStatePort; 

and use an inner definition of this connector in Par-
tialCompositeStep: 
  inner CompositeStepStatePort root; 
     ... 
  activeSteps = -integer(root.activeSteps); 
  root.suspend = anyTrue(suspend.reset); 
  root.resume  = anyTrue(resume.set); 
  newActive = activeSteps > 0 and not  
              anyTrue(suspend.reset) or 
              anyTrue(resume.set);   
  active    = pre(newActive); 

Via flow variable “activeSteps in the inner root con-
nector, the number of active steps is reported from 
the steps to the composite step. The composite step is 
active if this number is greater than zero and no tran-
sition at the suspend connector fires (“any-

True(suspend.reset)”) or a transition at one of the 
“resume” connectors fires. The information about the 
“suspend” and “resume” connector settings are re-
ported to the steps inside the composite step again 
via the inner root connector. 
In a step, a corresponding “outer” declaration of 
connector “root” is present and the code of section 
4.1 of a step is slightly changed to: 
  protected 
    outer CompositeStepStatePort root; 
    CompositeStepStatePort localRoot; 
  equation 
    connect(localRoot, root); 
 
    localRoot.activeSteps =  
                   if active then 1 else 0; 
    active    = pre(newActive); 
    newActive =  
       if localRoot.resume then oldActive  
       else (anyTrue(inPort.set) or  
             active and not  
             anyTrue(outPort.reset)) 
            and not root.suspend; 
 
    when localRoot.suspend then 
      oldActive = active; 
    end when; 

Via outer flow variable activeSteps, the active setting 
is reported to the composite step. Additionally, a 
memory is introduced via variable “oldActive” to 
remember the current value of the “active” flag when 
the composite step is terminated via its “suspend” 
port (“when localRoot.suspend then ...”). The as-
signment to “newActive” is slightly changed to in-
clude the transitions via the “suspend” and “resume” 
connectors in the composite step. 
A composite step may contain not only steps but 
other composite steps. The implementation above 
does not handle this case. In fact, with the Modelica 
language version 2.1 it is not possible to provide a 
proper implementation. Therefore, an extension was 
needed that is defined in the coming version 2.2 of 
the Modelica language (it is already supported in 
Dymola): 
In a composite step a construct of the following form 
would be needed: 
  // wrong Modelica code 
  inner CompositeStepStatePort root; 
  outer CompositeStepStatePort root; 

where the “inner root” connector is used in all steps 
inside the current composite step and the “outer root” 
connector refers to the composite step outside of the 
current scope in order to have a communication 
channel to the outside scope. However, this is wrong 
Modelica code because there are two declarations 
with the same name. Note, the names must be the 
same, because in a step a communication channel to 

 
icon layer 

 
diagram layer 
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the “nearest” composite step is needed and the name 
used in the “outer” declaration of a step must be 
identical to the name used in the “inner” declaration 
of a composite step.  
In the Modelica language version 2.2 the following 
extension was introduced: 
// Modelica 2.2 code 
inner outer CompositeStepStatePort root(..) 

to define actually a new “inner” variable “root” and 
at the same time reference an “outer” variable “root”. 
References to “root” inside the current scope, refer-
ences the “outer” variable. Modifications to “root” 
are not allowed for “outer” variables and therefore 
apply to the “inner” variable. In other words, inside 
a composite step the “outer root” is accessed by vari-
able “root” and settings for the “inner root” have to 
be performed via a modification in the declaration of 
“root”.  
The previous code fragments must be slightly modi-
fied to include the new “inner outer” declaration, and 
to handle the case of composite steps that are inside 
and/or outside the current one. 

5 Summary 

The free Modelica.StateGraph library offers new 
features to conveniently define discrete event and 
reactive systems in Modelica models. Since Mode-
lica is used as an action language, a Modelica trans-
lator can guarantee that a StateGraph has determinis-
tic behaviour. StateGraph models can be combined 
with components of any other Modelica library and 
can therefore be very easily used to control a con-
tinuous plant.  
StateGraph is based on Grafchart, which contains 
several features that not, so far, have been imple-
mented in StateGraph. Some of these features, such 
as function chart procedures, assume support for dis-
patching at run-time, which does not match well with 
the philosophy of Modelica. Other features such as 
lists could very well be included in StateGraph. 
It is also planned to improve the graphical handling 
of StateGraphs in the future and to add more func-
tionality especially also to the Modelica.Blocks.-
Logical library that is often used in a StateGraph. 
Improvement suggestions and contributions are wel-
come. 
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Abstract

Metso Paper regularly uses process simulations when
designing and delivering a new pulp mill.  The
simulations have two main purposes. Operators are
trained in running the new process before it exists
and complex control logic can be validated effi-
ciently before start-up. The simulations are built us-
ing Dymola/Modelica, executed in real-time and
connected to the plant's control system.
This paper will discuss the general technical solution
for using Dymola/Modelica in combination with a
control system for real-time simulations. The paper
will also provide an overview of the different appli-
cations that Metso Paper has implemented. Expecta-
tions of future development of Modelica and con-
nected software will be discussed from an industry
perspective.
Keywords: dynamic simulation; control system; pulp
and paper; operator training; logic verification

1 Introduction

Different kinds of simulations are used within Metso
Paper for designing and developing the pulp and pa-
per processes. Static simulations for balancing and
dimensioning the process with respect to flows,
steam, chemicals etc. The second type is advanced
and computational demanding FEM-type of simula-
tions for more detailed simulations and analyses of
different optional machine designs. The third type of
simulations is the real-time dynamic process simu-
lator for operator training and control system verifi-
cation. This paper will focus on the real-time dy-
namic process simulations. A training session using
simulators is shown in Figure 1.

Figure 1. Simulator training in progress

When delivering a new machine, process area or a
complete mill Metso Paper has offered dynamic pro-
cess simulations since beginning of the 1990's. The
main purpose of these simulations is to train opera-
tors and other mill personnel in running the new
equipment in an efficient and optimal way. The op-
erators get used to the new operator displays, inter-
locking logic and most importantly new process dy-
namics. Difficult and rare process conditions can be
introduced in the simulations. By regularly exposing
the mill personnel to these difficult situations in the
simulator environment, expensive and unwanted
stops in the real production can be avoided.
Earlier these types of simulations were made in a
single PC where the process simulations as well as a
mimic of the real operator displays and the plant's
control system was configured. Even if this system
worked fine technically speaking and served its pur-
pose as an educational tool, it had some drawbacks.
The two major problems with this solution were:
•  It was a very expensive solution due to the many

engineering hours needed in order to convert the
real operator displays and control logic into the
simulator world. When new revisions of displays
and control logic were made, new revisions must

Using Modelica and Control Systems for Real-time Simulations in the Pulp & Paper industry

The Modelica Association 579 Modelica 2005, March 7-8, 2005



be made in the simulator as well. On top of this,
it was very difficult to reuse models and configu-
rations between projects.

•  It was difficult to keep the simulator up to date
once delivered to a customer since every change
in the real control system and operator displays
must be followed by a corresponding change in
the simulator system. Typically, the changes in
the real process were done by the mill personnel
while changes in the simulator demanded in-
volvement from other competencies. In practice
the simulator and real world configurations
slowly drifted apart. 

Starting in beginning of year 2001 a new architecture
for dynamic process simulations within Metso Paper
were developed using Modelica and Dymola. The
main difference between the old and new architec-
ture is that in the new architecture the real control
system and real operator displays are used instead of
including a mimic version of the two into the simu-
lator. The simulation models are also designed in a
way that modular building blocks of typical process
equipment and areas easily can be reused from proj-
ect to project. The advantages of the new architec-
ture are substantial
•  Since no mimic is done of the operator displays

and control logic the engineering hours has re-
duced dramatically. The modular design of the
new simulation models has also contributed to
lower the engineering hours since much can be
reused from project to project. The operators get
to use the real displays and real control system
when doing simulator training, and no changes
needs to be made in the simulator when changes
are made to the displays and control logic.

•  It is much easier to keep the simulator system up
to date since the real control system is used.
Changes made to the displays and control logic
can be transferred into the simulator system di-
rectly by the mill personnel.

Another big advantage with the new architecture is
that the simulator system can be used to validate the
upper level control system and mill control system
before start-up. This has traditionally been a very
time and resource-consuming task and even then, the
quality of the validation has been difficult to verify
due to the complexity of the control logic. Errors in
the control system, as well as in the dimensioning of
process equipment, are corrected easily and effec-
tively early in the projects. Considerably reductions
in test time have been noticed since starting using
simulators for test purposes. As the simulations get

more accurate it is also possible in some areas to pre-
tune PID controllers using the simulator. Starting the
real mill with verified control logic, trained operators
and pre-tuned PID controllers are a great benefit for
Metso Paper customers.

2 The Simulator system

2.1 Architecture

The new simulator architecture is shown in Figure 2. 

Simulator Control Room

Control System

Process Simulator

Figure 2. The new simulator architecture

A Metso Paper simulator system typically consists of
a control system that is the same control system used
to control the real process (example: metsoDNA,
ABB Industrial IT, Siemens PCS7, Emerson DeltaV,
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etc). Another computer executes specific process
simulation models in real-time. The operators are
using the same operator displays as they would in the
real control room. The system can be extended to
include several computers that simultaneously are
running different simulations towards the same con-
trol system. Real control system hardware can be
used to execute the control logic and operator dis-
plays. However, a modern control system usually
offers a software version (example Metso's Virtu-
alDNA) of the control system, which can be more
convenient to use. Included in the control system are
all control logic, graphical displays, PID controllers,
alarm limits, interlocking diagrams, trend displays
etc. Everything that an operator will have once run-
ning the real process is already there since it is the
same system being used. 

2.2 Models

Using Modelica and Dymola a specific model library
has been developed including models that make it
possible to build complete simulations of Metso Pa-
per machines and processes. Examples are Super-
BatchTM cooking, Washing and Screening, Refining,
Pulp Bleaching and Pulp Drying area. In Figure 3 a
small part of the washing and delignification process
can be seen.

Figure 3. A part of pulp making process

The library includes models of Metso Paper specific
machinery such as SuperBatchTM digesters, Delta-
CombiTM screens, Refiners, TwinRollTM presses,
OxyTracTM delignification towers and Pulp Drying
machines, but also more general equipment such as
valves, pumps, pipes, heat exchangers, tanks, etc.

Together the models are used to build up simulations
of complete pulp mills. Creating a large net of equa-
tions defining the flows, pressures, temperatures,
chemical consumption, pulp consistency and other
process values, all values will react depending upon
the actions taken by the operator using the control
system. A complete simulation includes all process
machinery and instrumentation, starts with chips en-
ter the digester area, and finish when dried and
bleached pulp exits the drying machine.

2.3 Communication

The simulation models are compiled with Dymola
forming a Windows application that is used as a real-
time DDE Server. Modern control systems offer an
OPC Server in order to open communication with
any OPC Client. The Metso Paper simulator system
includes special software to transfer the signals from
the DDE Server in the run-time simulation to the
OPC Server in the control system. Since practically
all modern control systems have opened up to OPC
technology the communication link can be used
without changes no matter what control system the
customer selects. The only configuration that needs
to be done is a cross-reference list between the signal
names in the simulator and the corresponding signal
names in the control system. Typically are process
values like flows, pressures, temperatures, pH, con-
sistencies etc, sent from the simulations to the con-
trol system. The control system writes values like
valve openings, starting orders for pumps and motors
etc, back to the simulation.
Modelica models for I/O communication have been
developed. They are using the input/output qualifiers
to accept values from, and to give values to, the con-
trol system via the communication link.

2.4 Teacher interface

The extended functionality of the communication
link includes an interface for a teacher. From this
software a teacher can operate the dymosim applica-
tion, start, pause and stop the simulation. It is also
possible to start the simulations with different initial
positions, empty tanks, almost full tanks etc. making
it possible to train how to get out of difficult process
situations without losing production.
Different kind of scenarios and disturbances can be
applied to the simulations to investigate how opera-
tors solve and detect common process problems.
Problems like drifting process values, malfunction in
valves, blinding of screens, channeling in reactors,
web break in the dryer section as well as other criti
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cal situations can be trained. Figure 4 shows screen
displays from the teacher interface.

Figure 4. Teacher interface

A large database is used to collect data from the
training sessions and each operator can evaluate their
actions and compare the results with earlier sessions.

2.5 Performance

Due to the complexity and scope of the process to be
simulated the simulation model files and I/O com-
munication lists becomes large. For example when
simulating a SuperBatchTM digester area the I/O list
consists of about 1800 signals, the executable simu-
lation file is close to 40 Mb. Figure 5 shows mes-
sages from a translation of a digester area model.

 STATISTICS

Original Model
  Number of components: 20084
  Variables: 137615
    Constants: 1574 (0 scalars)
    Parameters: 35394 (69071 scalars)
    Unknowns: 100647 (100658 scalars)
    Differentiated variables: 9146 scalars
  Equations: 52124
    Nontrivial : 39885

Translated Model
  Constants : 53502 scalars
  Free parameters: 17018 scalars
  Parameter depending: 19966 scalars
  Inputs: 0
  Outputs: 0
  Continuous time states: 9146 scalars
  Time-varying variables: 42482 scalars
  Alias variables: 24590 scalars
  Number of mixed real/discrete systems of equations: 18
  Sizes of linear systems of equations: {2, 2, 2}
  Sizes after manipulation of the linear systems: {0, 0, 0}
  Sizes of nonlinear systems of equations: {5, 732, 35, 35, 66, 38,
7, 14, 35, 7, 35, 18, 66, 18, 35, 7, 14, 35, 7, 14, 7, 7, 14, 35, 7, 35,
7, 7, 5, 1, 7, 23, 6}
  Sizes after manipulation of the nonlinear systems: {1, 89, 4, 4,
9, 2, 1, 3, 4, 1, 4, 2, 9, 2, 4, 1, 3, 4, 1, 4, 1, 1, 3, 4, 1, 4, 1, 1, 1, 1,
1, 3, 1}
  Number of numerical Jacobians: 0

Finished

Figure 5. Translation of a digester area model

The digester area is about 25% of the total pulping
process. It is possible to run these kinds of simula-
tions on a PC. However, the speed of the internal
memory bus is vital to simulation performance. Due
to the slow nature of pulping processes, it is common
that the simulations are run for several days without
interruptions. 
For training purposes it is very important that the
system is robust and that the accuracy is high enough
for the operators to trust the simulations. However, it
is important to keep in mind that the purpose is not
to simulate each process component as accurately as
possible. The purpose is to produce a simulation of a
large area including a large amount of equipment
that will give an operator the right look and feel for
the dynamics in the mill.

3 Practical experiences and future
development

Today the simulator system has been connected to
the following control systems: metsoDNA, ABB In-
dustrial IT, Emerson DeltaV and Siemens PCS7.
There are of course advantages and disadvantages
with all of these systems when it comes to engineer-
ing efficiency and costs, but from our point of view;
there are no technical differences. The same commu-
nication link has been used without modification,
and the signal transferring between an OPC Server
included in the control system and the real-time
simulations has shown a similar performance with all
mentioned control systems. Two complete simulator
systems have been delivered so far. Figure 6 shows
operator training in Chile. During 2005, three more
deliveries are expected.

Figure 6. Simulator training in Chile

During the internal development work and practical
training sessions with Metso Paper customers around
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the world some development ideas have emerged.
The ideas, if emasculated, would heavily increase the
value and competitiveness of using Modelica and
Dymola in combination with control systems for
real-time simulations. Some of the most important
areas to strengthen in order to meet industry de-
mands in the future are as we see it:
•  Replacing the Dymosim DDE Server with a

modern OPC Server will open the simulation en-
vironment to all modern control systems and in-
crease the communication performance signifi-
cantly. Many OPC Clients are available on the
market, some even free of charge. Viewing and
changing simulator values during run-time
simulation would be facilitated.

•  A possibility to see and change simulation values
from the modeling user interface during run-time
simulation would be very time saving and valu-
able during development of large simulation
models.

•  Increased debugging functionality. When a
model for some reason crashes after several days
of simulation, it is very hard to find the reason
quickly. The large simulation models and long
simulation time makes it difficult to store values
for debugging due to the huge amount of data
collected.

4 Conclusions

Dynamic process simulation is a powerful tool when
educating new operators in running a pulp mill. Suc-
cessful real-time simulators using Dymola/Modelica
with control system in the loop have been used for
control system validation and for operator training in
Metso Paper processes. The strong modular focus in
Dymola/Modelica have been helpful in reusing
simulation models and thereby shortened the engi-
neering hours in new projects. 
Some proposals of improvements to Dy-
mola/Modelica has been made in order to strengthen
the focus, increase competitiveness and general
awareness of using Dymola/Modelica in industry
applications.
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Abstract 

At ZF transmission models are an essential compo-
nent within the development process. To guarantee 
an efficient use of modeling know how as well as a 
persistent use of models in different simulation envi-
ronments, Dymola has been declared as a standard at 
ZF and a central model component library ZFlib has 
been developed accessible to all business units. This 
paper gives an overview of some features of the li-
brary, such as easy parameterization of models inde-
pendent of the environment in use and the export of 
complex models into environments with simple inte-
gration algorithms. Furthermore a short description 
of the automatic testing of the library which guaran-
tees a software development process at a high level 
of quality will be given.   
 
Keywords: Model Export, Parameterization, Auto-
matic Testing 

Figure 1: Exporting models to various environments  

1 Introduction 

For ZF as an automotive vendor for transmission 
components and systems, modeling and simulation 
has a long tradition. A long time ago the modeling of 
transmission systems was mainly done by experts of 
the business units which often used different tools 
and different approaches. In the meanwhile there has 
been an exponentially increasing demand for models 
and model components which should be accessible 
to and usable even by non-experts. Due to this fact 
ZF started a centralization process with the intention 
to standardize the modeling approach of transmission 
systems and merge the modeling know-how of com-
ponents and systems in one library accessible to all 
business units. A further requirement has been to 
guarantee a persistent use of models in different 
simulation environment (e.g. SIMULINK or dSpace), 
which actually demands for models given as C-Code 
(Figure 1). Beside this, the tool under consideration 
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should offer the user an interactive graphic interface 
for modeling. Since Dymola offers such an interface, 
allows the continuous extension of libraries by using 
the Modelica language and enables the user to export 
models as C-Code, ZF came to the decision to define 
Dymola as a standard for transmission system mod-
eling. 
This was the starting point for the development of a 
Modelica library called ZFlib which is an exten-
sion of the commercial library Powertrain. This 
library has a lot of models of ZF specific compo-
nents as well as some add-ons for the export to other 
simulation tools.  
The focus of this article is a short explanation of the 
ZFlib and how models can be parameterized inde-
pendently from the environment in use (chapter 2), 
how the export of complex models into environ-
ments which only allow the use of discrete integra-
tion algorithms (chapter 3) has been realized and 
how an automatic testing of modules can be per-
formed whenever a modification within the library 
has occurred (chapter 4).  

2 Usage of ZFlib 

2.1 ZFlib as code generator 

The main issue in using the ZFlib is to set up mod-
els that can be used within different environments – 
not only with Modelica Tools like Dymola or Math-
Modelica. Dymola is used to translate the models 
developed with Modelica to C code.  
The generated C code in form of the dsblock func-
tion can be integrated into the demanded environ-
ment. This is done already by Dynasim for Simulink 
with a special interface-module called DymolaBlock.  
Nevertheless we did some modifications of this 
module to meet our special demands. Other inter-
faces for further environments (e.g. ASCET and 
some ZF programs) were developed to wrap the dif-
ferent calls (e.g. initialization, update …) from these 
environments to the appropriate functionality of the 
dsblock function.  
One big drawback with the generated code of a stan-
dard Modelica model is that we can’t parameterize 
the model in one, easy way in different environ-
ments. Another aspect is, that we want to use a stan-
dardized way of parameterization in ZF for these 
models. The basic idea was to separate models and 
parameters from each other. The parameter values 
should be stored in ASCII-files according to a stan-

dardized format. At initialization the files are read by 
the model for parameterization. Therefore some ex-
tensions had to be done to read the files and param-
eterize the modules in an easy way. 

2.2 Performing parameterization in different 
environments  

The format of these ASCII-files has a very primitive 
syntax to define scalar or vectors as well as charac-
teristics with variable dimensionality. One parameter 
is defined simply by a triple: Identifier, Unit and 
Value (see Figure 2).  

 

Figure 2 Example of an ASCII-file   

A large database of parameter data exists already in 
ZF that shall be used also for the Modelica models. 
We implemented a Modelica package to read these 
files and made the data available to other modules.  
The functionality consists of two parts: 
First, we implemented some basic Modelica func-
tions that serve as an interface to a set of C-
functions, which do the data-management. 
Second, the C-functions handle the reading of the 
needed files, collect all parameter data specified 
there and make them available within Modelica. For 
tables, also the interpolation is done in C-Code. 
To use this functionality, users have to do the follow-
ing things: 
1. Specify the files to be read: 
By including the Load block, the user specifies all 
the files to be read in a list. At initialization all pa-
rameters are scanned and stored in database. 
2. Use scalar or vectorial parameters 

J1   [kgm^2]  0.1 
; scalar parameter 
InU  [-]      0   1   2 
OutY [-]    0   1   2 
; two vectorial parameters
Test_Table2D[   
[-] U1 [-]  0  1 2 
2 Y  [-] -2 -1 0 
1 Y  [-] -1   0 1 
0 Y  [-]  0  1 2 
Test_Table2D] 
; Two-Dimensional-Table 
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With the ZFlib-functions GP(String identi-
fier) and GV(String Identifier), the 
model finds the data of interest through the defined 
data identifier within the database. If the asked iden-
tifier is not found in the database, the simulation 
aborts.  

 

Figure 3 ASCII file package in the ZFlib 

3. Use tables 
For using tables we have implemented three different 
Table blocks for one-, two and N-dimensional Ta-
bles. They also get access to the tables within the 
database through some interface functions. With the 
function (BoundsTableND(String Id)) the 
boundaries of the table input vectors can be queried. 
In addition to the interpolation, the gradient (one di-
mensional) or   normal vector (n-dimensional) can be 
calculated on demand. This is very useful for some 
forward control algorithms. 
Another useful feature is the possibility to convert 
the ASCII data to SI units. This is needed because 
very often data are saved in units like [rpm] or [mm] 
and Modelica handles only SI units. 
The implementation of these features was done in 
C++. The sources or binaries can be included in 
various environments and therefore, this kind of pa-
rameterization can be used everywhere, where code 
can be included.  
Using this functionality allows the user of the model 
to change the parameters easily by editing the used 
ASCII files. The changed parameters will be used at 
the next simulation run without a new translation of 
the model. 
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I_Engine
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Figure 4 Example of a model using ASCII file package 

2.3 Extending from the Powertrain library 

The ZFlib was extended from the commercial li-
brary Powertrain. The maximum benefit can be 
achieved by reusing the included elements as often 
as possibly. Nevertheless, we want to use our own 
tables within the models in the Powertrain li-
brary. Due to this, modifications have to be done for 
a few models within the Powertrain: The Mode-
lica keyword replaceable in front of all declara-
tions of tables had to insert. 
Another modification concerns the usage of the bus. 
The concept of the Powertrain bus has a lot of 
advantages: The implementation of complex models 
is easily done and quite transparent. It’s very easy to 
change big parts of a complex model without inten-
sive modifications. We decided to extend our own 
bus called ZFBus from the Bus in the Power-
train. To be able to use the control units in the 
Powertrain together with this extended bus it was 
also necessary to add the replaceable keyword 
to all bus declarations with control unit implementa-
tions. It would be more convenient, if it would be 
possible in Modelica to link connectors that extend 
from one root. Another approach to make combina-
tional usage of different libraries easier could be a 
hierarchical structure of one global bus. 
With this second modification we can use all models 
in the Powertrain and our library seamlessly. 
Certainly it would be a great help to add these modi-
fications to the original Powertrain without any 
disadvantage for other users. 
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3 Using Modelica models with dis-
crete algorithms in Simulink  

Simulink is used more and more to develop control 
algorithms for transmissions in ZF. The simulation 
of systems with a digital controller requires the use 
of a discrete, fixed step integrator. On the other hand, 
there is a very strong demand to use complex and 
often numerically stiff models of transmissions to 
test these controls in simulation. Hence the use of 
numerical integrators with varying step size is neces-
sary.  
These transmission models are modeled in Dymola 
using the ZFlib. Because of the arguments men-
tioned above, the original DymolaBlock for Simulink 
can’t be used unmodified in conjunction with the 
fixed step integrator from Simulink. 

3.1 Making the Dymolablock “discrete” 

So, we decided to embed a continuous variable step 
integrator within the S-function of the DymolaBlock. 
We used the same DASKRT integrator as in Dymola 
[1]. To make the modified DymolaBlock look like a 
discrete Block, the S-function just returns that no 
continuous states are needed. Then it’s easily possi-
ble to combine this model with discrete controllers in 
Simulink. 
The DASKRT is used exclusively for the exported 
Modelica model inside the S-function. Every time 
the outputs are demanded from Simulink, the S-
function calls the internal integrator to integrate up to 
the new time. During this interval several events may 
happen, that have to be handled. Additionally we 
have to make sure, that the DASKRT stops correctly 
at the given time point. Otherwise it may happens, 
that the integrator takes a step size larger than the 
sample interval of the Simulink model. This would 
lead to outputs which refer to a later point in time 
with respect to the actual integration time. 

3.2 Controlling the behavior of the Dymo-
laBlock 

A simple model was implemented in Modelica as a 
parent to be able to control the behavior of the modi-
fied DymolaBlock. The declared parameters can be 
read by the DymolaBlock. The user can enable or 
disable the internal integration by setting the parame-
ter InternalIntegration to 1 or 0. So it’s possible to 
use the model also in continuous environments or 
with the simple fixed step integrators of Simulink.  

The FixedStepSize specifies the sample time of the 

block. Furthermore you can specify the tolerances of 
the integration algorithm. MinProgress is an abstract 
criterion to abort the simulation if the simulation 
progress is too low.  

 

Figure 5 The user can change the DymolaBlock behav-
iour easily by changing the mentioned parameters 

With GenerateResult the user can enable the logging 
to the dsres.mat file if needed. This is more conven-
ient than the check box in the original DymolaBlock 
because you can change it without compiling.  

The interface between Simulink and the Modelica 
model consists of two connectors that contain all 
input or output signals. It’s possible to use the same 
or similar connectors for different models because 
they contain the same signals as the “real software 
connectors” in a vehicle. Another advantage is that 
existing algorithms can be connected easily to these 
models.  

 

Figure 6  Example for a model that can be exported to 
Simulink with one input connector (top) and one out-
put connector (bottom). 
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As one can see in Figure 6, the interface between 
Simulink and Modelica consists exclusively of di-
rected input or output signals. This is caused by the 
analogy to a connector for a control unit but it’s also 
a design decision to have no coupling on a “physical 
layer”. Due to this fact, there is no problematic cou-
pling of two integrators as it can be with “normal co-
simulation”. 

4 Automated Testing of ZFlib com-
ponents 

One important aspect in implementing basic ele-
ments for a library which will be used heavily in 
simulation, is to be sure, that everything works cor-
rectly. Based on experience, modifications on library 
elements that worked well before can cause strange 
errors in a complex model. To avoid this, we intro-
duced basic “single element tests”. For (almost) 
every ZFlib element at least one test exists. Such a 
test shall stimulate an element in a way that a spe-
cific behavior can be checked.  
For more complex elements, it is necessary to set up 
several tests with different parameters or with differ-
ent structures to cover all possible “areas”. After the 
tests have been set up, the developer has to judge, if 
the simulation result is correct. This result and the 
corresponding parameters are saved as a reference 
for later comparison. Of course, this work has to be 
done very careful!  
This approach leads to several benefits. The original 
developer had to make sure that the new module 
works as required.  The second benefit is the possible 
use of the tests as an example on how to use the 
tested element. As mentioned, the third benefit is the 
possibility to test this element after modifications 
against the old references.  
Also, if a developer finds a bug in an element later 
on, he can set up new tests that check, if the bug still 
exists. Testing with these new tests, the developer 
can be sure, that the same error can’t pop up again 
after another modification. 
These tests are useful only, if they are run on regular 
basis. They should be performed and automatically 
compared with the reference results of all elements. 
Therefore we implemented some Matlab scripts, 
which scan the Modelica code for existing tests, run 
them automatically and compare the results with the 
reference files.  
 

 

Figure 7 Test for a clutch with an opening/closing 
spring. 

4.1 Collecting tests 

To add a test to the automatic procedure it must ful-
fill two conditions: It has to be inside a package 
called Tests and it has to be extended from the basic 
model ZFlib.Tools.TestModel. This model 
defines some tolerance parameters and an OutPort 
reference to the signals which are used for compari-
son. 

 

// preparation 

clear 

openModel("../dymola/zflib/package.mo") 

checkModel("ZFlib") 

cd ../dymola 

// newModel M_Limiter 

translateModel( 

"ZFlib.Blocks.NonLinear.Tests.M_Limiter") 

// newResultTest 

RunScript( 

"../TestReferences/M_Limiter_Ref.mos") 

simulate 

$copy  dsres.mat ..\temp\M_Limiter.mat 

// endTest 

// newModel M_RateLimiter 

translateModel( 

"ZFlib.Blocks.NonLinear.Tests.M_RateLimiter")

// newResultTest 

RunScript( 

"../TestReferences/M_RateLimiter_Ref.mos") 

simulate 

$copy  dsres.mat ..\temp\M_RateLimiter.mat 
// endTest 

Figure 8 Modelica Script built by the test collector 
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For each of these models, the collecting function 
searches for reference parameter files (exported from 
dsin.txt). These were saved earlier with the result 
reference files. For every parameter file that can be 
found, the model is simulated and tested against the 
corresponding reference result. The collecting of the 
tests leads to a Modelica script file that can be run by 
Dymola. 

4.2 Performing tests 

The test script is parsed by another Matlab script that 
calls the Modelica instructions sequentially and tests 
the results. Every line in this script is a test! First of 
all the whole package is syntactically checked. After 
this, each test model is translated. If this was suc-
cessful, the simulation runs can be performed.  

Figure 9  Result script with failed commands and error 
description 
The testing environment can test against the result 
file and against the log file (dslog.txt). In the result 
file, only signals that end in the Outport called 
Reference are tested (see Figure 7). Every command 
that was performed successful is appended to a text 
file. In the same way every command that causes any 
error is stored in another file. Nevertheless, the 
whole test script is executed. After the run has been 

completed, the user can take a look at the test result 
log files and decide on further actions.  
The result log files can be run in the same way as the 
first test script. The log file provides some explana-
tions of the errors, which supports the user in doing 
the corrections. 

5 Conclusions 

The ZFlib library has been used successfully in 
several projects working with various simulation 
environments. The ASCII file parameterization is 
well accepted. With the modified PowerTrain 
library we can use a lot of components and save time 
for implementing ZF-own models.  
The enhanced “discrete” Dymola-Block works fine 
and quite fast (also in combination with ZBF param-
eterization). 

// preparation 

 

// newModel M_StarterPrimitive 

translateModel( 

"ZFlib.Engines.Tests.M_StarterPrimitive") 

// .. Caused an Error 

// endTest 

// newModel M_EngineTableWithBrake 

translateModel( 

"ZFlib.Engines.Tests.M_EngineTableWithBrake")

// newResultTest 

RunScript( 

"../TestReferences/M_EngineTableWithBrake_Ref
.mos") 

// .. Caused an Error 

// endTest 

// newModel M_Clutch 

translateModel( 

"ZFlib.Mechanics.Rotational.Tests.M_Clutch") 

// newResultTest 

RunScript( 

"..\TestReferences/M_Clutch_Ref.mos") 

simulate 

$copy  dsres.mat ..\temp\M_Clutch.mat 

// endTest 

// COMPARE DIFF M_Clutch   Correlation Coef-
ficient <0.99s.mat ..\temp\M_KK_3.mat 
// endTest 

The automated testing needs some extra effort. But 
on the other side, errors can be found quicker and 
other users get a better understanding of the tested 
element. 
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Abstract 

For model developers, the Modelica modeling 
language is a valuable tool for describing the behav-
ior of dynamic systems.  However, developing mod-
els and performing analyses as part of a large scale 
engineering operation involves much more than cre-
ating behavioral descriptions [1],[2].  In order to in-
tegrate modeling and simulation into a typical prod-
uct development process it is necessary to extract 
data (e.g. product information, part geometry, con-
troller calibrations) from external sources. 

This paper will describe an application pro-
grammer interface (API) for data retrieval that has 
been developed using the standard external function 
interface in Modelica.  The API is composed of ge-
neric functions that can be implemented to extract 
data from a variety of external data sources.  Such an 
API can be used to access data for material proper-
ties, part geometries, data tables, etc. 

While the interface definitions are generic, our 
implementation of the generic API was specifically 
developed to retrieve data stored in XML [3] and 
utilizes the libxml2 library [4] to retrieve and 
parse XML files containing product information.  
Furthermore, the API queries are performed using 
XPath expressions [5]. 

Currently, there is no standard API to allow 
Modelica models to retrieve information from exter-
nal data sources.  Hopefully this paper can demon-
strate the power of such capabilities and prompt fur-
ther discussion on formalizing a standard API with 
similar functionality. 

 

Keywords: XML, XPath, HDF, MATLAB, Java 

1 Introduction 

Data is an integral part of modeling.  Because 
Modelica is so often used for physical, first-
principles modeling, there is typically a need to pro-
vide design data for numerous individual compo-

nents.  Such data is often available “somewhere” (we 
will use the term external data source as a generic 
term for sources of such data) but it must be col-
lected to populate the Modelica model. 

Because there is no standard way in Modelica to 
access such external data sources, this data is typi-
cally either entered by hand for each component or 
aggregated and organized into Modelica record defi-
nitions.  We will refer to data managed in this way as 
a Modelica representation of the data. 

While Modelica representations can be used, 
there are numerous drawbacks when trying to inte-
grate the resulting models into large scale engineer-
ing and analysis processes.  For example, such data 
often already exists in an external data source and 
copying it into a Modelica representation is both te-
dious, redundant and error prone.  It also makes 
models that depend on the Modelica representation 
of the data difficult to update as new data becomes 
available.  The best approach is one that retrieves the 
data as needed from the centralized external data 
sources.  For example, if product information is 
stored in a relational database somewhere within a 
company, the ideal situation would be that the in-
formation could be automatically extracted directly 
from that database. 

Another problem with Modelica representations 
of the data is cataloging large collections of compo-
nent data.  Representing such data in Modelica 
means, in practice, that large datasets are loaded into 
the modeling environment when only a very small 
percentage of that data is used.  For example, we 
have data for a large number of production engines.  
The space required to store the data for each engine 
is considerable.  We currently store all this informa-
tion in a hierarchy of Modelica records.  Storing the 
data in this way means slower loading times and 
higher memory consumption even though any given 
analysis only requires the data for one particular en-
gine.  Another issue with cataloging the data is que-
rying the data set to see what information is avail-
able.  While most data management systems include 
formalized query systems, there is no functional 

Implementation of a Generic Data Retrieval API for Modelica

The Modelica Association 593 Modelica 2005, March 7-8, 2005



equivalent in Modelica to query languages such as 
SQL, XPath or XQuery [6]. 

Often times, different characterization data is 
needed for the same component depending on the 
desired level of fidelity.  Representation in Modelica 
often results in a variety of record definitions associ-
ated with a given physical component (i.e. one for 
each level of fidelity).  Typically these record defini-
tions include large amounts of redundant data be-
tween them.  However, because of the semantics as-
sociated with records1 in Modelica, it is difficult to 
eliminate such redundancy. 

Use of data expressed directly in Modelica typi-
cally results in that data being “hard-wired” into the 
resulting simulation.  Although the data can be 
changed it is typically a manual process and imprac-
tical for large data sets.  Ideally it should be possible 
to load the data on demand from a data source in the 
event that such a data source has been changed or 
updated. 

Another concern is storage of the data.  A cen-
tralized data source is often accessed over the net-
work.  As such, the data is only stored in one place.  
This not only conserves space but also provides a 
definitive source for the data.  If data is represented 
in Modelica there is the risk that variations will de-
velop across multiple copies of the data.  Loading 
data on demand over a network provides a more dy-
namic system for data management. 

Some applications require very large data sets to 
be available but only use relatively small chunks at 
any given time [7].  In such a case, a system that is 
able to load data into memory for use by a model on 
an “as needed basis” can save a considerable amount 
of space (e.g. in results files).  By avoiding the need 
to represent the entire dataset in Modelica and the 
compilation process (e.g. symbolic analysis) avoids 
the need to read in and analyze such data. 

2 Interface 

For these reasons, we have developed an API 
that allows us to retrieve data from external sources.  
This is not a “database API” because it does not in-
clude the complete set of operations typically associ-
ated with database interactions (e.g. changing data, 
committing transactions, etc).  Instead, the focus for 
this package is on retrieval only.  The interface is 
generic so it could be mapped to a wide variety of 

                                                      
1 Specifically, the strict requirement that assignment is 
only possible between identical record types. 

external data sources (including, but not limited to, 
databases). 

In this section we will go through the API in de-
tail to explain the basic functionality before moving 
on to a discussion of our implementation of the inter-
face and some examples of its use. 

The data retrieval API is implemented within a 
package called DataRetrieval.  The package 
contains several class definitions that extend from 
the ExternalObject class used for handling opaque 
references to external (e.g. C language) data.  In ad-
dition, it contains several functions that operate on 
these locally defined data types. 

2.1 Opening and Closing a Data Source 

In order to access a data source it is first nec-
essary to open it for queries by instantiating an ob-
ject to represent the data source.  This object can 
then be used in subsequent query operations.  To 
open a database, a Source object must be created, 
e.g. 
  import DataRetrieval.*; 

  parameter Source s=Source( 

                       format=”…”, 

                  url=”…”, 

                  context=”…”); 

where format identifies the format of the data 
source (e.g. “XML”), url is a string encoded using 
the uniform resource locator (URL) syntax [8] and 
context is used, in a data source specific way, to 
limit the scope of subsequent queries. 

The ExternalObject interface also provides for 
a destructor although that is not called directly so the 
details are not included. 

2.2 Query Expressions 

Once a data source is available (in the form of 
a Source object), queries can be made against it.  
Because Modelica is a strongly typed language and it 
is currently not allowed to overload functions, query 
functions are defined for specific data types (i.e. 
String, Real, Integer and Boolean) and for specific 
dimensionalities (e.g. scalars, vectors, matrices, etc).  
But, each query function relies on a common query 
expression syntax. 

The precise semantics of the query expres-
sions do not necessarily have to be defined for each 
data source.  The generic aspect of the API does not 
interact in anyway with the semantics of these ex-
pressions.  As we will discuss shortly, our implemen-
tation uses XPath expressions for such queries. 
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2.3 Retrieving Scalars 

For each built-in type, there is a function to 
extract scalars of that type from the data source.  For 
example, the function getReal is invoked as fol-
lows: 
  import DataRetrieval.*; 
  parameter Real x = getReal( 

                  source=SourceObj, 

                  name=”…”); 

where source is a Source object, name is a 
query expression to identify the scalar.  The function 
returns a scalar of the type indicated by the name of 
the function.  In a completely analogous fashion, 
similar “get” functions are defined for each other 
built-in type. 

 The assumption is that the underlying, data 
source specific layer will interpret the query expres-
sion according to the semantics for that source and 
will perform the necessary casting of the data into 
the appropriate built-in type. 

2.4 Retrieving Arrays 

Unlike scalars, extracting data from arrays 
cannot be done in a single step for several reasons.  
First, we do not know, a priori, the size of an array 
to be extracted from an external source.  So if the 
entire array is to be loaded, we must first establish 
the size of the data and then use that information to 
declare the Modelica variable to hold the data.  Fur-
thermore, it is often the case that we may only wish 
to extract a portion of an array and in some cases 
which particular portion may change during the 
simulation (e.g. table lookup). 

For these reasons, a special type of Exter-
nalObject must be created to represent arrays.  
Creating an instance of such a type loads the entire 
array into memory along with information on the size 
of each array dimension.  For each built-in type there 
is a type definition in the DataRetrieval pack-
age formed by concatenating the built-in type name 
with either Vector or Matrix.  For example, a 
matrix of Reals would be defined by RealMa-
trix.  Creating instances of these special objects is 
accomplished by calling the constructor, e.g. 
  import DataRetrieval.*; 
  parameter RealMatrix props = 

    RealMatrix(source=engine, 

      rows="…", cols="…"); 

where source specifies the data source, rows is an 
expression to identify all rows to be loaded and 

cols is an expression (typically evaluated within 
the context of each row) to identify individual col-
umns. 

Once these special objects have been created, 
data can be extracted from them by using the ‘ex-
tract’ function.  Because it is not possible in Mode-
lica to define methods associated with these objects, 
functions have been defined to perform such extrac-
tions.  The name of the function is constructed by 
prepending extract to the name of the special 
type from which the data will be extracted.  For ex-
ample, 
  import DataRetrieval.*; 

  parameter Real y[…,…] = 

      extractRealMatrix(mat=MatrixObj, 

                        i=5:17, j=1:3); 

where mat is a special array object (whose type is 
consistent with the name of the extraction function, 
e.g. RealMatrix in this case), i represents the 
row indices of the elements to be extracted and j 
represents the column indices of the elements to be 
extracted. 

While it is quite simple to write special func-
tions to provide the size of the data associated with 
these array objects, it is not particularly useful for 
reasons that will be discussed later in Section 6. 

2.5 Retrieving Records 

Given the ability to extract scalars and arrays 
from data sources, we can do more sophisticated 
things like populating records with information from 
data sources.  Ideally, it would be possible to auto-
mate the process of loading records with information 
from external data sources.  However, such function-
ality would require some degree of integration with 
the underlying tool or some kind of reflective capa-
bilities in the Modelica language itself.  Neverthe-
less, it is certainly possible (using the functionality 
already described) to load records from data sources 
using specially written functions (see Section 4 for 
an example). 

As previously eluded to, data sources are not 
likely to match Modelica records definitions exactly.  
Typically such external sources will include informa-
tion that is not modeling related.  Of the information 
that is modeling related, only subsets may be useful 
depending of the model’s particular level of fidelity.  
For this reason, the fact that information in a data 
source does not have to match the Modelica record 
definition exactly (either in naming or in structure) is 
a useful advantage.  It means that a single data 
source can be used for modeling and non-modeling 

Implementation of a Generic Data Retrieval API for Modelica

The Modelica Association 595 Modelica 2005, March 7-8, 2005



related information and that information for different 
levels of model fidelity can be grouped together in 
the same data source. 

2.6 Querying Available Choices 

Our data retrieval API is built around the idea of 
query expressions.  In most of the previous sections 
it is assumed that the query expression is written to 
match exactly one piece of data.  However, allowing 
query expressions to match multiple pieces of data 
can be quite useful because it would provide tools 
with the ability to identify all data that is potentially 
compatible for a specific data type.  For example, 
when loading records that characterize electric mo-
tors it is useful to query a data source for compatible 
data and use it in the same way that the choices 
family of annotations are used. 

The current version of our API does not provide 
such functionality for two reasons.  First, such func-
tionality would require tool support.  The other rea-
son is that such functionality would require certain 
concepts (e.g. ordering, filtering, etc) not current ex-
pressed in the data retrieval API.  In Section 6 we 
will discuss how such capabilities could be imple-
mented with some degree of tool support and a 
slightly more sophisticated querying scheme. 

3 Implementation 

Up to this point, the discussion has been com-
pletely generic with only a few fragments of actual 
code and only vague discussions on query expres-
sions.  In the next two sections we will describe an 
implementation of the API and get into specific de-
tail about how it can be used. 

Our implementation was developed specifi-
cally to extract data from XML documents.  Such 
documents may exist on web servers or they may be 
stored in local files.  XML is fast becoming an im-
portant technology in all aspects of computing be-
cause of its ability to structure information in an op-
erating system, programming language and applica-
tion neutral way.  In addition to existing high quality 
implementations [9], there are several advances on 
the horizon that will support handling of large collec-
tions of binary data [10], [11] (e.g. simulation re-
sults). 

We treat each XML document as an object-
oriented database (OODB).  An OODB is useful for 
storing heterogeneous collections of objects.  In our 
experience, engineering data (part dimensions, test 
data, etc) fits quite well into OODBs. 

But storing the data is only one aspect that we 
need to worry about.  The other aspect is querying 
our data source to extract data.  For this, our imple-
mentation uses XPath, a standard for “addressing 
parts of an XML document”.  XPath provides a stan-
dardized way of identifying what data in an XML 
document we wish to extract.  A similar emerging 
standard is XQuery [6] which may prove to be a su-
perior (and mostly backwardly compatible) technol-
ogy once it is formally standardized. 

Consider the sample engineering database 
shown in Figure 1.  We will use this trivial database 
to demonstrate the capabilities of the XPath standard.  
Although the data and structure of the database are 
quite simple, all these examples could be applied to 
much larger databases without alteration. 

 

 
Figure 1: Sample Engineering Database 

 

Let’s begin with a simple example.  Imagine 
we wanted to extract the name of the base motor 
used in the ZY300 product.  Using the query expres-
sion: 

 
to query the database shown in Figure 1 would return 
‘C12’.  The ‘//’ at the start of the request means “at 
any level in the document hierarchy”.  The ‘prod-
uct’ string following this is interpreted as the name 
of the element type that is being requested.  Any-
thing contained in ‘[]’s represents a predicate.  
Elements for which the predicate is false will be fil-
tered.  In this predicate ‘@name’ represents the at-
tribute ‘name’.  So the first line locates the ZY300 
product in the database.  Each subsequent ‘/’ in the 

<?xml version="1.0"?> 
<engineering_data> 
  <product name="ZY300"> 
    <base_motor type="C12"/> 
  </product> 
  <part> 
    <motor name="C12"> 
      <rotorJ>0.011</rotorJ> 
    </motor> 
  </part> 
</engineering_data> 

  //product[@name=’ZY300’] 

   /base_motor 

   /attribute::type 
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expression is used to indicate traversal one level 
deeper into the hierarchy.  If a name is prefixed by 
‘attribute::’ that indicates that the query is for 
an attribute rather than an element.  So the complete 
expression can be interpreted as “Search the hierar-
chy for product elements whose name attribute is 
ZY300 and for each of these find the base_motor 
element immediate below it and return the value of 
the type attribute for that element”. 

Imagine we wish to extract the value con-
tained between the rotorJ tags in Figure 1.  We 
can extract that data with the following XPath ex-
pression: 

 
This query is quite similar to the previous query ex-
cept it uses the ‘text()’ function to return the tex-
tual content within the rotorJ element. 

 But now let’s look at a more challenging 
example.  In the second example, we assumed that 
we knew the model name for our motor, C12, a pri-
ori.  Imagine we want to extract the rotational inertia 
of the rotor but we don’t know the motor name.  In-
stead, what we know is that it is the base motor used 
in the ZY300 product?  In this case, we can combine 
the two queries we made previously into: 

 
With this example we have nested our requests for 
the type of base motor used inside a predicate used to 
search for the motor.  By using the query for the 
ZY300 base motor type in the predicate involving 
the motor name, we were able to identify rotor iner-
tia based on its relationship to the ZY300 product 
rather than by name. 

 These are a few examples of the kinds of 
queries that are possible with XPath expressions.  
This is by no means a complete introduction to 
XPath.  Instead the goal of these examples was to 
provide sample expressions so that expressions in 
subsequent examples can be interpreted. 

It is important to note that parsing XML, con-
verting it into a traversable data structure and im-
plementing an XPath query engine are not trivial 
tasks.  Fortunately, there are multiple implementa-
tions of these standards that can be used as off-the-
shelf software components.  For our work, we chose 

to use the libxml2 [4] library that was developed 
for use with the Gnome desktop environment.  The 
libxml2 library includes complete, robust imple-
mentations of many XML related standards includ-
ing DOM [12], SAX, XPointer [13] and XPath [5]. 

4 Examples 

4.1 Retrieving Parameter Values 

One of the most common uses of the data re-
trieval API is to supply parameter values in a model.  
In this section we will show how the data retrieval 
API can be combined with a sample data set (shown 
in Figure 2) and specific query expressions (using 
the XPath notation described in Section 3) to accom-
plish this task. 

 
Figure 2: Sample Engine Data 

An important thing to note about the engine 
data shown in Figure 2 is that each parameter 
(bore, stroke and conrod) are represented us-
ing different XML constructs.  The engine bore is 
represented as the text inside a generic real ele-
ment, the stroke appears as the text inside a special 
element type of its own and the connecting rod 
length is given by an attribute associated with an-
other generic element type, val, but with a specific 
string, conrod, given for its name attribute. 

So the challenge in this example is to show 
how XPath syntax is expressive enough to allow us 
to address each piece of data even though the con-
texts are quite different.  Figure 3 shows the various 
XPath expressions that can be used to extract the 
necessary data from the XML file. 

  //motor[@name=’C12’] 

   /rotorJ/text() 

//motor[@name= 

  //product[@name=’ZY300’] 

   /base_motor 

   /attribute::type] 

 /rotorJ/text() 

<?xml version="1.0"?> 

<engine_data> 
  <engine name="Beta"> 

    <real name="bore">88.2</real> 
    <stroke>84.0</stroke> 

    <val name="conrod" units="mm"   

         value="125.0"/> 

  </engine> 

  <engine name="Gamma"> 
    <real name="bore">87.2</real> 

    <stroke>85.0</stroke> 
    <val name="conrod" units="mm" 

         value="123.7"/> 

  </engine> 
</engine_data> 
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Figure 3: Parameter Extraction 

4.2 Populating Records 

The example shown in Figure 3 includes sev-
eral complex XPath expressions.  Because it can be 
difficult to formulate such expressions and because 
entering them manually or copying and pasting them 
several times can be error prone and/or difficult to 
maintain, it is desirable to try and encapsulate these 
expressions somehow.  One way to accomplish this 
in Modelica is to create a special record type for the 
data and then create a function that can populate 
such a record automatically.  For example, consider 
the following Modelica record definition: 

 
 To populate such a record with data from the 
file shown in Figure 2, we could write a function that 
constructed such a record from the name of the en-
gine and the location of the data.  Figure 4 shows 
what such a function might look like. 

 
Figure 4: Populating a record 

The function shown in Figure 4 also high-
lights another feature of the data retrieval API.  
When the source object is created, the optional 
context argument is used to define the context in 
which all subsequent XPath expressions should be 
evaluated.  What this means in practice is that it is 
assumed that any queries associated with the 
source object apply only to the specific engine for 
which data is being retrieved.  In this way, the query 
expressions for each invocation of getReal can 
leave off the engine selection prefix expressions re-
sulting in shorter path expressions. 

Once defined, the Load function shown in 
Figure 4 can then be used to provide values for a re-
cord without any need to include calls to the data 
retrieval API or any XPath expressions, 
e.g.

 
 

model TestReals  
  import DataRetrieval.*; 
  parameter Source engine = 

    Source(format="XML", 

           url="engines.xml"); 

  parameter Real bore = 

    getReal(source=engine, 

      name="//engine[@name='Beta'] 

             /real[@name='bore'] 

             /text()"); 

  parameter Real stroke = 

    getReal(source=engine,  

      name="//engine[@name='Beta'] 

             /stroke/text()"); 

  parameter Real conrod = 

    getReal(source=engine, 

      name="//engine[@name='Beta'] 

             /val[@name='conrod'] 

             /attribute::value"); 

end TestReals; 

  record EngineData  
    import Modelica.SIunits.*; 

    parameter Diameter bore; 
    parameter Length stroke; 

    parameter Length conrod; 
  end EngineData; 

function Load  
  import DataRetrieval.*; 
  input String engine; 

  input String url; 
  output EngineData data; 

protected  

  String context= 

   "//engine[@name='"+engine+"']"; 

  Source source= 

    Source(format="XML", url=url, 

           context=context); 

algorithm  

  data.bore := 

    getReal(source=source, 

      name="real[@name='bore'] 

            /text()"); 

  data.stroke := 

    getReal(source=source, 

      name="stroke/text()"); 

  data.conrod := 

    getReal(source=source, 

      name="val[@name='conrod'] 

            /attribute::value"); 

end Load; 

  parameter EngineData engine = 

    Load(engine="Gamma", 

    url="engines.xml"); 
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4.3 Loading Arrays 

While loading a complete array into Modelica 
for use in a model is an obvious example of how the 
data retrieval API might be used, there are also other 
reasons why you might want to load only a partial 
array.  Consider the case of cubic interpolation.  
Imagine we have interpolation data that is stored in 
an array as follows: 
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Now, if we need to construct the cubic polynomial 
approximation for any value x, we only need to 
know the values for the function and its derivative 
associated with xi and xi+1 (where xi<=x<=xi+1).  The 
important point is that we do not need to load the 
entire matrix into a Modelica variable.  Instead, we 
could simply extract the values that we need at any 
given time and construct the approximations in a 
piecewise form.  So given the following data file: 

 
We can use the following Modelica code to evaluate 
the function “z” described in the data file: 

 
This code defines the contents of the matrix using 
the XPath expressions and then passes it to a model 
which only extracts the function and derivative val-
ues for the two closest points at any given time.  
Now, formulating a cubic polynomial approximation 
for a simple 1D function does not necessarily require 

such powerful functionality.  However, if we wanted 
to construct a 3D approximation for a relatively large 
data set [7] using a complex cubic interpolation 
scheme this API could help us minimize memory 
consumption while still exposing the underlying 
mathematical structure. 

4.4 Generating “choices” 

As mentioned previously, an XPath expression 
might match several different entities in an XML 
document.  For example, if we wanted to extract the 
names of all engines present in Figure 2, we could 
express this with the XPath expression: 

 
The results of such a query could then be used in 
subsequent queries to select from elements in an 
XML document.  As mentioned previously, this ca-
pability would require some degree of tool support. 

5 Discussion 

5.1 Alternative Source 

While the data retrieval API is generic, the 
implementation discussed in this paper assumes that 
the data will be represented natively in XML and the 
query expressions will follow the XPath specifica-
tion.  But there are several other formats that are fre-
quently used to store data and for which a retrieval 
API might be useful.  Examples of these would in-
clude HDF [14] and the MATLAB “.mat” file for-
mats [15]. 

The only significant impact of changing the 
format of the underlying data source is on the query 
expressions.  There are two ways to approach query 
expressions in such cases.  First, for each format a 
(potentially) unique query expression syntax could 
be used.  This would allow, for example, SQL to be 
used if the underlying data source was a relational 
database.  The drawback of this approach is that it 
would be impossible to write general functions (e.g. 
the Load function for loading engine data shown in 
Figure 4) for an arbitrary data source.  Instead, a 
function would have to be defined for each potential 
data source format. 

On the other hand, if each data source used the 
XPath approach for querying, then a consistent syn-
tax would be available across the various platforms.  
The advantage of this is that users would only need 
to be familiar with XPath and no other query expres-
sion format.  The difficulty is that XPath applies to 

<?xml version="1.0"?> 

<data> 
  <function name="z"> 
    <point x="0" f="0" df="0"/> 

    <point x="1" f="0" df="1"/> 
    <point x="2" f="1" df="0"/> 

    <point x="3" f="0" df="-1"/> 
    <point x="4" f="0" df="0"/> 
  </function> 
</data> 

  parameter RealMatrix data = 

    RealMatrix(source=f, 

      rows="//function[@name='z'] 

             /point", 

      cols="attribute::x 

            |attribute::f 

            |attribute::df"); 

  Interpolate2 y(x=time, 

                 data=data); 

//engine/attribute::name 
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XML, not to other formats.  One way to bridge the 
gap would be to define a mapping from each format 
to XML.  For example, consider the following MAT-
LAB code which writes several matrices to a file: 

 
The contents of the file ‘AB.mat’ are stored in the 
MATLAB specific format.  But for the purposes of 
formulating queries we could create a mapping that 
defines a translation to XML that would result in an 
XML document that looks like this: 

 
In this way, it would then be possible to load data 
from MATLAB using the data retrieval API with 
code like 

 
Note that the data itself would not necessarily 

have to be translated into XML.  Instead, a special 
XPath interpreter could be developed for each format 
that understood the “mapping” involved.  

5.2 Data Management 

The goal of this API is not just to provide a 
package for opening and querying data sources.  In 
addition, the design goals are also meant to address 
nagging problems with handling data in Modelica.  
With this new API we can avoid loading large 
amounts of data either as constants or definitions in 
packages (e.g. Modelica.Media idea gas data) and we 
can avoid (through the selective extraction functions) 
loading entire data sets into Modelica variables when 

only a subset are needed at any given time during a 
simulation. 

In addition, data stored in Modelica typically 
ends up being compiled into simulations.  In a sense, 
the data is then frozen inside the analysis.  Any 
change in the data requires the model to be recom-
piled or have its input files modified in some way.  
By relying on external data sources, the “fresh” data 
can be loaded on demand. 

5.3 Modelica Deficiencies 

While the external function interface in Mode-
lica provided enough functionality to implement the 
API and create functioning examples, there are still a 
few areas where Modelica could be improved. 

First, the API structure would benefit greatly 
from support for methods that can be invoked on 
user defined classes.  Without methods, special func-
tions much be written and type information about 
arguments and return types must somehow be aggre-
gated to form unique function names.  In addition, 
features to support better abstraction and polymor-
phism support would allow specialized Source ob-
jects to be developed (e.g. XMLSource, 
HDFSource) but remain compatible with all exist-
ing functions that required Source objects as ar-
guments.  As things stand currently, the definition 
for the Source class must be familiar with all po-
tential formats (hence the format argument) but 
with the ability to subclass, new formats could be 
supported without the need to change or update the 
existing Source definitions. 

Another issue with Modelica is units.  While 
the language allows unit information to be associated 
with variables and data sources may include unit in-
formation, the current API specification does not 
exploit any of this information.  Built-in unit conver-
sion capabilities in Modelica might make it possible 
to handle units without having to implement any 
manual unit conversions. 

Finally, the XML related tools used in this 
implementation were available in C and could be 
integrated nicely through the Modelica external func-
tion interface.  However, more and more of these 
capabilities are appearing in Java.  As things cur-
rently stand, it is not possible to leverage Java code 
through the external function interface although it 
would be nearly trivial to do so.  By including an 
instance of a Java Virtual Machine in Modelica tools 
and/or generated code, it would be possible to easily 
load Java classes into memory and invoke functions 
(and perhaps methods) defined in Java.  Simply de-

>> A = [1, 2, 3; 4, 5, 6]; 

>> B = [6,7; 8,9; 10,11]; 

>> save 'AB.mat' -V4 A B 

<?xml version=”1.0”> 
<MATLAB> 
  <matrix name=”A”> 
    <row><col>1.0</col>…</row> 
    <row><col>4.0</col>…</row> 
  </matrix> 
  <matrix name=”B”>…</matrix> 
</MATLAB> 

parameter Source f = 
  Source(format="MAT4", 

         url="AB.mat"); 

parameter RealMatrix data =  
  RealMatrix(source=f, 

    rows="//matrix [@name='A'] 

           /row ", cols="col"); 
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fining how arguments are passed to and from Java 
code would enable leveraging tremendous amounts 
of existing Java code. 

5.4 DTDs and Namespaces 

Two features of XML not discussed in this 
paper are Document Type Definitions (DTDs) and 
namespaces.  This section includes some discussion 
about these topics and how they relate to our data 
retrieval API. 

DTDs define a specific schema associated 
with an XML document.  We could have forced all 
XML data to be used with the data retrieval API to 
follow a specified DTD.  This would have made re-
trieval considerably simpler because we could have 
anticipated, to a greater degree, the structure of the 
data we were trying to retrieve.  However, it is quite 
impractical to expect that external sources of data 
will always conform to a specified DTD.  It is possi-
ble to translate such data from its native format into a 
form that conforms to a specific DTD but this would 
likely involve more work than our approach and 
would still involve XPath or something similar.  The 
strength of our approach is the ability to use it in 
conjunction with arbitrarily structured data. 

Namespaces could also be useful in annotating 
existing datasets with new element types that are 
explicitly tagged to be specially included for our 
purposes.  In such a scenario, special tags could be 
defined within a namespace and then added to exist-
ing XML documents.  These specialized elements 
should, in theory, be ignored by other applications 
since they belong to a namespace that the application 
is unfamiliar with.  This would add a level of com-
plexity to the implementation and the need to spe-
cially annotate external data sources but without any 
real benefit.  For this reason, we did not utilize 
namespaces. 

6 Benefits of Standardization 

While we have created this implementation for 
our own purposes based on identified needs in our 
organization, it is quite likely that many Modelica 
users would benefit from a standard data retrieval 
API like the one described in this paper.  In this sec-
tion, we highlight some of the benefits a standard 
API would have over the “user space” implementa-
tion we have created. 

First, query expressions could be used to gener-
ate lists of “choices” much like the existing 
choices annotation.  Such functionality would 

have to be available (i.e. compiled into) Modelica 
tools in order to link such information to the graphi-
cal user interface.  The current external function in-
terface is, at least in the case of Dymola, limited to 
user simulations and such external functions are not 
available to the Dymola process itself. 

Another advantage of a standard data retrieval 
API is that it could be used within the standard Mod-
elica libraries to manage data.  For example, the 
Modelica.Media library contains a tremendous 
amount of data associated with ideal gases.  This 
data could be stored outside the Modelica environ-
ment and loaded selectively on an as-needed basis. 

As mentioned previously, our API is imple-
mented through the Modelica external function inter-
face and, as such, is not available to the Dymola 
GUI.  This makes model checking and model compi-
lation impossible for cases where variables in Mode-
lica are dimensioned based on calls to the API (i.e. to 
determine the full size of an external matrix).  By 
standardizing the API, it would be possible to use 
external data to dimension variables used in Mode-
lica. 

7 Conclusions 

In order to integrate Modelica models with ex-
isting engineering and analysis processes, retrieval of 
data from external data sources for use in models is 
essential.  This paper outlines one way such integra-
tion can be accomplished.  Use of XPath expressions 
is a powerful component of our implementation and, 
through formalized mappings as described in Section 
5.1, this approach to querying can be extended to 
other non-XML based data sources as well.  Our im-
plementation focuses only on XML documents as 
data sources and represents only a proof-of-concept 
implementation (e.g. no caching is performed in our 
implementation). 

Standardization of this API opens up many pos-
sibilities for integration of database information into 
graphical model development environments.  It 
could also automate the tedious and error prone 
process of writing special functions (like the one 
shown in Figure 4) to populate records used to char-
acterize models. 

The topic of a formalized API for retrieving ex-
ternal data sources has come up occasionally in 
Modelica design meetings.  Hopefully this imple-
mentation can serve as a starting point for further 
discussions, proposals and eventually standard func-
tionality available to all Modelica users. 
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Introduction

Dymola [1] provides an integrated environment for
modeling, simulation and scripting based on the

Modelica language. However, Modelica is not al-

ways the best choice for GUI-design, database ac-
cess, or canned presentations of libraries (in the last

case the usual choices are PowerPoint® presenta-

tions, pdf-documents, or animation files).

The solution in these cases is to leverage other tools,

such that they can interface to Dymola’s Modelica

functionality and vice-versa for call-backs/links from
Dymola to external tools. These solutions are already

implemented for the forthcoming version Dymola 6,

except for a few specific items described as future
plans (these might be implemented in time for the

release of Dymola 6). Some solutions are also avail-

able in previous versions of Dymola as described in

the manual [1].

1 Model callbacks in Dymola

One goal of the external interface is to allow a model
developer to customize commands for the model by

calling external tools. This functionality is provided

in two separate parts:

• External tools can be interfaced to any Modelica

function.

• Models can be customized to have commands

calling Modelica scripts or functions in Dymola.

As a concrete example a model developer can add

model-specific commands to Dymola’s Commands-

menu. Users of the model can then call a command

from the Commands-menu, which for example
executes a Modelica script calling external Modelica

functions implemented in C.

1.1 Variants of commands

The commands can be generic (independent of the

selected model, e.g. to select a specific demo model

or check that the model fulfils some guidelines), or
specific to the currently selected class (e.g. post-

process the simulation result).

The command can be called explicitly by the user

(from the Commands-menu in Dymola), or implic-

itly to extend existing functionality (the enable-field
in parameter-dialogs is one example where a user

can enable the input field based on a predicate call-

back). In the future, callbacks will be generated at
specific stages of translation, e.g. for users to gather

additional statistics of the use of specific models.

Obviously we could for a specific example provide

the functionality inside Dymola, but by providing an

API and callbacks we allow the customer to extend
Dymola.  Thus the API to Modelica structure which

is presented later in the paper is intended to also be

useful for e.g. gathering statistics about the compo-

nents used in the translated model. Some of these
functions need access to browser information (such

as the current class) as will be discussed below.

1.2 Calling functions directly

A specific case of running a command is to call a

function related to the model e.g. to run an optimiza-

tion of the model.

The advantage with directly using function calls is

that there is no need for any model-specific script

files (making it easier to e.g. copy the Modelica

model) and that a function call is part of the Mode-

lica language and thus syntactically correct.

Furthermore it is possible to optionally prompt the
user to modify the arguments of the function call

before the function is called, e.g. to specify the oper-

ating point to optimize for. This uses the normal (and

extensible) function call dialog.

2 Communication protocols

The interprocess communication is between two
running programs one of which is Dymola. The
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transport mechanism can be seen as separate from

the structure of the messages. Currently Dymola can

send and receive DDE-messages. For the future ex-
tension of exchanging XML-data in SOAP-encoding

SOAP-HTTP is a suitable alternative [2], and is

portable to non-Windows platforms (for which the

demand is increasing).

2.1 DDE-interface

For DDE-execute, the return value does not allow

meaningful result values and thus specially formatted

DDE-Request(s) is used for returning data to other

programs with a special case for Matlab (below).

Thus Windows programs can call DDE-routines to
e.g. perform a parameter sweep from Excel (by pro-

gramming in Visual Basic for Application). In this

case the update of the excel spread-sheet is done by
running a macro and there are no links in the Excel-

document, which only contains the start-values

(J1.w), parameter-values (J2.J), and final values for

two variables (J1.w and J2.w):

Figure 1 Parameter-sweep from Excel

The macro opens a DDE-channel to Dymola, sends

the command simulateExtendedModel as a DDE-
request to simulate and get the final values of vari-

ables. To access the spread-sheet the Excel-routine
Sheets( "Sheet1").Cells(r, c).Value

is used to get and set the values.

It is also possible to use DDE to communicate di-

rectly with a running simulation, Dymosim, (pro-
vided the compiler option ‘Visual C++ with DDE’ is

selected). This is described in [1] and also allows

automatic update of variables after changes.

These protocols are extensible which allows calls

between two programs running on different comput-
ers, i.e. remote procedure calls. Although remote

procedure calls are beneficial, for security reasons

remote procedure calls must be explicitly enabled (as

is necessary for remote DDE).

Limitations of DDE

Unfortunately DDE has some restrictions (in addi-

tion to being platform-specific), in particular on the

maximum length of the messages, and no general

high-level API for communicating structured data.

For communication with a running simulation (DDE-

communication between Dymola and Dymosim) we

have found it necessary to use special formats to
achieve the high bandwidth needed for e.g. online

animation of Modelica models, while respecting the

limitations of the protocol.

We do not anticipate similar bandwidth needs for the

communication with Dymola, since the natural way
of communicating a vector of values is to send it as

one DDE-message (which automatically solves most

of the performance problems).

The DDE-interface in the caller is preferably written

as one generic routine (as we have done in Matlab)
to make it easy to later extend it e.g. with handling of

messages exceeding the maximum length, and

optimized alternatives to the CF_TEXT-format.

2.2 Direct interfacing

The above handles the complex case of interprocess
communication between two running programs, but

sometimes a simpler mechanism suffices.

2.2.1 Call of external functions

The Modelica language offers the possibility to di-

rectly interface to C and FORTRAN-functions such
that calls of Modelica functions declared as external

C/Fortran are mapped into calls of the corresponding

C or Fortran functions.

There is no restriction on the use of external func-

tions in Modelica and to allow easy use of them in
the interactive environment Dymola performs de-

mand-compilation of external functions. Thus a user

can call external functions in the same way as non-

external functions.

This C interface provides an extensible mechanism
that also handles other languages that can give rou-

tines C linkage, such as C++ and languages that pro-

vide an interface for calls from C, such as Java.
Since the JNI interface to Java allows dynamic

loading of Java-libraries this could be done internally

in Dymola making it possible to directly call a Java

function from Dymola to e.g. show a modal dialog
and get the user response back without using any

external programs.

Below we demonstrate running a Java function

showing a modal dialog box, where the call of the

Java-functions has been included as an external
function call in Modelica (with suitable arguments),

and then compiled by Dymola (the JNI-

implementation require that calls in translated C-

code use the Visual C++ compiler).
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Figure 2 Calling a modal dialog in Java from a
Modelica function

Extending Modelica’s external interface to directly

include Java in addition to C and Fortran 77 is

straightforward and the specification was deliber-
ately written to allow such extensions. By using sin-

gle-quoted names it is possible to directly support

hierarchical external function name (i.e. containing a

dot) as in Java.

2.2.2 Linking to libraries

It is also possible to link with specific C-libraries

(including Dynamic Link Libraries, DLLs). Due to

the limitations of the C-compilers used, any libraries
must be provided in a binary format compatible with

the C-compiler used to compile the Modelica code in

Dymola (Visual C++ 6/7, egcs, or Watcom). Pro-

vided the external code is portable and available in
source-form that is in general possible. Additionally

Modelica models are often downloaded and run on

realtime platforms, which require different libraries
(or that the C-code is provided in source-form and

linked together with the model).

Another potential problem on Windows is that some

API calls require that the caller is a Windows-

program.

This is e.g. necessary to use the DirectX interface

from Microsoft. An application of DirectX is to al-
low users to control a car-model from VehicleDy-

namics [6] by a steering wheel. In those cases a

Windows program must be generated (in Dymola
this currently requires that you select the compiler

Visual C++ with DDE) and special routines obtain

the window handles.

2.2.3 Calling programs

Modelica.Utilities.System [3] enables functions
written in Modelica to call external programs.

Command line arguments to Dymola enable external

tools to for instance run simulations in Dymola.

The Commands-menu, Dymola’s Execute-function,

and links in the documentation layer also allows
opening other files than Modelica scripts using the

file associations in Microsoft Windows. This is use-

ful for canned presentations, and selecting a menu

entry will automatically open the file in the corre-
sponding tool (e.g. pdf-documents in Acrobat

Reader®, animation files in the media player, html-

files in the browser).

3 Data-structure encoding

To communicate Modelica data-structures in Dy-

mola to other tools the data-structures must be
mapped into other data-structures. Following the C

and FORTRAN-interface this is defined in a generic

encoding for each interface, i.e. there is no need to
specify a mapping for each data-structure. If a spe-

cial mapping is desired for a specific case that can

then be done either in a Modelica function or in the

other tool.

The basic idea of the interface is to return a string
that when evaluated returns the value, e.g. a numeric

value is returned as itself, i.e. 3/2 is returned as the

string ‘1.5’ (without the quotes).

For more advanced data-structures, arrays and rec-

ords, it is necessary to define how the resulting string
is evaluated. The two variants that are implemented

are Modelica data-types constructors and Matlab.

3.1 Mapping to Modelica

The Modelica-mapping is identical to the output

format used in Dymola’s command-window and

makes use of record and array constructors for com-
plex data-structures. Consider the examples (input in

bold and the response-string is given after the ‘=’):

Matrices.inv([1,2;3,4])

=

[(-2.0), 1.0;

1.5, (-0.5)]

GetClassAttributes("Modelica")

 = Dymola.AST.ClassAttributes(

        fullName = "Modelica",

       isPartial = false,

     isProtected = false,

      restricted = "package",
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         isInner = false,

         isOuter = false,

  isEncapsulated = false,

    isShortClass = false,

   isReplaceable = false,

    isRedeclared = false

)

The mapping is sufficiently straightforward that we
will not go into details of it, and if the result is pasted

into Dymola’s command input and evaluated it re-

turns the same result once more.

To use this functionality the application programmer

has to set up a DDE-channel to Dymola, and send a
Modelica-function call as string in a DDE-request.

Dymola’s DDE-server will respond with a string

containing the result as a Modelica data-structure.

DDE-client

Dymola

DDE-server

Modelica

function

Modelica

Modelica

DDE

String(Modelica)

String(Modelica)

User-

programmed

Dymola

Figure 3 Using Dymola’s interface to Modelica

functions from other programs.

For this to be possible, all data-structures in Mode-

lica must have an output format that when evaluated
gives the data-structure back. This seems straight-

forward, but the problem is empty arrays, since

Modelica as a strongly typed language does not al-

low {} for empty arrays.

For primitive types a work-around is to use the fill-
operator. For an empty array of records this requires

using the record-constructor, but in many cases the

record constructor does not have defaults for all ele-
ments and thus cannot be called without specifying

arguments. A future extension of Modelica would be

to allow calls of the record constructor with no ar-

guments in this specific case.

3.1.1 Grammar for Modelica subset

We have defined a subset of Modelica for repre-

senting any structured data values, that is primitive

types, arrays, and records.

The advantage of this format is that the mapping is

self-explanatory, complete for Modelica data-types,

and to be able to parse the Modelica-format it is only

necessary to implement a parser for a subset of ex-

pressions from the Modelica grammar:

expression:
  primary

| "-" primary

primary :
  UNSIGNED_NUMBER
| STRING
| false
| true

| component_reference  function_call
| "[" expr_list { ";" expr_list } "]"
| "{" expr_list "}"

component_reference :
  IDENT [ "." component_reference ]

expr_list :

  expression { "," expression }

function_call :
  "(" [ function_args ] ")"

function_args :
  expression [ "," function_args  ]
| named_args

named_args:

  named_argument [ "," named_args ]

named_argument: IDENT "=" expression

Some of the names in the grammar have been short-

ened to keep the grammar elements on one line.

The reason to keep component_reference and func-
tion_call is to use record constructors to build record

data-structures (using named arguments). Function

call without named arguments (the line in italics) is

only needed for the above-mentioned use of fill to

construct empty arrays.

3.2 Mapping for Matlab

Dymola can automatically map data-structures to

Matlab data-structures. They are first encoded in a

string, that is then automatically evaluated by the

Matlab-interface to the corresponding data-structure.
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Dymola/Modelica Matlab

Real double

Integer double

String string

Enumeration(planned) string

Boolean double

Array matrix or cell array

Record member struct member

Figure 4 Mapping to Matlab

Array results are returned as matrices, except array

of records and array of strings that are returned as

cell arrays.

This provides a complete interface from any data-

structure (i.e. return-value) defined in Modelica to a
corresponding data-structure in Matlab. This in-

cludes the Modelica class and component structure

as will be defined later.

The interface for sending requests from Matlab to

Dymola cannot provide a similar feature based on
the data structures in Matlab. The reasons are that

Matlab does not distinguish between scalars, vectors

and matrices (i.e. ndims in Matlab is always >=2),
and that Modelica lacks a counterpart to Matlab’s

struct, i.e. an untyped record constructor.

However, as will be discussed in a following section

an API to the class structure is available and the

caller routine in Matlab (dymolaCall) has been ex-
tended with code to perform this mapping based on

the declaration of the called Modelica function. Thus

the Matlab-programmer only has to call dymolaCall
with the name of the Modelica function and argu-

ments as Matlab data-structures (arrays and structs).

Dymola and dymolaCall and internally handle this

and the result is a Matlab data-structure.

dymolaCall

DDE-client

Dymola

DDE-server

Modelica

function

Modelica

Modelica

DDE

String(Modelica)

String(Matlab)

Matlab Dymola

Matlab

m-file

Matlab

Matlab

Figure 5 Interface between Matlab and Dymola

This does not include some of the advanced features

of Modelica, e.g. the mapping does not automatically

handle vectorized arguments to functions or allow

you to use named arguments from Matlab.

We have not yet found any performance issues with

this interface, but the m-file could be improved to

locally cache the Modelica class structure in order to

avoid sending the same query several times to Dy-

mola (as will happen with e.g. arrays).

3.2.1 Examples

The following examples are only intended to demon-

strate the possibilities and that strings, arrays of dou-

bles, and records (containing strings and booleans)
are returned (running from Matlab). The first exam-

ples demonstrate sending the entire command as one

string:

>> dymolaCall('"Hello"+" world"')

ans =

Hello world

>> dymolaCall(…

'Modelica.Math.Matrices.inv([1,2;3,4])')

ans =

   -2.0000    1.0000

    1.5000   -0.5000

As indicated above the interface also allows call with

function arguments as Matlab data-types (the second

argument can optionally be used to specify an exist-

ing DDE-channel):

>> dymolaCall('Modelica.Math.Matrices.inv',[],..

[1,2;3,4])

ans =

   -2.0000    1.0000

    1.5000   -0.5000

dymolacall('GetClassAttributes',[], 'Modelica')

ans =

 fullName: 'Modelica'

      isPartial: 0

    isProtected: 0

     restricted: 'package'

               …
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>>dymolaCall(…

'Modelica.Math.Matrices.leastSquares',[],…

[1;0;1],[1;2;3])

ans =

     2

We will later return to how this uses the API to the

Modelica class structure to construct the call.

3.3 Mapping for XML

For the abstract syntax tree one mapping to XML [4]

is defined in [5]. A future mapping of data-structures
to XML could use a subset of this by viewing them

as a function call/expression in this structure (i.e.

similar to the subset for the mapping to Modelica).

This can be viewed as too generic and another possi-

bility is to automatically construct a specific docu-
ment type declaration defining the grammar for the

specific Modelica data-structure(s), i.e. one for each

record class used, and placing this first in the XML-
file [4]. This might still be combined with an exter-

nal pre-defined data-type declaration for the built-in

Modelica types, i.e. Boolean, Integer, Real, and

String.

4 API to Modelica class structure

The first problem with defining an API to the Mode-

lica class and component structure is that it is not
possible to define a data-structure for the entire class

structure in Modelica (at least not as implemented in

Dymola), because the class structure is inherently

recursive. However, even if it were possible to repli-
cate the entire class structure as a set of nested rec-

ords it would not provide an efficient interface to the

class structure for simple queries or modifications.

Therefore we have instead defined access routines

that allow tree walking to be built in Modelica (in the
future there will also be corresponding routines for

modifying and adding classes and components).

4.1 Basic design of API

In order to provide a useful interface to the classes

and components three sets of routines were provided
as follows in package Dymola.AST. Originally each

set was only comprised of two functions and one

record, and the intention is to further extend this (e.g.

with routines for modifying the elements).

The three sets of routines are for classes, extends-

clauses and components. In each set there is a routine

for obtaining the elements (as an array), a record de-
fining the “attributes” (protected, inner, full class

name, …) and a routine for getting the attributes for

a specific element.

These interfaces assume that one can use the name of

elements in the queries, which is possible in the
cases above (technically excluding the obscure case

of repeated identical extends-statements which is

legal Modelica, but without any reasonable use).
Note that Dymola enforces this semantic restriction

in Modelica already during parsing of classes, and

thus it is safe to base the API-routines on this as-

sumption.

The requirements also include access to the import-
statements in the class. For import-clauses it is hard

to define which name to use as a key (when consid-

ering both the qualified and the unqualified import-
statements, thus a combined routine has been added

that returns an array of records defining the import-

statements.

This was found to provide such an increase in ease of

use that similar routines were added for the other

cases. These were trivial to implement based on the
existing routines, and we give a full example below

(excluding its documentation):

function ComponentsInClassAttributes    

   "Get components of a class"
   input String className;
   output ComponentAttributes res[:]=

    GetComponentAttributes(className,
       ComponentsInClass(className));
algorithm

end ComponentsInClassAttributes;

Here the names of the components is constructed by

ComponentsInClass and this is then used in a vec-

torized call (as defined in Modelica [3]) of GetCom-
ponentAttributes to get the attributes of all compo-

nents.

Thus functions exists for all elements of table given

on the next page (where “elements in class” has a

class/ package as input and get attributes also exist in
a form that returns an array containing the attributes

of all elements).
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Record of attributes Elements in class Get attributes

Classes ClassAttributes ClassesInPackage GetClassAttributes

Extends ExtendsAttributes ExtendsInClass GetExtendsAttributes

Components ComponentAttributes ComponentsInClass GetComponentAttributes

Import ImportAttributes ImportsInClassAttributes

Figure 6 Overview of API to class structure. The row headings are the element types and the column
headings the different functions (and records).

To make it possible to traverse all classes it is also

possible to list all top-level classes (optionally lim-

ited to the ones defined in a specific Modelica file).

4.1.1 Example

These functions can be used in Modelica to find all

restricted classes and provide e.g. the following list

of accessible classes (excluding protected and partial

ones):

Modelica 1.6 Modelica 2.1

Model 222 429

Block 71 147

Function 41 199

Type 485 513

Package 50 130

Figure 7 Statistics for Modelica Standard Library

The growth of the standard library is in part due to

the fact that ModelicaAdditions libraries were com-

pleted and after (in some cases major) revisions in-

cluded in the Modelica Standard Library.

An alternative to returning all elements as one array
of records would be to provide an iterator, or a call-

back-routine for enumerating the elements (and ac-

cess routines instead of record elements). This is a
traditional style in several environments (iterators in

C++, enumeration callbacks in Windows API) since

it avoids allocating large arrays. However, it requires
additional state (in the iterator or enumerator call),

which is contrary to the limitations on functions in

Modelica, and therefore also increases the risk of

errors in application code.

4.2 API to semantics not only to syntax

The API above defines basic routines that can be

used directly. They also provide the basis for writing

functions intended to answer higher-level questions,

e.g. to search in a hiearchy for all components de-

clared of a certain class.

Programming such queries require that the API an-

swers questions related to the semantics of the decla-

rations instead of questions based on their syntax

(i.e. Dymola must not only parse the Modelica

classes to answer the question, but also implement

e.g. the semantics of look-up in Modelica).

To clarify this consider the declaration of T2 in the

coupled clutches demo:

  parameter SI.Time T2;

To obtain information about this declaration we can

use the following:

Dymola.AST.GetComponentAttributes(
"Modelica.Mechanics.Rotational"+

".Examples.CoupledClutches","T2")

which gives the result:

Dymola.AST.ComponentAttributes(

  name = "T2",

  fullTypeName="Modelica.SIunits.Time",

  isProtected = false,

  sizes = {},

  variability = "parameter",

  isInput = false,

  isOutput = false,

  isInner = false,

  isOuter = false,

  isReplaceable = false,

  isRedeclared = false,

  isGraphical = false

)

By returning the full name of the type ("Mode-

lica.SIunits.Time")  and not the type-name part of the

declaration ("SI.Time") it is straightforward to pro-

gram this kind of queries and this also made it easier

to program the calling interface from Matlab.

Obviously advanced users would like to also have
access to the exact declaration (including modifiers

and annotations) and that is planned for the future.

Basing the API on the semantics is also important for

future improvement of providing routines to modify

the classes through the API, where declaring a new
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component might require the addition of import-

statements. When a user drags and drops a class to

the diagram layer to declare a new component Dy-
mola automatically adds import-statements if neces-

sary. The API can internally re-use this functionality.

Similarly copying (or moving) a class from one

Modelica package to another might require changes

to its declarations which is done automatically by

Dymola’s GUI and hidden from the user.

4.3 Simplification in Modelica 2.2

One previous problem with using these functions

was that the sizes of non-inputs to functions had to

be known from the call according to the Modelica
2.1 standard [3]. That requires complex work-

arounds and/or additional functions.

The restriction has now been lifted in Dymola (and

accepted for Modelica 2.2) allowing a variable de-

clared with size : (and without any binding assign-
ment) to be re-sized (if necessary) when assigned in

the function (note that this includes not only vari-

ables declared directly in the function but also their
record elements). The change is backward compati-

ble since such variables previously were semanti-

cally incorrect.

The change is not limited to working with the

Modelica-structure, but is also useful in Modelica for
unrelated uses, e.g. a routine that returns the positive

eigenvalues. It was also needed to implement the

API functions themselves, in particular the size-field

for array of a component.

Those wanting an additional rationale can examine
the case below where the same function as given in

two versions, one written before the feature was im-

plemented and another version rewritten to use it:

4.3.1 Example after simplification

As an example consider a function for finding the
attribute of all classes defined in package (including

the contents of packages – after the package):

function attributeModelsInPackage
  import Dymola.AST.*;
  input String s;

  output ClassAttributes attr[:];
protected

  String localClasses[:]=
    ClassesInPackage(s);
 ClassAttributes attributes;
algorithm

  for i in 1:size(localClasses,1) loop

    attributes:= GetClassAttributes(
       s + "." + localClasses[i]);

    attr:=cat(1,attr,{attributes});
    if attributes.restricted
        == "package" then
      attr := cat(1, attr,

        attributeModelsInPackage(

           attributes.fullName));
    end if;
  end for;
end attributeModelsInPackage;

4.3.2 Example before simplification

Before this feature of automatic resizing of arrays

was available it was necessary to write two routines,
one to determine the length of the array and one to

actually return the array.

We consider this for the simpler case of only return-

ing the full names of the classes, first we have to

count the size of the output:

function countModelsInPackage

  import Dymola.AST.*;
  input String s;
  output Integer count= 0;
protected

 ClassAttributes attributes;
algorithm

  for i in ClassesInPackage(s) loop

    attributes:=GetClassAttributes(
        s + "." + i);
    count:=count+1;
    if attributes.restricted
         =="package" then

      count := count +
        countModelsInPackage(
           attributes.fullName);
    end if;
  end for;
end countModelsInPackage;

Note that there is no declared array for the result of

ClassesInPackage – instead it is directly iterated over
removing the need for any local variable (and the

problem of its size).

function attributesModelsInPackage
  import Dymola.AST.*;
  input String s;

  output String

    attr[countModelsInPackage(s)];
protected

 ClassAttributes attributes;
 Integer index=0;

 Integer len;
algorithm

  for i in ClassesInPackage(s) loop

    attributes:=
      GetClassAttributes(s + "." + i);
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    index:=index+1;
    attr[index]:=attributes.fullName;
    if attributes.restricted
         =="package" then

      len :=countModelsInPackage(

        attributes.fullName);
      attr[index+1:index+len] :=
       attributesModelsInPackage(
         attributes.fullName);
      index:=index+len;
    end if;
  end for;
end attributesModelsInPackage;

Apart from practical problem of writing such com-

plex functions an additional problem is that there is a

need to maintain multiple functions. If requirements

change (e.g. only return public classes) it is neces-

sary to update two functions.

4.4 Revisited example from Matlab

When we previously considered the following call

from Matlab

>>dymolaCall(…

'Modelica.Math.Matrices.leastSquares',[],…

[1;0;1],[1;2;3])

we indicated that Dymola’s API was used to con-

struct this argument. The calls of Dymola API func-

tions are:

Dymola.AST.GetComponentAttributes(

"Modelica.Math.Matrices.leastSquares",

"A")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetComponentAttributes(

"Modelica.Math.Matrices.leastSquares",

"b")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Dymola.AST.GetClassAttributes("Real")

Finally the result is the following function call:

Modelica.Math.Matrices.leastSquares(

[1;0;1],{1,2,3})

The first call, GetClassAttributes, determines that

this is a function call and not the call of a record con-

structor. The next call, ComponentsInClass, is used
to determine the components of the function. For

each argument the next input component is found by

looking at the component attributes (this check is not
performed for record constructors). The type of input

component is then accessed, GetClassAttributes(

"Real"), to find that it is a primitive numeric type

(since booleans must be treated specially).

The significant part is that in Matlab there are two
matrices/columns vectors and based on the Modelica

function the first one is sent as matrix to Dymola

([1;0;1]) and the second one as a vector ({1,2,3}).
Without the API-calls it would not have been possi-

ble to determine that these should be treated differ-

ently.

5 Conclusions

This paper shows that Dymola 6’s Modelica imple-

mentation provides an extendable external interface

to use other tools and also be useful from other tools.
In addition it shows that an interface to the Modelica

class structure is useful in itself and also can be used

when implementing the external interface.
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