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Preface

The first Modelica Conference took place October 2000 in Lund, Sweden. Since then, Modelica has
been more and more established as a preferred modelling language for complex multi-domain systems.
This is indicated by the high number of registrations from industry and science for the 4th Interna-
tional Modelica Conference which is held between March 7th and 8th 2005 at Hamburg University
of Technology (TUHH). But it is also indicated by the number of excellent papers submitted to the
program committee which made the task of selecting papers for oral and poster presentation very
difficult and, last but not least, by the exhibition during the conference at which around 10 companies
will present themselves. The proceedings contain the papers of the 60 oral presentations and 9 poster
presentations given at the conference. The ability of Modelica as a multi-domain simulation language
is demonstrated impressively by the various fields that are covered, e.g. digital electronic devices,
hybrid electric power trains, waste water processes or thermodynamic applications.

With the special features of the Modelica language, e.g. object-oriented modelling and the ability to
reuse and exchange models, Modelica has become – among other things – a further step towards of an
integrated engineering design process. In some fields Modelica is being used as a standard platform for
model exchange between suppliers and OEM’s, for example in case of vehicle air conditioning systems.

A key issue for the success of Modelica is the continuous development of the Modelica language by
the Modelica Association under strict observance of backward compatibility to previous versions. The
broad base of private and institutional members of the Modelica Association as a non-profit organi-
zation ensures language stability and security in software investments.

The Modelica Conference 2005 was organized by the Modelica Association and by the Department
of Thermodynamics of Hamburg University of Technology (TUHH), Germany. Together with the
entire team of the local organizing committee I would like to wish all participants an excellent and
fruitful conference.

Hamburg-Harburg, March 1, 2005

Gerhard Schmitz
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Abstract

The problems of computer modeling and simulation
of dynamics for multibody systems consisting of rigid
bodies with unilateral constraints (MBSUC) are con-
sidered in the scope of the obstacles to overcome ones
related to the variation of structure for equations of
motion. The approach to modeling the MBSUC dy-
namics based on Modelica language is described.
The approach allowing to avoid the growth of the
model structural complexity is described. This ap-
proach actively uses the algorithmic features of Mod-
elica and its Dymola compiler. On this way the large
number of objects corresponding to different closed
systems of DAEs (states of hybrid automata) is re-
placed by only one object. For this object constraint
components vary their states dynamically during the
simulation process.
Another problem of the similar level of complexity re-
lates to the accuracy of simulation is solved here with
the set of special regularization procedures. These
procedures concern particularly transitions of the uni-
lateral constraint: from disconnected state to contact,
from rolling to slipping.
Other methods to improve the quality of the MBSUC
dynamics simulation are also under consideration.
Keywords: unilateral dynamics; multibody systems;
simulation; dry friction; impacts; regularization;
acausal modeling

1 Introduction

Mechanical system subjected to unilateral constraints
exhibits behavior considerably more complicated than
the system subjected to the bilateral ones. One can
find in such a case new dynamical properties con-
nected with irregular character of appropriate systems
of DAEs. Let us develop the approach proposed in [1].
There the Modelica library of classes oriented to sim-
ulation the sparse dynamics of multibody systems has
been developed. We can consider now this library as a

set of the new generation models allowing description
of unilateral constraints.
Let us suppose that some of constraints are unilateral.
For definiteness and simplicity we state the following
assumptions: (a) unilateral constraint is implemented
as a contact of outer surfaces bounding two rigid bod-
ies; (b) surfaces supposed being regular i. e. the nor-
mal vector is always properly defined; (c) the contact-
ing surfaces interact within the model of Coulomb fric-
tion for continuous motions as well as for impacts.
For simplicity we investigate the MBSUC comprising
only two bodies,A, and B. Moreover, we suppose
that the bodyA is a fixed horizontal surface, and the
heavy convex bodyB is bounded by ellipsoidal sur-
face. These assumptions are not obstacles for general-
ity of the developed MBSUC models.

2 Basic Ideas

According to the approach applied in [1] let us repre-
sent the constraint as an object providing information
communications between the objects of bodiesA and
B. Such communications are implemented indirectly
using the kinematic and wrench connectors. Informa-
tion communications are “filtrated” through the mech-
anism of constraint equations encapsulated in the ob-
jectC, see Figure 2.1.

Figure 2.1: Architecture of Unilateral Constraint

Besides the bidirected connections applied in [1] let
us add to the model the set of directed connections.
Assume that these connections are able to transmit

Implementation of Unilateral Multibody Dynamics on Modelica

The Modelica Association 13 Modelica 2005, March 7-8, 2005



the impact signals arising in objects of unilateral con-
straints all over the MBSUC, namely throughout its
connected components. These signals play role of
strobing ones for recalculation of velocities in the
MBSUC.
The nature of unilateral constraint allows us to de-
scribe it with the fundamental state variable. This
variable takes one of three values: “Flight”, “Slid-
ing”, “Rolling” at any time instant. The sense of the
enumerated values is transparent. The state “Flight”
means that the constraint is not stretched at the consid-
ered instant, i. e. the bodies aren’t in touch and freely
fly one relative to another. As state variable has one of
values “Sliding” or “Rolling” then bodies supposed to
be in a contact. The difference is that the first state per-
mits the relative slipping of the bodies but the second
one doesn’t.

Example 2.1 Consider the set ofn balls in a billiard
pool. The system comprisesn+1 rigid bodies:n balls
and the surface of the pool table. Vertical surfaces
around the table are neglected for simplicity. All bod-
ies enumerated can encounter mutually, slip, and roll.
The correct description of this MBSUC involves the
specification ofm= n(n+1)/2 unilateral constraints.
Since each constraint can be in one of three states,

then the whole MBSUC comprises3m = 3
n(n+1)

2 states.
For the pool with three balls we obtain the total value
of 36 = 729states.

2.1 Constraint Geometry

Let us use here the same as in [1] the dynamics of a
rigid body translational–rotational motion. However
the representation of mechanical constraint model un-
dergoes here essential changes. We use the so called
complementarity rules [2] as a base for the unified de-
scription of the unilateral constraint. By virtue of com-
plementarity rules any constraint is always defined by
the three scalar equations. In order to derive these
equations let us consider the local geometry of the
problem, see Figure 2.2.
The base body of MBSUC supposed to be connected
with the absolute frameO0x0y0z0 (AF) fixed in the in-
ertial space,Oαxαyαzα is the frameBFα fixed in the
bodyα ∈ {A,B}. The outer surfacesΣα are defined by
the equations

fα (rα) = 0 (α = A,B).

with respect to appropriateBFα whose axes are coin-
cident to the principal central axes of inertia. InAF

Figure 2.2: Area of Constraint

these the equations read

gα (r0) = fα [T∗α (r0− rOα)] = 0 (α = A,B).

HererOA = O0OA, rOB = O0OB, TA, TB are the orthog-
onal matrices determining orientation of theBFA and
BFB with respect to theAF. An asterisk denotes the
matrix transposition. The functionsgA(r0), gB(r0) de-
pend upon the time indirectly through the variablesrA,
rB, TA, TB.
The constraint object of our model has to compute at
each current instant the pointsPA ∈ A andPB ∈ B real-
izing the minimal distance between the bodies. These
points depend on relative orientation of the bodies. By
virtue of above assumptions such points are to be eval-
uated in a unique way. Denote byrPA, rPB the radii
vectors of these points with respect toAF. The sim-
ple geometric reasons imply the following system of
algebraic equations

gradgA(rPA) = λ ·gradgB(rPB) ,
rPA− rPB = µ·gradgB(rPB) ,
gA(rPA) = 0,
gB(rPB) = 0.

(2.1)

The gradients of the functionsgA andgB read

gradgα (rPα) = Tα gradfα [T∗α (rPα − rOα)] , (2.2)

whereα = A,B. The system (2.1) consists of eight
scalar equations with respect to eight scalar variables:
xPA, yPA, zPA, xPB, yPB, zPB, λ, µ, whereλ, µ are auxiliary
variables. The equations (2.1) are in use either without
or with a presence of the contact of bodiesA, B. In the
latter case the equationµ = 0 is in use instead of one
of the surfaces equations.

I. Kossenko
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According to computational experience it is more re-
liable and convenient to use the equations of con-
straints (2.1) in a differential form. Such an approach
is used frequently also for analyzing of properties of
mechanical systems.
Normal vector

nA = gradgA
/|gradgA| (2.3)

will play an important role in the further course. Nor-
mal for an outer surface of the bodyA is chosen here
for definiteness. One can use the vectornB as well.

2.2 Complementarity Rules

Let us perform a unified description of the unilateral
constraint using kinematic and/or force equations. De-
note byFA the force acting on the bodyA from the
body B. And by FB denote the force acting on the
bodyB from one ofA vice versa. Each force cited acts
at the pointPα, α = A,B. In addition, let us introduce
auxiliary notations

FAn = (FA,nA) , FAτ = FA−FAnnA,

vr = vPA−vPB, vrn = (vr ,nA) , vrτ = vr −vrnnA.
(2.4)

If the bodies are not in touch and the constraint is in
the state “Flight” then the force of reaction is equal to
zero. Thus we have three scalar equations. To unify
the system of constraint equations and to take into ac-
count arbitrary directions of the normalnA let us intro-
duce auxiliary scalar variableκ such that

FAn = 0, FAτ−κnA = 0.

Then the system of four equation with four unknown
variablesFAx, FAy, FAz, κ is obtained.
If the bodies are in touch then the conditionFAn = 0
is substituted by the kinematic onevAn = 0. States
“Sliding” and “Rolling” differ from each other by con-
ditions in a tangent plane. Implementation of the
Coulomb friction model is supposed for the simplicity.
Then the equation of the force balance in the tangent
space reads

FAτ−d ·FAnvrτ
/|vrτ| −κnA = 0, (2.5)

whered is the coeffitient of friction.
For rolling the tangent velocity is:

vAτ−κnA = 0.

2.3 Regularization of the Coulomb Friction

In the case of sliding the model equation (2.5) “works”
properly if the relative velocity isn’t very small. How-
ever the problem of regularization for the equation of
constraint (2.5) arises at the instance of transition from
“Rolling” to “Sliding”. It turns out that one can apply
here the known approximation for Coulomb’s friction
using regularized expression for the tangent force

FAτ−κnA = d

{
FAnvrτ

/|vrτ| as |vrτ|> δ,
FAnvrτ/δ as |vrτ| ≤ δ,

where one supposes thatδ¿ 1.
It is known [3] that in this case the solution of the
regularized problem remains close to the solution of
the original one at the asymptotically large time in-
tervals. Implementation and further simulation show
that this closeness holds with the very high degree of
accuracy. Such an approach resolves completely the
problem of modeling for accurate transitions between
states of “Sliding” and “Rolling”.

2.4 Simulation of Impacts

Let us suppose that the unilateral constraint is allowed
to undergo an impact in any possible states. In state
“Flight” the impact arises at the instant of bodies con-
tact if normal component of the relative velocityvrn

for encountering points is not very close to zero. It
is the case of the so called direct impact. However
in MBSUC consisting of several bodies impact pulses
can propagate through the connected components of
the system and force it to disconnect of any con-
straints. This leads to the switch of the whole MBSUC
to an another state. Such a case we can consider as an
indirect impact.
The constraint model proposed allows the possibility
both direct and indirect impacts. Let us consider the
equations of the impact theory encapsulated in the ob-
jects of the constraint structure, see Figure 2.1. All
these algebraic equations are carried out for all the
time of simulation. From time to time impact events
arising inside the differential part of the whole model
strobe “reading” of impact increments for the veloci-
ties from the impact algebraic subsystem and instante-
neous change of velocities inside the dynamical sub-
system.
Thus the equations

m∆v = S, I∆ωωω = T, (2.6)

are encapsulated in objectsA and B of the “Rigid
Body” class. Here∆v, ∆ωωω are the increments of the
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center of mass velocity and angular velocity of the
body, S, T are correspondingly the total impulse and
angular impulse acting on the rigid body belonging
to MBSUC. Note that the first equation of the sys-
tem (2.6) is written inAF. The second one is written,
as usually, in appropriateBFα.
Constraint object,C in Figure 2.1, encapsulates the
simplest impact model with dry friction and the New-
tonian model for the normal impact

∆vPα = ∆vOα +[∆ωωωα, rPα − rOα ] ,
∆vPαn = (∆vPα ,nA) ,
∆vrn = −(1+k)vrn,
∆vPBn = ∆vPAn−∆vrn,
∆vPατ = ∆vPα −∆vPαnnA,
SAn = (SA,nA) ,
SAτ = SA−SAnnA,

(2.7)

where the restitution coefficient is equal tok.
To make the model of impact with friction more re-
alistic we apply the simplified formula for the impact
impulse. It is similar to the regularized formular for
the tangent force in the case of slipping with dry fric-
tion. Let us note that there exist more realistic models
of impact with the Coulomb friction [4] (see [5] for
comprehensive survey). However they are much more
complicated. These models are suited for the single
impact of two bodies only. But we are interested in a
general case of MBSUC consisting of several bodies
not only of two ones.

2.5 Regularization of Transition between the
States of Flight and of the Contact

The most important property of the model developed
consists of the possibility of exact calculation of im-
pact instants and the instants of the change of state.
This property plays a crucial role for the quality of the
model. The landing on the constraint is possible in
particular if restitution coefficient satisfies the condi-
tion k < 1. In this case time intervals between impacts
tend to zero as well as the amplitudes of jumps after
successive impacts. Thus for exact determination of
the landing instant there exists a technological restric-
tion: limit of smallness for the value of the integrator
time step.
The change of independent variable, which regularizes
the time, gives the resolution of the problem. Indeed,
let us consider approximate model of dynamics in a
vicinity of the landing instant. In this case we can re-
strict ourselves to analysis of the relative motion for
pointsPA andPB in normal direction. Let us assume

that the normal relative accelerationarn = dvrn/dt ap-
proximately is a constant. Then the relative normal
motion of the pointsA andB is similar to the bouncing
ball in field of constant accelerationarn in the vicinity
of the landing instant.
Thus the height of jumps obeys the known formula
h= 0.5v2

rn

/
arn . Hence the instant of transition to con-

tact is defined by the condition whenh becomes less
then the given value of the tolerance for the constraint
feasibility.
The time between two impacts can be also ap-
proximately computed with the known formulaT =
2
∣∣vrn

/
arn

∣∣. This value tends to zero with each new
impact leading to the loss of an accuracy of simula-
tion.
Way out of a situation is the transfer to new indepen-
dent variableτ such that the duration between succes-
sive impacts would stay of order one. The simplest
solution of this problem is the mapt 7→ τ according
to the scalar differential equationdt/dτ = T. Such an
approach is found to be sufficiently reliable. Moreover
it is easy to control the accuracy of the model.

3 Implementation

When constructing the model of MBSUC the main
task is to develop the Modelica code allowing to
switch different constraint states inside the same ob-
ject, see Figure 2.1. It was found the problem can be
resolved using so called acausal [6] approach to build
the system of DAEs for the resulting model. Alterna-
tively if one uses the causal appoach then the structural
complexity of a model code can increase avalanchely.
To make sure of this it is sufficient to remind our ex-
ample about three balls in a billiard pool. If each state
of the mechanical system corresponding to the closed
system of DAEs is instantiated as an object inside the
container of the hybrid automata model then very soon
developer will encounter with the problem of large
complexity even for a number of balls small enough.
Conversely within the acausal approach there exists a
possibility to construct the model of MBSUC at the
same complexity level as for mechanical system sub-
jected to bilateral constraints only. In this case all va-
riety of MBSUC states is provided by internal capa-
bilities of the constraint objects and, as usually it is
implemented with help of an analytical precompiler.

3.1 Connectors

To connect objects we use the classes of kinematic and
wrench ports as before [1]. In addition, new connec-
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tors are able to transport data of the velocities incre-
ments and the impact impulses. Codes of the corre-
sponding derived classes read

connector KinematicPortImpacts
extends KinematicPort;
SI.Velocity Deltav[3];
SI.AngularVelocity Deltaomega[3];

end KinematicPortImpacts;

connector WrenchPortImpacts
extends WrenchPort;
SI.Impulse ImpactForce[3];
SI.AngularImpulse ImpactTorque[3];

end WrenchPortImpacts;

To transmit impact signals throughout the MBSUC
one uses standard signal input and output ports:

Interfaces.BooleanInPort,
Interfaces.BooleanOutPort.

from the libraryModelica.Blocks .

3.2 Bodies

This category classes were modified to take into ac-
count the possibility of impacts in MBSUC. The base
classRigidBody considered in [1] has been slightly
rearranged and now reads as

partial model RigidBody
replaceable KinematicPort OutPort;
· · ·
Real Active(start=1);

equation
der (Active) = 0;
der (r) = Active*v;
der (v) = Active*a;
der (q) = Active*0.5*QMult(q,
{0,omega[1],omega[2],omega[3] });

der (omega) = Active*epsilon;
· · ·

end RigidBody;

Dots here mean those parts of theRigidBody class
from the previous version which haven’t been recon-
structed. In addition, one can see easily that the time
of dynamics can be “stopped” here at all. This can be
done with auxiliary variableActive putting its value
equal to zero. In this case the model will be trans-
formed from dynamical to the static one, which is de-
fined by algebraic equations only.
Declarationreplaceable is aimed to provide the
possibility of choice between modes of simulation
with or without impacts.
To implement impact calculations one uses the follow-
ing class

partial model RigidBodyImpacts
extends RigidBody( redeclare

KinematicPortImpacts OutPort);
SI.Velocity Deltav[3];
SI.AngularVelocity Deltaomega[3];
SI.Impulse ImpactForce[3];
SI.AngularImpulse ImpactTorque[3];
Boolean Impact;
SI.Force F1[3];
SI.Torque M1[3];
WrenchPortImpacts InPort1;
BooleanInPort InImpactSignal1;
BooleanOutPort OutImpactSignal1;

equation
F = InPort1.F + F1;
M = InPort1.M + cross (InPort1.P - r,

InPort1.F) + M1;
OutImpactSignal1.signal[1] = false;
Impact = false or

InImpactSignal1.signal[1];
OutPort.Deltav = Deltav;
OutPort.Deltaomega = T*Deltaomega;
OutPort.Deltav = Deltav;
OutPort.Deltaomega = T*Deltaomega;
m*Deltav = InPort1.ImpactForce +

ImpactForce1;
I*Deltaomega = transpose (T)*

(InPort1.ImpactTorque + cross (
InPort1.P - r,InPort1.ImpactForce)
+ ImpactTorque1);

end RigidBodyImpacts;

Since this class is introduced to process impacts then it
possesses at least one wrench port supposed for at least
one unilateral constraint, which is a potential source
of impacts. The class, cited rather its object can be
instantiated in the models being developed according
to any causality principle. In case of the acausal ap-
proach such class is to be completed by the following
model

model RigidBodyImpactsAcausal
extends RigidBodyImpacts;

equation
when Impact then

reinit (v, v + Deltav);
reinit (omega, omega + Deltaomega);

end when ;
end RigidBodyImpactsAcausal;

providing a self-governing possibility of the object to
recalculate velocities at impact. In case of the causal
approach such the calculation should be instantiated
outside the object of the MBSUC state. Note that
in implementations in derived classes for the bodies
of MBSUC we can instantiate any number of wrench
port objects necessary for constraints of the MBSUC
model.
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3.3 Constraints

On the same way as forRigidBody class the base
modelConstraint has been slightly rearranged and
now has the following modified form

partial model Constraint
parameter Integer ConstraintNo = 1;
replaceable KinematicPort InPortA;
replaceable WrenchPort OutPortA;
replaceable KinematicPort InPortB;
replaceable WrenchPort OutPortB;

equation
· · ·

end Constraint;

Then one can construct easily the constraint base
model taking into account impacts of bodies in the
form

partial model ConstraintImpacts
extends Constraint(

redeclare KinematicPortImpacts
InPortA,

redeclare WrenchPortImpacts
OutPortA,

redeclare KinematicPortImpacts
InPortB,

redeclare WrenchPortImpacts
OutPortB);

equation
OutPortA.ImpactForce +

OutPortB.ImpactForce = zeros (3);
OutPortA.ImpactTorque +

OutPortB.ImpactTorque = zeros (3);
end ConstraintImpacts;

Now it is time to construct a base model for the unilat-
eral constraint satisfying our assumptions stated ear-
lier and processing impact events correctly

model UnilateralConstraintAcausal
extends ConstraintImpacts;
parameter Real k;
parameter Real f;
parameter SI.Velocity delta;
UnilateralConstraintState State;
Boolean Impact;
Boolean NormalImpact;
Boolean NormalImpactIndicator;
Boolean ImpactMask;
Real[3] normA;
SI.Impulse ImpactForcen;
SI.Impulse[3] ImpactForcet;
SI.Impulse kappa;
SI.Acceleration[3] arA;
SI.Acceleration[3] arB;
SI.Acceleration[3] rela;

SI.Acceleration relan;
Real Active(start=1);
· · ·

algorithm
when relan > 0 and not ImpactMask

then
ImpactMask := true;

end when ;
when State == 0 and pre (State) <> 0

then
ImpactMask := false;

end when ;
equation
· · ·
NormalImpactIndicator = if mu < 0

and State == 0 and ImpactMask
then true else false;

NormalImpact = edge (
NormalImpactIndicator);

Impact = if noEvent (NormalImpact)
then true else false;

Active*arA = der (vrA);
Active*arB = der (vrB);
rela = arA - arB;
relan = rela*normA;
ImpactForcen = OutPortA.ImpactForce*

normA;
ImpactForcet = OutPortA.ImpactForce -

ImpactForcen*normA;
if noEvent(Impact) then

if relvtsqrt <= delta then
zeros (3) = ImpactForcet +

f* abs (ImpactForcen)*
relvt/delta - kappa*normA;

else
zeros (3) = ImpactForcet +

f* abs (ImpactForcen)*
relvt/relvtsqrt - kappa*normA;

end if ;
else

zeros (3) = DeltavrAt + vrAt -
vrBt - DeltavrBt - kappa*normA;

end if ;
der (Active) = 0;

end UnilateralConstraintAcausal;

State of the constraint is tracked here by the variable
State . If State = 0 then the constraint is discon-
nected. ForState = 1 the constraint is in the state
“Sliding”. And for State = 2 corresponding state is
“Rolling”. In a current version of the MBSUC model
we suppose that at each instant of time it is possible to
occur not more than one impact.
Modelica code presented above has the following fea-
tures:

1. Impact signal is generated if and only if: the con-
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straint be in the state “Flight”,State = 0 ; outer
surfaces of the bodies arrive to the contact,µ< 0;
and a special impact mask is open. This latter
becomes closed for the only case of the smooth
launching from the constraint. The variableµ is
defined according to the differential version of the
system (2.1) such that forµ > 0 the constraint is
disconnected, and the contact begins asµ= 0.

2. Kinematic formulae and expressions for the im-
pact impulses are implemented.

3. The variableActive is applied here to scale the
independent variable as it has been done for the
RigidBody model.

4. The following parameters of problem are applied:
k is the coefficient of restitution at impact,f is
the friction coefficient,delta is the regularizing
parameter for dry friction.

Dots represent the blocks of an equations imple-
menting the functions: (a) impact signal transmission
through the constraint, now under the further devel-
opment; (b) computation of an intermediate variables
according to formulae (2.2, 2.3, 2.4, 2.7)
A key role in the whole model plays the following
class

model
UnilateralConstraintAcausalAddOnRegular

extends UnilateralConstraintAcausal;
parameter SI.Length

ClearanceTolerance;
parameter SI.DampingCoefficient

ConstraintAttraction=1;
SI.Force nu;
SI.Force Forcen;
SI.Force[3] Forcet;
SI.Acceleration Drelvn;
Real StateIndicator;
SI.Length Clearance(start=1);

equation
der (relvn) = Active*(Drelvn + ( if

StateIndicator > 0.5 then -
ConstraintAttraction*relvn else
0));

Forcen = OutPortA.F*normA;
Forcet = OutPortA.F - Forcen*normA;
if StateIndicator <= 0.5 then

State = 0;
Forcen = 0;
Forcet - nu*normA = zeros (3);
if mu > 0 and relan < 0 then

StateIndicator = 0;
else

if Clearance < ClearanceTolerance

then
if relan < 0 then

// Case of launch
StateIndicator = 0;

else
// Case of landing
if relvtsqrt > delta then

StateIndicator = 1;
else

StateIndicator = 2;
end if ;

end if ;
else

StateIndicator = 0;
end if ;

end if ;
else

Drelvn = 0;
if relvtsqrt <= delta then

State = 2;
StateIndicator = if Forcen > 0

then 0 else 2;
Forcet - f*Forcen*relvt/delta -

nu*normA = zeros (3);
else

State = 1;
StateIndicator = if Forcen > 0

then 0 else 1;
Forcet - f*Forcen*relvt/relvtsqrt

- nu*normA = zeros (3);
end if ;

end if ;
der (Clearance) = 0;
when Impact then

reinit (Clearance, 0.5* abs (relvn*
relvn/Drelvn));

end when ;
when StateIndicator > 0.5 then

reinit (Clearance, 1);
end when ;
OutPortA.M = zeros (3);
OutPortA.ImpactTorque = zeros (3);

end
UnilateralConstraintAcausalAddOnRegular;

which implements the real switching of the constraint
states.
The hybrid automata states are controlled by two vari-
ables: StateIndicator and State . The first one
is included into the algebraic loops and has theReal

type. Hence in some sense the states themselves corre-
spond to fuzzy values and are identified by the inequal-
ities. It is clear that such a situation is connected with
the compiler restrictions. The variableState doesn’t
belong to the algebraic loops. It has theInteger

type and doesn’t influence on the switching between
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the states.
In frames of the model under consideration in order
to estimate the maximal clearance between the bodies
during the time from one impact to the next one, the
variableClearance , is introduced to detect the in-
stant of the transition to the state of the bodies contact.
The complementarity rules are also implemented here.

Remark 3.1 We have to perform the regularization of
the independent variable for the case of landing on the
constraint using variablesActive of the bodies and
the constraints objects outside these objects but in-
side the corresponding container of the whole MBSUC
model. In this case we have a possibility for the cor-
rect control over the regularization process because
the change of the independent variable should be to-
tal throughout the MBSUC.

At last, the models implementing the system of con-
straint equations complete a chain of inheritance for
the constraint classes. Namely two classes

SurfacesOfConstraintAcausalDifferential,
EllipsoidAndHorizontalPlaneDifferential.

have been constructed. First one doesn’t depend upon
specific type of the outer surfaces. The second model
implements a specific case of the ellipsoidal surface
and the plane as a surfaces of constraint.

4 Examples

Experimental computations and verification of the
models developed were carried out using a well known
example from classical dynamics: motion of heavy
body on/over the horizontal surface. Visual image of
the MBSUC model is presented in Figure 4.1.

Figure 4.1: Visual Model of MBSUC

The objectHorizontalSurface on the left hand
side of the figure represents model of the base body
describing a horizontal plane fixed inAF. The object

of the heavy rigid body is shown on the right hand side
of the Figure 4.1. And the model of total MBSUC for
our example has the following Modelica code

model MBSAcausalDifferential
· · ·
parameter Period TimeScale=1;
Period deltat(start=1);
Time t(start=0);

equation
· · ·
der (deltat) = 0;
der (t) = deltat/TimeScale;
when ConstraintSurfaces.Impact then

reinit (deltat, min (1,2*abs(
ConstraintSurfaces.relvn/
ConstraintSurfaces.relan)));

reinit (FlySlideRollBody.Active,
min (1,2* abs (ConstraintSurfaces.
relvn/ConstraintSurfaces.relan)));

reinit (ConstraintSurfaces.Active,
min (1,2* abs (ConstraintSurfaces.
relvn/ConstraintSurfaces.relan)));

end when ;
when ConstraintSurfaces.

StateIndicator > 0.5 then
reinit (deltat, 1);
reinit (FlySlideRollBody.Active, 1);
reinit (ConstraintSurfaces.Active,

1);
end when ;

end MBSAcausalDifferential;

To estimate an accuracy of the model developed we
performed a comparison of the results with ones for
the exact model of the hybrid automata built using
causal approach with the three instantiated objects
each corresponding to one state of the mechanical sys-
tem and having a structural complexity of the whole
MBSUC, see Figure 4.1.
The rigid body already considered in one of the exam-
ples of the paper [1] starts its motion from a position
suspended over the surface with the initial data

r(0) = (0,5,0)T , v(0) = (0.05,0,0)T ,
q(0) = (1,0,0,0)T , ωωω(0) = (0,−10,2)T .

(4.8)

Motion is simulated on time segment[t0, t1] = [0,150]
and consists of the several stages of flight alternating
by stages of sliding. Note that sliding followed by
rolling as energy decreases. During several decades
of seconds one can observe easily so called stick–slip
phenomena transferring finally to the pure rolling.
The results of simulation are presented in the Fig-
ures 4.2, 4.3, 4.4. The final part of the projection of the
trajectory for the pointPB of the ellipsoid correspond-
ing to the stick–slip phase is shown in Figure 4.2.
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Figure 4.2: Stick–Slip Oscillations, Contact Point Trajectory

An accuracy of the model is of our special interest.
The accuracy of computation for instants of impacts
and of transitions between the MBSUC states is a
causal point for the models of systems with impacts. In
our example the instant of the first transfer to rolling
at the beginning of stick–slip oscillations has a rela-
tive error of the order10−4. Such an error was ac-
cumulated after several thousands of impacts and sev-
eral transitions between states “Flight” and “Sliding”.
More accurate regularization of the independent vari-
able allows to achieve further reduction of the error. Of
course it needs considerable computational time in ad-
dition. For comparison of physical time variables de-
pending on the regularizing time for the models com-
pared see Figure 4.3. As one can see, physical times
almost coincide for the acausal and causal models. In
addition, it would be interesting to observe the initial
interval of the simulation corresponding to the several
stages of a decrementing bouncing of the body, see
Figure 4.4. Here we can see the screenshot of the body
while it perfoms one of jumps. The image of the fisrt
transfer from the flight mode to the mode of sliding is
presented here in details. One can see in this inserted
fragment the regularizing independent “time” counted

alongx-axis.y-axis represents the variableµ.

Figure 4.3: Physical Times Depending upon Regular-
izing Time

In the case of motion with a contact the switching be-
tween sliding and rolling is observed. For this case
the simulation was performed with the following ini-
tial data

r(0) = (0,1,0)T , v(0) = (0.05,0,0)T ,
q(0) = (1,0,0,0)T , ωωω(0) = (0,−2,2)T .
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Figure 4.4: Stages of Bouncing

During the time oft1− t0 = 150units and after several
hundreds of stick–slip oscillations the relative error ac-
cumulated for state switch instants was equal to10−11.
Thus the absence of impacts during the simulation im-
proves the quality of the model more than in million
times.
For the sliding/rolling mode the absolute error of de-
termination of the contact point does not exceed3 ·
10−5. It was observed that the error grows almost lin-
early. The error in determination of the position of the
point PB in the mormal direction is equal to2 ·10−15,
while for rolling the error of determination of the tan-
gent component of velocity of this point does not ex-
ceed10−7.
Let us consider now the motion of the homogeneous
body bounded by an ellipsoidal surface on the horizon-
tal plane [7]. The coefficient of the Coulomb friction
supposed to be equal tod = 0.01. Let us try to repeat
numerically the following experiment described qual-
itatively by A. P. Markeev.The body touches the hor-

izontal surface by its shortest semi–axis at the initial
instant. Let us put it in rapid rotation. Then the body
tends to the position in which it touches the plane by
its longest semi–axis.

In our example the semiaxes of the body are close one
to another:a1 = 1.2, b1 = 1, c1 = 1.3. Axes of outer
surface ellipsoid coincide with ones of central princi-
pal ellipsoid. Choosing the initial data as in (4.8) with
one exception:r(0) = (0,1,0)T one obtains the result
cited above: the ellipsoid masscenter “rises” progres-
sively from the height of minimal semi–diameter to
one of maximal semi–diameter, see Figure 4.5. The
angular velocity almost holds its direction with respect
to theAF, see Figure 4.6, blue (lower) curve. At the
initial instant this vector is directed along the mini-
mal semi–axis, red (middle) curve is its projection on
the corresponding axis of the body; while on the final
stage the angular velocity is directed along the maxi-
mal ellipsoid semi–axis, green (upper) curve.
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Figure 4.5: Center of Mass Altitude

Figure 4.6: Projections of Angular Velocity

5 Conclusions

Summurizing the results obtained while developing
the class library for the dynamics of the MBSUC let
us enumerate several relevant problems and their solu-
tions.
Problem 1: How one can implement the geometry of
the unilateral constraint?Solution: Use the system of
algebraic equations like (2.1).
Problem 2: How one can ensure the reliability of the
implementation of the constraint?Solution: Use the
differential form of the equations (2.1).
Problem 3: How one can implement impacts in
MBSUC in the acausal manner?Solution: Use the in-
depended algebraic subsystem of equations distributed
throughout the MBSUC model.
Problem 4: How one can implement the dichotomy
flight/contact? Solution: Use the complementarity
rule for the normal force of reaction and the derivative
of the normal relative velocity at the contact point.

Problem 5: How one can implement the dichotomy
slipping/rolling? Solution: Use the regularized tan-
gent force for the Coulomb friction.
Problem 6: How one can implement the exact “land-
ing” on the constraint?Solution: Use the regularizing
independent variable for the total model.
Problem 7: How one can implement switching be-
tween states of the constraint in the acausal manner?
Solution: Use theif clause in combination with the
state variable ofReal type. This variable is included
to corresponding algebraic loop. As a result the struc-
tural complexity of the total model doesn’t increase.
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Abstract

In this paper the development, simulation and valida-
tion of Modelicamodels for flexible thin beams is pre-
sented.
The models are based on the application of the fi-
nite element method. Exploiting the object-oriented
features of the language, mixed-mode models (finite
element-finite volume) are developed as well.
All the models use the standard connectors defined
within the Modelica multibody library, guaranteeing
thus full compatibility with the library components.
The details of the mathematical modelling are fully an-
alyzed, showing the development of the equations of
motion.
The models feature also a graphical interface, with vi-
sualization of the simulation outcomes within the same
3D environment used in the multibody library, allow-
ing the user to have an immediate visual feedback.
Finally, the models are analyzed and validated by
mean of selected simulation experiments, with refer-
ence both to theoretical predictions and to results com-
monly accepted within the scientific literature.

1 Introduction

Many engineering applications require the develop-
ment of simulation models for flexible multibody sys-
tems (e.g., robot manipulators, helicopter rotors, air-
craft wings, space structures, machining tools, car sus-
pensions, etc.) both dynamically accurate and compu-
tationally affordable.
The task of developing models for generic-shaped,
fully deformable bodies is usually demanded to spe-
cialized simulation codes and tools, due to the com-
plexity of the task. Such models are usually adequate

∗corresponding author

for structural analysis and design tasks, while being far
too complex for affordable dynamics simulation and
analysis.
On the other hand, particular classes of deformable
bodies, such as flexible beams, can be represented with
less complex models which are still able to represent
all the dynamically relevant deformation effects.
Flexible beams are continuous non linear dynamical
systems characterized by an infinite number of degrees
of freedom. Obviously, dealing directly with infinite
dimensional models is impractical both for dynamic
analysis and simulation purposes. Hence it is neces-
sary to introduce methods to describe flexibility with a
discrete number of parameters.
Three different approaches have been traditionally
used to derive approximated finite dimensional mod-
els: lumped parameters, assumed modes and finite el-
ement method [3],[5].
The lumped parameter approach is the simplest one.
In this method each flexible beam is divided into a fi-
nite number of rigid beams, introducing pseudojoints,
and the flexibility is represented by springs that restrict
the motion of each pseudojoint. This method is how-
ever rarely used because of the difficulty in determin-
ing the spring constants of the pseudojoints and then
of achieving a suitable accuracy up to the desired ap-
proximation frequency.
The assumed modes model formulation has been
widely used in the literature [6]. It describes beam
flexibility using truncated modal series, based on spa-
tial mode eigenfunctions and time varying vibrational
modes. One of the best features offered by such a
method is the fine control on the accuracy up to the
desired approximation frequency. Although concep-
tually simple, this description requires to find out the
best selection for spatial modal shapes and the bound-
ary conditions, which is not at all a trivial task. In addi-
tion to that, the selection of the appropriate eigenfunc-
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tions and the resulting vibrational modes could de-
pend on the boundary conditions for the specific case
at hand, ruling thus out the possibility of a modular
approach for the model development.
In the finite element method approach [9], the flexi-
ble beam is divided into several elements, with a lo-
cal description of the deformation field by the use of
element-wise basis functions. Although such approach
could be computationally more demanding than the
modal one (it is usually necessary to use a larger num-
ber of elements than of modal eigenfunctions to ob-
tain the same approximation), it allows a formulation
which is independent of the actual boundary condition
[7]. The finite element method is then a viable choice
for the representation of flexible beams within a mod-
ular environment.
As far as the theory of elasticity to be used is con-
cerned, it must be pointed out that beam deflection,
with respect to the rigid configuration, is generally as-
sumed to be small, which allows to adopt linear the-
ory. In this case the Euler-Bernoulli theory [8] can
be used to describe beam flexibility, neglecting the
effects of shear deformation and assuming uniform
cross-sectional properties along the beam. In this pa-
per, we consider linear elasticity theory for the mod-
elling of flexible thin beams. On the other side, Tim-
oshenko theory [8] should be used for models where
such effects need to be taken into account (e.g., for
short beams).
The paper is organized as follows: in Section 2 the
problem of the representation of a generic deformable
body in a multibody system is introduced; in Section 3
the development of the equations of motions is shown,
with reference both to the finite element method case
and to the mixed-method one; in Section 4 theModel-
ica implementation is analyzed; Section 5 contains se-
lected simulation results; finally, in Section 6 the main
results are summarized and future developments are
introduced.

2 Deformable Body Degrees of Free-
dom

Consider a generic multibody system (Fig. 1). The
position, in body coordinates, of a point on a specific
deformable body has the following expression:

u = u0 +uf , (1)

whereu0 is the “undeformed” (i.e., rigid) position vec-
tor anduf is the deformation contribution to position
(i.e., the deformation field).

Figure 1: Flexible body reference systems

The formal and mathematically sound description of
the generic deformation of a body requires the defor-
mation field to belong to an infinite dimensional func-
tional space, requiring, in turn, an infinite number of
deformation degrees of freedom.
In this paper, the deformation field is described by an
approximation of the functional basis space it belongs
to, supposing such space has a finite dimension, sayM,
so that the vectoruf can be expressed by the following
finite dimensional product:

uf = Sqf , (2)

whereS is the [3×M] shape functions matrix (i.e., a
matrix of functions defined over the body domain and
used as a basis to describe the deformation field of the
body itself) andqf is theM-dimensional vector of de-
formation degrees of freedom.
The position of a point on a deformable body can then
be expressed in world reference as follows:

r = R+Au = R+A(u0 +Sqf ) = R+Au0 +ASqf , (3)

whereR is the vector identifying the origin of the body
local reference system andA is the rotation matrix for
the body reference system.
The representation of a generic deformable body in
world reference requires then 6+M d.o.f. (i.e., 6 cor-
responding to rigid displacements and rotations andM
to deformation fields):

q = [qr qf ]
T = [R θ qf ]T , (4)

whereθ represents the undeformed body orientation
angles andqr is a vector containing the 6 rigid degrees
of freedom.

3 Motion Equations

The equations of motion for a generic flexible body
in a multibody system can be developed applying the
principle of virtual work [3]. It should be pointed out
that the same results could be obtained using the clas-
sical Lagrangian approach (as in, e.g., [5]), though
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such approach is quite knotty and difficult to use in
practice, due to the complexity of the required analyt-
ical differentiation of the kinetic energy expression.

The principle of virtual work states that the virtual
work of the inertial forcesδWi must counterbalance
the sum of the virtual work of thecontinuumelastic
forcesδWs and of the external onesδWe:

δWi = δWs+δWe . (5)

Note that, in caseδWi = 0, the problem reduces to the
well-known problem of structural statics [9].

The terms of equation (5) are defined as follows:

δWi =
∫

V
ρδrT r̈dV , (6)

δWs = −
∫

V
δεT σdV , (7)

δWe =
∫

V
δrTFedV +

∫
Ω

δrT fedΩ , (8)

whereV is the body volume,ρ is the body density,
δr is an infinitesimal virtual displacement, ¨r is the
body acceleration (in world reference),δε is a vector
of virtual infinitesimal internal strains,σ is the inter-
nal stresses vector,Fe is the vector of external volume
forces,Ω is the body surface andfe is the vector of
external surface forces.

The quantitiesδr and ¨r can be computed using equa-
tion (3):

δr =δR+δAu+Aδu = δR+θd×Au+ASδqf ,

r̈ =R̈+ω×ω×u+α×u+2ω×Au̇+Aü ,
(9)

whereα andω are the body angular acceleration and
velocity (in world reference),respectively, andθd =
ωdt represents a virtual-infinitesimal rotation.

The expressions in (9) can be substituted in 5, leading
to

δWi =
∫

V
ρδrT r̈dV = δRTQR

i +θT
d Qθ

i +δqT
f Qf

i . (10)

The termsQR
i ,Qθ

i andQf
i can be calculated using the

following definitions:

mRR =
∫

V
ρdV , (11)

mRθ =
∫

V
ρA(u×)T ATdV , (12)

mR f =
∫

V
ρASdV, (13)

mθθ = −
∫

V
ρAu×u×AT dV , (14)

mθ f =
∫

V
ρAu×SdV, (15)

mf f =
∫

V
ρSTSdV, (16)

S =
∫

V
ρSdV= ATmR f , (17)

St =
∫

V
ρudV, (18)

S̃t =
∫

V
ρ(u×)dV = AmRθAT , (19)

Iθθ =
∫

V
ρ(u×)T (u×)dV = ATmθθA, (20)

Iθ f =
∫

V
ρ(u×)SdV= ATmθ f . (21)

The vectorQR
i can then be obtained as follows:

QR
i =

∫
V

ρR̈dV+
∫

V
ρω× (ω×u)dV +

∫
V

ρ(α×u)dV

+
∫

V
ρ2ω×

(
Au̇
)

dV +
∫

V
ρAüdV =

=mRRR̈+Aω×ω×AT
∫

V
ρAudV+

+Aα×AT
∫

V
ρAudV+2Aω×AT

∫
V

ρASdVq̇f

+
∫

V
ρASdVq̈f =

=mRRR̈+AS̃
T

t α+ASq̈f +A
(
ω×ω×St +2ω×Sq̇f

)
=

=mRRR̈+mRθα+mR fq̈f −AQR
v ,

(22)

beingQR
v =−ω×ω×St −2ω×Sq̇f the quadratic ve-

locity vector (due to Coriolis and centrifugal forces)
associated to translational degrees of freedom.

The second term of the generalized inertial forces can
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be expressed as

Qθ
i =A

∫
V

ρ(u×)dV ATR̈−ω×
∫

V
ρu×u×dVω

−
∫

V
ρu×u×dVα+2

∫
V

ρu×ω× (ASq̇f )dV

+
∫

V
ρu× (ASq̈f )dV =

=AS̃tA
TR̈+Aω×

∫
V
−ρu×u×dVω

−A
∫

V
ρu×u×dVα−2A

∫
V

ρu× (Sq̇f )×ωdV

+A
∫

V
ρu×SdVq̈f =

=A
(

S̃tA
TR̈+ω× Iθθω+ Iθθα+ İθθω+

+ ω× Iθ f q̇f + Iθ f q̈f
)

=

=mT
RθR̈+mθθα+mθ f q̈f −AQθ

v ,

(23)

where the quadratic velocity vector associated to the
rotational degrees of freedom isQθ

v = −ω× Iθθω−
İθθω−ω× Iθ f q̇f .
TheQf

i term, which is related to the deformation d.o.f.
qf , can be expanded as follows:

Qf
i =

∫
V

ρSTATR̈dV+
∫

V
ρSTATω× (ω×u)dV

+
∫

V
ρSTAT (α×u)dV +

∫
V

ρSTAT2ω×
(
Au̇
)

dV

+
∫

V
ρST üdV = S

T
ATR̈+

∫
V

ρSTα×udV+

+
∫

V
ρST (ω×ω×u+2ω×Sq̇f )dV

+
∫

V
ρSTSdVq̈f =

=S
T
ATR̈+ I

T
θ f α+mf f q̈f +

+
∫

V
ρST

(
ω̃

2
u+2ω̃Sq̇f

)
dV =

=mT
R fR̈+mT

θ f α+mf f q̈f −Qf
v ,

(24)

beingQf
v =−

∫
V ρST

(
ω̃

2
u+2ω̃Sq̇f

)
dV.

The virtual work of the internal elastic forces, under
the hypothesis of elastic constitutive law for the mate-
rial, can be expressed as:

δWs =−
∫

V
δεT σdV =−δqT

f K f f qf , (25)

whereK f f represents the structural stiffness matrix.
The form of such matrix depends on the specific ma-
terial constitutive law and on the body shape.
The virtual work of external forces reads as follows:

δWe = δRTQR
e +θT

d Qθ
e +δqT

f Qf
e , (26)

whereQR
e , Qθ

e andQf
e represent, respectively, the gen-

eralized components of the active forces associated to
translational, rotational and deformation coordinates.

Figure 2: Planar beam deformation

Equation (5) must be satisfied for every virtual dis-
placement so that the following identities must hold:

QR
i = QR

e , (27)

Qθ
i = Qθ

e , (28)

Qf
i = −K f f qf +Qf

e . (29)

Equations (27), (28) and (29) are the equations for 3D
motion of a generic flexible body characterized by an
elastic constitutive law for its material. In the scientific
literature, such expressions are generally referred to as
thegeneralized Newton-Eulerequations (see e.g., [5]).
The equations of motion can be easily expressed in
body axes, resulting in: mRR S̃

T

t S
Iθθ Iθ f

mf f


 R̈

α
q̈f

 =

=

 O3

O3

−K f f qf

 +

 QR
v

Qθ
v

Qf
v

 +

 Q
R
e

Q
θ
e

Qf
e

 .

(30)

Equations (30) are valid for a general deformable
body, though many of the quantities involved (e.g.,
the matrixK f f ) depend on specific body characteris-
tics such as the shape or the material properties.

From now on, the case of athin beamwill be con-
sidered. In detail, it will be assumed that the body is
a 1D elasticcontinuumwith constant cross-sectional
properties. Furthermore, it will be assumed that the
beam constitutive material is homogeneous, isotropic
and perfectly elastic (i.e., the elastic internal forces are
conservative). Finally, it will be assumed that the de-
formation field is restricted to lie within thexy plane
of the beam local reference system (Fig. 2).

It should be pointed out that such assumptions do
not restrict the model validity or generality, since the
model remains still representative for a large number
of dynamic simulation applications (e.g., almost all the
flexible robots commonly studied have flexible links
which can be represented by such model [7]).
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Figure 3: Element coordinate systems

3.1 The element point of view

The finite element method is based upon a discretiza-
tion of the beam intoN elements. A single element
can itself be viewed as a thin beam characterized by a
planar deformation field. It is then possible to define
the local dimensionlessabscissaasξ = x/`, wherex is
the longitudinal local coordinate and̀is the element
length.
In [9] it is shown that the partial differential equations
associated with the deformation problem at hand, un-
der the hypothesis of elastic constitutive law for the
material, require, for a consistent finite element for-
mulation, the use of linear and Hermite cubic polyno-
mials for the approximation of the axial and transver-
sal deformation field, respectively. Thus, for a single
element, the generic equations of motion (30) can be
expanded as follows:

uf ,el =

 uf 1,el

uf 2,el

uf 3,el

= Sel qf ,el ,

Sel =

 1−ξ 0 0
0 1−3ξ2 +2ξ3 `(ξ−2ξ2 +ξ3)
0 0 0

· · ·

· · ·
ξ 0 0
0 3ξ2−2ξ3 `(ξ3−ξ2)
0 0 0

=

 Sel1

Sel2

Sel3

 ,

qf ,el =
[
qf 1,el qf 2,el qf 3,el qf 4,el qf 5,el qf 6,el

]T
,

(31)

where the subscriptel is used to refer the quantities to
a single element.
Fig. 3 depicts the element coordinate systems associ-
ated with the deformation degrees of freedom:qf 1,el

andqf 4,el are associated with axial compression,qf 2,el

andqf 5,el with transversal displacement andqf 3,el and
qf 6,el with beam extremities rotation.
Since the third row of the shape matrixSelis composed
only by zeros, it could be noted that, despite the fact
that the motion equations have been developed for a
general 3D case, the deformation field is assumed to
lie within the localxyplane.
The planar deformation hypothesis and the assumption
of a homogeneous, isotropic and elastic material for
the beam, allow to exploit the Euler-Bernoulli theory
and to calculate the elastic potential energyUel, ne-
glecting the contribution of shear stresses and consid-
ering only the work of the resulting axial forceNel and

bending momentMel, as follows [9]:

Uel =
1

2

∫
`

(
Nel N′

el

EA
+

Mel M′
el

EJ

)
dx=

=
1

2

∫
`

(
EJu

′′2
f 2,el +EAu

′2
f 1,el

)
dx=

1

2
qT

f ,elK f f ,elqf ,el ,

(32)

whereE is the material Young’s modulus,A is the
(constant) cross-sectional area andJ is the (constant)
cross-sectional second moment of area. The analytical
expression for the case at hand for the matrixK f f ,el,
usually known as the structural stiffness matrix, is re-
ported in appendix A.

3.2 Finite Element Method Equations As-
sembly

The equations of motion for the entire beam can be ob-
tained by assembling the equations of motion for beam
elements as the one defined in the previous subsection.
The body reference system will be the local reference
system located at the root of the first element, so that
the rigid degrees of freedom, common to all the ele-
ments, will be referred to such coordinate system.
Let thenm and L be the mass and length of the en-
tire beam, andN the number of elements to be used,

so that̀ = L/N. Indicating with
−̂→
X the reference sys-

tem unit vector along the beam axis, the expression of
the generic positionu j of a point of elementj can be
expressed as:

u j = u0 j +SelB jqf = [ξ j`+( j −1)`]
−̂→
X +SelB jqf , (33)

whereu0 j is the position of the root of thej th element,
Sel is the shape functions matrix defined by (31),B j

is the so-calledconnectivity matrixandqf is a vector
containing the deformation degrees of freedom for the
whole beam.
The matricesB j have the following form:

B j =
[

O6,3( j−1) I6 O6,3(N− j)
]
,∀ j = 1, · · · ,N . (34)

The connectivity matrices are used to relate the vector
qf , which contains the deformation degrees of free-
dom for the whole beam, to the correspondingj th ele-
ment, according to the expression:

qf ,el j = B jqf . (35)

The dynamics of the complete flexible beam can then
be described by equation (30), using the following ex-
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pressions:

S=
N

∑
j=1

m

L

∫
Vj

SelB jdVj ,

St =
N

∑
j=1

m

L

∫
Vj

u jdVj ,

Iθθ =
N

∑
j=1

m

L

∫
Vj

 u2
2 f j

−u2 f j u1 j 0

u2
1 0

u2
1 j

+u2
2 f j

dVj ,

Iθ f =
N

∑
j=1

m

L

∫
Vj

 O(3N,1)
O(3N,1)

u1 j Sel2−u2 j Sel2

dVj ,

mf f =
N

∑
j=1

m

L
BT

j

(∫
Vj

ST
elSeldVj

)
B j ,

K f f =
N

∑
j=1

BT
j K f f ,elB j ,

Qf
v =−

N

∑
j=1

m

L

∫
Vj

[
BT

j ST
el

(
ω̃

2
u j +2ω̃SelB j q̇f

)]
dVj .

(36)

The computation of the above terms can be easily car-
ried out by observing that the integral of a generic
quantityF , varying along the beam, onto the volume
of a single element can be computed as follows:∫

Vj

ρF dVj =
m

L

∫ 1

0
`F (ξ)dξ =

m

N

∫ 1

0
F (ξ)dξ . (37)

3.3 Boundary Conditions

The equations of motion for the whole beam must be
completed by enforcing suitable boundary conditions
for the finite element approximation of the deforma-
tion partial differential equations. That means assum-
ing prescribed values for some of the deformation dis-
placements, rotations and velocities (linear or angular)
at the body boundaries which are, for the case at hand,
the beam root and tip.
The most commonly used boundary conditions for
flexible beams are of two kinds, commonly referred
to asclamped-freeand simply-supportedconditions.
In both cases six conditions are given (as it is re-
quired from the underlying partial differential equa-
tions): theclamped-freeones enforce null deforma-
tion at the beam root (i.e.,qf 1, qf 2, qf 3, q̇f 1, q̇f 2, q̇f 3

equal to zero for the first element), while thesimply-
supportedones enforce null axial and transversal dis-
placement at the beam root (i.e.,qf 1, qf 2, q̇f 1, q̇f 2

equal to zero for the first element) and transversal dis-
placement at the beam tip (i.e.,qf 5 and q̇f 5 equal to
zero for the last element).

The choice of which of the two set of conditions has
to be used largely depends on the problem at hand.
It should be pointed out that the boundary conditions
names are just conventional and are not referred to the
objects the beam is connected or linked to (e.g., joints
or other bodies), so that enforcing such boundary con-
dition does not limitate in any way the generality and
modularity of the model developed so far.
The enforcement of the boundary conditions is tradi-
tionally obtained by introducing suitable matrices in
equations (30) [6, 9]. On the other hand, it can be
observed that such conditions can be enforced by suit-
able modifications of the connectivity matricesB1 and
BN, by zeroing some entries. For example, for the
clamped-freeconditions,BN remains unvaried andB1

becomes

B1 =
[

03 03

03 I3
O6,3(N−1)

]
. (38)

3.4 Extended Formulation of the Equation of
Motion

In the finite element formulation for the equation of
motion for a flexible beam, the reference directions of
the internal actions are the same for all the elements.
Such representation is acceptable as long as the defor-
mation field is small compared to the beam length, as it
is the case, for example, when studying the dynamics
of vibrations in machining tools.
On the other hand, when large deformations are in-
volved, the internal actions reference directions should
change according to the deformation field. That means
that it is necessary to define a local reference system
for each element (Fig. 4). This corresponds to the
application of the finite volume method to assemble
the equations of motion solved over each element (i.e.,
over each volume). This representation is valid also
for large beam deformation, as long as the deforma-
tion field is small compared to the volumes length.
Furthermore, it is possible to assemble the equation
of motion for a mixed (finite element-finite volume)
formulation by dividing every volume into several el-
ements.
It is not necessary to go into the detailed calculations
for the finite volume or the mixed formulation since,
as it will be shown in section 4, the equations of mo-
tion for such extensions can be automatically calcu-
lated with the aid of symbolic manipulation algorithms
applied to the finite element formulation.
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Figure 4: Volume coordinate systems

4 Modelica Implementation

The finite element formulation for the model has been
implemented using theModelica language, creating
thus a new component, calledFlexBeamFEM(Fig. 5).
The component interfaces are two standard mechan-
ical flanges from the newMultiBody library [4]. The
connectors choice makes the component fully compat-
ible with the library, so that it is possible to connect
directly the flexible beam component with the pre-
defined models such as mechanical constraints (revo-
lute joints, prismatic joints, etc.), parts (3D rigid bod-
ies) and forces elements (springs, dampers, forces,
torques).

Figure 5: Component icon

In detail, the flexible beam component uses two me-
chanical flanges as physical representation of the two
ends of the beam while the motion is ruled by equa-
tions (30), with addition of a damping term (−D f f q̇f )
for the structural dynamics part. The damping term is
added to model the dissipative properties of the mate-
rial.
The termsQR

e ,Qθ
e,Q

f
e (i.e., the external actions) are

computed on the basis of the forces and torques ex-
changed at the two connectors with the following
code:

QeR=matrix(fa+fb_a);
QeTheta=matrix(ta+tb_a+cross(({L,0,0}

+S1*B[N,:,:]*qf),fb_a));
Qef=transpose((transpose(matrix(fb_a))*S1*
B[N,:,:]+transpose(matrix(ta))*dS0*B[1,:,:])
+transpose(matrix(tb_a))*dS1*B[N,:,:]));

wherefa andfb_a are the forces at the connectors,
ta andtb_a the moments at the connectors,S1 the
matrixSel evaluated forξ = 1,B[N,:,:] the connec-
tivity matrix BN anddS0 anddS1 are matrices used

Figure 6: Cart with flexible inverted pendulum

to select the flanges moments acting on the deforma-
tion field; forces and moments are referred to the root
flange coordinate system.

The model parameters include the beam length and
cross sectional area, the material density and Young
modulus, the cross sectional inertia, the damping fac-
tor and the number of elements.

Particular care has been put into the realization of a
3D interface for the model to visualize the simulation
results (Fig. 6), implemented by exploiting the fea-
tures of the graphical environment of the multibody li-
brary. The 3D visualization has revealed itself to be an
important feature, giving significative insight and sen-
sible feedback about the dynamical behaviour of the
model.

The finite volume model and the mixed one can be
easily obtained by connecting several finite element
beams composed by one or more elements, respec-
tively. The achievement of such results, which signif-
icantly simplify the models implementation, is based
on the modular approach adopted in the finite element
model development. The assembly of the equations
of motion for these cases is demanded to Modelica-
based simulation environments, which usually employ
advanced symbolic manipulation techniques and index
reduction algorithms.

The dynamical properties of the latter models are sig-
nificantly complex and accurate, featuring a displace-
ment description which is fully non-linear and allow-
ing the simulation of large displacement due to defor-
mation (Fig. 7) at the cost, though, of a significant
increase of the computational complexity with respect
to the “pure” finite element model.

Object-Oriented Modelling and Simulation of Flexible Multibody Thin Beams in Modelica with the Finite
Element Method

The Modelica Association 31 Modelica 2005, March 7-8, 2005



Figure 7: Large deformation of a thin beam

5 Simulations

The different flexible beam models have been vali-
dated by several simulation analysis performed within
the Dymola simulation environment [1]. The most sig-
nificative ones are reported in the following subsec-
tions.

5.1 Free Vibration

In this simulation the free vibration of a flexible beam
is analyzed. The test-case has been set up in order to
investigate the models properties with respect to theo-
retical predictions.
The beam component is connected to the world refer-
ence system, so that no rigid motion is allowed; fur-
thermore, no gravity field is considered.
At the initial time instant the beam is standing still with
a non-null tip displacement, then it evolves, vibrating,
towards steady state.
The vibration frequencies of a flexible beam clamped
at the root can be calculated by solving the following
partial differential equation:

ρ
∂2y(x, t)

∂t2 +EJ
∂4y(x, t)

∂x4 = 0 (39)

with the following boundary and initial conditions:
y(0, t),

∂y

∂x
(0, t),

∂2y

∂x2(0, t),
∂3y

∂x3(0, t) = 0

y(x,0) = f (x),
∂y

∂t
(x,0) = 0

(40)

wherex is the axial coordinate,y is the transversal
displacement andf (x) is the initial deformation field.
In [3] it is shown that the general solution for equation
(39) has the following expression:

y(x, t) =
∞

∑
k=1

ϕk(x)αk(t) , (41)

whereϕk(x) are the spatial eigenfunctions andαk(t)
are periodical functions, with natural pulsation (corre-

Mode Freq.∗ [Hz] Freq.† [Hz] Error [%]
1 2.0854733 2.0854750 8.418e-005
2 13.0694381 13.0698705 3.308e-003
3 36.5948052 36.6041219 2.545e-002
4 71.7112127 71.7795490 9.529e-002
5 118.543772 118.842591 2.521e-001

∗ Theoretical prediction † Simulation result

Table 1: Theoretical and model natural frequencies

Figure 8: Tip displacement frequency spectrum

sponding to thekth mode of vibration) given by:

ωk = β2
k

√
EJ

ρ
, (42)

beingβk thekth root of the characteristic equation:

cos(βL)cosh(βL)+1 = 0 (43)

The beam, made by aluminium, has square cross
section A = 1cm2, length L = 2m, density ρ =
2700kg/m3, Young’s modulusE = 7.2·109N/m2 and
has been discretized withN = 10 elements. The initial
tip displacement is 1cm.
Table (1) contains a comparison between the results
for for the first five vibrational modes obtained by sim-
ulation and by solving numerically equation (43). The
results are in good accordance, as it is shown also in
Fig. 8, depicting the tip displacement frequency spec-
trum.

5.2 Flexible Pendulum

This simulation, reported also in [2], involves the anal-
ysis of the vibrations induced by motion in a flexible
pendulum swinging under the action of gravity.
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Figure 9: Swing angle

Figure 10: Tip displacement

The pendulum, connected to the world reference sys-
tem by a revolute joint, has a lengthL = 0.4m, cross
sectional areaA = 18cm2, densityρ = 5540kg/m3,
second moment of areaJ = 1.215·10−8m4 and mod-
ulus of elasticityE = 109N/m2. Two different mod-
els have been simulated: the first one composed by 10
elements and the second one by 5 volumes with 2 ele-
ments each.
In Fig. 9 the swing angle is depicted for both cases.
The tip deformation, depicted in Fig. 10, appears to be
slightly different for the two models. The results re-
ported in [2] are in accordance with the ones obtained
with the mixed model, though.

5.3 Elastic Slider-crank Mechanism

The simulation of an elastic slider-crank mechanism,
reported also in [2], has been performed to validate the
models for use within closed-loop mechanical chains.

Figure 11: Slider-crank mechanism (Dymola scheme)

Figure 12: Slider-crank mechanism

The simulation set up involves a slider, a rod and a
crankshaft connected by revolute joints (Fig. 11 and
12)

The crank has lengthL = 0.152m, cross sectional
areaA = 0.7854cm2 and second moment of areaJ =
4.909· 10−10m4, densityρ = 2770kg/m3 and modu-
lus of elasticityE = 109N/m2. The connecting rod
has the same physical parameters of the crank, apart
from the lenghtL = 0.304mand the Young’s modulus
E = 5 · 107N/m2. The crank and the connecting rod
have been discretized with 3 and 8 elements, respec-
tively. Finally, the slider block has been assumed to be
a massless rigid body.

During the simulation, the crankshaft is driven by a
torque with the following law:

{
M(t) = [0.01(1−e−t/0.167)]Nm , t ≤ 0.7sec
0 , t > 0.7sec

(44)

Fig. 13 and 14 show the slider position and the con-
necting rod tip transverse displacement, respectively.
The results are in perfect accordance with those re-
ported in [2].
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6 Conclusion and Future Work

In this paper, a new model for flexible thin beams in
Modelica is introduced. The model, fully compatible
with the MultiBody library, is based on the applica-
tion of the finite element method. Selected simula-
tion results have been presented in order to validate
the model properties with respect to scientific litera-
ture reference cases.

Future work will include the model extension to han-
dle full 3D deformation and distributed loads. The
model will also be employed for the development of
applications in the field of robot control and satellite
attitude control.

Figure 13: Slider block position

Figure 14: Transverse displacement of the tip of the
connecting rod

A Structural Stiffness Matrix

K f f ,el =



EA

`
0 0 −

EA

`
0 0

12EJ
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6EJ
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0 −
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Abstract

The development process for spacecraft control sys-
tems relies heavily on modelling and simulation tools
for spacecraft dynamics. For this reason, there is an
increasing need for adequate design tools in order to
cope efficiently with tightening budgets for space mis-
sions. In this paper, the main issues related to the mod-
elling and simulation of satellite dynamics are briefly
summarised, and the results obtained so far in devel-
oping Modelica tools for spacecraft simulation are pre-
sented and illustrated with a case study for a satellite
equipped with Control Moment Gyros as main attitude
control actuators.

1 Introduction

The safe and satisfactory operation of a satellite, in
terms of its mission objectives, is strongly related to
the performance level of its on-board attitude and orbit
control systems, which provide the ability to maintain
a desired orientation in space (or, e.g., carry out prede-
fined attitude maneuvers) and track a desired, nominal
orbit in spite of the presence of external disturbances.
In addition, the recent trend towards missions based on
constellations or formations of small satellites has led
to the formulation of even more complex control prob-
lems, related to the relative motion (both in terms of
attitude and position) of more vehicles at a time. How-
ever, spacecraft designers are also faced with a general
reduction of space programmes budget, especially for
scientific Low Earth Orbit (LEO) missions, embodied
by the spreading of the ”faster, better, cheaper” philos-
ophy. This has resulted in an increasing need for effi-
cient design tools in every domain involved in space-
craft design, and particularly in the area of control ori-
ented modelling and simulation. Specific tools have
to be developed for the design of both the system ar-
chitecture and the Attitude and Orbit Control System

(AOCS), bearing in mind the principles of reusabil-
ity, flexibility and modularity. The main issue in the
development of such tools should be to try and work
out a unified environment to be used throughout the
life cycle of the AOCS software, namely, the mission
analysis stage, the preliminary and detailed design and
simulation phases, the generation and testing of the
on-board code, the development of the AOCS Electri-
cal Ground Support Equipment (EGSE) and the post-
launch data analysis activities. A number of commer-
cial tools are available to support one or more of the
above mentioned phases in the development of AOCS
subsystems, however none of them seems capable of
providing complete coverage of the whole develop-
ment cycle in a sufficiently flexible way.

In particular, the experience gathered in the develop-
ment of control-oriented spacecraft modelling tools
within a ”signal oriented” simulation environment (see
[2]) showed that a more systematic approach, based on
modern acausal object-oriented modelling languages
such as Modelica (see [3, 6]), might lead to the de-
velopment of a spacecraft simulation library the use of
which would be made much more efficient by the very
nature of the selected modelling approach. Note, in
passing, that there is an increasing interest for multido-
main problems in the spacecraft control design com-
munity (see, e.g., [17]), an area which would benefit
from the availability of simulation tools based on the
object-oriented approach.

Surprisingly enough, while the use of Modelica for
aerospace applications has recently led to the develop-
ment of a library for flight dynamics (see [14]), very
little activity in the spacecraft domain has been re-
ported yet. The development of simulation tools for
satellite attitude and orbit dynamics within the object-
oriented paradigm has been the subject of previous
work (see [10]). Since the development of the model
components presented in the cited references, how-
ever, a new, more refined version of the Modelica

Object-oriented modelling of the dynamics of a satellite equipped with Single Gimbal Control Moment Gyros

The Modelica Association 35 Modelica 2005, March 7-8, 2005



Multibody library has been released (see [15]) which
turns out to be extremely suitable to serve as a ba-
sis for the development of the basic model compo-
nents for the mechanical parts of spacecraft models.
In particular, the adoption of the above mentioned li-
brary would prove specially beneficial for the simula-
tion of spacecraft equipped with momentum exchange
devices, such as, e.g., control moment gyros (CMGs,
see, e.g., [8, 22]).
Therefore, the aim of the paper will be to present the
current state of the development of spacecraft mod-
elling tools based on the Multibody library, with spe-
cific reference to the problem of analysing the (open
and closed loop) attitude of satellites equipped with
control moment gyros (CMGs) as main attitude con-
trol actuators.
The paper is organised as follows: first a brief intro-
duction to the role of mathematical modelling and sim-
ulation in the development cycle of spacecraft con-
trol system is given, in Section 2; subsequently, an
overview of the main model components involved in
typical control oriented models will be presented. Fi-
nally, the proposed approach to spacecraft modelling
will be described in Sections 3-7 and the results ob-
tained in the implementation and application of such
an approach to the simulation of spacecraft equipped
with CMGs will be presented and discussed in Section
8.

2 Modelling and simulation for
AOCS design

As mentioned in the previous Section, the develop-
ment of the AOCS subsystem for a satellite can be de-
composed in the following phases:

1. Feasibility study (conceptual design).

2. Preliminary design.

3. Detailed design.

4. Code generation and testing.

During each of these phases, the designer should be
able to rely on appropriate modelling and simulation
tools. In particular, modelling tools should be flexi-
ble enough to provide the required level of complexity
during each of the development phases.
For example, consider the tasks for which a simula-
tion tool would be applied during the feasibility study
phase (see Figure 1 and the classical reference [9]):

• Attitude control strategy definition, starting from
mission requirements and platform characteris-
tics;

• Evaluation of the external force and torque dis-
turbances acting on the spacecraft, depending on
the mission profile. This is normally done using a
simple attitude control algorithm to maintain the
satellite at nominal conditions;

• Selection and sizing of the actuators in order to
counteract disturbances and to maintain the nom-
inal pointing accuracy required by the mission;

• Verification of the possibility to fulfill possible
maneuver requirements with the selected actua-
tors.

Figure 1: Block diagram of preliminary ACS design
process.

The above tasks can be performed without resorting to
a dynamic simulator for the spacecraft, however they
require accurate modelling capability for orbit dynam-
ics and the availability of reliable models for the space
environment. As an example, consider the problem of
assessing the external torques acting on the spacecraft.
Clearly their characteristics will depend also on the se-
lected control strategy (actuators, sensors and control
laws) for the spacecraft, which however is not entirely
defined at this stage. Therefore only nominal and/or
worst case scenarios need be considered. On the other
hand, all the subsequent design phases require the pos-
sibility of integrating orbit models and environmental
models with a fully dynamic spacecraft simulator, in
order to proceed to the refinement of the original de-
sign concept. In particular, as the development process
goes on, more and more accuracy in the prediction
of the achievable performance is required, so that the
complexity of the simulation environment is progres-
sively increased.
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3 The Modelica Spacecraft mod-
elling library

A library of tools for the modelling and simulation of
spacecraft dynamics based on the Modelica language
is currently being developed. Modelica turns out to
be specially suited for the modelling of spacecraft dy-
namics under many respects:

• Coordinate frames can be simply included in the
model in terms of connectors, describing kine-
matic transformations from one coordinate sys-
tem to another.

• Spacecraft dynamics is modelled by defining a
Spacecraft class which can be (almost) directly
implemented in terms of classical equations for
rigid body motion. The data structure to be used
in representing all the quantities involved in a
specific spacecraft model arises naturally during
the modelling process.

• Specific Modelica constructs are available to deal
with the modelling of physical fields and envi-
ronmental quantities. This feature turns out to
be extremely useful in modelling the space envi-
ronment and representing the interaction between
the environment and the spacecraft. In partic-
ular, with a suitable choice of the environment
interfaces, models of increasing complexity for
each of the quantities described in Section 5 can
be defined. This feature allows for a simple and
very convenient implementation of the ”scalabil-
ity” requirement formulated in Section 2.

• Sensors and actuators can also be easily repre-
sented in the Modelica paradigm. For example,
the generation of magnetic torques is modelled
in terms of the interaction with the geomagnetic
field, while the momentum exchange between
spacecraft and wheels is modelled via a simple
mechanical connector allowing one rotational de-
gree of freedom 1.

• Packages of data sheets for each class can be con-
structed and components easily modified within
each spacecraft model, using Modelica’s ad-
vanced features (see, e.g., [16]).

• Finally, as the components of the library are in-
dependent from each other, one can exploit this

1Mounting errors, which may give rise to interaxis coupling
and vibrations, can be easily accounted for.

flexibility in order to build a simulation model
of increasing complexity and accuracy accord-
ing to the needs associated with each phase of
the AOCS development process. As an example,
one can carry out an analysis of the external dis-
turbance forces and torques acting on the space-
craft in its nominal orbit and attitude, by defin-
ing a ”simplified” spacecraft ideally attached to
its nominal reference attitude.

The original approach to the development of the
library contemplated the development of dedicated
components also for the mechanical parts. How-
ever, the availability of the recently upgraded (see
[15]) Multibody Library is leading to some significant
changes, since the reuse of the Multibody components
would lead to some significant advantages.
The main components of the library are the following:

• A set of basic functions for operations on or-
bit parameters (transformations between carte-
sian and orbit elements, see for example [13, 19].

• A similar set of functions for operation on attitude
parameters (attitude matrix, quaternions, Euler
angles). These have been partially based on the
Rigid Body Kinematics Toolbox (see [18]).

• Class definitions for Planet, Orbit, Spacecraft,
and the most commonly used actuators and sen-
sors.

• Environmental models of various complexity for
gravitational and magnetic field.

• Data sheets for basic model components, such as
orbits, actuators and sensors.

4 Dynamics of a spacecraft equipped
with momentum exchange devices

For the purpose of the present analysis, the following
reference systems are adopted:

• Earth Centered Inertial reference axes (ECI). The
origin of these axes is in the Earth’s centre. The
X-axis is parallel to the line of nodes, that is the
intersection between the Earth’s equatorial plane
and the plane of the ecliptic, and is positive in
the Vernal equinox direction (Aries point). The
Z-axis is defined as being parallel to the Earth’s
geographic north-south axis and pointing north.
The Y-axis completes the right-handed orthogo-
nal triad.

Object-oriented modelling of the dynamics of a satellite equipped with Single Gimbal Control Moment Gyros

The Modelica Association 37 Modelica 2005, March 7-8, 2005



• Earth Centered Fixed reference axes (ECF).

• Pitch-Roll-Yaw axes. The origin of these axes is
in the satellite centre of mass. The X-axis is de-
fined as being parallel to the vector joining the ac-
tual satellite centre of gravity to the Earth’s cen-
tre and positive in the same direction. The Y-axis
points in the direction of the orbital velocity vec-
tor. The Z-axis is normal to the satellite orbit
plane and completes the right-handed orthogonal
triad.

• Satellite body axes. The origin of these axes is in
the satellite centre of mass; the axes are assumed
to coincide with the body’s principal inertia axes.

The equations of rotational motion of a rigid spacecraft
equipped with momentum-exchange actuators such as
CMGs are given by

Ḣ +ω×H = Text (1)

where H = (H1,H2,H3)T is the angular momentum
vector of the whole system expressed in the space-
craft body-fixed control axes; ω = (ω1,ω2,ω3)T is the
spacecraft angular velocity vector; Text is the global ex-
ternal torque vector applied to the spacecraft, includ-
ing gravity gradient, solar pressure and aerodynamic
torques, expressed in the body-fixed control axes.
The total angular momentum vector consists of the
spacecraft main body angular momentum and the an-
gular momentum of the exchange devices, that is

H = J ω+h (2)

where J is the overall inertia matrix of the spacecraft
and h is the total CMG momentum vector expressed in
the body-fixed control axes.
Combining Eqs. (1) and (2), we obtain

(J ω̇+ ḣ)+ω× (J ω+h) = Text (3)

or, introducing the internal control torque vector gen-
erated by CMGs τ =−(ḣ+ω×h), we can rewrite
Eq. (3) as

J ω̇+ω× J ω = τ+Text (4)

In addition to the dynamic equations of motion, kine-
matic equations must be included in the model, which
can be easily parameterised in terms of the attitude
quaternion

⎡
⎢⎢⎣

q̇1

q̇2

q̇3

q̇4

⎤
⎥⎥⎦ =

1
2

⎡
⎢⎢⎣

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q1

q2

q3

q4

⎤
⎥⎥⎦

(5)

5 Single Gimbal Control Moment
Gyros

A gyroscope, or gyro, is any instrument which uses
a rapidly spinning mass to sense and to respond to
changes in the inertial orientation of its spin axis.
Three basic types of gyroscopes are used on space-
craft: rate gyros (RGs) and rate integrating gyros
(RIGs) are attitude sensors used to measures changes
in the spacecraft orientation; control moment gyros
(CMGs) are used to generate control torques to change
and maintain the spacecraft orientation.
A single gimbal control moment gyro (SGCMG) con-
sists of a rotor spinning at a constant rate around an
axis that is gimballed to allow changes in its spin di-
rection. The gimbal is rigidly attached to the space-
craft, so that torques generated in response to its input
axis rotation apply to the spacecraft itself.
Let θ̂i the unit vector along the i-th SGCMG gimbal
axis, ĥi the unit vector along the instantaneous angular
momentum, ĵi = θ̂i× ĥi

Each angular momentum vector depends upon the rel-
evant gimbal angle (for its direction). With respect to
the reference frame (spacecraft body axes), the total
angular momentum for a system of n SGCMGs is the
vector sum of the individual momenta:

h(θ) =
n

∑
i=1

hi(θi) = f (hi,θi,βi) (6)

A typical arrangement for SGCMGs is the one in
which the CMGs are constrained to gimbal on the
faces of a pyramid and the gimbal axes are orthogonal
to the pyramid faces. In this case, the overall angular
momentum is given by

h(θ) = h1

⎡
⎣
−cosβsinθ1

cosθ1

sinβsinθ1

⎤
⎦+h2

⎡
⎣

−cosθ2

−cosβsinθ2

sinβsinθ2

⎤
⎦+

+h3

⎡
⎣

cosβsinθ3

−cosθ3

sinβsinθ3

⎤
⎦+h4

⎡
⎣

cosθ4

cosβsinθ4

sinβsinθ4

⎤
⎦ (7)

where β is the skew angle of the pyramid and h1 =
h2 = h3 = h4 for the considered cluster of four
pyramid-mounted SGCMGs. In particular, when each
CMG has the same angular momentum about its
spin-rotor axis and the skew angle is chosen as β =
54.73deg, the momentum envelope becomes nearly
spherical.
The total amount of angular momentum for the system
is limited both in value and direction, by individual
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SGCMGs momenta. The time derivative of the global
CMG angular momentum vector con be obtained as

ḣ(θ, θ̇) =
4

∑
i=1

ḣi(θi, θ̇i) = [A(θi)]θ̇ (8)

where θ = (θ1,θ2,θ3,θ4)T is the gimbal angle vector
and A is the instantaneous 3 × 4 Jacobian Matrix.
The gimbal rate command θ̇ is derived in such a way as
to supply the required angular momentum for control
purposes. A frequently adopted approach is to note
that θ̇ can be obtained as

θ̇ = A†ḣ (9)

where by A† = AT (AAT )−1 we denote the Moore-
Penrose pseudoinverse of the Jacobian matrix A.

6 Control system

6.1 Attitude control

Since the torque-producing gimbal rates provided by
equation (9) can lead to significant problems in the
operation of the control law whenever the configura-
tion of the CMGs is such that the Jacobian matrix A
is nearly singular, a new strategy must be adopted in-
voking an approximate solution to equation (8), which
must be capable of both minimizing the errors intro-
duced in the output torque supplied and steering the
system away from singular states configuration neigh-
borhoods. The errors introduced by this approach in
the torque supplied by the SGCMGs cluster can be
dealt by the control system as disturbances torques,
and appropriately compensated.
In order to determine an inverse solution to equation
(8) even when the rank of A is less than 3, the Singu-
larity Robust Inverse solution obtained by solving the
following minimization problem must be invoked:

min
1
2

eTWe (10)

e =
[
ḣ−Aθ̇

θ̇

]

w =
[
P 0
0 Q

]

where P and Q are positive definite weighting matri-
ces, that is, P = PT > 0 and Q = QT > 0.
Minimizing for θ̇, the singularity robust inverse solu-
tion can be obtained as

θ̇ = A#ḣ (11)

where A# = [AT PA + Q]−1AT P. Note that [AT PA +
Q] > 0 and, thus, nonsingular for any set of gimbal
angles.
If Q = 0, the singularity robust inverse solution has the
form of the classical, weighted least squares solution
which exists only for a full rank Jacobian matrix A.

6.2 Momentum management

The gimbal angles of a CMG equipped spacecraft may
drift to various non-optimal values, due to external dis-
turbances. This can force the spacecraft into a sin-
gular state or into a lack of control authority. Typi-
cally, a periodic disturbance torque along one space-
craft axis would result in a cyclic variation in the an-
gular velocity of the actuation device directed along
that axis, while a constant (secular) disturbance would
lead to a linear increase in angular velocity, as the rel-
evant CMG gimbal angle would be accelerated at a
constant rate in order to transfer to it the excess of an-
gular momentum due to the external disturbance. This
can be sustained up to the physical limit for the ro-
tational speed of the device. In order to prevent this
limit from being reached, the so-called desaturation of
the actuator must be performed, i.e. an extra set of ac-
tuators, generating external torques, must be used to
dump momentum from the spacecraft.
Basically, the idea is to use the CMGs cluster to con-
trol the spacecraft as required by the Attitude Control
System, and to achieve their desaturation by means of
a dedicated controller, that keeps the CMGs gimbal
rates as small as possible. The goal of the momentum
control loop is to maintain the CMGs momentum near
zero without interfering with the attitude control loop,
that is, the momentum control loop must have a con-
siderably slower response with respect to the attitude
control loop.
The external torque to be applied to the spacecraft re-
quired to compensate for the gimbal angle offset is
taken as

Tr =−khcmgs =−A(θ)θ̇e (12)

where

θ̇e =
θ−θ∗

∆t
θ∗ is the gimbal angle reference vector and ∆t is the
time it takes the current gimbal angles to converge to
the reference gimbal angles (response time of the mo-
mentum control loop).
External torques may be generated by such devices as
thrusters or magnetic coils. Since the compensation
of the external disturbances is better handled contin-
uously, and given the usual restrictions on waste of
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consumable in space applications, magnetic control is
usually preferred.
A set of three magnetic coils, aligned with the space-
craft principal inertia axes generate torques according
to

Tcoils = mcoils×b (13)

where mcoils ∈ R
3 is the vector of magnetic dipoles

for the three coils, representing the actual control vari-
ables for the coils, and b(t) ∈R

3 is the Earth magnetic
field described in the body reference frame. The dy-
namics of the electric coils reduce to a very short elec-
trical transient, and as such can be neglected.
By equating Eqs. (12), (13) and left multiplying by
b(t), the magnetic dipole to be applied by the coils and
the resulting torque may be derived

mcoils =−b× (A(θ) θ̇e)
‖b‖2 (14)

Tcoils =−b× (A(θ) θ̇e)
‖b‖2 ×b (15)

7 Model components for CMGs

Taking advantage of the recently released New Mod-
elica Multibody library (see [15]), a set of simulation
tools has been developed for satellite attitude and or-
bit dynamics. Specifically, the following components
have been developed:

• Extended World Model: a new World model, ex-
tending Modelica.MultiBody.World has been de-
fined. It accounts for a more refined description
of the Earth’s gravitational potential and intro-
duces a model for the geomagnetic field. Such
an extension to the basic World model provided
in the Multibody library plays a major role in the
realistic simulation of the dynamics of a spacae-
craft as the linear and angular motion of a satellite
are significantly influenced by its interaction with
the space environment.

• Extended rigid body model: similarly, a
new rigid body model, extending Model-
ica.MultiBody.Parts.Body has been defined. The
main modification is the possibility of taking into
account the interaction between the spacecraft
and the geomagnetic field, i.e., to model the ef-
fect of magnetic torques applied on the satellite
while orbiting around Earth.

• Rotor: Model of a Single Gimbal Control Mo-
ment Gyro, including as input the gimbal angular
rate (feeded by the attitude control system) and as
output the gimbal angle. Developed using stan-
dard Modelica Multibody Library components.

• Cluster: Model including the classical set of four
pyramid-mounted Single Gimbal Control Mo-
ment Gyros arrangement. Developed using stan-
dard Modelica Multibody Library components.

• Attitude Control System: Block computing the
required gimbal rates for the four Single Gimbal
Control Moment Gyros used as control torque ac-
tuating devices.

For each model component, a short description is
given in the following subsections.

7.1 Extended World model

The Extended World Model is an extension of the
former Modelica.MultiBody.World model, including
among the available selections a more sophisticated
model for the Earth’s gravity field (described up to
the J2 term of the Earth’s gravitational potential) and
a model for Earth’s magnetic field (modelled up to the
quadrupole terms).
As a consequence of Earth’s oblateness and not homo-
geneity, the geomagnetic and gravitational potentials
are a non linear function of both the point latitude and
longitude, in addition to the distance from the center
of the Earth.
The Earth’s gravitational potential Ug may be de-
scribed by the function

Ug(r,θ,λ) =−µ
r
{1+

∞

∑
n=2

(
Re

r
)n JnPn(cos(θ))+

+
∞

∑
n=2

n

∑
m=1

(
Re

r
)n Pm

n (cos(θ))(Cm
n cos(mλ)+Sm

n sin(mλ))}

where Pm
n are the Legendre polynomials

Pn(x) =
1

2nn!
dn

dxn (x2−1)n

Pm
n (x) = (1− x2)m/2 dmPn(x)

dxm

Re is the mean equatorial Earth radius, r,θ and λ are
the point’s spherical coordinates and coefficients Jn,
Cm

n , Sm
n are the zonal, sectoral and tesseral coefficients.

For the purpose of attitude control simulations a sat-
isfactory approximation can be obtained by neglecting
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n m g [nT] h [nT]
1 0 -29682
1 1 -1789 5318
2 0 -2197
2 1 3047 -2356
2 2 1685 -425

Table 1: Coefficients of the geomagnetic field model.

the terms after J2. The Earth gravitational field com-
ponents (expressed in spherical coordinates) are then
given by

g =−∇Ug =−{∂Ug

∂r
,
1
r

∂Ug

∂θ
,

1
r sin(θ)

∂Ug

∂λ
}. (16)

As for the geomagnetic potential Um, it is described by
the function

Um(r,θ,λ) =
Re

µ

∞

∑
n=0

n

∑
m=0

(
Re

r
)n+1 Pnm(cos(θ))

(gm
n cos(mλ)+hm

n sin(mλ))

where gm
n and hm

n are the Gauss coefficients appropriate
to the Schmidt polynomials Pnm

Pn,0(x) = P0
n (x)

Pn,m(x) = (
2(n−m)!
(n+m)!

)1/2 Pm
n (x).

A first approximation for the geomagnetic potential
is obtained by neglecting the terms after the quadru-
pole. The coefficients for the geomagnetic poten-
tial adopted in the simulation environment correspond
to the so-called International Geomagnetic Reference
Field (IGRF) model for the Earth’s magnetic field and
are given in Table 1. The components of the geomag-
netic field (expressed in spherical coordinates) are then
given by

B =−∇Um =−{∂Um

∂r
,
1
r

∂Um

∂θ
,

1
r sin(θ)

∂Um

∂λ
}. (17)

The new function magneticField, embedded in the
World model, receives as input the body position and
provides as outputs the corresponding components of
the geomagnetic field vector B, expressed in the ECI
reference frame. Since the geomagnetic field model
is defined with respect to the rotating ECF reference
frame, an additional parameter UT0, defining the initial
value for the Universal Time (UT ) and whose default
value is set to zero, allows to start the simulation with
a desired initial rotation of the ECF reference frame
with respect to the ECI reference frame.

7.2 Extended rigid body model

This new component extends the Model-
ica.MultiBody.Parts.Body model to account for
the effects of the Earth’s magnetic field in terms of
torques applied to the satellite. Indeed, if the space-
craft possesses a magnetic dipole m, it experiences an
external torque T given by

T = m×B, (18)

where B is the geomagnetic field vector in body coor-
dinates. Note, in passing, that the ability of taking into
account in the rigid body model the interaction with
the geomagnetic field makes it possible to fulfill two
different modelling goals: first of all to simulate the
effect on the satellite dynamics of a residual magnetic
dipole, such as due to the internal magnetic field gen-
erated by on-board electrical equipment; furthermore,
it is possible to model the effect on the angular mo-
tion of the spacecraft of magnetic actuators, which, as
previously mentioned, are frequently used, specially
in small satellite missions, for attitude or momentum
management.

7.3 Rotor

The SpacecraftDynamicsLibrary.Rotor model simu-
lates a Single Gimbal Control Moment Gyro, which
has been chosen as the primary actuation source for
the satellite attitude manoeuvering and control. The
following standard Modelica library components have
been employed:

• MultiBody.Interfaces.Frame a, used as the
SGCMG-satellite connecting point.

• MultiBody.Joints.ActuatedRevolute, used to
model the SGCMG rotational degree of free-
dom. The gimbal speed is driven through a
Mechanics.Rotational.Speed by the input signal
coming from the satellite attitude control system
(SpacecraftDynamicsLibrary.ACS block).

• Two Mechanics.Rotational.Speed

• Blocks.Interfaces.InPort, feeding to the SGCMG
the desired gimbal rate.

• Mechanics.Rotational.Sensors.SpeedSensor

• MultiBody.Parts.FixedTranslation

• MultiBody.Parts.Rotor1D, used as the physical
rotor. Its speed is kept constant by means of
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an electrical motor, whose dynamic has not been
modelled at this stage, and which is represented
by a Blocks.Sources.Constant. The rotor rota-
tional inertia has been assigned such that the re-
sulting angular momentum along the rotor axis is
1.76Nms.

• Blocks.Continuous.Integrator

• Blocks.Sources.Constant, forcing the rotor angu-
lar rate to the chosen 4000 rpm nominal value.

• Blocks.Interfaces.OutPort, used to output to the
satellite attitude control system (SpacecraftDy-
namicsLibrary.ACS block) the actual gimbal an-
gle.

7.4 Attitude Control System

The SpacecraftDynamicsLibrary.ACS block computes
the four SGCMGs gimbal rates required to control the
satellite attitude.
The computation is performed in two separate steps.
First, the required control torques are computed, by
means of a suitable state feedback gain (designed via
LQR control techniques), where the system states con-
sidered in the control algorithm are the quaternion
errors and the satellite angular rates errors. Subse-
quently, the gimbal rates are derived in such a way
as to supply the required torques (via variation of the
SGCMGs cluster angular momentum). To this pur-
pose, the control moment gyro steering logic proposed
by Wie, Bailey and Heiberg [22] was adopted.
The SpacecraftDynamicsLibrary.ACS provides the
four SGCMGs gimbal rates, and receives as inputs the
gimbal angles, the satellite inertial attitude quaternion,
the measured gimbal rates and the unit vectors of the
local orbital frame.

7.5 Cluster

The SpacecraftDynamicsLibrary.Cluster model simu-
lates the classical configuration of four identical pyra-
mid mounted Single Gimbal Control Moment Gyros,
with a skew angle β = 54.73o. It employs four Space-
craftDynamicsLibrary.Rotor models.
Receives as input the SGCMG gimbal rates computed
by the SpacecraftDynamicsLibrary.ACS block.

8 Simulation study

In order to analyze the performance of the spacecraft
dynamics library components developed, a specific

mission scenario has been considered, namely:

• Spacecraft in equatorial orbit (0o inclination).

• Orbit altitude of 450 Km (a typical altitude for a
small scientific mission).

• The attitude control must keep an Earth pointing
attitude, aligned with the Pitch-Roll-Yaw refer-
ence frame (orbital frame).

• The spacecraft is provided with a star sensor for
attitude determination (i.e., an ideal state feed-
back situation is considered).

• Attitude control is based on a set of four pyramid
mounted Single Gimbal Control Moment Gyros.

• The spacecraft is subject to the effect of a mag-
netic disturbance torque, due to a residual mag-
netic dipole for which a value of 1Am2 along each
body axes has been assumed.

As an illustrative example, a simulation has been car-
ried out in which the initial conditions for the space-
craft are characterised by a high value of the compo-
nents of the angular rate, such as would occur during
the initial acquisition of the desired Earth pointing at-
titude. Figure 2 shows how three axis attitude control
is achieved by means of the four SGCMG actuators.
In particular, note that the residual pointing error due
to the geomagnetic disturbance torque is hardly visi-
ble. The corresponding time history of the geomag-
netic field along the considered orbit and of the associ-
ated disturbance torque are shown in Figure 3. As ex-
pected, since the considered spacecraft is operating in
an equatorial orbit, the only significant component of
the geomagnetic field is aligned with the orbit normal
(Z ECI axis). In spite of this, it is interesting to note
that because of equation (18) the spacecraft is subject
to a disturbance torque along all three axes.
As was mentioned previously, external disturbance
torques force the gimbal angles of the CMGs to slowly
drift away from their optimal value. In particular, the
periodic component of the magnetic torques force a
cyclic variation in the angular rate of the SGCMGs,
while the secular component lead to a linear increase
in the gimbal angular rates. This can be sustained up
to the physical limit for the rotational speed of the de-
vice. In order to prevent this limit from being reached,
the actuator must be desaturated, i.e. an extra set of
actuators, generating external torques, must be used to
dump momentum from the spacecraft.
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Figure 2: Quaternion and angular rates for the attitude
acquisition.

9 Concluding remarks

The main issues related to the modelling and simu-
lation of satellite dynamics have been described, the
results obtained so far in developing Modelica tools
for spacecraft simulation have been presented and a
case study for a satellite equipped with Control Mo-
ment Gyros as main attitude control actuators has been
illustrated by means of a simulation study.
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Abstract 

The Modelica MultiBody library is extended with 
collision handling. It is demonstrated how to use this 
new feature. Different implementations are explained 
based on parametric surfaces, on surfaces described 
by algebraic constraints, and on surface descriptions 
by primitives and triangles using the collision 
package SOLID 3.5. Furthermore, the response 
calculation by a resultant contact force and torque is 
discussed. 

1 Introduction 

Modeling of contacts between mechanical objects is 
important in many disciplines such as wheel han-
dling for vehicle dynamics, robot gripping, CAM 
modeling, etc. The Modelica.Mechanics.MultiBody 
library [13] is extended with support for collision 
handling. The user interface and the implementation 
variants are discussed in the next sections. 
Describing collisions between mechanical bodies is 
still a difficult topic. The solution can be divided into 
two main steps:  
(1) Collision detection of surfaces, determining fea-
tures such as shortest distances, penetration depths 
and contact normal vectors. Several software sys-
tems are available for this task, e.g., SWIFT [6], 
ODE [16] or SOLID [2][3]. This is also an important 
part of CAD and FEM systems. Fast real-time solu-
tions are mainly driven by the game industry due to 
their particular needs [5][16]. 
(2) Calculation of the contact response. Several 
quite different approaches are in use: 
(2a) The response is computed in an idealized way 
using impulses based on an impact law such as Pois-
son’s hypothesis: relating the impulses of the com-
pression and decompression phase of an impact to 
each other, see, e.g., [15][10][5]. The main advan-
tage is that only few constants are needed to describe 
the impact law and that the integrator step size is not 
influenced by the response calculation because it is 

performed in an infinitely small time instant. The 
disadvantages are that such idealized impact laws are 
only valid for stiff collisions and that the constants of 
the impact law cannot be computed by material 
properties of the colliding bodies, i.e., they must be 
determined by measurements. Furthermore, it is 
quite involved to compute the new initial conditions 
after an impact in a robust way, especially if several 
surface contacts are present at the same time instant. 
In the latter case either no or infinitely many solu-
tions may exist using impulse descriptions. For a 
physically meaningful response there are cases 
where multiple impacts have to be applied one after 
each other whereas also cases are present where they 
must be applied altogether (for a more thorough dis-
cussion, see [5], pp. 256 – 264). 
(2b) The response is computed by a simple elastic 
spring/damper element. E.g., the spring force is just 
proportional to the penetration depth. The advan-
tages of this approach are its simplicity and that it 
can be used for stiff and soft contacts. This approach 
works also reasonably well if several contact points 
are present at the same time instant. The disadvan-
tage is that the integrator step size is reduced signifi-
cantly in the contact phase in order to catch the rap-
idly changing contact forces and torques. A neces-
sary and harder task is to determine experimentally 
the spring and damper constants. Those are in conse-
quence only valid in situations close to the experi-
mental conditions. The main reason is that the con-
tact force is not only proportional to the penetration 
depth but rather to the contact area and the contact 
volume. 
(2c) The response is computed by taking into ac-
count the contact area and the contact volume. This 
might be performed by a discretization of the contact 
area or the contact volume, see, e.g., [8][9]. Contrary 
to (2b), the force and torque computation will be 
more precise and the material properties, such as the 
E-modul and the contraction number ν, can be used 
to calculate the spring constants. Furthermore, the 
contact torque can be calculated in a reasonable way. 
This torque is particularly important for gripping 
operations. 
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(2d) The response is computed for special situations, 
e.g., for wheel/road contact [14]. Solutions that are 
specialized to a particular contact problem are usu-
ally more precise and practically applicable as the 
generic solutions of (2a,b,c).  
At the moment, it is not possible to implement the 
solution with impulses (2a) in a generic way in 
Modelica. For special cases it can be implemented 
with the reinit(..) operator. The reason is that an ap-
propriate Modelica language element is missing as 
well as the needed symbolic algorithms for the most 
general cases. In the European project “RealSim” 
basic research was carried out to handle models with 
varying index and with dirac impulses. The latter 
might be implicitly occurring at switching points 
where the number of states, and therefore also the 
DAE index, is changing. For certain classes of sys-
tems a reasonable solution method was developed 
[11]. Still, the algorithms are in a research stage. 
For this reason, in this article only elastic response 
actions according to (2b) and (2c) are taken into ac-
count. A specialized solution for wheel/road contact 
is already available in the Modelica VehicleDynam-
ics library [1]. 

2 Users View 

In this section the user’s view of the library is shortly 
sketched. This view is independent of the implemen-
tation variants discussed in subsequent sections. 
Components are provided to handle collisions be-
tween bodies using elastic force/torque laws at con-
tact points. An example is shown in the following 
figure where a ball is thrown on a table. The ball first 
bounces on the table, then into the wall and finally 
rolls on the table.  

 
This example is defined by the Modelica model of 
the next figure. In brief, there is a modified Multi-
Body.World component with a new subcomponent 
named "collisionHandling". This new object per-
forms collision detection and contact response calcu-
lations. The table is defined by two boxes of the 
component “MultiBody.Visualizers.FixedShape”. 

 
The ball is described by a sphere of the component 
“FixedShape” together with body properties, such as 
mass and inertia. The record “contactData” contains 
material constants that are used in the table and 
sphere components. No special collision handling 
objects are needed. Instead, the existing “Multi-
Body.Visualizers.FixedShape” component has been 
modified to optionally detect and treat collisions for 
the supported visual shapes shown in the next figure: 

 
For collision detection, shapes "pipe", "gearwheel" 
and "spring" are treated as full cylinders. There are 
currently limitations for shapes using “*.dxf” files 
(AutoCAD R12 descriptions): Only sets of triangles 
are supported and only one contact point between 
two surfaces is taken into account, although more 
contact points might be present for non-convex ob-
jects. Note, all objects can be scaled in the 3 coordi-
nate axes by providing length, height and width of 
the shape. E.g., ellipsoids are also supported by de-
fining shapeType="sphere" and appropriate length, 
height, and width scaling.  
The following new parameters are present in a 
FixedShape object:  

 
The collision handling has to be explicitly activated 
by setting "contactHandling = true". The effect in 
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this case is that the distance between this object and 
all other objects that have contactHandling = true is 
continuously computed and monitored. When the 
distance between two objects becomes zero, an event 
is triggered and a contact response is applied.  
If two FixedShape objects are rigidly attached to 
each other (see, e.g., the two boxes representing the 
table in the example above), a contact would perma-
nently be present. To avoid this, all objects are re-
duced in size by a factor of "1 - 1.e-9" for the colli-
sion detection. As a consequence, shapes that are 
fixed together, do not lead to an unnecessary contact 
response computation.  
Parameter “bodyIndex” is a unique Integer identifier 
for each “FixedShape” object. For instance, if 4 
FixedShape objects with contactHandling = true are 
present, they must have bodyIndex = 1, 2, 3, and 4. 
Additionally, in the "World" object, parameter 
"nContactBodies" has to be set to the number of 
FixedShape objects with contactHandling = true. In 
the example above, nContactBodies = 4 is required. 
There is currently a Modelica language enhancement 
under development, in order that this user input is no 
longer required since it can be automatically deduced 
by a Modelica translator. 
The data for the response calculation are provided 
via parameter record "contactProperties", see next 
figure. It defines material data of the corresponding 
surface. The type of response calculation used for all 
collisions is defined in the World object: If parame-
ter simpleResponse = true, a linear spring and a lin-
ear damper force acts in contact normal direction. 
Additionally, linear rotational damping proportional 
to the relative angular velocity is present in contact 
normal direction, and a sliding friction force acts in 
opposite direction to the tangential sliding velocity at 
the contact point. If simpleResponse = false, the con-
tact area is discretized and a resultant force and 
torque is computed by summation of appropriate 
forces over the contact area. The latter option is cur-
rently under development. More details of the 
force/torque calculations are given in section 4.5. 

 
Finally, parameter “edgeRadius” defines how much 
the edges of primitive shapes, such as boxes, cylin-
ders etc., are “rounded” with spheres, see left part of 

figure below. For “*.dxf” files, a layer of spheres 
with radius “edgeRadius” is put on the surfaces to 
get a smooth surface description, too, see right part 
of figure below. The edge rounding and the “layer of 
spheres” is used for collision detection and response 
calculation. It is currently not shown in the rendering 
(animation). It is recommended to use a non-zero 
edgeRadius because the collision detection will be 
usually faster and more robust. Still, it is possible to 
set edgeRadius=0. The technique of smoothing the 
surfaces with spheres is from [3][2]. 

edgeRadius

edgeRadius

 

In sublibrary MultiBody.Parts the available body 
components have now also optional collision han-
dling support. Furthermore, new body types have 
been added, as shown in the next figure:  

 
For example, “BodyEllipsoid” is a part that defines 
an ellipsoid by length, width, height and material 
properties. From this information, the body proper-
ties (mass, center of mass, inertia tensor) are com-
puted and the rendering and collision handling is 
deduced. 

3 Applications 

In this section some applications of the library are 
shown. 

3.1 Free Flying Objects 

Five different free flying objects are colliding with 
each other. The start configuration is shown in the 
next figure. The 4 objects on the right are in rest at 
the beginning and the sphere at the left side is flying 
in the direction of the other objects. 
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Several collisions between all objects occur after a 
few seconds: 

 
This system is defined with the following Modelica 
model: 

 

3.2 Collision of triangularized surface 
with a table 

A simple application of AutoCAD files in the library 
is shown in the following example: An AutoCAD 
generated pyramid is rotating around his main axis 
and falls to a table.  

 
After some time we observe how the trajectory of the 
pyramid evolves. Due to friction, the velocity and 
angular velocity of the pyramid is permanently re-
duced. 

 
The final position after gliding over the surface is 
shown in the next figure 

 
as the pyramid is falling over the edge of the table 
with a velocity that is almost zero. 

3.3 Gripping 

The sequence of images below shows two blue fin-
gers gripping a lying red object (all cylindrical dxf-
defined objects). The fingers are attached with pris-
matic joints to a revolute joint. The lying object is 
gripped since it is squeezed between the fingers. Due 
to the friction torque between the surfaces, the red 
cylinder is elevated after gripping it and rotating the 
revolute joint. 
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The model of this experiment setup is shown below. 
“Horizontal” is the lying red cylinder and “Finger1” 
and “Finger2” are the two fingers. This example 
shows the important role of the friction torque. If this 
feature would not be present in the model, then the 
red cylinder would rotate after gripping. 

 

4 Implementation 

In this section implementation details and variants 
for the collision handling are discussed. 

4.1 Central Collision Handling 

Since distances and contact response calculations are 
needed between any two collision objects, a central 
collision handling is present in the modified World 
component. In order that this is possible, every colli-
sion object needs a unique Integer identifier. The 
surface data, position, orientation, forces and torques 
are copied in appropriate arrays using the corre-
sponding Integer identifier as index in these arrays. 
Currently, this identifier has to be provided manually 
by the user as shown in section 2. 
As already mentioned, a Modelica language en-
hancement is under development to get rid of this 
unnecessary user input. The current plan is to intro-
duce the new dimension qualifier “each” and the new 
operator “uniqueElement(..)” to automatically pro-
vide a unique array index for objects. Examples: 
 Real vec[each,5,3]; 
 Real subvec[5,3] = uniqueElement(vec); 
 Real x[each]; 
 Real xv = uniqueElement(x); 

The following rules apply: 

(1) If a public array component, A, is declared using 
the subscript [each], e.g. Real A[each], it has the 
same access restriction as though it were protected 
except the "uniqueElement" operator can be applied 
to the array. This is the only allowed use of the 
uniqueElement operator and the only allowed use of 
the array name outside the declared scope. 
(2) The size of all array components with declared 
size [each] starts at zero and is then increased as fol-
lows. This is performed before size() of the array can 
be determined (e.g. to determine the size of other 
arrays). 
(3) For each use of the uniqueElement(..) operator 
the size of the array component is increased by one 
and a unique element of the array is referenced.  
These new language elements will allow an imple-
mentation where the unique collision object indices 
are automatically derived without requiring them 
from the user. This feature will be also useful for 
other purposes. 

4.2 Variant 1: Parametric surfaces 

The first implementation variant for the collision 
handling uses parametric surfaces. That is, the abso-
lute position vector r to each surface point is de-
scribed as a vector valued function of two parame-
ters, called α and β . 

( , )α β=r r  

Two tangent vectors eα and eβ are defined by partial 
derivatives from which the normal n to the surface 
can be computed: 

( )

( )

( )

,

,

,

α α

β β

α β

α β
α

α β
β

α β

∂= =
∂
∂= =
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= × =

re r
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n e e n

 

Both position and orientation of the surface patch 
close to a possible contact point are defined as func-
tions of α  and β . The tangential planes of two sur-
faces that are potentially colliding are constrained to 
be parallel, i.e., their normal vectors are parallel 
(quantities belonging to surface “a” are denoted by 
superscript “a”, e.g., ax ): 

1( , ) ( , ) 0a a a b b bα β λ α β+ ⋅ =n n  

Furthermore, the relative position vector of the con-
tact point candidates is constrained to be parallel to 
the surface normals: 

b a
2( , ) ( , ) ( , )b b a a a a aα β α β λ α β− = ⋅r r n  
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These constraints constitute 6 scalar equations in the 
unknown variables 1 2, , , , ,a a b bα β α β λ λ . These 
equations are in general nonlinear and have to be 
solved per each potential collision point pair. We 
may encounter computational problems since multi-
ple solutions may exist. For closed surfaces, at least 
4 different solutions exist (closest-closest, closest-
farthest, farthest-closest, farthest-farthest). A feasible 
solution must have a positive scalar product between 
the surface normal and the relative distance: 

( , ) ( ) 0a a a b aα β ⋅ − >n r r  

For convex surfaces, the solution of the above 
nonlinear system of equations, taking into account 
the inequality constraints, gives the two closest 
points when the bodies are apart. It is possible to 
track the correct closest points also for non-convex 
surfaces provided good starting values are given for 
the unknown variables. 
The local coordinate systems at these points as well 
as the relative position vector are illustrated below as 
rendered by Dymola during animation 
. 

 
Certain special surfaces such as ellipsoid, plane and 
parabola have been implemented as parameterized 
surfaces. It is easy to add other surfaces by defining 
corresponding parametric functions. 
An example for a non convex parameterized surface 
is shown below where a ball is thrown towards left 
on a “cosine” surface. 

 

The side view shows the trajectory of one point on 
the ball. The ball oscillates forth and back in the 

leftmost valley with the fixed point following the 
same path. 
The major drawback of closed parameterized sur-
faces is the occurrences of singular points. For ex-
ample, every closed surface has at least one singular 
point where the calculation of the normal vector fails 
because at least one of the tangent vectors becomes 
zero. For a sphere, these are the “north” and “south” 
pole of the sphere. Therefore, in general it is not pos-
sible to get a robust solution of the non-linear system 
of equations. For special cases where it is guaranteed 
that the singular points are outside of the operation 
region, a parametric surface might be used without 
re-parameterization, see, e.g., [12] that demonstrates 
collision handling of a CAM. However, for a generic 
collision handler, parametric surfaces are difficult to 
treat, since singular points require a re-
parameterization of the surface description. 

4.3 Variant 2: Algebraic constraint surfaces 

An alternative is to describe especially closed sur-
faces with constraint equations 

0 ( )h= r  

For example, a sphere can be defined by 
2 2 2( ) 1h x y z= + + −r  

An approximate representation of a box can be made 
by 

20 20 20( ) 1h x y z= + + −r  

and an approximation to a cylinder can be made by 
20 2 2 10( ) ( ) 1h x y z= + + −r  

as shown below. 

 
By choosing higher values of the exponent, the edges 
get sharper. It is possible to define cones and pyra-
mids as well by such closed formulas. However, it is 
difficult to find the closed formula for arbitrary sur-
faces.  
This representation allows the smooth normal to be 
calculated as the gradient 

( )( ) ( ) , ,
h h h

grad h
x y z

∂ ∂ ∂
= =

∂ ∂ ∂
 
 
 

n r r  

It should be noted that there are no singular points 
when using this surface representation. Inserting the 
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definition of the normals into the same constraint 
equations as used in variant 1, and considering the 
constraint equations for each surface, 8 scalar equa-
tions in the unknown variables 1 2, , ,a b λ λr r  are ob-
tained. Note, that start values are easier to give in 
this representation since the position vectors them-
selves are unknowns. 
This approach has the advantage to get smooth sur-
face descriptions. The drawback are the highly 
nonlinear equations closed to the edges, especially 
for high exponents. 
In both variant 1 and 2, partial derivatives of func-
tions defining the surfaces are required in the model 
code. This can be achieved by a special operator in 
the Modelica code and automatic differentiation. For 
details see, [12]. 

4.4 Variant 3: Collision handling with SOLID 

As a third variant, the collision detection of shapes 
and the computation of the penetration depth be-
tween shapes is performed with the software system 
SOLID 3.5 [3][2]. The SOLID software is free for 
non-commercial purposes. Commercial use requires 
a license. The SOLID software supports collisions 
between primitives such as spheres and cylinders, as 
well as between complex convex and non-convex 
objects described by a set of polytopes (point, line 
segment, triangle, tetrahedron, convex polygons, and 
convex polyhedrons). 
The software provides a good interface to define "re-
sponse functions" that are called when contact hap-
pens. In these response functions, contact forces and 
torques could be programmed. The disadvantage of 
this interface is that the integrator does not have in-
formation about occurred collisions and reduces the 
step-size around a collision only due to the sharp 
changes in contact response. Experiments showed 
that it is difficult to get a robust solution. In general, 
the integrator may stop for a corrector failure. The 
reason is that integrators require that the equations 
describing the system are continuous with a smooth 
first or higher derivative. At a contact point, these 
assumptions are not fulfilled and since the changes in 
the contact forces and torques are so drastic, it is un-
derstandable that an integrator may fail. This is also 
the reason why slight changes in the tolerances of the 
integrator or the tolerances of the contact detection 
may change the simulation time very significantly. 
For this reason, another interface of SOLID is used 
to explicitly compute either the distance of two ob-
jects or the penetration depth of two colliding ob-
jects. This allows to compute indicator functions for 
the root finder of an integrator, in order that an event 

is generated when contact occurs. The solution is 
more robust and usually more efficient than the solu-
tion with "response functions". 
The main disadvantage is that the calling environ-
ment has to perform all distance function calls by its 
own. In the current implementation a brute force 
method is used by computing the distances between 
all defined objects. The "broad phase" present in the 
"response function" interface of SOLID to reduce the 
number of distance tests significantly (based on 
"axis-aligned-bounding-boxes" approximations of 
the objects), is not present with the chosen "root-
finding" approach. This will be improved in the fu-
ture.  
The SOLID package uses a generalized version of 
the GJK algorithm [7] to compute the distances be-
tween convex polytopes in a finite number of steps 
and for other convex surfaces converges globally 
with a fast convergence rate. For the penetration 
depth calculation an algorithm is used that is based 
on similar principles as the GJK algorithm. Details 
are described in the book [2]. 
In order that the two algorithms can be applied, a 
"support mapping" of the corresponding surface is 
needed. This is a function sA that maps a vector n to 
a point on a convex shape A according to:  

sA(n) returns a point on the surface of A 
such that “n·sA(n) = max(n·r for all r in A)” 

This definition is visualized in the next figure for a 
cylinder:  

 
The arrow in this figure is vector "n" of the support 
mapping. This vector is proposed and changed by the 
distance and penetration depth algorithm. The "grey" 
shape in the figure above is a plane that is perpen-
dicular to "n" and is moved to the cylinder such that 
the plane touches the cylinder. The support mapping 
function has to return the coordinates of this touch-
ing point. If this is not unique, one of the points is 
returned. For a smooth surface this just means that a 
point r on the surface is defined as a function of its 
normal n: r = r(n). 
Due to this simple basic definition of a convex object 
via a support mapping, a user can introduce addi-
tional base shapes in a simple way.  
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The "penetration depth" algorithm adds in every it-
eration an additional edge to a simplex that defines 
the penetration volume. From this simplex, two 
points are selected in such a way that both points are 
on the surface of the respective shape and the dis-
tance between these two points is as small as possi-
ble. When moving the two collided objects along the 
connection line of these two points, until the two 
points coincide, then the two shapes are in touching 
contact. These two points are reported as result of the 
penetration depth calculation. The penetration depth 
is then the distance between these two points and the 
contact normal is on the connection line along these 
two points.  
The SOLID interface functions are used in the 
World.collisionHandler component that has the fol-
lowing basic structure: 
 equation 
   // Compute signed distances 
   (signedDistance, ...) =  
                     surfaceDistances(..); 
 
   // Generate event when distance is zero 
   for i in 1:nContactPairs loop 
     contact[i] = signedDistance[i] < 0.0; 
   end for; 
 
   // Contact response calculation 
   (frame_a_f, ...) =  
              contactForces(contact, ...); 

Function “surfaceDistances(...)” returns vector 
“signedDistance”. An element of this vector signals 
the shortest distance of two objects that are not yet in 
contact by a positive value. A negative element char-
acterizes the penetration depth of two objects that are 
in contact. The for loop in the code fragment above 
triggers events whenever two objects get in contact 
and whenever two objects are separating. Finally, the 
function “contactForces(...)” is used to perform the 
response calculation. It returns the resultant forces 
and torques acting at appropriate reference frames of 
the corresponding surfaces. 

4.5 Response calculation 

Contact forces and torques are applied when the rela-
tive distance along the normal vector is negative, 
signaling an interpenetration. As already shortly dis-
cussed in section 2, two different response calcula-
tions are provided: The first one uses simple 
spring/damper elements. The second one discretizes 
the contact area and a resultant response force and 
torque is computed by summation of appropriate 
forces over the contact area. This more precise calcu-
lation is currently under development. In the follow-
ing, the first option is discussed in some more detail: 

The response is computed according to the following 
equations: 
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where  
fn contact force in normal direction 
ft contact force in tangential direction 
τn contact torque in normal direction 
f resultant contact force 
t resultant contact torque 
s penetration depth (≤ 0) 
vn relative velocity in normal direction 
vt relative velocity in tangential direction 
ωn relative angular velocity in normal 

direction 
en unit vector in normal direction 
et unit vector in tangential direction 

 
In other words, a linear spring/damper element is 
used to compute the force in contact normal direc-
tion. In tangential direction a sliding friction force is 
taken into account, if the tangential velocity is larger 
as vmin. Below vmin, the friction force is reduced so 
that it is zero, when the tangential velocity becomes  
zero. Sticking is currently not implemented. For 
gripping operations, it is important to take into ac-
count the friction torque. This is accomplished by a 
linear rotational damper that is proportional to the 
normal force and the relative angular velocity.  Fi-
nally, all force and torque parts are summed up re-
sulting in the contact force and torque. Note, if the 
normal force would become positive since the damp-
ing part is too large, it is reduced to zero, since a 
positive normal force is physically not correct.  
For the equations above material constants are 
needed, e.g., for the spring and the dampers. How-
ever, only material data for the respective surfaces 
are provided. The correct solution would be to apply, 
say, (1) a spring/damper element on surface A using 
the material constants of surface A, (2) a 
spring/damper element on surface B using the mate-
rial constants of surface B and (3) connect the 
spring/damper elements of surfaces A and B in se-
ries. Due to the linear dampers, this would result in 
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The Modelica Association 52 Modelica 2005, March 7-8, 2005



additional differential equations depending on the 
number of contact points. To avoid complications 
and to enhance efficiency, the following approxima-
tion is used: A resultant spring constant is computed 
from the surface data under the assumption of a se-
ries connections of two springs. For all other data, 
mean values are used: 
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5 Outlook 

An overview was given, in which way the Modelica 
MultiBody library is extended with collision han-
dling. The current stage is already useful for applica-
tions. Development continues to improve the colli-
sion handling: 
• Using the “broad-phase” of SOLID to reduce the 

number of collision tests significantly. 
• Support more than one contact point between 

two surfaces. This is important for non-convex 
surfaces. 

• Optionally, provide a more detailed response 
calculation by discretization of the contact area. 

• Reduce the limitations of “*.dxf” files. 
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Abstract 

Bond graphs offer a domain-neutral graphical tech-
nique for representing power flows in a physical sys-
tem.  They are particularly powerful for representing 
systems that operate in multiple energy domains, 
such as thermal models of electronic circuits, me-
chanical vibrations in acoustic systems, etc.  A bond 
graph library was created for Modelica with graphi-
cal Dymola support.  The library is presented in this 
paper.  Applications from different domains are of-
fered to document its use. 
Keywords: bond graph; energy modeling; thermody-
namic modeling; Biosphere 2 

1 Introduction 

A bond represents the flow of power, P, from one 
point of a physical system to another. 

 
It is represented by a harpoon.  There are two physi-
cal variables associated with each bond, an effort, e, 
and a flow, f.  The product of these two variables 
represents the power: 

P = e · f 
In an electrical circuit, the effort variable is identi-
fied with the voltage, u, whereas the flow variable is 
identified with the current, i. 

In the electrical circuit: 

 

electrical power is being delivered from a voltage 
source to a resistor.  The corresponding bond graph 
is: 

 
where a source of effort, U0, delivers the electrical 
power, Pel = U0·i, to the resistor, R1. 

In our implementation, a third variable is also as-
sociated with each bond, a directional variable, d.  
This variable indicates the direction of positive 
power flow.  It is encoded by setting d = −1 at the 
emanating bondgraphic connector and d = +1 at the 
receiving connector.  The directional information is 
used in the computations associated with junctions. 

Bond graphs offer two types of junctions, the 0-
junction, and the 1-junction: 

 
In a 0-junction, the efforts are set equal, whereas the 
flows add up to zero: 

e[2:n] = e[1:n-1] 
d’ ·  f  = 0 

In a 1-junction, the flows are set equal, whereas the 
efforts add up to zero. 

f[2:n] = f[1:n-1] 
d’ ·  e  = 0 

Thus, the two junction types are duals of each other. 
In an electrical circuit, the 0-junctions corre-

spond to nodes, whereas the 1-junctions correspond 
to meshes.  We are now able to translate the circuit 
diagram of an arbitrary electrical circuit into a corre-
sponding bond graph. 
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2 Bond Graphs of Electrical Circuits 

Given the electrical circuit: 

 
we can represent each node, except for the ground 
node, by a 0-junction, and we can represent each cir-
cuit element connecting two nodes by a 1-junction, 
from which the circuit element is suspended.  The 
directions of positive power flows are chosen to co-
incide with the directions of positive current flow in 
the circuit diagram. 

For simplicity, let us first redraw the circuit dia-
gram with the ground node split into multiple sepa-
rate nodes. 

 
This circuit diagram can be translated directly into a 
corresponding bond graph: 

 
Since the ground potential, v0, is equal to zero, the 
bonds connecting to the ground don’t carry any 
power.  They can thus be eliminated. 

 
Finally, junctions with only two bonds attached to 
them can be amalgamated away.  Thus, the final 
bond graph can be drawn as follows: 

 

3 Causal Bond Graphs 

Since there are two physical variables associated 
with each bond, we need two equations to compute 
their values.  It turns out that each end of the bond 
computes one of the two variables.  We can mark the 
side that computes the flow variable by a short bar: 
the causality stroke. 

The Modelica Bond Graph Library offers causal 
and a-causal bonds.  Whereas the a-causal bonds 
were implemented as Modelica models, the causal 
bonds were implemented as blocks. 

We recommend using causal bonds as much as 
possible.  The causalities associated with bonds at-
tached to sources are fixed.  Since an effort source 
computes the effort, the causality stroke of its bond 
must be away from the source.  Since 0-junctions are 
characterized by a single flow equation, there must 
be exactly one causality stroke at a 0-junction.  Since 
1-junctions are characterized by a single effort equa-
tion, there are exactly n-1 causality strokes at a 1-
junction. 

Capacitors and inductances have preferred cau-
salities.  Since we like to end up with differential 
equations (integral causality), capacitors like to 
compute the effort, whereas inductors prefer to com-
pute the flow.  Thus the preferred position for causal-
ity strokes of bonds attached to capacitors is away 
from the capacitor, whereas the preferred position of 
causality strokes of bonds attached to inductors is at 
the inductor.  The causalities of resistive elements 
are free. 
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In the case of the given circuit, the preferred 
causality of all bonds is fixed.  The causal bond 
graph can be presented as follows: 

 
We are now capable of reading out the causal equa-
tions from the bond graph.  These are: 

u0 = f(t) 
i0 = iL + i1 
uL= u0 
diL/dt = uL / L 
v1 = u0 
u1 = v1 – v2 
i1 = u1 / R1 
v2 = uC 
iC = i1 – i2 
duC/dt = iC / C 
u2 = uC 
i2 = u2 / R2 

There is no advantage of using an a-causal bond 
graph instead of a circuit diagram when modeling an 
electrical circuit.  The two representations are totally 
equivalent to each other.  However, there is a certain 
advantage of using a causal bond graph, since the 
equations describing the circuit can be read out of 
the causal bond graph directly in their causal form. 

Of course, there is no need to ever use causal 
bonds in Modelica, as Modelica is perfectly capable 
of determining the computational causality of all 
equations on its own.  Yet, we recommend using 
causal bonds as much as possible, as they help the 
modeler in analyzing his or her model. 

4 Algebraic Loops and Structural 
Singularities 

When the mandated and preferred causalities of all 
elements do not lead to a single assignment of all 
causality strokes, the model contains one or several 
algebraic loops.  A-causal bonds must be used wher-
ever the causality assignment is free. 

On the other hand, if not all preferred causalities 
can be satisfied, i.e., when the causality stroke of a 
bond attached to either a capacitor or an inductor is 
located at the incorrect end of the bond, the model 
contains a structural singularity, i.e., consists of a 
higher-index DAE system.  Also in that case, a-
causal bonds should be used to give Modelica a 
chance to reducing the perturbation index on its own. 

5 A Hydraulic Motor Control System 

We wish to model the following hydraulic motor by 
a bond graph: 

 
In hydraulic bond graphs, it is customary to identify 
the pressure, p, with the effort variable, whereas the 
volumetric flow rate, q, is identified with the flow 
variable.  The product of pressure and volumetric 
flow is the hydraulic power. 

Due to the compressibility of the liquid, the 
change of pressure in each chamber is proportional 
to the difference between inflow and outflow.  In 
terms of a bond graph, this looks like a capacitor at-
tached to a 0-junction. 

The flows qi, qe1, and qe2 are laminar leakage 
flows.  They are proportional to the pressure differ-
ence.  Thus, they can be represented as linear resis-
tors. 

On the mechanical side, power can be written as 
either force times velocity or torque times angular 
velocity.  Among bond graph practitioners, it has 
become customary to identify the forces and torques 
with effort variables, and the velocities and angular 
velocities with flow variables. 

Newton’s law states that the change in velocity 
(or angular velocity) is proportional to the sum of all 
forces (or torques).  In terms of a bond graph, this 
looks like an inductor attached to a 1-junction. 
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The two domains are coupled by a transformer, 
as the force on the piston (or the torque on the screw, 
depending on the geometry of the motor) is propor-
tional to the difference between the pressures in the 
two chambers. 

We are now ready to draw the bond graph of the 
hydraulic motor: 

 
The two 0-junctions to the left and to the right repre-
sent the two hydraulic chambers with the pressures 
p1 and p2, respectively.  Each of them has been 
pulled apart into two separate 0-junctions connected 
by a bond for graphical reasons.  Same sex junctions 
neighboring each other can always be considered as 
a single junction.  The two capacitors symbolize the 
compressibility of the liquid.  The three resistors at 
the top half of the bond graph represent the leakage 
flows, one of which, qi, is an internal leakage flow, 
whereas the others, qe1 and qe2, are external leakage 
flows. 

The transformer, TF, separates the hydraulic 
from the mechanical side.  The inductor represents 
the inertia of the (rotational) screw, whereas the re-
sistor represents the friction of the screw.  The flow 
detector element, Df, detects the angular velocity, 
ωm, of the screw.  It converts the bond graph repre-
sentation to a signal. 

The hydraulic motor is controlled by a servo 
valve: 

 
The inflow pressure, ps, is the load pressure of the 
hydraulic motor.  The outflow pressure, p0, is the 
ambient pressure of the environment.  The four valve 
flows, q1, q2, q3, and q4, are turbulent flows.  Hence 
they are proportional to the square root of the pres-
sure difference.  In terms of a bond graph, they can 
be represented either as nonlinear resistors (R-
elements) or as nonlinear conductors (G-elements).  
Since the causalities are those of a conductive ele-
ment, we chose the latter representation to prevent 
Modelica from having to turn these nonlinear equa-
tions around symbolically. 

All four valve flows are modulated by the posi-
tion of the tongue, x. 

We are now ready to draw the bond graph of the 
servo valve: 

 
The tongue position, x, is an input signal.  It influ-
ences the bond graph by means of modulation of the 
four hydraulic conductance elements. 

We still need to model the motion of the tongue 
of the servo valve: 

F. Cellier, À. Nebot
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The tongue of the servo valve is an electromechani-
cal converter.  The input signal, u, modulates an ef-
fort source that generates a magnetic field in a coil.  
The magnetic field induces a mechanical force in the 
tongue that is proportional to the current through the 
coil.  Thus, the converter can be modeled as a bond-
graphic gyrator, GY.  Whereas a transformer sets the 
output effort proportional to the input effort (and the 
input flow proportional to the output flow), the gyra-
tor sets the output effort proportional to the input 
flow (and the input effort proportional to the output 
flow). 

We are now ready to draw the bond graph of the 
device: 

 
The modulated effort source translates the signal, u, 
to a power flow.  The 1-junction to the left of the 
gyrator symbolizes the electrical mesh.  The inductor 
here represents the coil, whereas the resistor repre-
sents the electrical resistance. 

The gyrator converts the electrical power, Pel = 
ui · i, where ui is the induced voltage, to mechanical 
power, Pmech = f · v.  The 1-junction to the right of 
the gyrator symbolizes the velocity of the tongue.  
The inductor here represents the mass of the tongue, 
the resistor represents the mechanical damper, and 
the capacitor represents the mechanical spring. 

We could have attached a flow detector, Df, to 
the 1-junction to detect the velocity of the tongue.  
We could then have integrated the resulting signal to 
obtain the tongue position, x.  Yet, we chose another 
route.  The tongue position, x, is proportional to the 
spring force.  Thus, we can use an effort detector, 
De, to detect the spring force.  However, an effort 
detector needs to be attached to a 0-junction.  To this 

end, an additional 0-junction was placed between the 
1-junction and the capacitor. 

We are now ready to model the control circuit: 

 
From the outside, the control circuit looks like a 
regular block diagram.  However, three of the blocks 
have been modeled by bond graphs internally. 

6 The Thermal Budget of Biosphere 
2 without Air-conditioning 

As a second example, we shall model the thermal 
behavior of Biosphere 2, an experimental research 
facility located in the vicinity of Tucson, Arizona, 
without air-conditioning by means of bond graphs. 

Rather than using a bottom-up approach, as we 
did in the previous example, we shall this time 
around use a top-down approach. 

Biosphere 2 was designed as a materially closed 
structure to investigate the ability of humans to sur-
vive in a materially closed structure for extended 
periods of time.  The main idea was to investigate 
whether space colonies are feasible with today’s 
technologies. 

 
Biosphere 2 was constructed as a large glass building 
on 3 acres (12.000 m2).  The structure is held to-
gether by a metallic frame construction and is closed 
off by glass panels. 

The structure contains a number of different bi-
omes.  The pyramidal structure to the right contains a 
tropical rain forest. The elongated structure to the 
left contains a pond, a savannah, saltwater marshes 
with mangroves, and a southwestern desert land-
scape. 
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The air pressure inside Biosphere 2 is kept constant 
by two lungs, one of which is shown below: 

 
The lungs operate as follows.  A heavy cement ceil-
ing is suspended from the dome by a rubber flange.  
The bottom part of the lung is inside the materially 
closed structure, whereas the top part is outside air. 

 
When the temperature inside Biosphere 2 rises, the 
inside pressure increases as well.  Consequently, the 
ceilings in the two lungs are lifted up, thereby in-
creasing the total volume of Biosphere 2.  In this 
way, the inside pressure remains the same as the am-
bient pressure irrespective of the temperature. 

Although air-conditioning keeps the temperature 
and humidity values different in the different biomes, 
Biosphere 2 was modeled by us as a single structure 
with one inside temperature and humidity. 

 
There are a number of different elements in that 
model: the inside air, the dome, the pond, the vegeta-
tion, and the soil, each of which are allowed to be at 
a different temperature.  Only the inside air also con-
tains humidity. 

In a bond graph, thermal power, i.e., heat flow, 
can be written as the product of temperature and en-
tropy flow.  It is customary to identify the tempera-
ture with the effort variable, and the entropy flow 
with the flow variable. 

Each of the five elements is represented as a 0-
junction with a (non-linear) capacitor attached to 
represent the heat capacity of the element.  Heat 
flows between the elements are represented as non-
linear resistors modeling physical effects such as 
convection and radiation. 

The inside air is represented by two separate 0-
junctions, one modeling the temperature of the air, 
the other modeling its humidity.  Non-linear resistors 
between the thermal and humidity junctions are used 
to model the effects of evaporation (conversion of 
sensible heat to latent heat) and condensation (con-
version of latent heat to sensible heat). 

A conceptual model of Biosphere 2 is shown be-
low: 
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The Modelica Association 62 Modelica 2005, March 7-8, 2005



Each black dot represents a modeling element, i.e., a 
0-junction with a heat capacity attached to it.  The 
flows between these modeling elements are repre-
sented by two-port elements modeling the effects of 
conduction, convection, radiation, evaporation, and 
condensation. 

The model starts in the upper right corner with 
the simulation clock.  The ambient temperature and 
the apparent temperature of the night sky are com-
puted by tabular look-up functions. 

The temperature values are then converted to 
power flows by the use of modulated effort sources.  
Temperature sources are physically dubious, but it is 
okay to use them here, since the model doesn’t con-
tain any physical explanation as to how the environ-
ment reaches its temperature.  The temperature val-
ues are simply being observed. 

Since the dome is in physical contact with the 
outside air, convection takes place across the dome.  
Furthermore, the dome is exposed to diffuse radia-
tion from and to the sky. 

The 0-junction representing the dome was split 
into two separate 0-junctions connected by a bond 
for graphical reasons.  The thermal capacitor at-
tached to the 0-junction computes the temperature of 
the dome. 

Biosphere 2 is also exposed to direct solar radia-
tion.  The Solar Input model, symbolized by the sun, 
computes the position of the sun in the sky, and 
thereby computes the total amount of direct solar 
radiation input reaching the Biosphere 2 structure. 

Since the different glass panels have many dif-
ferent orientations, it would have been computation 
intensive to calculate accurately the amount of radia-
tion that gets transmitted, absorbed, and reflected by 
each of the glass panels.  Thus, a much more global 
approach was taken.  It is assumed that roughly 60% 
of the solar input gets transmitted across the glass 
panels, 20% gets absorbed by them, whereas the fi-
nal 20% get reflected to the outside. 

The Glass1, Absorption, and Glass2 models rail-
road the available solar input to the individual ele-
ments, where they arrive in the form of flow (en-
tropy) sources.  The vegetation, soil, and inside air 
absorb all of the arriving solar input.  The pond ab-
sorbs some of it, and reflects the rest.  The reflected 
solar input is partly absorbed by the inside air, and 
partly reaches the dome again from the inside, where 
it is partly absorbed, and partly transmitted back out. 

Thus, a global balance approach was used to 
model the direct solar input.  The end effect is that 
each of the 0-junctions representing the five different 
modeling elements has a modulated flow source at-
tached to it that models the amount of direct solar 
input absorbed by that element. 

7 Convection 

Let us now look at the processes of convection be-
tween modeling elements.  Since the air-conditioning 
was left out of the model, there are no forced flows.  
Thus, the convection is simply driven by temperature 
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differences, i.e., by potential equilibration.  This is a 
resistive phenomenon. 

 
The two 0-junctions symbolize the two modeling 
elements that exchange heat among each other.  
They are at the temperature values, T1 and T2, respec-
tively. 

The 1-junction between them computes the tem-
perature difference, ∆T, which drives the entropy 
flow. 

The problem with this model should become 
evident at once.  What happens with the power flow 
into the resistor?  It may make sense to model with 
resistors in an electrical circuit, because we may not 
care about the entropy that is being generated by the 
resistor.  However here, we are operating already in 
the thermal domain.  Additional entropy is being 
generated by the resistor, and this entropy needs to 
be routed somewhere. 

It has become customary to replace thermal re-
sistors by resistive source elements, RS, and route the 
generated entropy to the nearest 0-junction.  The so 
modified bond graph is shown below: 

 
As convection is a symmetric phenomenon, we could 
alternatively route half of the generated entropy flow 
to the right and the other half to the left: 

 
Finally, we may choose to route the generated en-
tropy down-wind, i.e., if T1 > T2, all of the generated 
entropy flow is routed to the right, otherwise to the 
left. 

To this end, we shall require a flow detector and 
two switch elements: 

 
The bondgraphic switch element, Sw, has a Boolean 
input.  If that input has a value of true, the switch is 
open, i.e., there is zero flow.  In that case, the causal-
ity stroke is at the switch element.  On the other 
hand, if the Boolean input has a value of false, the 
switch is closed, and in that case, there is zero effort.  
Thus by now, the causality stroke has moved away 
from the switch.  Hence a-causal bonds must be used 
at the switches. 

Since the 1-junctions must have n-1 causality 
strokes, another bond must also change its causality.  
This has to be the bond that leads to the resistive 
source element, RS. 

8 Conclusions 

In this paper, a bond graph library has been intro-
duced that was designed to be used with Dymola.  
Since bond graphs are a graphical modeling tool, it 
may be much less desirable to use this library with 
Modelica alone, i.e., in an environment that is based 
on an alphanumerical representation of models. 

This is already the second presentation of the 
Modelica Bond Graph Library.  An earlier paper [4] 
had been prepared for a conference on bond graph 
modeling.  Thus, whereas the earlier paper had been 
prepared for an audience that knew a lot about bond 
graphs, but little if anything about Modelica and/or 
Dymola, the current paper was written for an audi-
ence that is expected to be knowledgeable about 
Modelica and Dymola, but probably knows little if 
anything about bond graphs. 

An earlier presentation of the Biosphere 2 model 
was published in [5].  The model presented in that 
paper had been developed using a much earlier ver-
sion of Dymola, prior to the design of Modelica.  At 

F. Cellier, À. Nebot
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that time, a strictly alphanumerical version of a bond 
graph library had been used [1]. 

Bond graphs offer a fairly low-level interface to 
modeling physical systems.  Thus, bond graphs 
should be used hierarchically in the context of com-
plex systems [2].  The Biosphere 2 model demon-
strates how bond graphs can be hierarchically struc-
tured.  The hydraulic motor example demonstrates 
how bond graphs can be hidden inside other model-
ing metaphors, such as block diagrams. 

The primary strength of bond graphs is their do-
main independence.  For this reason, bond graphs are 
particularly suitable for the description of physical 
systems that operate in multiple energy domains.  
Energy conversions can be modeled easily and con-
veniently using transformers and gyrators. 

As with any other modeling paradigm, there is 
nothing unique about bond graphs.  Every single one 
of our models could have been developed using other 
modeling paradigms as well.  Modeling paradigms 
offer a means for modelers to organize their knowl-
edge about the physical systems they wish to de-
scribe.  Some researchers will find bond graphs a 
convenient way to organize their knowledge, 
whereas other researchers won’t.  To us, bond graphs 
have become the ultimate tool for understanding the 
basic principles covering all of physics [3]. 
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Fuel Cell System Modeling for Real-time Simulation
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Abstract

In this paper a model of a subsystem of an automo-
tive fuel cell power generation unit is presented. The
subsystem model describes the cathode side of the fuel
cell, containing the air supply system. As far as possi-
ble, standard libraries were used to accomplish a high
level of compatibility with other models. The model
runs in real-time on dSPACE hardware and is used in a
Hardware-In-the-Loop (HIL) simulation environment.
Keywords: fuel cell, automotive simulation, real-time
simulation, hardware-in-the-loop

1 Introduction

In the context of future vehicle development, models
are needed for the simulation of the fuel cell system
and its periphery. These models are used for off-line
system simulation as well as for HIL simulation with
respect to controller development. Most of the exist-
ing models are built upon MATLAB/Simulink. The
model which is presented in this paper serves partic-
ularly in the evaluation of object-oriented modeling
in Modelica as an alternative to modeling in MAT-
LAB/Simulink. Apart from modeling potentialities,
flexibility and simulation performance, the code ad-
ministration is also relevant in this context.
In figure 1 a sketch of the modeled subsystem is
shown, which covers the cathode side of a PEM fuel
cell system. The fuel cell is supplied with compressed
and cooled air. Due to the electro-chemical reaction in
the stack, the rate of oxygen in the air is reduced and
at the same time the air takes up the major part of the
reaction water. Heat is rejected by means of a cooling
medium. The remaining pressure difference between
the stack outlet and the environment is used in an ex-
haust gas turbine. Therefore, and to recover reaction
water, liquid water is dragged from the air in a separa-
tor. Using the recirculation valve, air can be led back

∗joerg.ungethuem@dlr.de

Figure 1: Sketch a the fuel cell subsystem to simulate

directly to the entrance of the compressor. Compres-
sor and exhaust gas turbine are mounted together with
an electrical drive engine on a common shaft.

2 Model design

The model covers the process engineering part of the
system, whereby the focus has been the description of
the thermodynamic behavior. The mechanical part is
built up with simple models, the fuel cell stack is re-
alized as thermal inertia and a source of heat and hu-
midity. The model realistically reproduces the most
important influences on the dynamic behavior of the
system. These are the volumes and thermal capacities
of the components and the inertia of the common shaft
of compressor, exhaust gas turbine and electrical ma-
chine. The top level of the model is shown in figure 2.
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Figure 2: The Modelica system model

3 Aspects of real-time simulation

3.1 Toolchain

As the model is used in context of HIL simulation on
a dSPACE system, it has to run in real-time on the tar-
get. To enable real-time simulation of potentially stiff
models, Dymolas inline integration approach is used
[1]. The model is embedded as a S-function into a
simple Simulink wrapper model (figure 3) using Dy-
molas Simulink interface block. The MATLAB Real-
Time Workshop and the dSPACE target compiler are
needed to compile the compounded Simulink model.
Visualization is realized using the dSPACE Control-
Desk program.

3.2 Real-time model requirements

The central requirements of real-time modeling are de-
terministic computing time and high computing speed.
In order to provide a deterministic computing time, it-
erative solution algorithms should be avoided. High
computing speed is reached by keeping model equa-
tions as simple as possible.

3.2.1 Avoidance of nonlinear sets of equations

Nonlinear sets of equations must be solved by itera-
tion, if they cannot be eliminated symbolically. How-

ever, this leads to bad performance of the simulation.
In real-time simulation the situation is even worse, be-
cause the iteration can prevent the deterministic solu-
tion behavior which is required. On the other hand it
is not strictly necessary to avoid any implicit equation.
As long as the required number of iterations is moder-
ate, real-time requirements can be fulfilled anyway.

3.2.2 Use of simple medium models

The evaluation of medium properties in thermody-
namic models can take up a major part of the com-
puting time. Therefore properties should not be for-
mulated more complicated than absolutely necessary.
In particular numeric problematic functions, e.g. loga-
rithm, high polynomial degrees and broken exponents
should be avoided. Within the implementation extra-
ordinary care must be put on good performance and
numeric stability. Using Horner’s scheme instead of
the pow() function for polynomial evaluation might
be mentioned as an example.

3.2.3 Properties and state variables

In most cases, thermodynamic variables of state are
also state variables of the model. The medium proper-
ties should be present as explicit, fast evaluable func-
tions of the actual set of state variables. Therefore, the
choice of the variables of state depends on the used
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Figure 3: The Simulink wrapper model

states derivatives

p, ρ ∂ρ
∂h |p,

∂ρ
∂p|h

ρ, T ∂u
∂ρ |T , ∂u

∂T |ρ

Table 1: Extra 2nd order derivatives needed in trans-
formed balance equations

property model. Most property models are explicit in
densityρ and temperatureT or enthalpyh and pres-
surep. As a result the thermodynamic balance equa-
tions should be formulated in such a way that either
density and temperature or enthalpy and pressure are
computed by differential equations. Since in the pri-
mary form of mass and energy balance densityρ and
internal energyu are calculated, these equations must
be transformed. The transformed balance equations
contain additional partial differentials of the thermo-
dynamic state variables, which must be computed in
the property model (table 1, [7]).

3.2.4 Avoidance of numeric Jacobians

Numerical Jacobian approximation is a common
source of instability and inaccuracy. In Dymola nu-
meric Jacobians are used only if the necessary partial
derivatives cannot be computed symbolically. There
are few cases where symbolic derivative generation is
not possible yet:

• external functions (library calls, calls to routines
written in C or Fortran)

• Modelica functions with the exception of one-
liners (at least up to Dymola 5.2)

However, the necessary derivatives can be provided
explicitly by the user [4].

3.2.5 Avoidance of numerically disadvantageous
functions

Some mathematical built-in functions are problem-
atic in numeric simulations. The square root func-
tion and the logarithm function have limited definition
ranges, the derivation of the root function has an ad-
ditional singularity at zero. These functions should be
avoided or should be replaced by smooth approxima-
tions. Note, due to the symbolic equation treatment,
the inverse functions of the above can also lead to trou-
ble.

3.2.6 Avoidance of redundant events

Due to event propagation events require additional
evaluations of the set of equations, which can lead to
injury of the computing time restriction [2]. Events
can be avoided if discontinuous equations and func-
tions are replaced by continuous approximations.

4 Selection of Modelica libraries

An aim of the project is to use standard libraries as far
as possible to achieve good compatibility with other
models. Apart from proprietary developments [6] the
ThermoFluid library [7] and in particular the new li-
braries Modelica.Fluid and Modelica.Media [3] are of
special interest. Although the Modelica.Fluid library
is still in an early development state, this library was
selected as the base library. Modelica.Fluid itself is
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based on the Modelica.Media library. As an unique
feature Modelica.Fluid allows the implementation of
models which are in fact medium-independent. In or-
der to achieve good performance, the formulation of
the thermodynamic balance equations must be adapted
to the material property routines. In the ThermoFluid
library this adaption is done explicitly by the user, as
a suitable state transformation is selected. In the new
Modelica.Fluid library this transformation takes place
automatically via skillful use of the index reduction al-
gorithm.
The Modelica.Fluid library is currently under con-
struction. Substantially components like discretized
pipes or control valves are still missing. Neverthe-
less the library is already usable. The interfaces (con-
nectors), a control volume and throttling devices are
already available. The Modelica.Media library is al-
ready developed further. Property models for ideal
gases, several models for water (among other the
IAPWS97 formulation [8]) are implemented. Mix-
tures are implemented likewise. However, these could
not be used because of implementation problems in
the version that was used. The library already offers
a sufficiently good documentation including a tutorial,
which makes the implementation of additional prop-
erty models possible.

5 Component library

To implement the fuel cell subsystem model outlined
in chapter 1, component models like heat exchanger,
mixer, separator, compressor and exhaust gas turbine
are needed. These component models go beyond the
scope of the Modelica.Fluid library. Therefore, a new
component library ModelicaFluidX is built on basis of
Modelica.Fluid. The structure of the library is shown
in figure 4. Due to the level of development of the base
libraries, structure and implementation are still subject
of change. The library is developed aiming real-time
applications.

5.1 The CommonFunctions folder

The folder CommonFunctions was taken over from
the ThermoFluid library. The functions were partly
redesigned as one-liners in order to ensure their au-
tomatic differentiability. As an example the function
ThermoRoot is shown. The actual Modelica code was
generated using the C Preprocessor:

function ThermoRoot
"Square root function with cubic

Figure 4: The ModelicaFluidX component library

spline interpolation near 0"
input Real x;
input Real deltax;
output Real y;

algorithm
/ *
// pipe this through ’cpp -P -’ to
// generate Modelica one-liner below
#define adeltax abs(deltax)
#define C1 (5/(4 * adeltaxˆ(0.5)))
#define C3 (-1/(4 * adeltaxˆ(2.5)))
algorithm

y := noEvent(if (x > adeltax)
then sqrt(x)
else
if (x < -adeltax)
then -sqrt(-x)
else (C1

+ C3* x* x) * x);
// EOF

* /
y := noEvent(if (x > abs(deltax))

then sqrt(x)
else
if (x < -abs(deltax))
then -sqrt(-x)
else ((5/(4 * abs(deltax)ˆ(0.5)))

+ (-1/(4 * abs(deltax)ˆ(2.5))) * x* x) * x);
end ThermoRoot;

The function extends the root function into the range
of negative arguments and avoids the singularity of
the 1st derivative in the origin (see figure 5). In con-
trast to the implementation in the ThermoFluid library,
this version can be differentiated automatically. As
side effect the restriction to constant approximation
radii of the original implementation is void. Since
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Figure 5: The ThermoRoot library function

the function is continuously differentiable, the auto-
matic event generation can be suppressed by using the
noEvent() function.

5.2 The Interfaces folder

The library uses mainly the container models which
are available in Modelica.Fluid. However these are not
always sufficient, so additional interfaces must be pro-
vided. This applies especially for the discretized mod-
els, since Modelica.Fluid does not offer vectorized in-
terfaces yet.

5.3 The Components folder

The Components folder contains the subfolder Base-
Components and SubComponents. The first contains
abstract base models for components, the second con-
tains component models, which are used only within
other components. To give an idea of the level of im-
plementation, some component models are discussed
more explicitly.

5.3.1 The LongPipeS model

Hence Modelica.Fluid does not contain a useful model
of a discretized pipe, a provisional model was imple-
mented, which consists of a variable number alternat-
ing successively arranged control volumes and throt-
tling devices. These two components are available as
JunctionVolume and ShortPipe in Modelica.Fluid. In
contrast to the more sophisticated implementation in
the ThermoFluid library only the stationary impulse
balance is implemented. For convenience, the model

Figure 6: The SimpleHeatExchanger model

has an additional n-dimensional fluid connector. Us-
ing this connector, mass or heat can be transferred to
each individual control volume.

5.3.2 The SimpleHeatExchanger model

The simple model of a heat exchanger consists of two
LongPipeS models, the model of a massless wall and
two very simple convection models. The models of
the wall and of the convection are implemented in the
subfolder SubComponents and can be replaced easily,
if e.g. the thermal capacity of the wall has to be consid-
ered. On the other hand, the designs for heat exchang-
ers are so various that generally appropriate abstract
models can hardly be indicated.

5.3.3 The SimpleCompressor and SimpleEx-
pander models

For compressors and exhaust gas turbines abstract base
models are implemented. The models consider the
volumes, the heat capacities and the rotating masses
of the machines. The individual behavior of a machine
is usually available as characteristic diagrams of mass
flow and efficiency. These characteristics are imple-
mented as replaceable class parameters, so that arbi-
trary machines can be modeled. The characteristic di-
agrams can take off either only the stationary or also
the dynamic behavior of the machine. In most cases
only stationary characteristics from measurements are
available.
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Figure 7: The BaseCompressor model

6 Medium properties

For the computation of the medium properties the
Modelica.Media library is used. This library does
not contain any model suitable for fuel cell systems
computation yet. A model for humid air is needed,
whereas both, the humidity and the gas composition
are variable. The implementation of such a property
model is already possible within the Modelica.Media
library, this, however, did not succeed due to gen-
eral problems concerning the mixture models. As a
temporary solution the single component model Sim-
pleAir is used, whereas the restriction of the tempera-
ture range was waived. This model is well suitable for
real-time simulation in particular because of the sim-
ple implementation with constant heat capacity. With
the exception of the compressor outlet the temperature
of the air remains below 100oC. In order to simu-
late the humidification and the drying process of air, a
crude workaround is implemented into some compo-
nent models. The heat of the condensation is com-
puted directly in the component model and the ab-
solute humidity of the medium is passed on as signal
to the following component.

7 Simulation of the model

The model which is shown in figure 1 consists of 1761
unknowns, 704 time-varying variables and 31 contin-
uous time states. To enable offline tests, some sim-
ple controllers were added to the model. Thus a sys-
tem startup was simulated using the Dassl variable step
solver. The timetable of the system startup is shown in
table 2. In figure 8, 9, 10 some results are arranged.
For simulation of the startup process with the Dassl

time action
t = 0 s The desired pressure ratio is set to 2.2,

compressor and turbine starts.
t = 5 s The stack begins to deliver heat and

water.
t = 7 s The recirculation valve begins to open.
t = 8 s The recirculation valve reaches 25 %

opening.
t = 10 s Simulation stops.

Table 2: Simulation of the system startup

Figure 8: Simulation of system startup: angular veloc-
ity of common shaft

solver 1.01 s CPU time was used on a Intel Centrino
1400 MHz. During the entire starting process 16 state
events occurred.
For comparison the same model was simulated using
the mixed implicit/explicit Euler inline solver. The
startup with angular velocity at zero is not possible in
this case due to a division by zero. In figure 11 and
12 the deviations between the two simulation runs are
shown. The difference between the simulation results
is with exception of the very beginning less than ap-
proximately 2 %. Larger differences occur in the case
of fast changes of the system states.

8 Real-time simulation on the
dSPACE HIL target

The system model (figure 2) is inserted into a simple
Simulink wrapper model (figure 3) and compiled with
the help of the MATLAB Real-Time Workshop for a
dSPACE target. The model runs with a stepsize of
2 ms on a dSPACE DS1005 PPC board in real-time.
On the target, a certain number of overruns must be al-
lowed, since in particular during the startup phase sev-
eral overruns arises. Note, such adjustment is not pos-

J. Ungethüm

The Modelica Association 72 Modelica 2005, March 7-8, 2005



Figure 13: Screenshot of dSPACE ControlDesk with running simulation on a DS1005 target

Figure 9: Simulation of system startup: mass flow rate
through compressor, exhaust gas turbine and recircu-
lation valve

sible on any arbitrary real-time hardware. On various
real-time platforms an overrun is a fatal error which
aborts the simulation. In figure 13 a screen shot of the
running simulation is shown. The two gages show the
number of revolutions of the common shaft and the
mass flow through the compressor. Right beside the

Figure 10: Simulation of system startup: air tempera-
ture at humidifier and separator, compressor, exhaust
gas turbine and heat exchanger outlet

temperature in the compressor discharge line and in
the outlet of the fuel cell are shown. Above the task
counter, the number of overruns, the sample time and
the actual turnaround time are indicated. The simula-
tion clock is shown in the upper left corner. Although
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Figure 11: Comparison of simulation results using
Dassl solver and fixed-step inline integration: differ-
ence of compressor mass flow

Figure 12: Comparison of simulation results using
Dassl solver and fixed-step inline integration: differ-
ence of compressor outlet temperature

the mean turnaround time is more than 75 % (ca. 1.5 -
1.8 ms) of the sample time, overruns are rare after the
startup phase.

9 Conclusion

On basis of a relatively simple model substantial re-
quirements for real-time modeling of fuel cell systems
in Modelica were worked out. Using the Dymola in-
line integration approach it is possible to use Modelica
models in the HIL simulation on dSPACE hardware.

The generation and compilation of the target code with
the help of the MATLAB Real-Time Workshop is a
complex and expensive solution. Direct generation of
the target executable without any MATLAB tools is al-
ready possible, but should be better supported by Dy-
mola.
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The Modelica Association 74 Modelica 2005, March 7-8, 2005



FuelCellLib - A Modelica Library for Modeling of Fuel Cells 
Miguel A. Rubio+, Alfonso Urquia*, Leandro González+, Domingo Guinea+, Sebastian Dormido* 

+ Instituto de Automática Industrial (IAI), CSIC 
Ctra. Campo Real, Km. 0,200 – La Poveda, 28500 Arganda del Rey, Madrid, Spain 

E-mail: {marubio, leandrog, domingo}@iai.csic.es 

* Departamento de Informática y Automática, E.T.S. de Ingeniería Informática, UNED 
Juan del Rosal 16, 28040 Madrid, Spain 

E-mail: {aurquia, sdormido}@dia.uned.es 
 
 
 

Abstract 
The design, implementation and use of FuelCellLib 
library are discussed. FuelCellLib is a Modelica 
library for the dynamic modeling of fuel cells (FC). 
It is intended to be used for: (1) enhancing the 
understanding of the physical-chemical phenomena 
involved in the fuel-cell operation; and (2) 
optimizing the performance of the fuel cells. 
Physical phenomena are modeled using different 
hypotheses, in order to allow different levels of 
detail in the fuel-cell description. FuelCellLib 
version 1.0 (release on January, 2005) is free 
software, and it will be available on the website of 
the Modelica Association. 
 

1 Introduction 
During the last decades, the planet has been suffering 
a serious environmental decay, partially due to the 
use of fossil fuels. As a consequence, a great effort is 
being made to find alternative sources of energy. The 
fuel-cells (abbreviated: FC) constitute an alternative 
source of energy for automotive and residential use. 
The modeling and simulation of the fuel-cells is an 
active research field. Some existing fuel-cell 
libraries, developed by otˆ#��authors, have been 
implemented by using causal simulation languages 
(for instance, SIMULINK [1]) and fluid-dynamic 
simulation programs [2]. However, these approaches 
do not facilitate the modeling task and the model 
reuse.  
The approach adopted in the FuelCellLib 
implementation is different. In order to facilitate easy 
upgrade and reuse of the models, it has been 
designed and programmed following the object-
oriented modeling methodology. 
 

FuelCellLib is not the only library for fuel-cell 
modeling written in Modelica language. The library 
implemented by Steinmann and Treffinger is 
presented in [3]. Its models are intended for 
describing the steady-state behavior of the fuel cells, 
and they do not take into account the dependence 
with the spatial coordinate. On the contrary, 
FuelCellLib models are intended for describing the 
dynamic behavior, taking into account the spatial 
coordinate. The FuelCellLib modeling hypothesis 
are discussed next. 
 

2 Fuel-cell design and operation 
The fuel-cell is composed of the following seven 
fundamental parts: the active layers, the diffusion 
layers, the terminals of the anode and the cathode, 
and the membrane (see Fig. 1). 
The membrane is placed between the catalytic layers 
of the anode and the cathode. Protons migrate 
through the membrane, from the anode to the 
cathode, along with water. Generally, the proton-
exchange membranes are made of Nafion, which 
guarantees a high protonic conductivity. 
 

 
Figure 1: Schematic representation of PEMFC 
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Usually, the catalyst employed in the active layer is 
platinum. A small percentage of ruthenium is added, 
in order to inhibit the poisoning effect of the carbon 
monoxide. The catalyst is mixed with coal and 
electrolyte. This catalytic ink is usually deposited 
over the surface of the anode and cathode diffusion 
layers. 
The diffusion layers are made of porous material to 
allow the gases and water transport to the catalytic 
layer. In addition, this diffusion material needs to be 
a good electric conductor, to allow the flow of 
electrons between the collector plates and the 
catalytic layers. The diffusion layer is usually 
manufactured from coal, paper or cloth. Their 
conductivity and their resistance to corrosion make 
these materials adequate. 
The collector plates are made of metallic material or 
non-porous coal. The three fundamental 
characteristics of these materials are the following: 
(1) their high electric conductivity; (2) their capacity 
to maintain a tight cell; and (3) their ability to allow 
the correct distribution of reagents through the 
channels. 
 

3 Phenomena modeled 
The most outstanding phenomena of PEMFC (i.e., 
fuel cells with combustible hydrogen) take place in 
the cell cathode [4,5]. The physical-chemical 
phenomena modeled in FuelCellLib include the 
following (see Fig. 2): 
Membrane: 
- Transport of water in liquid and steam phase. 
- Protonic conduction.  
Catalytic layer of cathode: 
- Transport of water in liquid and steam phase. 
- Transport of oxygen in steam phase. 
- Protonic and electronic conduction. 
- Electro-catalytic reaction. 
 

 
Figure 2: Species involved in the FuelCellLib model of PEMFC 

 
 

Diffusion Layer of cathode: 
- Transport of water in liquid and steam phase. 
- Transport of oxygen in steam phase. 
- Electronic conduction. 
Therefore, the FuelCellLib models include the 
following physical-chemical phenomena: the 
diffusion of gases in porous media, the electronic 
and protonic conduction and electrochemical 
reactions. The method of finite volumes is applied 
for discretizing the PDE. 
In addition, the FuelCellLib models can be used to 
simulate the steady-state behavior [6] of the fuel 
cells along their complete range of operation. For 
instance, the polarization curve (I-V) of a fuel cell 
model, composed using FuelCellLib, is shown in 
Fig. 3. The three operation areas (A, B and C) are 
indicated in the figure: A) fall due to the activation 
losses; B) fall due to the ohmic losses; and C) fall 
due to the mass transport at high current value. 
The FuelCellLib models are based in physical-
chemical principles. The balances of the species (i.e., 
water, oxygen, protons and electrons) are enunciated, 
in each physical layer of the fuel cell, by means of 
the definition of control volumes. 
The properties of the medium inside the control 
volume are considered time-dependent, but 
independent of the spatial coordinates. The control 
volumes exchange the different species with their 
environment through certain control planes. All the 
interactions between the control volumes are 
considered transport phenomena in FuelCellLib. The 
physical layers of the fuel cell (i.e., the membrane 
and the catalytic and diffusion layers of the cathode) 
are modeled by decomposition into control volumes, 
which are connected to each other by means of 
transport phenomena. 
 

 
Figure 3: Polarization curve simulated using FuelCellLib 
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These control volumes and transport phenomena can 
be modeled with different levels of detail, i.e., using 
different modeling hypothesis. A feature of the 
FuelCellLib models of control volumes and transport 
phenomena is that they describe different modeling 
hypotheses. This allows the model user to select the 
set of hypothesis to be used in a particular simulation 
run. 
 

4 Modeling hypotheses 
The following considerations and approaches are 
taken in the model  
- The FC model is composed of the membrane, the 

catalytic layer of the cathode and the diffusion 
layer of the cathode. 

- The mixture of gases is considered an ideal gas. 
- The flow speed and the gradients of gas pressure 

are considered small. 
- The diffusion electrodes and the catalytic layer 

have a porosity and a homogeneous tortuosity, 
with a single pore size, which relates to the 
considerations of the macro-homogeneous 
model [9,10]. 

- The electrodes, the catalytic layer and the 
membrane are considered isotropic and 
homogeneous. This is equivalent to consider that 
the catalyst is evenly distributed in the catalytic 
layer. 

- The model is one-dimensional. The variables 
change in the direction of the normal to the 
surface of the membrane and the electrodes. 
This direction is the x axis. 

- The temperature of each cell layer is considered 
uniform. Nor the Joule effect for movement of 
species, neither the heat obtained in the 
electrochemical reaction, is taken into account. 

- The movement of the gases is due to the 
concentration gradients and to the gas pressure 
in the electrodes. 

- The overvoltage of the anode is considered 
negligible. 

- The models are dynamic. They should be able to 
represent time-dependent behaviors. 

- The proton concentration inside the membrane is 
considered constant. 

- The crossover of oxygen in the membrane is not 
modeled. 

- The library user is allowed to choose among the 
following four mutually exclusive hypotheses: 

 

• Pseudo-capacitance of double layer in catalyst 
layer. 

• Pore size dependence in Knudsen diffusion. 
• Electro-Osmotic drag effect in electrolyte. 
• Variable electrolyte conductivity with water 

load. 
 

5 Modeling equations 
The equations used to model the three fundamental 
physical parts of the PEMFC are described in this 
section. 
The thermodynamic open-circuit voltage is 
calculated [9] from Eq. (1). 
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5.1 Diffusion layer equations 
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The pore equations are common to all physical 
layers. The pore volume, calculated from Eq. (3), 
depends on the load of water of the porous material. 
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where max
sχ  is the maximum load of water of the 

porous media. It depends on the pore volume. In the 
diffusion layer, the term that corresponds to the 
volume of the electrolyte material does not exist. 
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The total volume of any layer is equal to the sum of 
the pore, the solid and the electrolyte volumes, as 
shown in Eq. (5). 
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- Balance of  gaseous H2O 
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where OHp
2

 and OH
gJ 2  are the pressure and the 

flow of water in steam phase respectively. 
The condensation and evaporation of water are taken 
into account in the water balance equation. The two 
phases are considered to be in balance, and it 
depends on the specific surface of the porous media. 
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The saturation pressure can be calculated from Eqs. 
(7-8). It essentially depends on the temperature. 
- Balance of liquid H2O 
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where sρ  is the density of the solid and OHM
2

 is 

the molar mass of water. sχ  and OH
lJ 2  are the load 

and flux of liquid water respectively.  
- Transport of  gases 
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the term τ  represents the tortuosity of the porous 
material, cp  is the complete pressure and ikD  is the 
binary diffusion coefficient. 
The gas flow is described by Eq. (10). It depends on 
the following two phenomena: the Stefan-Maxwell 
diffusion and the Knudsen diffusion. 
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The binary diffusion coefficient [7] can be calculated 
from Eq. (11). ref

cp  is the reference pressure and 
refT  is the reference temperature used to measure 

the binary diffusion coefficient. 
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The Knudsen diffusion coefficient can be calculated 
from Eq. (12) or (13). In the first case, it is 
considered a constant [8]. In the second case, it 
depends on the pore size. The library user has to 
choose one of these two modeling hypotheses. 
- Transport of liquid H2O 
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where the term OHD
2

 corresponds to the diffusion 
coefficient of the liquid water in the porous media. 
The flow of liquid water is produced by a gradient in 
the load of liquid water. This is equivalent to assume 
that the superficial diffusion is predominant [4]. 
- Electronic conduction 
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where sV  is the voltage of solid, eJ  the electronic 
current and sσ is the electronic conductivity of the 
solid. 
The electronic conduction depends on the 
conductivity of the solid diffuser and the porosity of 
the porous media. 
 
5.2 Catalytic layer  
- Balance of gas O2 
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The right term of the equation constitutes the oxygen 
balance in the catalytic layer. The last term 
represents the effect of the electrochemical reaction. 
- Balance of gas H2O  
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In Eq. (16) and (17), the balance of water in the 
catalytic layer depends on the electrochemical 
reaction. 
- Transport of liquid H2O 
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Two alternative modelling hypotheses are supported. 
The user has to decide whether include in Eq (18) or 
not the electro-osmotic drag term shown in Eq. (19). 
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The liquid water flow depends on: (1) the 
concentration gradient of liquid water; and (2) the 
electro-osmotic drag, which is due to the proton 
conduction produced inside the active-layer 
electrolyte. The coefficient of electro-osmotic drag 
can be calculated from Eq. (20). This equation is also 
valid for the electro-osmotic drag in the membrane. 
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Eq. (20) is determined experimentally. The electro-
osmotic drag mainly depends on the water content of 
the membrane [10]. Eq. (21) is also empiric [11]. 
The user needs to choose between Eq. (20) and (21). 
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The electro-osmotic drag coefficient depends on the 

3SOL  term. This term is a function of the load of 

water in the electrolyte. Two possible expressions 
are considered in the library. The first one is the 
constant value shown in Eq. (22), which has been 
calculated from saturated water vapor at 30ºC. The 
second one is the expression shown in Eq. (23), 
which takes into account the dependence with 
respect to the water load. 

- Protonic conduction  
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mpp ε−=                      (24) 

 
where eV  represents the electrolyte voltage , pJ  the 

protonic current, pK  the protonic conductivity and 

mε  the electrolyte volume. 

The protonic conduction is produced by a voltage 
gradient in the protonic conductive material.  
- Electrochemical reaction 
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where i0 is the exchange current in open circuit, acta  

is the specific active surface in catalytic layer , 2
0

Op  
is the reference partial pressure of oxygen, α  is the 
transfer coefficient  of charge in cathode y Dη  is the 
overvoltage between the solid and electrolyte. 
Eq. (25) is the Butler-Bolmer expression of the 
electrochemical reaction. The anode contribution can 
be neglected [1,4,5].  
The model allows the user to choose between Ec. 
(25) or (26). The pseudo-capacitance is considered in 
Eq. (26) [1]. 
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The term eJ∇  in Eq. (26) is calculated from Eq. 
(25). dlC  is the capacitance of the double layer 
between the solid and the electrolyte. 
The characteristics of the macro-homogeneous 
model lead to an underestimation of the overvoltage 
effect associated to the defect of mass in high current 
densities. To characterize this phenomenon we 
introduce in the model Eq. (27), (28) and (29). 
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where A is the active surface of the catalytic layer. In 
the macro-homogeneous model, δ  defines the 
thickness of the catalytic layer [12]. 
The balance equations of the liquid water, the 
transport of gases and the electronic conduction are 
similar to the correspondent equations of the 
diffusion layer. 
  
5.3 Membrane 
- Balance of gas H2O 
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- Balance of liquid H2O 
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- Transport of liquid H2O 
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- Transport  of gas H2O 
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- Protonic conduction 
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The model supports two alternative hypotheses. The 
first one is to consider constant conductivity, as 
shown in Eq. (35). The second one is to consider the 
effect of the water load on the conductivity of the 
electrolyte [10], as shown in Eq. (36).  

6 Library structure 
The hierarchical structure of FuelCellLib library is 
represented in Fig. 4. In addition, FuelCellLib 
includes models for experimenting with the fuel-
cells. For instance, it contains the model of a binary 
pseudo-random signal generator of electric load. 
These components are used to perform for dynamic 
analysis of the fuel-cell. For instance, the voltage of 
a FC, which has been connected to a step-signal 
generator of electric load, is shown in Fig.5. 
The electric parts of FuelCellLib models can be 
connected to the models of the Electrical package of 
the Standard Modelica library. This feature allows 
combining the use of FuelCellLib and other 
Modelica libraries. 
The structure of the library allows the user to choose 
among different modelling hypotheses. This 
selection is performed by setting the value of certain 
model parameters. This structure facilitates 
extending the library with new alternative 
hypotheses, and also comparing the dynamic 
behavior of the models built by using the different 
hypotheses. 
             

 
Figure 4: Packages and models of FuelCellLib 

 

 
Figure 5: Effect of step load in the cell voltage. Dynamic 

simulation. 
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Four sets of alternative hypotheses are supported by 
FuelCellLib. Different hypotheses leads to different 
dynamic behaviour of the model (see Figs. 6 and 7). 
Two case studies are presented in this work: (1) the 
simulation of two physical layers (membrane and 
active layer); and (2) the simulation of the three 
physical layers (membrane, active and diffusion 
layer). The results are discussed in the next section. 
 

7 Validation of library 
PEMFCs and DMFCs are developed in the 
Renewable Energy Laboratory of the Industrial 
Automatic Institute (IAI) of CSIC (see Fig. 8). These 
fuel-cells have been employed to carry out the 
experimental validation of the FuelCellLib library. 
The simulation results obtained using FuelCellLib 
agree with the theoretical and the experimental data. 
A simulated polarization curve, obtained using 
FuelCellLib, and experimental data, measured from 
a PEMFC manufactured in the I.A.I, are shown in 
Fig. 9. 
 

 
Figure 6: Dynamic simulation of voltaje of FC with a psuedo-
capacitance hypothesis dependence (- - -) and without psuedo-

capacitance hypothesis dependence (___).  
 

 
Figure 7: Dynamic simulation of flux of water in membrane with 
electro-osmotic drag hypothesis dependence (- - -) and without 

electro-osmotic drag hypothesis dependence (___).  

 

 
 

Figure 8: Fuel-cell (left) developed in the Renewable Energy 
Laboratory of the Industrial Automatic Institute (IAI) of CSIC, 

Madrid, Spain (right) 
 

 
Figure 9: Experimental and simulated polarization curve, exp. 

(o), model (- -), (2x105 Pa of O2, T= 340ºK). 

 
Simulation results using FuelCellLib are shown in 
Fig. 10. They can be compared with the results 
obtained using the model of K.Broka [5] (see Fig. 
11). Both results predict the fall of the oxygen 
concentration along the catalytic layer, and how the 
fall is bigger as the current increases.  
Simulation results obtained using FuelCellLib are 
compared in Fig. 12 with the experimental data 
presented by J. Larminie [13]. Both predict the effect 
of the Tafel slope on the polarization curve (see 
Fig.12). 
The simulated voltage of the fuel-cell, obtained in 
response to a step change in the load, is shown in 
Fig. 5. It agrees with the experimental data provided 
by J. Larminie [13]. 
In addition, FuelCellLib can be used to predict 
phenomena which can not be measured 
experimentally. For instance, the effect of flooding 
of the cathode, (see Fig. 13), the water load in the 
catalytic layer and the membrane. The production of 
water in the catalytic layer, associated to the 
diffusion in the catalytic layer and the membrane, is 
shown in Fig. 13. 
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Figure 10: Pressure of oxygen along the catalyst layer with 
three different current density, 12mA/cm2 (. . .), 90mA/cm2 

(- - -), 230mA/cm2 (___); (2x105 Pa of O2, 340ºK). 
 

 
Figure 11: Oxygen pressure in the cathode in x axis in K.Broka 

model, (.....)250, (- - - -) 500, (_ _ _ ) and 1000 (____)  mA /cm2. 
 

 
Figure 12: Influence of Tafel slope in polarization curve (I-V) in 

the library (---150mv),(__200mv). 

 
Figure 13: Water load in cathode along the x axis. 

 

 
Figure 14: Effect of limit current  in polarization curve (. . .) no 
limit current dependence, (- - -) limit current with no pressure 

dependence, (___) limit current with pressure dependence.  
  

 
The effect of the limit current on the polarization 
curve, simulated using FuelCellLib is shown in Fig. 
14. 
The simulated polarization curves (see Fig.3, 9, 12, 
14) are obtained by reaching a stationary value in the 
dynamic simulation of the models. 
 

8 Conclusions 
FuelCellLib has demonstrated to be useful for 
improving the understanding of the phenomena 
involved in the fuel-cell operation. The object-
oriented design of the library facilitates the 
extension, modification and reuse of its code. In 
addition, the library structure facilitates introducing 
new modelling hypotheses and comparing the results 
obtained by using these different hypotheses. The 
code of the library models is easy to understand by 
other developers. 

 
9 Future works 
Future releases of the library will support the 
following capabilities: (1) 2D and 3D models, which 
allow to represent in a detailed way the fluid-
dynamics phenomena; (2) new modeling hypotheses 
that describe the electro-catalytic phenomena with 
higher level of detail, such as the thin film or 
agglomerate models; and (3) new models to simulate 
DMFC (direct methanol fuel cell) and SOFC (solid 
oxide fuel cell). 
Finally, we will be able to obtain a greater quantity 
of experimental data of the FCs, to achieve a more 
detailed experimental validation of the library. 
 

M. Rubio, A. Urqúıa, L. González, D. Guinea, S. Dormido

The Modelica Association 82 Modelica 2005, March 7-8, 2005



References 
 
[1] M.Ceraolo, C.Miulli, A.Pozio, Modeling static 

and dynamic behaviour of PEMFC on the 
basis of electro-chemical description, J. Power 
Sources 113 (2003). 

[2]  A.Kumar, R.Reddy, Effect of channel 
dimensions and shapes in the flow-field 
distributor on performance of PEMFC, J. 
Power Sources 113 (2003). 

[3]  W.D.Steinmann, P.Treffinger, Simulation of 
Fuel Cell Powered Drive Trains, Modelica 
WorkShop 2000 Procedings.  

[4] D.Bevers, M.Wöhr, K.Yasuda, K.Oguro, 
Simulation of polymer electrolyte fuel cell 
electrode.J.Appl.  Electrochem.27 (1997). 

[5] K.Broka, P.Ekdunge, Modelling the PEM fuel 
cell cathode,  J.Appl.  Electrochem.27 (1997). 

[6] J.Larminie, A.Dicks, Fuel Cell Systems 
Explained, Wiley 2000. 

[7] A.A.Kulikovsky, Fuel Cells 2001,1(2). 
[8] V.Gurau, H.Liu, S.Kakac,AIChE J.2000 

46(10). 
[9] D.M.Bernardi, M.W.Verbrugge, J. 

electrochem. Soc. 139,9 (1992). 
[10] T.E.Springer, T.A.Zawodzinsky, 

J.Electrochem.Soc. 138 (1991). 
[11]   S.Dutta, S.Shimpalee, J.Appl.Electrochem. 

(2000), 30(2). 
[12] D.B.Genevey, Thesis, F.V.P.I. (2001). 
[13] J. Larminie, A.Dicks, Fuel Cell System 

Explained, Wiley (2000). 

FuelCellLib - A Modelica Library for Modeling of Fuel Cells

The Modelica Association 83 Modelica 2005, March 7-8, 2005



The Modelica Association 84 Modelica 2005, March 7-8, 2005



A Metabolic Specialization of a General Purpose 
Modelica Library for Biological and Biochemical Systems 

Emma Larsdotter Nilsson and Peter Fritzson 
Linköpings universitet, PELAB – Programming Environment Laboratory 

Department of Computer and Information Science, SE-581 83 Linköping, Sweden 
{emmni,petfr}@ida.liu.se 

Abstract 

In the drug industry the later a substance is discharged 
from the drug development pipeline, the higher the 
financial cost. In order to reduce the number of lead 
compounds a number of systems have been suggested, 
and in most of these systems modeling and simulation 
of the lead compound’s effects on different metabolic 
pathways are essential. In these systems, substances 
that are expected to be harmful or lethal can be re-
moved at an early stage. Consequently, a reduced 
number of promising lead compounds can be chosen 
for the concluding tests. 
Given Modelica’s previous success with huge and 
complex systems it is likely that it will also be suitable 
for modeling, simulation, and visualization of meta-
bolic pathway systems, i.e., those systems used in the 
drug industry. A Modelica library designed to be used 
for modeling, simulation, and visualization of meta-
bolic pathways is the special-purpose library Meta-
bolic, an extension of the abstract Modelica library 
BioChem.  
KEYWORDS: Metabolic pathways, pathway model-
ing, pathway libraries, template models, BioChem, 
Metabolic. 

1 Introduction 

There is currently a great interest in the development 
of novel analytical technologies for rapid screening of 
biological dysfunctions in pharmaceutical and clinical 
applications. In the drug industry the later a substance 
is discharged from the drug development pipeline, the 
higher the financial cost. Not only is it costly to test 
many substances, the price of the tests increase along 
the development pipeline. Minimizing the number of 
substances that are fully tested, i.e., becoming lead 
compounds, is therefore one of the most important 
aims of all pharmaceutical discovery programs [1].  
In order to reduce the number of lead compounds a 
number of systems have been suggested, out of which 
some have been realized [2-5]. In most of these sys-

tems modeling and simulation of the lead compound’s 
effects on different metabolic pathways are included. 
A metabolic pathway can be seen a complex web 
made up out of several hundred substances and more 
than twice as many reactions. Substances that are ex-
pected to interact in a harmful or lethal way with es-
sential metabolic pathways can be removed at an early 
stage and a reduced number of promising lead com-
pounds can be chosen for the concluding tests. 
In theory, simulations of a single or a few intercon-
nected pathways can be useful when the metabolic 
pathways under study are relatively isolated from each 
other. In practice, even the simplest and most well-
studied metabolic pathways can exhibit complex be-
havior due to connections in-between different levels 
of the whole-cell or whole-organism system.  
In light of this, the need for a consistent framework for 
modeling, simulation, and visualization of metabolic 
pathways is quite obvious. The object-oriented ap-
proach for large scale systems has previously been 
proven successful in many areas and there is no reason 
to believe that it should not be useful for metabolic 
pathway systems.  
Given Modelica’s previous success with huge and 
complex technical, physical, electrical, and thermody-
namic systems it is likely that it will also be suitable 
language for modeling, simulation, and visualization 
of metabolic pathway systems. 
So far two Modelica libraries for biological and bio-
chemical applications have been specified. The first 
library, BioChem, is an abstract general-purpose li-
brary for biological and biochemical systems. The 
BioChem library is not intended, nor designed to be 
used directly for creating models and running simula-
tions. The intention with the library is to provide some 
common basic behaviors, attributes, and environ-
mental properties to be used in special-purpose librar-
ies. 
The second library, Metabolic, is a special-purpose 
library extended from the partial models in BioChem. 
Metabolic is designed to be used for modeling, 
simulation, and visualization of metabolic pathways. 
The models specified in the library describe basic sub-
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stances and general reactions that are common in 
metabolic pathways. 
Provided with the reactions in Metabolic it is possi-
ble to build a library of metabolic pathway templates. 
The idea is that these general model-templates can 
easily be extended and adapted to concrete species-
specific models. The concrete models can then be used 
in standalone and connected simulations of metabolic 
pathways.  

1.1 Outline 

Modelica has so far mainly been used to model techni-
cal, physical, electrical, and thermodynamic systems. 
Hence the area of biology and biochemistry might be 
somewhat unfamiliar to some of the readers. For those 
readers not familiar with some basic concepts and no-
tions in biological and biochemical science this paper 
will first give an introduction to the area of research. 
The reader will be acquainted with the concept of see-
ing the cell as a system and the different levels within 
this system. A short overview of the data used for 
modeling and simulation of metabolic pathways is also 
given. The readers who are familiar to the information 
presented in the first part of the paper can skip to the 
fourth section where the work on using Modelica for 
modeling, simulation, and visualization of biological 
and biochemical systems is presented. 
The second part of the paper starts with pointing out 
the most significant reasons to use Modelica for bio-
logical and biochemical systems, i.e., the benefits of 
performing modeling and simulation of such systems 
using Modelica. Subsequently the development of the 
two Modelica libraries, BioChem and Metabolic will 
be in focus, i.e., out-lining the basic design idea be-
hind the two libraries and the environment that they 
have been developed in. From here on, the paper is 
concerned with the details of the two libraries and 
their use. The paper is concluded with some conclu-
sion of the work done so far, and some future work 
and possible improvements. 

2 Introduction to the Area of Re-
search: The Cell as a System 

During the past ten to fifteen years the development 
and introduction of new analytical techniques in the 
area of biology and biochemistry have greatly in-
creased the amount of experimental data obtained 
from experiments performed in the area. Automated 
DNA sequencing, microarray-analysis of gene expres-
sions, and protein profiling are just a few of the meth-
ods that have made a significant contribution to the 
extensive amount of data available. The obtained data 
can be useful in modeling, simulation, and visualiza-

tion of cellular processes, addressing the whole chain 
of processes starting with DNA, on to the transcription 
of DNA into RNA, further on to the translation of 
RNA into proteins, and finally all the way to the end-
concentrations of proteins. 

2.1 Chemical Reactions 

A chemical reaction involves one or more transforma-
tions of one or several substances, called substrates, 
resulting in one or several new substances, called 
products. A reaction can be either irreversible, mean-
ing transforming substrate into product, or reversible, 
meaning not only transforming substrate into product 
but also the other way around. Strictly speaking, all 
reactions can be seen as reversible, but for irreversible 
reactions the re-transformation of substrate into prod-
uct is essentially so small and/or slow that it is ig-
nored. A reversible reaction can also be seen as two 
separate irreversible reactions. 
Nature’s struggle to reach balance is the driving force 
for all chemical reactions. The speed with which this 
balance is reached is highly dependent on the envi-
ronment surrounding the substrates in question. A spe-
cific set of substrates, physical variables, and other 
substances present during the reaction should always 
result in the same reaction type, progress, and result as 
long as all the initial values and conditions are the 
same. 

2.2 Reaction Networks 

A number of sequential and/or parallel substance 
transformations can be arranged into a graph, with the 
edges representing the reactions and the nodes repre-
senting the substances. Depending on the reaction in 
focus most of the substances in a network can function 
both as substrates and products. Each reaction network 
will have in-flows and out-flow points, which in turn 
can be viewed as the substrates and products of a reac-
tion network at a higher level. At this higher level, 
several of the more specialized reaction networks can 
be connected through these in-flows and out-flows to 
form a large super-network. 

2.3 Metabolic Pathways in Cells 

Cells are the basic building blocks of all living organ-
isms. No matter if the cells are part of a multi-cellular 
organism, or constitute uni-cellular organisms, the 
processes inside them do not differ greatly. A cell’s 
metabolism involves the uptake, decomposition, and 
rebuilding of different compounds and can be seen as 
several complex webs transporting matter and energy. 
These complex webs, made out of several hundred 
substances and more than twice as many reactions, are 
referred to as cellular or metabolic pathways e.g. the 
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Starch and sucrose metabolism, the Glycolysis, the 
Gluconeogenesis, and the Citrate cycle (Figure 1). 
Many of the reactions participating in these pathways 
are more or less the same in all cells, while others are 
highly dependent on the species, the type of cell, or 
even on the individual that the cell belongs to. 
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Figure 1. The metabolic pathway Citrate cycle for Bak-
ers yeast (Saccharomyces cerevisiae). The enzymes that 
control the metabolic reactions are connected to the reac-
tion arrows and shown in italic. The circles represent 
substances that participate in the pathway. 
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Figure 2. The metabolic pathway Citrate cycle for Bak-
ers yeast (Saccharomyces cerevisiae) seen as a sub-
system. The dark circles represent substances that are 
connection points to other metabolic pathways while the 
light circles represent substances that are internal with 
respect to the metabolic pathway. (Compare to Figure 1.) 

Most of the reactions in these pathways are, in one 
way or another, controlled by enzymes, i.e., proteins. 
Proteins are the result of the transcription of DNA into 
RNA, and the subsequent translation of RNA into 
amino acid sequences. Enzymes (Figure 1) can either 
activate or inhibit the reaction in question and the 
amount of a protein in the cell is controlled by the ex-
pression of the gene that codes for that specific pro-
tein. One of the greatest challenges in the area right 
now is to figure out which proteins interact with which 
reactions and then try to find the corresponding coding 
gene in the DNA for these proteins. 

Some of the reactions in these metabolic pathways are 
already well-known as well as mathematically defined. 
Other parts of these pathways are more or less unde-
termined, ranging from not being fully mathematically 
defined to not being fully discovered yet. 
Each metabolic pathway is highly compartmentalized  
with a few in-flows and/or out-flows that can be con-
nected to preceding and following metabolic path-
ways, e.g. the Starch and sucrose metabolism is a pre-
ceding pathway and the Citrate cycle is a following 
pathway of the Glycolysis while the Gluconeogenesis 
is both a preceding and following pathway of the Gly-
colysis (Figure 3). 

 
Figure 3. Interconnection of the four metabolic path-
ways, the Starch and sucrose metabolism, the Glycolysis, 
the Glucogenesis and the Citrate cycle. More pathways 
do connect to each one of the four pathways, but for sim-
plicity these have been edited out. 

2.4 Levels in the Whole-cell System and Multi-
cellular Systems  

The connection of all possible metabolic pathways for 
a cell will result in a fully functional system level in 
the whole-cell system, i.e., the metabolic level. But in 
order to understand and get a complete view of the 
entire whole-cell system one needs to look beyond the 
metabolic level. Apart from the metabolic level the 
whole-cell system also contains a gene-expression 
level. The latter level involves not only the transcrip-
tion of DNA into RNA and the subsequent translation 
of the RNA into proteins, i.e., enzymes involved in 
metabolic reactions, but also all interactions in-
between DNA, RNA, and proteins. Interactions in-
between metabolites, i.e., substances taking part in the 
metabolic reactions, and DNA, RNA, and proteins are 
also considered to some extent at this level. Figure 4 
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provides a somewhat simplified view of the two levels 
of the whole-cell system. 

 

Figure 4. The whole-cell system with the gene-
expression and the metabolic levels. 

Beyond the whole-cell system there is a meta-level of 
different kinds of multi-cellular systems that all in-
volves some kind of interchange of substances, and/or 
communication. Cellular specializations and/or differ-
entiations are common in multi-cellular organisms and 
the assembly of them can be referred to as an organ-
ism level. Both uni-cellular and multi-cellular species 
can be part of large aggregated multi-species system, 
i.e., ecological systems. 

3 Data Used for Modeling and Simu-
lation of Metabolic pathways 

Much of the data regarding metabolic pathways ob-
tained through experiments and analysis is accessible 
in different public and commercial reference data-
bases. In order to be able to model metabolic pathways 
one needs to know the participating substances and the 
reactions in-between them. The organization of entire 
blocks of metabolic pathways can be found in human-
curated maps in public databases, i.e., KEGG [6] and 
BioCarta’s “Proteomic Pathway Project” [7]. The 
equations specifying the reactions can, however not be 
found in those maps. This information can instead be 
retrieved from databases that provide data on individ-
ual enzymatic reactions, i.e., BRENDA [8] and EMP 
[9], and in databases that provide data on multi-step 
metabolic pathways, i.e., MPW [10] and Eco-
Cyc/HumanCyc [11].  

Although all the above resources together represent a 
good general reference in the work of modeling and 
simulation of metabolic pathways, they also have sig-
nificant limitations. The usually non species-specific 
information causes many errors and inconsistencies, 
and in many cases the amount of data that can be 
found for a pathway is not enough for building accu-
rate pathway models [12]. Yet another problem with 
these databases is that the data contained in different 
databases might be inconsistent. But even with the 
mentioned limitation it is still possible to perform 
modeling and simulation of metabolic pathways with 
the information provided by the above resources. 

4 Benefits of Using Modelica for Bio-
logical and Biochemical Systems 

Biological and biochemical systems can often easily 
be described using mathematical relations and expres-
sions. This makes the equation-based Modelica [13] a 
suitable programming and modeling language for 
modeling of such systems. First of all, Modelica 
classes are acausal, i.e., can adapt to more than one 
data flow context [14], which is a great benefit when 
dealing with chemical reactions where the flow of 
matter can move in two directions. 
The complexity of biological and biochemical models 
can be rather high, containing several hundreds of 
items. However, this will not be a problem since Mod-
elica’s strength as a modeling language for complex 
technical systems is well proven [15]. 
Moreover, Modelica’s strong software component 
model also makes it ideal as an architectural descrip-
tion language for complex systems [15], e.g. metabolic 
pathway webs. It is also possible to model both dis-
crete and continuous systems, as well as hybrids 
thereof [14]. Especially hybrid systems are quite com-
mon in the subject area of biology and biochemistry. 
Finally, since the complexity of the biological and 
biochemical models can be rather high. Since Mode-
lica is an object-oriented language the realization of 
the several hundreds of items within a metabolic 
pathway will be greatly facilitated through instantiat-
ing only a few basic components. 

5 Development of the Libraries 

5.1 Development Environment 

The BioChem and Metabolic libraries have been 
developed using the MathModelica [16, 17] environ-
ment that consist of the Dymola kernel [18], the 
Mathematica notebook environment [19], and the 
graphical Model Editor.  
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In the MathModelica environment the Modelica code 
along with the documentation for each library is inte-
grated in Mathematica notebooks. This does not only 
make it easier for non-computer science users to navi-
gate the code, it also facilitates for these users to write 
their own Modelica classes. The Model Editor is a 
graphical drag-and-drop interface currently based on 
Microsoft Visio [20]. The user creates models in the 
graphical environment by dragging and dropping 
components from existing model libraries onto the 
diagram area and then connecting them in a suitable 
manner. Models can also be created in the Mathe-
matica notebook textual environment, but the models 
must then first be transferred to the Model Editor in 
order to get a graphical view of the model.  
Once a model has been created it can either be trans-
ferred to a notebook for further processing and docu-
mentation or simulated in the simulation environment 
provided by MathModelica. The Dymola kernel han-
dles the simulations by receiving, compiling, and exe-
cuting the model. The result from the simulation can 
then be presented with different types of diagram. The 
parameters and the initial values of the model can also 
be altered in-between simulations. 

5.2 Basic Idea of Library Design 

The design idea behind the BioChem library is to cre-
ate a general purpose Modelica library for modeling 
and simulation of biological and biochemical systems 
(Figure 5). 

 

Figure 5. Simplified view of the structure of the Bio-
Chem and the Metabolic libraries. 

The BioChem library is not intended, nor designed to 
be used directly for creating models and running simu-
lations, but rather to provide some common basic be-
haviors, attributes, and environmental properties to be 

used in special-purpose biological and biochemical 
libraries. With the basic features provided in BioChem 
it is easy to create new special-purpose libraries with-
out extensive addition of new code. 
So far the Modelica library Metabolic is the only 
library to use the features provided by BioChem 
(Figure 5). The design idea behind Metabolic was to 
create a special-purpose Modelica library for model-
ing, simulation, and visualization of metabolic path-
ways, i.e., modeling, simulation, and visualization of 
the metabolic level in cells. The classes implemented 
in Metabolic describe substances and reactions that 
can take place in-between these substances in a di-
verse number of metabolic pathways. 

5.3 The BioChem library 

Most substances and reactions, respectively, have 
some common basic features. For instance, all sub-
stances must have a concentration and all reactions 
must have at least one substrate and one product. The 
design objective behind the BioChem library is to col-
lect these basic features of substances and reactions 
along with units, compartment properties, and other 
attributes that are commonly used in these kinds of 
systems in a general-purpose biological and biochemi-
cal Modelica library.  

 
package BioChem 
  package Units  
    "Units used in sub-packages of BioChem"  
  end Units; 
  package CompartmentProperties  
    "Properties for compartments used in sub-libraries"  
  end CompartmentProperties; 
  package Icons  
    "Icons used in the package"  
  end Icons; 
  package ConnectionPoints  
    "Connector interfaces used in sub-libraries"  
  end ConnectionPoints; 
  package ReactionNodes 
    "Reaction nodes"  
    package Basics 
      "Basic components for reaction nodes in the package" 
    end Basics; 
    package Substances 
      "Partial models for substances in sub-libraries" 
    end Substances; 
  end ReactionNodes; 
  package Reactions  
    "Reaction edges"  
    package Basics  
      "Basic compnents for reaction in the package "  
    end Basics; 
    package ReactionTypes  
      "Reaction types for reactions in sub-libraries"  
    end ReactionTypes; 
  end Reactions; 
  package Metabolic 
    "Package for metabolic cellular reactions" 
  end Metabolic; 
end BioChem; 
 

Figure 6. Structure of the BioChem library. 

In order to avoid recreating model code for the basic 
features of substances and reactions for each new 
Modelica library for biological or biochemical systems 
these features can instead be collected in one library. 
Along with substances and reactions it is also practical 
to define a default environmental container in which 
the substances are contained and where the reactions 
can occur. From the visualization’s point of view it is 
also practical to define some default interfaces and 
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icons which later might be replaced in each sub-
library. Not only the icons and interfaces are designed 
to be easily changed and/or replaced, most of the 
classes in BioChem are designed in such a way that 
they easily can be extended, and some parameters can 
also be replaced. The structure of the package is 
shown in Figure 6. 
Due to the design of BioChem some restrictions on the 
types of systems that BioChem can be used for arise. 
The systems that the classes in BioChem can be used 
for are only those biological and biochemical systems 
that contain chemical reactions. Only for those sys-
tems fully functional models that can be used for 
simulation can be specified. 

 
within BioChem; 
package Metabolic  
  "Package for metabolic cellular reactions" 
  package Units  
    "Units used in the package"  
  end Units; 
  package Compartments  
    "Different types of compartments used in the package"  
  end Compartments; 
  package Substances  
    "Reaction nodes"  
  end Substances; 
  package Reactions  
    "Reaction edges"  
    package Kinetics  
      "Kinetic reactions"  
      package UniUni  
        "A->B kinetic reactions"  
      end UniUni; 
      package UniBi  
        "A->B+C kinetic reactions"  
      end UniBi; 
      package UniTri  
        "A->B+C+D kinetic reactions"  
      end UniTri; 
      package BiUni  
        "A+B->C kinetic reactions"  
      end BiUni; 
      package BiBi  
        "A+B->C+D kinetic reactions"  
      end BiBi; 
      package BiTri  
        "A+B->C+D+E kinetic reactions"  
      end BiTri; 
      package TriUni  
        "A+B+C->D kinetic reactions"  
      end TriUni; 
      package TriBi  
        "A+B+C->D+E kinetic reactions"  
      end TriBi; 
      package TriTri  
        "A+B+C->D+E+F kinetic reactions"  
      end TriTri; 
    end Kinetics; 
    package SBML  
      "Reactions pre-defined in SBML" 
      package MichaelisMenten  
        "Michaelis-Menten kinetics reactions"  
      end MichaelisMenten; 
      package Hill  
        "Hill kinetics reactions"  
      end Hill; 
      package Activation  
        "Activation kinetics reactions"  
      end Activation; 
      package Inhibition  
        "Inhibition kinetics reactions"  
      end Inhibition; 
      package Modifier  
        "Modifier kinetics reactions"  
      end Modifier; 
      package Misc  
        "Miscellaneous SBML-defined reactions"  
      end Misc; 
    end SBML; 
  end Reactions; 
end Metabolic; 
 

Figure 7. Structure of the Metabolic library. 

5.4 The Metabolic library 

Most classes in the Metabolic library extend one or 
more classes in the BioChem library. Generally the 
partial models specified in BioChem are extended, and 
with only a few additions, turned into fully functional 

models. The structure of the Metabolic package is 
shown in Figure 7. 
As mentioned earlier, many of the reactions that occur 
in metabolic pathways are more or less the same in all 
cells no matter what species one look at. This is util-
ized in Metabolic to create a collection of partial 
models of different metabolic pathways that through 
small changes and/or additions are turned into fully 
functional species-specific metabolic pathways. 

6 BioChem Sub-packages 

Since the design objective for BioChem was to pro-
vide properties and attributes that are common in bio-
logical and biochemical systems the library contains 
several packages holding classes and partial models. 
The classes can be used as they are in sub-libraries to 
BioChem, while the partial models must be further 
extended to fully functional models. 

6.1 BioChem.Units 

A number of physical types are needed in order to be 
able to declare most parameters and variables in the 
BioChem package. Some of the types can be found in 
Modelica.SIunits and are here re-defined in order 
to avoid long name paths. The SI-types used in Bio-
Chem are volume (m-3), amount of substance (mol), 
and concentration (mol m-3). 
Most of the other types in the package are non-SI 
types and thus need to be fully declared. In order for a 
reaction to actually transport something it has to have 
a flow of some kind. For a chemical reaction this flow 
is the volumetric reaction rate (mol m-3 s-1). Together 
with the concentration, the molar flow rate of a sub-
stance (mol s-1) is used in the interfaces between con-
nected components.  

6.2 BioChem.Compartments 

In order to be able to control the environment of the 
reaction during a simulation a chemical reaction must 
take place in a restricted screened-off container. 
Within this container the basic physical properties, e.g. 
volume and temperature, are the same for all reactions 
that take place and all substances contained in that 
container. 
In BioChem.Compartments this is solved using the 
inner-outer construct, i.e., a global variable. An inner 
volume is declared in the partial compartment model, 
giving all objects placed within an extension of the 
partial model the same surrounding volume. The ob-
jects that need to have knowledge of the global vol-
ume can use the declaration of an outer volume to 
reach it. The package so far only contains partial mod-
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els for some different types of containers that can be 
found in cells. 

6.3 BioChem.Icons 

The package BioChem.Icons contains icons used in 
the drag-and-drop interface of the Model Editor in 
MathModelica. A substance is represented by a circle 
and the fill color is changed depending on the type of 
substance represented, i.e., substance in solution, fixed 
concentration, gaseous substance, etc. Since the sub-
stance only come in a few flavors there is one icon for 
each type of node. 
The reactions on the other hand come in many differ-
ent variations. A reaction is represented by an arrow 
with two or more ends. The number of ends an arrow 
can have is determined by the numbers of substrates 
and products that are involved in the reaction. Sub-
strate-ends are, by convention, on the left side of the 
arrow, while product-ends are on the right side. Ar-
rowheads indicate the direction of the reaction, i.e., 
irreversible reactions only have heads on the product-
ends while reversible reactions have heads on both 
ends. 
Instead of creating one icon for each type of reaction 
the final graphical interface for a reaction is built out 
of several partial icons. The reaction arrow is divided 
into three parts, substrates side (left part of the reac-
tion arrow), middle, and products side (right part of 
the reaction arrow). The middle is the same for all re-
actions, while the two other parts differentiate depend-
ing on the number of substrates and products partici-
pating in the reaction.  
Enzymes can affect reactions, which is represented by 
a small arrow and an enzyme sign. The sign represent 
the type of effect that the enzyme have on the reaction, 
i.e., inhibition, activation, or a combination of both, 
and are indicated with a ─, +, and M respectively. 

6.4 BioChem.ConnectionPoints 

The package BioChem.ConnectionPoints contains 
the connector SubstanceConnector (Figure 8) that 
is used when connecting the different components in a 
model. In order to be able to make simulations using a 
connected model, the connector has to have a flow 
variable. For chemical reactions this flow variable is 
the molar flow rate of a substance (mol s-1). There is 
also a non-flow variable in the connector, the concen-
tration of a substance. The concentration is later on 
used in equations with relations to the reaction rate in 
reaction models.  
The connector is used in several partial models in 
BioChem.ConnectionPoints. Each partial model 
relate to the graphical interface of at least on icon in 
BioChem.Icons (Not more than one icon at a time 

though.). For the reaction arrows, connectors are 
placed at each intended connectable end. For the en-
zymes regulating the reactions the connectors are 
placed at the enzyme signs. Finally for substances, 
eight connectors are placed on the rim of the circle 
that represents the node of substance. 

 
within BioChem.ConnectionPoints; 
connector SubstanceConnector 
  "Connection point for substance transfer"  
  extends Icons.SubstanceConnector;   
  Units.Concentration c  
    "Concentration of substance at the connection"; 
  flow Units.MolarFlowRate r  
    "Molar flow rate of substance at the connection"; 
end SubstanceConnector; 
 

Figure 8. SubstanceConnector, the connector used 
in BioChem and later on also in Metabolic. 

6.5 BioChem.Substances 

The package BioChem.Substances contains partial 
models of different kinds of nodes needed to represent 
substances in biological and biochemical systems. The 
basic attributes corresponding to the properties that are 
studied during simulations, i.e., the amount and the 
concentration of the substance, are declared in these 
partial models. All partial substance models also ex-
tend the partial model BioChem.ConnectionPoin-
ts.Node, which contains the connector interface. 

6.6 BioChem.Reactions.Basics 

All reactions need some basic components in order to 
work properly. In the package BioChem.React-
ions.Basics these basic components are collected in 
a partial reaction model, Reaction. 
BioChem.Reactions.Basics also contains compo-
nents that are not needed in all types of reactions, but 
can rather be seen as roles assigned in some reactions 
while left vacant in others. Using the role-approach, 
the directions of a reaction can be seen as two roles. 
The role for a forward directed reaction is almost al-
ways appointed, while the role for a backward directed 
reaction only is assigned for reversible reactions. 
The different types of enzymes that can affect a reac-
tion can also be seen as a set of roles. When no en-
zymes affect the reaction, all enzyme roles are vacant. 
The different roles that are possible to assign are acti-
vator, inhibitor, and modifier. A modifier is a situation 
dependent enzyme that can react as either an inhibitor 
or an activator, depending on the environmental con-
text. These roles are also directional, i.e., they can be 
appointed in both a forward and a backward context. 
In BioChem.Reactions.Basics model for all the 
above roles are defined. 
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6.7 BioChem.Reactions.ReactionTypes 

BioChem.Reactions.ReactionTypes contains a 
collection of partial models for different types of reac-
tions that can take place in biological and biochemical 
systems. The reaction types are obtained by combining 
some different types of classes from other packages in 
BioChem. First, there is the combination of substrates 
and products. Then there is the appointment of the two 
reaction-direction roles. Finally, there is the possibility 
to appoint an enzyme role. At this point only three 
substrates and three products are allowed and only one 
of the enzyme roles can be appointed at a time. 
Given the above restrictions four irreversible and 
seven reversible reaction types for each possible com-
bination of substrates and products are generated, 
giveing 99 different reaction types to choose from in 
the sub-libraries. 
Parts of the graphical interface for the MathModelica 
Model Editor are also defined in this package. Each 
partial model has a graphical representation in the 
form of a reaction arrow. If the role for the backward 
directed reaction is appointed, all the arrow-ends have 
heads, otherwise only the product-ends have heads. A 
small arrow perpendicular to the reaction arrow is 
used to indicate that there is an enzyme-role assigned 
in the reaction. An enzyme-arrow above the reaction 
arrow indicate that the enzyme is involved in the trans-
formation of substrate into product, while an enzyme 
arrow below the reaction arrow indicate that the en-
zyme is involved in the reverse transformation. 
Along with the graphical interface the partial models 
for connector interfaces in Bio-
Chem.ConnectionPoints are also extended. Since 
each of the connector interfaces have been defined in 
relation to an icon the extensions are quite straight-
forward. 

7 Metabolic Sub-packages 

The Metabolic library consists of several sub-
packages containing fully functional classes that can 
be used for building models and running simulations 
of metabolic systems. 

7.1 Metabolic.Compartments 

The Metabolic.Compartments package contains 
models for some of the different types of containers 
that can be found in cells when dealing with modeling 
and simulation of metabolic pathways. The partial 
compartment models in BioChem.Compartments are 
extended in order to obtain the basic properties of a 
compartment.  

In order to be able to run a simulation of a model all 
substances, reactions, and other constructs in the 
model must be placed within a compartment model. 
Otherwise the global volume cannot be reached with 
the outer-declaration. 
Reactions and substances that require different proper-
ties than the ones provided by the main-compartment 
can be placed in new compartments within or adjacent 
to the main-compartment. 

7.2 Metabolic.Substances 

The package Metabolic.Substances contains dif-
ferent types of nodes needed for representing a sub-
stance in a metabolic pathway. The substance models 
are specified by extending the partial models of sub-
stance nodes in BioChem.Substances and adding 
some additional attributes and equations. Thus both 
normal substance nodes and nodes with different types 
of restrictions, e.g. on the concentration of the sub-
stance, can be specified.  
Typically the concentration in a substance node is al-
lowed to change without restrictions during a simula-
tion, while the total amount of substance in the node is 
conserved at all times. Some of the models have an 
assert statement that checks that the concentration 
never drop more than the tolerance below zero than. 
The tolerance is a parameter and can thus be changed 
for every node in a model as well as for each simula-
tion run. 

7.3 Metabolic.Reactions 

Metabolic.Reactions contains a collection of 
models for different types of reactions that can take 
place in metabolic pathway systems. The reactions are 
obtained by extending at least one of the 99 reaction 
types in BioChem.Reactions.ReactionTypes and 
then adding an equation for the relation between the 
reaction rate and the participating substances, i.e., sub-
strates, products, and interacting enzymes. 
Using more or less all of the possible the reaction 
types in BioChem.Reactions.ReactionTypes 
four irreversible and sixteen reversible reaction types 
for each possible combination of substrates and prod-
ucts are generated, giving 180 different reaction mod-
els to choose from in the drag-and-drop interface in 
MathModelica. 
The Systems Biology Markup Language (SBML) is a 
computer-readable format for representing models of 
biological and biochemical systems. SBML is, 
amongst other, applicable to metabolic pathways, cell-
signaling pathways, and genomic regulatory networks 
[21, 22]. SBML has some predefine reactions, which 
are common in SBML-models of metabolic pathways. 
All these 32 SBML-reactions are also included in 
Metabolic.Reactions in order to facilitate the 
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translation of SBML-models into Modelica, and vice 
versa. The translation of models is performed with a 
two-way Modelica-SBML parser [23]. 

8 Conclusions 

During the work with the BioChem and the Meta-
bolic libraries some limitations of the Modelica lan-
guage has forced us to re-design the libraries’ structure 
at several points. The original BioChem library [24, 
25] was at a point divided into two libraries, i.e., Bio-
Chem and the Metabolic, which made a significant 
improvement of the library design and hence the un-
derlying library structure. The design that is presented 
in this paper is currently being extensively tested and 
has not shown any major shortcomings this far. 

9 Future Work 

The BioChem package will probably have few addi-
tions of classes and models in the future, while there 
will surely be more packages added. As mentioned 
before, the main purpose of BioChem is to serve as a 
general-purpose package for biological and biochemi-
cal Modelica-packages. Some work with ecological 

models in Modelica has been done with inspiration 
from the BioChem library [26]. These models can now 
easily be added as a sub-library under BioChem. 
As for Metabolic, the limitations on the number of 
substrates and products for a reaction will be removed. 
The construction of a library with metabolic pathway 
templates will also continue. The idea is that these 
model templates can easily be extended and adapted to 
concrete models. The concrete models can then be 
used in standalone and connected simulations. For all 
of the above tasks, the data contained in the different 
resources mentioned in Section 3 will be useful. 
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Abstract

The  simulation  of  complex  systems  can  be  made
more efficient  by splitting the  system into several,
weakly interacting subsystems, and then integrating
their  equations separately.  The paper discusses  the
required extension to the Modelica language, as well
as the corresponding integration algorithms. Possible
applications  include  real-time  integration  of  large
systems, distributed simulation,  and the integration
of Modelica with external simulators.

1 Introduction

Consider a complex dynamical system, obtained by
connecting fast and slow subsystems. The simultane-
ous  integration  of  the  corresponding  large  set  of
DAEs can  become  highly  inefficient,  especially
when a fixed-step  algorithm is  employed (e.g.,  for
real-time simulation):  the  fast  dynamic subsystems
force the adoption of a very small integration time
step, and the system of coupled DAEs to be solved
at each step is very large.
In some cases, however, the system can be decom-
posed into two (or more) weakly interacting subsys-
tems,  whose describing DAEs can be solved inde-
pendently at each time step. This allows to split the
overall numerical integration task into many smaller
tasks,  which  can  be  carried  out  more  efficiently;
moreover, it opens the way to distributed simulation,
where each integration task runs on a different CPU.
This method can offer very significant performance
improvements  in  real-time,  fixed  time-step  simula-
tors, e.g. for hardware-in-the-loop and training appli-
cations.
The weak dynamic interaction method has been ex-
tensively investigated in  our research  group in  the
past 10 years. The first notable example is the gener-
al-purpose, object-oriented modelling and simulation
environment MOSES [1], which relied on an object-
oriented  database  for  system  modelling,  and  on

DASSL-RT  to  perform  variable  step-size  integra-
tion. The second example is the  ProcSim package
[2], a simulation environment for power plant simu-
lation,  based  on  the  visual  LabView environment,
relying  on  ad-hoc,  implicit  Euler  integration  algo-
rithms.
A brief paper on the basic concepts of weak interac-
tions in object-oriented modelling appeared several
years ago on the  Eurosim Simulation News Europe
magazine [3]; the purpose of this paper is to propose
an implementation of those concepts in the Modelica
framework. The mathematical  foundations  of  weak
dynamic interaction are first introduced in Section 2.
The extension of the Modelica language is then dis-
cussed in Section 3, with reference to a simple ex-
ample; the problem of generating the corresponding
numerical simulation code, as well as the application
to distributed simulation are also dealt with.  Section
4 follows with further discussion, including the com-
parison of the proposed approach to other  existing
methods to speed up real-time simulations. Section 5
concludes the paper with some proposals for future
work.

2 Weak Dynamic Interaction: Math-
ematical Foundations

The concept  of  weak dynamic interaction  is  intro-
duced with the aid of a simple example. Consider the
electrical circuit represented in Fig. 1. 
The complete set of the component and connection
DAEs is:

E

I1 I2

VA R1 R2
I4 VB I5 VC

C1 C2 R3
I3

Figure 1: A simple electrical circuit
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E−V A=0
V A−V B=R1 I 1

C1 V̇ B=I 4

V B−V C=R1 I 2

C 2 V̇ C=I 5

V C=R3 I 3

I 1− I 4− I 2=0
I 2−I 5−I 3=0

(1)

In this particular case, it is straightforward to solve
the algebraic  equations  for  the algebraic  variables,
and to rewrite the system in ODE form:

(2)

where and

Suppose that the system (2) is solved by Euler's im-
plicit formula; at each time step, the following linear
system has to be solved:

(3)

where H = I – A∆t,  f = Bu∆t,  and ∆t is the integra-
tion time step. The integration algorithm is A-stable
for any ∆t. Note that, in the case of a non-linear sys-
tem, the role  of matrix  H would be played by the
system Jacobian,  which  should  be  inverted  at  (al-
most) each time step.
If the system is  solved by  Euler's explicit  formula,
the solution is given by

(4)

where F = I + A∆t. In this case, no matrix inversion
is needed; on the other hand, the algorithm is A-sta-
ble only if  ∆t < 2Tmin,  where  Tmin is  the  minimum
time constant  of matrix  A.  Explicit  integration for-
mulae are not convenient if the system is stiff, i.e. if
there are mixed fast and slow dynamics, as the fast
one dictates the maximum possible time step.
Suppose  now that  both  R2 and  C2 are  sufficiently
large: the variation of the voltage  VC within a time
step is  likely to be small,  compared to the voltage
drop across the resistor,  thus having a  weak influ-
ence on the current I2; conversely, the current I2 can-
not vary VC substantially over a single time step, and
thus has a  weak  influence on  VC. With reference to
the  R2-C2 connection,  the  voltage  is  thus  a  weak
connection  variable on the resistor  side,  while  the
current is a weak connection variable on the capaci-
tor side. In other words, an approximate dynamic de-
coupling can be applied at the connection between
R2 and C2. It is then possible split the model in two
parts, as shown in Fig. 2.

E

I1

I2

VA R1 R2
I4 VB

I5

VCC1 C2 R3
I3

I2

VC

Figure 2: The electrical  circuit  split  into two inter-
acting subsystems.

The left part of the circuit is connected to a fictitious
voltage generator VC, and the right part of the circuit
is connected to a fictitious current generator IC. 
The idea is now to adopt a mixed implicit-explicit
integration algorithm to the system of Fig. 2. At each
time-step, the equations of each sub-circuit are inte-
grated  using  Euler's  implicit formula,  while  taking
into account the last computed value of the boundary
variable IC or VC. The corresponding integration for-
mula is:

(5)

where GL and GR are the following triangular matri-
ces:

G L=[1  t
R1C1

0

−
 t

R2C 2
1

 t
R3C 2

]
GR=[1  t

R2C1

0 1−
 t

R2C 2
]

As matrix GL is now triangular (due to the dynamic
decoupling),  the  solution  of equation (5)  is  trivial,
and has almost the same computational weight of the
explicit  formula  (4).  However,  the  integration  for-
mula  remains  A-stable  for  much  larger  time steps
than the fully explicit formula; for large values of R2,
it is even unconditionally stable. For example, if the
following values are taken:
R1=0.1; C1=1; R3=1; C2={1,3,10}; R2=[0.1-10];

the stability regions shown in Fig. 3 and 4 are ob-
tained; the stable region is below the limit curve for
each value of  C2.  It is  apparent  how the algorithm
based  on  the  weak  interaction  method  allows  far
larger integration time steps than the explicit  algo-
rithm, while  requiring a comparable  computational
time, as no matrix inversion is required.

x=[V B V C ] '

H xk1=xk f k1

xk1=F xk f k

G L xk1=GR xk f k1

ẋ=AxBu

u=E.
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Figure 3: Stability regions of explicit Euler's integra-
tion algorithm.

Figure 4: Stability regions of the weakly interacting
integration algorithm.

Going beyond the simple example shown here, the
advantages of the proposed modelling and numerical
integration strategy become more and more substan-
tial if the systems are nonlinear, and as the order of
the weakly coupled subsystems grows larger. 
Finally, if the dynamics of the weakly coupled sub-
systems is very different (i.e. one is fast and one is
slow),  a  multirate integration  algorithm  could  be
adopted, in which the time step of the slow subsys-
tem is a multiple of the time step of the fast subsys-
tem. This kind of strategy, whose detailed analysis is
outside the scope of this paper, can lead to even larg-
er computational savings, if the fast subsystems have
a few states, while the slow subsystems contains the
majority of the states.

3 Weak Interaction  in  the  Modelica
Framework

3.1 The  weak modifier

The weak interaction method will now be introduced
in the Modelica framework with the help of a repre-
sentative  example,  i.e.,  the  simulation  of  a  power
generation system. The system (see Fig. 5) is com-
posed by the connection of two main sub-systems:
the mechanical power generation unit (e.g. a gas tur-
bine unit, or a boiler-steam turbine unit), and a syn-
chronous generator, connected either to the grid or to
local loads. The aim of the simulation is to simulta-
neously  represent  the  control  system dynamics  of
both units, with time scales ranging from less than a
tenth  of  a  second  (swing  dynamics  of  the  syn-
chronous generator), to several minutes (boiler pres-
sure dynamics).

Assuming that the rotational inertia has been lumped
on the MechGen side, the high mechanical inertia of
the gas turbine shaft provides a dynamic decoupling
between  the  thermo-mechanical  system on the  left
side  of  the  connection  and  the  electro-mechanical
system on the right side of the connection. In other
words, a step variation of the torque applied to the
shaft by the electrical generator cannot vary the shaft
speed substantially over time scales smaller than 0.2-
0.5 seconds;  this  means  that  the  torque  is  a  weak
connection variable  on  the  mechanical  generator
side. On the other hand, since the shaft speed cannot
vary substantially over such a time scale, the shaft
angle is a weak connection variable on the electrical
generator side.
If  the  two subsystems  are  connected  by means  of
standard  Modelica.Mechanics.Rotational  connec-
tors, this situation could be described by adding the
weak modifier to the Modelica language, and by in-
troducing the concept of weak connection:

connect(MechGen.Shaft(weak tau),
        ElecGen.Shaft(weak phi));

Figure 5: Model of a power generation system.

MechGen ElecGen

G Network
Shaft Shaft
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Alternatively,  the  weak attribute  could  be directly
built in the two sub-system connectors, which should
be declared as follows:

import Modelica.Mechanics.Rotational.*;
model MechGen
  Interfaces.Flange_a Shaft(weak tau);
...
end MechGen;
model ElecGen
  Interfaces.Flange_b Shaft(weak phi);
...
end ElecGen;
It should also be possible to apply the weak modifi-
er to variables declared inside a model, if their influ-
ence on the object  behaviour across a single time-
step is small; for example, the air temperature at the
gas turbine air intake.

3.2 Integration Algorithms

The weak variables can now be exploited by the in-
tegration  algorithm.  The  basic  idea  is  that  every
weak variable can be treated as an input variable by
the numerical integration algorithm, regardless of its
actual  physical  causality;  the  corresponding  input
value will correspond to last computed value avail-
able to the integration algorithm.
If the  weak variables are replaced by  input vari-
ables,  the Modelica compiler  could then easily de-
compose the dynamics of the whole system in two
weakly interacting  subsystems, as shown in Fig. 6.
The numerical integration task could then be decom-
posed into two smaller sub-tasks. Each sub-task will
read the  last  computed value available  of  its  input
variables  to  compute  the  next  value  of  its  output
variable, as explained by the following pseudo-code
(an  explicit  integration  algorithm  is  assumed  for
simplicity):

T := 0.05; // Time step length
loop
  (phi,x_mech) := 
     MechGenInt(tau,x_mech,T);
  (tau,x_elec) := 
     ElecGenInt(phi,x_elec,T);
end loop;
where x_mech and x_elec are the state vectors of
the two subsystems. 

 Figure 6: Weakly interacting subsystems.

Each subsystem can be integrated with the method
of  choice,  represented  here  by  the  MechGenInt
and  ElecGenInt functions. If implicit algorithms
are used, the dynamic decoupling leads to two small-
er sets of nonlinear equations, to be solved sequen-
tially. This has beneficial effects on the computation
time, as already discussed in Section 2.
In the simple example shown above, the two integra-
tion algorithms are synchronous (i.e., they share the
same time step). However, since the two correspond-
ing subsystems are characterised by widely different
dynamic time constants, it is also possible to choose
different step lengths for each one, as shown in the
following pseudo-code:

Tmech := 0.1;
Tel := Tmech/N; 
loop
  (phi,x_mech) := 
    MechGenInt(tau,x_mech,Tmech);
  for h in 1:N loop
    (tau,x_elec) := 
      ElecGenInt(phi,x_elec,Tel);
  end for;
end loop;

This  scheme has  a  big potential  for  the  real-time,
fixed time-step simulation of complex systems:  in-
stead of dealing with a huge coupled system, which
must be integrated with a small time step dictated by
its fastest subsystem, it is possible to split the inte-
gration task into many independent sub-tasks, each
one having the appropriate step length. In this way,
each  subsystem is  neither  under-sampled  or  over-
sampled,  and the computational resources  are  used
efficiently.

3.3 Distributed Simulation

If a system can be decomposed into several, weakly
interacting subsystems, it  is  also straightforward to
devise a distributed simulation strategy: the integra-
tion  tasks  of  each sub-system can be  allocated  on
different  CPUs,  communicating  e.g.  through  a
shared memory database or TCP/IP sockets (Fig. 7).
 

Figure 7. Distributed simulation architecture.

MechGen ElecGen
tau

phi

MechGen
Integrator

ElecGen
Integrator

Shared process variable database

...
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A further possibility is to support co-simulation,  by
introducing “external simulator” objects,  which are
an extension of the already existing Modelica exter-
nal  functions.  In  this  case,  a  Modelica  “wrapper”
model, defining the input, output, and weakly inter-
acting connector variables, could be written and then
linked to external simulation applications. The actu-
al communication between the Modelica-based sim-
ulator and the other ones could then be performed
via TCP/IP sockets, DLLs, DDE, or any other inter-
process  communication mechanism. In this  way,  it
would become possible to merge parts of a simulator
obtained  from a  Modelica  model  with  other  parts
provided by different  simulators (e.g. a CFD code,
or  a  digital  controller  emulator),  or  by  interactive
user interfaces.

3.4 Further extensions to the proposed method.

When introducing the example in Section 3.1, the as-
sumption was made that the shaft inertia was entire-
ly contained in the MechGen model; in other words,
that the electrical generator model inside  ElecGen
had no inertia at all. If this is not true, the weakening
method cannot be applied directly as explained: the
ElecGen.Shaft.phi variable,  far  from  being
weakly interacting with the  MechGenShaft.phi
variable,  has  some  inertia  rigidly  connected  to  it.
The corresponding decoupled integration algorithm
would  probably  be  unstable  for  rather  small  time
steps. 
This case could be easily recognised by the symbolic
manipulation  engine:  the  weakly interacting model
(Fig. 6) would have more state variables correspond-
ing to  the  weak connection  variable  phi,  if  com-
pared with the original, rigidly connected model. It
could then be possible to devise a symbolic manipu-
lation  procedure to remove the inertia contribution
from the weak side (i.e.,  ElecGen) and add to the
other  side  (i.e.,  MechGen).  This  could  widen  the
range of applicability of the proposed method.

4 Discussion and Outlook

The proposed method requires a very limited modifi-
cation to the Modelica language, i.e., introducing the
weak modifier  to the variable declarations.  It also
requires  a  very  limited  intervention  to  the  user's
models, i.e. redeclaring some connector variables as
weak, in order to obtain faster simulation code. The
weak modifier can be thought of as a modelling at-
tribute, stating that a particular variable has a weak
dynamic influence on the model behaviour, as well

as a hint to the compiler on how to produce more ef-
ficient simulation code.
The main drawback is that an “expert” user is need-
ed, who knows by experience which connection (or
model) variables are good candidates to be consid-
ered as weak, in order to speed up the simulation. In
fact, if the “wrong” weak variables are selected, the
integration  algorithm  could  become unstable  even
for small values of the time step. 
The stability analysis of the simulation of an electri-
cal or hydraulic network split into two weakly inter-
acting sub-networks is discussed in detail in [4]. The
stability  criterion  is  formulated  in  terms  of  the
impedances of the two sub-networks; a heuristic rule
can  then  be  derived,  stating  that  the  sub-network
with a weak flow connection  variable  should have
low resistance  and/or  high  capacitance,  while  the
one with  a weak effort  connection variable  should
have high resistance and/or low capacitance. A simi-
lar, physical-based analysis could be carried out for
mechanical connections, such as the case discussed
in Section 3.
Another possibility could be to devise numerical in-
dicators (for generic models), based on the analysis
of  the  linearised equations,  to help  the  user  deter-
mine which connection variables can be considered
weak. An exhaustive search of all the potential can-
didates should not be computationally too expensive,
as the number of connections is limited; moreover,
only  connections  between  higher-level  subsystems
could be considered, e.g. the shaft connection in the
example of Fig. 5, while ignoring the connections in-
side the MechGen and ElecGen models. 
The  proposed  numerical  method  has  already  been
tested with both variable step-size [1] and fixed step-
size [2] integration algorithm. Although a reduction
around 30% has been reported in a variable step-size
robotic simulation, the application of the weak inter-
action method to variable step-size, higher-order in-
tegration algorithm can only give a limited benefit,
as it is hampers the lengthening of the time step, as
well  as  the  switching  to  higher  order  formulae;
moreover,  devising multirate,  variable  step-size  al-
gorithms is very difficult. The most significant per-
formance enhancements can be obtained with fixed
time-step algorithm, in particular for real-time appli-
cations.  A  typical  case  is  a  large  physical  system
with  mixed slow and fast  dynamics,  possibly  con-
trolled by digital control systems with widely differ-
ent sampling times. Such systems are often encoun-
tered in industrial practice.
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The proposed method can readily  benefit  from the
inline integration method [5], which can be directly
applied to the integration of the weakly interacting
sub-systems. 
There  are  some similarities  between  the  weak dy-
namic interaction method and the mixed-mode inte-
gration method proposed in [6], as both try to exploit
mixed  implicit-explicit  algorithms  to  break  large
non-linear  systems of  equations  into  smaller  ones.
The method proposed in [6] tries to suitable partition
the overall model into a “fast” and a “slow” part, by
linear  eigenvalue  analysis  and  some  heuristics  to
limit  the search space, while the method presented
here focuses on a system-level approach, i.e. tries to
exploit  the  weak coupling  between sub-systems at
their connections. It is nevertheless possible that the
two methods  could be  suitably integrated,  as  their
approaches  are  somehow  complementary to  each
other.
Another method which has been proposed to decou-
ple the equations of large systems is the Transmis-
sion Line Method [7, 8]. In this case, the finite prop-
agation speed of physical quantities along connect-
ing elements is exploited to allow the implicit inte-
gration of each connected subsystem, using only past
values from the other ones. The main advantage in
this case is that decoupling comes naturally from the
system equations,  which  are  exact;  in  some cases,
such as hydraulic networks or high-frequency elec-
trical  circuits,  this  can be very convenient.  On the
other  hand,  there  are  cases  where  the  “physical”
propagation  speed  is  too  high,  so  that  the  TLM
method could unnecessarily introduce fast dynamics
when there is no need to; moreover, the exact value
of the integration time step becomes tightly coupled
with the connecting element parameters. It could be
interesting  to  investigate  if  the  stability  analysis
studies  carried  out  for  the  TLM method  could  be
somehow extended to the weak interaction method.

5 Conclusions

The introduction of the  weak variable concept  al-
lows  to  widen  the  applicability  of  the  Modelica
framework in these directions:
• efficient fixed-step simulation of weakly interact-

ing  complex  systems,  possibly  having  different
time scales;

• distributed simulation;
• co-simulation of Modelica-based simulators  and

other simulation engines;
• user  interaction  by  means  of  standard  SCADA

tools;

while retaining all the advantages of a fully object-
oriented description. 
Possible applications range from real-time hardware-
in-the-loop simulation, to interactive training simula-
tors, to the interfacing of system-level models with
detailed (e.g. CFD) models of specific system com-
ponents.
The  implementation  of  this  concept  would require
the following steps:

1. Extend the definition of the Modelica language to
include the weak modifier keyword.

2. Implement the symbolic  manipulation algorithm
to  split  weakly  coupled  subsystems,  as  well  as
decoupled numerical integration algorithms, into
an existing Modelica  compiler  (e.g.,  Dymola or
OpenModelica)

3. Validate the method on selected case studies (e.g.
robotics, power generation systems).

Step 2. could be initially limited to very simple inte-
gration schemes, such as synchronous explicit Euler,
and then possibly extended to more sophisticated so-
lutions, such as implicit, high-order,  multi-step, and
multirate algorithms.

References

[1] C. Maffezzoni,  R.  Girelli  “MOSES:  Modular
Modelling  in  an  Object  Oriented  Database”,
Mathematical  Modelling of  Systems,  v.  4,  pp
121-147, 1998.

[2] A. Leva, A. Bartolini, C. Maffezzoni: “A pro-
cess  simulation  environment  based  on visual
programming and dynamic decoupling”, Simu-
lation, v.71, n. 3, pp.183-193, 1998.

[3] F.  Casella, C.  Maffezzoni:  "Exploiting Weak
Interactions  in  Object  Oriented  Modeling",
EUROSIM  Simulation  News  Europe,  Mar.
1998, pp. 8-10. 

[4] F. Casella: “Modelling, Simulation, and Con-
trol of a Geothermal Power Plant”, Ph.D. Dis-
sertation,  Politecnico  di  Milano,  Italy,  1999,
pp. 27-46.
http://www.elet.polimi.it/upload/casella/tesi.pdf

[5] H. Elmqvist, S.E. Mattsson, H. Olsson: “New
Methods for Hardware-in-the-loop Simulation
of Stiff Models”, Proceedings of the Modelica
Conference  2002,  Oberpfaffenhofen,  Ger-
many, March 18-19 2003, pp. 59-64.

F. Casella

The Modelica Association 102 Modelica 2005, March 7-8, 2005



[6] A. Schiela, H. Olsson: “Mixed-Mode Integra-
tion  for  Real-Time Simulation”,  Proceedings
of the Modelica 2000 Workshop,  October 23-
24 2000, pp 69-75.

[7] D. M. Auslander: “Distributed System Simula-
tion with Bilateral Delay-Line Models”,  Jour-

nal  of  Basic  Engineering,  Trans.  ASME pp
195-200, June 1968.

[8] B.  Johansson,  P.  Krus:  “Modelica  in  a  Dis-
tributed  Environment  Using  Transmission
Line  Modelling”,  Proc.  Modelica  Workshop
2000, October 23-24 2000, pp. 193-198.

Exploiting Weak Dynamic Interactions in Modelica

The Modelica Association 103 Modelica 2005, March 7-8, 2005



The Modelica Association 104 Modelica 2005, March 7-8, 2005



Using Automatic Differentiation for Partial Derivatives of Functions

in Modelica

Hans Olsson1 Hubertus Tummescheit2 Hilding Elmqvist1
1Dynasim AB, Lund, Sweden (Hans.Olsson@Dynasim.se, Elmqvist@Dynasim.se)

2 Modelon AB, Lund, Sweden (Hubertus.Tummescheit@Modelon.se)

Abstract

The Modelica language has been enhanced with a

notation for partial derivatives of Modelica func-
tions. This paper presents how Dymola [4] enables

the use of partial derivatives in certain modeling ap-

plications in the Modelica language. It is shown that
using partial derivatives is natural and supported in

Dymola, and solves several advanced modeling

problems.

1 Introduction

Partial derivatives of functions arise naturally in a

number of modeling applications. Accurate fluid
property functions can be expressed as partial de-

rivatives of a Gibbs- or Helmholtz function with re-

spect to a few variables, e.g. for single-substance

fluids as g(T,p), the Gibbs free energy, or f(T,ρ), the
Helmholtz energy of the fluid, see [3].  Partial de-
rivatives are also required to handle non-linear con-

straints in MultiBody mechanics and contact han-

dling. For contact handling involving parametric sur-

face descriptions, the tangents of each surface is re-
quired to specify the constraint equations for the

contact point. The tangents are the partial derivatives

of the parametric surface description function with

regards to the two independent parameters.

These examples demonstrate that partial derivatives
of functions occur in several modeling domains. Re-

cently, the Modelica Design group took up this need

and a language extension has been made to express

partial derivatives of functions in the Modelica lan-
guage. For this to be actually useful, a Modelica tool

like Dymola has to have efficient techniques to gen-

erate computationally efficient code for the partial
derivatives. In the following sections of the paper we

are going to elaborate on the necessary techniques of

code generation and give a few application examples

of that. The examples are using the implementation

of partial derivative generation in Dymola.

2 Automatic Differentiation of

Modelica Functions

Using the Gibbs-function as an illustrative example,

we will explain how partial derivatives are generated
and used. Since the other thermodynamic properties

of a fluid are described as partial derivatives the

most natural way of expressing these partial deriva-
tives is to directly express them in Modelica and let

the tool, Dymola, differentiate the expressions.

Some simple examples are given in the table:

Property Formula

Specific volume
T

pgv )/( ∂∂=

Specific entropy
p

Tgs )/( ∂∂−=

Modelica 2.2 has thus been extended with the syn-

tax:

function Gibbs_pp=der(Gibbs, p, p);

function Gibbs_pT=der(Gibbs, p, T);

to express that Gibbs_pp is the partial derivative of

the function Gibbs with respect to p and p, and
Gibbs_pT is the partial derivative of Gibbs with re-

spect to p and T. Dymola’s existing symbolic differ-

entiation of expressions has been extended with a
symbolic variant of automatic differentiation [1],

which works for almost any Modelica function (in-

cluding the Gibbs-functions). It uses forward-mode

automatic differentiation. For systems of equations
and index-reduction Dymola automatically uses ad-

ditional derivatives (time-derivatives), and for index-

reduction they are also constructed automatically.
For the future it is planned to also automatically con-

struct these when needed for Jacobians. Note that
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even if time-derivatives and partial derivatives are

different they share the same underlying framework.

The Gibbs-function is often fitted as a special poly-

nomial in two variables (and some additional expres-

sions). Generating optimized code for these special
polynomials require special care, and is currently

only implemented for the simple case of positive and

negative integer powers. Extending it to handle ra-
tional powers will be straightforward. Due to the

sparseness of the powers a simple use of Horner’s

scheme is not optimal, and obviously the pow-

function is ruled out because of computational cost.

It is important that the automatic differentiation is

done symbolically prior to the code generation since
the code for special polynomials can reuse expres-

sions for computing powers. Later this will be ex-

tended to include intra-function optimizations be-
tween the different partial derivatives. Using code

optimization is the key to making symbolic differen-

tiation an efficient form of automatic differentiation,

see e.g. [2].

2.1 Basics of automatic differentiation

We will here present the basics of automatic differ-
entiation in a general setting, even though we have

only implemented the features needed for partial de-

rivatives of functions. We will then consider the im-
plementation choices, and the special cases in

Modelica.

2.1.1 Forward mode

When performing automatic differentiation real vari-

ables and expressions are replaced by Taylor/power-
series1 (in one variable ‘t’ – representing a direc-

tional derivative) whereas non-reals, e.g. the condi-

tions of if and while-clauses are kept unchanged.

The rules for propagating Taylor-series through

functions and expressions can be found in [6], and

we will here only consider a trivial example

)log()(: yxyxxz +++⋅=

The computation of this expression can be computed

from its corresponding directed acyclical graph by

propagating the numerical values.

                                                  
1
 For higher order differentials a different scaling of the

coefficients is more efficient – we will ignore that in this

paper.

+ : 2

log : 0

x : 2 y : -1

* : 2

+ : 1

Thus if 1,2 −== yx  we get 2=z . For automatic

differentiation we replace the values at the bottom by

Taylor-series and propagate these upwards:

+ : 2+10t+…

log : 0+3t+…

x : 2+t y : -1+2t

* : 2+7t+…

+ : 1+3t+…

Thus if 2/,1,1/,2 =∂∂−==∂∂= tyytxx we ob-

tain 10/,2 =∂∂= tzz and by including higher terms

we would get higher order derivatives. For each node
we only have to consider the values on the arrows

entering it, which lead to efficient computations of

directional derivatives, and is thus efficient for com-

puting both partial derivatives and time-derivatives.

The result of this assignment-statement (in terms of
Taylor-series) can then be used directly in the next

statement in Modelica.

2.1.2 Reverse mode

Reverse-mode automatic differentiation [1] is an ef-

ficient technique for computing the derivative of one

variable with respect to many. Since it is not as effi-
cient for computing partial derivatives we will only

present an example of how it works and not the un-

derlying theory.

Consider the above example and augment the graph

with the partial derivatives for each primitive opera-
tion (using the numerical values). Then start from the

top where 1/ =∂∂ zz , and for each node compute

the sum of the products of nodes above times the

value along the edge.
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In order to indicate that values are propagated

downwards the arrows have been reversed:

+ : 1

log : 1*1=1

x : 1*1+3*1=4 y : 3*1=3

* : 1*1=1

+ : 1*2+1*1=3

1
1

1

1

2

1
1

The interpretation of the result is that the value at

each node represents the partial derivative of z with

respect to this value: 3/,4/ =∂∂=∂∂ yzxz (which

is consistent with the result above).

To implement reverse mode one first go through the
algorithm once to compute the values for each node,

and then once in reverse order using these values.

This requires that all intermediate results are stored.

2.1.3 Implementation choices

Automatic differentiation can be implemented in

several ways [1, 5], and forward-mode is in general
simpler to implement than reverse-mode. We have

selected to perform forward-mode symbolically in

the Dymola kernel.

Another possibility that has attracted attention re-

cently is to generate code that numerically propa-
gates derivatives e.g. by overloaded operators in C++

or by modifying the code-generation for each primi-

tive operation.

The derivative annotation in Modelica was designed

with this in mind and can thus be used when com-
puting Jacobians for non-linear systems using the

‘time-derivative’ of the function and also internally

to compute partial derivatives.

Furthermore the ‘time-derivative’ functions (i.e.

functions propagating a numerical directional de-
rivative) can be constructed automatically by Dy-

mola by automatic differentiation. This could have

been implemented by modifying the code generation
for each operation to also numerically propagate di-

rectional derivatives.

However, the symbolic variant has the advantage [5]

that:

• Expressions independent of e.g. T do not have to

propagate the derivative of T.

• The symbolic derivative is a new function that

can be manipulated further by Dymola’s kernel

(e.g. to compute another derivative).

• No need to modify the code-generation in Dy-

mola, and the generated code can be compiled

with compilers on realtime platforms where

C++-compilers are not always available.

The fact that the symbolic derivative is a new func-
tion is also used in this paper since it allows us to

present the result of automatic differentiation as

Modelica functions.

2.1.4 Special cases in Modelica

In Modelica, functions can contain simple expres-
sions, matrix expressions, expression with iterators

and if-, while- and for-clauses. The symbolic differ-

entiation handles all of them, which has required

special care, e.g. the rules for simple differentiable
expressions with iterators are (where we use the spe-

cial notation x’= tx ∂∂ / ):

• {x(j)+x’(j)*t for j in 1:n}=

{x(j) for j in 1:n}+{x’(j) for j in 1:n}*t

• sum(x(j)+x’(j)*t for j in 1:n)=

sum(x(j) for j in 1:n)+sum(x’(j) for j in 1:n)*t

• product(x(j)+x’(j)*t for j in 1:n)=

product(x(j) for j in 1:n)+sum(product(if j==k

then x’(j) else x(j)  for k in 1:n) for j in 1:n)*t+…

The Modelica expert will note that we have not in-

cluded the rules for min- and max-expressions with
iterators, since these are more complex to compute,

often discontinuous, and currently not needed.

If the function being differentiated contains calls of

other functions the directional derivative is propa-

gated through it by its derivative-function, which is
either specified in the derivative-annotation, or con-

structed by Dymola through automatic differentia-

tion of the function (the latter case assumes the

function is non-external).

2.1.5 Non-differentiable functions

A basic limitation of automatic differentiation is that

it can provide a derivative even at points where the

function does not have a derivative. Verifying that a

function with branches (if-statements, if-expressions,
or while-statements) is continuous is a difficult

problem, see [7]. Furthermore in this reference it is

shown that automatic differentiation may produce
incorrect results for specific inputs if the function

contains equality tests on real values.

For functions declared as partial derivatives (as is the

focus of this paper) one can view the continuity as
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the responsibility of the modeler declaring the partial

derivative function. When using automatic differen-

tiation for index-reduction this is not feasible, and
the declarative approach in Modelica is that auto-

matic differentiation for index reduction requires the

function to specify the degree of continuity.

3 Fluid Property Modeling using

Gibbs- or Helmholtz functions

The Gibbs-function is often fitted as a polynomial in

two variables:

g(T,p) = a
i
p
J

iT
K

i

This type of function can be differentiated efficiently

with the implementation of automatic differentiation
in Dymola. The code for expressing the other ther-

modynamic properties has become much shorter than

in previous implementations of fluid properties.
Furthermore, conditions such as the phase equilib-

rium are also expressed as an equation involving the

partial derivatives. Thus it is possible to describe

phase equilibrium conditions, e.g. between gas and
liquid phases, in a completely declarative way, with-

out resorting to special algorithms. Initial numerical

experiments seem to indicate that this works for
typical working fluid in thermodynamic cycles, e.g.

water or refrigerant R134a.

3.1 Definition of Thermodynamic Properties

A complete application example is the definition of

phase equilibrium in two phase fluids. In particular
when validity above the critical point is necessary,

Helmholtz functions are used to describe high accu-

racy thermodynamic surfaces. A typical equation

from [3] is the one for R134a using a dimensionless
Helmholtz energy composed of an ideal (aid) and a

residual term (ares) with the general form:

i

ijj

ii

t

i

i
id

i

ddt
kk

j

j
res

aa
RT

a

n
RT

a

ττδ
δτ

δδτ
δτ

∑

∑ ∑

=

+

− −

++=

−=

+

3

1

11

41

)ln()ln(
),(

)exp(
),( 1

Where τ is a reduced inverse temperature and δ is a
reduced density. This Helmholtz function uses frac-
tional powers and for the test implementation it was

more efficient to transform all exponents into inte-

gers via a variable substitution. All properties of in-

terest are then computed by automatic differentiation

using the new syntax form, and by computing the

partial derivatives of a_r(τ,δ) and a_i(τ,δ) first, e.g.:

function ar_t=der(ar, tau);

function ar_tt=der(ar, tau, tau);

function ar_d=der(ar, delta);

and so on for all partial derivatives up to order two.

The properties themselves are then defined as func-

tions of these partial derivatives, e.g. the pressure










∂

∂
+= ),(1 δτ

δ
ρρ

res
aRTp

Which results in a nice, compact definition in Mode-

lica:

function pressure "pressure"
  input SI.Temperature T;
  input SI.Density d;
  output SI.Pressure p;
protected

  Real delta = d/DCRIT "dim-less density";
  Real tau = TCRIT/T
   "dimensionless inverse temperature";
algorithm

  p := R*T*d*(1+delta*ar_d(tau,delta));
end pressure;

The Gibbs energy is computed as:

function gibbsEnergy "Gibbs free energy"
  input SI.Temperature T;
  input SI.Density d;
  output SI.SpecificEnergy g;
protected

protected

  Real delta =  d/DCRIT "dim-less density";
  Real tau = TCRIT/T
     "dimensionless inverse temperature";
algorithm

  g := R*T*(1+a0(tau,delta)+ar(tau,delta)
              + delta*ar_d(tau,delta));
end gibbsEnergy;

In an equivalent manner, all other properties of inter-

est are defined.

3.2 Declarative Definition of Phase Equilib-
rium conditions

All current Modelica libraries define two phase flu-

ids for dynamic simulation via auxiliary equations,
e.g. splines generated from accurate phase boundary

data, that are a very good approximation to the cor-

rect thermodynamic equilibrium conditions. There is
one fundamental drawback to that approach: the ap-

proximation accuracy is fixed and has to be chosen

quite high to prevent numerical inconsistencies at

tight solver tolerances. From a perspective of a de-
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clarative, equation based language, a declarative

definition of the phase equilibrium condition has the

advantage that it is always solved to the current ac-
curacy of the numerical solver. This means that in

contrast to current implementations that have a

maximum accuracy that is limited by the accuracy of
the phase boundary approximation, a declarative

definition does not have this drawback. Even though

in Modelica it would be possible to define an itera-
tive scheme to compute phase equilibrium condi-

tions, the algorithm would need the current solver

tolerance as a user-defined input, again an undesir-

able drawback. The declarative definition for phase

equilibrium are the two equations:

),,(),(

),(),(

vapourliquid

vapourliquid

TgTg

TpTp

ρρ

ρρ

=

=

i.e. equality of the pressures and Gibbs energies
computed from the same saturation temperatures and

the liquid and vapour densities ρliquid and ρvapour  re-
spectively.

With the property functions defined in the last sec-

tions, the phase equilibrium conditions only need the

variables and equations in the following code frag-

ment:

  SI.Density dl(start = 1500.0) "liquid”;
  SI.Density dv(start = 5.0) "vapour";
  SI.Temperature T(start = 270.0);
equation

  p = pressure(T,d);
  h = enthalpy(T,d);
  pressure(T,dv) = pressure(T,dl);
  gibbsEnergy(T,dl) = gibbsEnergy(T,dv);

From these equations the non-linear solver will com-
pute the liquid and vapour densities for the saturation

temperature T. The equations are taken from the

context of a dynamic control volume model that as-

sumes the pressure p and the enthalpy h as dynamic

states.

3.3 Discussion

These equations have so far been tested in simple

setups, and robustness, speed and convergence were

excellent, provided that the initial values for ρliquid

and ρvapour were close to the initial equilibrium point.

Unfortunately, there are still some unsolved prob-
lems that prevent to use this formulation in many

applications: above the critical point these equations

loose a meaning and it was numerically not possible
to obtain meaningful results for dynamic simulations

that come from a supercritical state and go to a sub-

critical state. The main problem here is that the equi-

librium conditions, for the Helmholtz equation
above, has several non-physical, numerically valid

solutions in the unstable region inside the two-phase

dome.

Dymola can handle inequality-constraints on the so-

lutions of non-linear systems, but we have not yet
determined the best way specify these inequalities in

Modelica, because we need to be sure to find only

the thermodynamically stable solutions outside of the

spinoidal lines. There are inequality conditions on
some partial derivatives for these non-physical solu-

tions, see [3], that could be used to disambiguate

unwanted solutions.

A combination of some auxiliary functions for start

values and to disambiguate non-physical solutions
with the declarative definition of the phase boundary

through equations is likely to be a compromise that

works robustly under all conditions and avoids the

disadvantages of both approaches.

In the test implementation, Jacobians for the non-

linear equations have not yet been derived automati-
cally. This would further improve the robustness and

solution speed. In dynamic simulation, Dymola uses

the last solution point as a start for the next iteration

and that makes the otherwise time consuming equi-
librium iterations quite fast. For large systems of

non-linear equations arising from steady-state prob-

lems, the method of using auxiliary functions for the
saturation pressure and temperature is likely to be

more robust and more flexible. Often the auxiliary

functions can be chosen in a way that explicit
evaluation is possible in cases when the proper ther-

modynamic definition inevitably leads to a non-

linear equation system.

The main advantage of automatic differentiation for

medium properties is the economy of code: the ther-

modynamic surface for R134a, the computation of
the phase boundary and all derived properties is less

than 5% of the amount of code with conventional

programming “by hand” and auxiliary functions rep-

resenting the phase boundary.
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4 Non-linear Constraints in Multi-

Body Mechanics and Contact han-

dling

Partial derivatives are sometimes required to handle

non-linear constraints for contact handling in Multi-

Body mechanics, see also [9].

As a detailed example, we will consider the CAM

mechanism shown below, [8]. The CAM has straight

flanks between the circle segments. The follower is

roller-ended.

The CAM shape will be described by a replaceable
function defining the two dimensional position vec-

tor of every point of the circumference as a function

of a free parameter theta.

partial function shapeFunction
  input Real theta;
  output Real r[2];
end shapeFunction;

The straight flanks CAM can be defined as follows:

function straightFlanksCam
  extends shapeFunction;
  input Real R1=1   "Base circle radii";
  input Real R2=0.5 "Nose radii";
  input Real d=2    "Centre distance";
  import Modelica.Math.*;
protected

  constant Real pi=Modelica.Constants.pi;
  Real fi0;
  Real fi1;
  Real fi2;
  Real L;
  Real x;
  Real y;
  Real thetamod;
algorithm

  thetamod := atan2(sin(theta),
     cos(theta))
    "to get angle in interval -pi..pi";
  fi0 := asin((R1 - R2)/d);

  if thetamod > 0 then
    fi1 := pi/2 - fi0 - thetamod;
  else
    fi1 := - pi/2 + fi0 - thetamod;
  end if;
  fi2 := atan2(R2*cos(fi0), d +
           R2*sin(fi0));
  if abs(thetamod) > pi/2-fi0 then
    x :=R1*cos(theta);
    y :=R1*sin(theta);
  elseif abs(thetamod) >= fi2 then
    L := R1/cos(fi1);
    x := L*cos(theta);
    y := L*sin(theta);
  else
    L := d*cos(abs(thetamod)) +
     sqrt(R2^2 - d^2*sin(abs(thetamod))^2);
    x := L*cos(theta);
    y := L*sin(theta);
  end if;
  r := {x,y};
end straightFlanksCam;

The mechanism can be described by the following

equations (three dimension vectors are used for con-

venience although the mechanism is planar).
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where

r vector to closest point

θ angle to closest point
ϕ angle of CAM

T
Transformation matrix for rota-
tion around z axis

x,y,z position of center of follower

R radii of follower

dist
distance between CAM and fol-
lower

n normal of CAM shape

n_n normalized normal
Fx,Fy,Fz force on follower

F_n normal force

The partial derivative of the replaceable shape func-

tion is needed. The Modelica language has recently
been extended to allow the der-operator to define

partial derivatives of Modelica functions.
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replaceable function shape =
     shapeFunction;

function shape_theta =
     der(shape, theta);

This allows to write equations in the following form:

r = shape(theta);

r_theta = shape_theta(theta);

A tool needs to use automatic differentiation to ob-
tain the required partial derivative. Dymola generates

the derivative function in Modelica format:

function shape_theta
  input Real theta;
protected

  Real r[2];
public

  input Real R1 := 1 "Base circle radii";
  input Real R2 := 0.5 "Nose radii";
  input Real d := 2 "Centre distance";
protected

  constant Real pi := 3.14159265358979;

  Real fi0;
  Real fi1;
  Real fi2;
  Real L;
  Real x;
  Real y;
  Real thetamod;
  Real theta_d13 := 1;
public

  output Real r_d13[2];
protected

  Real fi0_d13, fi1_d13, fi2_d13;
  Real L_d13, x_d13, y_d13;
  Real thetamod_d13;
algorithm

  thetamod_d13 := theta_d13;
  thetamod := arctan2(sin(theta), cos(theta));
  fi0_d13 := 0;
  fi0 := arcsin((R1-R2)/d);
  if (thetamod > 0) then
    fi1_d13 :=  -(fi0_d13+thetamod_d13);
    fi1 := 0.5*pi-fi0-thetamod;
  else

    fi1_d13 := fi0_d13-thetamod_d13;
    fi1 := fi0-0.5*pi-thetamod;
  end if;

  fi2_d13 := -((d+R2*sin(fi0))*R2*fi0_d13*
    sin(fi0)+R2*cos(fi0)*R2*fi0_d13*cos(fi0))/
    ((R2*cos(fi0))^2+(d+R2*sin(fi0))^2);
  fi2 := arctan2(R2*cos(fi0), d+R2*sin(fi0));
  if (abs(thetamod) > 0.5*pi-fi0) then

    x_d13 := -R1*theta_d13*sin(theta);
    x := R1*cos(theta);
    y_d13 := R1*theta_d13*cos(theta);
    y := R1*sin(theta);
  elseif (abs(thetamod) >= fi2) then

    L_d13 := R1*fi1_d13*sin(fi1)/cos(fi1)^2;
    L := R1/cos(fi1);
    x_d13 := L_d13*cos(theta)-L*theta_d13*
      sin(theta);
    x := L*cos(theta);
    y_d13 := L_d13*sin(theta)+L*theta_d13*
      cos(theta);
    y := L*sin(theta);
  else

    L_d13 := -(d*thetamod_d13*simplesign(thetamod)*
      sin(abs(thetamod))+d^2*sin(abs(thetamod))*
      thetamod_d13*simplesign(thetamod)*
      cos(abs(thetamod))/sqrt(R2^2-
      d^2*sin(abs(thetamod))^2));
    L := d*cos(abs(thetamod))+sqrt(R2^2-
      d^2*sin(abs(thetamod))^2);
    x_d13 := L_d13*cos(theta)-L*theta_d13*sin(theta);
    x := L*cos(theta);
    y_d13 := L_d13*sin(theta)+L*theta_d13*cos(theta);
    y := L*sin(theta);
  end if;
  r_d13 := {x_d13, y_d13};
end shape_theta;

The dist variable can be used to define a spring act-

ing when there is penetration:

  F_n = if dist < 0 then k*(-dist) else 0;

Consider the follower connected to a mass which is

connected to a spring and damper to ground and that

the CAM is rotating at a fixed angular velocity. For
high speeds, the follower will leave the nose and

bounce back on the flank. Such a case is illustrated

below in several frames from an animation.

It should be noted that the redeclared shape function
is also used to define the parametric surface used for

the animation.

If the contact model also contains damping, the de-

rivative of the shape_theta function is also needed

during index reduction. Such contact models are very
stiff. In certain cases an idealized contact model with

the constraint dist=0 might be sufficient. In such a

case, F_n is the constraint force. Index reduction will
in that case require the second derivative of

shape_theta. It is clear already by inspection of the

automatically generated shape_theta function that

automatic differentiation to obtain this function and
its derivatives saves the modeler much tedious and

error-prone work.
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5 Conclusions

The paper demonstrates that extending Modelica

with partial derivatives of functions is natural and

solves a number of advanced modeling problems.
Dymola automatically handles the differentiation of

the partial derivatives of the functions thus reducing

the work needed by the modeler, while preserving

the efficiency of the generated simulation code.
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A Framework for Describing and Solving PDE Models in Modelica

Levon Saldamli∗, Bernhard Bachmann†, Hansjürg Wiesmann‡, and Peter Fritzson∗

Abstract

Currently, the Modelica language [3, 4] has lim-
ited support for solving partial differential equations
(PDEs). There is ongoing work for introducing PDE
support at the language level [5, 6]. This paper de-
scribes a prototype for describing PDE problems us-
ing the Modelica Language without any extensions, as
an intermediate step. The goal is to define standard
PDE models independent of specific domains, bound-
ary conditions or any spatial discretization, and al-
low a user to reuse this without manual discretization.
Modelica packages are used to define continuous do-
main boundaries, domains, and field variables over do-
mains. Corresponding space discrete version of these
packages are used to solve the space discretized PDE
problem.

1 Introduction

A PDE problem can be specified and solved as fol-
lows using the approach in this paper (see Section 6
for more details):

model Gener i cBoundaryPo i s sonExample
parameter BoundaryCond i t i o n . Data d i r z e r o (

bcType= BoundaryCond i t io n . d i r i c h l e t ,
g = 0 ) ;

parameter BoundaryCond i t i o n . Data d i r f i v e (
bcType= BoundaryCond i t io n . d i r i c h l e t ,
g = 5 ) ;

package myBoundaryP = MyGenericBoundary ;
parameter myBoundaryP . Data mybnd (

bot tom ( bc= d i r z e r o ) ,
r i g h t ( bc= d i r f i v e ) ,
t o p ( bc= d i r z e r o ) ,
l e f t ( bc= d i r f i v e ) ) ;

package omegaP = Domain (
r edec l a r e package boundaryP =myBoundaryP ) ;

parameter omegaP . Data omega ( boundary=mybnd ) ;

∗Dept. of Computer and Information Science, Linköpings uni-
versitet, Linköping, Sweden. {levsa,petfr}@ida.liu.se

†Fachhochschule Bielefeld, Fachbereich Mathematik
und Technik, Studiengang Mathematik, Bielefeld, Germany.
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package PDE =
PDEbhjl . FEMForms . E q u a t i o n s . Poisson2D (

r edec l a r e package domainP = omegaP ) ;
PDE . E q u a t i o n pde (

domain=omega ,
g _ r h s = 1 ) ;

end Gener i cBoundaryPo i s sonExample ;

First, two Dirichlet boundary conditions are declared,
dirzero and dirfive with the right-hand side val-
ues 0 and 5, respectively. Then, a boundary component
mybnd of type MyGenericBoundary (see Section 6)
is declared, and the boundary conditions are assigned
to the boundary components bottom, right, top and
left of mybnd. A domain named omega is then de-
clared using the boundary object mybnd. Finally, the
PDE model is instantiated using omega as its defini-
tion domain.
Each declaration requires two actual declarations, one
for the package and one for the data of the object, as
explained in the following section.

2 The Package Approach

In order to use an object-oriented approach with poly-
morphism in Modelica, we use packages for defining
new types such as Domain, Field, and Boundary.
Each type Type contains at least a record called Data,
containing the member variables needed in objects of
type Type. The member functions are declared in the
Type package. Each member function has at least one
input argument, of the record type Type.Data. Thus,
when calling member functions on objects, the objects
data is passed as the input record argument. Declaring
an object of type Type is implemented by declaring
a local package, e.g. typeP which extends Type and
possibly modifies parts of it, and then declaring a com-
ponent of type typeP.Data which contains the data
of the object of the modified type. This way, replace-
able functions can be declared in a package, and re-
placeable packages extending these can exchange the
functions as required. In other words, the packages
define the class hierarchy for lookup of functions to
work, and the data records define the object hierarchy
storing the object instance data.
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When types contain instances of other types, they de-
clare a local package extending the other types pack-
age, and declare the objects data inside the Data
record. For example, an equation model declares a do-
main and a field as follows:

model E q u a t i o n " P o i s s o n equat ion 2D"
r ep l a c eab l e package domainP = Domain ;
parameter domainP . Data domain ;

package f i e l d P = F i e l d (
r edec l a r e package domainP = domainP ) ;

parameter f i e l d P . Data u ( domain=domain ) ;
end E q u a t i o n

This approach allows the equation model to be reused
with any domain without changing other parts of the
model. The package fieldP redeclares the replace-
able domain package in the Field package. This way,
the package hierarchy is correctly set up. The actual
data records are declared separately, in order to build
the object hierarchy of the model. The record u has
the type fieldP.Data and will contain the correct
domain data type from the given package domainP.
The domain data must be initialized with the local val-
ues though, which is done with the modification when
declaring the record u. When the domain is to be dis-
cretized, the shape function of its boundary package
is called. Since the boundary package of the domain
package is replaced when the domain is declared, the
correct shape function is called. This is handled au-
tomatically through the package DiscreteDomain,
explained in Section 5.1.1, which is declared in the
discrete parts of the equation models.
The drawback of this approach is that each instantia-
tion requires definition of a local package extending
the type package, together with a declaration of the
Data record of the local package. The advantage is
that the local package can be declared as replaceable,
and the correct version of the package will be used
without knowing the type in advance.

3 Continuous Model Description

This section describes the packages used for continu-
ous model description of domains and fields. These
are Boundary, Domain, and Field, which are dis-
cretization independent information needed for the
PDE problem. An overview of the packages in the
framework is shown in Figure 1.
The geometry of a domain is described using contin-
uous parametric curves, which is a fairly general rep-
resentation and is easy to discretize. Each domain ob-
ject contains a boundary object describing its bound-
ary, i.e., the boundary defines the domain. The direc-

Field

ConstField

Domain

BoundaryCondition

Boundary
1

1

1

Figure 1: Overview of the packages for continuous do-

main and field description. ConstField inherits Field, i.e.,

it is a field with a known value (time-dependent or time-

independent). Arrows represent aggregate, e.g. a domain

object contains one boundary object, which contains one

boundary condition object.

tion of the parametric curve representing the boundary
decides on which side of the boundary the domain re-
sides. Usually, the domain is on the left of the bound-
ary, i.e., the curve is followed in counter-clockwise di-
rection around a point in the domain.

3.1 Boundary Definition

A boundary contains a shape function representing the
parametric curve defined for parameters in the range
[0,1]. The shape function can be seen as a mapping
from a real value, the parameter, to the coordinate vec-
tor x. In two dimensions, one parameter suffices, in
three dimensions, two parameters are needed. The
specific return value of the shape function has the type
BPoint, which is a point with additional information
about the boundary conditions in that point.
The base package for all boundary types is the package
called Boundary:

package Boundary
r ep l a c ea b l e func t i on shape

input Rea l u ;
input Data d a t a ;
output BPoin t x ;

end shape ;

r ep l a c ea b l e record Data
parameter BoundaryCond i t i o n . Data bc ;

end Data ;
end Boundary ;

The formal parameter data to the shape function con-
tains the actual data of the specific boundary object.
The record BPoint, representing a point with bound-
ary condition information, is defined as follows:

type BPoin t = Rea l [ 3 ] " x , y and boundary p a r t i n d e x " ;

Here, index 1 and 2 represent the coordinates in two-
dimensions, while the third value is the boundary con-
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dition index, needed by the discretization and solution
steps.

3.2 Domain Definition

A base domain type called Domain is declared with a
boundary instance defining the actual geometry of the
domain:

package Domain
r ep l a c eab l e package boundaryP = Boundary

extends Boundary ; / / base c l a s s r e s t r i c t i o n

r ep l a c eab l e record Data
parameter boundaryP . Data boundary ;

end Data ;

f unc t i on d i s c r e t i z e B o u n d a r y
input I n t e g e r n ;
input boundaryP . Data d ;
output BPoin t p [ n ] ;

a lgor i thm
for i in 1 : n l oop

p [ i , : ] := boundaryP . shape ( ( i − 1 ) / n , d ) ;
end for ;

end d i s c r e t i z e B o u n d a r y ;
end Domain ;

The restriction specifies that if the package
boundaryP is replaced, the replacing package
must be a subtype of Boundary.
The function discretizeBoundary must reside in
the Domain package in order that the correct shape
function is called, depending on the replaceable pack-
age boundaryP. The discretization simply calculates
a given number of points uniformly distributed on the
boundary. The data record of the domain contains the
boundary record, which is the actual data record of
the selected boundary type.

3.3 Fields

A field represents a mapping from a domain to scalar
or vector values. The domain is declared as a re-
placeable package, which can be replaced by a pack-
age extending the Domain package described in Sec-
tion 3.2. The replaceable type FieldType determines
the value type of the field. The data record contains
the data of the domain:

package F i e l d
r ep l a c eab l e type F i e l d T y p e = Rea l ;
r ep l a c eab l e package domainP = Domain

extends Domain ; / / base c l a s s r e s t r i c t i o n

r ep l a c eab l e record Data
parameter domainP . Data domain ;

end Data ;

r ep l a c eab l e func t i on v a l u e
input P o i n t x ;
input Data d ;
output F i e l d T y p e y ;

a lgor i thm
y := 0 ;

end v a l u e ;
end F i e l d ;

The function value represents the mapping, which
can be defined when specifying fields with known val-
ues. Fields with unknown values that must be solved
for during simulation may use value functions that in-
terpolate the values for given coordinates.

3.3.1 A Field Example

An example showing a field with time-constant values
follows:

model Fie ldExample
f unc t i on m y f i e l d f u n c

input P o i n t x ;
input myFieldP . Data d ;
output myFieldP . F i e l d T y p e y ;

a lgor i thm
y := cos (2∗ PI∗x [ 1 ] / 6 ) + s i n (2∗ PI∗x [ 2 ] / 6 ) ;

end m y f i e l d ;

package omegaP =
Domain ( r edec l a r e package boundaryP = C i r c l e ) ;

package myFieldP =
F i e l d ( r edec l a r e package domainP =omegaP ,

r edec l a r e func t i on v a l u e = m y f i e l d f u n c ) ;

parameter C i r c l e . Data bnd ( r a d i u s = 2 ) ;
parameter omegaP . Data omega ( boundary=bnd ) ;
parameter myFieldP . Data m y f i e l d ( domain=omega ) ;

end Fie ldExample ;

The field function myfieldfunc defines the mapping
from the space coordinates to the field values of type
Real.

3.4 Included Boundaries

Some predefined boundaries can be found in the pack-
age Boundaries. All these packages extend the ba-
sic package Boundary. Therefore the data records
in each boundary contain the parameter bc of type
BoundaryCondition.Data, containing the bound-
ary condition information. Boundary conditions are
described in Section 4.3. An overview of the included
boundaries can be seen in Figure 2. They are also
briefly described in the following sections.

3.4.1 Line

Line is a straight line defined by two points, the start
and the end points of the line. The data record of Line
follows:

r edec l a r e record extends Data
parameter P o i n t p1 ;
parameter P o i n t p2 ;

end Data ;

The shape function simply interpolates the points lin-
early between the end points:
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Line HComposite Composite Bezier GenericArc

BoundaryConditionBoundary

RectangleCircle

n
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1

Figure 2: Predefined boundaries contained in the pack-

age Boundaries. Composite is a boundary consisting of

boundary parts of different types. HComposite (homoge-

neous composite) consists of boundary parts of the same

type. Generic is a boundary type that can represent the

other concrete boundary types and is used in the Composite

boundary.

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

a lgor i thm
x [ 1 : 2 ] := d . p1 + u ∗ ( d . p2 − d . p1 ) ;
x [ 3 ] := d . bc . i n d e x ;

end shape ;

The boundary condition index is passed through to the
points on the boundary.

3.4.2 Arc

An arc is part of a circular boundary with given start
and end angles around a center and with a given radius:

r edec l a r e record Data
extends Boundary . Data ;
parameter P o i n t c ={0 ,0} ;
parameter Rea l r =1 ;
parameter Rea l a _ s t a r t =0 ;
parameter Rea l a_end =2∗ p i ;

end Data ;

Default values for the parameter gives a full circle.
The shape function calculates the position using sin
and cos functions:

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

pro t e c t ed
Rea l a =( d . a_end − d . a _ s t a r t ) ;

a lgor i thm
x [ 1 : 2 ] := d . c + d . r ∗{ cos ( d . a _ s t a r t + a∗u ) ,

s i n ( d . a _ s t a r t + a∗u ) } ;
x [ 3 ] := d . bc . i n d e x ;

end shape ;

3.4.3 Circle

A circle is simply defined by extending Arc and giving
the angles for a full circle:

package C i r c l e
extends Arc ( Data ( a _ s t a r t =0 , a_end =2∗ p i ) ) ;

end C i r c l e ;

3.4.4 Rectangle

A rectangle declares four lines as components, with
the names bottom, right, top and left. For exam-
ple bottom is declared as follows:

parameter Line . Data bot tom (
p1=p ,
p2=p + {w, 0 } ,
bc ( i n d e x =1 , name =" bot tom " ) ) ;

The parameters of the rectangle are p, w and h, rep-
resenting the bottom left corner, the width and the
height, respectively.
The rectangle class extends the HComposite package,
which is a container for several boundary parts of the
same type, as described below. The Rectangle pack-
age is defined as follows:

package R e c t a n g l e
extends HComposite (

r edec l a r e package Par tType = Line ) ;

r edec l a r e record
extends Data ( b n d d a t a (

n =4 ,
p a r t s ={ bottom , r i g h t , top , l e f t } ) ) ;

parameter Line . Data bot tom (
p1=p ,
p2=p + {w, 0 } ,
bc ( i n d e x =1 , name =" bot tom " ) ) ;

/ / r i g h t , t o p and l e f t d e f i n e d s i m i l a r l y
end Data ;

end R e c t a n g l e ;

Hence, bnddata is a data record inside the rectangle
record, with the parts initialized to the vector contain-
ing the four declared lines, and as the PartType de-
clared as Line, accordingly.

3.4.5 Bézier

The Bézier boundary package uses a number of con-
trol points given as parameters to calculate the coordi-
nates of the points on a bézier curve, using De Castel-
jau’s Algorithm [2]. The data record for Bezier pack-
age follows:

r edec l a r e record extends Data
parameter I n t e g e r n =1 ;
parameter P o i n t p [ n ] ;

end Data ;

The shape function implements the algorithm for cal-
culating the coordinates of a point on the curve, given
the parameter u:

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

pro t e c t ed
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P o i n t q [ : ] = d . p ;
a lgor i thm

for k in 1 : ( d . n − 1) l oop
fo r i in 1 : ( d . n − k ) l oop

q [ i , : ] := (1 − u )∗ q [ i , : ] + u∗q [ i + 1 , : ] ;
end for ;

end for ;
x [ 1 : 2 ] := q [ 1 , : ] ;
x [ 3 ] := d . bc . i n d e x ;

end shape ;

3.4.6 Generic

The boundary package Generic is needed in order
to define composite boundaries containing boundary
parts of different types. Since there are no pointers or
union types in Modelica, it is not possible to declare a
container for boundary parts where each part can be a
subclass of Boundary which is not known at the time
of library development. Hence, the Generic package
contains an enum parameter deciding the type of the
boundary part, and data records for each of the existing
types that can be selected. This leads to a lot of over-
head, since only one of the records are actually used,
but unused parameters are optimized away during the
compilation and this does not affect the resulting sim-
ulation code. In future implementations, union types
or other solutions for polymorphism might allow more
efficient implementation of generic boundary types.
The enumeration type and the data record for the
Generic boundary type follows:

type PartTypeEnum = e n u m e r a t i o n (
l i n e ,
a rc ,
c i r c l e ,
r e c t a n g l e ) ;

r edec l a r e r ep l a c ea b l e record Data
parameter PartTypeEnum p a r t T y p e ;
parameter Line . Data l i n e ;
parameter Arc . Data a r c ;
parameter C i r c l e . Data c i r c l e ;
parameter R e c t a n g l e . Data r e c t a n g l e ;

end Data ;

Because of lack of polymorphism, e.g. virtual func-
tions, the shape function must check the enumeration
variable and call the correct shape function:
r edec l a r e func t i on shape

input Rea l u ;
input Data d ;
output BPoin t x ;

a lgor i thm
i f d . p a r t T y p e ==PartTypeEnum . l i n e then

x := Line . shape ( u , d . l i n e ) ;
e l s e i f d . p a r t T y p e ==PartTypeEnum . a r c then

x := Arc . shape ( u , d . a r c ) ;
e l s e i f d . p a r t T y p e ==PartTypeEnum . c i r c l e then

x := C i r c l e . shape ( u , d . c i r c l e ) ;
e l s e i f d . p a r t T y p e ==PartTypeEnum . r e c t a n g l e then

x := R e c t a n g l e . shape ( u , d . r e c t a n g l e ) ;
end i f ;

end shape ;

3.4.7 Composite

The Composite boundary simply uses a given num-
ber of Generic boundaries to build a complete bound-
ary using parts of different types:

package Par tType = B o u n d a r i e s . G e n e r i c ;

r edec l a r e r ep l a c eab l e record extends Data
parameter I n t e g e r n =1 ;
parameter Par tType . Data p a r t s [ n ] ;

end Data ;

The shape function simply calls the shape function in
the Generic boundary package, using the index cal-
culated by dividing the formal parameter u uniformly
among the existing parts:

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

pro t e c t ed
Rea l s=d . n∗u ;
I n t e g e r i s = i n t e g e r ( s ) ;

a lgor i thm
x := Par tType . shape ( s − i s , d . p a r t s [1 + i s ] ) ;

end shape ;

Here, is contains the part index corresponding to the
value of the formal parameter u, and s-is is the new
parameter value scaled to map to the parameter range
of that particular boundary part. For example, if the
shape function is called for a boundary containing four
parts with u = 0.8, the value of is will be integer(4 ∗
0.8) = 3 and the value of s− is will be 4∗0.8−3 = 0.2,
mapping to the u value on the fourth boundary part.

HComposite is a simplified version of the
Composite boundary, containing only parts of
the same type.

4 Equation Models

The Equation models contain all the different com-
ponents of the PDE model, and handle the spatial dis-
cretization and the declaration of the discrete model
equations. The continuous components of the model,
i.e., the domain, its boundary, the boundary conditions
and the field, are declared here. Their discrete coun-
terparts are declared and initialized automatically from
the continuous components, using given discretiza-
tion parameters. The spatial discretization is done by
calling the finite element solver, which can be im-
plemented in Modelica, or an external solver called
through the Modelica external function interface. The
declared equations use the spatially discretized model.
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4.1 The Poisson Equation

The Poisson equation is a simple example of a station-
ary (time-independent) model. In differential form, the
equation is

−∇ · (c∇u) = f in Ω (1)

where u is the unknown field, c is a space-dependent
coefficient, f is the source term and Ω is the domain.

4.2 The Diffusion Equation

The diffusion equation for a field u is:

∂u
∂t

−∇ · (c∇u) = f in Ω (2)

where c is a space-dependent coefficient, f is the
source term and Ω is the domain.

4.3 Boundary conditions

In both cases the boundary conditions may be Dirich-
let, Neumann or mixed. The Diriclet boundary condi-
tions is used where the value of the unknown field is
known on the boundary:

u = g on Ω (3)

The Neumann boundary condition is used when the
value of the normal derivative of the field is known on
the boundary:

∂u
∂n

= g on Ω (4)

The mixed boundary condition, also called the Robin
boundary condition, contains both the value of the
field and the normal derivative:

a
∂u
∂n

+ bu = g on Ω (5)

5 Discretization

So far only the continuous parts of the packages have
been discussed. These are independent of the dis-
cretization, and thus also the solution method, e.g. the
finite element method or the finite difference method.
The method for discretization of the domain depends
on which solution method is used. The finite element
package is described in the following section. Pack-
ages for the finite difference method exist for an ear-
lier prototype of the framework. Also, packages for
the finite volume method are being considered.

5.1 The Finite Element Package

For the finite element solver, the domain is represented
by a triangular mesh. The mesh generator used in
this work requires a polygon describing the bound-
ary of the domain as input. This polygon is generated
by discretizing the domain boundary using the shape
function. A simple discretization function sampling a
given number of points uniformly on the boundary is
implemented as follows:

f unc t i on d i s c r e t i z e B o u n d a r y
input I n t e g e r n ;
input boundaryP . Data d ;
output BPoin t p [ n ] ;

a lgor i thm
for i in 1 : n l oop

p [ i , : ] := boundaryP . shape ( ( i −1) /n , d ) ;
end for ;

end d i s c r e t i z e B o u n d a r y ;

The resulting polygon is given to the mesh generator
bamg [1]. The triangulation is then imported to Mod-
elica. Figure 3 shows the overview of the packages
used in this process.

DiscreteDomain DiscreteField BCType

SolverMesh Equations

DiffusionEquationPoissonEquation

Domain Field BoundaryCondition

Continuous

Discrete (FEM package)

Figure 3: Packages involved in the discretization using the

finite element method. The user has only to deal with the

continuous part when using the equation packages.

The complete discretization and solution process is de-
picted in Figure 4. The external stiffness matrix calcu-
lation can be exchanged with internal code, i.e., func-
tions implemented in Modelica. A prototype imple-
mentation in Modelica exists for discretization of the
Poisson equation with homogeneous Dirichlet bound-
ary conditions.

5.1.1 DiscreteDomain

DiscreteDomain is the discrete version of Domain.
It contains a replaceable package domainP, rep-
resenting the continuous version of the domain.
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Discrete
Modelica definition

(boundary)

Continuous
Modelica definition

Discrete
Modelica Definition

External
Grid Generation

Results

External
Stiffness Matrix

Calculation

Boundary
Discretization

Simulation of
Modelica Model

Figure 4: Solution diagram. The boxes on the left show

the data flow. The rounded boxes show tools implemented

in Modelica, and ellipses show external tools.

The discretization is done automatically, once
DiscreteDomain is declared with a given Domain
package. DiscreteDomain is defined as follows:
package Disc re t eDomain

r ep l a c eab l e package domainP = Domain
extends Domain ; / / base c l a s s r e s t r i c t i o n

r ep l a c eab l e record Data
parameter I n t e g e r nbp ;
parameter domainP . Data domain ;
/ / A parame ter t o t h e mesh g e n e r a t o r
/ / s p e c i f y i n g d e t a i l l e v e l , l e s s e r means
/ / more t r i a n g l e s
parameter Rea l r e f i n e = 0 . 7 ;

/ / Array o f d i s c r e t e p o i n t s on t h e boundary
parameter BPoin t boundary [ nbp ]=

domainP . d i s c r e t i z e B o u n d a r y ( nbp ,
domain . boundary ) ;

parameter Mesh . Data mesh (
n= s i z e ( boundary , 1 ) ,
po lygon = boundary [ : , 1 : 2 ] ,
bc= i n t e g e r ( boundary [ : , 3 ] ) ,
r e f i n e = r e f i n e ) ;

parameter I n t e g e r b o u n d a r y S i z e =
s i z e ( boundary , 1 ) ;

end Data ;
end Disc re t eDomain ;

The actual mesh generation is done when the mesh

component is instantiated by the compiler, i.e., the
Mesh package contains the actual calls to the external
mesh generator.

5.1.2 DiscreteField

The package DiscreteField is incapsulates the
conversion of a continuous field to a discrete field, us-

ing a given discrete domain. A discrete field contains
two separate arrays of discrete points in the domain,
one array containing the unknown values and one con-
taining the known values, e.g. from given boundary
conditions. This representation corresponds to the rep-
resentation used in Rheolef [7], in order to simplify
the solver interface. Both arrays are indirect, e.g. they
contain indices of the actual points in the mesh repre-
sentation. The DiscreteField package is defined as
follows:

package D i s c r e t e F i e l d
r ep l a c ea b l e package f i e l d P = F i e l d ;
r ep l a c ea b l e package ddomainP = Disc re t eDomain ;

r ep l a c ea b l e record Data
parameter ddomainP . Data ddomain ;
parameter f i e l d P . Data f i e l d ;
parameter FEMSolver . FormSize f o r m s i z e ;
parameter I n t e g e r u _ i n d i c e s [ f o r m s i z e . nu ] ;
parameter I n t e g e r b _ i n d i c e s [ f o r m s i z e . nb ] ;
f i e l d P . F i e l d T y p e v a l _ u [ f o r m s i z e . nu ] (

s t a r t = z e r o s ( f o r m s i z e . nu ) ) ;
f i e l d P . F i e l d T y p e v a l _ b [ f o r m s i z e . nb ] ;

parameter I n t e g e r f i e l d S i z e _ u = s i z e ( val_u , 1 ) ;
parameter I n t e g e r f i e l d S i z e _ b = s i z e ( val_b , 1 ) ;

end Data ;

end D i s c r e t e F i e l d ;

Here, the default start values for the unknowns are set
to zeros. This value is overridden in the discrete parts
of the equation models, for appropriate initial value
setting. FormSize contains the sizes of the two arrays
of discrete values, and is imported from the external
solver since the sizes depend on the boundary condi-
tions actually used in the model. Basically, Dirichlet
and mixed boundary conditions decides the number of
known variables.

5.1.3 Equation Discretization

The spatial derivatives in the equations are discretized
using the external solver Rheolef [7], which is auto-
matically called from the equation models through ex-
ternal functions. Rheolef performs the assembling of
the matrix needed for the space discrete DAE system.
The result of the assembly is a coefficient matrix for
the unknown field values at the discrete points of the
domain. The resulting matrices are imported to Mod-
elica through external functions and used in the actual
equations in the equation models. The final, possi-
bly time-dependent, equation system, is simulated in
Dymola. An example solved using this framework is
shown in the following section.
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6 Example

The result of the discretization of the equation, i.e., the
assembly step, is a coefficient matrix for the unknown
field values at the discrete points of the domain. The
discrete part can be completely handled by the equa-
tion model, hiding the details from the user, as shown
in the example using the PoissonEquation model:

model Gener i cBoundaryPo i s sonExample
import PDEbhjl . B o u n d a r i e s . ∗ ;
import PDEbhjl . ∗ ;

parameter I n t e g e r n =40;
parameter Rea l r e f i n e = 0 . 5 ;
parameter P o i n t p0 ={1 ,1} ;
parameter Rea l w=5;
parameter Rea l h =3 ;
parameter Rea l r = 0 . 5 ;
parameter Rea l cw=5;

package myBoundaryP = MyGenericBoundary ;

parameter myBoundaryP . Data mybnd (
p0=p0 ,
w=w,
h=h ,
cw=cw ,
bot tom ( bc= d i r z e r o ) ,
r i g h t ( bc= d i r f i v e ) ,
t o p ( bc= d i r z e r o ) ,
l e f t ( bc= d i r f i v e ) ) ;

package omegaP = Domain (
r edec l a r e package boundaryP =myBoundaryP ) ;

parameter omegaP . Data omega ( boundary=mybnd ) ;

parameter BoundaryCond i t i o n . Data d i r z e r o (
bcType= BoundaryCond i t i o n . d i r i c h l e t ,
g =0 ,
q =0 ,
i n d e x =1 ,
name =" d i r z e r o " ) ;

parameter BoundaryCond i t i o n . Data d i r f i v e (
bcType= BoundaryCond i t i o n . neumann ,
g =5 ,
q =1 ,
i n d e x =2 ,
name =" d i r f i v e " ) ;

parameter BoundaryCond i t i o n . Data b c l i s t [ : ] =
{ d i r z e r o ,

d i r f i v e } ;

package PDE =
PDEbhjl . FEMForms . E q u a t i o n s . Poisson2D

( r edec l a r e package domainP = omegaP ) ;

PDE. E q u a t i o n pde (
domain=omega ,
nbp=n ,
r e f i n e = r e f i n e ,
g0 =1 ,
nbc= s i z e ( b c l i s t , 1 ) ,
bc= b c l i s t ) ;

end Gener i cBoundaryPo i s sonExample ;

Here, two different boundary conditions are assigned
to different parts of the boundary. The boundary used
here is defined as follows:

package MyGenericBoundary
extends Boundary ;

r edec l a r e record extends Data
parameter P o i n t p0 ;
parameter Rea l w;
parameter Rea l h ;
parameter Rea l cw ;

parameter Rea l ch=h ;
parameter P o i n t cc =p0 + {w, h / 2 } ;

parameter Line . Data bot tom (
p1=p0 ,
p2=p0 + {w, 0 } ) ;

parameter Line . Data t o p (
p1=p0 + {w, h } ,
p2=p0 + {0 , h } ) ;

parameter Line . Data l e f t (
p1=p0 + {0 , h } ,
p2=p0 ) ;

parameter B e z i e r . Data r i g h t (
n =8 ,
p= f i l l ( cc , 8 ) +

{ { 0 . 0 , −0 . 5 } , { 0 . 0 , −0 . 2 } , { 0 . 0 , 0 . 0 } ,
{ −0 .85 , −0 .85} ,{ −0 .85 ,0 .85} ,{0 .0 ,0 .0} ,
{ 0 . 0 , 0 . 2 } , { 0 . 0 , 0 . 5 }

} ∗ { {cw , 0 } , {0 , ch } } ) ;

parameter Composi te . Data boundary (
p a r t s 1 ( l i n e = bottom ,

p a r t T y p e =PartTypeEnumC . l i n e ) ,
p a r t s 2 ( b e z i e r = r i g h t ,

p a r t T y p e =PartTypeEnumC . b e z i e r ) ,
p a r t s 3 ( l i n e = top ,

p a r t T y p e =PartTypeEnumC . l i n e ) ,
p a r t s 4 ( l i n e = l e f t ,

p a r t T y p e =PartTypeEnumC . l i n e ) ) ;
end Data ;

r edec l a r e func t i on shape
input Rea l u ;
input Data d ;
output BPoin t x ;

a lgor i thm
x := Composi te . shape ( u , d . bounda ry ) ;

end shape ;

end MyGenericBoundary ;

The basic contents of the Poisson2D equation model
used above is defined as follows:

package Poisson2D " P o i s s o n problem 2D"
package uDFieldP = D i s c r e t e F i e l d (

r edec l a r e package ddomainP = ddomainP ,
r edec l a r e package f i e l d P = u F i e l d P ) ;

uDFieldP . Data fd (
ddomain=ddomain ,
f i e l d = u F i e l d ,
f o r m s i z e = f o r m s i z e ,
u _ i n d i c e s = u _ i n d i c e s ,
b _ i n d i c e s = b _ i n d i c e s ,
v a l _ u ( s t a r t ={1 f o r i in 1 : f o r m s i z e . nu } ) ) ;

equat ion
l a p l a c e _ u u ∗ fd . v a l _ u

= mass_uu∗ g _ r h s . v a l _ u + mass_ub∗ g _ r h s . v a l _ b
− l a p l a c e _ u b ∗ fd . v a l _ b ;

fd . v a l _ b = b v a l s ; / / known boundary v a l u e s
end E q u a t i o n ;

end Poisson2D ;
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The matrices laplace_uu, mass_uu, mass_ub and
laplace_ub are retrieved from the external solver
Rheolef. Also bvals is calculated by the external
solver. For diffusion problems, additional matrices are
retrieved for the coefficients for the time derivatives of
the unknowns.

The plot of the simulation result can be seen in Fig-
ure 5. For comparison, same model is exported to and
solved in FEMLAB. Figure 6 shows the result gener-
ated by FEMLAB. The triangulation of the domain in
both cases can be seen in Figure 7.
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Figure 5: Results from solving the Poisson equation

(steady-state) in Dymola.

Figure 6: Results from solving the Poisson equation

(steady-state) in FEMLAB.
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Figure 7: The meshes automatically generated from do-

main description in Modelica. Bamg mesh on the left, FEM-

LAB solution mesh on the right.

7 Conclusion and Future Work

The packages presented here give a general framework
for easily defining general domains over which the
predefined PDE models from the framework can be
solved. New boundaries are easy to define using the
existing boundaries as components, as shown in Sec-
tion 6. Additional standard boundaries can also be
added to the Boundaries package for future use.
New PDE models are also easy to add to the frame-
work. Models that can be formulated using forms as
described in the Rheolef User Manual [8] can be added
to the framework by using the external function inter-
face and implementing necessary extensions.
Further work is needed on the finite difference and
the finite volume packages and adapt them to the cur-
rent continuous definition framework. Also, the fi-
nite difference solver can be improved to support non-
rectangular domains.
A simple extension of the framework is to include do-
mains that use the existing standard boundaries. For
example, a CircularDomain can be defined in the
framework as follows:

package Circu la rDo ma i n
extends Domain (

r edec l a r e package boundaryP = C i r c l e ) ;
end Circu la rDo ma i n ;

Such a domain can be used directly when defining new
problems, instead of declaring a general domain each
time and replacing the boundary manually.
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Abstract 
This paper presents improvements on techniques of 
merging tasks in task graphs generated in the ModPar 
automatic parallelization module of the OpenModelica 
compiler. Automatic parallelization is performed on 
Modelica models by building data dependency graphs 
called task graphs from the model equations. To handle 
large task graphs with fine granularity, i.e. low ratio of 
execution and communication cost, the tasks are 
merged. This is done by using a graph rewrite sys-
tem(GRS), which is a set of graph transformation rules 
applied on the task graph. In this paper we have solved 
the confluence problem of the task merging system by 
giving priorities to the merge rules. A GRS is confluent 
if the application order of the graph transformations 
does not matter, i.e. the same result is gained regardless 
of application order. 

We also present a Modelica model suited for auto-
matic parallelization and show results on this using the 
ModPar module in the OpenModelica compiler. 

1 Introduction 
Parallel computers have been used in simulations for a 
long time. In fact, many of the large simulation applica-
tions are driving the parallel computer industry, like 
modeling and simulation of atomic explosions, or mod-
eling and simulation for weather forecasting. These 
models are typically hand written for dedicated parallel 
computers. Modeling of such systems requires both 
knowledge of the modeling domain and knowledge in 
parallel programming. Thus, such models are mostly 
used by experts and the models tend to be used for a 
long period of time, since it is to expensive to change 
them. 

In this paper we instead present techniques that en-
able a fully automatic approach to parallel simulation. 
We have developed an automatic parallelization tool 
for Modelica that can translate a Modelica model into a 
platform independent parallel simulation program. By 
having a fully automated process of producing the par-
allel simulation code, parallel simulation is opened up 

to a new set of users, with little or no knowledge of 
parallel programming or even parallel computers. 

Our parallelization tool is plugged into the Open-
Modelica compiler developed at the Programming En-
vironments Laboratory (PELAB) at Linköping Univer-
sity. Figure 1 presents an overview of the components 
of the OpenModelica compiler and the parallelization 
tool which is called ModPar. The OpenModelica com-
piler reads Modelica models and produces a set of vari-
ables, equations, algorithms, blocks, etc. This is fed 
into the ModPar module which performs a set of op-
timizations on the equations. First, simple algebraic 
equations on the form a=b are removed, which can 
substantially reduce the number of equations and vari-
ables of the system. 

OpenModelica
frontend

ModPar

Equation opt.
BLT, Index
reduction

Task Graph
Builder

Task Merging Task
Scheduling

Code
Generation

Parallel
MPI

program

Figure 1. The ModPar Architecture.

The next optimization performed on the equations is 
the equation sorting. Equations are sorted in a Block 
Lower Triangular(BLT) form, resulting in a set of 
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equation blocks, where each block consists of one or 
more equations that need to be solved simultaneously. 

In conjunction with sorting the equations, index re-
duction using dummy derivatives is applied[6]. Index 
reduction is used on high index systems of equations, 
where some equations need to be differentiated in order 
to solve the system. The index of a system corresponds 
to how many times some equations needs to be differ-
entiated before the set of equations can be transformed 
into an ODE (also called the underlying ODE). 

A task graph is built, based on the sorted BLT form. 
A task graph is a Directed Acyclic Graph (DAG), with 
costs associated with edges and nodes. It is described 
by the tuple ),,,( τcEVG =  where 

• V  is a set of vertices (nodes), i.e. tasks in the task 
graph. A task is generated for each sub expression 
in the model equations. For instance, an addition be-
tween two scalar values  (a+b) or a function call  
(sin(x)) constitutes a task. In this paper tasks 
and nodes are used with the same meaning. 

• E  is a set of edges, which imposes a precedence 
constraint on the tasks. An edge  indi-
cates that node 1v must be executed before  and 
send data (resulting from the execution of ) to 

.  

),( 21 vve =
2v
1v

2v
• gives the communication cost of sending the 

data along an edge . 
)(ec

Ee∈
• )(vτ  gives the execution cost for each node 

. Vv∈
The immediate predecessors (or parents) of a node n 
are all nodes having an edge leading to the node n. 
They are denoted by pred(n). The immediate succes-
sors (or children) of a node n are all nodes having an 
edge leading to it from node n. They are denoted by 
succ(n). Similarly the predecessors of a node n is the 
transitive closure of pred(n), i.e. the set of all tasks 
having a path leading to the node n. Analogously, the 
successors of a node n are all the tasks having a path 
leading to them from the node n. These sets are denoted 
predm(n) and succm(n) respectively. 

Blocks containing more than one equation need to 
be solved before the task graph can be built. Such a 
block can either be a linear system of equations or a 
non-linear system of equations. For certain blocks the 
solution cannot be found at compile time and thus a 
numerical solver is integrated in the task graph itself. 
For example, the solution of a linear system of equa-
tions can be done in parallel, making the corresponding 
task possible to execute on more than one processor. 
Such tasks are referred to as malleable tasks. 

The next step in the ModPar tool is to perform task 
merging and task clustering. Task clustering performs a 
mapping of tasks to virtual processors by forming clus-

ters of tasks. This means that tasks that belong to the 
same cluster have a communication cost of zero, while 
tasks between clusters still have their original commu-
nication cost. Task merging differs from task clustering 
in the sense that tasks of the task graph are collapsed 
into a single node that represents the complete compu-
tational work of the included tasks. The data packets 
sent to and from the merged task are also combined. 
The goal of a task-merging algorithm is to increase the 
granularity, i.e., the relation between communication 
and execution cost of the task graph. This paper pre-
sents improvements on a task-merging algorithm based 
on earlier work in [1]. 

The result from the Task Merging algorithm is a 
new task graph with a smaller number of tasks (with 
larger execution costs). This is fed into the task-
scheduling algorithm that maps the task graph onto a 
fixed number of processors. Each task in the task graph 
is assigned a processor(s) and starting time(s). 

The final stage in the ModPar module is code gen-
eration. The ModPar outputs simulation code with MPI 
(Message Passing Interface) calls[7] to send and re-
ceive code between processors. Processor zero runs the 
numerical solver. In each integration step, work is dis-
tributed to other slave processors, which then calculate 
parts of the equations and send the result back to proc-
essor zero. Model parameters are only read once from 
file and distributed to all processors at the start of the 
simulation.  

The rest of the paper is organized as follows. Sec-
tion 2 introduces the method of merging tasks using a 
graph rewrite system formalism. Section 3 presents a 
Modelica application example suitable for paralleliza-
tion, followed by results in section four. Section 5 pre-
sents the conclusions of the work and section six shows 
how the work relates to other contributions. 

2 Task Merging using Graph Re-
write Systems 

In previous work we have proposed a task-merging 
algorithm based on a graph rewrite system (GRS). A  

RedexPattern
Condition

Invariants

Figure 2. The X notation for GRS.

GRS is a set of graph transformation rules with a pat-
tern, a condition, and a resulting sub-graph (called re-
dex). We use a graphical notation (called the X-
notation) depicted in Figure 2.  
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A GRS applies the transformation rules on the graph 
until there are no more matching patterns found in the 
graph. When this happens the GRS terminates. The 
termination of a GRS is an important property both 
theoretically and in practice. If it is not terminating, the 
GRS must be interrupted somehow in a practical im-
plementation.  

Our task merging rewrite rules are based on the 
condition that the top level of a task should not in-
crease. The top level of a task is defined as the longest 
path from the task to a task without any ingoing edges, 
accumulating execution cost and communication cost 
along the path. The communication costs are described 
using two parameters, the bandwidth B and the latency, 
L. The communication cost of sending n bytes becomes 

. The transformation rules, first presented in 
[2] are given below.  

LBn +/

1. The first and simplest rewrite rule is given in 
Figure 3. It merges a parent task that has only 
one child with the child. This can always be 
performed, i.e., without any condition, since 
such transformation will not reduce the level of 
parallelism in the task graph. 

 
 

p

c
p´

)(   )( pnpredjjtlevel ∈  
Figure 3. Merging of single children rule, called 

singlechildmerge.

2. The second rule handles join nodes, i.e., a task 
that has several incoming messages from a set 
of parent tasks, see Figure 4. The condition for 
this rule to apply is that the top level of task c 
does not increase when the transformation is 
performed. However, it is also necessary to 
make sure that other successors of the parents 
of the join node (pij) are not increasing their top 
levels. The rule therefore divides the parents 
into two disjoint sets, one that has successors 
fulfilling the condition and one that has succes-
sors increasing their top level by the merge and 
therefore not fulfilling the condition. The par-
ents not fulfilling the condition are therefore not 
merged into the join task, c. 
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Figure 4. Rule of Merging of all parents to a task, called 

mergeallparents.

3. The third and final rewrite rule deals with 
split nodes. A split node is a node with sev-
eral successors, or children. The transforma-
tion will replicate the split task and merge it 
with each individual successor task, ci. How-
ever, the successor tasks can also have other 
predecessors for which the top level cannot 
be allowed to increase. Therefore, analo-
gously as for the join task rewrite rule we also 
divide the successor tasks into two disjoint 
sets. The successor tasks that have other 
predecessors not increasing the top level are 
put in the set C. Thus, predecessors belonging 
to C are replicated and merged with the task 
c, while predecessors not belonging to C are 
left as they are. 
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Figure 5. Replicating a parent and merging into each child 

task, called replicateparentmerge.

An unanswered question so far has been if the GRS is 
confluent or not. A confluent GRS gives the same re-
sulting graph independently of the order of the applied 
rules. In earlier work, we investigated empirically 
whether the GRS was confluent, but now we have 
found a counter example that the rewrite rules are not 
confluent as they appear above. There are several alter-
natives to try to remedy this fact: 

1. One could limit the order of matching of the 
patterns on the task graph. An idea of this is 
for instance to traverse the graph once in a 
top down fashion to prevent the confluence 
problem to occur. It is however not clear if 
this would work or not, without a more thor-
ough investigation. 
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2. Another alternative is to instead use the sim-
pler rewrite rules first presented in [2]. This 
approach might be taken for specific types of 
graphs, e.g. trees or forests, but in the gen-
eral case, this is not sufficient. The simple 
rules did not succeed so well in reducing fine 
grained tasks graphs as produced by the task 
graph builder in ModPar. 

3. A third, and the best practical alternative, is 
to give priorities to the rewrite rules. This 
means that a rewrite rule with a higher prior-
ity is always applied before other rules with 
lower priority. This will effectively prevent 
the GRS from being non-confluent, since 
only applications of transformations in prior-
ity order is allowed. 

The priority order solution to the confluence problem 
was chosen in ModPar. The chosen priority is: 

1. singlechildmerge 
2. replicateparentmerge 
3. mergeallparents 

This means that the singlechildmerge rule has the high-
est priority and is always applied first. This rule is also 
the cheapest to apply since it does not have any condi-
tion, only a sub-graph pattern. Therefore, it makes 
sense to apply it with highest priority. 

 The second highest priority has the replicatepar-
entmerge rule, thus giving the mergeallparents rule the 
lowest priority. The order between the last two rules is 
chosen so that rules limiting the amount of parallelism 
of the task graph are given lower priority. Since mer-
geallparents merges independent tasks (the successor 
of the parent), it reduces the amount of parallelism, 
which replicateparentmerge does not. Therefore, this 
order is chosen. 

3 Application example 
Lets consider a simple application example that can 
easily be scaled up using the array of components fea-
ture in Modelica. It uses the Modelica standard library 
and the one-dimensional Rotational package to cre-
ate a flexible shaft. The shaft element is implemented 
as: 
model ShaftElement "Element of a flexible 
                    one dimensional shaft"  
import Modelica.Mechanics.Rotational.*;1

   extends Interfaces.TwoFlanges; 
   Inertia load; 
   SpringDamper spring(c=500,d=5); 

                                                      
1 Unqualified imports are not recommended to use. They 
are used here for space considerations. 

equation  
   connect(load.flange_b, 

spring.flange_a); 
   connect(load.flange_a,flange_a); 
   connect(spring.flange_b,flange_b); 
end ShaftElement;

The ShaftElement model describes a one-
dimensional shaft element with a spring and a damper. 
By instantiating this component as an array and con-
necting each array component to the next, we get a 
simple model of a flexible shaft. 
model FlexibleShaft "model of a flexible 

 shaft"
import Modelica.Mechanics.Rotational.*;  
  extends Interfaces.TwoFlanges; 
  parameter Integer n(min=1) = 20 "number 
of shaft elements"; 
  ShaftEle
equation  

ment shaft[n]; 

  for i in 2:n loop 
    connect(shaft[I-1].flange_b,    
            shaft[i].flange_a); 
  end for;  
  connect(shaft[1].flange_a, flange_a); 
  connect(shaft[n].flange_b, flange_b); 
end FlexibleShaft; 

Finally, we create a test model to test our shaft. 
 

model ShaftTest  
  FlexibleShaft shaft(n=20); 
  Modelica.Mechanics.Rotational.Torque 
src; 
  Modelica.Blocks.Sources.Step c; 
equation  
  connect(shaft.flange_a, src.flange_b); 
  connect(c.outPort, src.inPort); 
end ShaftTest; 

The structural parameter n controls the number of ele-
ment pieces of the model, i.e., the number of discretiza-
tion points of the model. It is therefore directly propor-
tional to the number of variables and equations of the 
model. Due to its simplicity and structure, it is suitable 
for parallelization. 

4 Results 
The confluence problem is successfully solved in this 
paper by introducing priorities on the task merging 
rules. These priorities makes the task merging GRS 
confluent, according to measurements made on a large 
set of random task graphs from the Standard Task 
Graph Set (STG)[10], as well as task graphs generated 
from the ModPar module. 

The application example in section 3 can substan-
tially be reduced in size but still reveal sufficient paral-
lelism. When running the task-merging algorithm on 
the task graph produced from the example, it results in 
a set of independent tasks, which can then be allocated 
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to a set of processors in a simple load balancing man-
ner, i.e., evenly distributing them among the proces-
sors. Thus, for this example, no scheduling is even re-
quired. This reduction is possible since the graph re-
write rules allow replication of tasks, such that depend-
encies between tasks of the task graph are completely 
removed. 

Table 1 shows the increase of granularity2 when ap-
plying the task merging for another Modelica example 
from the Thermofluid package. With realistic figures 
on bandwidth (B) and Latency (L), we see a substantial 
increase of granularity. 

 
Model Granularity 

before merge 
Granularity 
after merge 

PressureWave 
(B=1, L=100) 

0.000990 0.106 

PressureWave 
(B=1, L=1000) 

0.0000990 0.0562 

Table 1. Granularity before and after Task Merging. 
 
The status of the parallelization tool is that we can gen-
erate C code with MPI calls for execution of parallel 
machines, such as the Linux cluster monolith at NSC 
(Swedish National Supercomputer Center). We have 
successfully executed smaller examples on this cluster 
computer but without obtaining any speedups. The ap-
plication example in Section 3 can only be translated in 
reasonable time with about 9000 equations (using 1000 
discretization points), which is a bit too small for ob-
taining sufficient speedups. In order to handle larger 
system of equations, the equation optimization and 
other parts of the compiler must be implemented in a 
more efficient way. In addition, the amount of work per 
state variable in the Flexible Shaft example is not so 
large, so in order to get better speedups, other applica-
tions must be considered. 

5 Conclusions 
We have proposed improvements on earlier work of 
merging tasks in a task graph using a graph rewrite sys-
tem formalism. Earlier improvements made the task 
merging GRS non-confluent, thus giving different re-
sults depending of order of application. We proposed 
several alternative solutions to make the GRS confluent 
and have chosen and implemented the best-suited solu-
tion for our application area, parallelization of simula-
tion code from Modelica models. 

                                                      
2 The relation between communication and execution cost 
of the task graph. 

The task merging technique is implemented in the 
ModPar module, a part of the OpenModelica compiler. 
It successfully reduces the number of tasks of task 
graphs built from Modelica simulation code to a suit-
able degree such that existing scheduling algorithms 
can succeed in producing parallel programs that give 
sufficient speedup. 

6 Related Work 
There is much work on scheduling of task graphs for 
multi-processors, like the DSC[11] algorithm, the 
TDS[4] algorithm or the Internalization algorithm[9], 
all working on unlimited number of processors, so 
called clustering algorithms. They all treat each task in 
the task graph as a non-preemptive atomic task, and do 
not consider merging of tasks. Therefore, they do not 
work well on very fine-grained task graphs. 

There are other attempts to merge tasks, like the 
grain-packing algorithm[5]. The difference between 
this approach and ours is that our approach is iterative 
by nature and allows task replication. 

Related work on parallelization of simulation code 
includes distributed simulation where the numerical 
solver is split into several parts, each handling a subset 
of the equations. The interaction between the subsys-
tems is then delayed in time such that the subsystems 
becomes independent of each other in each time step. 
This division of the model equations into subsystems is 
implemented using a transmission line component in 
the system, giving the technique the name Transmis-
sion Line Modeling (TLM)[3].  

Other related work on parallel simulation includes 
using parallel solvers, where the numerical solvers 
themselves are parallelized, like for instance Runge 
Kutta based solvers[8]. 
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Abstract 
 

The modelling goal is to obtain a neutral 

representation of the process with enough 

information to generate qualitative information about 

the behaviour of the process. Such a representation 

must be able to change models on different levels 

among the user’s world. The obtained models have 

physical structure and parameters, under declarative 

and neutral format, as the Modelica modelling 

language provides. The behaviour of the models is 

obtained by considering and properly modelling the 

basic phenomena running on different modelling 

levels. More sophisticated models could be obtained 

by adding more knowledge and information at the 

place where the model is used of. 

Keywords: Process Modelling; Neutral modelling; 

Metamodelling; Continuous casting; Modelica. 

 

 

1. Introduction 
 

The considered process is steel continuous casting. 

Most previous advances in continuous casting 

modelling have been based on empirical knowledge 

gained from experimentation with the process. Such 

models are mainly equation based and describe only 

parts of the process. Meanwhile model exchange 

among different simulation environments is a strong 

and real need. No model can reveal all the 

phenomena running within a process. 

 

The modelling goal is to obtain a neutral 

representation of the process. Such a model must 

have enough information to generate qualitative 

information about the behaviour of the process. A 

more sophisticated model could be obtained by 

adding more knowledge and information at the place 

where the model is used.  

 

The model has a physical structure and is based on 

running phenomena, which have measurable 

parameters and physical meanings, e.g. temperature, 

pressure, volumetric flows. The modelling 

framework is based on Modelica, which is a very 

promising standard in neutral modelling [1], [2], 

especial for very complex processes, like the 

considered process.  

 

The physical process is described in section 2. Its 

description is made at the physical level and based 

on the involved phenomena. The methodology of 

modelling is presented using metamodelling 

concepts presented and described in section 3. Three 

basic sub-models are considered in this work, based 

on physical decomposition of the process: the ladle, 

the tundish and the cooling model. Each of these 

models is considered by describing and modelling 

separately for validation purposes. It is the scope of 

sections 4, 5 and 6. Finally, in the section 7, some 

simulation results are presented and discussed. 

 

 

2. Description of the Process 
 

In the continuous casting process, molten material 

(metal) is delivered from the bottom of a transfer 

vessel (the tundish) into a mold cavity. Here, the 

water-cooled walls of the mold extract heat to 

solidify a shell that contains the liquid pool. The 

shell is withdrawn from the bottom of mold at a 

“casting speed” that matches the inflow of metal, so 

that the process ideally operates at a steady state. 

Below the mold, water sprays extract heat from the 

surface, and the strand core eventually becomes fully 

solid when it reaches the “metallurgical length”.  

 

Heat flow and solidification phenomena models are 

used for basic design and troubleshooting of this 

process. Heat transfer in the mold region is 

controlled mainly by heat conduction across the 

interface between the surface of the solidifying shell 

and the mold. In steel slab casting operations with 

mold flux, such models feature a detailed treatment 

of the interface, including heat, mass, and 

momentum balances on the flux in the gap and the 

effect of shell surface imperfections on heat flow [3].  

Heat flow models which extend below the mold are 

needed for basic machine design to ensure that the 
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last support roll and torch cutter are positioned 

beyond the metallurgical length for the highest 

casting speed. Below the mold, air mist and water 

spray cooling maintain surface temperature of the 

strand, while the interior solidifies.  

 

Continuous casting involves a staggering complexity 

of interacting phenomena at the mechanistic level. 

Some of the important phenomena include, [4], [5], 

[6], [7], [8], [9], [10], [11], and [12]: 

• fully-turbulent, transient fluid motion in a 

complex geometry (inlet nozzle and strand liquid 

pool), affected by argon gas bubbles, thermal 

and solute buoyancies; 

• thermodynamic reactions within and between the 

powder and steel phases; 

• dynamic motion of the free liquid surfaces and 

interfaces, including the effects of surface 

tension, oscillation and gravity-induced waves, 

and flow in several phases; 

• thermal, fluid, and mechanical interactions in the 

meniscus region between the solidifying 

meniscus, solid slag rim, infiltrating molten flux, 

liquid steel, powder layers, and inclusion 

particles; 

• heat transport through the solidifying steel shell, 

the interface between shell and mold, (which 

contains powder layers and growing air gaps) 

and the copper mold; 

• solidification of the steel shell, including the 

growth of grains and microstructures, phase 

transformations, precipitate formation, and 

microsegregation; 

 

Because of this complexity, no model can include all 

of the phenomena at once. An essential aspect of 

successful model development is the selection of the 

key phenomena of interest to a particular modelling 

objective and by making of reasonable assumptions. 

The basic phenomena considered in this work are 

related to heat transfer among material’s phases and 

flow of the processed material. 

 

Mechanistic models are based on satisfying the laws 

of conservation of heat, mass, force and momentum 

in an appropriate domain with appropriate boundary 

conditions. In this work, each considered 

phenomenon is represented by term(s) in these 

governing equations, excepting the force and 

momentum.  

 

Other phenomena can be ignored or incorporated 

using empirical constants, obtained through 

experimentation and model calibration.  

3. The modelling methodology  
 

Following the above hypothesis the phenomena from 

two domains were considered: thermal and fluid 

phenomena. In the thermal domain the considered 

phenomena are conduction and radiation. From the 

fluid domain, fluid flow is considered as effect of 

difference pressure. For each domain, ports (some 

time interfaces called) must be defined, in order to 

describe the quantitative behaviour of the process 

and to write mass and energy balances.  

 

By metamodel is understood a model of the 

modelling methodology. From the methodology 

point of view two metamodels are presented in Fig.1 

and Fig. 2. The first metamodel shows the highest 

point of view of the methodology. The process 

model in considered being an aggregation of 

physical model with one or more material models 

and one or more phenomena models. Material and 

phenomena models need properties models to 

compute the thermodynamic and transport 

properties. The physical model, in association with 

the properties model, generates constraints related to 

the behaviour of the model.  

 

The second metamodel is closer to the structure of 

the model. The process model is composed of two 

basic models: a phenomena model and a 

mathematical model. The phenomena model 

describes the level of the modelling and the 

interaction among considered phenomena. The 

quantitative behaviour of the model needs a 

mathematical model, which depends on the 

considered phenomena. The mathematical model 

contains balance and constitutive equations. The 

interaction of phenomena and mathematical model is 

described by properly considering ports. 

 

There are two types of ports: external (or static) to 

describe the input-output flow of the material and 

internal (or dynamic) to describe the phase 

transformations of the material during processing. 

There are two external models, in the sense they 

could be defined in an independent approach, 

possible in different (distributed) places and by 

different modellers. It is the material model and the 

geometry model.  

 

The material model describes the thermodynamic 

properties and the interaction of phenomena running 

on different modeling levels. Based on the context, 

i.e. the composition of the devices that support the 

processed material, a model of constraints must be 

considered and defined.  

D. Aiordachioaie, M. Munteanu, E. Ceanga

The Modelica Association 132 Modelica 2005, March 7-8, 2005



 

 

Model

Phenomena

1..*

1

1..*

Material

1..*

1

generates

1..*

Physical

1

1

1

uses

Properties

has
depends

Constraints
generates

1

1

1

 
Figure 1: A partial metamodel of the process model 

 

 
Figure 2: A more detailed metamodel 

Some Results on Neutral Modelling of the Steel Continuous Casting Process

The Modelica Association 133 Modelica 2005, March 7-8, 2005



 

 

The constraints model is developed in correlation 

with the model of the geometry of the plant, where 

the processing of the material takes place. 

 

Both metamodels are the base of the design a 

modelling tool, under computed aided modelling 

environment. Such a tool must assist the modeller to 

take in account the all the interactions and all 

necessary phenomena at the considered level of 

modelling. 

 

 

4. The model of the ladle 
 

The considered input variable in the ladle is the 

initial temperature T0 of the processed material. The 

necessary phenomena to consider are related to time 

variation of the temperature inside and outside of the 

ladle and the variation of steel volume inside of the 

ladle, when the casting process starts. It is supposed 

that the steel is in liquid phase and no phase change 

is performed in the ladle. 

 

Two sub-models cover the ladle: the processed 

material (steel) and the wall model. The transfer of 

thermal energy from ladle to outside of ladle is 

modelled by radiation phenomenon from the surface 

of the ladle to environment. A valve, conducted by a 

controller with proper drives, makes the control of 

the steel debit.  

 

For the considered phenomena the following 

variables are necessary: temperature and heat flow 

rate for thermal domain; pressure, temperature and 

volume flow rate for fluid domain. The interfaces for 

such phenomena can be defined as: 

 

connector PortFluid 

Pressure p; 

flow VolFlowRate qvol; 

end PortFluid; 

 

connector PortHeat 

CelsiusTemperature T; 

flow HeatFlowRate qheat; 

end PortHeat; 

 

connector PortThermoFluid 

Pressure p; 

CelsiusTemperature T; 

flow VolFlowRate qvol; 

end PortThermoFluid; 

 

The environment must be taken into consideration in 

order to show the behaviour of the high temperature 

sources such as liquid steel. It is expected that the 

temperature of the environment to rise, near the 

space of the ladle. Such a model can be as 

 

partial model Environment 

   PortHeat ha; 

   extends EnvironmentProperties; 

   CelsiusTemperature T (start=30, min=30); 

    parameter Volume vol(start=1000, min=0); 

algorithm 

    ha.T := T; 

equation 

    vol * rho * shcap * der(T) = ha.qheat; 

end Environment; 

 

In the EnvironmentProperties model the properties of 

the medium related to density, rho, and to specific 

heat capacity, shcap, are defined. 

 

The phenomena from thermal domain are considered 

now. It is about of two main phenomena: radiation 

from the hot surface to another one with a lower 

temperature; the conduction of heat, which is 

specific to heat conduction in solid phases. The 

models can be as: 

 

model Conduction 

   PortHeat ha,hb; 

   ThermalConductivity thermalcond (start = 1e-5); 

   Thickness thick (start = 1); 

   Area transfer_area (start=1); 

    Real Rth(start=1, min=1E-6) "Thermal Res."; 

algorithm 

    Rth := thick / thermalcond / transfer_area; 

    ha.qheat := (ha.T - hb.T) / Rth;  

equation 

    ha.qheat + hb.qheat = 0; 

    // un-defined: thick, thermalcond, transfer_area; 

end Conduction; 

and  

 

model Radiation 

    PortHeat ha,hb; 

    constant Real viewfactor = 0.1 "The view factor"; 

    constant Real sigma(final  

unit="W/(m2.K4)")=5.6704e-8 "Stefan-Boltzman"; 

    Area transfer_area (start=1, min=0); 

    Real Rth(start=1, min=1E-6); 

algorithm 

    Rth := 1 / sigma / transfer_area / viewfactor; 

    ha.qheat := (ha.T^4 - hb.T^4) / Rth; 

equation 

    ha.qheat + hb.qheat =0; 

    // un-defined: transfer_area; 

end Radiation; 
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The ladle model contains two sub-models: the wall 

and the steel. The wall model is composed mainly 

from a physical model, which defines the size and 

the composition of the wall, and the steel model. The 

wall model of the ladle can be as 

 

model Wall 

    PortHeat ha, hb; 

    Conduction hcond; 

    Volume vol (start=1); 

    Density rho (start=1); 

    Real shcap (start=1); 

    CelsiusTemperature T (start=30, min=0)"In the 

wall centre"; 

equation 

    connect(ha, hcond.ha); 

    connect(hb, hcond.hb); 

    vol * rho * shcap * der(T) = abs(ha.qheat); 

    //re-declare: vol, rho, shcap; 

end Wall; 

    

The model of the liquid steel is 

 

model Steel 

    PortHeat ha; 

    PortThermoFluid tfb; 

    extends SteelProperties; 

    CelsiusTemperature T (start=1500); 

    Volume vol(start=1, min=0); 

    Area area (start=1, min=0.1); 

    Real hout(start=1, min=0)"Enthalpy out-flow"; 

algorithm 

    hout := tfb.qvol * shcap * rho * tfb.T; 

    tfb.p := 1 + vol * rho * 9.8 /101325 /area; 

    tfb.T := T; ha.T := T;     

equation 

    der(vol) = tfb.qvol; 

    rho * vol * shcap * der(T) = hout + ha.qheat; 

end Steel; 

 

Now, the ladle model can be defined as  

 

model Ladle  

    PortHeat ha; 

// interaction with env. near the steel surface; 

    PortHeat hb; 

// interaction with tundish; 

    PortThermoFluid tfc; 

// phenomena models: 

    Wall wall; 

    Steel steel; 

// inherits from: 

    extends LadleGeometry; 

    extends LadleMaterialProperties; 

    Real h(start=1)"Steel heigth inside ladle"; 

algorithm 

   h := steel.vol / ladle_area; 

    wall.hcond.transfer_area := ladle_lateral_area; 

    wall.hcond.thick := ladle_thick; 

    wall.hcond.thermalcond := ladle_kL; 

    wall.shcap := ladle_speccap; 

    wall.vol := ladle_vol; 

    wall.rho := ladle_rho; 

    steel.area := ladle_area; 

equation 

    connect(wall.ha, ha); 

    connect(wall.hb, steel.ha); 

    connect(steel.ha, hb); 

    connect(steel.tfb, tfc); 

end Ladle; 

 

The valve is considered as linear and with a very 

small resistance. The model is  

 

model Valve "A model for valve"  

    PortThermoFluid tfa,tfb;    

    PortControl ca;    

    parameter Real res(start=0.1, min=1e-6); 

    Boolean off; 

algorithm 

    off = ca.u < 0; 

equation 

     tfa.qvol = if off then 0 else (tfa.p-tfb.p)/res; 

     tfa.qvol + tfb.qvol = 0;     tfa.T = tfb.T; 

end Valve; 

 

 

5. The model of the tundish 
 

The input variable in the tundish model is the 

volume flow and the steel height inside of the 

tundish is the controlled variable. The basic 

phenomena are related to the flow of materials from 

ladle to tundish. Because no phase transformations 

are taking place, for the material model is necessary 

to have only a model for the liquid phase. The 

interaction with the environment is made by the 

lateral surface of the tundish only. 

 

The model and some submodels are presented in the 

Fig. 3. The test model is composed from the tandem 

ladle plus tundish, completed with material source, 

(“source”), valves for events (“valve1”, “valve2”), 

and a load model (“load”). Inside of the dot lines 

polygons the sub-models of ladle and tundish were 

presented. In the following the models will be 

presented and discussed. 

 

The ladle and the tundish have the same structure. 

Both use a material model (steel) and a wall model.  
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Figure 3: The test structure for the ladle-tundish tandem 

 

The wall sustains the steel. The model of the 

processed material is called Steel. It has two thermo-

fluid ports and one heat port. The first two are 

necessary to model the flow of the steel. The heat 

port is necessary to model the interaction with the 

wall.  

 

The Steel model must be improved by adding a 

ThermoFluid port to model the input and the output 

flows of the material in tundish: 

 

model Steel 

   PortThermoFluid tfa,tfb; 

   PortHeat ha; 

// parameters from steel properties model; 

   parameter Density rho(start=1000); 

   parameter SpecificHeatCapacity shcap(start=1e-5); 

   CelsiusTemperature T (start=1500); 

   Volume vol(start=1, min=0.1, max =10); 

   Enthalpy hin(start=1, min=0)"Enthalpy in-flow"; 

   Enthalpy hout(start=1, min=0)"Enthalpy out-flow"; 

   Area press_area(start=1, min=0.1) "Area for grav. 

pressure"; 

equation      

   hin = tfa.qvol * shcap * rho * tfa.T; 

    hout = tfb.qvol * shcap * rho * tfb.T; 

    der(vol) = tfa.qvol + tfb.qvol; 

    vol * rho * shcap *der(T) = hout + hin + ha.qheat; 

    T = tfb.T;  ha.T =T;  

// un-defined: press_area, tfa.p, tfb.p; (context 

dependency!); 

end Steel; 

 

The steel model is considered with volumic and 

material properties. The pressures on two ports will 

be defined later when the geometry of the vessel that 

sustains the steel is defined. It is about of context 

details. The model of the wall must define the 

geometry, the material properties and the heat 

conduction phenomena, as: 

 

model Wall 

   PortHeat ha, hb;  

// parameters from wall material properties; 

   ThermalConductivity thermalcond (start=1e-5); 

// parameters from geometrical wall model; 

   Thickness thick (start=1); 

   Area hcond_transfer_area (start=1); 

   Density rho(start=1); 

   Volume vol (start=1); 

D. Aiordachioaie, M. Munteanu, E. Ceanga

The Modelica Association 136 Modelica 2005, March 7-8, 2005



 

 

   SpecificHeatCapacity shcap(start=1); 

   Real Rth(start=1, min=1E-6) "Thermal resistance"; 

   CelsiusTemperature T (start=100); 

equation 

   Rth = thick / thermalcond / hcond_transfer_area; 

   ha.qheat = (ha.T - hb.T) / Rth; 

   T = if ha.qheat > 0 then hb.T else ha.T; 

   vol * rho * shcap *der(T) = ha.qheat + hb.qheat; 

 //un-defined: vol, rho, shcap, thermalcond, thick, 

hcond_transfer_area; 

end Wall; 

 

The tundish model says that the tundish (object) an 

interaction between the wall and steel behaviour. The 

declarative model can be as 

 

model Tundish  

   PortThermoFluid tfa, tfb; 

   PortHeat ha; 

//  parameters from tundish geometry model: 

   parameter Height tundish_h (start=1); 

   parameter Thickness tundish_thick (start=0.5); 

   parameter Volume tundish_vol(start=5, min=0.1); 

   parameter Diameter tundish_d (start=1, min=0.1); 

  Area tundish_area (start=1, min=0.1)"Hor.Cross-

section area"; 

   Area tundish_lateral_area (start=1, min=0.1); 

//  parameters from tundish material properties: 

   parameter ThermalConductivity tundish_kL; 

   Real steelh(start=1)"Steel heigth inside tundish"; 

   Wall wall; 

   Steel steel; 

algorithm 

   tundish_area := tundish_vol / tundish_h; 

   tundish_lateral_area=3.14*tundish_d*tundish_h; 

   steelh := steel.vol / tundish_area; 

   wall.hcond_transfer_area := 3.14 * tundish_d 

* steelh; 
    wall.thick := tundish_thick; 

   wall.thermalcond := tundish_kL; 

   wall.rho := 2000; 

   wall.vol := 1; 

   wall.shcap := 0.9; 

   steel.press_area := tundish_area; 

equation 

// context definition: 

   steel.tfb.p = steel.tfa.p + steel.vol * steel.rho * 9.8 

/101325 / steel.press_area;    

   steel.tfa.p =1; 

   connect(wall.hb, ha); 

   connect(wall.ha, steel.ha); 

   connect(steel.tfa, tfa); 

   connect(steel.tfb, tfb); 

end Tundish; 

6. The cooling model 
 

The phenomena running after tundish can be 

considered as generated by a single type model: a 

cooling model of the liquid material. From a 

phenomenological point of view, it should model the 

transfer of energy from the liquid and the solid phase 

of the processed material to other material that acts 

as receptor or loads of the thermal energy.  

 

The difficulty of the modelling problem is from the 

uncertainties generated by the material parameters, 

by the phenomena interactions during the casting 

process. More, all parameters are distributed and are 

temperature dependent. Moreover there are many 

material phase transformations such as: 

•liquid-solid transformation of the processed 

material; 

•liquid-solid-gaseous bidirectional transformations 

of the auxiliary materials, which allow the 

lubrification of the processed material in the primary 

cooling zone; 

•liquid-gaseous phase transformations for the fluid 

materials that take the thermal energy of the 

solidified material and make the secondary cooling.  

 

Taking in account such a complex set of phenomena, 

a simplified model will be considered based on 

balance energy. This approach is started also from 

the reality that in the real installation the information 

for control and monitoring purposes use global 

variables, e.g. volume flow rates and temperatures of 

the involved materials, and not local variables, like 

densities and viscosities.  

 

In Fig. 4 the structure of the cooling models is 

presented. There are also represented the sources of 

the materials and materials loads. The structure of 

the cooling model is represented in the upper left 

side of the Fig. 4. Three models are considered: two 

of materials (Steel and Water) and a model for 

separation (Wall).  

 

On the upper right side the structure of the processed 

material is presented, as interaction of two 

submodels: material in liquid phase (Liquid Steel) 

and material in solid phase (Solid Steel). For these 

two phases interfaces were defined: tfla, tflb for 

liquid phase and tfsa, tfsb for solid phase.  

 

The processed materials have material interfaces (tfa, 

tfb, tfc) and interfaces for changing of the thermal 

energy (ha), as it is presented in the lower right side.  
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Figure 4: The structure of the cooling model  

for the continuous casting of the steel using water as cooling agent 

 

The cooling model is designed with the same 

structure in order to be able to use in both sides of 

the cooling zones: primary and secondary. Setting  

up the numerical values of input-output variables, 

makes the selection of one of them.  By example, for 

the primary cooling zone zeros values are necessary 

for the solid materials, because the material in 

received from tundish with liquid phase only. In the 

following the model of the processed material will be 

described, as interaction between solid and liquid 

phase. The model for the solid phase is  

 

model SteelSolid “The SteelSolid model” 

    PortThermoFluid tfa,tfb, tfc; 

    PortHeat hb; 

    extends SteelSolidProperties; 

    CelsiusTemperature T (start=30); 

    Volume vol(start=1, min=0.1); 

    Enthalpy hin1(start=1"In-flow from source side"; 

    Enthalpy hin2(start=1)"In-flow from liquid side"; 

    Enthalpy hout(start=1)"Out-flow"; 

equation      

    hin1 = tfa.qvol * shcap * rho * tfa.T; 

    hin2 = tfc.qvol * shcap * rho * tfc.T; 

    hout = tfb.qvol * shcap * rho * tfb.T; 

    vol*rho*shcap*der(T)=hout+hin1+hin2+hb.qheat; 

    tfb.T = T; 

    hb.T = (tfa.T + tfb.T + tfc.T)/3;  

    // undefined: vol;  

    end SteelSolid; 

 

The model for the liquid phase is  

 

model SteelLiquid “The SteelLiquid model “  

    PortThermoFluid tfa,tfb, tfc; 

    Extends SteelLiquidProperties;     

    Temperature T (start=1500); 

    Volume vol(start=2, min=0.1); 

    Enthalpy hin(start=1)"In-flow from source side"; 

    Enthalpy hout1(start=1)"Out-flow to next block"; 

    Enthalpy hout2(start=1)"Out-flow to solid steel"; 

    Enthalpy H(start=1) "Latent energy"; 

equation      

    hin = tfa.qvol * shcap * rho * tfa.T; 

    hout1 = tfb.qvol * shcap * rho * tfb.T; 

    hout2 = tfc.qvol * shcap * rho * tfc.T; 

    H = vol * rho * L; 

    der(vol)=if vol>0 then tfa.qvol+tfb.qvol+tfc.qvol 

else 0; 

    vol*rho*shcap*der(T)=hin+hout1+hout2- der(H);  

    tfb.T = T; 

end SteelLiquid; 

 

The model for the processed (cooled) material is  
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model Steel “The Steel model” 

    PortThermoFluid tfla, tflb; 

    PortThermoFluid tfsa, tfsb; 

    PortHeat ha; 

    SteelLiquid sliquid; 

    SteelSolid ssolid; 

    Volume vol(start=3, min=0); 

    parameter Real K (start=1e-8) "L2Solid speed”; 

algorithm 

    ssolid.tfc.qvol := K * sliquid.H; 

equation 

    connect(tfla, sliquid.tfa); 

    connect(sliquid.tfb, tflb); 

    connect(ssolid.tfa, tfsa); 

    connect(ssolid.tfb, tfsb); 

    connect(sliquid.tfc, ssolid.tfc); 

    connect(ssolid.hb, ha); 

    sliquid.vol + ssolid.vol = vol; 

    ssolid.tfc.T = if sliquid.vol > 0 then sliquid.Ts else 

ssolid.T; 

// un-defined: vol; context dependent;     

end Steel; 

 

Finally, the cooling model considers the interaction 

between the model of the processed material (steel) 

and the material that takes the energy in order to be 

able to transform the processed material from liquid 

to solid phase. The cooling model is as 

 

model Cooling 

   PortThermoFluid tfla, tflb "Steel Liquid"; 

   PortThermoFluid tfsa, tfsb "Steel Solid"; 

   PortThermoFluid tfwa, tfwb "Water"; 

// from geometry model;: 

   parameter Real Rfluid (start=1) “Thermal res”; 

   parameter Area area (start=1)“Heat Transfer area”; 

   Water water; Steel steel;   Wall wall; 

equation 

   connect(steel.tfla, tfla); 

   connect(steel.tflb, tflb); 

   connect(steel.tfsa, tfsa); 

   connect(steel.tfsb, tfsb); 

   connect(steel.ha, wall.ha); 

   connect(wall.hb, water.ha); 

   connect(water.tfa, tfwa); 

   connect(water.tfb, tfwb); 

   steel.vol = 3;       // real volume must be defined; 

   water.vol = 0.5;  // real volume must be defined; 

end Cooling; 

 

 

7. The casting model 
 

The casting model is composed from three main 

submodels or modules: the ladle, the tundish, and the 

cooling model. In the simulation scenario two other 

models are necessary, i.e. the source of the steel, 

which impose the events in changing the liquid 

material on the input of the process, and, the second, 

the load models which is responsible for the 

reference of the casting speed. The declarative model 

can be as 

 

model TestCastingProcess 

   SourceSteel steel_S; 

   Ladle ladle; Tundish tundish; 

   Cooling cool; 

   WaterSource water_S; 

   WaterLoad water_L; 

   LoadSteel load_S; 

equation 

   connect(steel_S.tfla, ladle.tfla); 

   connect(ladle.tflb, tundish.tfla); 

   connect(tundish.tflb, cool.tfla); 

   connect(water_S.tfa, cool.tfwa); 

   connect(cool.tfwb, water_L.tfa); 

   connect(cool.tflb, load_S.tfla); 

   connect(cool.tfsb, load_S.tfsa); 

   connect(cool.tfwb, water_L.tfa); 

end TestCastingProcess; 

 

Fig.5 presents the evolution of the steel temperatures 

in ladle and tundish. The simulation scenario 

supposes that from time to time, when the 

temperature is increasing in steps, the ladle is filled 

up with new liquid material. 

 

Conclusions 
 

The main goal of the work was to obtain a neutral 

representation of the continuous casting process of 

the steel. Considering all aspects of the process is out 

of the scope and is quite difficult without a base 

library of materials and phase transformation under 

neutral format.  

 

It was supposed that the neutral model is the start 

point in the development of more sophisticated and 

more accurate models and it is used as a first 

description of the process. Some aspects of the 

modelling methodology using Modelica language 

were also presented.  

 

The models for ladle, tundish and cooling zone were 

presented. Simulation results are presented also in 

order to check the right qualitative behaviour of the 

obtained models, under an imposed scenario at the 

input of the casting process. The results are accurate 

regarding on the evolution of the temperature of the 

steel inside the tundish. 
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Figure 5: Temperature evolution of the steel in ladle and tundish 
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Abstract
To simulate switched-capacitor circuits effectively spe-
cial simulators use the charge-voltage system of
equations instead of the current-voltage system. Fur-
thermore, the set of devices is limited. In this paper
possibilities are presented to follow this approach in
Modelica. An example switched-capacitor library is
implemented as well as example circuits.

1 Introduction

Switched-capacitor (SC) networks are often used for
the realization of filters, comparators, or integrators. As
a simple example of a switched-capacitor circuit c.f.
figure 1. Depending on the switching frequency resis-
tors with varying resistance can be created. Integrated
SC circuits are often much cheaper than conventional
IC’s [1]. Since in such circuits the switching frequency
and the signal frequency often differ considerably, long
time simulations are necessary to investigate the circuit
behaviour. This is time consuming because small
switching intervals with high currents flowing cause
small step sizes during the simulation. 

A simplification is possible if only the voltages at the
ends of switching intervals are of interest. In such cases
the calculation of the behaviour of currents can be
avoided. Provided that the exchange of charges is fin-
ished within the switching interval it is sufficient to
calculate the voltages for the total charge equalization
only. If furthermore only devices are in the circuit

which do not need currents explicitely no differentia-
tion of the charge is necessary. In this case only
algebraic (linear or nonlinear) equations have to be
solved with the stepsize of the switching intervals. Typ-
ical devices possible at this switched-capacitor
simulation approach are ideal voltage sources, ideal
switches, capacitors, voltage-controlled voltage sourc-
es, operational amplifiers. Some special simulators
exploit this approach, e.g. TOSCA [2], SWITCAP [3],
AWEswit [4].

In this paper a possibility is studied to perform the SC-
simulation with Modelica.

2 Fundamentals

For the description and simulation of electrical circuits
usually relations between currents (i) and voltages (v)
are used. The combination of the equations of all devic-
es in a circuit together with the KIRCHHOFF’s law
equations at nodes results in a current-voltage-system
which concsists of differential-algebraic equations
(DAE). 

This DAE has to be used if the switching behaviour is
of interest. If from a more general point of view an ab-
straction from the switching behaviour is acceptable
the switches can be modelled more ideally. In this case
high current impulses occur which force the simulation
of the DAE to small time steps, and therefore to a poor
performance.

A way out is the change from the current-voltage-sys-
tem to the charge-voltage-system.  Provided that:
• the ideal switches are timed in an equidistant

scheme (stepsize s)
• the devices are restricted to capacitors and such

devices which can be described by algebraic rela-
tions between pin voltages only (e.g. ideal voltage
sources, voltage controlled voltage sources, ideal
operational amplifiers,  ideal switches)

• capacitors are the only devices which combine pin
currents and pin voltages

• no currents themselves are of interest

C=1

C1

G3
G4

G5

S1
Sine2

OpAmp

C=clock

C
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Figure 1:   SC Integrator circuit
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Then the current-voltage DAE can be integrated over
each step interval of the size s. Since derivations with
respect to time occur in capacitors only capacitors are
outlined in detail:

The equation of a capacitor is: 

(2-1)

with i beeing the current and v the voltage over the ca-
pacitor. If [ta, tn]  with  is the actual time
interval the integration of (2-1) with respect to time re-
sults into

(2-2)

where q is the charge transported into the capacitor
within the interval. If the capacitance is constant the
formula is

(2-3)

The device equations (2-2), (2-3) contain voltages and
charges only. Since according to our assumtion all oth-
er devices can be described by algebraic relations
between pin voltages, and KIRCHHOFF’s current
equations can be trivially integrated using

(2-4)

the resulting system of equations is a linear or nonline-
ar algebraic charge-voltage system. 

During simulation it has to be solved once at each time
interval at tn. Therefore a higer performance can be ex-
pected than solving the current-voltage-DAE. Further
optimizations are possible if the network topology is
exploited, which often changes between two cases
only.

If the restricted amount of devices is left since e.g. a re-
sistor is needed, then the current needs to be calculated
by differentiating the charge variable q (2-4). In this
case a differential-algebraic system is constructed with
the loss of the above mentioned advantages.

There are some generalizations possible such as  non-
equidistant time grids, switching depending on voltage
values and others, which are not yet considered in this
paper. In the following the implementaion of a
switched-capacitor library is described which bases on
the charce-voltage-system of circuit equations.

3 Implementation

In contrast to usual electrical modelling the connectors
include the voltage, and the charge, which is transport-
ed via the pin in one switching intervall. The charge is
a flow value like the current in the current-voltage sys-
tem since according to (2-4) the charge meets
KIRCHHOFF’s law. The connector definition is:

connector VoltageChargePin
Modelica.SIunits.Voltage v 

 "Potential at the pin";
flow Modelica.SIunits.Charge q 

"Charge flowing into the pin";
end VoltageChargePin; 

Using this connector models and partial models can be
created like in the Modelica.Electrical.Analog
package.

Basically, there are two groups of devices: Devices
which depend on the switching interval, like switches
and capacitances, and other devices which do not de-
pend on the switching interval. Devices depending on
the switching interval must be „informed“ about the
events of switching. This could be achieved by further
connector, which is connected with a clock generator,
or a logic network. Since in this implementation the re-
striction is that each switch changes at equidistant
timesteps, each device depending on switching inter-
vals has a clock parameter with . Via the
sample function 

algorithm 
  when sample(0, clock/2.0) then ...

the calculations are controlled which have to be done at
switching time points. The advantage of this approach
is that no clock connections are necessary. Otherwise
the user has to care about the correct clock parameters
at each device. This is a disadvantage. In the examples
a central clock parameter is introduced. Each device
clock parameter is set equal to the central clock param-
eter by the user. The choice of  instead
of  seems to be practical: the clock pa-
rameter covers a complete on-off-interval.

Using this clock handling and equation (2-3), the im-
plementation of the linear constant capacitor device is:

model Capacitor  
  extends Interfaces.OnePort;
  parameter Modelica.SIunits.Capacitance C=1;
  parameter Real clock=1;  
  Real vlast(start=0);
  Real tlast(start=-1);
algorithm 
  when sample(0, clock/2) then
    if (time > tlast) then
      tlast := time;

i
td

d C v( )=

s tn ta–=

q
vd

d C v( ) v tn( ) v ta( )–( )=

q C v tn( ) v ta( )–( )⋅=

q i t( ) td

ta

tn

∫=

clock 2 s⋅=

clock 2 s⋅=
clock s=
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      vlast := pre(v);
    end if;
  end when;
equation 
  q = C*(v - vlast);
end Capacitor;

In the algorithm section only once at a sample tlast and
vlast (which correspondend to ta and v(ta) in equation
(2-3)) are calculated. This is ensured by comparing the
time with the variable tlast. The equation (2-3) itself is
located in the equation section because it can be solved
manifold at a switching point during iterations.

The switches are modelled similarly. At switching sam-
ples the state of the switch is changed. The pin relations
are formulated in the equation section:

model OpeningSwitch
extends SwitchedCapacitor.Interfaces.OnePort;

parameter Real clock=1;
Real s;
Boolean control(start=false);
Real tswitch(start=-1);

algorithm 
when sample(0, clock/2.0) then

 if (time > tswitch) then
tswitch := time;
control := not control;

end if;
end when;

equation 
v = s*(if control then 1 else 0);
q = s*(if control then 0 else 1);

end OpeningSwitch;

If for voltage inputs the electrical models shall be used
a converter between the switched-capacitor and the
usual electrical domain is necessary. Since signals in
the switched-capacitor domain change at switching
time points only it is useful to sample the input voltage.
The converter model without any feedback into the cur-
rent-voltage domain is:

model ElectricalToSwitchedCapacitorVoltage 
  parameter Real clock=1;
  Interfaces.VoltageChargePin pinSC;

Modelica.Electrical.Analog.Interfaces.Pin
pinElectrical;

algorithm 
  when sample(0, clock/2.0) then
  pinSC.v :=pinElectrical.v;
  end when;
equation 
  pinElectrical.i = 0;
end ElectricalToSwitchedCapacitorVoltage;

Devices which do not depend on the switching inter-
vals are modelled like the counterparts in the current-
voltage-domain. Merely currents (i) are replaced by
charges (q). As examples the voltage controled voltage
model and the ideal opamp model are cited:

model VCV
  extends
 SwitchedCapacitor.Interfaces.TwoPort;
  parameter Real gain=1;
equation 
  v2 = v1*gain;
  q1 = 0;
end VCV;

model IdealOpAmp 
SwitchedCapacitor.Interfaces.VoltageChargePin
 in_p, in_n, out;
equation 

in_p.v = in_n.v;
  in_p.q = 0;
  in_n.q = 0;
end IdealOpAmp;

The device models are combined to a SC-library for
test and investigation purposes. It contains simple
models only. An extension towards more complicated
devices like operational amplifiers with parasitic ca-
pacitances and offset or nonlinear capacitance models
is possible.

4  Examples

The models of the SC-library are successfully testet at
a collection of about 20 circuits:
• simple resistors replaced by switched capacitors
• charging of one or more capacitances
• SC-integrators
• SC delay circuit
• Cauer-filter

In this section some of the examples are presented to
demonstrate that the SC-simulation works correctly.
All examples  were simulated using the simulator
Dymola5.3a. 

4.1 Constant charge flow

In this example a constant charge flow circuit (Fig. 2)
is simulated, which is compared with a constant current
flow through a resistor.

Figure 2:   Constant charge flow circuit
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In Fig. 3 the linearly growing line shows the analytical
calculated charge of a circuit like in Fig. 2 where the
switched capacitor with the value clock/2 is replaced by
an equivalent resistor of value R=2 in the current-volt-
age domain. After each clock period (=1 second) which
includes two switching periods (s=0.5 second) the
charge flowing into the switch is equal to the charge of
0.5 Coulomb flown in the actual clock interval.

In the following Fig. 4 the current of the SC-Circuit
like Fig. 2 is simulated in the current-voltage domain.
The current peaks depend on the parasitic resistance
value in the current-voltage switch model. A purely
ideal simulation is not possible in the current-voltage
domain. 

4.2 Charging a capacitance

The following circuit (Fig. 5) is a simple charging up of
a capacitance. In this example an electrical voltage
source is used. The voltage is converted into the SC do-
main with the charge-voltage system.

The pictures in Fig. 6 show the voltages of the capaci-
tances C, and Cs. Depending on the state of the switch
the voltage Cs.p.v of Cs is 1V, if Cs is connected with
the voltage source, or it is equal to the voltage C.p.v of
C which is increasing with each charge equalization.

Furthermore, Fig. 7 shows the charges flowing through
the positive pins of both capacitances.

 The charge flow through Cs.p is positive if Cs is
charged by the voltage source. Otherwise it is negative
in the case of the charge equalization between both ca-
pacitances. The velocity of charging depends on the
switching interval length clock.

Figure 3:   Constant charge flow result

Figure 4:   Current peaks in current-voltage 
simulation

Figure 5:   Charging a capacitance 
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Figure 6:   Charging a capacitance: voltages

Figure 7:   Charging a capacitance: charges
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4.3 SC-Integrators

The SC-Integrator [5] according to Fig. 1 integrates the
input voltage. The result which is inverted, can be seen
in Fig. 8. 

With a slightly changed topology [5] according to
Fig. 9 a noninverting integration of the input signal is
possible. The results depend on the clock length. Al-
ready large clock switching intervals calculate
sufficient results (Fig. 10).

4.4 Delay circuit

A clock-controlled delay example is the circuit in
Fig. 11 which combines two voltage amplifiers [6].
The result is delayed by one clock length. Fig. 12
shows the input signal and the delayed output at a clock
of  1.e-4.

4.5 Cauer filter

As a final and more complex example which demon-
strates the possibilities of the SC package, the 5th order
cauer filter according to Fig. 14 is modelled [7]. For
purposes of test an unusual time scale is used. The
pulse response results of some of the opamp outputs
can be seen in Fig. 13.

Figure 8:   Inverting integration results with 
clock=0.01 (above) and clock=0.1 (below)

Figure 9:   Noninverting SC-Integrator
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Figure 10:   Noninverting integration results

Figure 11:   Clock delay circuit

G1 G2

G5G3

Sine
C=C

C1S1

G7G4

C=C

C2

S2

OP1

C=C

C3

S3

OP2

G6

C=C

C4

Ope ...C lo s e r

S4

Figure 12:   Sine input and delayed SC result

Figure 13:   Sine input and delayed SC result
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4.6 Statistics

To compare the performance between simulations of
the current-voltage system and the charge-voltage sys-
tem of SC circuits the following test examples are used:

Each circuit is modelled both as current-voltage system
using the Modelica.Electrical.Analog package (with
default parameters of the switches) and as charge-volt-
age system using switched capacitor package. In the
following the systems are abbreviated with CU (cur-
rent-voltage system) and CH (charge-voltage system).

In the following table system related quantities calcu-
lated by Dymola are collected:
• unkn: unknown variables before translation
• diff: differented variabled befor translation
• tvar: time varying variables after translation
• state: continuous time states after translation

Figure 14:   Cauer filter
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Integ Integrator according to Fig. 1

Integnon noninverting integrator according to Fig. 9

Delay Delay circuit according to Fig. 11

CauerOP Cauer filter according to Fig. 14
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sources instead of operational amplifiers
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In the next table simulation related quantities are
shown:
• steps: number of successful steps
• F: number of F-evaluations
• Jac: number of Jacobian-evaluations

In the following table the CPU-time is compared:
• tstop: stop time
• CPU: CPU-time for integration in seconds

The simulations run on a 800 MHz PC with 128 MB
RAM.

Although in the charge-voltage system the number of
time-varying variables after translation is higher than
in the current-voltage system (Table 1) the computa-
tional amount in the charge-voltage system is far less

than in the current-voltage system (Table 2, Table 3).
The reason is that the charge-voltage system of
equaions is an algebraic one (Table 1). 

If otherwise the at least necessary number of steps is
calculated according to  in
Table 3 the resulting number is less than the number of
steps according to Table 2. That means that there are
further possibilities of optimization within the simula-
tion algorithm.

5 Conclusion

 The main result of this investigation is that switched-
capacitor simulation with Modelica and Dymola is pos-
sible. The switched-capacitor simulation using the
charge-voltage system and the restricted set of devices
is clearly faster than the simulation of the current-volt-
age system. The Cauer example shows that the package
can be applied for the simulation of more complex ex-
amples than simple test cases. An extension of the
package to devices including parasitic effects, nonline-
arities etc. is desirable.

Tasks for future research are more flexible controlling
of switches e.g. via logic networks and further optimi-
zation of the algorithm, especially in comparison with
switched-capacitor special simulators.
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circuit
CU

unkn
CU
diff

CU
tvar

CU
state

CH
unkn

CH
diff

CH
tvar

CH
state

Integ 40 2 10 2 45 0 14 0

Integnon 61 2 18 2 65 0 24 0

Delay 111 4 35 4 123 0 53 0

CauerOP 382 18 135 14 410 0 209 0

CauerVC 412 18 177 14 440 0 219 0

Table 1:  Translation related quantities

circuit
CU

steps
CU
F

CU
Jac

CH
steps

CH
F

CH
Jac

Integ 22744 61244 10800 4700 8900 4200

Integnon 111387 295721 51654 20000 38000 18000

Delay 2613 9205 1173 640 1200 560

CauerOP 19912 241201 15222 5030 9657 4627

CauerVC 23273 331305 20891 5030 9657 4627

Table 2:  Simulation related quantities

circuit tstop clock
CU

CPU
CH

CPU

Integ 2 0.01 1.4 0.7

Integinv 10 0.01 5.8 2.0

Delay 0.002 0.0001 1.1 0.95

CauerOP 200000 1000 18.7 1.68

CauerVC 200000 1000 49.2 1.71

Table 3:  CPU-time

tstop clock 2⁄( )⁄
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Abstract

Hydrological modeling is an area where modeling has
been used for a very long time. Applications range
from forecasts for the hydro power industry, pub-
lic safety, agriculture and environmental monitoring.
Still, to the best of our knowledge, Modelica has been
very little used in hydrological modeling so far. In this
paper, we aim to show that the Modelica language is
well suited for hydrological modeling and also to out-
line a possible future development of libraries in order
to further facilitate hydrological modeling and cou-
pling of hydrological models to other types of models
in Modelica.
A Modelica implementation of the hydrological HBV
model is compared with the original Fortran model.
The main advantages of using Modelica as modeling
language are more readable and re-usable code and
better abstraction. The disadvantage is longer execu-
tion times compared to the Fortran model.
The HBV model is a quite simple model mathemati-
cally. It would be useful to investigate the behaviour
of more complex hydrological models as well in order
to see whether we can find the same advantages of us-
ing Modelica as modeling language in that respect as
we have in the case with the HBV model.
Keywords: hydrology, modeling, HBV, Modelica,
runoff simulation

1 Introduction

Even though specialised modeling languages have ma-
tured over the years, Modelica perhaps being one of
the best examples, most hydrological models are still
written in Fortran. This, we believe, hampers the
development of hydrological modeling. Especially
since considerable knowledge of computer science in
general and Fortran programming in particular is not
something that every hydrologist possess. Clearly, hy-
drological modeling needs better tools in order to facil-

itate future model development. The goal of this paper
is to present Modelica as an alternative modeling lan-
guage for hydrological applications and to investigate
if a direct translation to Modelica of a hydrological
model is actually easier to understand than the corre-
sponding Fortran model.
Hydrological models used today have a wide range
of applications including decision support for differ-
ent business purposes, for example energy trading
and farming, hydrological forecasts and warnings and
other public safety applications. In addition, they are
also often coupled with for example climatological,
meteorological, chemical and/or biological models.
As an example of a hydrological model we have cho-
sen a version of the HBV model [4]. HBV is a widely
used model throughout the world primarily for hydro-
logical forecasting and runoff simulation, for example
as a tool when designing dams for the hydro power in-
dustry, but the HBV model has been applied to many
other areas as well. Among recent applications are
modeling and simulation of nutrient transport in large
catchments and simulations of the potential effects of
climate change on water flows, water quality, particle
transport and biochemical processes in the water.

2 Model description

The HBV model was developed at the Swedish Me-
teorological and Hydrological Institute (SMHI) in the
1970’s [4]. HBV/PULSE, which is used in this study,
is a similar model developed from the HBV model in
the 1980’s as a consequence of the need to study acidi-
fication and substance transport. The two models have
very similar structure but the HBV/PULSE model is
slightly less complex when only hydrology is simu-
lated. HBV and similar models are often described as
semi-distributed conceptual models. They have some
spatial resolution since they handle systems of catch-
ments, lakes and rivers, but within catchments the spa-
tial resolution is limited.
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It is conceptual in the sense that it does not use detailed
physical laws of nature in the calculations but rather
simple equations which are consistent with the current
hydrological knowledge. The model consists mainly
of three parts: snow, soil moisture and runoff response
functions. These steps are calculated for each land use
type in every catchment and there is also possibility to
divide the catchments further into sub-catchments. In
the HBV model, but not in the HBV/PULSE model,
it is also possible to divide the catchments and sub-
catchments into altitude zones.

There are also some routines for weighting and cor-
rection of input data and evaluation of model perfor-
mance. Output data from the forest, field and lake
areas is weighted The present model is based on an
HBV/PULSE model [2] used for research purposes.

Driving variables in the model are daily temperature
and precipitation measurements and monthly averages
of potential evapotranspiration. The number of param-
eters in the model vary slightly depending on the cur-
rent version and application area. The model used in
this project has 34 parameters. Both driving variables
and parameters are stored in text files.

3 Model implementation in Modelica

Existing libraries such as Fluid, Species, WasteWater
[5], HylibLight (light version of HyLib [1]), QSSFlu-
idFlow [3] were considered for the implementation of
HBV, but we found them not very well suited for this
application. Since the existing hydraulics libraries are
developed for different engineering purposes they in-
clude for example pressure, conductance, geometry of
pipes and vessels and other parameters which are not
known and/or not meaningful to use on the scale on
which the HBV model is operating.

Instead, we have created some very simple general
components for water storage and transport where the
only variable is the water volume itself. There are both
some general base classes and HBV specific compo-
nents and file reading functions.

The HBV model components can be divided into three
levels as shown in figure1. It was possible to transfer
some parts of the model to equation form but the main
part is written as algorithm statements due to special
cases such as if-statements without any else-clause or
with different number of assignments in different parts
of the statement.

Catchment

Forest Field Lake

Interception

SnowPack

SoilMoisture

Response

LakeStorage

SnowPack SnowPack

SoilMoisture

Response

Figure 1: Component hierarchy in the Modelica im-
plementation of the HBV model: Catchments consists
of several land use components which in turn consists
of different basic HBV components.

3.1 General components and interfaces

In hydrological applications, water volume is some-
times expressed in the unit mm. Water in the HBV
model is entirely expressed in mm and conversion to
other units is only performed when all calculations
have been made. This may seem strange but is a con-
sequence of precipitation measurements in dm3/m2,
which can be reduced to simply mm. Because of this,
a HydrologyVol unit, connectors and storages for vol-
umes expressed in mm have been created (figure2).
A snow storage was also created, which stores water
in both frozen and liquid form. Connectors, icons and
variables for stored volumes are declared in the gen-
eral components.

Discrete variables have been used since the first aim
was to make a quick translation of the HBV model
from Fortran to Modelica and this was most easily ac-
complished using discrete variables rather than contin-
uous.

Finally, there are base classes for sources and an in-
finite sink model. The sink model is not storing any-
thing at the moment, but it can easily be modified to
do so. Sources are available with outlets of one or two
types. In this application they are used for sources with
both snow and water outlets, providing input for the
snow storages described above.
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package U n i t s
t ype HydrologyVol =

Real ( f i n a l q u a n t i t y =” HydrologyVol ” ,
f i n a l u n i t =”mm” ) ;

end U n i t s ;
package I n t e r f a c e

connector HydrologyFlow
import Hydrology ;
Hydrology . U n i t s . HydrologyVol q ;

end HydrologyFlow ;
connector QoutD =

d i s c r e t e o u t p u t HydrologyFlow ;
connector QinD =

d i s c r e t e i n p u t HydrologyFlow ;
end I n t e r f a c e ;
package Components

p a r t i a l model S t o r a g e
import Hydrology . U n i t s . HydrologyVol ;
import Hydrology . I n t e r f a c e . QinD ;
import Hydrology . I n t e r f a c e . QoutD ;
d i s c r e t e HydrologyVol w( min = 0 ) ;
QinD qIn1 ;
QoutD qOut1 ;

end S t o r a g e ;
p a r t i a l model SnowStorage

import Hydrology . U n i t s . HydrologyVol ;
import Hydrology . I n t e r f a c e . QinD ;
import Hydrology . I n t e r f a c e . QoutD ;
I n t e r f a c e . QoutD qOut1 ;
I n t e r f a c e . QinD qIn1 ;
I n t e r f a c e . QinD qIn2 ;
d i s c r e t e HydrologyVol s ( min = 0 ) ;
d i s c r e t e HydrologyVol w( min = 0 ) ;

end SnowStorage ;
end Components ;

Figure 2: Unit declaration and examples of connectors
and storages using mm as volume unit

3.2 HBV basic components

Most of the HBV model equations are found in the
basic HBV components Interception, SnowPack, Soil-
Moisture, Response and LakeStorage. One differ-
ence versus the Fortran model is that Interception and
SnowPack are separated instead of treated together in
a common snow routine. This makes the model struc-
ture more clear and it also made it possible to use fewer
parameters. All basic components except Response
are implemented using algorithm statements. The Re-
sponse model is much smaller than the others and there
were no problems with expressing it entirely in equa-
tion form (figure3).
There are limitations on storage of water and snow in-
tercepted in for example trees, since the trees only can

hold a limited amount of water or snow. There is also
a limitation on relative water content in the snow, but
SoilMoisture and Response have no such limits.

model Response
import Hydrology ;
ex tends Hydrology . Components . S t o r a g e ;
o u t e r parameter Real k ;
o u t e r parameter Real a l f a ;

equat ion
when sample ( 0 , 1 ) t hen

w = pre (w) + qIn1 . q− qOut1 . q ;
qOut1 . q = 0.001∗ k∗wˆ ( 1 + a l f a ) ;

end when;
end Response ;

Figure 3: Modelica code for the HBV response func-
tion

3.3 HBV land use components

Features common for the three types of land use class
in HBV - the icon type and a snow pack variable which
need to be accessed from several basic components -
are declared in the partial class LandUse. Forest, Field
and Lake are extensions of LandUse. Forest is the land
use model which contains most parts and equations.
It consists of four model parts: Interception, Snow-
Pack, SoilMoisture and Response, and also one sink
for containing evaporated water. Field has the same
structure as Forest but without Interception since field
is defined in the HBV model as land area with no in-
terception. Lake models consists of only two parts -
SnowPack and LakeStorage. Contributions from the
different land use types are added and given a weight
proportional to their area. Calculations for the land use
components are only performed if the area is greater
than zero.

3.4 HBV catchment component

The largest component in the HBV model is the catch-
ment. Each Catchment consists of one precipitation
source P and the three land use components described
above. As mentioned in the previous section, there is
also a component for adding and weighting the out-
flow from the three land use components. Since flows
are weighted based on the relative area of the land use
class, this type of catchment component can be used
even if the catchment for example has no lake or con-
sists only of one big lake.
Reading of driving variables and parameters is accom-
plished using external C functions which are called
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from Catchment. Parameters in the model can also be
altered by the user between simulations. In order to
manage the parameters in an efficient way, all param-
eters are stored as inner parameters in Catchment. All
models inside Catchment consequently have the pa-
rameters which are common for the whole catchment,
which is almost all parameters, declared as outer.
Daily temperature and monthly maximum evapotran-
spiration are calculated in the Catchment component
and accessed as outer parameters from the catchment
parts. Precipitation has its own component P, a source
with three snow outlets and three rain outlets which
provides input to the land use components. Catchment
also keeps track of which day and month it is in order
to assure that the right data is delivered to the other
model components.

4 Simulation

When setting up an HBV model for a specific area,
Catchments are declared with the appropriate parame-
ter files, PTQW files (driving variables and measured
flow and lake water levels) and initial values. They are
connected to each other directly or through AddFlows
components depending on the geography of the area.
The test simulation setup in this study consisted of two
catchments connected as shown in figure4. Since the
test areas are small (0.44 and 0.43 km2 respectively),
the AddFlows component adds the two outflows with-
out any weighting or distribution of the flows over
time. The model was run for 1475 time steps, which
corresponds to a time period of a little more than four
years. An Euler solver with fixed step was used since
calculations only need to be performed once every
time step.
A rough estimation of execution times was made in
order to make sure that the Modelica model per-
formed reasonably well compared to the Fortran ver-
sion. Without any optimisations, the Modelica model
has approximately five to ten times longer execution
time than the Fortran model. The model described
in this paper does not have very long execution time
in either case, so in this application it is not the most
important factor to consider when choosing modeling
language.
The added outflow from the two catchments, Qout
(figure5), was compared with the corresponding out-
put from the Fortran model. Qout is the runoff re-
sponse to precipitation which is used for hydrological
forecasts and warnings. Some other important model
variables, for example the soil moisture storage which

is used for estimating the risk of forest fires, were also
compared with Fortran results. The comparisons show
that the Modelica model produces the same results as
the Fortran version.

5 Experiences and conclusions

The translation from sequential Fortran code to an ob-
ject oriented approach was rather easy but it was dif-
ficult to also translate the code to equations. The
greatest use for Modelica is probably in designing
new models and making additions to existing mod-
els. Some restructuring of the model was done in this
project but more needs to be done in order to take full
advantage of the Modelica language.
The main benefit of translating the model into Model-
ica is more readable and reusable code, which facili-
tates future model development. Modelica has proven
quite easy to work with for a non computer scien-
tist with some background in programming. Debug-
ging, though, could be improved since many of the
errors that can be encountered are radically different
from those encountered in ’normal’ imperative pro-
gramming in for example C.
The test example in this study was quite small, with
only two catchments. In most cases the model is run
over a larger number of catchment. It would therefore
be useful to test the HBV implementation on a larger
scale as well.
Since hydrological modeling is performed with many
different techniques, further development of general
hydrological base classes and components is needed
including components for for example physically
based modeling. It would also be useful to investigate
the behaviour of more complex hydrological models
as well in order to see whether we can find the same
advantages of using Modelica as modeling language
in that respect as we have in the case with the HBV
model.
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model HBV
import Hydrology ;
Hydrology .HBV. Components . S impleCatchment SimpleCatchment1

( F o r e s t 1 (
SnowPack1 ( s ( s t a r t = 0 . 0 ) ,w( s t a r t = 0 . 0 ) ) ,
S o i l M o i s t u r e 1 (w( s t a r t = 1 0 0 . 0 ) ) ,
Response1 (w( s t a r t = 1 0 . 0 ) ) ) ,

F i e l d 1 (
SnowPack1 ( s ( s t a r t = 0 . 0 ) ,w( s t a r t = 0 . 0 ) ) ,
S o i l M o i s t u r e 1 (w( s t a r t = 1 0 0 . 0 ) ) ,
Response1 (w( s t a r t = 1 0 . 0 ) ) ) ) ;

Hydrology .HBV. Components . S t a r t C a t c h m e n t S t a r t C a t c h m e n t 1
( F o r e s t 1 (

SnowPack1 ( s ( s t a r t = 0 . 0 ) ,w( s t a r t = 0 . 0 ) ) ,
S o i l M o i s t u r e 1 (w( s t a r t = 5 5 . 0 ) ) ,
Response1 (w( s t a r t = 1 0 . 0 ) ) ) ,

F i e l d 1 (
SnowPack1 ( s ( s t a r t = 0 . 0 ) ,w( s t a r t = 0 . 0 ) ) ,
S o i l M o i s t u r e 1 (w( s t a r t = 5 5 . 0 ) ) ,
Response1 (w( s t a r t = 1 0 . 0 ) ) ) ) ;

Hydrology . Components . Tes tSou rce Tes tSou rce1 ;
Hydrology . Components . S ink Sink1 ;
Hydrology .HBV. Components . Add2Flows Add2Flows1 ;

equat ion
connect( Tes tSou rce1 . qOut1 , S impleCatchment1 . q In1 ) ;
connect( Add2Flows1 . qOut1 , Sink1 . qIn1 ) ;
connect( S impleCatchment1 . qOut1 , Add2Flows1 . qIn2 ) ;
connect( S t a r t C a t c h m e n t 1 . qOut1 , Add2Flows1 . qIn1 ) ;

end HBV;

Figure 4: Modelica code for declaration and connection of the HBV model parts

Figure 5: HBV runoff response simulated in Modelica
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Visualisation of Model Transformation Algorithms for a Modelica
Translator

Peter Harman, Ricardo UK Ltd., Peter.Harman@ricardo.com

Abstract

A software component has been developed to
visualise the bipartite graph representing the model
structure of a Modelica model. The visualisation is a
window on the underlying graph, and thereforethe
graph transformations appear animated.

This work forms part of research being carried out
into improved strategies for simulation of highly
discontinuous systems. The primary use is to allow
the structure of an equation system to be studied
with the aim of categorising the equations according
to the type of discontinuity.

This tool has other applications such as debugging
or clustering tools. Different layouts and animation
methods have been used to maximise the clarity of
the visualisation, however large models produce
graphs which are too large to view.

1  Introduction

The Modelica specification [1] and existing
Modelica tools such as Dymola [2] and
OpenSourceModelica [3], make use of graph-
theoretical model transformations. The mixture of
differential equations and constraint equations lead
to a Differential-Algebraic-Equation (DAE) system
of unknown index.

Current model transformations [4] have the
following objectives:
• Exploit the sparsity of the system of equations

and sort the equations into small systems of
linear or non-linear equations, this is done in
current tools using the Tarjan algorithm [5]

• Ensure the system is of DAE-index 0 or 1, which
can be solved by a standard solver, this is done
in current tools using the Pantelides algorithm
[6,7]

• Aim to reduce the size of any systems of linear
or non-linear equations by use of tearing [8] or
relaxing [9]

Central to the model transformation algorithms is the
concept of representing the system of equations and
unknowns as a bipartite graph, with vertices

representing each equation or unknown, and edges to
show relationships between them. The tool described
here extends this concept to include the hybrid
features of a Modelica model, adding vertices to
represent conditional expressions and edges to relate
these to variables and equations. All variables,
including constants, parameters, discrete and
continuous states and derivatives, are represented as
vertices. This allows all actions to be taken, such as
the evaluation of constants, to be represented as
transformations of the underlying graph.

Edges in the graph can be undirected or directed.
Undirected edges relate a variable with an equation,
where the variable can be either on the left-hand-side
or the right-hand-side of the equation. Directed
edges are used to show a variable that is required by,
or is the result of, an algorithm, a function-call or a
conditional expression.

2  Visualisation of a Model

Figure 1 shows the model
Modelica.Mechanics.Rotational.Examp
les.CoupledClutches in Dymola.

Figure 1: CoupledClutches model schematic

The system of variables, equations and conditional
expressions is shown in Figure 2. This seemingly
small model has 100 equations and hence the graph
is large. In the left-hand column each vertex
represents a variable, with the colour representing
the variability of the variable. Constants are shown
magenta, Parameters blue and time-varying variables
are red. In the middle column each vertex represents
an equation. In the right-hand column each vertex
represents a condition expression, such as time <
sin2.startTime. The vertices are joined by
edges, those with arrows are directed edges with the
arrow showing the direction.
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Figure 2: CoupledClutches model equation system

Figure 3: Zoomed-in view of Figure 2

3  Categorisation of Discontinuous
Equations

The main application of this work is the
development of improved strategies for simulating
highly discontinuous systems. It has been shown [4]
that an efficient method of simulating a hybrid
system is to use a multi-step DAE solver for the
smooth continuous parts of the simulation, and to
stop and restart the simulation at each discontinuity
or event. However, for large highly discontinuous
models this is not necessarily efficient. A concept
developed is that of event-density, the frequency at
which discontinuities occur in the model. Event-
density rises exponentially with the size of the
model. As the time between discontinuities reduces
towards the time-step of the simulation, the
simulation performance is seriously compromised.
Strategies are being developed to allow the
simulation to handle events differently depending on
the source and type of event. To achieve this aim
discontinuous equations must firstly be categorised.

Visualisation of the structure of the system is being
used to study interconnection between equations,

conditional expressions and the variables on which
the conditions depend. This allows the
categorisation of discontinuities into Local and
Global. Local discontinuities affect only a small part
of the system when they occur, whereas Global
discontinuities affect the entire system. This
categorisation is performed by calculating a measure
of the size of the system that is directly connected to
the variable in which the discontinuity occurs, i.e.
the number of equations and conditional expressions
which depend on the variable.

Further categorisation is performed determining
whether the discontinuity occurs to a state variable
or one of it’s derivatives.

4  Other Applications

Although this tool has been developed to study the
relationships between discontinuous equations and
the variables on which they depend, there are other
applications during the translation process for which
visualisation of the equation structure would be
advantageous.

4.1  Model Debugging

Recent work into debugging for equation-based
modelling systems [10] has made use of
visualisations of graphs to show which part of the
model is over or under constrained. A visualisation
tool such as this could be used as part of an
interactive debugging tool. Many models are too
large to visualise in this manner, however a
subsection of the model can be shown.

4.2  Assessment of Model Transformation
Algorithm Efficiency

By visualising the graph, aspects of a particular
model can be shown, such as algebraic loops. Figure
4 shows a visualisation of a small model with a
clearly identifiable algebraic loop. In this
visualisation, the dark vertices represent equations
and the light coloured vertices represent variables.
The efficiency of  tearing algorithms can be
interpreted from the resulting visualisation, as the
loop becomes a 'tree' with branches, each branch
representing a system of equations to be solved
numerically. This is analogous to the sizes of blocks
shown in a sparsity plot of the model Jacobian. 

The effect of the technique of ‘inline integration’
[11] on the model structure can also be visualised.
This technique inserts equations for integration
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algorithms into the equation set before the equations
are sorted.

Figure 4: Small model with algebraic loop

4.3  Clustering

Clustering algorithms have been used [12] to divide
the Modelica model up into subsystems which can
be executed on separate processors in a cluster. This
is done after the model equations have been sorted,
and requires analysis of the graph to select the
subsystems.

An interactive visualization tool could be used at
this stage, allowing the user to influence the output
by selecting the edges which become points of
communication between the processors in the
cluster.

4.4  Visualisation of Virtual Connection Graph
for Debugging Overdetermined Systems

The technique for translating overdetermined DAE’s
used by the Modelica MultiBody library, introduced
in [13], makes use of a Virtual Connection Graph.
Each overdetermined type in the model is a vertex in
the graph. This vertex can be a root of a spanning
tree, a potential root which the system will decide
whether it is a root or not, or an ordinary node.
There are two types of edge in the graph, breakable
or non-breakable, which are defined by connect or
Connections.branch statements.

The translator aims to break the virtual connection
graph into spanning trees each with one root. This
may not be possible, due to the number of root
vertices or non-breakable edges. Visualisation of the

virtual connection graph and the resulting spanning
trees would allow the user to identify and correct the
source of any problem, such as altering the priority
of potential root nodes to control which are selected
during translation. 

5  ModeliCode

This visualisation tool forms part of an object-
oriented framework created for the development of a
Modelica to simulation code translator, called
ModeliCode. This is written in Java [14]. The graph
manipulation and visualisation package uses the Java
Universal Network and Graph (JUNG) library [15].
ModeliCode also includes a symbolic computation
library to rearrange and differentiate equations,
developed using JScheme [16], which allows the
mixing of Scheme code and Java classes.

A flexible template-based code-generator is included
which allows code to be output in a number of
languages.
 
Currently ModeliCode only translates from flattened
models. These can be read from .mof files output
from Dymola, or can be read via a Corba interface
with the OpenModelica Modeq program.
 

6  Development Issues

6.1  Layout

The layout defines the locations of each vertex.
JUNG provides a number of classes for defining the
layout. Initial studies used a class called
SpringLayout, which is analogous to having a spring
acting between each vertex. Figure 4 was generated
using this layout, showing how it is very good at
illustrating an algebraic loop for a very small model.
However, as the model size increases this layout
makes the graph very hard to read. A new layout
class was written to place the vertices in columns
according to the object they represent. This matches
graphs shown in similar work [10].

6.2  Animation

Clarity is improved by animating the graph. As
vertices are removed, such as during the evaluation
of constants and parameters, or the removal of alias
equations, the vertices in the same column are
moved up to fill their spaces. As equations and
variables are sorted, the vertices are moved into their
new order.
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7  Conclusions

By visualizing the model in this way, understanding
can be gained of the internal structure of the model.
This understanding can be used to develop model
transformation algorithms and assess their
efficiency, to find errors within the model, or to
apply specialized algorithms such as clustering.

A relatively small model can produce graphs that are
very large and difficult to read, therefore simple
layouts and features such as animation must be used
in the viewer to improve clarity.
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Modeling of Interactive Virtual Laboratories with Modelica
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Abstract

The implementation of virtual-labs supporting runtime
and batch interactivity is discussed and it is illustrated
by means of several case studies. The virtual-labmod-
els have been programmed using Modelica language
and translated using Dymola. The virtual-labviews
(i.e., the user-to-model interfaces) have been imple-
mented using Ejs and Sysquake. This software com-
bination approach allows us to take advantage of the
best features of each tool. Ejs and Sysquake capabil-
ity for building interactive user interfaces composed
of graphical elements, whose properties are linked to
the model variables. Modelica capability for phys-
ical modeling and Dymola capability for simulating
hybrid-DAE models.
In order to implement this approach, the following
tasks have been completed: (1) a novel modeling
methodology, adequate for runtime interactive simu-
lation using Ejs, Simulink and Modelica/Dymola, has
been proposed; and (2) a Sysquake to Dymosim inter-
face has been programmed: a set of functions in LME,
intended to be used by the Sysquake applications.

1 Introduction

A virtual-lab is a distributed environment of simula-
tion and animation tools, intended to perform the in-
teractive simulation of a mathematical model. Virtual-
labs provide a flexible and user-friendly method to de-
fine the experiments performed on the model. In par-
ticular, interactive virtual-labs are effective pedagogi-
cal resources, well suited for web-based and distance
education [1].
Typically, the virtual-lab definition includes the fol-
lowing two parts: themodeland theview. The view
is the user-to-model interface. It is intended to provide
a visual representation of the model dynamic behav-
ior and to facilitate the user’s interactive actions on the
model. The graphical properties of theviewelements
are linked to themodelvariables, producing a bidirec-

tional flow of information between theview and the
model. Any change of a model variable value is au-
tomatically displayed by the view. Reciprocally, any
user interaction with the view automatically modifies
the value of the corresponding model variable.
Two alternative types of interactivity can be imple-
mented:

– Runtime interactivity. The user is allowed to per-
form actions on the model during the simulation
run. He can change the value of the model in-
puts, parameters and state variables, perceiving
instantly how these changes affect to the model
dynamic. An arbitrary number of actions can be
made on the model during a given simulation run.

– Batch interactivity. The user’s action triggers the
start of the simulation, which is run to comple-
tion. During the simulation run, the user is not
allowed to interact with the model. Once the sim-
ulation run is finished, the results are displayed
and a new user’s action on the model is allowed.

1.1 Contributions of this paper

The implementation of interactive virtual-labs is dis-
cussed in this manuscript. Runtime and batch inter-
activity are considered. In both cases, themodelsare
programmed using Modelica language and translated
using Dymola [2]. Theview of the virtual-labs sup-
porting runtime interactivityhas been implemented
using Easy Java Simulations [3] (abbreviated: Ejs.
http://fem.um.es/Ejs/). Theview of the virtual-labs
supportingbatch interactivityhas been programmed
using Sysquake (http://www.calerga.com/).
This software combination approach allow us to take
advantage of the best features of each tool. Ejs
and Sysquake capability for building interactive user-
interfaces composed of graphical elements, whose
properties are linked to the model variables. Modelica
capability for physical modeling, and finally Dymola
capability for simulating hybrid-DAE models.
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The tasks completed to successfully implement this
approach are discussed. In particular:

– Runtime interactive simulation. The communi-
cation between the virtual-lab view (programmed
using Ejs) and the virtual-lab model (C-code gen-
erated by Dymola) is accomplished by using
the Ejs-Simulink and the Dymola-Simulink in-
terfaces. The C-code generated by Dymola for
the Modelica model can be embedded within a
Simulink block [2]. On the other hand, Ejs allows
the model to be partially or completely devel-
oped using Simulink block diagrams. As a conse-
quence, virtual-labs supporting runtime interac-
tivity can be implemented by combining the use
of Ejs, Matlab/Simulink and Modelica/Dymola.

The Modelica model needs to be adequately for-
mulated in order to be: (1) useful as a Simulink
block; (2) able to accept information from the
virtual-lab view; and (3) able to return infor-
mation to the virtual-lab view. As a conse-
quence, a modeling methodology has been pro-
posed. It states how a Modelica model can be
formulated to suitruntime interactive simula-
tion. This methodology has been successfully ap-
plied to program a set of virtual-labs for chemi-
cal process control. One of them is discussed in
this manuscript: the virtual-lab of a double-pipe
heat exchanger. Other virtual-labs are discussed
in [4, 5, 6].

– Batch interactive simulation. A set of Sysquake
functions has been programmed to facilitate data
exchange between the view and the model of the
virtual-lab. These functions synchronizes the ex-
ecution of thedymosim.exefile (generated by Dy-
mola) and the Sysquake application. The com-
bined use of Sysquake and Modelica/Dymola for
virtual-lab programming is illustrated by means
of two case studies.

2 Runtime interactive simulation, by
combining the use of Ejs, Simulink
and Modelica/Dymola

Easy Java Simulations (Ejs) is a open source, Java-
based software tool intended to implement virtual-
labs. It can be freely downloaded from the web-
site http://fem.um.es/Ejs/. Ejs guides the user in the
process of creating themodeland theview, generates

the Java source code of the virtual-lab program, com-
piles the program, packs the resulting object files into
a compressed file, and generates HTML pages con-
taining the virtual-lab as an applet. Then, the user can
readily run the virtual-lab and/or publish it on the In-
ternet.
The view definition is a strong point of Ejs. Ejs in-
cludes a set of ready-to-use visual elements, that the
modeller can use to compose a sophisticated view in a
simple, drag-and-drop way. The properties of the view
elements can be linked to the model variables.
On the contrary, themodeldefinition and simulation
is a weak point of Ejs. Ejs provides its own proce-
dure to define the model, which must be formulated
by the user as a sorted sequence of algorithm clauses
(i.e., assignment statements). Ejs implements some
standard ODE solvers. However, it implements nei-
ther algorithms for symbolic formula manipulation nor
algebraic-loop solvers.
Ejs version 3.3 (release 2004) provides a Ejs to Mat-
lab/Simulink interface. Therefore, Ejs 3.3 supports
the option of describing and simulating the model us-
ing Matlab/Simulink: (1) Matlab code and calls to
any Matlab function can be used at any point in the
Ejs model; and (2) the Ejs model can be partially or
completely developed using Simulink block diagrams.
This significantly improves the Ejs capabilities for
model description and numerical solution. However,
Simulink modeling paradigm (i.e., graphical block-
diagram modeling) exhibits some limitations [7]. It re-
quires explicit state models (ODE) and that the blocks
have a unidirectional data flow from inputs to out-
puts. These restrictions strongly condition the mod-
eling task, which requires a considerable effort from
the modeller.
The use of Modelica language is an attractive alterna-
tive to Simulink, because it reduces considerably the
modeling effort and permits better reuse of the mod-
els. The combined application of Modelica/Dymola
and Ejs to the implementation of virtual-labs in dis-
cussed next.

2.1 Combined use of Ejs, Matlab/Simulink
and Modelica/Dymola

Dymola 5.0 interface to Simulink 3.0 can be found
in Simulink’s library browser: DymolaBlock block
[2]. This block is an interface to the C-code gener-
ated by Dymola for the Modelica code. DymolaBlock
block can be connected to other Simulink blocks, and
also to other DymolaBlocks blocks, in the Simulink’s
workspace window. Simulink synchronizes the nu-
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merical solution of the complete model, performing
the numerical integration of the DymolaBlock blocks
together with the other blocks.
In order to make the Modelica model useful as a Dy-
molaBlock block, the computational causality of the
Modelica model interface needs to be explicitly set [2].
The input variables are supposed to be calculated from
other Simulink blocks, while the output variables are
calculated from the Modelica model.
Ejs 3.3 supports the option of describing and simulat-
ing the virtual-lab model using Simulink. In this case,
the data exchange between the virtual-lab view (com-
posed using Ejs) and the model (Simulink block dia-
gram) is accomplished through the Matlab workspace.
The properties of the Ejs’ view elements are linked to
variables of the Matlab workspace, which can be writ-
ten and read from the Simulink block diagram.
The Modelica model needs to be built to allow the
communication with the virtual-lab view. It needs to
support the discontinuous changes in the value of its
state variables, parameters and input variables which
are the result of the user interaction. In some cases,
several choices of the state variables need to be sup-
ported simultaneously in the model, in order to pro-
vide the user with alternative ways of describing the
state changes. A design methodology for the Mode-
lica model is described in Section 2.2. Further details
can be found in [4, 6].

2.2 Modeling methodology

The model of a perfect gas is shown in Figure 1. The
input flow of gas (F), of heat (Q) and the input tem-
perature (Tin) are input variables. The gas volume (V)
and the heat capacities (CP,CV) are time-independent
properties of the physical system.
In general, different choices of the model state-
variables are possible. Possible choices in the model
shown in Figure 1 include:e1 = {p,T}, e2 = {n,T}
and e3 = {n, p}; where ei represents one particular
choice of the state variables. If the user wants to
change interactivelyp and T, the appropriate choice
is e1 = {p,T}. This is also the right choice if the
user wants to changep and to keep constantT, or of
he wants to changeT and to keep constantp. Like-
wise, the appropriate choice ise2 if the user wants:
(1) to modify interactivelyn andT; or (2) to modify
n and to maintain constantT; or (3) to modifyT and
to maintain constantn. An analogous reasoning is ap-
plied toe3. In general, an interactive model is required
to support state changes that correspond with different
choices of the state variables.

In addition, interactive changes of the model parame-
ters can have different effects depending on the state
variable choice. Consider an instantaneous change in
the gas volume (V) of the model shown in Figure 1. If
the state variables aree1 = {p,T}, then the change in
V produces an instantaneous change in the number of
moles (n), while the pressure (p) and the temperature
(T) remain constant. On the contrary, if the state vari-
ables aree2 = {n,T}, then the change of volume pro-
duces a change of pressure. In this case, the number
of moles (n) and the temperature remain constant. As
a consequence, the interactive model needs to support
different choices of the state variables simultaneously.

An approach to implement this capability is the fol-
lowing. Building the interactive model as composed of
several instantiations of the physical model, each one
with a different choice of the state variables. When
describing an interactive action on the model, the user
selects the adequate state-variable choice according to
his preference. This information is transmitted from
the virtual-labview to the model. Then, the interac-
tive model uses the adequate physical-model instan-
tiation (that with the chosen state selection) for exe-
cuting the instantaneous change in the parameters and
state variables, and for solving the re-start problem.
Finally, these calculated values are used to re-initialize
the other physical-model instantiations. This action
guarantees that all physical-model instantiations de-
scribe the same trajectory.

Modelica capability for state-selection control allows
easy implementation of this approach [8]. Three in-
stantiations of the perfect-gas model (i.e.,perfectGas)
have been defined (see Figure 2): (1)perfectGasSS1,
with e= {p,T}; (2) perfectGasSS2, with e= {n,T};
and (3)perfectGasSS3, with e= {n, p}. The Appen-
dix A provides the Modelica code for the perfect-gas
model.

Two input variables to the DymolaBlock block are
used to carry out the interactive changes in the state:
Istate[:] and CKstate[:] (see Figure 2).

The array Istate[:] contains the values used to re-
initialize the model state. In the perfect-gas model:
Istate[:] = {n, p,T}.

The arrayCKstate[:] is used to trigger the state re-
initialization events, which are performed using the
Modelica operatorreinit. Each variable of the array
CKstate[:] is used to trigger the events in a differ-
ent instantiation of the physical model. The perfect-
gas model contains three instantiations of the physical-
model: perfectGasSS1, perfectGasSS2and perfect-
GasSS3. Consequently, the arrayCKstate[:] has three
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CP−CV = R

n: Number of moles
p: Absolute pressure
V: Volume of the gas
T: Absolute temperature
U : Internal energy
CP,CV : Heat capacities
F : Input flow of gas
Tin: Input temperature
Q: Input flow of heat
R: Perfect gas constant

Figure 1: Model of a perfect gas
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model perfectGas

when change(CKparam[1]) then
reinit({V,Cp},Iparam[:]);

end when;
when change(CKvar[1]) then
reinit({F,Tin,Q},Ivar[:]);

end when;

when change(CKstate[1]) then
reinit(p,Istate[2]);
reinit(T,Istate[3]);

end when;

e = { p , T }

model perfectGasI

when change(CKparam[3]) then
reinit({V,Cp},Iparam[:]);

end when;
when change(CKvar[3]) then
reinit({F,Tin,Q},Ivar[:]);

end when;

when change(CKstate[3]) then
reinit(n,Istate[1]);
reinit(p,Istate[2]);

end when;

model perfectGasI

model perfectGasSS3

model perfectGas
e = { n , p }

Figure 2: Schematic description of the perfect-gas
virtual-lab

components. CKstate[1] triggers the change in the
state-variables ofperfectGasSS1. CKstate[2] andCK-
state[3] trigger the change in the state-variables ofper-
fectGasSS2andperfectGasSS3respectively (see Fig-
ure 2).

The interactive parameters (V, CP) and the input
variables (F, Tin,Q) are defined as constant state-
variables (i.e., with zero time-derivative) in the phys-
ical model [4]. Their values are changed by using
the reinit operator. Four input variables to the Dy-
molaBlock block are used (see Figure 2): two arrays

(Iparam[:], Ivar[:]) containing the new values, and
two arrays (CKparam[:], CKvar[:]) for triggering the
re-initialization events.

The output-variable array of the DymolaBlock block,
O[:] (see Figure 2), contains the variables linked to the
properties of the virtual-labview. Ejs uses the value of
this output array (O[:]) to refresh the simulation view.
The value of the input arrayEnabled[:] is set by Ejs,
and it selects which output is connected to the output
signalO[:]. The output array in the perfect-gas model
is the following:O[:] = {n, p,T,V,CP,Tin,F,Q}.

The Simulink model of the perfect-gas is shown in
Figure 3a. The Modelica model (perfectGasInterac-
tive) is embedded within the DymolaBlock block. The
blocks connected to the DymolaBlock inputs (“MAT-
LAB Fcn” blocks) transmit the value of the input
variables from the Matlab workspace to the Simulink
block-diagram window. The blocks connected to the
DymolaBlock outputs (“To Workspace”blocks) trans-
mit the value of the output variables from the Simulink
block-diagram window to the Matlab workspace. Ejs
reads the value of these output variables from the Mat-
lab workspace and writes the value of the input vari-
ables in the Matlab workspace.

The view of the virtual-lab is shown in Figure 3b. The
main window (on the left side) contains the schematic
diagram of the process (above) and the control buttons
(below). Both of them allow the user to experiment
with the model. The vessel volume, represented in
the schematic diagram, is linked to theV variable. Its
value can be interactively changed by clicking on the
hand picture and dragging the mouse. Three radio but-
tons allow choosing the state variables ({p,T}, {n,T}
or {n, p}). Text fields allow the user set the value of
the state variables (n, p, T), the input variables (F , Tin,
Q) and the parameters (V, CP). The window placed on
the right side of the virtual-lab view contains graphic
plots of the model variables.
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Figure 3: Perfect-gas virtual-lab: a) Simulink model; b) View
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Figure 4: Heat exchanger virtual-lab: a) Physical model; b)Simulink model; c) View
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2.3 Case study I: heat exchanger

The interactive simulation of a heat exchanger has
been implemented, by the combined use of Ejs, Mat-
lab/Simulink and Modelica/Dymola. A mixture of car-
bon dioxide and sulfur dioxide is cooled by water in a
double-pipe heat exchanger [9]. Two modes of opera-
tion are allowed: cocurrent or parallel flow and coun-
tercurrent flow. The convective heat transfer on both
the tube and shell sides are calculated from the Dittus-
Boelter correlation [9]. The center heat exchanger tube
is made of copper with a constant thermal conductiv-
ity, and the exterior of the steel pipe shell is very well
insulated.
The physical model of the heat exchanger has been
composed using JARA. The model diagram is shown
in Figure 4a. JARA is a set of libraries of some funda-
mental physical-chemical principles. JARA was origi-
nally written in Dymola language [10, 11]. Later on, it
was translated into Modelica language. The method-
ology discussed in Section 2.2 was applied in order to
make JARA useful for interactive simulation [5].
JARA is composed of seven model libraries, including
models of:

– Control volumescontaining: (1) an ideal mixture
of an arbitrary number of semi-perfect gases; or
(2) a homogeneous liquid mixture composed of
an arbitrary number of components; or a homo-
geneous solid. The liquid and gaseous control
volumes are considered open systems (i.e., they
can exchange mass and heat with their environ-
ment) and chemical reactions can take place in-
side them. The solid control volumes are con-
sidered closed systems (i.e., they only exchanges
energy, not mass, with their environment).

– Mass transportdue to the pressure and concen-
tration gradient, the gravitational acceleration,
chemical reactions, liquid-vapor phase changes,
etc.

– Heat transportby conduction and convection.

The Simulink model is shown in Figure 4b. The
interactive model of the heat exchanger, written in
Modelica language, has been embedded within the
DymolaBlock block. Observe that the structure of
this Simulink model is completely analogous to the
perfect-gas model, shown in Figure 3a.
The view of the virtual-lab is shown in Figure 4c. The
main window (on the left side) contains: (1) a diagram
of the heat exchanger; (2) buttons to control the simu-
lation run (i.e., pause, reset and play); (3) sliders and a

text field to modify the input variables (i.e., liquid and
gas flows, liquid and gas input temperatures, and mo-
lar fraction ofCO2 andSO2 in the gas mixture); and
(4) checkboxes to show and hide three secondary win-
dows: “Geometry Parameters”, “Modify State” and
“Characteristics”.
The “Geometry Parameters”window contains text
fields that can be used to modify the pipe length
and diameters. The controls placed in the“Modify
State” window allow changing the temperature of the
medium inside each control volume (i.e., the cooling
liquid, the gas mixture or the metal wall). Finally,
“Characteristics” is a window with several plots of the
model variables.

3 Batch interactive simulation, by
combining the use of Sysquake and
Modelica/Dymola

Sysquake is a commercial tool intended to develop
interactive applications [12]. It is based on LME,
an interpreter specialized for numerical computation.
LME is mostly compatible with the language of MAT-
LAB(R) 4.x and it includes many features of MAT-
LAB 5 to 7. It implements graphic functions specific
to dynamic systems (such as step responses and fre-
quency responses) and general purpose functions used
for displaying any kind of data.
Typically, a Sysquake application contains several
interactive graphics, which are displayed simultane-
ously. These graphics contain elements that can be
manipulated using the mouse. While one of these el-
ements is being manipulated, the other graphics are
automatically updated to reflect this change. The con-
tent represented by each graphic, and its dependence
with respect to the content of the other graphics, is pro-
grammed using LME.
The main goal of Sysquake is the interactive manipula-
tion of graphics. The user can define functions, called
handlers, intended to perform different tasks managed
by Sysquake. These tasks include the model initializa-
tion, manipulation of figures and selection of menus.
As input and output, thehandlersuse variables as well
as values managed directly by Sysquake, such as the
position of the mouse. Therefore, only the code neces-
sary for displaying the figures and processing manipu-
lations from the user is required. This results in small
scripts, developed quickly and easy to maintain.
LME can be extended by libraries, composed of re-
lated functions written in LME, or by extensions de-
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Figure 5: Sysquake-Dymosim interface functions

veloped with standard compilers.

3.1 Combined use of Sysquake and Mode-
lica/Dymola

A Sysquake interface to Dymosim (i.e., the executable
file generated by Dymola [2]) has been programmed.
This interface is a set of functions in LME, intended to
be used by the Sysquake applications. These functions
perform the following tasks:

– ThesetExperimentandsetValuesfunctions write
the experiment description to a text file. This
text file is intended to be the input file fordy-
mosim.exe.

– Thedymosimandlinearizefunctions execute the
dymosim.exefile in order to simulate and lin-
earize the Modelica model respectively.

– Thetloadandtloadlin functions: (1) read the out-
put file generated bydymosim.exeafter a model
simulation or linearization respectively; and (2)
save these results as variables to the Sysquake
workspace. These variables can be used by
Sysquake applications.

Next, a brief description of each function is provided
(see Figure 5):

– setExperiment(txtFile, StartTime, StopTime, In-
crement, nInterval, Tolerance, MaxFixedStep, Al-
gorithm). It writes to thetxtFile text file (default
file name:dsin1.txt) the simulation parameters.

– [p, x0, pN, x0N, InputN, outputN] = getinfo. This
function executes thedymosim.exefile (command
dymosim -i) in order to generate the Dymosim in-
put file (dsin.txt). In addition, this function reads

the names of the model variables (i.e., inputs, out-
puts, parameters, states) and their default values
from dsin.txtfile, and saves them as variables to
the Sysquake workspace.

– SetValues(txtFile, pN, p, x0N, x0). The name and
the value of the model parameters and state vari-
ables are written to thetxtFile text file (dsin1.txt
by default).

– dymosim(iFile, oFile). This function executes the
following command: dymosim -d dsin.txt iFile
oFile. The default file name foriFile andoFile
is dsin1.txtanddsres.txtrespectively.

– linearize(iFile, oFile). This function obtains the
linearized model by executing the command:dy-
mosim -l iFile oFile. The default file name for
iFile and oFile is dsin1.txtand dslin.txt respec-
tively.

– [N,s] = tload(oFile). This function reads the re-
sult file, oFile (default file name:dsres.txt), and
stores the signal names and the simulation results
into N (text matrix) ands (numeric matrix) re-
spectively.

– [A,B,C,D,xN,uN,yN] = tloadlin(txtfile). It loads
the linear model generated by dymosim from the
txtfile result file (default file name:dslin.txt) into
the Sysquake workspace.

Next, two case studies are provided to illustrate the use
of this Sysquake-Dymosim interface.

3.2 Case study II: control loop

The interactive simulation of the control loop shown
in Figure 6 is implemented by combining the use of
Sysquake and Modelica/Dymola. The constitutive re-
lation of the hysteresis-based controller in shown in
Figure 7. The setpoint is the composition of two
signals: a piecewise linear function and a sine func-
tion. The model of the control loop has been pro-
grammed using Modelica language and translated us-
ing Dymola. The execution of thedymosim.exefile
generated by Dymola is controlled by the Sysquake
application (i.e., the virtual-labview).
Theviewof the virtual-lab is the Sysquake application
shown in Figure 8. It is composed of four graphics.
Three of them are interactive:

– “Constitutive relation” plot (graphic on the upper
left). The position of the{a,b,c,d,e, f} points of
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Figure 7: Constitutive relation of the controller

Figure 8: View of the control loop virtual-lab

the controller constitutive relation can be changed
by dragging the mouse.

– “Roots” plot (graphic on the lower left). The
plant zeros and poles can be changed by click-
ing on the circles and crosses and dragging the
mouse.

– “Reference” plot (graphic on the lower right).
The shape of the piecewise linear function and
the amplitude and frequency of the sine function
can be modified by clicking on the lines and cir-
cles that appear in the graphic and dragging the
mouse.

Figure 9: View of the heat exchanger virtual-lab

3.3 Case study III: heat exchanger

The heat exchanger virtual-lab described in Section
2.3 supports runtime interactivity. It was imple-
mented using Ejs, Simulink and Modelica/Dymola.
In this section, the heat exchanger model is revisited,
and a virtual-lab supporting batch interactivity is pro-
grammed by combining the use of Sysquake and Mo-
delica/Dymola.
Theviewof the virtual-lab is the Sysquake application
shown in Figure 9. The sliders placed on the upper
left side allow modifying some model parameters: the
pipe length and diameters, and the thermal parameters
of the center heat-exchanger tube.
The graphic on the upper right corner is interactive.
It represents the time-evolution of the inlet temper-
ature of the water. The shape of this curve can be
changed by clicking on one of the points and dragging
the mouse.
The graphics on the lower side of Figure 9 show the
time-evolution of the temperature at certain positions
of the tube and the shell.

4 Conclusions

The feasibility of combining Modelica/Dymola with
Ejs and Sysquake, for implementing runtime and batch
interactive simulations respectively, has been demon-
strated. Ejs and Sysquake are software tools intended
to develop interactive applications. Their strong point
is the programming of the virtual-labview. Work-
ing together with Modelica/Dymola significantly im-
proves the Ejs and Sysquake capabilities formodel
description and simulation. The use of Modelica lan-
guage reduces considerably the modeling effort.
In order to implement this software combination ap-
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proach, a modeling methodology has been proposed
and a Sysquake-Dymosim interface has been pro-
grammed. Several case studies of virtual-labs sup-
porting runtime and batch interactivity have been dis-
cussed.
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APPENDIX A: Modelica code for the
perfect-gas model

model perfectGas
parameter Boolean nIsState, pIsState, TIsState;
Real n (unit="mol", start=20,

stateSelect = if nIsState
then StateSelect.always
else StateSelect.default);

Real p (unit="N.m-2", start=1e5,
stateSelect = if pIsState

then StateSelect.always
else StateSelect.default);

Real T (unit="K", start=300,
stateSelect = if TIsState

then StateSelect.always
else StateSelect.default);

Real V (unit="m3", start=1);
Real Cp (unit="J/(Kg.K)", start=5*R/2);
Real Cv (unit="J/(Kg.K)");
Real F (unit="mol.s-1");
Real Tin (unit="K");
Real Q (unit="J.s-1");
parameter Real R (unit="J/(mol.K)") = 8.31;

protected
Real U (unit="J", stateSelect = StateSelect.never);
Boolean empty (start=false);

equation
// Interactive parameters
der(V) = 0;
der(Cp) = 0;
// Input variables
der(F) = 0;
der(Tin) = 0;
der(Q) = 0;
// State equation
p * V = n * R * T;
// Mol balance
der(n) = if empty then 0 else F;
// Energy balance
der(U) = if empty then 0

else if F>0 then F*Cp*Tin+Q else F*Cp*T+Q;
// Internal energy
U = n * Cv * T;
// Mayer law
Cp - Cv = R;
// Empty-vessel condition
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when F > 0 and pre(empty) or
n < 1e-5 and not pre(empty) then

empty = not pre(empty);
end when;

end perfectGas;

model perfectGasI
extends perfectGas;
Modelica.Blocks.Interfaces.InPort Iparam (n=2);
Modelica.Blocks.Interfaces.InPort Ivar (n=3);
Modelica.Blocks.Interfaces.InPort Istate (n=3);
Real CKparam;
Real CKvar;
Real CKstate;
Modelica.Blocks.Interfaces.OutPort O (n=8);

protected
Boolean CKparamIs0 (start = true, fixed=true);
Boolean CKvarIs0 (start = true, fixed=true);
Boolean CKstateIs0 (start = true, fixed=true);

equation
// Interactive change of the parameters
when CKparam>0.5 and pre(CKparamIs0) or

CKparam<0.5 and not pre(CKparamIs0) then
CKparamIs0 = CKparam < 0.5;
reinit(V, Iparam.signal[1]);
reinit(Cp, Iparam.signal[2]);

end when;
// Interactive change of the input variables
when CKvar>0.5 and pre(CKvarIs0) or

CKvar<0.5 and not pre(CKvarIs0) then
CKvarIs0 = CKvar < 0.5;
reinit(F, Ivar.signal[1]);
reinit(Tin, Ivar.signal[2]);
reinit(Q, Ivar.signal[3]);

end when;
// Output signal

O.signal = { n, p, T, V, Cp, Tin, F, Q };
end perfectGasI;

model perfectGasSS1
extends perfectGasI (nIsState=false,

pIsState=true,
TIsState=true);

equation
// Interactive change of the state variables
when CKstate>0.5 and pre(CKstateIs0) or

CKstate<0.5 and not pre(CKstateIs0) then
CKstateIs0 = CKstate < 0.5;
reinit(p, Istate.signal[2]);
reinit(T, Istate.signal[3]);

end when;
end perfectGasSS1;

model perfectGasSS2
extends perfectGasI (nIsState=true,

pIsState=false,
TIsState=true);

equation
// Interactive change of the state variables
when CKstate>0.5 and pre(CKstateIs0) or

CKstate<0.5 and not pre(CKstateIs0) then
CKstateIs0 = CKstate < 0.5;
reinit(n, Istate.signal[1]);
reinit(T, Istate.signal[3]);

end when;
end perfectGasSS2;

model perfectGasSS3
extends perfectGasI (nIsState=true,

pIsState=true,
TIsState=false);

equation
// Interactive change of the state variables

when CKstate>0.5 and pre(CKstateIs0) or
CKstate<0.5 and not pre(CKstateIs0) then

CKstateIs0 = CKstate < 0.5;
reinit(n, Istate.signal[1]);
reinit(p, Istate.signal[2]);

end when;
end perfectGasSS3;

model perfectGasInteractive
Modelica.Blocks.Interfaces.InPort Iparam (n=2);
Modelica.Blocks.Interfaces.InPort Ivar (n=3);
Modelica.Blocks.Interfaces.InPort Istate (n=3);
Modelica.Blocks.Interfaces.InPort CKparam (n=3);
Modelica.Blocks.Interfaces.InPort CKvar (n=3);
Modelica.Blocks.Interfaces.InPort CKstate (n=3);
Modelica.Blocks.Interfaces.InPort Enabled (n=3);
Modelica.Blocks.Interfaces.OutPort O (n=8);
Modelica.Blocks.Interfaces.OutPort Release(n=1);
perfectGasSS1 SS1 (CKparam = CKparam.signal[1],

CKvar = CKvar.signal[1],
CKstate = CKstate.signal[1]);

perfectGasSS2 SS2 (CKparam = CKparam.signal[2],
CKvar = CKvar.signal[2],
CKstate = CKstate.signal[2]);

perfectGasSS3 SS3 (CKparam = CKparam.signal[3],
CKvar = CKvar.signal[3],
CKstate = CKstate.signal[3]);

equation
connect(Iparam, SS1.Iparam);
connect(Istate, SS1.Istate);
connect(Ivar, SS1.Ivar);
connect(Iparam, SS2.Iparam);
connect(Istate, SS2.Istate);
connect(Ivar, SS2.Ivar);
connect(Iparam, SS3.Iparam);
connect(Istate, SS3.Istate);
connect(Ivar, SS3.Ivar);
Release.signal = {4.0};
O.signal = if Enabled.signal[1] > 0.5

then SS1.O.signal
else if Enabled.signal[2] > 0.5

then SS2.O.signal
else if Enabled.signal[3] > 0.5

then SS3.O.signal
else zeros(size(O.signal, 1));

end perfectGasInteractive;
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Abstract

The better the computer, the larger and more precise
simulations can be carried out, and the more benef-
icent modeling can be. It is well known that faster
computers enable more precise and computationally
expensive simulations to be carried out, which allow
more pre-cise mathematical models. This paper gives
an overview of certain methods for expanding the lim-
its of what can be done in the area of simulation by
parallelizing simulations based on Modelica [18, 16]
models. This is an efficient and less expensive way of
achieving better simula-tion performance.
In the following, we will restrict ourselves to de-
scribing various ways of parallelizing a simulation in
Modelica, ranging from coarse grained high level par-
allelization to fine grained task merging at a very low
level. It is very difficult to say which approach is
the most successful or promising since little research
has been done in most of the subareas of parallelizing
Mode-lica models. Task merging seems to be the most
developed approach and does give significant perfor-
mance increases [1] but the other areas are largely
unexplored. We can therefore only guess that based
on parallelization research in other areas, there is lit-
tle to gain for a normal user in parallelizing a small
simulation. Larger, more complex simulations on the
other hand can benefit greatly from parallelization, es-
pecially if it can be done automatically.
Keywords: Modelica, parallelization, task merging,
transmission line modeling, weak connectors

1 Introduction

Since the advent of computers, there has always ex-
isted a need for more computational power. In fact,
the peak performance of a computer system effectively
sets a limit to what the user can actually do. For a
Modelica user, the amount of computational power
available at simulation time is what determines what
can be simulated. Obviously, if we can simulate more

complex applications, the use of modeling and simu-
lation is promoted.
There are four different ways which a user can go
about in order to faster be able to simulate a more com-
plex physical structure:

1. Buy a faster computer

2. Optimize the model for faster simulation

3. Optimize the compiler

4. Parallelize the model, distributing simulation
across many processors.

While option one can sometimes be a viable alterna-
tive, it is so only up to a certain point. There is a limit
to how fast computers are available, even if you have
the financial resources to update your computer every
month.
Option two might very well be the issue for a whole
series of articles all by itself. Still, experience show
that there is a limit to the performance gain which can
be obtained also from model optimization.
Option three is an interesting item as it can potentially
boost performance of every model compiled with that
compiler. The amount of performance gain which can
be obtained by compiler optimization is however also
quite limited.
This paper will focus on item four, parallelization of
the model. The model is assumed to be written in
Modelica and to be of a size and complexity which
makes it nontrivial to simulate within reasonable time
on a single powerful computer. Apart from this, we
make no assumptions whatsoever on the model struc-
ture, composition or domain.

2 Parallelization in General

Parallelization of computational problems has been
an issue for as long as there has been computers.
Regardless of how fast current computers are, there
has always been applications where this is simply not
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enough. Parallelization of the problem is then the only
viable solution. The problem is to get good perfor-
mance while distributing the computation across sev-
eral CPUs. Communication between jobs can, even if
carefully implemented cause severe delays in the com-
putation because the necessary data may not be avail-
able when it is needed. Also, simple program branches
such as if-statements which decide which statement
should be executed and not must be treated with great
care so that the right program path is taken. These,
and several other issues must always be taken into ac-
count when trying to parallelize an application. This is
even more important when trying to parallelize a gen-
eral class of applications, such as Modelica models.

3 Parallelization in Modelica

We will in this paper try to summarize past, present
and future research advances within the area of par-
allelization of models expressed in the Modelica lan-
guage. We have divided the subject into three parts or
levels, depending on where the parallelization is ap-
plied. The high level parallelization tries to partition
the model on the Modelica source code level. The
medium level deals with the numerical solvers while
the low level parallelization deals with the solver gen-
erated code.
Before we begin, we would like to make one obser-
vation which makes the task of parallelizing Modelica
even more challenging than with other languages, for
example C or Fortran. Modelica developers are nor-
mally not experts in parallel programming. In fact,
they are usually not computer scientists at all, but
instead domain experts within one or many specific
fields using physical modeling. This demands a lot
of the parallelization framework since the user (that
is, the Modelica modeler) can not really take an active
part in the parallelization. This means that the par-
allelization must be automatically performed, without
user interaction to a great extent. If this is not possible
then at least the user interaction must be minimized
and formulated in a way that makes sense even to a
user with no experience whatsoever in parallel com-
puting.

4 High Level Parallelization

High level parallelization, as stated previously deals
with the problem of parallelizing models at the Mod-
elica source code level. In general, this means that
the Modelica language itself is extended or modified

in some way in order to allow the user to provide
the compiler with directions on how to parallelize the
simulation. In comparison with other high level lan-
guages, the Modelica language has some interesting
properties which can be used to our advantage when
trying to parallelize Modelica simulations.
The most interesting property is probably the connec-
tion construct. A Modelica model almost always con-
sists of a multitude of components with connections
between them. The connections define an explicit
interface between components which is quite useful
when considering how to best partition the model. In-
deed, both of the two high level parallelization meth-
ods we know about use connections in one way or an-
other.

4.1 The Transmission Line Modeling Method

The transmission line modeling (TLM) method [6] is
derived from two ideas. First, that many models can be
viewed as a continuous transmission line which propa-
gates information. Second, that the information being
propagated in time stept − 1 in many cases does not
differ much from the information propagated in step
time stept. This means that we can reuse information
received in time stept−1 in the calculations for time
t, thus reducing the amount of communication needed
between partitions in the model. While we do intro-
duce an error in the model by reusing values from ear-
lier time step, this error is mathematically decidable
and it is possible to reduce the amount of value reuse
and thus reduce the error introduced. The transmission
line modeling method is not yet implemented in any
Modelica implementation that we know of although an
implementation of the TLM method has been planned
in the GridModelica project [5] for 2005.

4.2 The Weak Connectors Method

Introduced by [7] this somewhat less explored method
also deals with connections. By introducing the con-
cept of weak connections, the model can be partitioned
in two or more parts. The idea is to separate fast sub-
systems from slow so that different solver step size,
or even different solvers can be used when solving the
system. The difficult part here is to find good places
to insert the weak connection, instead of a normal con-
nection. Such places frequently occur between domain
boundaries and while these could quite easily be iden-
tified by a domain expert, it is not so easy to find them
automatically, which is of course the desirable method.
One way of doing this could be to exploit the package
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structure of Modelica which roughly divides compo-
nents into different domains.

4.3 Other high level parallelization methods

There are a some high level parallelization tech-
niques in traditional parallel programming that could
be adapted to Modelica. One such technique is matrix
operation partitioning. Matrixes and vectors represent
large data chunks upon which operations are executed.
One example operation could be to add one to each
element in the matrix. Such an operation could quite
easily be distributed across several CPUs as the indi-
vidual operations of adding one to elementm[i][ j] is
independent from the operation of adding one to ele-
mentm[k][l ].
In the same way, parts of normal loop paralleliza-
tion techniques could probably be employed to achieve
parallelization in Modelica. For example High Perfor-
mance Fortran (HPF)[11] has theforall, pure and in-
dependentkeywords which gives the compiler direc-
tions on how to parallelize loops in the program. Even
though these constructs could quite easily be intro-
duced in the Modelica language, it is unsure whether
they will provide the same performance boost as they
do in HPF due to Modelicas radically different execu-
tion model.

5 Medium level parallelization

The next level of parallelization is at the equation sys-
tem and numerical solver level. Parallel solvers have
in the past had problems with numerical stability in
comparison with other state-of-the-art solvers. Thus,
limiting the usage of such solvers to specific domains
where the requirement on the numerical stability of the
solver is not too demanding. Parallelizing numerical
solvers is in itself a very complex task and while an
interesting way to achieve additional parallelism, for
example with algorithms such as [12, 13] it is not re-
ally Modelica specific. We shall therefore in this paper
concentrate on other ways of equation parallelization.
Another interesting solver related technique is the
mixed mode integration technique presented in [4]. It
is a compromise between explicit and implicit integra-
tion, done by splitting fast and slow subsystems in a
model and to apply implicit discretization only to the
fast part. Results presented in [4] indicates perfor-
mance increases ranging from four to sixteen times.
One task that could be parallelized without too much
effort be parallelized is the Jacobian calculation. Ja-

cobian calculation is sometimes necessary when using
an implicit ODE solver and its calculation is side effect
free which makes the amount of interCPU communi-
cation small. Related to this, it is possible to achieve
some degree of parallelism in the calculation of the
states in an ODE or a DAE, meaning functionf in the
ODE system 1 and functionsf ,g in the DAE system
2.

Ẋ = f (X, t) (1)

f (Ẋ,X,Y, t) = 0,g(X,Y,Z) = 0 (2)

It might also be possible to conduct parallelize solv-
ing of equation system in some cases, as done in [14].
Even though it is common that subcomponents in an
equation system depend upon each other in a linear
fashion, it does not have to be so. What has to be done
is to build a task dependency graph and determine if
subsystems can be solved simultaneously and pass this
to a task scheduler which then distributes the tasks.
Scheduling and partitioning algorithms as described in
[2] also belongs on this level. In that paper only static
scheduling algorithms are described and while these
work very well for continuous systems, they will not
work with hybrid models, meaning models that con-
tain both continuous and discrete parts. In such hybrid
systems, discrete events can radically change the be-
havior of the system so in that case, we need to use
dynamic scheduling instead.

6 Low level parallelization

While the difference between medium an low level
parallelization might be hard to define, we have in this
paper drawn the line at the data level at which the
parallelization algorithms work. With low level par-
allelization, the object is to parallelize the compiler
generated simulation code. We will refrain from de-
scribing low level parallelization here since it is al-
ready thorouwghly described in [3].

7 Discussion

Parallelization in Modelica is still very much under-
developed, with the possible exceptions of the low
level parallelization and solver integration. This is per-
haps somewhat surprising since physical modeling and
simulation is one of the areas with the strongest de-
mand for more computational power. While there ex-
ist some parameter study applications [10, 9, 8], real
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parallelization of Modelica models is still to a great
extent a an open issue to be explored.
While the above mentioned techniques can probably
be applied separately with good results, even better re-
sults can be expected if they are combined together.
For instance, parallelization of the model with the
TLM method can be combined with task merging in
the lower layer to achieve a coarse grained paralleliza-
tion at Modelica source level while achieving a more
fine grained parallelization at lower level.
To conclude, we think that while a modeling language
perhaps not does not live or die with its parallelization
abilities, it is still important to develop parallelization
in order to make the Modelica language a serious com-
petitor to Fortran, C and C++ also when it comes to
simulation of computationally demanding models.
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A Simulation Management Environment for Dymola
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Abstract

Building Modelica libraries is a steady process of
adding and refining models. There is rarely a final
version of a library. This leads to the fact that simu-
lation results are difficult to reproduce due to changes
in sub-models. However, reproducible simulation re-
sults have to be provided for solid project work and
scientific research. Using Matlab as a platform a sim-
ulation management environment, called SiME, was
developed. This environment includes general simu-
lation handling, as well as tools for pre- and postpro-
cessing. A HTML-based simulation history contain-
ing parameters and results is included.
Keywords: Modelica tools, simulation management,
Matlab, CVS

1 Introduction

Developing Modelica libraries while at the same time
maintaining several complex models can make back-
ward compatibility difficult. Moreover, keeping spe-
cific library versions is especially important if simula-
tion results were published in research reports or sci-
entific publications. A common practice in software
engineering, a version control system appears to be an
adequate solution to manage the code evolution. How-
ever, if several libraries are involved in the simulation
keeping track of the files becomes tedious. Addition-
ally, linking the versions with the results has to be done
manually.

2 Objectives

A simulation management environment was outlined
to overcome this shortages. The central idea is to au-
tomate and standardize the versioning process. It is

∗sven.pohl@dlr.de
†joerg.ungethuem@dlr.de

necessary to apply versioning not only to the Model-
ica libraries but also to any auxiliary files like pre- and
postprocessing scripts, which are necessary to run the
simulation. The ability for recovering the model and
rerun the simulation is sensible against the complete-
ness and version-correctness of these auxiliary files.
Multiple simulation projects must be supported, even
if libraries or scripts are used and developed concur-
rently. Another objective is a clear and informative
simulation report which includes version information
as well as simulation results.

3 Design

The simulation management environment tends to be-
come a very complex system, as various different
components are needed to reproduce simulation re-
sults. Besides the core model code, parameter lists,
measured data, experiment scripts, documentation and
other auxiliary files must be stored and recreated. For-
mat, size or number of these auxiliary files is not
known in advance. Nonetheless, reliability is major
concern for the simulation management environment.
However, a substantial ambition in the design process
was a straight and simple realization. Therefore, the
Concurrent Versions System (CVS) [1] was employed
as base layer. CVS uses a client/server architecture,
which makes it easy to install and maintain. SiME it-
self consists only of client side scripts and does not re-
quire any additional server software. Therefore SiME
can be used with any CVS server. Due to the use of a
standard version control system, any file within SiME
is accessible using standard tools. Furthermore, con-
current access using SiME and standard CVS clients
is seamlessly possible. The following code fragment
shows the Matlab call of the CVS client.

syscmd=[cvsbin_name,’ ’,cvsopt_str,’ ’,...
cvscmd, ’ ’,cmdopt_str,’ ’];

for i = 1:length(cmdargv)
cmdarg_str = deblank(cmdargv{i});
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Figure 1: Automatically created simulation overview html-page

cmdlen=length(syscmd)+length(cmdarg_str);
[rcc,mesg]=system([syscmd,cmdarg_str]);

end

The CVS command part is defined bysyscmd while
the files to processed are bundled incmdargv .
The core of SiME consists of a few scripts written in
Matlab. Dymola’s simulation results are easily acces-
sible within Matlab. Matlab’s numerical capabilities
are outstanding and within SiME all of its features,
e.g. the data visualization tools are applicable. How-
ever, Matlab is not optimal for string processing and
system command execution. Dedicated scripting lan-
guages like python and Perl are much more comfort-
able in this context.

4 Features

The basic concept of SiME is to organize arbitrary
simulation tasks in projects. Each project consists of
a history of completely reproducible simulation runs.
For example, a project named” hybridcar” is a Mod-
elica library development of a hybrid electric vehi-
cle. The developer uses SiME to protocol the develop-
ing process and to document the evolution steps. It’s
not only possible to directly compare the results but
also to retrieve the complete simulation code, to make
changes if necessary and to re-run the simulation.
The Simulation Management Environment splits each
simulation process into four steps. The initialization
part sets up the simulation run and calls the CVS rou-
tines. Preprocessing, simulation and postprocessing
mainly contain code to handle the simulation applica-
tion (e.g. Dymola) and its results. In a possible fifth

step the complete simulation run can be repeated sim-
ply using the simulation ID.

4.1 Initialization

During initialization a unique simulation ID is gener-
ated and a complete list of all files which are relevant
for the simulation is built. Matlab script dependencies
are collected automatically. However, Modelica and
auxiliary files must be added manually. SiME forces
any file on the list under version control if this was not
done before:

for element=1:counter
[err,errmsg]= fkcvsadd(’’,...
cmdopt,notinrepository(counter));
end;

Afterwards the files are checked in and tagged using
the simulation ID. In that way all files involved in the
simulation process are marked with the simulation ID
and can be retrieved securely. This code fragment il-
lustrates the process of committing and tagging:

for i=1:filenum
% commit files
cmdopt.m = [’automated commit’];
[err.commit(i),errmsg.commit{i,1}]=...
fkcvscommit(’’,cmdopt, ...
remainder(startpos(i):endpos(i)));
% tag files
[err.tag(i),errmsg.tag{i,1}]=...
fkcvstag(tag,’’,’’, ...
remainder(startpos(i):endpos(i)));

end;

4.2 Preprocessing

The initialization routine calls the main simulation
script. From this Matlab script the external simulation
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Figure 2: Automatically created simulation report html-page

application is started. Generally, any application using
the Dynamic Data Exchange (DDE) interface can be
called remotely. In this case Dymola is used. In the
preprocessing part the Dymola model and the model
parameters are defined. For parameter studies an array
of values for each parameter can be provided. A pa-
rameter matrix is then built from the parameter arrays.

4.3 Simulation

Dynasim provides Matlab functions to start Dymola
and execute commands via DDE interface. These
functions are used to establish an interaction between
Matlab and Dymola. The self explanatory code is
shown below:

% Set up experiment
ex=dymoexperiment; % default values ex
ex.StopTime = 0.1; % set StopTime

% Start Dymola
res.start = dymostart(sim.dymolabinpath);

% Load Package
res.load = dymoload(sim.package);

% Check Model
res.check = dymocheck(sim.model);

% Translate Model
res.translate = dymotranslate(sim.model);

for num = 1:sim.parmatrixsize
% Set parameter(s)

dymosetpar(sim,num);
% Simulate Model

res.simulate = dymosimulate(...

sim.model,ex,sim.modelname);
end;
% Close Dymola

dymoexit;

4.4 Postprocessing

Subsequent to the simulation process arbitrary Matlab
scripts can be run to further process the results, e.g. to
generate plots.

A standardized protocol in HTML is generated includ-
ing the history of simulation tasks. An example of
this simulation overview is shown in Figure 1. For ev-
ery simulation task a link to a HTML report is given.
The HTML report (Figure 2) includes in detail all the
parameters used within initialization, preprocessing,
simulation process and hyperlinks to the saved plots.
Additionally, a summary of all error messages and
comments occurred during the runtime is given.

4.5 Re-Run Simulations

To retrieve the complete set of simulation files only the
simulation ID is needed. A MATLAB function will
retrieve the files from the repository. The files are now
ready for manipulation and a new simulation run can
be started.
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Figure 3: The SiME graphical user interface

5 Graphical User Interface

To coordinate the projects and their history a graphi-
cal user interface is added. Figure 3 shows the main
interface window. Projects can be loaded, created and
managed. General information, e.g. directories and
project details, can be edited. The simulation his-
tory of projects can be browsed and simulation re-
sults displayed. New simulation runs can be tested or
launched. Dymola result files can be browsed using
the Matlab GUI provided by Dynasim.

6 Limitations

SiME inherits the limitations of the CVS system. E.g.
the handling of binary files like pictures is not optimal
and reordering of directory structures is difficult and
error prone.
Most of the CVS limitations are overcome by its suc-
cessor, the Subversion [2] system. Subversion reached
release 1.0 in March 2004. Currently little practical
experiences with Subversion are present. However, as
Subversion is downwards compatible to CVS, switch-
ing to Subversion should be possible.
Absolute directory path references might be included
in the model code, like script references in Dymola’s
annotations. These path references become staled
links in the recreated files which cannot be fixed easily.
The Matlab–Dymola communication uses Dymola as
DDE server which is available on MS Windows only.
This prevents the SiME client currently from working
on any other operation system.

Some additional Dymola scripting language com-
mands would be desirable, e.g. retrieving a list of all
Modelica files which are referenced by a model or gen-
erating a screen-shot of the current diagram window.

7 Conclusions

A simulation management environment (SiME) was
developed to provide easy and efficient access to ear-
lier simulation runs. SiME ensures the reproducibility
of simulation results, even if the models involved are
still in development. This facilitates the documenta-
tion, avoids redundant work and is an important con-
tribution for quality assurance.
SiME uses Matlab as scripting language, since Matlab
is used frequently already for pre- and postprocessing.
As backbone server for SiME the Concurrent Versions
System (CVS) was selected, since it is freely available
and extremely reliable. The use of the models outside
of the simulation management is not restricted, so that
the normal, CVS supported model development is not
disturbed.
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Meta-modelling of Mechanical Systems with Transmission Line
Joints in Modelica
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Abstract

A framework for meta-modelling with Transmission
Line (TLM) joints is presented. The framework is in-
tended to support transient simulations of mechanical
systems using co-simulation of different tools. The ex-
pressive power of the Modelica language is used to
describe the meta-model in an easy to understand, ob-
ject oriented way. A ModelicaXML based translator is
used to convert Modelica code to an XML document
which is accepted as input by the co-simulation en-
gine. The framework prototype for SKF’s BEAST and
MSC.ADAMS is presented here. It is designed to be
general, so that support for other simulation tools can
be easily added. The main focus is on modelling of
co-simulation Meta-Models taking advantage of Mod-
elicas graphical and object-oriented modelling capa-
bilities.
Keywords: simulation; co-simulation; meta-
modelling; multibody; TLM; XML

1 Motivation

In the area of modelling and simulation of mechani-
cal systems one can identify many different classes of
models and corresponding tools. The specialization
leads to different focus for different tools. One might
say that every tool is optimized for a certain kind of
problems. In terms of meta-modelling every tool can
be seen as a black-box handling a particular compo-
nent. A component is a model defined in some spe-
cific language together with some modelling and sim-
ulation tool that can perform a transient simulation of
it. The examples of such components are equation-
based multi-physics Modelica models, general multi-
body models in MSC.ADAMS, models with detailed
contact definitions in SKF’s BEAST, flexible compo-
nents as modelled in FE tools, etc. .
In reality the different components are dependent on
each other. Two components that are in physical in-

teraction form boundary conditions for each other and
some interface can often be defined.
Unfortunately it is often the case that the different
classes of tools are used independently. Every class of
tools is using approximations of the components it has
interface with, that is, simplified models of the bound-
ary conditions. Several time consuming iterations are
often necessary to make the components converge to
similar values on on the common interface. The limi-
tations on the modelling accuracy are thus fundamen-
tal.
The need to bring different components into a com-
plete more tightly coupled simulation is therefore jus-
tified. This allows higher accuracy and preserve the
investments in the components.
Different co-simulation systems have appeared on the
market during the last years. Most of them are focused
on co-simulation of control systems and correspond-
ing mechanical component. The coupled simulations
this paper is focusing on are different. All compo-
nents in our framework are mechanical and they have
forces and motion in the interfaces. What is more im-
portant from numerical point of view, the sub-models
are likely to use different differential equation solvers
with variable time step. Numerical stability, which is
not an issue for discrete time simulations, becomes an
important consideration.
One method that was earlier used to enable closer in-
teraction between such sub-models in a coupled sim-
ulation is transmission lines modelling (TLM). The
TLM uses physically motivated time delays to sepa-
rate the components in time and enable efficient co-
simulation. The technique has proven to be stable and
was implemented for coupling of hydraulical and me-
chanical sub-systems [1], [2].
However, no attempt to design a general coupled sim-
ulations framework was done. In this paper a general
approach to meta-modelling of mechanical systems
using TLM is presented. Modelica language is used
to make such models easy to manage and the frame-
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Figure 1: Delay line with the passing wave variables
c1 and c2 and velocity variables v1 and v2.

work is designed to enable simple extension with new
simulation tools.

2 Transmission Line Modelling

TLM method, also called Bilateral Delay Line
Method, exploits the fact that all physical interactions
in nature have finite propagation speed. The properties
of the delay lines were studied in [7]. The method is
briefly described below.

A basic one-dimensional transmission line is shown in
Figure 1. For the mechanical case the line is basically a
long spring with force waves c1 and c2 going between
it ends. The input disturbances are velocities v1 and v2

and the reaction forces from the transmission line F1

and F2.

Note that the spring in our implementation is assumed
to be iso-elastic. That is no cross-term waves are gen-
erated when working in 2D and 3D. See [2] for further
discussions.

If the line delay is set to T and its impedance to Zc
then the govering equations are:

c1(t) = F2(t−T)+Zc v2(t−T )
c2(t) = F1(t−T)+Zc v1(t−T )

F1(t) = Zc v1(t)+ c1(t)
F2(t) = Zc v2(t)+ c2(t)

(1)

The equations show that the two simulation systems
are decoupled with the delay time T . Simulation
framework can utilize this decoupling to enable effi-
cient communications during co-simulation.

The transmission line introduces a parasitic mass
mtlm = Zc T and stiffness ktlm = Zc/T . Since it is of-
ten necessary to have a relatively large delay time (to
enable larger communication intervals) while keeping
the stiffness value, the user needs to be aware of the
large parasitic mass.

3 Simulation Framework

The design goals for the simulation part of the frame-
work were portability, simplicity to incorporate new
simulation tools, computational efficiency. The de-
sign goals were realized by defining following con-
cepts and interfaces:
TLM interface. A named point on a mechanical ob-
ject where position and velocity can be evaluated and
reaction force applied.
TLM manager. The central simulation engine. It is a
stand alone program that reads in a XML definition of
the coupled simulation. It then starts Simulation com-
ponents and provides the communication bridge be-
tween the running simulations. That is the components
only communicate with the TLM manager which acts
as a broker marshalling information between the com-
ponents as required by TLM theory. TLM manager
sees every simulation component as a black box hav-
ing one or several TLM interfaces. The information
is then forwarded between TLM interfaces belonging
different components.
TLM plug-in. A small C ++ library having a single
abstract class representing TLM interface for a spe-
cific simulation tool. The TLM plug-in can be seen by
a simulation component as an external force that de-
pends on position, velocity and time. The implemen-
tation of the plug-in handles the necessary communi-
cations with TLM manager.
Simulation component. Any simulation program that
has incorporated TLM plug-in as a part of its model.
A small script that takes the general parameters as in-
put and starts the specific component is an additional
requirement. This intermediate step is necessary since
TLM manager needs a common way to start all the
components and each tool might have some specific
start procedures.

4 Modelica as Meta-Model Language

Simulations of complete systems where components
are modeled and simulated in different simulation
packages are called co-simulations. The model of a
co-simulation including all system components and its
inter connections we call a meta-model.
The extended markup language (XML) has its strength
in textual data representation and conversion. It is of-
ten the language of choice for communicating infor-
mation between different tools. Those were the rea-
sons behind the decision to use it as the input to the
simulation engine.
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Readability and edit-ability, on the other hand, are not
the strengths of XML. Design of co-simulation meta-
models requires thus a more powerful modelling lan-
guage or graphical modelling environment. The fol-
lowing requirements were defined for meta-model def-
initions:

• Meta-Models should be based on a standard lan-
guage.

• A graphical model editor should be available for
ease of use.

Modelica with its object oriented modelling capabil-
ities and its standardized graphical notations is thus
perfectly suited. The fact that the Modelica standard
defines graphical notations results in the availability
of graphical model editors, i.e., MathModelica [5] and
Dymola [4]. These editors typically allow easy con-
nection modelling and user interface driven class de-
sign.
It should be mentioned that only Modelicas modelling
capabilities are of interest here. Meaning that there is
no need for Modelica based simulations. The use of
Modelica as meta-modelling language might as well
simplify the integration of Modelica simulations into
meta-model based co-simulations. This, however, is
not within the scope of this work.

4.1 Meta-Model Class Library

A meta-model Modelica package for component and
TLM connection modelling, using Modelicas object
oriented features, has been designed.
Three packages plus a base model class were defined:

The Components package contains classes for the
different simulation components. These are cur-
rently BEAST and MSC.Adams components.

The Connections package contains the TLM con-
nection or joint. Different TLM specific parame-
ters can be specified for each connection.

The Interfaces package contains the corresponding
TLM interface. Each TLM component contains
at least one TLM interface.

The BaseMetaModel class is the base class for each
Meta-Model. It contains Meta-Model specific pa-
rameters.

Different TLM components are defined in the com-
ponents package which are inherited from the sim-
ulation tool specific components, see also Figure 2.

Figure 2: The basic TLM Meta-Model class library.

They add a certain number of TLM interfaces to each
component. TLM connections define data exchange
and synchronization between these components dur-
ing co-simulation. Connections are created between
two TLM interfaces of two TLM components. TLM
interfaces are therefore defined as connectors.
Several base classes define common model parameters
needed by the TLM manager or for correct XML trans-
lation. Specialized child classes modify these param-
eters to their needs. BEAST Components for example
modify the start-method as follows:

model BaseComponent
parameter String Description;
parameter String SimulationFiles;
parameter String StartMethod;

.

.
end BaseComponent;

model BeastComponent
extends BaseComponent

(StartMethod="beast --serial");
.
.

end BeastComponent;

Both component and interface classes contain a type
specifier which is TLM for TLM components and TLM
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interfaces. This allows for additional type checking
during model translation and guarantees that TLM in-
terfaces are connected with TLM connections. But is
also useful for future extensions with new connection
types.

4.2 Component Modelling

Component modelling is divided into two steps:

• Component modelling in the specialized environ-
ment. Each component of the multi-scale simula-
tion is modeled in its specific environment. Users
define the TLM interfaces to the model.

• Component modelling in the multi-scale environ-
ment. The component needs to be integrated into
the multi-scale environment. Startup methods,
interfaces, and communication parameters must
be specified.

Co-simulation components are modelled in the mod-
elling environment of the specific simulation tool. To
participate in a TLM co-simulation each simulation
program needs to integrate an TLM plug-in and a way
to model TLM interfaces. In MSC.ADAMS for exam-
ple external forces are connected to a TLM interface,
and BEAST defines so called TLM-ties. The TLM
interfaces are thus part of the simulation model ex-
pressed in the modelling language of the specific pro-
gram.
Simulation components are integrated into the meta-
model by selecting a matching component from the
Modelica Meta-model library. Component type and
number of TLM interfaces have to match.

Figure 3: A MSC.ADAMS car simulation component
in the Modelica environment with four TLM interfaces
at the front tire.

Alternatively can the base components, i.e., Beast-
Component and AdamsComponent, be extended (in-
herited) and a certain number of TLM interfaces be

added. This allows for other extensions as well, e.g.,
selecting appropriate component icons for more intu-
itive modelling, see Figure 3. New components should
be added to the UserComponents package in the Meta-
Model library. This is needed for the XML translator
to work properly.

4.3 Meta Modelling

Meta-Models are created using a graphical Modelica
editor, see Figure 4, where components are dragged
into the model. Every Meta-Model must extend the
BaseMetaModel class that contains Meta-Model
and co-simulation specific parameters. TLM compo-
nents and connections are added to the model and con-
nections are drawn between the TLM interfaces.

Figure 4: A simple BEAST-MSC.ADAMS Meta-
Model.

Several parameters need to be specified for the differ-
ent parts of the model. They are needed by the TLM
manager for correct simulation execution. BEAST and
MSC.ADAMS components, for example, need a sim-
ulation file to be specified, see Figure 5, and TLM con-
nections require correct TLM parameters.
The meta-model description is kept general and works
with any simulation tool that supports TLM connec-
tions. New components can be created by extend-
ing the BaseComponent class or any of the predefined
component classes. Only the start-method for the sim-
ulation tool needs to be specified for new components.
Predefined components can be extended if more TLM
interfaces are required. The number of required TLM
interfaces is application and simulation-model depen-
dent.
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Figure 5: The BEAST component parameter dialog.

4.4 Meta-Model Translation

The meta-model is translated into XML code to run
in the co-simulation framework. A Modelica to XML
translator has been designed for this purpose. The
translator makes use of ModelicaXML [3] plus some
co-simulation specific translations. The translation is
done in two steps:

1. Translation from Modelica to ModelicaXML

2. Translation from ModelicaXML to the Meta-
Model XML representation

To simplify parsing of the Modelica Meta-Model it is
first translated into a Modelica-XML representation
using the ModelicaXML [3] translator. This repre-
sentation can be parsed and translated with a standard
XML-parser. The libXML2 [6] standard library has
been used to convert the ModelicaXML Meta-Model
into the XML representation required by the TLM
manager.

4.5 Meta-Model Example

An typical example of a BEAST-MSC.ADAMS Meta-
Model is shown in Figure 6. A front wheel bear-
ing hub-unit is connected to the race-car with four
flanges each of which is modelled as a TLM connec-
tion. The components have to be prepared in BEAST
and MSC.ADAMS to contain the TLM interfaces. Af-
terwards they are integrated into the meta-model envi-
ronment by creating component classes with appropri-
ate icons and TLM interfaces in the Modelica package.
Each Meta-Model needs to extend the BaseMetaModel
Modelica class to inherit the global co-simulation pa-
rameters. TLM connections are added between the
TLM interfaces according to the hub-unit flanges. The
complete Modelica model looks like this:

Figure 6: Modelica Meta-Model detailed BEAST hub
unit integrated into a MSC.ADAMS racing-car model.

model BeastHubInAdamsCar
extends MetaModel.BaseMetaModel;
MetaModel.UserComponents.BeastCarCorner

BeastHubUnit(
Description=

"A complete Beast hub-unit",
SimulationFiles="CarCorner.in",
StartMethod="start-beast");

MetaModel.UserComponents.AdamsCarModel
AdamsCar(
Description="A MSC.ADAMS car model",
SimulationFiles="racing_car.cmd");

MetaModel.Connections.TLMConnection TLM1;
MetaModel.Connections.TLMConnection TLM2;
MetaModel.Connections.TLMConnection TLM3;
MetaModel.Connections.TLMConnection TLM4;

equation
connect(AdamsCar.p1,
TLMConnection1.p1);
connect(AdamsCar.p2,

TLMConnection2.p1);
connect(AdamsCar.p3,

TLMConnection3.p1);
connect(TLMConnection1.p2,

BeastHubUnit.p1);
connect(TLMConnection2.p2,

BeastHubUnit.p2);
connect(TLMConnection3.p2,

BeastHubUnit.p3);
connect(TLMConnection4.p2,

BeastHubUnit.p4);
connect(AdamsCar.p4,

TLMConnection4.p1);
end BeastHubInAdamsCar;
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Finally the model is converted into the XML repre-
sentation required by the TLM manager by first con-
verting it into ModelicaXML and then into the XML
Meta-Model representation. The XML model looks
like this:

<?xml version="1.0"?>
<Model name="BeastHubInAdamsCar"

StartTime="0"
EndTime="1"
TLMDelay="0.001">

<SubModels>
<SubModel Name="BeastHubUnit"

Description=
"A complete Beast hub-unit"

SimulationFiles="CarCorner.in"
StartMethod="start-beast">

<InterfacePoint Name="p1"
iType="TLM"/>

<InterfacePoint Name="p2"
iType="TLM"/>

<InterfacePoint Name="p3"
iType="TLM"/>

<InterfacePoint Name="p4"
iType="TLM"/>

</SubModel>
<SubModel Name="AdamsCar"

Description=
"A MSC.ADAMS car model"

SimulationFiles="racing_car.cmd"
StartMethod="start-adams">

<InterfacePoint Name="p1"
iType="TLM"/>

<InterfacePoint Name="p2"
iType="TLM"/>

<InterfacePoint Name="p3"
iType="TLM"/>

<InterfacePoint Name="p4"
iType="TLM"/>

</SubModel>
</SubModels>

<Connections>
<Connection From="AdamsCar.p1"
To="BeastHubUnit.p1"
iType="TLM" alpha="0" Zf="0"/>

<Connection From="AdamsCar.p2"
To="BeastHubUnit.p2"
iType="TLM" alpha="0" Zf="0"/>

<Connection From="AdamsCar.p3"
To="BeastHubUnit.p3"
iType="TLM" alpha="0" Zf="0"/>

<Connection From="BeastHubUnit.p4"
To="AdamsCar.p4"
iType="TLM" alpha="0" Zf="0"/>

</Connections>
</Model>

5 Conclusion

A framework for meta-modelling and simulation of
mechanical systems using transmission lines for cou-
pling components was presented. The main features of
the framework are:

• General object-oriented meta-modelling utilizing
the strengths of Modelica

• Stability by applying minimalist approach to the
program design resulting in small portable code

• Extensibility of the framework thanks to the
portable and easy to incorporate software plug-
in.

The framework currently targets SKF’s BEAST simu-
lation tool and MSC.ADAMS.
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Abstract

The AirConditioning library is a new, commercial
Modelica library for the steady-state and transient
simulation of air conditioning systems using mod-
ern, compact heat exchangers that use microchannel
tubes instead of the bulkier fin-and-tube type heat ex-
changers. Currently it is mostly used by automotive
OEMs and suppliers that need high-accuracy system
level models to ensure both passenger comfort and en-
ergy efficiency of systems developed under the pres-
sure of reduced design cycle times. The AirCondi-
tioning library contains basic correlations for heat and
mass transfer and pressure drop, components for con-
trol volumes and flow resistances and advanced ready-
to-use models for all relevant components of automo-
tive air conditioning systems like condenser, evapora-
tor, compressor, expansion devices and accumulator.

1 Introduction

The AirConditioning library has been derived from the
Modelica library ThermoFluid [1, 2] and the ACLib li-
brary [11], with considerable enhancements in partic-
ular of the useability and robustness. Most of the fun-
damental design ideas outlined in [1, 2] are still valid,
but a number of useability-oriented design improve-
ments have been made also with respect to the special-
izations for AC-cycles described in [11]. Compared to
ThermoFluid, also simplifications of the library struc-
ture have been made due to the reduced spectrum of
applications. The most important differences are:

Steady-state capabilitiesTraditionally, AC system
level models are only used as steady-state mod-
els, with the exception of very simplistic, often
linear models for control design. ThermoFluid
provided accurate dynamic models, but could
not be used for steady-state tasks. AirCondi-
tioning bridges that gap and is suited both for

          Temperature:    Ref   Wall   Air         Quality

     350    1

     320    0

Figure 1: Examples of dynamic diagrams: spatial
plot of condenser temperatures and ph-diagram for a
R134a cycle.

dynamic and steady-state design computations,
eliminating the need for multiple platforms and
models. Significant improvements to the steady-
state solvers in Dymola combined with model im-
provements have resulted in reliable steady-state
initializations that can be used for design opti-
mization.

Re-designed user interfaceThe user interface im-
provements make full use of recent Dymola fea-
tures: structured dialogs using hierachy, tabs
and groups where appropriate, illustrations linked
into the dialogs for explanation of the parameter
meaning and use of interactive elements for direct
user feedback during simulation runs.

Dynamic process diagramsThe UserInteraction li-
brary by Dynasim has been used to create dy-
namic interface elements for AC applications:
spatial plots of temperatures or heat transfer coef-
ficents and instantaneous corner points of the re-
frigerant cycle ph-diagram, as shown in Figure 1.

New two-phase dynamic state modelThe inte-
grated mean-density modelhas been introduced
for two-phase flow and greatly reduces the risk
of discretization-triggered flow oscillations.
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Apart from the robustness benefit it is also
a reduced-order dynamic model that doesn’t
sacrifice accuracy, but rather allows the same or
better accuracy with fewer dynamic states.

Many AC component models A number of new,
specialized AC-component models have been
added, e.g. internal heat exchanger, condenser
with integrated receiver, short orifice tube, and
many more.

Compressor modelsTwo formulations for the com-
pressor efficiencies have been developed: one is
for the case of full-load measurement data only,
reported in [4], the other computes also efficien-
cies for varying swash-plate angle inputs [3].

Optional model encryption Dynasim has developed
a novel approach to model encryption that makes
use of symbolic pre-processing of the model code
before the actual encryption, called “scrambling”.
Most critical data is irretrievably removed from
the model code even before proper encryption by
evaluating all given parameters. The new method
allows to selectively hide or reveal model fea-
tures, giving the user full control over available
model parameters and outputs. The symbolic
evaluation of parameter expressions before code
generation masks geometry information in a way
that it is impossible to retrieve it even from the
generated C-code.

1.1 Standard for model exchange

Dymola and the AirConditioning library was chosen
by a group of German OEMs after a benchmark com-
paring it with other potential tools. During 2004, the
tool was tested by the OEMs [9] and many of their sup-
pliers, and then chosen as a common tool for model
exchange between suppliers and OEMs. The bench-
mark and testing process has contributed to continued
improvements of the library regarding the component-
oriented requirements from suppliers and the system-
oriented requirements of OEMs.

2 Heat exchanger models

In automotive refrigeration cycles heat is absorbed at
the low temperature level of the cabin air or at ambi-
ent temperature and rejected at the discharge level of
the ambient. For heat transfer between air and work-
ing fluid a condenser/gas cooler on the high pressure

level and an evaporator on the low pressure level are
used, exploiting the low heat transfer resistance of the
two-phase refrigerant. In some, mainly R744, appli-
cations, an internal refrigerant-to-refrigerant heat ex-
changer which transfers heat from one pressure level
to the other enhances the performance of the cycle.
Most heat exchanger types currently used in automo-
tive air conditioning systems are represented by the li-
brary models or they can be developed from subcom-
ponents.

2.1 Refrigerant side models

The fluid flow on the refrigerant side is based on
dynamic control volume models that are different
than the standard finite volume model found in Ther-
moFluid [1, 2]. The AirConditioning library uses from
version 1.1 a new control volume that is similar to the
one used in the ThermoPower library [5]. The main
difference is that it is based on the computation of the
mean density, ρ̄, found by integrating over enthalpy
along the flow, assuming constant pressure and taking
into account the location of the phase boundaries (hpb),

ρ̄ =
∫ h2

h1

ρ(p,h)dh=
∫ hpb

h1

ρ(h)dh+
∫ h2

hpb

ρ(h)dh (1)

With different inlet and outlet conditions and over the
two boundaries,hliq andhvap, the integral splits up into
9 different cases, for which the analytic solution can be
derived. In the one-phase region a regular mean value
is used. Within the two-phase region the integral is
rewritten using the expressions for qualityx and volu-
mity, ν = 1/ρ, which are linear in enthalpy.

x =
h−hliq

hvap−hliq
ν = x ·νvap+(1−x)νliq∫ h2

h1

ρ(h)dh=
hvap−hliq

νvap−νliq

∫ ν2

ν1

1
ν

dν =
hvap−hliq

νvap−νliq
ln

ν2

ν1

The expressions are such that they are continuously
differentiable even across the phase boundaries. The
analytic derivatives of the mean density w.r.t. the in-
puts of the fluid property calculation have also been
derived and validated using the new automatic differ-
entiation feature of Dymola [6].
Due to the magnitudes of temperature gradients and
pressure drops, a different parameterization than cho-
sen by [5] has to be implemented for air condition-
ing systems: pressure drops have a larger influence
on the driving temperature difference and can not be
neglected. Another important feature of the refriger-
ant side models is to fully make use of the fact that
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Figure 2: Mean density and two-phase fraction in
a six segment pipe with R134a during a rapid tran-
sient starting in all liquid phase. Both properties are
smooth throughout the simulation, with the excep-
tion of dmean[1] and the overall two-phase fraction,
twoPhasem, that jump when the inlet enthalpy changes
at t=30s.

the phase boundary location is resolved continuously
within each finite volume and not just discretely for
each volume. Using the two-phase length fraction for
interpolation of all phase dependent correlations and
properties improves calculation accuracy vastly. An
added benefit is that the interpolation also makes vari-
ables such as heat transfer coefficient change continu-
ously with time when the phase boundary moves from
one finite volume to the next.
The smooth results of the mean density model is illus-
trated in Figure 2 where the calculated mean density
and two-phase fraction of a refrigerant pipe is shown.
Heat transfer properties are interpolated with the in-
dividual two-phase fraction of each volume, while the
pressure loss model can use the overall two-phase frac-
tion of the pipe. The pipe model withn = 6 will then
only have one dynamic pressure state but six enthalpy
states. This model is normally used for the refrigerant
side of a heat exchanger, where a six pass evaporator
with n = 3 will have six pressure states and eighteen
enthalpy states.

2.2 Air side models

Air side models in compact heat exchangers of air con-
ditioning systems are characterized by three features:

• sharp gradients along short flow paths,
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Figure 3: Influence of air side discretization on total
transferred heat in a refrigerant condenser

• discontinuous phenomena depending on con-
densing/ non-condensing conditions on cold sur-
faces and

• very short residence times of an air particle inside
the heat exchanger.

To accommodate for these features, two different mod-
els have been developed for the air side of compact au-
tomotive heat exchangers. One is a discretized finite
volume based model with steady-state mass- and en-
ergy balances for each volume, the other is a symbolic
solution of the outflow temperature found by applying
constant medium properties along the flow path. In
both cases the correlation for convective heat transfer
is used,

Q̇ = αA(Twall −T)

whereQ̇ is the heat flow rate,α is the coefficient of
heat transfer, A is the surface area, T and Twall are
the temperature in the bulk flow and at the wall sur-
face, respectively. The heat connector variablesQ̇ and
Twall provide an interface to wall models. The compu-
tational burden of dynamic balances with an increased
number of dynamic states is avoided by using steady-
state balances, which is justified by the short residence
time of the fluid.
Due to the sharp gradients and/or discontinuities on the
air side, the finite volume method requires a relatively
high discretization. If high accuracy is required, typi-
cally 10 – 15 elements are needed for the air passage1

Figure 3 shows simulation results for the steady-state
heat flow rate of a compact flat tube condenser of 2

1For multi-layered heat exchangers this includes the sum of
elements for all layers, (air segments/layer)∗(number of layers).
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cm depth comparing the finite volume and the analyti-
cal approach. Air temperatures at inlet and outlet were
320 K and around 336 K, respectively.
A symbolic solution for the outlet state can only be
found if the water content of the air remains constant
along the flow path, which is only the case for very low
or zero inlet humidities or air heating. In the finite vol-
ume model, when the wall surface temperature drops
below the saturation temperature of the bulk flow, the
amount of condensing humidity will be determined by
applying a heat and mass transfer analogy approach.
Assuming a similarity in the shape of the temperature
boundary layer of a convective fluid flow and that of
the respective concentration boundary layer, the mass
transfer coefficientβ can be determined from

β =
Le(m−1)α

ρcp

where Le is the Lewis number,α the coefficient of
heat transfer and withm = 1/3 valid for most appli-
cations [12]. The driving potential of water conden-
sation is then formed by the water content in the bulk
flow X and that for saturation at surface temperature
Xsat(Twall). Assuming the ideal gas law applies, the
condensate flow rate ˙mw is computed from

ṁw = βρA(X−Xsat(Twall))

with ρ as the bulk flow density. The model allows out-
let humidities below 100% and water condensation at
the same time. The correct determination of the latent
heat is important, as it can make up around 50% of the
total transferred heat.
Heat transfer and pressure drop correlations for air side
specific geometries from the literature are part of the
library. Additional user correlations can be incorpo-
rated on the component top level by using replaceable
classes.

2.3 Air-refrigerant heat exchangers

Condensers/gas coolers and evaporators in automotive
refrigeration cycles are mostly of cross, cross-co or
cross-counter flow type and consist of louvered fins
and extruded microchannel flat tubes, both made of
aluminium, as schematically shown in Figure 4a).
The models in the library are composed of refriger-
ant and air cross flow elements with walls between the
two media [11]. Heat conduction in the solid material
in fluid flow direction is neglected. The dynamic be-
havior of the component is mainly influenced by the
amount and distribution of the solid wall material and

Figure 4: a) cross flow of air and refrigerant, b) 4-
pass condenser with horizontal refrigerant flow and a
refrigerant side discretization of 3 per pass

associated heat capacity. On both sides of the wall,
several parallel flow channels are lumped into one ho-
mogeneous flow for efficiency reasons. The refriger-
ant path through the component is treated as one pipe
flow with variable cross section and one air element
associated with each flow segment. Each air element
is further discretized or symbolically integrated along
its flow. Automatic coupling of air elements is made
according to the parameter-specified and component
type dependent 3D orientation, e.g. as the evaporator
shown in Figure 6 and to the user defined segmentation
of the refrigerant flow. Both parameters are merged
into a 3D-matrix, which defines the position of each
refrigerant segment with respect to a fixed coordinate
system. The condenser in Figure 4b) would yield a 2
by 2 by 3 matrix which is used for conditional con-
nect statements of air inlets and outlets in the compo-
nent. This approach allows for a wide variety of flow
paths and a 2D-interface for inhomogeneous air inlet.
However, the interface resolution is directly coupled
to the number of refrigerant passes through the heat
exchanger and their segmentation.

2.4 Internal heat exchangers

For systems using the refrigerant R744 (CO2) as the
cycle fluid, it is quite common to have an internal heat
exchanger between the high pressure side, after the
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Figure 5: Cross section of tube-in-tube internal heat
exchanger.

gascooler, and the low pressure side, between the ac-
cumulator and the compressor. The base classes for
the internal heat exchanger are identical to those for
the refrigerant side of flat tube heat exchangers.
Currently used internal heat exchangers come in a
wide variety of geometries. Tube-in-tube type inter-
nal heat exchangers as in Figure 5 can be parametrized
directly from the geometrical data. For other types of
internal heat exchangers, the user has to compute pa-
rameters like the hydraulic diameter and the heat trans-
fer areas by hand.

3 Swash plate compressor model

The compressor is modeled as a steady-state map that
relates suction- and discharge states and mass flow.
Due to the wide variety of mechanical constructions,
a simple parameterization of a swash-plate or swash-
ring compressor has to be based on an extensive set of
measurements. The measurements are used to adapt
the free parameters of efficiency functions that are
chosen to have physically reasonable asymptotics for
high pressure ratios and low rotational speed. The
form of the functions is similar to the one presented in
[4], and varies slightly for different compressor types.
The compressor model uses three functions to charac-
terize the compressor efficiencies, the volumetric ef-
ficiency λe f f, the effective isentropic efficiencyηe f f

and the isentropic efficiencyηis. The efficiencies are
defined as

λe f f =
ṁe f f

Vnρ(ps,Ts)

ηe f f =
Pis

Pe f f
=

(hd,is−hs)ṁe f f

2π|M|n

ηis =
hd,is−hs

hd −hs

In the definitions above,p is the pressure,T tempera-
ture,V displacement volume,ρ density,h specific en-
thalpy,P power,ṁ mass flow andM the torque of the
compressor. In the subscriptsd refers to the discharge
side,s to the suction side,is to isentropic conditions
ande f f to effective values.
In order to simplify the situation in early development
stages, the efficiency functions are factored into two
parts: one that captures the influence of the pressure
ratio and rotational speed,f (π,n) and another one that
takes into account the control of the swash plate an-
gle and rotational speed,g(x,n). Measurements of the
influence of the swash plate angle are not always avail-
able, and due to this separation it is still possible to de-
rive efficiencies for the full load case. A typical form
of the efficiency functions is given below.

λe f f =
(

π0−
pd/ps

π0−1

)2(x−x0

1−x0

)(
a2n2x+a1nx+a0

)

ηis = f (π,n) ·g(x,n)

f (π,n) = a
π0−π

π0
−ab

(
1
b

π0−1
π0

)π

g(x,n) =

(
1−
(

x−1
x0−1

)k

(c+1−b)x

)
a = a(n) = a1n+a0

b = b(n) = b3n3 +b2n2 +b1n+b0

c = c(n) = c1n+c0

k = k(n) = k1n+k0

The effective isentropic efficiency has the same func-
tional form as the isentropic efficiency. Two of the
constants have physical significance,π0 is the upper
limit of the pressure ratio at which the discharge mass
flow decreases to 0. Similarly,x0 is the lower limit
of the relative displacement control signal where the
compressor does not discharge any more. The param-
etersai , bi , ci andki are free parameters that have to be
adapted to measurement data.

4 Expansion devices and valves

The library includes simple orifice and thermostatic
expansion valve (TXV) models. Several models of
these short flow restrictions are based on the compu-
tation of mass flow of compressible fluids as described
in DIN EN 60543-2-1, computing a flow coefficientKv

in m3/h. The model takes into account the choking of
flow above the critical pressure ratio. Simpler models
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with a constantζ-parameter,

∆p =
|ṁ|ṁζ
2A2ρ

and with quadratic scaling based on nominal parame-
ters are also available. The TXV is based on the DIN
valve model, with a PI-controller with a suitable time
constant representing the bulb dynamics.

4.1 Short orifice tube

A geometrical model of a short orifice tube is also in-
cluded according to the correlation in [7]. The orifice
tube model has been validated against measured data
from the reference with good results over a wide range
of operating conditions. The mass flow error is less
than 5-10% in all but extreme cases. For sub-cooled
conditions the liquid flow equation 2 is used, and for
fully choked flow equations 3-4 are used. Inbetween
these extremes the mass flow is interpolated based on
upstream quality.

ṁl = C1D2
tube

√
2ρl (p1− pf ) (2)

ṁc =
π
4

p1D2
tube

√
M2κ
RT

(3)

λ
Ltube

Dtube
=

1−M2

κM2 +
κ+1
2κ

log
M2(κ+1)
2(1+ κ−1

2M2 )
(4)

In the equations aboveλ is the friction coefficent,κ
is the ratio of specific heats andp1 is upstream pres-
sure. The adjusted downstream pressure,pf , depends
on subcooling temperature, critical pressure and tube
dimensions [8]. Note that Equation 4 is an implicit
equation for the Mach numberM. It is used exactly as
quoted in the orifice tube model.

5 User interface

The library makes full use of recent Dymola features
to make the models easy to use. Component param-
eter dialogs are structured using tabs and grouping,
with appropriate text and graphical explanations. All
non-numerical input values can be selected from drop-
down menus and the lists of choices for correlation
models and geometry records are automatically up-
dated using the annotationchoicesAllMatching. As an
example, the geometry parameter dialog for a flat tube
evaporator is shown in Figure 6.
To further enable an easy understanding of simulation
results, dynamic diagrams have been integrated into

320

350

Figure 6: Parameter dialog for specifying evaporator
geometry parameters. Illustrations and explanations
provide help for the input fields and different parame-
ters are grouped under tabs; General, Flat tube geom-
etry and Louvered fin geometry.

example models using the library UserInteraction. Dy-
namic components include value displays showing e.g.
instantaneous temperature and transferred heat, spatial
plots showing temperatures, quality or other properties
along the refrigerant flow direction and ph-diagrams
that illustrate the full refrigerant cycle behavior. Ex-
amples of dynamic diagrams are shown in Figure 1.

6 Initialization

Robust steady-state initialization is critical for using
dynamic AC models also for steady-state applications
and system design optimization. From a tool and li-
brary implementation viewpoint all of the pieces be-
low are important to allow robust initialization.

• Reduce the number of required input parameters
for initialization for distributed parameter sys-
tems, but still achieve convergence for reasonable
input values. This has to be done in the library de-
sign, and it often requires thattemplate2 models
are provided that reduce inputs for specific con-
figurations, including the boundary conditions.

2These are example models tailored for different applications
in AirConditioning.
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n ref 2 4 6 10
total variables 11132 21992 32852 54572
dynamic states 38 74 110 182
iteration vars 301 601 901 1501
Init time [s] 3.3 13.8 34.4 113

Table 1: Steady-state initialization times for different
discretizations of a six pass evaporator testbench from
AirConditioning 1.0 using Dymola 5.3b.

The remaining parameters should be those that
are typically measured for the device.

• Improvements of solver robustness in the simu-
lation tool. Dymola recently introduced two new
features: a global homotopy method for the so-
lution of large systems and much improved han-
dling for scalar systems. Due to the tearing tech-
nique, scalar systems are much more frequent
than would be expected otherwise.

• Be aware of particular problem cases in the model
equations and avoid them or rewrite them in a
way that is numerically easier to handle.

Using all these techniques, initialization problems
with thousands of iteration variables are possible to
solve with the current Dymola version. Results from
a computation benchmark are shown in Table 1.3 An
open point for even larger equation systems is to use
sparse methods also after symbolically tearing and re-
ducing the size of initial equation systems.

7 Model encryption

To securely exchange accurate first principle based
simulation models without revealing proprietary data
to third party users, a careful balance has to be found
between two conflicting requirements:

• If the model information is completely hidden,
the model is similar to a black-box model and will
often not be of much use to the end user.

• If too many model details are revealed, many oth-
ers can be reconstructed with little effort.

Encrypted save totalmodels in Dymola keep only
the connector variables, top-level parameters and out-
puts visible to a user. By default, the new encryption
method hides as much data as is possible. If users

3The benchmark was performed on a 3.2 GHz Pentium 4 with
512 MB memory.

require additional input parameters or outputs, these
have to be propagated explicitly to the top level by the
owner that exports the model and makes it available.
The methodEncrypted save totalconsists of two dis-
tinct phases:

1. First, the model is pre-processed in a step called
scrambling, which flattens the model (removes
the composition hierarchy), evaluates all ex-
pressions in the model that can be evaluated,
and changes all variable names in the model
to generic ones. The evaluation of parameters
removes most sensitive parameters completely
from the model.

2. In a second step, the scrambled model is also
encrypted. In the user interface, the encrypted
model shows only the information needed to use
and run the model; connectors and public, top-
level parameters.

The unique advantage of the new encryption method
is that sensitive information is irretrievably removed
from the model in many cases. Consider e.g. the com-
putation of a volume from parameters width, length
and height:V = w∗ l ∗h. After scrambling, only the
value forV remains in the scrambled code. Obviously
it is impossible to back-calculate the original parame-
ters from this information.

8 Transient simulation of automotive
systems

In the past, the influence of AC-systems on fuel con-
sumption has been neglected by legislative bodies and
automotive manufacturers. This situation is currently
changing, and accurate fuel consumption estimates are
needed also for the case of a running AC unit. Fig-
ure 7 shows some of the key system parameters when
running a New European Driving Cycle (NEDC) that
contains an urban as well as an extra-urban section.
In [9], more results from simulating driving cycles us-
ing the AirConditioning library are presented. Models
from AirConditioning can be coupled directly to the
PowerTrain Modelica library [10] for fuel consump-
tion calculation.

9 Summary

AirConditioning is a comprehensive Modelica library
for the simulation of automotive air conditioning sys-
tems. AirConditioning contains models for current,
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Figure 7: AC-system key parameters during NEDC
driving cycle. Condenser power is the top line, com-
pressor power the bottom line.

R134a based systems as well as systems under devel-
opment using R744. It has been chosen by a group of
automotive OEM and suppliers as a standardized tool
for exchanging models for automotive AC-systems.
Dynasim AB has added a new encryption method to
accommodate the exchange of models containing pro-
prietary data. The refrigerant and air side models have
been adapted to cover the accuracy needed for com-
ponent simulation and the flexibility and speed needed
for system simulation. AC components and systems
can be simulated in steady-state and dynamic condi-
tions, and the models can be coupled to other Modelica
libraries, e.g. for powertrain models.
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1 Introduction 

Numerical simulation in the automotive design 
process is gaining increasing significance. This also 
applies for thermodynamic and thermohydraulic 
systems i.e. also for the air conditioning system 
(HVAC) of an automotive vehicle. In order to 
optimize the efficiency of HVAC-systems and to 
obtain a better understanding of the complex 
transient system behaviour of automotive 
refrigeration cycles a Modelica library named ACLib 
was developed in a joint research project by 
DaimlerChrysler AG, Airbus Deutschland GmbH 
and TUHH. It was based on the thermohydraulic 
models of the free ThermoFluid library [2] and was 
applied to automotive refrigeration cycles running on 
the refrigerants R134a and carbon dioxide in an early 
development stage, when only limited experimental 
data was available [1, 5]. 
In order to share development costs and to combine 
the system knowledge and expertise on vehicle 
boundary conditions on one hand and the detailed 
component knowledge of the supplier on the other 
hand, a standardization process for a refrigeration 
cycle simulation tool was initiated by 
DaimlerChrysler. Modelica/Dymola was chosen by a 
pool of several OEM’s and suppliers for this task, 
after several tools had been extensively investigated.  
A new Modelica library, named AirConditioning 
Library, which meets the requirements of industrial 
application, and partly based on the former ACLib is 
currently developed by Modelon AB. Due to its 
user’s group as mentioned above, special emphasis is 
placed on decoupling of physical equations and 
possibly confidential and encrypted component data 
as well as on high model flexibility. 

2 Automotive Refrigeration Cycle 

A Heating Ventilation and Cooling system (HVAC) 
is the primary element in controlling environmental 
temperatures of an enclosed automotive cabin. The 

HVAC systems also provide fresh outdoor air and 
adjust the temperatures and humidity to improve 
comfort and increase efficiency (e.g. increase cabin 
air circulation). Figure 2.1 shows the design of a 
common automotive HVAC system. The design of 
the AC-System (e.g. R134a refrigeration cycle) is 
important for the cooling performance and demands 
a high attention. A common R134a refrigeration 
cycle consists of a compressor, condenser, high 
pressure receiver, expansion device evaporator and 
several hoses and tubes. 

Compressor

Receiver/Drier
Expansion Device Cooling Unit/

Condenser

Climate Control Unit

Evaporator

Compressor

Receiver/Drier
Expansion Device Cooling Unit/

Condenser

Climate Control Unit

Evaporator

 
Fig. 2.1: Design of an automotive HVAC-Unit 

As shown in figure 2.2, the R134a refrigeration cycle 
is a subcritical vapor process. The process path in the 
ph-Diagram is represented by the numbers 1-2-3-4 
and shows the compression (1-2), isobaric heat 
rejection at the condenser (2-3), adiabatic expansion 
(3-4) and the isobaric evaporation (4-1). In steady 
state the high pressure receiver is also represented by 
number 3. In most cases the receiver is totally filled 
with liquid R134a, assumed the refrigeration plant is 
sufficiently charged. 
The refrigerant mass is an important factor of a 
vapor cycle and is one motivation for a complete 
transient simulation. During different boundary 
conditions (e.g. changing air temperature, air 
massflow through heat exchanger) conditions the 
refrigerant mass is moving to different parts of the 
system and must be observed. The task is to find out 
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the optimal charge of the system and the changing 
process behavior during any variation of the 
compressor speed, air massflow and temperature. 

1

23

4 evaporator

condenser

compressor
expansion

device

1

23

4 evaporator

condenser

compressor
expansion

device

 
Fig. 2.2: Ideal case of R134a vapor cycle 

Due to the additional fuel consumption which is 
about 100 liter gasoline [7] per year an exact and 
realistic simulation is necessary for efficiency 
optimization. 

3 Heat Exchangers 

In order to capture the transient as well as the steady-
state behaviour of the complete automotive 
refrigeration cycle, detailed models of both main 
heat exchangers, condenser/gas cooler and 
evaporator, are required.  They need to reproduce 
correctly the heat transfer between refrigerant and air 
flow and their respective property changes under 
given boundary conditions. Commonly used in 
automotive applications are compact cross flow heat 
exchangers that use finned flat tubes with internal 
microchannels as shown in Figure 3.1. Cross-co as 
well as cross-counter flow versions are also widely 
used for evaporators. 

air

refrigerant flat tube

flat tube

louvered
fin

re
fri

ge
ra

nt

air  

Fig. 3.1: Schematic of fluid flow in compact cross 
flow air-refrigerant heat exchangers 

Based on physical parameters and heat transfer 
correlations from the literature, the heat exchanger 

model from the AirConditioning library is suitable 
for a wide range of applications without requiring 
experimental input data. It can be used for the 
evaporator on the low pressure as well as for the 
condenser / gas cooler in the high pressure side.  Due 
to the object oriented approach of the used Modelica 
language and a standardized interface the heat 
exchanger component can be used in variable cycle 
positions and also as multiple instances with 
different parameterization, i.e. as two evaporators 
operated in parallel. 

The component specific parameterization, geometry 
data, heat transfer and pressure drop correlations, is 
decoupled from the physical equations and therefore 
allows storage of confidential and encrypted 
component data in a separate location. 

3.1 Modelling approach 

The fluid component models in the AirConditioning 
library are based on fluid flow models realized in the 
free Modelica library ThermoFluid [2][3]. This 
approach applies a finite volume method (FVM) 
allowing a numerically robust simulation of thermo-
hydraulic systems including flow reversal. Mass and 
energy balances on one and the momentum balance 
on the other hand are solved on a staggered grid with 
upwind property propagation. 

The dynamic formulation of energy and mass 
balances allows a representation of the transient 
system behaviour. However, the major contribution 
to transient component response rather originates 
from heat capacities of the solid wall material. 

he
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 tr
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t

medium transport
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air
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refrigerant

...

...

...

1 2 3 n

n = number of passes * discretization/pass

 

Fig. 3.2: Object diagram of heat exchanger 
composition from air, wall and refrigerant 
submodels. 

The heat exchanger model is composed from two 
fluid objects (air and refrigerant) and one wall 
element. The wall mass is determined from detailed 
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geometry input data and therefore reflects distributed 
capacities. Heat conduction in the solid material is 
modelled one-dimensional and perpendicular to both 
fluids, longitudinal conduction is neglected for 
efficiency reasons and because no significant loss in 
accuracy is expected [4]. Heat is transferred between 
wall and fluid using a heat connector class (Fig. 3.2). 
Further information on the heat exchanger 
composition approach can also be found in [5]. 

Heat transfer correlations for both fluids from the 
literature, e.g. by Chang et. al. [6] for airflow 
through louvered fins, are part of the library and used 
as replaceable classes in the component. They are 
easily replaced by correlations determined from 
experimental data. In the same way pressure drop 
correlations, geometry data or model switches as e.g. 
air humidity condensation can be set by the user in a 
top level dialog. 
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Fig. 3.3: Orientation of component triple in 3D-space 

A single pipe approach combines all parallel 
refrigerant flows through the component in a single 
flow with variable cross section, resulting in an array 
of cross flow elements. They have to be formed into 
a 3D structure to support different flow schemes. 
Using a defined coordinate system with respect to air 
flow and gravity (fig. 3.3), the generic heat 
exchanger model can handle arbitrary flow patterns. 
It also allows a defined interface for inhomogeneous 
air inlet, which can be coupled with external 2D 
data. However, resulting from the one-dimensional 
flow approach in favour for numerical efficiency, the 
air inlet (and outlet) resolution is restricted by flow 
discretization (separated by dotted lines in figure 3.3) 
and the number of refrigerant passes (separated by 
solid lines in figure 3) in the component. 

3.2 Validation of evaporator model 

Simulations in a test configuration have been run 
with the described models. The test configuration 
(fig. 3.5) consisted of a source providing mass flow 

and enthalpy at the heat exchanger inlet and a sink 
generating a defined pressure at the outlet. The 
source and sink were used to set the boundary 
conditions resulting from data measured at the 
component. The following comparison was made for 
a cross-counterflow evaporator from an automotive 
R134a-system built at Chrysler (Michigan, USA). 
The heat exchanger is shown in Figure 3.4. The 
geometric parameters of the component are all 
known. In Table 3.1 the measured data and the 
results of the simulations at steady state are shown. 
The comparison of experimental data and simulation 
results show very good correspondence in transferred 
heat. The calculation of the refrigerant side pressure 
drop and the air side water condensing (drainage) has 
to be revised. 
 

 
Fig.3.4: R134a-Evaporator, cross counter flow 

 

Fig. 3.5: Object diagram of test configuration 
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Boundary conditions for the evaporator from measured data 

Airm&
 Rm&

 pR TR,in hR,in TAir,in r.H.Air_in

[kg/s] [kg/s] [MPa] [K] [kJ/kg] [K] [%] 
0.132 0.043 0.633 296.5 289.6 330.3 19.2 
0.132 0.048 0.434 281.8 271.2 316.5 18.9 
0.132 0.054 0.439 281.3 272.7 316.5 19.1 

Measured data Simulation 

hR,out TAir,out RQ&
 

r.H.Air_in hR,out TAir,out RQ&  
r.H.Air_in

[kJ/kg] [K] [kW] [%] [kJ/kg] [kJ/kg] [kW] [%] 

410.7 296.7 5.19 82.5 411.3 298.6 5.2 89.9 
401.4 283.7 6.25 79.7 385.6 283.6 5.5 89.8 
400.2 282.7 6.84 70.8 380.3 282.8 5.78 89.1 

 
Table 3.1: Comparison of measured data at the 
evaporator with the simulation results in steady state 

4 New European Driving Cycle 

The New European Driving Cycle (NEDC) consists 
of defined vehicle speeds in an urban as well as an 
extra-urban section (fig 4.1). The NEDC is part of 
the emission test EURO 4 and is also widely used as 
a standard for fuel and energy consumption 
experiments and evaluation. 
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Fig. 4.1: Driving speed during NEDC 

The resulting compressor speed and air velocity are 
in the following used as boundary conditions in a 
complete cycle simulation of a defined passenger car 
(fig 4.2). The air inlet temperature for the evaporator 
is constant at 310 K and the air massflow is constant 
0.166 kg/s. The boundary condition for the 
condenser is also shown in figure 4.2, the air 
temperature is constant at 320 K and the air 
massflow depends on driving speed. 
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Fig. 4.2: Boundary conditions for the refrigeration 
cycle during the NEDC 

The Modelica object diagram of the model used for 
the NEDC-cycle simulation is shown in figure 4.3. 
The refrigeration cycle consists of an external 
controlled compressor, a condenser, a receiver (with 
integrated drier), thermostatic expansion valve, 
evaporator and several pipes. The total volume and 
the ratio of the high pressure side and suction side 
volume are equal to the real refrigeration cycle. Also 
the refrigerant charge of the simulation model is 
equal to the real system. 
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Fig. 4.3: Object diagram of complete R134a 
refrigeration cycle 
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In the following part, two simulation runs will be 
discussed. The refrigeration cycle shown in figure 
4.3 provides a basis for the two experiments. For 
both experiment the described NEDC boundary 
conditions were used. Only two different 
compressors were used during the simulation runs. 
They are referred to as compressor A and B in the 
following. Compressor A has a 6 percent higher 
displacement and one more cylinder, so that the 
characteristic diagrams of both compressors are also 
different. 
The results of the simulation runs are shown in the 
figures 4.4 -4.6. Three characteristic values of the 
refrigeration cycles are shown and compared: the air 
temperature behind the evaporator, the cooling 
capacity and the required compressor power. 
When using compressor B in the cycle the air 
temperature behind the evaporator during UDC part 
is mostly 1K higher than using the compressor A. 

Only during the EUDC part there is nearly no 
difference between the temperatures (fig. 4.4). 
The comparison of the cooling capacity and the 
compressor power shows the same behavior (fig. 4.5 
and fig. 4.6). The total energy consumption for type 
A is 733 Wh and for type B 720 Wh. Interesting is, 
that during the EUDC the smaller compressor needs 
less power for equal cooling capacity. 
The solution of that experiment is that a 6% smaller 
compressor could perform nearly the same cooling 
capacity. 
It is concluded, that the simulation tool is able to 
predict the change of cycle behavior when the 
accuracy of the component models is high enough. 
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Fig. 4.5: Comparison of cooling capacity using compressor A and B 
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5 Common Simulation Tool in 
German Automotive Industry 

In Germany, a working group with members of 
Audi, BMW, DaimlerChrysler and Volkswagen have 
compared different simulation tools in order to 
standardize the simulation of refrigeration cycles. 
The advantages of standardization are mainly the 
ability to integrate the supplier into the simulation 
process. This makes it possible to simulate 
components of different suppliers on one simulation 
platform. After a benchmark test the group decided 
to use Dymola Modelica for simulating refrigeration 
cycles. 

In the future models of refrigeration cycle 
components are needed during the development 
process. If the supplier is not able to create such a 
model, detailed information of the geometry in 
combination with measured data has to be provided 
during the offer phase. 
 

6 Conclusions 

The dynamic simulation of an automotive 
refrigeration cycle with Dymola/Modelica as part of 
the design process is described in the paper. In a 
cooperative effort between Hamburg University of 
Technology (TUHH) and DaimlerChrysler AG, a 
model library for modeling refrigeration cycles has 
been developed based on the AirConditioning 
library. Based on geometrical data, the single 
components can be modeled and composed to an 
entire cycle. 
The validation of the evaporator is one example for 
the component simulation and the results are in good 
accordance with the experimental data. 
The simulation of the NEDC has shown that a 
prediction of the process behavior is possible, so that 
the simulation is able to support the design of 
refrigeration cycles for automotive applications. 
At last the standardization has the advantage or the 
chance that the component supplier’s expertise as 
well as the automotive manufacturer’s knowledge of 
vehicle parameters can be combined in a reliable 
simulation. 
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Abstract

Control software plays an important role in the de-
velopment of alternative drive trains. Energy man-
agement intervenes with the control of the combus-
tion engine, the transmission or an additional electri-
cal machine in different ways. In order to develop
the energy management before or parallel to the ve-
hicle construction phase, a complex software devel-
opment process is required that equally supports
modeling, simulation and implementation.

In the R&D of Volkswagen cluster simulation
was established to simulate the drive train of a vehi-
cle as well as to develop algorithms for the relevant
electronic control units (ECU).

The methodology of cluster simulation will be
represented in the following article.

1 Introduction

For more than 20 years now Volkswagens deals with
alternative concepts for automotive drive trains. First
there were the electric vehicles with a comparatively
simple control that converted the driver’s wish into a
driving torque. Today, however, as combustion en-
gine and electrical machine can be connected with
each other in multiple ways, one needs a complex
control in order to influence the torque distribution
depending on the driving conditions. The intention in
this case is to positively influence comfort and driv-
ing capability.

The control of the different components of the
drive train plays a central role in this context. The
so-called energy management coordinates the
torques of the drive train. The electrical energy stor-
age capacitor is controlled by the so-called battery
management and so forth. For example, energy man-
agement and battery management influence each
other in a complex way.

The simulation of the drive train plays an essen-
tial role during the specification of the components
as well as during modeling the control algorithms.
The objective of this drive train simulation is a fast
and manageable process for developing controller
algorithms resulting in an automatic code generation
within a software-in-the-loop (SIL) process. Man-
ageable in this context means that the developer can
react in a quick way to altering structures of the drive
train. The simulation time should be faster than real
time in order to be able to carry out parameter varia-
tions and code development fast. Therefore a cluster
computer was built for the drive train simulation
consisting of ten dual processor computers. The in-
dividual computers themselves are connected with
each other with a Myrinet1 network, which is an  op-
tical network.

Within the project SUVA (Surplus Value Hybrid
Vehicle) that was supported through the European
Community [1] Volkswagen built up a Volkswagen
Bora Hybrid with a hybrid drive train (Figure 1).

Figure 1:  Structure of the Volkswagen Bora Hybrid

The drive train of the Volkswagen Bora Hybrid con-
sists of a combustion engine (1.4 liters, 55 kW,
3 cylinders, turbo diesel), an electrical machine

1 Myrinet is a registered trademark of Myricom, Inc., USA,
http://www.myricom.com

Clutch 1

BatteryTransmission

Internal Combustion Engine

Power Electronics

Electrical Machine

Clutch 2

Fuel Tank
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(asynchronous machine, 25 kW peak), a clutch be-
tween the combustion engine and the electrical mo-
tor (clutch No. 2 in Figure 1), the automatic trans-
mission (a dual clutch transmission, named by
Volkswagen DSG®2, [2]) and an energy storage
(6 Ah NiMH-battery, 288V).

The transmission concept is such that the trans-
mission is provided with a dual clutch on the gear-
box input side (see Fig. 6 in chapter 2.1 as well).
This clutch is represented in Figure 1 as being out-
side of the transmission for the sake of simplification
(designated as clutch 1 in Fig. 1).

Due to this arrangement this specific drive train
is called a parallel hybrid drive train since both com-
bustion engine and electrical machine simultane-
ously or separately supply torque to the entire driv-
ing torque of the vehicle - acceleration to the strategy
that is worked out in the above mentioned energy
management ECU. For the classification of the dif-
ferent hybrid vehicles please refer to the relevant
literature [3].

2 Simulation Model

The differences of the block-oriented or causal mod-
eling using for example Matlab/Simulink3 and the
acausal modeling using for example Dymola4 were
described sufficiently [4].

While in the development of ECU algorithms
the causal, graphical, signal-based modeling become
more and more accepted in prototyping, acausal
modeling has its advantages in the description of
physical systems. The physical structure is main-
tained and the description corresponds to the local
physical equations of the components that are inde-
pendent of their environment, as well as their cou-
pling to the entire system of equations.

For this reason the cluster simulation is realized
by a simulator link-up: On the one hand Mat-
lab/Simulink is used for modeling the ECU algo-
rithms, the driver model (which generates the accel-
erator and brake pedal) and the driving cycle (which
generates the reference vehicle speed value, height,
air pressure and so on).

2 DSG is a registered trademark of Volkswagen AG, Germany
3 Matlab und Simulink are registered trademarks of The Math-
works, Inc., USA
4 Dymola is a registered trademark of Dynasim AB, Sweden

On the other hand Modelica5/Dymola is used for
modeling the plant that is the closed loop controlled
system vehicle. Furthermore, executable files of
ECU algorithms in the form of a DLL (dynamic link
library) are incorporated into the simulation
(see Fig. 2). As it is shown in Figure 2 in the cluster
simulation the essential algorithms of the relevant
ECUs are simulated in Matlab/Simulink such as:

• the internal combustion engine ECU (ICE
Controller6),

• the ABS/ASC-system (Brake Controller),
• ECU of the gearbox (Gearbox Controller) as

well as
• the ECU of the electric machine (E-Machine

Controller).

Model of Drive Train

Driving
Cycle

Driver

Vehicle and Component Simulation using Modelica/Dymola

Brake
Controller

Gearbox
Controller

E-Machine
Controller

ICE
Controller

Energy Management Controller as  Simulink Model

ECU code generation via
Matlab/RTW embedded coder

BMS-DLL

BMS ECU code via compiling
with Target-Compiler

Figure 2: Structure of the drive train model of the
cluster simulation

Furthermore, the controller of the energy manage-
ment ECU which is modeled in Matlab/Simulink is
integrated as well as the DLL of the controller of the
battery management ECU (BMS, battery manage-
ment system).

The plant was modeled in Modelica/Dymola as
already described above and can be linked to the
cluster simulation either as a Dymosim.exe or as a
Dymola model.

Executable files (so-called executables or exe)
were generated from all models since it is to be ex-
pected that through the detailed modeling the per-
formance of the cluster simulation is lowered due to
simulation of uncompiled models.

5 Modelica is a registered trademark of the Modelica
Association
6 The term controller synonymously stands for a closed loop
control algorithm that is the functional software of an ECU
(electronic control unit).
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The cluster simulation is a so-called forward
simulation in contrast to the so-called backward
simulation. Starting from a driving cycle the com-
parison of the actual value of the vehicle velocity
with the reference value is done by the driver model
which then generates the accelerator or brake pedal
command. The strategy of the energy management
then controls the components of the drive train to
generate the necessary driving torques in order to
follow the reference value of the vehicle velocity of
the driving cycle. The actual value of the vehicle
velocity is traced back to the driver model.

In the following, the individual, modeled sys-
tems are shortly described as well as the structured
components library in Dymola and the simulator
coupling.

2.1 Model of the Plant

The vehicle is structured on the highest modeling
level into the three large blocks: chassis (CHS),
power train (PTR) and auxiliaries (AUX) (Figure 3).

Figure 3: Structure of the vehicle model

The block EXITE_BLOCK represents the simulator
coupling described in the chapter 2.4.

The model of the chassis (CHS) incorporates a
vehicle model (BOD i.e. body) without lateral dy-
namics considering all relevant driving resistances as
well as a model of the contact of the tire with the
street (Figure 4).

Figure 4: Model of the chassis (CHS)

Furthermore it incorporates a simple hydraulic model
for the excitation of the brakes (BRE, which stands
for brake model).

The model of the auxiliaries (AUX) consists of
the modeled electrical consumers of the vehicle elec-
trics (14V).

The model power train (PTR) represents the rele-
vant components such as the internal combustion,
ICE, engine (VKM, German: Verbrennungskraft-
maschine), the fuel reservoir (TNK, German: Tank),
the clutch between ICE and electrical machine,
called separating-clutch (TRK, German: Trennkup-
plung; clutch 2 in Figure 1), the gearbox (GTR,
German: Getriebe), the high voltage battery (BAT)
and the electrical machine (Figure 5).

Figure 5: Model of the power train (PTR)

In the upper part of Figure 5 the shared-memory
data-link is displayed which is described in
chapter 3.1.
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Only the internal combustion engine was mod-
eled based on maps (efficiency maps). All other
components are equation-based models and are de-
scribed shortly.

The model of the fuel tank is a simple model of
the flow of the fuel.

The model of the separating-clutch is a complex
mechatronic model of the clutch and the flywheel.
Even the hydraulic actuator and the mechanics of the
separating-clutch were modeled.

The induction motor was modeled as an elec-
tromechanical drive in α−β stator coordinates based
on the well known equations [5].

The NiMH battery was modeled with electrical
and thermal characteristics including ventilation.

The model of the automatic transmission is a
complex mechanical and hydraulic representation of
the DSG® (Figure 6).

Figure 6: Section of the DSG

2.2 The Vehicle Modeling Library – VML

Dymola supports object-oriented modeling. Class
libraries can be created in so-called packages. Since
with the aid of the cluster simulation different drive
train configurations can be examined, from the start
the emphasis was put on a hierarchically structured
component library (Figure 7).

Figure 7: Structure of the Dymola library VML

This library handles the components and the compo-
nent structure as well as the variants of components.
In the following, attention is shortly being paid to the
construction of the component-library VML.

There are basically four levels of hierarchy: the
UCL - classes of the models of complete units, the
ACL - classes of the aggregate models, the CCL -
the classes of the components and their parts – the
PCL. In order to structure the system vehicle into
manageable subsystems the vehicle is structured into
the abovementioned subsystems chassis, powertrain
and auxiliaries which were named units. The main
parts of a unit are referred to as aggregates, such as
the ICE or the gearbox of the unit powertrain. Parts
of aggregates are referred to as components such as
the converter or the electrical drive itself of the ag-
gregate electrical machine. So-called parts are ele-
ments of components such as different sensors or the
voltage conversion of the component converter.

This structure results from the principle of de-
composition assuming the following: units consist of
aggregates, aggregates consist of components and
components consist of parts. The structure is dis-
played by the structure of packages in Dymola. The
packages by themselves are subdirectories on the
hard disk.
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Classes of units (UCL) and aggregates (ACL)
furthermore can contain packages of connectors
(Pac_CON_...) and models (Pac_UTP_... and
Pac_ATP_... resp.; TP stands for a special type or
model). Archived models of particular aggregates or
units are stored in the type package. Parameterizing
is supported by using records.

2.3 Modeling of the Controller

The difficulty of the simulation of the drive train is
not mainly modeling the physical system; it can be
modeled with sufficient accuracy with more or less
effort.

The problem rather is the modeling of the con-
trol algorithm of the components that represents the
control characteristic. So the functionality of the ICE
control, the transmission control, the electrical ma-
chine control and the ABS/ASC control was mod-
eled with relatively large effort. All models in Mat-
labt/Simulink were modeled discrete (for instance
fixed step size 10 ms).

The algorithm of the battery management sys-
tem (BMS, that is the ECU that controls the battery
with respect to its boundaries) could be directly in-
serted into the cluster simulation as a DLL since the
algorithm was developed by the author himself. And
the complete algorithm of the energy management
ECU (Vehicle Management Unit, VMU), which was
developed in Matlab/Simulink, could be inserted too.
For these two last-mentioned ECU algorithms there
is a software development process with which one
can generate the flash code directly out of the simu-
lation by means of automatic code generation or
compilation with the target compiler for the ECU
(see Figure 2). In case of the BMS this process is a C
programming language software development proc-
ess and for the VMU a Matlab/Simulink/Real-Time-
Workshop (RTW) software development process.
Both processes were used in this way within the
above-mentioned SUVA project.

2.4 Master Model

In the so-called master model which was modeled in
Matlab/Simulink the interface data of all submodels
are exchanged via a network of the representatives of
all submodels which is fed back on itself (Figure 8).

Figure 8: Feedback structure of the representatives of
the submodels (the output is fed back without delay
onto the input)

As already mentioned in chapter 2.1, the simulator
coupling is carried out by the tool EXITE of the
company Extessy AG, Germany [6]. EXITE realizes
a simulator coupling on the basis of a client-server-
linkage. The server is the representative of a sub-
model which only provides the interfaces according
to the regarding submodel. The client is the sub-
model itself.

The Extessy AG provides a simulator coupling for
different simulation tools for example for Mat-
lab/Simulink, ASCET-SD7, Saber8 and Dymola.

Several methods for data communication between
the client and server are supported such as the simple
sequential communication and the full-duplex com-
munication. EXITE relies on the ISO-OSI layer
model of communication. So the communication
protocols TCP/IP and MPI are supported too. The
Master Model handles all interface data of all sub-
models, therefore it reflects the so-called communi-
cation matrix which shows which submodel ex-
changes which data with which submodel in what
sample time. In this cluster simulation over 900 sig-
nals are exchanged mainly because of the emulation
of the CAN bus (Controller Area Network – a com-
monly used network in the automotive context). 500
of these signals are relevant stimulation inputs for
the simulation.

The VMU and the BMS are stimulated in this
way with all signals available in reality. Thus this

7 ASCET-SD is a registered trademark of  ETAS GmbH,
Germany
8 Saber is a registered trademark of Synopsys, Inc., USA
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simulation represents a real SIL simulation concern-
ing these two ECU algorithms. The relevant signals
are considered for the other ECU.

3 First Results

3.1 Shared-Memory-Coupling

The control of the electrical machine was realized
with the switching frequency of the converter which
is 8kHz. The model coupling of the electrical ma-
chine in Dymola and its control in Matlab/Simulink
would slow down the simulation extremely. For this
reason, a shared-memory data-link was created so
that two processes access the same storage area. The
processes are controlled so that both are processed
on different processors of a dual processor computer.
Thus the vehicle model is carried out on one proces-
sor as a Dymosim.exe. On the other processor the
electrical machine control is processed as a Mat-
lab/Simulink/RTW-executable. The shared memory
block is represented in the upper part of the Dymola
model in Figure 5.

3.2 Partitioning

The distribution of the submodels on the individual
computers was done according to performance as-
pects, because the slowest simulation determines the
overall performance of the cluster. For this reason
the partitioning shown in Figure 9 was carried out.

Master Modell
(Communication

Matrix)

PC 0

Gearbox Control

PC 5

Battery
Management

System

PC 4

Energy
Management

PC 3

not yet used

PC 7+8

Vehicle Modell
and Control of

Electrical Machine

PC 9

Driver Model,
Driving Cycle
and Human-

Machine-Interface

PC 1

Brake Control and
DC/DC-Converter

Control

PC 2

ICE Control

PC 6

Figure 9: Distribution of the submodels on the
individual simulation PC

It was expected that the vehicle model determines
the performance of the overall system due to the de-
tailed modeling of the components. For this reason
two more computers were reserved (PC 7 and 8 in
Figure 9) in order to split the vehicle model into sev-

eral parts and to simulate them separately in case of
simulation overload.

3.3 Benchmarks

As described in chapter 2.4, different combinations
of the communication protocols and of the commu-
nication methods are possible.

All benchmarks of cluster simulation were car-
ried out with the full-duplex communication method
with the protocol MPI/GM9 via Myrinet, the optical
network.

The Matlab/Simulink models were modeled dis-
crete. For the Dymola drive train model the integra-
tion algorithm lsodar (a multi-step-solver with a
variable step size for continuous and discreet sys-
tems) has proved to be very robust.

In Table 1 the results of several benchmarks are
listed. The third column contains the ratio of simula-
tion time to simulated time (RT/tsim).

Table 1: Results of the performance measurements

Sim.
No. Configuration RT/tsim

(1) all models as dummies – i.e. empty models 67.1

(2) all ECUs as RTW-exe, except gearbox ECU; vehicle as
dummy models 8.9

(3) all ECUs as RTW-exe, except VMU-ECU; vehicle as dummy
models 5.9

(4) vehicle model as Dymosim.exe, all ECUs as RTW-exe, EMA
control with 8 kHz shared-memory data-link 1/390

(5) as (4), EMA control with 4 kHz shared-memory data-link 1/216

(6)
vehicle model split into the electrical high voltage part,
modeled in Matlab/Simulink and compiled to an exectuable
and the remainder as Dymosim.exe; all ECUs as RTW-exe

1/15 10

To examine the influence of the Matlab/Simulink
ECU models on the performance of the cluster simu-
lation in simulation No. (2) and (3) of table 1 the
gearbox controller and the VMU controller, respec-
tively, were replaced by empty models (so-called
dummies). As mentioned above, all other Mat-
lab/Simulink models were RTW-executables. Even
the Dymola plant was simulated by a dummy. The
simulations were 8.9 and 5.9 times faster than real
time. This means that because of the complexity of
the model of the gearbox controller the performance
of the cluster simulation will be more influenced by
the gearbox controller than by the energy manage-
ment controller. Furthermore it is obvious that even

9 GM is a registered trademark of Myricom, Inc., USA
10 Estimated value based on simulation of the vehicle model
without shared memory data-link and without control of
electrical machine 

M. Hommel

The Modelica Association 206 Modelica 2005, March 7-8, 2005



if the plant could be simulated faster as the gearbox
controller, the cluster simulation would be only a
maximum of 5.9 times faster than real time when
performing SIL-simulation for VMU controller algo-
rithm development.

For the sake of comparison, the simulated time for
a complete empty-cluster simulation is given in
simulation No. (1). Only dummy models were simu-
lated. It follows that the pure communication of
empty models is 67.1 times faster than real time. Per
simulation step (10ms fixed step), approximately
150µs is required (operating system and Mat-
lab/Simulink overhead).

In simulation No. (4), all dummy models were
replaced by their respective models. The vehicle
model was compiled by Dymola into the executable
Dymosim.exe. All Matlab/Simulink models were
compiled by Matlab/RTW into executable files. The
simulation of the control of the electrical machine
(fixed step size) and therefore the data exchange via
shared-memory data-link between the electrical ma-
chine in Dymola (variable step size) and the control
of the electrical machine in Matlab/Simulink was
carried out with a 8kHz switching frequency of the
converter of the electric drive. As a result the simula-
tion was 390 times slower than real time. Of course
this result is caused by the communication step size
of 125µs. As mentioned above, the integration algo-
rithm used in Dymola was lsodar with a tolerance of
1E-5. (The model did not run by a tolerance of 1E-
4.) The data exchange between vehicle model and
the control of the electrical machine organized by
EXITE every 10ms activates an event in Dymola. As
a consequence additional CPU time is required
through reinitialization during solving the differen-
tial equations and thus the performance of the system
slows down.

Reducing the switching frequency and in this
way the frequency of the data exchange between
Dymola and Matlab to 4kHz still leads to a simula-
tion which is 260 times slower than real time. More-
over, with this lower switching frequency at maxi-
mum rotational speed of the electrical motor no ef-
fective mechanical torques can be generated.

The transition of modeling the electrical machine
in α−β stator coordinates to d-q field coordinates
and, hence, the loss of the universal description of
the machine for the benefit of the symmetrical ma-
chine would reduce the simulated time and the effort
due to data exchange in such a way that the simula-
tion rate would be moved into manageable prox-
imity. The data exchange via shared-memory then
could be done in 10ms steps. Only one disadvantage
would arise: the harmonic pattern and consequently

the torque ripple of the electrical machine would be
simulated no more. However, the torque ripple sup-
plies an insignificant contribution with regard to its
effects onto the torque characteristics of the drive
shaft during the software development of the energy
management algorithms and so it could be neglected.

Keeping this in mind, the high voltage electric
part of the drive train is presently removed out of the
Dymola vehicle model onto a Matlab/Simulink
model which also includes the controller of the elec-
trical machine (estimated simulation time see simula-
tion No. (6) in Table 1). Thus the performance of the
drive train simulation could be increased at least to
15 times slower than real time.

4 Alternatives for Increasing the Per-
formance

It has been shown that the influence of the modeling
of a complex controlled system on the performance
of the entire simulation is quite important. To put it
precisely: in the present cluster simulation the Dy-
mola model determines the overall performance. For
this reason possible alternatives for improving the
performance of the cluster simulation will be de-
scribed in this chapter.

4.1 Simplification of the Modeled Plant

The vehicle model must be redesigned in such a way
that models with only small influence on the entire
simulation or those with a vague description are re-
duced to simple constants or low-pass filters of first
order.

The auxiliaries model for example: a constant
efficiency and a constant load at the 14V power sup-
ply can be accepted. The effect on the development
of the energy management algorithm is minimal and
the error can be accepted.

4.2 Elimination of Stiffness

The stiffness values of the system have an essential
influence on the performance of the cluster simula-
tion. These must be identified and eliminated. Since
that was not done until now, a further increase in
performance can be expected.

4.3 Calculating Vehicular Submodels Sepa-
rately

As it was shown in chapter 3.3 it is possible to
shorten the simulated time by splitting the vehicle
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model into several parts. A further alternative for
increasing the performance therefore is the identifi-
cation of effects with large time constants and sub-
models which can be calculated separately. So a sec-
ond or a third Dymola session could be opened and
for example the simulation of the auxiliaries could be
calculated separately.

4.4 Usage of more Efficient Solvers

The simulation slows down due to events (10ms data
exchange via EXITE, discontinuities in modeling)
and because of the variable step size and the solver
used in Dymola.

The most efficient way for speeding-up the
simulation is the use of a single step solver for con-
tinuous systems with variable step size and state
event handling. The usage of Dynasim’s GODESS
library (GODESS stands for generic ODE solving
system) that incorporates such solvers is presently
proved.

4.5 Replacing Modeled Controller by
its ECU-DLLs

If the real ECU code of a controller is available,
complex modeling can be avoided. Furthermore, the
ECU code is often more efficient. Thus, the BMS
code could be included into the cluster simulation. In
the same manner the DSG®-ECU code could be
linked to the cluster simulation. By doing so and to-
gether with all other herein mentioned possibilities
for increasing the performance of this simulation
there could be an increase in simulation time which
would result to a 9 times faster performance than real
time (see simulation No. (2) in Table 1).

5 Conclusions and Future Work

A complex mechatronic simulation was presented in
a heterogeneous cluster of simulators used for hybrid
drive train simulation in the automotive industry.
The objective was to clarify whether or not it is pos-
sible to set up a manageable SIL process with exten-
sive computational aid. As a result it can be said that
on principle ECU algorithms can be developed with
the aid of the presented method. An advantage of
SIL compared to traditional applications in the vehi-
cle is that the control algorithms can be developed
robust in respect of fluctuations in components and
environmental data and in a reproducible manner.
Effects of the communication between the ECUs can
also be examined. Decisive for the manageability of

such complex simulation is the level of detail of the
submodels and the solver used.

With Modelica/Dymola as an object-oriented,
multi-domain modelling tool it is possible to alter
plant structures in a fast way.

One next step has to be the validation of the
simulation. For this purpose, an approximately
300 km long driving cycle has already been meas-
ured.

In future more ECU algorithms will be linked as
DLL into the cluster simulation which makes the
control characteristics more realistic and reduces the
amount of work necessary for modeling control algo-
rithms.

For the development of controller algorithms
and for the specification of components, an auto-
mated simulation will be designed; with it, parame-
ters can be changed within their boundaries by pre-
defined scripts or Monte-Carlo analysis, allowing
massive parameter variations to be carried out auto-
matically.

In order to obtain a manageable SIL, the cluster
simulation has to be redesigned to be faster than real
time.
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Simulation of a thermal model of a surface cooled

squirrel cage induction machine by means of the

SimpleFlow-library

C. Kral, A. Haumer, M. Plainer

Arsenal Research, Faradaygasse 3, 1030 Vienna, Austria

Abstract

SimpleFlow -library was created to model heat and
coolant flows of simple thermal equivalent circuits.
The main components of this library and their ap-
plications are presented in this paper. Further-
more, a thermal model of a surface cooled squirrel
cage induction machine is introduced. The simu-
lated temperatures are compared with measuring
results which were obtained in the laboratory.

1 Introduction

Typical cooling models consist of a thermal net-

work model and a cooling circuit of a device
(e.g. an electrical machine) which is going to
be cooled. The mechanism of coolant flow is
different from heat conduction [1], described by
the thermal network model. Therefore in the
second section the SimpleFlow -library is intro-
duced. Basic equations and components of the
cooling model are presented, as well as the struc-
ture of the library. The third section introduces
a complete thermal network model of a surface
cooled squirrel cage induction machine (totally
enclosed fan cooled), using the elements from
Modelica.Thermal.HeatTransfer. The simula-
tion is presented in the fourth section, whereas
the measurement is described in the fifth section.
The sixth section compares simulation and mea-
surement results.

2 SimpleFlow Library

The description of coolant flows due to forced con-
vection is difficult. The developed SimpleFlow -
library was designed to model such coolant flows
under the following conditions:

• Splitting of media flows is simple.

• Mixing of media flows obeying mixing rule
can be realized easily.

• Reversing the direction of flow is possible.

• No complex media properties are needed.

• The medium is considered to be incompress-
ible.

• Mixtures of different media are not taken into
account. Each individual cooling circuit has
to have a designated medium.

• Medium properties are considered to be con-
stant.

• Pressure changes are only caused by pressure
drops (due to friction of the coolant flow at
solid surfaces).

The library design has been restricted to simple
media as coolants, only taking basic thermody-
namic effects into account, such as the transport
of heat by a flowing medium. These prerequisites
allow a very easy handling of the library and are
sufficient for a wide range of applications, includ-
ing the cooling of devices. Cooling of electrical
machines is an important topic, because the fore-
cast of machine temperature increases allows to
improve the machine design as well as to reduce
the machine size and mass, which ends up in com-
petitive advantages. In these applications temper-
ature rise of the coolant as well as pressure drop
of the coolant flow are rather small, so the above-
mentioned conditions are fulfilled satisfactorily.
Other applications not fulfilling the above-
mentioned conditions like complex thermody-
namic processes have to be modelled using
Modelica.Media and Modelica.Fluid, which are
currently under development. So the SimpleFlow -
library is not designed to compete with these high
sophisticated thermodynamic libraries but to ease
the modelling of simpler applications.
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2.1 Equations

SimpleFlow -library has to take simple thermody-
namic equations in to account. The following
quantities have been chosen to describe the state
of a coolant flow:

• pressure (p) and temperature (T) as potentials

• mass flow (mflow) and simple energy flow

(sEflow) as flow quantities

The naming of simple energy flow is chosen to keep
in mind that only the heat transported by the me-
dia’s thermal capacity is taken into account, avoid-
ing mix-up with thermodynamic energetic quanti-
ties like enthalpy.

The basic equations of a flow element are collected
in partial models, placed in subpackages named
Partials and Friction [2], [3], [4], [5]:

• Pressure drop is a function of mass flow: lin-
ear dependency is assumed to a limit where
laminar flow is effective, and quadratic de-
pendency is modelled for higher mass flows
approximating turbulent effects.

• Mass flow balance:
flowPort in.mflow +

flowPort out.mflow = 0;

• energy flow balance:
flowPort in.sEflow +

flowPort out.sEflow + Q flow =

m * cp * der(T);

where Q flow is the energy flow exchanged
with the environment outside the medium, m
is the medium’s mass, cp represents specific
heat capacity of the medium and T is the
medium temperature within the element.

• Energy flow at the port where the mass flow
leaves the element:
flowPort out.sEflow =

flowPort out.mflow * cp * T;

• Mixing rule at the port where the mass flow
enters the element:
flowPort in.sEflow =

flowPort in.mflow * cp * flowPort.T;

The actual connectors of any component are
flowPort a and flowPort b. If the medium flows
from a to b, a is assigned to in and b is assigned to
out. For the opposite flow directions a is assigned

to out and b is assigned to in. This means, that
there are two sets of equations used depending on
the actual flow direction of the medium. The han-
dling of these two sets of equations is supported
by the Modelica statement semiLinear [6].

Modelica ensures the correct summation of mass
flows and energy flows as well as equity of poten-
tials pressure and temperature of connected ports.
Since the mixing rule is applied at the inlet port of
an element according to the actual flow direction,
the temperature of the port where the mass flow
leaves the preceding element does not necessarely
show the medium’s temperature but the (possi-
ble) mixing temperature of the following element.
The medium’s temperature is represented by the
internal state T.

Besides the definition of common media (air and
water) and appropriate sensors for pressure and
pressure drop, temperature and temperature drop,
mass flow and energy flow the library puts the
following components at the user’s disposal.

2.2 Sources

• Infinite ambient with constant or prescribed
temperature and pressure which is not influ-
enced by ingoing or outcoming flows.

• An element which allows to define pressure
level in a closed circuit, since flow elements
only define pressure drops.

• Simple fans (neglecting the media mass
within the fan) and pumps (taking the me-
dia’s thermal capacity into account), allowing
to define either pressure drop or mass flow.

2.3 Components

• Isolated pipes with and without consideration
of medium mass

• Pipes (with and without medium’s mass)
with a thermal connector where heat is ex-
changed with a thermal network.

• A predefined simple cooler, containing a vec-
tor of cooler elements, each consisting of a
pair of pipes, coupled with a thermal conduc-
tor.

The usage of the library is demonstrated with
a couple of simple examples. These elements
together with Modelica.Thermal.HeatTransfer
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allow the modelling of complex applications like
the cooling of an electric machine.

3 Thermal Equivalent Circuit

The components of a thermal equiv-
alent circuit can be imported from
Modelica.Thermal.HeatTransfer. The thermal
networks are designed in the style of electrical
components and circuits. The components of
such a network are:

• Nodes are regions of constant temperature.
The potential of a node represents the ab-
solute temperature of that node. The SI unit
of the absolute temperature is K.

• A loss source in the thermal circuit is equiva-
lent to a current source in an electric circuit.
There are loss sources where the precalcu-
lated losses have to be corrected by the actual
temperature of the corresponding node in or-
der to consider copper losses correctly. Other
loss sources such as iron losses do not need
a temperature dependent correction. The SI
unit of the heat flow is W.

• Thermal resistors represent regions of heat
conduction. For technical application such as
electric machines, heat transfer is mainly heat
conduction and convection. Heat radiation is
usually not considered. The SI unit of a ther-
mal conductance is K / W. A thermal con-
ductor is the reciprocal of a thermal resistor.
Its SI unit is W / K.

• Thermal capacitors represent the ability of
storing heat energy in a certain region. The
SI unit of a thermal capacitor is Ws / K.

The utilized thermal equivalent circuit is shown in
fig. 1. With respect to the thermal heat conduc-
tion paths the induction machine is divided into
three axial sections. The outer sections are the
drive end (A-side) and the non-drive end (B-side).
End-rings (ERA and ERB), end cap air (AIA and
AIB), winding heads (WHA and WHB), housing (HOA
and HOB) and cooling ribs (RIA and RIB) refer to
either of these sides. The middle section consists
of the rotor yoke (RYO), rotor slots (RSL), rotor
teeth (RTO), the air gap (AGP), stator slots (SSL)
and stator teeth (STO), stator yoke (SYO), housing
(HOM) and cooling ribs (RIM).
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Figure 1: Thermal equivalent circuit of a surface
cooled squirrel cage induction machine
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Figure 2: Thermal network of the active part

To achieve reusability, the active part – which is
the same for many types of cooling – is modelled as
a separate submodel with appropriate connectors
(see fig. 2)

The losses of the induction machine have to be
separated in accordance to the introduced model.
Stator copper losses have to be divided into slot
losses (LSSL) and the losses with respect to the
winding heads (LWHA and LWHB) of each side. The
ratio of these losses is directly proportional to the
respective coil length within these sections. Rotor
heat losses have to be divided into rotor slot losses
(or bar losses; LRSL), and the losses with respect to
the end rings of each side (LSRA and LEAB). Stator
and rotor iron losses have to be determined with
respect to yoke and teeth (LSYO, LSTO, LRYO and
LRTO). Copper losses are precalculated and have
to have temperature correction in order to model
the actual losses accurately.

Therefore, there exist four types of nodes:
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Figure 4: Node with temperature dependent losses

• Node without any properties, such as end cap
air (AIA and AIB)

• Node with thermal capacity, such as the parts
of the housing (HOA, HOB, HOM)

• Node with thermal capacity and losses (with-
out temperature dependent correction), such
as the stator yoke (SYO); see fig. 3

• Node with thermal capacity and losses (with
temperature dependent correction), such as
the stator slots (SSL); see fig. 4

Temperature dependent correction is done by the
following formula:

Losses (T ) = Losses (T0) [1 + α (T − T0)] (1)

where T0 designates the reference temperature at
which the temperature dependent copper losses
have been calculated.
Two types of thermal conductances have been
used:

• Modelica.Thermal.HeatTransfer.Ther-

malConductor with constant thermal
conductance

• Modelica.Thermal.HeatTransfer.Con-

vection where the actual thermal con-
ductance is prescribed by a signal input.

This allows to define thermal conductance
dependent on actual machine speed.

It is advantageous if loss components are directly
available from machine design software. Other-
wise, these components have to be estimated with
respect to the current density or flux density and
the mass of these sections.

4 Simulation

The geometric design data of the induction ma-
chine were available by courtesy of the machine
manufacturer. The electromagnetic quantities
such as magnetomotive forces (mmf), flux densi-
ties, current densities etc. were determined by mo-
tor design software ASYN. The output data of the
motor design software deal as input parameters for
the determination of the relevant thermal para-
meters of the machine. These parameters are the
thermal conductances and capacitances as shown
in fig. 1 and have been calculated as follows [2],
[3].

• Thermal conductances in a homogenous re-
gion:

1

Rth

= λ
A

l
(2)

where λ designates the material specific ther-
mal conductivity, A is the cross section and l
is the length of heat conduction.

• Thermal conductances of heat transfer at a
surface between solid and coolant flow:

1

Rth

= αA (3)

where α designates the heat transfer coeffi-
cient which is dependent on coolant proper-
ties as well as the velocity of coolant flow and
A is the surface area.

• Thermal capacity:

C = mc (4)

where m is the mass of the considered region
and c is the material specific heat capacity.

Heat transfer between cooling ribs and air flow
was also modelled in three axial sections, using the
elements of the SimpleFlow -library to describe the
air flow. Air flow rate is adjusted proportional to
the actual machine speed.
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Figure 5: 18.5 kW squirrel cage induction machine
with nickel-chromium-nickel temperature sensors
and temperature recorder

5 Measurement

Measurements were carried out for a four pole,
18.5 kW squirrel cage induction machine with sur-
face cooling. The machine is shown in fig. 5. The
stationary parts of the machine were equipped
with nickel-chromium-nickel temperature sensors:

• one sensor in the stator slot (two additional
PT-100 sensor were already available in this
machine)

• one sensor in a stator tooth

• three sensors in the winding head of each side
of the machine in order to average the mea-
sured temperature in these areas

• one sensor in the stator yoke

• one sensor on each side of the end cap air (A-
side and B-side)

• three sensors in the housing (A-side, middle,
B-side)

• one sensor for ambient temperature

• one sensor for the air temperature in the cool-
ing ribs at the B-side (blow-in)

• one sensor for the air temperature in the cool-
ing ribs at the A-side (blow-out)
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Figure 6: Simulated (S) and measured (M) stator
slot (SSL) and stator tooth (STO) temperature
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Figure 7: Simulated (S) and measured (M) sta-
tor yoke (SYO) and stator housing, A-side (HOA)
temperature

6 Simulation and Measurement

Results

Some results of computer simulation (S) and mea-
suring (M) are compared in fig. 6–10. The investi-
gations refer to continuous duty with intermittent
periodic loading (duty cycle S6). The motor was
loaded with 140% of nominal load for four minutes
and no-load for six minutes.
Simulations and measurements match both quali-
tatively and in quantity.

7 Conclusions

A detailed thermal equivalent circuit of
an asynchronous induction machine with
squirrel cage was persented. The machine
model was built using components from
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Figure 8: Simulated (S) and measured (M) tem-
peratures of winding head, A-side (WHA)
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Figure 9: Simulated (S) and measured (M) tem-
peratures of winding head, B-side (WHB)
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Figure 10: Simulated (S) and measured (M) tem-
peratures of end cap, A-side (AIA)

Modelica.Thermal.HeatTransfer. This
package does not cover the mechanisms of heat
transport through a coolant flow, though. There-
fore, SimpleFlow -library was developed, which
is intended to handle applications like cooling of
electric machines in a simple way. Other appli-
cations which do not fulfill the assumptions of
SimpleFlow -library have to use the more complex
Modelica.Fluid and Modelica.Media libraries.
Since the application presented in the example
meets the assumptions of SimpleFlow -library
very well, the simulation results match with
measurements.
The SimpleFlow -library is also suitable for other
cooling types of electrical machines. Models for
such cooling circuits (e.g. open circuit ventilated)
are under test. The determination of the relevant
parameters is going to be performed with a spe-
cific precalculation software which is currently de-
veloped.
Models simulating the temperature rise of electri-
cal machines are a very important application be-
cause they lead to design optimizations and com-
petitive advantages.
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Stuttgart, Leipzig: B.G. Teubner, 1999.

[5] G. Merker and C. Baumgarten, Fluid- und
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Modelling Heat Exchangers by the Finite Element Method with
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Abstract

In this paper we present a newModelica model for
heat exchangers, to be used within theThermoPower
library. The novelty of this work is a combined em-
ployment of finite elements with grid adaption.
The modelling of a generic single-phase 1-D heat ex-
changer is discussed, along with its approximation via
the Stabilized Galerkin/Least-Squaresmethod. The
grid adaption procedure is first introduced from a gen-
eral viewpoint and then within theModelica frame-
work. Finally, some preliminary results are shown.

1 Introduction

Heat exchangers (HEs) play a relevant role in many
power-production processes, so that their accurate
modelling, at least for control-oriented analysis, is a
key task for any simulation suite [13].
Accurate modelling of such devices is usually a com-
plex task, the reason being that the control-relevant
phenomena are associated with thermal dynamics de-
scribed byPartial Differential Equations(PDEs). On
the other hand, different complexity levels of repre-
sentation may be necessary, depending on the specific
simulation experiment to be performed.
Within this framework, the power-plant modelling li-
brary ThermoPower[5] exploits the Modelica lan-
guage modularity features, offering to the users sev-
eral interchangeable component models, with varying
levels of detail.
As for the HEs, the models currently provided are dif-
ferentiated by the numerical scheme employed for the

∗MOX, Dipartimento di Matematica “F. Brioschi”,
{stefano.micheletti,simona.perotto }@mate.poli
mi.it

†Corresponding author, Dipartimento di Elettronica e Infor-
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PDEs discretization, adopting either a finite volume
method (FVM) or a finite element method (FEM), with
different strategies for single-phase or two-phase fluid
flow [5]. Furthermore, a moving-boundary evaporator
model has been recently added to the library.

In this paper we present a new model for single-phase
HEs, based on the use of the finite element method
with grid adaption. The objectives of this work are
twofold: to develop a new HE model with high ac-
curacy and reduced computational complexity and to
show how complex mathematical techniques can be
successfully used inModelica for the modelling of
distributed-parameters physical systems.

The proposed model is an improvement of the actual
FEM model [6], obtained by agrid adaption tech-
nique: the grid nodes (i.e., the points where the solu-
tion is computed) change their positions so as to adapt
dynamically to the solution variations. Such model
can significantly improve the modelling accuracy, by
removing the non-physical solution oscillations ob-
served for the actual FEM model, whilst using fewer
nodes and containing the computational burden.

The paper is organized as follows: in Section 2.1 we
recall the modelling of a generic single-phase 1-D heat
exchanger, while in Section 2.2 we discuss its ap-
proximation via theStabilized Galerkin/Least-Squares
method. In the third section the grid adaption problem
is introduced from a general viewpoint, while in Sec-
tion 4 we address the moving mesh method on which
the Modelica implementation, analyzed in Section 5,
is based. Some preliminary numerical results are pro-
vided in Section 6. Finally, the last section draws
some conclusions and outlines possible future devel-
opments.
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2 The Heat Exchanger Model

In the context of object-oriented modelling, it is con-
venient to split the model of a generic heat exchanger
(HE) into several interacting parts, belonging to three
different classes [5]: the model of the fluid within a
given volume, the model of the metal walls enclosing
the fluid and the model of the heat transfer between the
fluid and the metal, or between the metal and the outer
world. In this paper, we focus on the modelling of the
first class. We improve the framework proposed in [6]
by introducing suitable grid adaption techniques.
The model presented in this paper can represent single-
phase HEs, which constitute a significative part of the
industrial applications (e.g., the primary side of a Pres-
surized Water Reactor nuclear power plant [3]). How-
ever, also two-phase flows could be handled as well.

2.1 The Fluid Model

Let us deal with a compressible fluid within a pipe-
shaped volumeV with a rigid boundary wall, ex-
changing mass and energy through the inlet and outlet
flanges, and thermal energy through the lateral surface.
We assume that

• the longitudinal dimensionx is far more relevant
than the other two;

• the volumeV is “sufficiently” regular (i.e., the
cross-sectional area is uniform andV is such that
the fluid motion alongx is not interrupted);

• there are no phase-changes (that is the fluid is al-
ways either single-phase or two-phase);

• the Reynolds numberRe is such that turbulent
flow conditions are assured along all the pipe,
which in turn guarantees almost uniform veloc-
ity and thermodynamic state of the fluid across
the radial direction.

Notice that, when water or steam is assumed as the
working fluid, the last hypothesis does not hold at
very low flow rates (laminar flow regime). However,
in practice, most industrial processes never operate in
such conditions.
Under the hypotheses above it is possible to define all
the thermodynamic intensive variables as functions of
the longitudinal abscissax and timet. Within this
framework, the dynamic balance equations for mass,

momentum and energy can be formulated as follows:

A
∂ρ
∂t

+
∂w

∂x
= 0, (1)

1

A

∂w

∂t
+

∂p

∂x
+ρg

dz

dx
+

Cf ω
2ρA3 w|w|= 0, (2)

∂h

∂t
+

w

ρA

∂h

∂x
=

1

ρ
∂p

∂t
+

ω
ρA

φe , (3)

whereA is the pipe cross-sectional area,ρ the fluid
density,w the mass flow-rate,p the fluid pressure,g
the acceleration of gravity,z the pipe height,Cf the
Fanning friction factor,ω the wet perimeter,h the spe-
cific enthalpy,φe the heat flux entering the pipe across
the lateral surface. The fluid velocity can be defined
asu = w/(ρA). Notice that in (2) and (3) we have ne-
glected the kinetic and the diffusion term, respectively.
In the case of water-steam flows it is convenient to
choose the pressure and the specific enthalpy as the
thermodynamic state variables, so that the expressions
of the balance equations have the same form for single-
phase and two-phase flows [12]: thus all the fluid prop-
erties, such as the temperatureT, the densityρ and the
partial derivatives∂ρ/∂h and∂ρ/∂p can be computed
as functions ofp andh.

2.2 The Approximation Procedure

In view of power generation plant modelling, the most
relevant phenomenon is described by equation (3), so
that the focus for the present paper is the approxima-
tion of this latter by FEM and grid adaption. Actu-
ally, the mass and momentum equations (1) and (2) de-
scribe the fast pressure and flow rate dynamics, while
the energy one (3) describes the slower dynamics of
heat transport by the fluid velocity. These faster modes
are typically not taken into account in HEs modelling
[6]. In particular, note that, assuming the pressurep
uniform alongx (with possible jumps at the HE bound-
ary) and neglecting the inertial term∂w/∂t in (2), the
integration of the mass and momentum balance equa-
tions (1) and (2) is reduced to

win−wout = A
∫ L

0

∂ρ
∂t

dx , (4)

pin− pout = ∆pF +∆pH , (5)

wherewin, wout, pin, and pout are the mass flow-rate
and pressure at the HE inlet and outlet, while∆pF and
∆pH are the pressure drops due to friction and fluid
head, respectively. For further details on the approxi-
mation for equation (1) and (2) we refer to [6].
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Figure 1: Some typical hat functions

Equation (3) is discretized with the stabilizedPetrov-
Galerkin method GALS (Galerkin/Least-Squares), us-
ing suitable Dirichlet weak boundary conditions at the
inflow [11].
We refer to [6] for further details about the application
of theGALSmethod to heat exchangers.
In the following we provide some details about the ap-
proximation procedure by means of piecewise linear
finite elements of equation (3), while referring to [16]
for an exhaustive coverage of the finite element ap-
proximation theory.
We remark that we generalize the standardGALS
method to the case of time-dependent shape and test
functions, since, using the grid adaption strategy, the
length of each mesh element varies in time.
Let the spatial domain[0,L] be subdivided intoN−1
elements identified byN (≥ 3) nodes. The length of
the i-th element is denoted as`i(t), while the abscissa
of the i-th node is indicated in the sequel withδi(t).
On this partition we introduce the space of the piece-
wise linear functions, whose typical basis (hat) func-
tions are shown in Fig. 1.
Their analytical expressions are the following:

ϕ1(x, t) =


δ2(t)−x

`1(t)
0≤ x≤ `1(t) ,

0 otherwise,

ϕN(x, t) =


x−δN−1(t)

`N−1(t)
δN−1(t) < x≤ L ,

0 otherwise,

ϕi(x, t) =


x−δi−1(t)

`i−1(t)
δi−1(t) < x≤ δi(t) ,

δi(t)−x

`i(t)
δi(t) < x≤ δi+1(t) ,

0 otherwise,

(6)
with i = 2, · · · ,N−1 and where

δi(t) =
i−1

∑
j=1

` j(t) , for i = 1. . .N . (7)

Notice that, in view of the grid adaption procedure, the
basis functions defined in (6) are both space and time

dependent. This unavoidably leads to an increase of
the number of unknowns since the displacement of the
grid nodes is to be determined as well.
As for the test functions involved in theGALSmethod,
they are defined by

ψi(x, t) = ϕi(x, t)±
α
2

∂ϕi(x, t)
∂x

, (8)

whereα (0≤ α≤ 1) is a stabilization coefficient. No-
tice that forα = 0 the standard (i.e., non-stabilized)
method is obtained.
For the reader’s ease, we provide also the expression of
the time derivativėϕi = ∂ϕi(x, t)/∂t of the basis func-
tion ϕi , namely

ϕ̇i(x, t) =



− δ̇i−1− (x−δi−1) ˙̀i−1

`2
i−1

δi−1 < x≤ δi ,

δ̇i+1− (δi+1−x) ˙̀i
`2

i

δi < x≤ δi+1 ,

0 otherwise.
(9)

Let us expand the quantitiesh, ρ ,w, φe in terms of the
basis functionsϕi as:

h(x, t) =
N

∑
i=1

hi(t)ϕi(x, t) = h(t)T ϕ(x, t), h = [h1 · · ·hN]T ,

ρ(x, t) =
N

∑
i=1

ρi(t)ϕi(x, t) = ρ(t)T ϕ(x, t), ρ = [ρ1 · · ·ρN]T ,

w(x, t) =
N

∑
i=1

wi(t)ϕi(x, t) = w(t)T ϕ(x, t), w = [w1 · · ·wN]T ,

φe(x, t) =
N

∑
i=1

φi(t)ϕi(x, t) = φ(t)T ϕ(x, t), φ = [φ1 · · ·φN]T ,

(10)

with ϕ̄(x, t) = [ϕ1(x, t), · · · ,ϕN(x, t)]T .
Applying theGALSfinite element method to (3) leads
to the following set ofN ODEs:

∫ L

0

(
N

∑
i=1

ḣiϕi

)
ψ jdx+

∫ L

0

(
N

∑
i=1

hi ϕ̇i

)
ψ jdx+

∫ L

0

(
∑N

i=1wiϕi

A∑N
i=1 ρiϕi

N

∑
i=1

hi
dϕi

dx

)
ψ jdx+

∫
∂Ωin

(
∑N

i=1wiϕi

A∑N
i=1 ρiϕi

N

∑
i=1

hiϕi

)
ψ jdx=

∫ L

0

ṗ

∑N
i=1 ρiϕi

ψ jdx+
∫ L

0

(
ω∑N

i=1 φiϕi

A∑N
i=1 ρiϕi

)
ψ jdx+

∫
∂Ωin

(
∑N

i=1wiϕi

A∑N
i=1 ρiϕi

hin

)
ψ jdx, ∀ψ j with j = 1, · · · ,N ,

(11)
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wherehin is the fluid specific enthalpy at the inflow
boundary∂Ωin. Such set of ODEs can be represented
by the following compact matrix notation:

M ḣ+MD h+
1

A
F h+

1

A
Ch = Rṗ+

ω
A

Yφ+
1

A
K w , (12)

whereM, MD, F , C, R, Y, K are defined as follows:

M ji =
∫ L

0
ϕi ψ jdx, MD ji =

∫ L

0
ϕ̇i ψ j dx,

Fji =
∫ L

0

∑N
k=1wkϕk

∑N
k=1 ρkϕk

dϕi

dx
ψ jdx,

Cji =
∫

∂Ωin

∑N
k=1wkϕk

∑N
k=1 ρkϕk

ϕiψ jdx,

Rj =
∫ L

0

ψ j

∑N
k=1 ρkϕk

dx, Yji =
∫ L

0

ϕi

∑N
k=1 ρkϕk

ψ jdx,

K ji =
∫

∂Ωin

hin

∑N
k=1 ρkϕk

ϕiψ jdx.

(13)

The matricesC and K, which enforce the boundary
conditions into equation (12), depend on the inflow
boundary∂Ωin. It can be noted that, as we are consid-
ering the 1-D case, the inflow boundary is constituted,
at most, by the pointsx = 0 andx = L, depending on
the sign ofw = win. Thus the only test functions that
are non-zero at the inflow areψ1 andψN and the only
non-vanishing entries of the matricesC andK are

C11 =


w1

ρ1

(
1−

α
2

)
w|x=0 > 0,

0 otherwise,

CNN =


wN

ρN

(
1+

α
2

)
w|x=L > 0,

0 otherwise,

K11 =


hin|x=0

ρ1

(
1−

α
2

)
w|x=0 > 0,

0 otherwise,

KNN =


hin|x=L

ρN

(
1+

α
2

)
w|x=L > 0,

0 otherwise.

(14)

The matricesC andK are consequently diagonal.

3 The Grid Adaption Philosophy

The discretization of complex phenomena described
by systems of partial differential equations by means

of FEM, can be cast into the framework ofmodel re-
duction, i.e., the approximation by a finite dimensional
model of a conceptually infinite dimensional one. Sev-
eral parameters (e.g., the mesh spacing, the degree of
the polynomial finite elements, tuning parameters re-
lated to the discretization procedure) govern the ac-
curacy of the approximation. As an effective tool
to assess such approximation property, some estima-
tors/indicators, as the local cell residual, are typically
employed [1, 9, 18]. Once the error indicator has been
computed on a given mesh, the information that it con-
tains can be used to generate a better mesh that gives
more accuracy. This is the basis ofadaptive error con-
trol.
Many engineering problems are characterized by solu-
tions exhibiting a complex structure, e.g., singularities
near corners, boundary layers or shocks. In such cases,
the idea is to distribute the mesh spacings according
to local features of the solution, that is to concentrate
the elements in the regions where the solution changes
rapidly and, vice versa, to coarsen them where the so-
lution is smoother, with the aim of obtaining a solution
sufficiently accurate and with a reasonable computa-
tional load.
Typically an adaptive error control procedure consists
of a discretization method combined with an adaptive
algorithm. There are three main types of adaptive tech-
niques for FEM: i) theh-method: the mesh is refined
and coarsened locally according to certainerror es-
timators; ii) the p-method: the polynomial degree is
chosen in each element according to somesmoothness
indicator; iii) the r-method: the element vertices are
relocated to concentrate them in desired regions on the
basis of amonitor function.
In the following we focus on this last philosophy
which is usually referred to asmoving mesh method
[7, 10, 14, 15, 17]. In this method, a mesh equation in-
volving the nodes speed is solved to compute the mesh
points location together with the solution of the differ-
ential equation at hand. In principle, starting from a
given mesh, the idea is to move the mesh nodes, while
keeping their number fixed, towards regions of rapid
solution variations, e.g., steep wave fronts and shocks.

3.1 Grid Adaption as a Control Problem

An interesting point of view to tackle the grid adap-
tion procedure is to state it as a control problem. As a
matter of fact, the grid adaption is based on a feedback
mechanism that can be represented as in Fig. 2.
Within this framework, theprocessis represented by
the N ODES obtained fromGALSdiscretization, the
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Figure 2: Grid adaption as a control problem

sensor is represented by some estimate of the dis-
cretization error and thecontroller is defined by the
grid adaption strategy. The time-varying boundary
values for the HE (hin andwin) and the heat flux enter-
ing its lateral surface (φe) are, from the point of view
of feedback grid adaption, process disturbances, while
the length of the elements (`i) can be regarded as the
(vectorial) control variablè.
The aim of thecontrol systemis to minimize the es-
timated error. In this paper we adopt theequidistri-
bution principle[2] to design the controller (i.e., the
mesh adaption strategy): the aim is to dynamically ob-
tain an equidistributed error over the elements.

4 The Moving Mesh Method in Mod-
elica

The application of theGALSmethod to equation (3)
leads to a set ofN ODEs whose unknowns are the
nodal values for the fluid specific enthalpy. More-
over, due to the grid adaption strategy, we have to in-
clude otherN−1 unknowns, i.e., the lengths`i of the
elements. The coupled equations yield the so-called
DAE-system.
The mesh point positions have to be calculated in such
a way that

1) the length of each element is strictly positive (con-
stitutive constraint: `i > 0∀ i = 1· · ·N−1 ,∀t ≥ 0 );

2) the total length of the elements is equal toL (com-
pleteness constraint: ∑N−1

i=1 `i = L ,∀t ≥ 0 ).

These constraints can be easily fulfilled when dealing
with imperativelanguages (i.e., algorithm oriented).
In such a case, a specific grid adaption procedure is
first allowed to yield a mesh characterized by values
for the lengths̀ i “illegal” with respect to the criteria
1) and 2). Then a suitable refinement algorithm is used

Figure 3: The spring model for grid adaption

to correct such values so that the constitutive and com-
pleteness constraints are satisfied.
On the other hand, when dealing with adeclarative
language such asModelica, a different approach has
to be taken: the constitutive and completeness con-
straints have to be intrinsically fulfilled. Such result
can be easily obtained using a physical approach for
the implementation of the adaption procedure.
Let us consider Fig. 3: each element can be identified
with a spring of length̀ i and specific elastic constant
ki , with the first and the last spring fixed to the domain
boundariesx = 0 andx = L, respectively.
Let Fi, j be the force that thei-th spring exerts on the
j-th one. Usually it is assumed that

Fi, j = 0 ∀ j 6= i−1, i +1, (15)

that means that each spring interacts only with the two
adjacent ones. Furthermore, the force that two adja-
cent springs exert on each other can be expressed as

Fi,i+1 = ki`i Fi+1,i = ki+1`i+1 . (16)

Supposing that the spring constantski are non-
negative, an effective choice for the unknowns`i in
terms of theki is:

`i =
ki

∑N−1
j=1 k j

L , ∀ i = 1· · ·N−1 . (17)

This automatically guarantees the completeness con-
straint as

N−1

∑
i=1

`i =
N−1

∑
i=1

ki

∑N−1
j=1 k j

L = L . (18)

Moreover, if all the spring constants are positive, then
the constitutive constraint is fulfilled as well. It is im-
portant to notice that such strategy is independent of
the particular grid adaption procedure at hand.
To make effective the chosen adaption procedure it is
necessary to relate the elastic constantski to the local
monitor functionεi , as

ki =
1

`iεi
, ∀i = 1, · · · ,N−1. (19)
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The strategy we adopt aims at concentrating the grid
points in the domain regions where the monitor func-
tion ε is larger. This can be justified by analyzing equa-
tions (19) and (17): the larger the monitor function,
the smaller the associated spring constant and, conse-
quently, the smaller the length of the corresponding
element.
The monitorεi is usually defined as a function of a
“residual”, identified in the sequel with the symbolζi ,
directly related to the approximate solution obtained
with theGALSmethod.
The monitor functionεi = εi(ζi) can be chosen arbi-
trarily, provided that it is definite positive, though it is
much more effective when it monotonous as well.
One of the most used monitor function sharing these
properties is the so-calledarclength[4], given by

εi =
√

1+µζ2
i , (20)

whereµ is a positive coefficient used to “tune” the grid
adaption.
In [7] it is shown that this choice yields good results
when applied to transport equations.
Another example of monitor function, successfully
used in [10], is thecurvaturemonitor function, given
by

εi = 4
√

1+µζ2
i . (21)

Using thearclengthor thecurvaturemonitor function,
particular care has to be taken in the choice of the
parameterµ, since it is a sort of “gain” of the mesh
controller: the largerµ, the faster the grid adaption
becomes (see Fig. 2). The value of such parameter
can either be fixed or tuned by the user. In this latter
case, lower and upper bounds forµshould be provided,
since a low value can make the adaption mechanism
too weak and then useless, while a too large value can
negatively affect the numerical stability of the adap-
tion algorithm.
The tuning of the parameterµbecomes even more crit-
ical when using a fixed time-step explicit method to
solve the resulting non-linear DAE system, which is
often the case when simulating industrial plants in con-
nection with the control system [3]. Such sensitivity
depends on the fact that, somehow, the parameterµ
regulates how “fast” the grid adaption is: a large value
makes the adaption too fast, thus introducing dynam-
ics with time constants significantly smaller compared
with the fixed time step, resulting in a numerical insta-
bility.
The last step to complete the grid adaption scheme is
the definition of the residualζi over the elements.

4.1 Definition of the Residual

The residual definition is a key choice in the grid adap-
tion framework. When using thearclengthmonitor
function, a common choice for the residual is the ap-
proximate gradient:

ζi =
hi+1−hi

`i
≈

∂h

∂x
, ∀i = 1, · · · ,N−1. (22)

This choice aims at concentrating the grid points within
the regions where large solution variations occur. This
implicitly assumes that the discretization error is large
in such areas.
However, in case of problems with a “sharp-but-not-
steep” solution, it has been shown that thearclength
monitor function with approximate gradient given by
(22) performes poorly (see [10]). In such a case, a bet-
ter approximation can be obtained using thecurvature
monitor function (21) with a second order approxima-
tion of the 2nd order spatial derivative:

ζi =
hi+1−2hi +hi−1

`2
i

≈
∂2h

∂x2 , ∀i = 1, · · · ,N−1, (23)

where it is understood thath0 = hin.
In [14], it is shown that, for problems involving more
than one moving front in the solution, the use of the
curvaturemonitor function can lead to better results
than the use of thearclengthone.
In this paper we show results obtained with grid adap-
tion based on these two residual definitions and moni-
tor functions.

5 Modelica Implementation

The developed model has been implemented in aMod-
elica component calledFlow1DfemAdapt which is
going to be included within the libraryThermoPower
[5]. The component is perfectly interchangeable with
the actual library components for 1-D HEs, since it
uses the same connectors: two flanges for fluid flow
and a terminal for heat flux (Fig. 4).

Figure 4:Component Icon
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TheModelicaimplementation is quite close to the one
presented in [6] with some difference in the energy
equation and completed with the equations for the grid
adaption.
The discretized energy equation contains a new term:

M*der(h)+(MD+F/A)*h+C/A*h=R*der(p)+
Y*omega/A*phi+K/A*w;

where the additional tridiagonal matrixMD is coded
with nested “for ” loops as shown in [6].
The selection of the residual and of the corresponding
monitor function depends by the user via the integer
parameterResidual:

if Residual==1 then
for i in 1:N - 1 loop

res[i] = (h[i+1] - h[i])/l[i];
err[i] = sqrt(1+mu*res[i]ˆ2);

end for;
else

res[1]=(h[i + 1] - 2*h[i]+hin)/l[i]ˆ2;
err[1] = (1+mu*res[1]ˆ2)ˆ0.25;
for i in 2:N - 1 loop

res[i] = (h[i+1]-2*h[i]+h[i-1])/l[i]ˆ2;
err[i] = (1+mu*res[i]ˆ2)ˆ0.25;

end for;
end if;

Finally, the length of the elements is obtained solving
the followingN−1 algebraic equations:

for i in 1:(N - 1) loop
k[i] = 1/(err[i]*l[i]);
l[i] = k[i]/sum(k)*L;

end for;

6 Simulations

In this section we show simulation results in order to
evaluate the different performances of the grid adap-
tion strategies. All the simulations have been per-
formed within the Dymola [8] simulation environ-
ment.

Figure 5: Reference Simulation Layout

The reference simulation layout is shown in Fig. 5,
consisting in an ideal flow source connected to a HE

which is followed by a valve and by an ideal pres-
sure sink. An ideal heat-flux source is connected to
the HE distributed heat-flux terminal. Such setup has
been selected in order to highlight the differences of
the approximation schemes on the HE outlet specific
enthalpy.
The HE internal pressure is held constant since the
mass flow-rate and the valve opening are set to a fixed
value and the sink pressure is constant as well. Thus,
supposing the specific enthalpy of the fluid within the
HE does not vary substantially, it is possible to assume
that the fluid density is almost constant.
In case the heat-flux is set to zero as well, it is possible
to show that the analytical solution for the transport
equation (3) is a ramp-wave travelling along the HE
with constant velocityu. It is then possible to eval-
uate the model approximation performances with an
a-posteriorierror indicator, evaluating the square de-
viation

E(x) =
∫ t

0

(
ĥ(x, t)−h(x, t)

)2
dt , (24)

of the approximate solutionh from the analytical one
ĥ.
The indicatorE is spatially distributed, so we extract
from it two different indicators:

IE =
∫ L

0
E(x)dx,

OE = E(x)|x=L ,

(25)

denoting theintegral error (IE) and theoutput error
(OE).
For the sake of approximation, as we compute the
square deviationE(x) at the grid points only, the in-
dicatorIE is evaluated via a linear piecewise interpo-
lation.
The numerical data employed for the HEs modelling
are the lengthL = 10m and the cross-sectional area
A= 3.14· 10−4m2. The heat-fluxφe is set to zero. The
fluid entering the HE is liquid water at pressurep =
105Pa, with initial specific enthalpyhin = 105J/Kg
and flow ratewin = 1Kg/s. Thus, the transit time turns
out to be 31.25s.
The time-integration of the system is performed with
a fourth orderRunge-Kuttascheme with a fixed time
stepTs = 0.1s. The chosen time step turns out to be ad-
equate for the simulations of the dynamics represented
by (3) [3].
The first test case aims at checking the effectiveness of
the grid adaption strategy when abrupt changes of the
solution are involved.
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Figure 6:Approximate enthalpy provided by three differ-
ent numerical schemes and exact enthalpy

The time interval of the simulation is chosen as
[0,60]s. The inflow enthalpyhin is described by a
ramp function with a rising time of 1s starting at 1s.
The corresponding increment of the enthalpy is of the
5% of the initial value.
In Fig. 6 the HE outlet specific enthalpy associated
with three different numerical schemes is compared
with the exact solution (blue line). In particular the
cyan, the red and the green lines correspond to the
finite volumes (20 nodes), finite elements (20 nodes)
and finite elements with grid adaption based on thear-
clengthmonitor function (10 nodes). The “gain” of the
mesh controller has been set to the valueµ= 3.5· 10−4

after several simulations as a trade-off between accu-
racy and numerical stability.
Fig. 6 shows that grid adaption witharclengthmon-
itor function can significantly improve the quality of
the approximation. On the other hand, to thoroughly
compare the three proposed algorithms, their computa-
tional effort has to be taken into account as well, since
the grid adaption procedure is not cost-free. A full
comparison of the various methods is summarized in
Table 1.

Method N CPU time OE IE
FVM 20 0.302s 3.59·107 6.98·107

FEM 20 0.356s 7.50·106 1.71·107

FEM 50 1.06s 2.61·106 1.65·107

FEM+GA 10 0.579s 4.64·105 8.39·106

FEM+GA 15 1.109s 4.37·105 2.43·106

Table 1: CPU time, output and integral error

Table 1 clearly shows that, for the case at hand, the so-
lution obtained with the proposed grid adaption strat-
egy with relatively few nodes (N = 10) is a far better
approximation of the exact solution (at least in term
of the indicatorsIE andOE) than the ones obtained
with FVM and FEM with a number of nodesN = 20
or N = 50. However, the computational overhead due
to grid adaption is not negligible, as highlighted by the
CPU time column.

The results show that the use of the proposed grid
adaption strategy is convenient when the demand on
the accuracy of the solution is relatively strong. This
can be obtained by a small number of mesh nodes
though the CPU time can increase. Alternatively, stan-
dard FVM or FEM can be employed but a higher num-
ber of nodes is required to obtain the same level of ac-
curacy.

The second test case shows that the good results ob-
tained with grid adaption using thearclengthmonitor
function do not hold when thecurvaturemonitor func-
tion is used, as can be seen by the curves in Fig. 7. The
simulation time interval is now chosen as[0,80]s. The
inflow enthalpyhin is represented by a function char-
acterized by three stages: a raising ramp fromt = 1s
to t = 2s, a plateau during 18 seconds, a decreasing
ramp fromt = 20s to t = 21s. The net increment of
the enthalpy is the 5% of the initial value, while the fi-
nal value coincides with the initial one. The “gain” of
the mesh controller has been chosen equal to 3.5· 10−4

and 3.5· 10−8 for thearclengthand thecurvaturemon-
itor function, respectively. Larger values ofµ for the
curvature choice lead to numerical instabilities.

Figure 7:Approximate enthalpy provided by four different
numerical schemes and exact enthalpy
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The CPU time and the values ofIE andOE are gath-
ered in Table 2.
While for thearclengthmonitor function similar con-
siderations as in the previous test case hold, we note
that the technique based on thecurvature monitor
function does not introduce significant benefits, con-
cerning both the CPU time and the accuracy (com-
pared, for instance, with the FEM case withN = 20).

Method N CPU time OE IE
FVM 20 0.515s 7.55·107 1.41·108

FEM 20 0.546s 1.51·107 7.97·107

FEM+GA∗ 10 0.622s 2.72·106 3.44·107

FEM+GA† 10 0.719s 2.54·107 1.79·108

∗ Arclengthmonitor function
† Curvaturemonitor function

Table 2: CPU time, output and integral error

In the last test case we study the effect of the grid adap-
tion on the approximate solution under a sudden cool-
ing of the lateral surface of the HE. The time interval is
[0,120]s. The inflow enthalpyhin is the same as in the
first case, while att = 60s the heat-flux is decreased
with a step variation toφe = −795W/m2, i.e. 500W
are lost through the lateral surface of the HE.
Assuming that the fluid density is approximatively
constant, the exact solution for the outlet enthalpy is
the delayed inlet increasing ramp followed by a de-
creasing ramp starting att = 60s.

Figure 8:Effect of a heat-flux decrease (adaption withar-
clengthmonitor function)

In Fig. 8 the approximate solution of the three schemes
FVM (N = 20), FEM (N = 20), FEM+GA (N = 10,
arclengthmonitor function withµ= 3.5· 10−4) is pro-
vided together with the exact HE outlet enthalpy.

It turns out that grid adaption significantly improves
the quality of the solution with respect to FEM or FVM
when abrupt changes are involved, while the differ-
ence is less evident where the solution is smooth.

7 Conclusions and Future Work

In this paper we present a new model for 1-D single-
phase heat exchangers inModelica. The model, fully
compatible with the ones already available within the
library ThermoPower, is based on an approximation
of the energy balance equation by theGALSfinite ele-
ment method with grid adaption.
The mathematical model and its approximation have
been addressed in detail, as well as the grid adaption
strategy within the a-causal frameworkModelica.
The effectiveness of the proposed technique has been
assessed on some test cases and compared with the
standard FV and FE methods. The main conclusion is
that grid adaption turns out to be effective when high
accuracy is required. In more detail, even if the “place-
ment” of each mesh node is more expansive in terms
of CPU time, a smaller number of nodes is required to
guarantee a certain level of accuracy, compared with
FVM and FEM.
Future work will be devoted to a more theoretically
sound selection of the optimal value for the “gain”µ
of the mesh controller. Moreover, the employment of
a dynamical residual will be further investigated.
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Abstract 

Many physical models describing thermodynamic 
systems require correlations for thermophysical 
properties to complete the set of equations. A Mode-
lica library like TechThermo which is intended for 
general application in technical thermodynamics 
must include also a set of models for calculation of 
thermophysical properties. Since the total number of 
models in TechThermo should be limited, the range 
of application for selected model must be as wide as 
possible. The models for calculation of thermophysi-
cal properties in TechThermo are based on general 
concepts which allow the introduction of new work-
ing media by modification of a few model parame-
ters. Models for calculation of multiphase or multi-
component media are composed of models represent-
ing single phase behaviour and mixing models. 
Keywords: thermodynamic system; thermophysical 
properties; 

1 The TechThermo library 

1.1 Aims of TechThermo 
 
TechThermo is a basic library for engineering appli-
cations in thermodynamics. This basic library pro-
vides components which are relevant for the bulk of 
applications in this area. TechThermo is comple-
mented by problem-specific libraries which include 
components relevant only for a limited scope of ap-
plication (Figure1). There are different aspects how 
TechThermo can improve the efficiency of model-
ling activities: 

− the library should allow a fast imple-
mentation of a model describing the 
simulation problem without generation 
of additional source code the detailing 
of the system may be limited, but this 
approach allows fast results and de-
mands only limited knowledge of Mod-
elica or numerical principles 

− Experienced Modelica users should 
profit from TechThermo primarily by 
extending the models provided by the 
library thus minimizing the extent of 
work spent on implementation of trivial 
equations needed for describing a 
physical process. 

− by standardization of interfaces the co-
operation between model-developers is 
improved. 
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Figure 1: Application of basic library Tech-
Thermo in combination with problem-specific 
ibrariesl 

Although it would be comfortable to have a uni-
versal thermodynamic library which allows the 
modelling of any system by mere composition of 
basic models without input of further model equa-
tions, this approach was not chosen for Tech-
Thermo since the implementation of such a library 
seems not to be feasible in practice. Instead, the 
aim of TechThermo is to minimize the effort for 
supplementary models for a wide range of applica-
tion. 
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1.2 Structure of TechThermo 
 
Modelica-infrastructure: 

Interface 
- definition of model interfaces 

 

Source 
- models for imposing boundary 
conditions 

Fundamentals of engineering thermodynamics: 

Medium 
- thermophysical correlations for 

working media 

 

Basis 
- descriptions of fundamental 

physical processes 

Fundamentals of technical systems: 

Component 
- models of basic technical units 

 

Subsystem 
- simplified models of technical sys-
tems 

T a b 1 :  T h e  s t r u c t u r e  o f  T e c h T h e r m o  
 
The models of TechThermo are organized in six 
main packages and an additional folder with exam-
ples. These six packages can be attributed to one of 
three different groups: 
 

− package Interface and package Source 
include the models which are needed for 
the exchange of information between 
connected models and models for im-
posing boundary conditions. These two 
packages can be regarded as the infra-
structure needed in any Modelica simu-
lation 

− package Medium and package Basis 
comprise models describing fundamen-
tal processes in thermodynamics and 
correlations for thermophysical proper-
ties of working media. These two pack-
ages can be regarded as the infrastruc-
ture needed for modelling thermody-
namic processes. 

− package Component and package Sub-
system contain models describing basic 
technical components like turbines and 

heat exchangers and models represent-
ing simplified systems like solar collec-
tors or fuel cells. These two packages 
can be regarded as infrastructure for 
modelling technical systems. 

 
The six main packages are stored in separate files; a 
subset of packages can be selected provided the hier-
archy is regarded (Tab. 1): while package Interface 
demands no models from the other five packages, 
package Source demands package Interface, Medium 
demands Source and Interface and so on. 

2 Models including correlations for 
thermophysical properties 

2.1 Relevance of correlations between variables 
describing thermodynamic systems 

Thermodynamic systems can be described by various 
variables. The most common state variables for tech-
nical systems are 

− spec. enthalpy 
− pressure 
− density 
− spec. entropy 
− temperature 
− spec. internal energy 
− steam quality 
− vector with mass fractions 
 

The minimal number of independent variables 
needed to define the state of a system depends on the 
number of phases and components, for a pure sub-
stance only two variables are needed. Depending on 
the physical process various combinations of vari-
ables may be used in a model. Mathematical correla-
tions between state variables are needed if different 
sets of variables are used. These correlations must 
ensure that all sets of variables define the identical 
thermal state. 
 

2.2 Representation of thermal state informa-
tion in TechThermo 

The connectors in the TechThermo library transfer 
information between models as energy flows. Three 
different kinds of energy flows are defined: 

− combined heat and mass transfer 
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− heat transfer (without mass transfer), 
defined by heat flow rate q_dot and 
temperature t 

− pure exergy, defined by exergy flow 
rate exergy_dot 

While the selection of connector variables defining 
heat transfer and pure exergy flow is obvious, vari-
ous sets of variables listed in section 2.1 can be used. 
The connector for combined heat and mass transfer 
in TechThermo is defined by 

− mass flow rate m_dot 
− pressure p 
− spec. enthalpy h 
− composition vector x_i[n_comp] 

Pressure and spec. enthalpy represent a minimal set 
of state variables. If models include physical proc-
esses described by other variables, these variables 
must be calculated from pressure and spec. enthalpy. 
One basic concept of TechThermo is the separation 
of models including correlations for thermophysical 
properties from the other parts of a model. A fourth 
connector for thermal state information is defined 
including all variables listed in section 2.1. This con-
cept should be demonstrated here by the model 
AirCompressor representing an adiabatic com-
pressor for air. The physical process is shown in Fig-
ure 2. Assuming an isentropic efficiency eta_isentrop 
the spec. enthalpy h_out at the outlet is 
h_out=h_in+(State2.h-h_in) / 
 eta_isentrop 

Variable State2.h is the spec. enthalpy after an 
isentropic compression form pressure p_in to pres-
sure p_out. The entropy after the isentropic com-
pression is identical to the entropy for inlet enthalpy 
h_in and pressure p_in. The models demands two 
thermophysical correlations: 

1. spec. entropy s_in at inlet enthalpy h_in 
and pressure p_in 

2. spec. enthalpy State2.h for entropy 
s_in and pressure p_out. 

 
Figure 3 shows the diagram layer of AirCompres-
sor. The model CompressorNoProp1 represents 
the compressor model without specification of the 
working fluid. By addition of two models AirPer-
fectGasCaloric including the thermophysical 
property correlations for air the model is completed. 
Thermal state connectors are used to link Com-
pressorNoProp1 and the two AirPer-
fectGasCaloric models. By exchanging the 

property models the compressor can be adapted to 
other working fluids. AirCompressor also in-
cludes two models NotUsedVariables; these 
models are used to define the remaining variables of 
the thermal state connectors by parameters to com-
plete the set of equations. 
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Figure 2: p-v diagram of adiabatic compression 
 

Figure 3: Diagram layer of the compressor model Air-
Compressor including two models for calculation of 
thermophysical properties of the working fluid. 
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3 The main package Medium in 
TechThermo 

3.1 Selection of model describing property data 

TechThermo is intended as a basis library for appli-
cations in technical thermodynamics. The models 
included should be used in a wide range of applica-
tions. Concerning the models for thermophysical 
correlations included in the main package Medium 
of TechThermo there are two basic aspects: 

− only models based on general concepts 
are contained; these models can be 
adapted to various media by modifica-
tion of a small number of parameters 

− TechThermo does not include large 
multiparameter equations of state which 
are only available for a limited number 
of media. 

The accuracy of general models usually is limited; if 
the models offered by TechThermo don’t fulfil the 
demands, additional models are provided by prob-
lem-specific model libraries. 
 
Mathematical models for thermodynamic property 
data are available within a wide range of complexity 
and accuracy. Criteria for selection of algorithms can 
be 

− accuracy compared to reference values 
− consistency; especially interesting near 

to phase transitions 
− dependence on selected variables; many 

multiparameter equations of state can’t 
be inverted and demand iterative solu-
tion if the set of independent variables 
changes 

− numerical aspects like stability and re-
quired calculation time 

 
The selection of the property models strongly influ-
ences the behaviour of the model. The choice should 
always be adapted to the specific simulation prob-
lem. Aspects that should be considered are 
- the extend of variation for a state variable within 

a model; if the variation is limited, the applica-
tion of simple linear property models may be 
sufficient without introducing significant errors; 
e.g. if a simulation deals with a gas at room tem-
perature at ambient pressure the application of 
the ideal gas law is often sufficient, using real 

gas property routines does not provide different 
results 

- the accuracy of the property model should corre-
spond to the accuracy of the other physical mod-
els; e.g. in two phase flow the results provided 
by models for pressure loss or heat transfer coef-
ficients often show errors within the range of 30-
50%, using complex models for calculating the 
density of the medium is not efficient in combi-
nation with models of limited accuracy. 

- in dynamic simulations the assumption of ther-
mal equilibrium in the working fluid may be not 
valid; the application of high accuracy property 
routines describing steady state systems does not 
improve the quality of the model compared to 
the real world. 

 
Using high precision property routines does not nec-
essarily improve the quality of simulation results; on 
the other side, the complex high precision property 
routine make the finding of a solution more difficult 
from a numerical point of view. The choice of the 
adequate level of complexity of property routines is 
essential for effective modelling and simulation. 
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Figure 4: Accuracy of the results for density of 
steam provided by the Ideal Gas model and the 
Redlich-Kwong equation of different pressure lev-
els. 
 
Figure 4 shows the deviation from the reference val-
ues for the density of superheated steam provided by 
the Ideal Gas law and the Redlich Kwong correla-
tion. Depending on temperature and pressure range 
the difference in accuracy changes significantly: at 
low temperatures, the simple Ideal Gas law model 
shows almost the same quality like the Redlich-
Kwong equation. For applications at high pressure 
levels the differences become significant, using the 
Ideal Gas law here probably is not acceptable.  

W. Steinmann

The Modelica Association 232 Modelica 2005, March 7-8, 2005



3.2 Organisation of property models 

The main package Medium includes six sub-
packages with property models: 

− Gas 
− Liquid 
− Solid 
− MultiPhase 
− MultiComponent 

 
Two additional sub-packages (MediumSpeci-
ficData, MathTool) supply fundamental con-
stants for various substances and mathematical tools 
like cubic equation solvers. 
 
Property model can be separated into two groups: 

− single phase models for pure substances 
− multiphase and/or multicomponent 

models 
 
In TechThermo, models describing a multiphase / 
multicomponent system are composed of basic single 
phase models for pure substances. Depending on the 
variables included in the models, these basic models 
can be divided into three groups: 

− volumetric properties including pres-
sure, temperature and density 

− caloric properties including spec. en-
thalpy, heat  of evaporation, spec. en-
tropy and spec. internal energy 

− transport properties like viscosity and 
heat conductivity 

 

3.3 Basic concepts for Implementation of prop-
erty models 

Basic concepts for the implementation of property 
models should be demonstrated here by the example 
of the perfect gas law. The perfect gas is described 
by the ideal gas correlation between density rho, 
temperature t and pressure p and a correlation be-
tween the caloric variables spec. enthalpy, spec. in-
ternal energy and entropy assuming a constant spec. 
heat capacity. 
 
 

3.3.1 Definition of substances by record with 
fundamental constants 

The Ideal Gas correlation is implemented in the 
model IdealGasVolumetricNoProp: 
 

model IdealGasVolumetricNoProp "p/rho=RT" 

extends TTInterface.ThermalState.PropertyPort; 

 

replaceable TTMedium.MediumSpecificData. 
Data.MediumThermoFundamentalConstants  
SpecificConstants "record with medium specific  
constants"; 
 
SIunits.SpecificHeatCapacity r_gas 
"spec. gas constant"; 
 
parameter Boolean switch_r_gas_const=true 
"if switch_r_gas_const==true then specific gas  
constant r_gas is defined by  
parameter molar mass SpecificConstants.m_mol"; 
 
equation  
 

if switch_r_gas_const==true then 
  r_gas = GeneralCon-

stants.R/SpecificConstants.m_mol; 

end if; 

 

StateCut.p = r_gas*(StateCut.t + 273.15)* 

StateCut.rho; 

 

end IdealGasVolumetricNoProp; 

 
The medium is defined by the spec. gas constant 
which is calculated from the molar mass m_mol and 
the general gas constant. R. If the molar mass re-
mains constant during the simulation 
(switch_r_gas_const is true) the value for the molar 
mass is taken from the record SpecificCon-
stants which includes the fundamental constants 
of a medium. SpecificConstants is a record 
of type MediumThermoFundamentalConstants:  
 

record MediumThermoFundamentalConstants 
"record defining reference state for 
thermophyscial properties TTcode:CfD1" 
 
parameter SIunits.MolarMass m_mol "mo-
lar mass"; 
parameter SIunits. 
ThermodynamicTemperature t_critical 
"critical temperature"; 
parameter SIunits.Pressure p_critical 
"critical pressure"; 
parameter SIunits.Density rho_critical 
"critical density"; 
parameter SIunits.SpecificHeatCapacity 
r_gas=GeneralConstants.R/m_mol "spe-
cific gas constant"; 
parameter Real omega_acentric "acentric 
factor"; 
end MediumThermoFundamentalConstants; 

This record contains the molar mass and the state 
variables in the critical point. These constants are 
easily available for many substances. In the Tech-
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Thermo library models are preferred which require 
only these fundamental constants for the specifica-
tion of the substance. 
 
The model model AirIdealGasVolumetric 
calculates the volumetric properties of dry air assum-
ing the ideal gas law: 
 
model AirIdealGasVolumetric  
"p/rho=RT for Air TTcode:Ca1"  
 extends TTMedium.Gas.Support. 
 IdealGasVolumetricNoProp 
 (redeclare TTMedium. 
 MediumSpecficData.Data. 
 AirThermoFundamentalConstants  
 SpecificConstants); 
 
AirIdealGasVolumetric extends the general 
model IdealGasVolumetricNoProp and de-
fines the medium by the record  
AirThermoFundamentalConstants. 

3.3.2 Flexible choice of used state variables 

The correlations between the caloric variables are 
provided by the model 
PerfectGasCaloricNoProp. 
 
assuming a constant specific heat. 
There are various correlations for spec. enthalpy h 
and spec. internal energy u: 

1 h = cp * (t-t0) + h0 
u = cv *(t-t0) + u0 

2 h = u + p / rho 
 
There are also different options for the calculation of 
the spec. entropy: 

1 s = cv * log(T / T0) + R_gas * log(rho0 
/.rho) + s0 

2 s = cp * log T / T0) + R_gas * log(p /.p0) + 
s0 

Depending on the application, different formulation 
might be advantageous. The user can select options 
by structural parameters. Many property models in 
TechThermo offer alternative formulations for the 
calculation of material properties. 
 

3.3.3 Icon representation of property models 

The icons of the property model should provide first 
information about the included correlations. The ba-
sic icon is shown in Figure 5. The range of validity, 
the included variables and the substance is indicated 
in the corresponding areas of the icon. 
 

Gas

Liquid

Solid

filled with 
medium specific color :
corelation for
volumetric state variables 
p, v, t

filled with 
medium specific color :
corelation for 
caloric state variables 
u, h, s

Thermal State connector

 
Figure 5: Icon used for models containing thermo-
physical property correlations. 
 
 
Figure 6 shows the icon of the AirPerfectGasCalVol. 
This model is composed of IdealGasVolumet-
ric and a model PerfectGasCaloric as shown 
in Figure 7 

 
Figure 6: Icon for AirPerfectGasCalVol pro-
viding correlations for both caloric and volumetric 
state variables of dry air 
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Figure 7: Diagram layer of AirPerfectGas-
CalVol; combination of model IdealGas-
Volumetric and model PerfectGasCaloric 

3.3.4 Composed models 

AirPerfectGasCalVol represents a simple 
form of a composed model; two basic models are 
joined to offer the complete set of state variables. 
The concept of composed models becomes espe-
cially interesting for multiphase models which a 
composed of models representing the separate 
phases. For wet steam with steam quality x the ther-
mal state variables can be calculated from the prop-
erties of the liquid and the gas phase: 
 

− h = h’ + x * (h”-h’) 
− u = u’ + x * (u”-u’) 
− s = s’ + x * (s”-s’) 
− rho = 1/rho’ + x * (1/rho” – 1/rho’) 
 

h’, u’, s’, rho’ are the properties of the saturated liq-
uid, h”, u”, s”, rho” are the properties of the saturated 
steam. Additional correlations are: 
 

− ∆h = h” – h’ 
− s” – s’ = ∆h / (tsat + 273.15) 
− h = u + p / rho 

 
with heat of vaporization ∆h and tsat saturation tem-
perature. Model WetSteamV01NoProp is com-
posed of five models to calculate the properties of 
wet steam: 

− TSatPSatAntoineNoProp pro-
vides the correlation between saturation 
temperature and saturation pressure 

− HeatVaporizationNoProp calcu-
lates the heat of vaporization dependent 
on the saturation temperature 

− VariableRhoCalVolNoProp cal-
culates the properties for the liquid 
phase for saturation pressure and satura-
tion temperature 

− IdealGasVolumetricNoProp 
calculates the properties for the gas 
phase assuming saturation pressure and 
saturation temperature 

− TwoPhaseMix calculates the proper-
ties of wet steam from the information 
provided by the other four models 

 
WetSteamV01NoProp can be specified for any 
substance provided the following constants for the 
substance are available: 

− state variables in the critical point 
− two constants needed for the Antoine 

correlation for saturation pressure 
/saturation temperature 

− a single value for the heat of vaporiza-
tion dependent on saturation tempera-
ture 

 
The modular approach is advantageous regarding the 
consistancy at the transition between different re-
gions. Since the properties of the two phases of the 
wet steam are calculated using single phase property 
models there are no discontinuities at the transitions 
between the two phase region and the single phase 
regions. 
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Figure 9: Diagram layer of  
WetSteamV01NoProp for calculation of proper-
ties of wet steam. 
 
3.3.5 Alternative formulation for non-linear 
correlations 
 
The convergence behaviour of a model is influenced 
by the formulation of non-linear property correla-
tions. Which variable is chosen as dependent might 
affect the numerical performance of a model. If pos-
sible, TechThermo offers for the non-linear property 
model various formulations. One example is the 
Redlich-Kwong equation for the volumetric proper-
ties of gases:  
 

⎟
⎠
⎞

⎜
⎝
⎛ +

−
−

=
b

rho
1

rho
1T

a

b
rho
1
RTp

5,0
 

 
coefficients a and b are calculated from values for 
the critical state. 
As already shown in Figure 4, this cubic algorithm 
provides better results as linear correlations like the 
ideal gas law. The model RealGasVolumetric-
NoProp offers three different options: 

1 acausal formulation 
2 temperature t as function of pressure p and 

density rho 
3 density rho as function of pressure p and 

temperature t 

 
The user can select one of these three options by a 
structural parameter. For options 2 and 3 a cubic 
equation solver is used.  
 
 
Conclusions and Outlook 
 
The TechThermo library includes a basic set of mod-
els with correlations for thermophysical properties. 
These models have been selected considering the 
range of application, so only models which can be 
used for many different substances are included. The 
property models in TechThermo should allow com-
plete descriptions of a thermodynamic system in the 
initial phase of model developing. Since property 
models are separated from the other parts of a model 
by a thermal state connector, a quick exchange of 
property models is possible. 
Further development aims at implementing property 
models which are more efficient regarding numerical 
aspects. These models should offer flexibility in the 
selection of the dependent variable and should opti-
mize the calculation time / accuracy ratio. One ap-
proach here includes the transformation of state vari-
ables and the application of cubic equation solvers. 
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Abstract 

Modeling of hydraulic systems often leads to 
systems of equations that are stiff and difficult to 
solve.  In many cases, stiffness of these systems can 
be traced to orifices and relatively small volumes 
within the model.  Frequently, such volumes and 
orifices are only present to facilitate explicit state-
space formulations of the underlying conservation 
principles. 

In an effort to create more efficient models and 
to eliminate the need for insignificant or non-
physical contributions from such components, the 
new Modelica.Fluid library [1] introduces a 
structured set of base classes (leveraging new fea-
tures in the Modelica language) from which fluid 
component models can be built.  These base classes 
allow for a wider range of component configurations 
by eliminating the need for extraneous volumes and 
orifices in hydraulic schematics. 

Using the Modelica.Fluid library as a 
foundation, another library has been developed that 
includes hydraulic components for hydraulic trans-
mission modeling.  The models are aimed at address-
ing lingering performance and robustness issues with 
hydraulic circuits in transmission models and include 
several useful simplifications.  Because these com-
ponent models use a first-principles formulation (i.e. 
conservation of mass and energy), it is possible to 
mix simplified or idealized components with models 
that include complex dynamics.  As such, model de-
velopers can focus on the dynamics of interest (e.g. 
dynamics associated with the design of a specific 
spool valve in a transmission) while still capturing 
the basic functional behavior for the other compo-
nents in the system.  The result of this approach is a 
practical continuum between functional and predic-
tive modeling. 

 

Keywords: Transmission, VMA, hydraulics, DAEs 

1 Goals 

Models for transmission hydraulics usually have 
one of two purposes.  The first purpose is to be a 
functional reproduction of an existing or proposed 
transmission design.  In this case, the response of the 
model is only intended to reproduce the functional 
behavior of the actual transmission hydraulics.  Such 
models would naturally include delays, approximate 
rates of response, etc. 

The other purpose is to be a predictive model of 
a particular transmission design.  Such a model is 
referred to as a design-oriented model because it can 
be used to conduct “what if?” studies on potential 
design candidates.  The key requirement for this kind 
of model is that it should not only be sensitive to the 
relationship (both transient and steady-state) between 
the inputs to the model and the outputs but it should 
also properly predict the hydraulic response as a re-
sult of changes to the design parameters (orifice 
sizes, volumes, diameters, etc).  This latter possibil-
ity requires considerable physical detail and a solid, 
first-principles understanding of component behav-
ior. 

The goal of the component library described in 
this paper is to provide a path to move between these 
two types of representations easily.  In this way, a 
single model of the hydraulic system can be devel-
oped that can be selectively refined to serve both 
purposes.  In some cases, it is useful to consider both 
purposes in the same model.  For example, as part of 
the design process for a particular valve a design-
oriented model of that valve can be used in conjunc-
tion with functional models of the remaining compo-
nents.  This not only brings the potential for faster 
simulations to speed up the design process but also 
integrates nicely the cascading nature of system en-
gineering based development processes. 
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2 Functional vs. Predictive 

2.1 Background 

The simplest way to demonstrate the differ-
ences between the formulation and performance of 
functional and predictive models is to look at an ex-
ample in detail.  However, even basic hydraulic cir-
cuits are a little difficult to understand without some 
background.  For this reason, we will first explain 
how a basic hydraulic regulator valve works before 
moving on to a complete circuit model.  For simplic-
ity, we consider the single solenoid value, shown in 
Figure 1. 

 

 
Figure 1: Sample Regulator Valve 

A common characteristic of a regulator valve 
is that an axial force is applied to both sides of the 
valve.  In most cases, the force is the result of a pres-
sure applied by a fluid over the exposed area on that 
side of the valve.  But the force can be generated by 
other means as well (e.g. in the case of a solenoid 
valve, an electro-magnetic force is applied to one 
side).  The “output” port of the valve (shown in 
Figure 1, at the top of the valve) can be fed from two 
potential sources (indicated in Figure 1 by the ports 
on the bottom of the valve) depending on the posi-
tion of the valve.  In the case of all valves shown in 
this paper, the larger the force on the left side of the 
valve, the more flow will come from the bottom right 
input port.  Conversely, the larger the force on the 
right side of the valve, the more flow will come from 
the bottom left input port.  In simple terms, the out-
put pressure will be biased toward the pressure in the 
input port on the opposite side of the larger force.  
To tune the performance of the valve, an “offset” 
force can be generated using a preloaded spring in-
side the valve body. 

2.2 Functional Model 

  The model shown in Figure 2 represents an 
example of a pressure control circuit for an auto-
matic transmission. 

 

 
Figure 2: Sample Pressure Control Circuit 

Using the background provided in Section 2.1, 
we can now explain the circuit shown in Figure 2 
and deduce the following functional behavior: 

• A force command signal (upper left) is sent 
to an electric coil in the solenoid.  This coil 
applies the commanded force to the left side 
of the solenoid valve. 

• Because the output pressure of the solenoid 
is also the pressure applied on the right side, 
the solenoid valve will seek a position that 
balances the electric coil force with the 
“output pressure” of the valve.  In this way 
(and with a gain that depends on the areas 
involved), the output pressure of the sole-
noid valve is controlled. 

• The solenoid output pressure is applied to 
the left sides of both the regulator and the 
boost valve.  The boost valve (bottom valve) 
is designed with a preload such that it does 
not open until a critical pressure has been 
reached.  Above that critical pressure, its 
output pressure starts dropping to the sump 
pressure.  Otherwise, its output pressure fol-
lows the regulator valve pressure. 

• Before the critical pressure of the boost 
valve is reached, the regulator valve func-
tions much like the solenoid valve because 
its output pressure is effectively the balanc-
ing force on the right side.  Again, given the 
areas involved a certain gain is achieved.  
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However, once the boost valve starts to 
open, the pressure on the right side of the 
regulator quickly drops giving the pressure 
on the left a greater mechanical advantage 
(and thus increasing the gain significantly). 

• Finally, the regulator valve output is applied 
to the clutch.  The clutch plates do not come 
into contact with each other until a critical 
pressure is reached.  Prior to this, the flow 
into the clutch fills the gap that forms as the 
plates moves.  This filling effect results in a 
delay between the regulator output pressure 
and the applied clutch pressure. 

2.3 Detailed Model 

The functional description in Section 2.2 de-
scribes how the circuit is supposed to function.  
However, the functional description assumes a 
steady-state response with no dynamic effects.  In 
reality, there are many dynamic effects. 

For example, each valve includes a small volume 
on each end that fills and empties as the force bal-
ance changes.  In addition, the flow is regulated by 
orifices which open and close as the valve moves.  
The behavior of the orifices is non-linear and very 
sensitive to the machining of the spool itself.  Fur-
thermore, these circuits are designed to provide large 
flow rates which means the fluid itself can build up a 
significant amount of momentum.  Finally, the com-
pressibility of the transmission fluid (transmission 
fluid often includes a significant amount of trapped 
gas) combined with the small mass of the spool can 
result in high-frequency oscillatory responses. 

While the dynamics described in this section are 
on a much smaller time scale than the functional dy-
namics described previously, they can have a very 
significant effect on noise and vibration in the me-
chanical system.  As such, these kinds of detailed 
models (and the staggering amount of geometric 
component data they require) are very useful in the 
design of the pressure control circuits. 

2.4 Structural Differences 

The biggest difference between the functional 
and predictive models is the presence of dynamic 
terms.  For example, the momentum balance on the 
regulator valve spool can be expressed as1: 

0=−−−=� kxxmApApF RRLL ��  

                                                      
1 For simplicity, so-called “flow forces” (i.e. reaction 
forces from changing the fluid momentum) are neglected. 

where Lp  is the pressure on the left side, LA  is the 

area on the left side, Rp  is the pressure on the right 

side, RA  is the area on the right side, m  is the mass 
of the spool and x  is the position of the spool. 

Similarly, the mass balance for the volume on 
the left side of the valve can be expressed as: 

0)( 0 =−−−− xAxxAQQ oi �� ρρ  

where iQ  is the mass flow rate into the volume, oQ  

is the mass flow rate out of the volume, ρ  is the 

density, A  is the cross-sectional area and x  is the 
position of the valve. 

The inclusion of the capacitive elements makes 
the formulation of the problem simpler because 
most, if not all, of the equations can be written as 
explicit differential equations, e.g., 
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However, as we will discuss later the simpler formu-
lation is actually much more expensive to solve be-
cause of the high frequency dynamics in the system.  
Because many of these capacitive elements contrib-
ute nothing to the overall functional behavior, one 
simplification is to eliminate them.  Rather than de-
leting them from the model, they can be “logically” 
deleted by setting their capacitances (e.g.  m  and A ) 
to zero.  As we can see from the differential equa-
tions, if we continue to rely on the explicit differen-
tial equations, such an approach would lead to a sin-
gular system of equations because the denominators 
would go to zero.  However, if we reconsider the 
structure of the problem given that these capacitive 
terms are zero and allow purely algebraic constraints 
to appear in the problem formulation (effectively 
turning the problem into a system of differential-
algebraic equations), then we get the relatively sim-
ple system: 

0=

−=

i

RRLL

Q
k

ApAp
x

 

While many traditional dynamic system analysis 
tools are based on the notion that the dynamics must 
be characterized in terms of ordinary differential 
equations (ODEs), Modelica specifically broadens 
the general problem definition to support differen-
tial-algebraic equations (DAEs) [2].  This broader 
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problem definition combined with sufficient sym-
bolic manipulation [3] (as in Dymola, [4]) means 
that such simplifications are a practical means of 
formulating simplified systems of equations using 
exactly the same component models. 

The equations in this section touch on only a few 
of the structural differences between functional and 
predictive models.  Modelica also provides features 
for expressing more complex behavior like paramet-
ric behavior formulations (often used to describe di-
odes or clutches [5]) and piecewise linear expres-
sions (used to describe convected property balances 
in Modelica.Fluid).  All of this means that 
many of the limitations that exist when forced to cast 
component behavior in terms of explicit differential 
equations can be completely eliminated.  As a result, 
alternative formulations that are more natural, flexi-
ble and computationally efficient, like the ones used 
for the components in this paper, become possible. 

It is worth noting that useful behavioral descrip-
tions are typically sufficiently complex that the re-
sulting algebraic equations are both non-linear and 
coupled.  As a result, after symbolic manipulation 
simultaneous non-linear systems of algebraic equa-
tions (i.e. “algebraic loops”) often emerge from the 
explicit differential equations.  However, the cost of 
the non-linear iterations is often much less than the 
cost of resolving the fine details associated with 
higher-order dynamics. 

3 Comparisons 

In this section we will quantify many of the dif-
ferences in structure and performance between these 
two types of models.  We start with the functional 
model and then include the higher-order dynamic 
effects.  In addition to comparing the simulation re-
sults, we will also consider how these effects change 
the overall structure of the problem and what impact 
this has on simulation time. 

3.1 Functional Validation 

Before we compare the structure and perform-
ance of these two types of models, we should first 
perform a basic validation of the model.  Note that 
while the example in this paper was chosen to pro-
vide a “real-world” context to the issues, the model 
itself was created specifically for this paper and is 
not a validated automatic transmission circuit. 

There are two main characteristics of interest in 
this circuit.  The first is to confirm the effect of the 
boost valve.  This should create a “knee” in the pres-

sure response of the circuit.  The other effect is the 
filling of the clutch volume as the clutch is stroked. 

Figure 3 shows the functional validation of the 
circuit by plotting regulator valve output pressure 
and clutch pressure as a function of coil force.  When 
the coil force reaches 35 Newtons, we can see the 
knee in the output pressure.  In addition, the differ-
ence between the clutch pressure and the regulator 
valve output pressure is caused by the need to fill the 
gap formed as the clutch is moved into position. 
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Figure 3: Functional Validation 

3.2 Adding Predictive Details 

To demonstrate the impact of including pre-
dictive details in the model, we will modify the func-
tional model to include 3 important physical effects: 
spool dynamics, valve orifices and valve volumes.  
These are just a few typical examples of complexi-
ties that are required to truly predict the response of 
the hydraulic systems.  Other effects are also signifi-
cant (e.g. fluid inertia, mechanical limits, compressi-
ble media) but for simplicity they will be neglected. 

For the functional model, the spool mass is as-
sumed to be zero.  As a result, the position of the 
spool in the functional model is determined by the 
steady state force balance on the spool.  However, in 
the case where the spool has non-zero mass, the bal-
ance of the axial forces determines the acceleration 
of the spool2. 

To simplify the calculation of the valve output 
pressure, the functional model prescribes the output 
pressure by blending the two input pressures con-
tinuously as a function of the spool position.  The 
appropriate mass flow rates to achieve this are com-
puted implicitly.  This is not particularly physical 

                                                      
2 In addition to the spool mass, some damping must be 
introduced as well. 
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because it assumes that the valve can flow any 
amount of mass.  In reality, such flow rates are lim-
ited by the sizes of the various orifices.  For the pre-
dictive model, the flow through each path in the 
valve is computed explicitly based on the pressure 
drops between the ports.  While the equilibrium posi-
tion of the valve will be identical in each case, the 
presence of orifices results in constraints on how 
quickly the control circuit can respond.  In addition, 
the nature of the orifice equation typically results in 
some numerical issues. 

The final detail is the filling and mixing asso-
ciated with the volumes at the ends of the valves.  In 
the functional model, the volumes at the ends of the 
valves are neglected (i.e. no mass or energy capaci-
tance).  For the detailed model not only is this vol-
ume included, but is varies with spool position. 

While these dynamics complicate the response 
of the circuit, they do not change the overall func-
tional behavior.  Figure 4 shows the response of the 
circuit with these physical details included.  The 
conditions are nearly identical to those used to gen-
erate Figure 3. 
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Figure 4: Detailed Model Validation 

It should be noted that the conditions chosen 
for validation in Figure 4 are such that the dynamics 
have little impact.  The biggest feature is the 
“smoothing” of the edges.  However, because the 
progression of coil force proceeded on a quasi-steady 
time scale, the dynamics are not visible.  The main 
purpose of Figure 4 is simply to show that with the 
physical details included, the circuit is still function-
ally equivalent. 

3.3 Transient Response 

To highlight the implications that the various 
physical details have on the transient response, we 
need to drive the circuit under more realistic operat-

ing conditions.  Figure 5 shows what a typical sole-
noid command might look like.  The square pulse at 
the start is used to fill the clutch volume.  At the end 
of the square pulse, the friction materials in the 
clutch should just be coming into contact.  At ap-
proximately 0.4 seconds, the solenoid force drops to 
allow the clutch to engage smoothly.  The force is 
then slowly ramped up to increase the capacity of the 
clutch.  Once the clutch is locked, the coil force 
jumps up to keep the clutch firmly engaged. 
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Figure 5: Solenoid Force Command 

The functional model response is shown in 
Figure 6.  Note that the clutch pressure does not re-
spond until after the clutch volume is filled.  Once 
the volume is filled, the response of the clutch pres-
sure closely follows the force command profile 
shown in Figure 5. 
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Figure 6: Functional Model Response 

By comparison, Figure 7 shows how the 
more detailed model responds.  Rather than respond-
ing cleanly to the coil force command, the regulator 
valve output pressure fluctuates as the spool settles 
into a quiescent state.  In particular, the spool oscil-
lates significantly in response to step changes in the 
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coil force.  Most of these oscillations occur before 
the clutch starts to engage, but some of them can 
clearly be seen in the clutch pressure response.  An-
other interesting effect shown in Figure 7 is the delay 
in the engagement of the clutch.  This is due to the 
fact that the regulator output pressure does not drop 
immediately to a pressure that is in proportion to the 
coil force.  Instead, the clutch pressure drops lower 
than it did in the functional model which causes the 
clutch volume to briefly empty before recovering.  
These dynamics introduce an additional delay before 
the friction materials come in contact. 
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Figure 7: Detailed Model Response 

3.4 Structure and Performance 

Table 1 highlights some of the structural and 
performance differences between the simulations 
shown in Figure 6 and Figure 7.  Because the func-
tional model is approximately 5 times faster than the 
predictive models, it is useful for proving out control 
strategies or for performing hardware-in-the-loop 
testing.  The performance differences between these 
types of models could become even more significant 
as additional physical details are added or as the 
overall complexity of the circuit increases. 

 

 Functional 
Model 

Detailed Model 

# of states 6 20 

Linear 

system sizes 

{6, 2, 11} {6, 10, 4, 13} 

Nonlinear 

system sizes 

{8, 9, 6} {3, 13} 

CPU time 0.09 [s] 0.46 [s] 

Table 1: Quantitative Comparison 

Another way to visualize the differences in the 
dynamics of the two models it to visualize the poles 
in each model.  In this way, the range of time con-
stants and natural frequencies can be quickly as-
sessed.  Figure 8 shows a map of the two poles pre-
sent in the functional model.  One of the poles has a 
time constant of 1 millisecond and corresponds to a 
specific first order response introduced in the filling 
model.  The other pole has a natural frequency of 
0.08 Hz and corresponds to the mechanical response 
of the clutch-inertia system shown at the bottom of 
Figure 2. 

 
Figure 8: Poles in the Functional Model 

For comparison, the poles of the predictive 
model are shown in Figure 9.  An important differ-
ence between the poles shown in this figure and the 
ones shown in Figure 8 is that the dynamics in the 
predictive model are non-linear.  As a result, the po-
sitions of the poles vary as a function of the states in 
the predictive model.  For this reason, Figure 9 over-
lays the values of the poles (computed via lineariza-
tion) at various times during the predictive model 
response shown in Figure 7 to demonstrate the range 
of the dynamics. 

 
Figure 9: Poles in the Predictive Model 
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The lowest natural frequency shown in Figure 9 
has a value of 18.7 Hz and it exists prior to the first 
change in solenoid pressure.  The highest natural 
frequency in the system is 90.7 Hz and it appears 
during the drop in solenoid pressure at approxi-
mately 0.41 seconds.   

A more intangible quality to these models is the 
underlying robustness.  While Table 1 compares the 
performance of simulations that were run using these 
two models, what it does not show is the fact that the 
detailed model is less robust numerically than the 
functional model.  Singularities associated with van-
ishing volumes, ill-posed Jacobians, etc. can not only 
have an even greater detrimental impact on the simu-
lation time, they can prevent the simulation from 
completing at all. 

4 Conclusions 

A common issue in modeling applications is in-
cluding the appropriate level of detail for the task at 
hand.  During the initial design phase of a circuit like 
the one shown in Figure 2, it is important to quickly 
verify the functional performance of the circuit 
and/or the control strategy behind it.  Simple models 
can quickly confirm the steady state clutch pressure 
achieved for a given solenoid force.  Then, as the 
design process focuses on finer details (orifice di-
ameters, spool masses, etc) additional geometric in-
formation can be added that allows additional dy-
namics to be considered. 

This paper highlights several advantages of us-
ing Modelica for hydraulic system modeling.  The 
first advantage is the ability to leverage the Mode-
lica.Fluid and Modelica.Media libraries.  
Careful thought has gone into the formulation of 
these libraries to leverage as much of the potential of 
the Modelica language as possible while still provid-
ing a relatively straightforward framework for devel-
oping components.  These libraries can now serve as 
the foundation for the development and exchange of 
hydraulic component models. 

The other advantage of using Modelica for hy-
draulic systems is the ability to express idealizations 
that fall outside the typical formulations.  It is no 
longer necessary to build models from alternating 
“flow-volume” pairs or to consider only behavioral 
models that lead to explicit differential equations.  
Instead, Modelica allows the expression of a broader 
class of behavioral models which, through symbolic 
manipulation, can be simplified down to relatively 
simple and efficient algebraic relationships. 
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Abstract 

In this paper, the system simulation model is dis-
cussed from an engineering design perspective. Spe-
cial emphasis will be given Modelica models, and it 
is exemplified how computational design methods 
operate on the simulation model in order to evaluate 
different concepts. Model based design optimization 
and probabilistic analysis are discussed as examples 
of such computational methods. 
An XML-based information system for representa-
tion and management of design data for use together 
with the Modelica model is further proposed in order 
to simplify the use of computational design methods.  
Finally, an example is presented, where probabilistic 
analysis is carried out on a Modelica model of an 
aircraft actuation system using the proposed and im-
plemented tools and methods.  

1 Introduction 

In the area of engineering design, a substantial part 
of the process consists of manual design work in-
volving the inspiration and creativity of the designer. 
However, a large part of the design process can be 
formalized, and by applying formal design methods, 
these can be implemented in computer software as 
computational design methods. By employing com-
putational methods in early stages of the design 
process, it is possible to acquire valuable informa-

tion. Such methods could for example include model 
based design optimization or probabilistic analysis. 
These computational methods will be described in 
more detail throughout the paper, but common for 
the methods is that they operate on simulation mod-
els in an automatic, iterative way. This implies new 
requirements on the simulation tools as well as on 
the representation and management of data related to 
the computational methods.  

2 Computational design methods 

As indicated in the introduction, a computational 
design method the uses the simulation model as the 
primary source of information.  
The principal similarities between different computa-
tional design methods and how they operate on the 
simulation model are illustrated in Figure 1. With 
this view, the computational methods either operate 
on the inputs to the model (design synthesis), or on 
the outputs from the model (design evaluation). Both 
probabilistic analysis and design optimization can be 
seen as automatic methods that repeatedly execute 
and evaluate the simulation model. 
This way of automatic execution adds specific de-
mands to the simulation environment. From the de-
sign perspective, it is not of interest exactly how the 
model is executed, but it must be valid and must not 
‘fail’ or get ‘stuck’. It also calls for separation be-
tween the actual simulation model and information 
related to perform a design task using computational 

Computational design methodComputational design method

Design synthesis
•Monte-Carlo
•Optimizer
•Etc.

Simulation model

Design evaluation
•Statistical analysis
•Objective function
•Etc

Model parameters Simulation results

Design inputs
- Concept (model) 
- Design variables
- Uncertainties
- Objectives
- Constraints

Design inputs
- Concept (model) 
- Design variables
- Uncertainties
- Objectives
- Constraints

Design outputs
- Feasible? 
- Optimal?
- Robust?

Design outputs
- Feasible? 
- Optimal?
- Robust?

Figure 1. Computational design methods operating on a system simulation model. 
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methods. This is because the same simulation model 
could be used in a wide range of design tasks. 

2.1 Model based design optimization 

A typical example of a computational design method 
is design optimization based on system simulation, as 
described by Krus et al. [4].  
By formulating requirements and desirables as a 
mathematical objective function, design optimization 
can be employed. Parameterized simulation models 
of the system enable an optimization algorithm to be 
used to find the system parameters that maximize the 
objective function while meeting the constraints. The 
optimization algorithm repeatedly modifies specific 
design variables (model parameters), executes the 
model, and evaluates an objective function, see 
Figure 2. 

Design optimizationDesign optimization

Design variables

Optimization 
algorithm

Simulation 
model

Evaluation

x3x2x1

C1

C2

C3

C4

Constraints

Objective function
 

Figure 2. Process for model based design optimization. 

A non-gradient method is specifically appropriate for 
optimization of simulation models since the objec-
tive function is defined from simulation results and 
derivatives of the objective function can not be de-
fined. One example is the Complex optimization al-
gorithm, presented by Box [6], which has been used 
very successfully over a wide range of problems and 
is characterized by simplicity and robustness. 

2.2 Model based probabilistic analysis 

Other important examples of computational design 
methods are based on probabilistic analysis. These 
methods are used not only to assure a technically 
feasible concept, but also to find a robust design 
point by including uncertainty in the models. 
In all stages of the engineering design process, and 
especially in early stages, most available information 
suffers from uncertainty. By using methods for prob-
abilistic analysis, this uncertainty is brought into the 
design process through the use of simulation models. 
This is highly desired since important knowledge 
about the uncertainty is otherwise omitted.  

For example, by taking uncertainty into account, the 
following information can be extracted:  
• The probability of meeting a set of constraints 

and achieving a technically feasible design with 
in the ranges of the design variables, the prob-
ability of feasibility. 

• How much it will be necessary to relax a specific 
constraint in order to have a sufficiently high 
probability of feasibility. 

• The effect of uncertainty in system parameter 
values, i.e. the robustness of the design 

The information above can not be achieved using 
deterministic simulation models with fixed parame-
ter values. Therefore, it is necessary to use probabil-
ity distributions to represent uncertain values on 
model parameters.  
A feasible design is defined as a design that satisfies 
all imposed technical constraints [5]. The examina-
tion of the concept’s feasibility could be seen as a 
probabilistic methodology where the probability of 
finding feasible design alternatives within the design 
space is investigated. This so-called probability of 
feasibility, Pfeas, is an important figure of merit in the 
early phases of design since it indicates whether the 
concept is promising for further analysis such as de-
sign optimization.  
Figure 3 illustrates the process of concept feasibility 
assessment. By assigning normal distributions for the 
design variables and using a sampling-based method 
such as the Monte Carlo simulation together with the 
simulation model, the Pfeas can be calculated given 
the settings of the design variables and the con-
straints.  

Determine Concept FeasibilityDetermine Concept Feasibility

P(feas)>εP(feas)>εRelax active
constraints if possible
Relax active
constraints if possible

N Y

C1

C2

C3

C4

Simulation 
model

x3x2

Design space 
exploration

x1

ConstraintsConstraints

Design variablesDesign variables

UncertaintiesUncertainties
p1

Evaluation

Monte-
Carlo

 
Figure 3. The process of concept feasibility assessment 
[5]. The model code is evaluated repeatedly where the 
design variables are varied within the design range using a 
sampling based method such as Monte-Carlo simulation. 
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  If the total probability of feasibility is too low, the 
constraints must be investigated individually and 
either the active constraints relaxed or the concept 
modified, for example by infusing new technologies 
to the concept and thereby improving its characteris-
tics. Mathematically, the probability of feasibility 
Pfeas for a system with m constraints is defined as [5]: 

∏
=

=
m

i
ifeas PP

1

 (1) 

)0( ≤= ii CPP  (2) 

where Pi is the probability that one specific con-
straint Ci is met. For another formulation using in-
formation content as the figure of merit, see the the-
ory of Axiomatic Design [8] 
The Monte-Carlo simulation used to simulate uncer-
tainty or variability is a rather simple algorithm that 
randomly samples values according to a probability 
distribution. However, more sophisticated methods 
with improved search efficiency can be used as well 
such as Adaptive Importance Sampling (AIS) as de-
scribed by Wu in [11]. 

2.3 Computational design data 

As indicated in the previous sections, computational 
design methods include a wide range of data that is 
not primarily associated the model of the system. As 
can be concluded from Figure 2 and Figure 3, a wide 
range of design related data is required such as  
• Design variables – A subset of the system pa-

rameters that are modified during the design it-
eration. 

• Uncertainties – Many model parameters are un-
certain, which must be handled. 

• Constraints – Measures that must be met in or-
der for the design to be feasible. 

• Objective functions – A mathematical function 
used by an optimization algorithm in order to de-
fine a figure of merit.  

• Process model – In order to accomplish full sys-
tem simulation and optimization involving sev-
eral types of models and codes, it is necessary to 
be able to represent and execute a computational 
sequence. 

The data above is normally not possible to represent 
inside simulation models. It is also the fact that a 
computational design task often includes more than 
one model represented using one specific approach. 
In order to accomplish for example system optimiza-
tion, it is often necessary to include several types of 
models, such as CAD, CFD, financial models, etc. 

Typical is also that integration of already existing, 
so-called legacy codes is necessary. 

3 Modelica and computational data 

The Modelica modelling language is developed in an 
international effort by the Modelica Association [6] 
consisting of members from both industry and the 
academic world with the intention of establishing a 
de-facto standard for system simulation. The Mode-
lica language contains a large number of features 
with extensive support for advanced modelling of 
systems from different engineering domains. The 
modelling principle is object-oriented and equation 
based where different types of equations are sup-
ported. Modelica also enables representation of gen-
eral data as so-called annotations. 
It has been shown several times that Modelica is 
very well suited for modelling of physical systems. 
However, representation of design related data as 
exemplified in previous section is not directly sup-
ported. Even if it would be possible to represent de-
sign data as annotations this is not an attractive solu-
tion since it still not would be generally supported in 
tools available for Modelica. 
One important argument why a separate representa-
tion of design data would be necessary is: 

A design project often contains several models, and 
several types of models. In order to fully assess the 
properties of a certain design, this could include both 
technical domains and others, such as financial mod-
els. A general representation of design data that is 
simple to use together with different model imple-
mentations is therefore necessary. 

The approach taken in this work is to represent the 
data as XML outside the simulation model as illus-
trated in Figure 4. This approach will be further de-
scribed in the next section of this paper.  

VariablesEquations

ParametersComponents

System interfaces

System model 
representation

Modelica

Uncertainties

Design variables
Constraints

Objective functions

Process model

Design project 
representation

XML
 

Figure 4. The system simulation model is represented in 
Modelica, while data regarding the design task is repre-
sented in XML. 
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3.1 XML-based data repository 

In order to facilitate the use of computational design 
methods using models implemented for example as 
Modelica, a design data repository has been created 
where the system data can be represented in a gen-
eral way using XML. An XML document is however 
not very usable without an accompanying XML 
schema [10]. Just as the XML can effectively de-
scribe data, the XML schema defines the structure of 
the XML document. It defines each allowed element 
in a document, the allowed attributes and possibly 
the acceptable attribute values for each element. It 
also defines the occurrences, sequence, and nesting 
of each element.  
The information model developed for this purpose 
has a hierarchical and object-oriented structure in 
order to organize the data in a way that is close to the 
physical system. In order for the information model 
to be as general as possible, generic elements are 
defined such as system, subsystem, variables and 
native data. A top level structure of the data can be 
seen in Figure 5, and the different parts of the data 
model are described in more detail below. 

 
Figure 5. An object oriented and hierarchical structure in 
order to organize the design data. 

The variable element is the important building block 
in the repository. This element is used as a neutral 
representation of both system parameters and design 
variables, see Figure 6. Besides name and default 
value, which are required attributes, the variable con-
tains optional information such as unit, description, 
and data type. With a variable type attribute, it is 
also possible to define whether the variable is con-
trollable, non controllable, or a so-called technology 
factor (described in more detail in [3]). As illustrated 
in Figure 6, the variable element also has sub-
elements that contain additional information such as 
probability distribution and settings if the variable is 
generated by a design algorithm such as Design of 
Experiment (DOE) or is a design variable in an op-
timization algorithm. It is possible to attach these 
sub-elements to all variables in a generic way. 

 
Figure 6. XML Schema representation of the variable 
element used to represent various kinds of system parame-
ters with extensive information such as probability distri-
butions. 

The idea is that probability distributions are defined 
and stored parametrically. It is possible to select 
from typical standard distributions such as uniform 
distribution, normal distribution, triangular distribu-
tion, etc. Custom distributions could also be defined 
as interval values or single values. This means that 
no mathematical functions for the distributions are 
stored in the repository. For example, in the case of a 
normal distribution, the mean value and the standard 
deviation are stored and not the mathematical func-
tion describing the relation between these metrics 
and the probability density function, PDF. 
In Figure 7, some example XML code is visualized 
as represented using the XML editor XML Spy. For 
visualization of the actual XML code, see the exam-
ple in section 5. 

 
Figure 7. Design variable visualized in the XML editor 
XMLSpy. 

4 Integration framework 

A software prototype for collaborative system simu-
lation and computational design has been developed 
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in projects prior to the work presented in this paper; 
see for example [2].  

The framework is based on a Service Oriented Archi-
tecture [7] which means that models and methods 
communicate using so-called web service standards 
such as SOAP and WSDL, see [9]. The standards are 
used to define interfaces between the models and to 
represent the data being exchanged between the 
models, methods and users clients. The framework 
enables different kinds of models to be encapsulated 
as simulation modules without exposing the actual 
content of the model. Only a published interface is 
visible to the outside. The models can also be exe-
cuted in a distributed fashion which enables models 
and methods to be executed from their original loca-
tion. With this approach, both models and methods 
are managed as generic simulation modules which 
are integrated and executed as illustrated in Figure 8. 

Computational 
methods

Computational 
methods

Simulation moduleExcel spreadsheetExcel spreadsheet

Design data 
repository

Design data 
repository

SOAP 
messages

SequencerSequencer

 
Figure 8. Integration framework where a simulation 
model implemented in Modelica is integrated with compu-
tational methods and a design data repository. Inputs and 
outputs are here managed using an Excel spreadsheet. 

A wrapper is created around the simulation model in 
order to publish the model as a simulation module as 
illustrated in Figure 9.  

Web enabled simulation moduleWeb enabled simulation module

Wrapper•Web server
•SOAP engine

SOAP 
messages

Executable code
•Dymosim.exe

Executable code
•Dymosim.exe

model EHA
DCmotor motor;
HydraulicPump pump;
HydraulicPiston piston;

equation
connect(motor.shaft,pump.shaft);
connect(pump.port2,piston.port1);
connect(piston.port2,pump.port1);
end EHA;

 
Figure 9. The Modelica system model is translated and 
compiled using Dymola. The executable code is wrapped 
as web service simulation module. 

In the work presented here, a prototype has been im-
plemented where Matlab constitutes the wrapper that 
communicates with both the simulation model, and 
the web service interface. A more permanent solu-
tion is however intended where XML technology is 

used to dynamically create and parse the input and 
output files to and from the Modelica simulation di-
rectly. This is a very flexible approach which has 
been implemented in previous projects, see [3]. 

Important to note is that this for model integration is 
not intended for high-speed data exchange between 
tightly coupled models. Rather, it is intended for 
automation of sequential (or parallel) computational 
design tasks involving several distributed model. An 
XML-based process model has also been developed 
which can be automatically executed by a so-called 
sequencer. Further details about this framework are 
presented in [2]. 

5 Example – Probabilistic analysis of 
aircraft actuation system 

In this section an example will be presented where a 
probabilistic analysis is carried out using the pre-
sented framework and a simulation model developed 
in Modelica. 

5.1 Electro-hydrostatic actuation system 

The system is an electro-hydraulic system, princi-
pally illustrated in Figure 10. The intention is to 
mount the system inside the aircraft wing in order to 
move the control surfaces of the aircraft. 

Load

DCM HP

xp

Power
electronics

xpref

Power 270 V 
DC-bus

 
Figure 10. A schematic model of an electro-hydrostatic 
Actuation system (EHA) implemented in Modelica. 

Due to the compact design of the system and the 
high power density, the system generates heat that 
can lead to high temperatures and cause damage to 
the system. It is therefore of interest to analyze the 
thermal behaviour of the system during missions of 
the aircraft. In order to accomplish this, a model of 
both the dynamic performance and the thermal prop-
erties of the EHA as well as load forces from authen-
tic missions have been modelled in the Modelica 
language. 

5.2 Simulation model in Modelica  

There are different aspects that are of interest when 
studying actuation systems such as dynamic per-
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formance, how the system responds to a control sig-
nal, or how sensitive the system is to disturbances. 
The models of the system were designed in an ob-
ject-oriented way where all the components were 
modelled using the Modelica modelling language. In 
each component, equations for both dynamic behav-
iour and thermal properties are included and thermal 
properties such as temperature and heat flow are rep-
resented in the connectors.  
The electric motor and the power electronics are also 
designed to include dynamic as well as thermal 
properties. Both hydraulic and electric components 
have equations for thermal properties. Pure thermal 
components have also been added to the model. In 
Figure 11, a graphical representation of the model as 
implemented in Dymola is visualized. 

 
Figure 11. The simulation model as implemented in the 
Dymola simulation tool. 
The system has been simulated in mission of 50 
minutes. In Figure 12, results from simulation can be 
seen. The system was simulated with load and con-
trol signals from authentic mission data. The simula-
tion show that high temperatures will occur both in 
the hydraulic fluid as well as in the motor windings 
during a so-called extreme mission. 

 
Figure 12. Temperatures [K] in the system during a heavy 
mission. Simulation of the Modelica model using Dymola. 
The mission is simulated for 50 minutes (3000 sec). 

5.3 The uncertainties 

From a design point of view, the system includes 
several uncertain parameters that could affect the 
thermal properties in the components. In order to 
keep the example simple, only three parameters in 
the model is selected to illustrate uncertainties in the 
system. 
Normal distributions are selected for the resistance in 
the DC motor and in the power electronics. A normal 
distribution is also set for at speed dependent thermal 
parameter in the motor. 
Table 1. Definition of uncertain parameters. 

System parameter Mean 
value 

Standard 
dev 

Inverter resistance [Ω] 0.35 0.1 
Speed dependent thermal 
constant [rad-1] 

0.5 0.1 

Motor resistance [Ω] 2.5 0.25 

As an example, the representation of the motor resis-
tance is visualized below. Both graphically, and as 
XML code. 

P

DCM.Ra

2.51.75 3.25  
Figure 13. A normal probability distribution defines the 
resistance of the electric DC motor. 
<Variable name="DCM.Ra" info="DC motor resistance"  
                variableType="NonControllable"  
                variabilityType="NormalDistribution"> 
 <Value>2.5</Value> 
 <Distribution> 
  <Normal mean="2.5" stdDev="0.25"/> 
 </Distribution> 
</Variable> 

5.4 The constraints 

A few example constraints are here presented regard-
ing the temperatures in different parts of the system. 
• The temperature of the hydraulic oil should not 

exceed 90°C, 
o C90Oil.TiC1 °≤=  

• The temperature of the DC motor windings 
should not exceed 100°C 

o C100DCM.TiC2 °≤=  

The constraints are evaluated in each simulation in 
order to evaluate the probability of feasibility de-
scribed below. 
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5.5 Evaluating probability of feasibility 

In the application example, probabilistic analysis is 
employed on the system in order to investigate the 
probabilities of meeting the constraints. 
The framework illustrated in Figure 8 is here used 
for the simulations. The simulations are controlled 
from an Excel document, where inputs to the model 
can be entered as well as results from the model 
monitored. 
In each execution of the model, the max temperature 
in the different parts of the system at each simulation 
is stored. By modifying the inputs according to the 
probability distributions of the uncertain parameters, 
variability in the responses is obtained as well. 
The results are investigated by computing a Cumula-
tive Density Function (CDF) for the response of in-
terest. By fitting a standard distribution to the values 
of the responses, the probability of achieving re-
sponses that meet the constraints can be computed, 
see Figure 14. 

Simulation 
response 
values

Simulation 
response 
values

Probabilistic 
analysis

Constraints

0%

100%

Probability

Value
0%

100%

Probability

Value
Constraint value  

Figure 14. The simulation results are extracted from the 
XML repository for analysis. 
Below, the results for the temperatures of the hy-
draulic fluid as well as the DC motor temperature are 
visualized.  
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Figure 15. The probability of meeting constraints on oil 
temperature and DC motor temperature with uncertainty 
in some system parameters. 

For the uncertainties and constraints used in this ex-
ample, the results are the following probabilities: 
• The temperature of the hydraulic oil should not 

exceed 90°C, 
o %48)(C1 =P  

• The temperature of the DC motor windings 
should not exceed 100°C 

o %8)(C2 =P  

This implies that the total probability of meeting the 
constraints (probability of feasibility) is: 

)feas(P )}100DCM.Ti()90Oil.Ti{( ≤≤= UP
 4%=  
It is obvious that this is too low probability for the 
system to be robust and we must investigate if the 
constraint can be relaxed or else we make some 
change to our design. For the purpose of this exam-
ple, we now assume that the constraints cannot be 
relaxed. 
Now assume that we infuse technologies to our con-
cept that increases the ventilation of the EHA mount-
ing area and the increases the transportation of heat 
from the EHA surface. This means that we can as-
sume a technology factor that should affect the prob-
ability of meeting the constraints. 
By modifying our model we can now re-evaluate the 
probabilistic analysis in the same way as above.  
The results in Figure 16 show that the probability of 
meeting the constraints has increased.  
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Figure 16. The probability of meeting constraints on oil 
temperature and DC motor temperature with a modified 
concept. 
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The total probability if feasibility for the modified 
concept is now: 

)feas(P  )}100DCM.Ti()90Oil.Ti{( ≤≤= UP
 81%=  
We can now accept the current concept and move on 
to the next step in the design process, which includes 
further simulation and optimization to achieve an 
optimal design point with respect to both perform-
ance and robustness. This is however beyond the 
scope of this paper. 

6 Discussion and conclusions 

It is important to realize that in a computational de-
sign task, the system simulation model is not the top-
level integrator that accesses and integrates different 
types of data. It is rather a component that is being 
accessed from a design framework at a higher level 
including some computational method. The informa-
tion that the simulation model delivers is then evalu-
ated and integrated with results from several types of 
models. 
Simulation models in industry exists in a wide range 
of representations ranging from old legacy codes 
represented in Fortran code to modern object-
oriented modelling languages such as the Modelica 
language implemented in simulation tools such as 
Dymola. It is important that the computational de-
sign methods can interact with the models regardless 
of implementation. With a design data repository 
implemented in a format that is simple to access by a 
wide range of tools, this interaction is highly facili-
tated.  
The approach presented in this paper uses XML for 
representation of the design data in a format that is 
general and not associated with existing representa-
tions of system simulation models. The advantage is 
that XML is widely supported by a wide range of 
software tools, and that it is simple to access and 
manage the XML data. 
The example presented in this paper is only one sim-
ple illustration of how the simulation model can be 
used in a computational design task. Increased de-
mands for the product developing industry regarding 
faster time to market will make design automation 
more and more important. It is therefore very impor-
tant to continue to define interfaces between the area 
of engineering design and the area of system model-
ling and simulation. 
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Abstract

This paper describes new features of the Modelica
environment Dymola to perform integrated computer
experiments with Modelica models, in particular for
model calibration, design optimization and
robustness or sensitivity assessment based on
multiple criteria and multiple simulation runs. The
environment and especially the problem setup are
demonstrated by several application examples.

1 Introduction

Recently, new features have been added to the
Modelica simulation environment Dymola [2] to
simplify experimentation with Modelica models sig-
nificantly. Some basic ideas are from the optimiza-
tion environment MOPS [3]. The central part is a
Modelica model of a physical system with Modelica
parameters that are not yet fixed. Several problem
classes can now be conveniently solved:

• Model Calibration (Parameter Estimation):
Some Modelica parameters of the model are not
known. Several simulation runs are performed
and compared with measurement data that is
available from equivalent dynamic behavior of
the real device. Via optimization, the selected
unknown parameters and initial conditions are
determined such that the simulations and the
measurement data are in good agreement. Also
standard tasks such as fitting of functions to
measurement data is supported.

• Design Optimization

(Parameter Optimization):
Selected Modelica parameters of the model are
tuned to improve the system dynamics, e.g., by
changing the parameters of a controller or some
parameters of the physical device. This is per-
formed by multi-criteria parameter optimization
using one or several simulation runs to compute

the desired criteria.

• Assessment (Parameter Variation):
Selected Modelica parameters of the model are
systematically changed within a given grid and
for every fixed set of parameters, simulations are
performed. This might be used, e.g., to evaluate
a finished design by varying the operating
points. For Monte Carlo simulations, the pa-
rameter values are chosen statistically. Simula-
tions with small variations to the parameters can
be used to determine how sensitive a design is.

All these experiment tasks utilize the same basic
functionality that is defined once:

• Tuner Parameters:
Modelica parameters that remain constant for a
particular simulation but are varied by the ex-
perimentation environment to search for satis-
factory solutions are called “tuners”. E.g. via pa-
rameter estimation or optimization the tuners
shall be determined such that criteria are mini-

mized.

• Criteria:
Criteria are used to compute quantitative values
of achieved performance of a simulation run.
Criteria are assumed to be positive and smaller
values reflect better performance. Usually, sev-
eral criteria are needed to express the desired be-
havior. For example, typical criteria of a system
step response are over-shoot or settling time. By
weighting each criterion individually by a fixed
demand value (criterion_i/demand_i), where the
demand value expresses the designer’s notion of
expected system performance, a clear preference
list of the criteria is defined. For example, the
demand value for the settling time might be 0.1
s, indicating that a value of 0.1 s is satisfactory
from a users point of view.

To solve the multi-criteria problem by means of
standard numerical optimization an overall crite-
rion to be minimized has to be formulated. This
so called aggregation function is by default the
maximum function, yielding a min-max optimi-
zation problem over the weighted criteria (= the
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largest weighted criterion is minimized). Of
course the maximum weighted criterion may
change during optimization depending on the
tuner values found. Note that an aggregation
function value less than 1 implies that all criteria
satisfy the demands.

There is an option to choose other aggregation
function types like weighted sum. In any case the
weights are formed by the reciprocal demand
values.

• Constraints:
Design specifications are often given as con-
straints such as actuator limits. If a certain level
of compliance is achieved for a criterion, this
level must be kept, and smaller (better) criterion
values are not necessary. Constraints are formu-
lated as criteria, which are requested to be
smaller than the demand value. Optimization
procedures account for constraints in their opti-
mization strategy explicitly.

• Indicator plots:
A criteria value results in one number to express
the performance. This is necessary in order that
an optimizer can be used. A human would like to
evaluate a design by visual comparison of result
plots of different designs, e.g., by viewing a
whole step response curve and not only the over-
shoot value. Indicator plots for a model can be
defined once and then reused, e.g., for online
visualization of the optimization or parameter
estimation process.

• Model Cases:
In many applications, several simulation runs are
necessary to evaluate a design or to estimate pa-
rameters. In the Dymola environment, several
simulation runs are collected together to model
cases: Exactly the same tuners, criteria and indi-
cator plots are used for each model case. The
model cases are distinguished only by a set of
fixed Modelica parameters that define the differ-
ent simulation runs. Often, these case parameters
describe different operating conditions, e.g., dif-
ferent road or load conditions of a vehicle.

The paper shows for two application examples how
to define the problem setup of tuners, criteria, cases
and indicator plots by means of the graphical user
interface. The defined problem setups are used to
solve the calibration task of an under-actuated two
joint Furuta Pendulum and then the parameter opti-
mization for robot control laws. The solution of the
multi-criteria optimization problem is discussed
briefly in Section 4.

2 Application Examples

In this section, details of the experimentation envi-
ronment are described elaborately by several exam-
ples.

2.1 Parameter Estimation of an under-actuated

two joint Furuta Pendulum

Consider the Furuta pendulum demonstration of the
Department of Automatic Control, Lund Institute of

Technology, Lund, Sweden. The
pendulum, consisting of 2 revo-
lute joints and 2 moving bodies,
is shown in the figure. Only the
first joint (vertical axis) is driven
by a DC motor. Experiments and
controller have been designed
and evaluated in [1].

Within Dymola, a model of the Furuta pendulum is
easily constructed by dragging, dropping and con-
necting body and joint components from the Multi-
Body library. However, it is also necessary to set
physical parameters in the model. Some of these pa-
rameters such as the length of the arm or the length
of the pendulum are easily measured on the system.
Direct measurements of the weights of the parts
would require the system to be dismounted (in other
cases it is easy to measure the mass or determine it
from a CAD system). Moreover, it is not simple to
measure the inertia of the parts or the friction char-

acteristics of the two joints.

The new Dymola experimentation environment has
been used for parameter identification. For this, the
movement of the 2 body pendulum has been re-
corded by sensors in the joints. The same movements
are performed with a simulation model and the fric-
tion parameters are optimized such that the measured
and the simulated movements closely agree.
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Selection of parameters to be tuned

When estimating parameters from measurements, a
basic question is “Which parameters can be esti-
mated from the measurements?” Changing a pa-
rameter to be estimated must of course influence the
output. However, this is not enough if several pa-
rameters are to be estimated. Consider the arm of the
Furuta pendulum. It rotates around a vertical axis.
The model of the arm uses

Modelica.MultiBody.Parts.BodyShape

It has the following parameters: mass, position of
center of mass and inertia tensor with respect to
center of mass. Since the arm is rotating around a fix
axis, it is only the inertia with respect to this axis that
influences the behavior of the system. Inertia with
respect to an axis being orthogonal to the vertical
axis does not influence the motion at all. The crite-
rion is independent of its value. We will discuss a
more general case. Let Jc denote the inertia with re-
spect to a vertical axis through the center of mass.
Let m denote the mass of the arm and rc denote the
distance between the point of rotation and the center
of mass. The inertia of the arm with respect to the
point of rotation, Ja, is then

2

cca
rmJJ ⋅+=

It is this inertia that is of importance for the rotation
of the arm. It is this parameter that can be estimated
from measurements. It is not possible to estimate m,
Jc or rc uniquely from measurements of positions or

velocities.

What will happen if we try to estimate Jc and m? In
the best case we will get a good estimate of Ja, but Jc

and m may be really different from the their real
physical values. One approach to investigate if we
are about to estimate too many parameters is to make
estimation experiments on the model. First one could
use the model with its nominal parameter values to
produce simulated “measurement data”. Then one
would set the model parameters that are going to be
estimated to other values, and run the calibration
procedure using the previously produced “measure-
ment data”. If the estimated parameters give the
same simulation results but are significantly different
from the “true” nominal ones, then this indicates
overparametrization, because the nominal behavior
can be reproduced by other parameter values than the
nominal ones used to produce the “measurement
data”.

Assume rc = 0.1225 and being known. Assume the
nominal values Jc= 0.0014 and m = 0.165. Assume
the criterion to be the integrated squared error of the
pendulum angle and arm angle. Let the pendulum
start in horizontal position and use the simulation

time 5 s. It is illustrative to plot the criterion versus Jc

and m as shown below.

We see a valley where the criterion is unchanged.
Along the valley the effective inertia, Ja, is un-
changed with peaks on either side where it has been
changed. The error is not symmetric with respect to
large variations in Ja and the error increases more
when Ja decreases.

To compute this map we used a gridding function
that takes the calibration task (as described below)
and additionally the gridding parameters as inputs,
i.e. we do not have to define the calibration task
twice.

A further possibility is to investigate the sensitivity
of the criterion with respect to the parameters esti-
mated. In particular we can calculate the sensitivity
matrix (the Hessian of the minimization problem).
Dymola calculates the sensitivity matrix by simulat-
ing for disturbed parameters and taking differences
of the resulting criterion values obtained. The sensi-
tivity matrix was found to be

[431064, 6456.3;

     6456.3, 97.0671],

The eigenvalues being 431161 and 0.37 are very dif-
ferent in magnitudes. Considering the numerical ac-
curacy, the small eigenvalue may be considered as
being zero. The eigenvector having the large eigen-
value is {0.99989, 0.01498}. It means a large sensi-

tivity in the direction

{0.99989, 0.01498}*{Jc, m}

Recall Ja = Jc + 0.01501*m which shows that the
criterion is sensitive for variations in Ja. The second
eigenvector {-0.01498, 0.99989} is orthogonal. (For
a symmetric matrix, all eigenvalues are real and ei-
genvectors are orthogonal.) The small eigenvalue,
being very close to zero, indicates that the measured
behavior is insensitive to variations in the direction
of the second eigenvector as is also shown in plot

above.

Since the optimization problem is a non-linear least-

squares problem, ∑ )(
2 pf
i

, we can alternative com-
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pute the insensitive direction (in a more numerically
robust way) as the approximate null-space of

∑ ∂∂ ppf
i

/)( .

It may be remarked that for the case where the crite-
rion is independent of a parameter, there will be a
valley parallel to the axis representing the parameter
and the sensitivity matrix the vector in the direction
of the parameter will be an eigenvector with zero
eigenvalue.

Thus for the arm we set rc = 0 and interpret the esti-
mated inertia as being Ja. It means that we introduce
a top-level parameter I_arm and set arm.r_CM to

{0,0,0}, and arm.I_22 to I_arm.

The pendulum consists of a cylinder having a small
mass at the end. It is natural to assume its inertia
with respect to all axes perpendicular to its length
axis to be equal, call it I_pendulum. Set pendu-
lum.I_11 = I_pendulum and set pendulum.I_33 =
I_pendulum. The inertia sensed by the rotating arm
depends on the angle of the pendulum, which means
that for the pendulum, we can estimate also mass
(pendulum.m) and position of the center of mass,
r_CM_pendulum. We set pendulum.r_CM to {0,
r_CM_pendulum, 0}.

Parameters in the friction model for the joints can
also be estimated. We assume Coulomb friction with
a linear dependence on velocity. For the arm joint we
introduce tau11 and tau12 and set frictionR1.tau_pos
to [0, tau11; 1, tau12] and similarly for the pendulum

joint.

Setting up the calibration task

To set up the calibration task, select CalibrateModel
from optimization package. Click the right mouse
button. Select Call Function. A dialog is shown:

It shows that the calibrate function has one
argument, setup. Clicking on the “+” opens it and
shows that it is a record with five elements, which
describes various aspects of the calibartion task
including which parameters to tune, criterion and
which measurement data to use. We will discuss the
specification of these elements in turn. The calibrate
function assumes the current model (last translated

model). This allows easy reference to parameters
when selecting tuners as described below.

To specify which parameters to tune, click on the
tunerParameters and the right pane of the dialog
shows

Clicking on Select gives a browser for simple
selection where we tick the parameters as decided.

Clicking OK fills the tunerParameter dialog as
shown in the following image.
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Estimating initial conditions

The initial conditions will be different for different
experiments, for example, if we let the pendulum
start at different angles. To get good fits it is advis-
able to estimate the initial conditions. We can give
reasonable guesses, because we try to start the sys-
tem in a well-defined state. For some experiments
the initial conditions are known accurately and they
should then be given as part of the setup of the cali-
bration cases, but this is not the case here.

The joint models allow specification of initial condi-
tions in terms of parameters. These parameters can
be tuned. For each of the parameter discussed previ-
ously we would like to have a common tuned value
for all cases.

However, for the initial conditions we need individ-
ual estimation for each case. Moreover, we would
also need them to be tuned for the evaluation where
the parameters tuned are kept fixed. The initial con-
ditions to be estimated for each measurement case
are specified by the element freeStartValues. Select
the element freeStartValues in the tree browser. It is
specified in the same way as done for tunerParame-
ters. In the select dialog we tick the start values for
the angle and velocity of the two joints.

Clicking OK fills in the variable names in the first
column and start values in the “Value” column.

To specify the criterion, select calibrationCriteria.

Clicking on Select displays a Select browser where
we check pendulumAngle.phi and armAngle.phi.
This fills the “name” column.

The criterion is a weighted sum of the integrated
square difference with respect to measured value for
each variable.

The measurement files to be used are specified by
the element calibrationCases. It also specifies
whether a file is to be used for calibration or valida-
tion.

The elements optimizer and integrator allows ad-
vanced setting of optimization and simulation pa-
rameters. We use their default settings, except for

simulation time that we need to specify.

Running the calibration

When all the input data have been entered, the cali-
bration is started by clicking “Execute” on the dia-
log. The two next plots compare the simulation result
with the obtained tuned parameters and measured
data where the pendulum starts in a horizontal
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position. The result shows a good agreement.  The
tuned parameters were validated against another ex-
periment where the pendulum starts in a more up-
right position. The system is nonlinear and it is of
interest to validate the model for cases where the
amplitudes of the pendulum are large.

The jump in the pendulum angle in the validation
case between –100° and –80° is due to problems of
handling wrap-around in the measurement device.
The agreement is good, in particular for the pendu-
lum motions. The modeling of the arm may be im-
proved by a more elaborate modeling of the arm
friction. However, that is out of the scope of this pa-
per.

2.2 Robot optimization

In this section it is demonstrated how to optimize the
controller parameters of a robot for a set of cases
consisting of different loads and reference motions.

Description of the robot

The model is chosen as the r3-robot from the Mode-
lica standard library. As described in its documenta-

tion this was originally a Manutec r3-robot. It was
then updated with incorporating CAD-data from a
KUKA-robot, and the geometry was modified to fit
the CAD-data.

Figure 1 Animation of the robot

The robot consists of a 6 degree-of-freedom me-
chanical structure modelled as the multibody system
“mechanics” (= bodies connected together by revo-
lute joints). The calculation of the animation can be
optionally switched off to increase simulation speed,
which is especially important during an optimization
run. Every joint is driven by a drive train called
“axis1”, “axis2”, ..., in the next figure:

Figure 2 Composition diagram of robot

The desired reference motion is generated in compo-
nent “path” and as input it has the start and end angle
of each axis. All signal data is communicated via a
“data bus”.

Figure 3 Drive train of one axis
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One drive train consists of a controller, an electrical
motor, a gearbox (which includes the bearing fric-
tion). The controller of one axis is a P-PI cascade
controller, i.e., has the simplest form useful for a
servo drive (in most industrial robots, more sophisti-
cated controllers are used). The goal of the optimiza-
tion is to tune the values of the 3 controller parame-

ters of every axis:

• kp – gain of position controller

• ks – gain of speed controller

• Ts – integrator time constant of speed controller

The difficulty is that this controller should work well
with a fixed set of values for all paths and operating
conditions encountered by the robot. This makes it
impossible to use standard, linear control design
methods.

Optimization setup

The structure of the optimization setup is similar to
the calibration setup:

The tuner parameters are the 3 controller parameters
of each axis as discussed above. They are easily en-
tered in the tunerParameter dialog by using the Sel-
lect dialog. The snapshot below shows the dialog
when the controller parameters of axis 2 have been
selected. Numeric values have also been entered for
“Value” to be used as the start of the optimization
and minimum and maximum values that are used as
box constraints during optimization and optionally

also for scaling:

In order to specify the different cases of the optimi-
zation, the case parameters are first selected by using

the Select dialog to browse the model parameters.
The parameter values for the different cases used to
optimize the design of the controller are then given
by filling out the cases form as below (the selected
parameter names appear as column headings):

Simulation cases are defined by specific settings of
model parameters that are given as labels “startAn-
gle2”, “startAngle3” etc. in the figure above. Note
that in the reference trajectory axis 2 goes through
different movements in the different cases, whereas
axis 3 is fixed in different positions (all other axes
are fixed to the default reference angle in all cases).
In practice, robots are optimized for a larger number
of cases.

Optimization criteria

If we compare the actual axis speed with the refer-
ence speed we normally get the following:

For design optimization the goal is in general not to
simply minimize these errors, as it would be for a

calibration, but something more advanced.

For the design optimization we thus have to intro-
duce additional blocks to measure the performance
of the axis, these are introduced by extending the
robot-model with an additional performance compo-
nent for the reference signals (containing different
performance indicator blocks).
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In the performance Modelica model, the following
performance indicator blocks are present (these
blocks are from a criteria library that contains several
predefined useful criteria blocks):

• Block “Overshoot” computes the overshoot
(here: the maximum deviation from the reference
angle) after the referenced motion has come to a
rest. This is performed very precisely by trig-
gering an event whenever the derivative of the
input signal is zero (here: whenever the speed is
zero), i.e., a minimum or maximum of the signal
is reached and storing the corresponding signal,
if its absolute value is larger than the previously
stored value. The last stored value is the over-

shoot which shall be minimized.

• Block “SettlingTime” computes the time until a
signal stays completely within a tolerance band
around zero, after the reference motion is in rest.
This is performed by triggering an event when-
ever the input signal passes through this band
and storing the corresponding time instants. The
last stored value is the settling time which shall

be minimized.

The usage of these two blocks is shown above. As
can be seen the angle error is used as input to the
“overshoot” block whereas the speed error is used as
input in to the “settlingTime” block.

This is connected to the bus to get the reference sig-
nals and the actual values for the specific axis. We
then select two reference indicators, the overshoot
and the settling time, in the optimizer:

As an alternative to using criteria blocks in the
model one can compute the criteria in a post-
processing function that operates on the simulation
results and which is selected in the drop down menu
shown below. In this case we select the final value
for these two criteria:

We also have to set the demand values. Based on
first simulations and specifications we set the over-
shoot demand to 3/1000 [rad/s] and the settling time
to 0.3 [s]:
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Applying these values as demand values results in
the following weighted criteria:

case overshoot settling time

High 1 0.6854 0.7588

Low 1 1.5106 0.9855

High 2 0.8332 0.5579

Low 2 1.7887 1.0468

The values indicate satisfactory behavior in cases
with load (cases “High 1” and “High 2”), but bad
overshoot performance in unloaded cases (cases
“Low 1” and “Low 2”).

After finalizing the optimization setup, a click on
“Execute” starts the design optimization. As a result
of the first optimization run, which converges after
30 function evaluations, we obtain the following
tuner and corresponding weighted criteria values:

kp2 3.0776

ks2 2.5089

Ts2 0.08896

overshoot settling time

High 1 0.5929 0.8998

Low 1 1.0315 1.0902

High 2 0.6510 0.7157

Low 2 1.1956 1.1955

Overshoot has been improved but settling time is
slower. The equal and largest criteria values in case
“Low 2” indicate a conflict between the 2 criteria
which usually can only be solved when one criterion
is eased off.

We decide to force the overshoot criteria that they
reach their demand values and to put lower emphasis
on settling time. This is accomplished by applying
all overshoot criteria as inequality constraints during
the next optimization run forcing the optimizer to
perform improvements in these criteria until the de-
mand value is reached. Criteria to be minimized
(here settling time) may increase. The next run re-
sults in:

kp2 4.0722

ks2 4.8897

Ts2 0.070565

overshoot settling time

High 1 0.7623 0.8965

Low 1 0.8845 1.1855

High 2 0.6175 0.7161

Low 2 0.9985 1.2027

The overshoot demand is satisfied, The settling time
slightly increases to 1.2027 for the worst case “Low
2”. We might stop the design optimization here. In
other cases, one might change demands, select other
simulations cases and criteria. In the next figure, re-
sults for the 3 runs (initial, first and second optimi-

zation run) are shown for case “Low 2”:

3 Customizable user interfaces

Experimentation includes operations that require rich
interfaces to supply all the information needed to

perform the task.

For model components, parameters have been visu-
ally split into groups and tabbed pages, representing
logical grouping of primary and secondary parame-
ters. However, the individual data items comprise a

relatively “flat” structure.

For calibration and optimization the interface con-
tains a much deeper hierarchical structure, and the
complexity at each level is also greater. For example,
it is common that subitems contain variable amount

of data, typically represented by arrays of records.

To handle the increased complexity, the graphical
user interface of Dymola has been extended in two
dimensions:

• The nested structure is visualized by a tree,
which makes relationships easier to understand
and allows easy navigation between data items.

• Specialized GUI elements, for example, for file
and color selection, can be enabled by annota-
tions, which facilitate common input operations.

Several of these improvements are useful also for
simpler data structures, and the specialized GUI ele-
ments can also be used for parameters of models. In
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other words, all the features discussed below can be
easily utilized by every user. It is even possible to
make a copy of the calibration and/or optimization
setup and adapt the user interface to the specific
needs of an end-user with more specialized menus.

3.1 Nested structures

Model calibration will be used as an example. The
function CalibrateModel takes a record (setup) as its
input parameter. The structure of the record contains
among other elements an array of type Tuner-
Parameter, which in turn contains several attributes.

function CalibrateModel

  "Calibrate model to measured data"

  input ModelCalibrationSetup setup;

  ...

end CalibrateModel;

record ModelCalibrationSetup

  String Model;

  TunerParameter tunerParameters[:];

  ...

  Optimizer optimizer;

  Integrator integrator;

end ModelCalibrationSetup;

record TunerParameter

  "Model parameter to be optimized ..."

  String name="" "Full name of ...";

  Boolean active=true "true, if ...";

  ...

end TunerParameter;

The GUI is automatically built from the data struc-
ture declarations. The nested structure of the input to
CalibrateModel is evident in the tree view at the left.

The tree serves two puposes. First it shows the
structure and makes it easier to understand what
information must be provided. The tree view corre-
sponds exactly to the data structure. Second, it is
used to navigate between multiple “pages” (input

forms) that are swapped into the space at the right.

The component tunerParameters is an array of
records, each containing several variables. The user
can choose a combined tabular view of the array (as

shown above), which offers maximum overview in a
compact format.

Alternatively it is possible to inspect and edit
individual array elements, which has the advantage
of displaying descriptions for each input field and
that data can be grouped and put under different tabs.
Each page corresponds to one row in the combined
view.

The implementation of the tree view also ensures
that data filled out by the user is propagated. For
example, changes to an individual tuner parameter
must be visible when the user switches to the tabular
view of all tuner parameters. Changes in a modifier
at a high level is propagated down to more detailed
views.

3.2 New GUI elements

The graphical user interface can greatly simplify
certain input tasks with some additional support.
Although it is always difficult to strike a balance
between features and complexity, the following op-
erations have been found useful in the experimenta-

tion environment.

The deployment of these GUI elements is controlled
by model annotations, either at the class level or on
individual variables.

Predefined choices. A list of values suitable to a
particular type or application are presented. A simple
example is “true” and “false” for Boolean. Selection
of a criteria function is specified by this annotation:

CriterionSpecification criteria

  "Criteria specification"

    annotation (choices(

      choice=FinalValue(),

      choice=SettlingTime(),

      choice=Overshoot()));

To the user the choices are presented in a drop-down
combobox:
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Because parameters which depend on the selected
function must also be specified, pressing the “edit”
button will display a dialog for the parameters to the
chosen function.

Color selection. Colors can typically be represented
by RGB (red, green, blue) or HSV (hue, saturation,
value) tuples. Although they could be specified nu-
merically by the user, a colorful dialog makes selec-
tion much easier.

File selection. Standard dialogs for selecting files
either for reading or writing data. The filename is
stored in the corresponding variable.

Variable selection. Several operations in the ex-
perimentation environment involves the selection of
variables from the model, for example, parameters to
optimize. A specialized selection dialog simplifies
the task considerably. Furthermore, additional data,
such as, start/min/max values can be extracted.

In this case a detailed specification (in the form of an
annotation) is needed to move data into the right

elements of a table, and if needed resize the table.

User-defined labels. The default labels used in the
tree view or in the combined tabular view are con-
structed from variable names found in the data
structure. By use of annotations, other labels can be
specified or even extracted from actual data in the
structure.

4 Solving the Multi-Criteria

Optimization problem

In a multi-criteria optimisation problem setup all

weighted criteria / ,
ij ij ij min
q c d ij S= ∈  can be com-

bined to a vector q , where 
min

S  denotes the set of

all criteria (i) to be minimised defined in all simula-
tion cases (j). In order to decide whether a solution

I
q  is better than a solution 

II
q , these vectors should

be completely comparable. However, comparing
each vector component individually, some compo-
nents can be better, others can be worse. To make
criteria vectors completely comparable a vector norm
has to be introduced.

We prefer to use the max-norm, because weighted
criteria with positive ‘the smaller the better’ values
and quality limiting demands as upper bounds yield a
most visible comparative satisfaction assessment of
design alternatives in case of the max-norm. Define

for all weighted criteria

: max{ }, ,
ij min

ij
q ij Sα = ∈

then requirements' satisfaction of a design alternative
(II) is said to be better than of a design alternative (I)

if 
)()( III

αα < . If 1≤α , the design alternative is

called a satisfactory solution, because in that case
each criterion is less than the respective demand
value. In particular, a best possible design alternative

is characterised by }{min* αα = , yielding the over-

all constraint optimization problem which can be
solved by standard optimization methods:

, ,

minmax{ ( ) / }

( ) ,

( ) ,

min

ij ij
T ij S

ij ij inequality

ij ij equality

min k k max k

c T d

c T d ij S

c T d ij S

T T T

∈

≤ ∈

= ∈

≤ ≤

(1)

The disadvantage of this approach is the lack of dif-
ferentiability of the aggregation function. Thus,
methods relying on gradients (like SQP methods)
can encounter difficulties in this case.

To overcome the problem of differentiability we
provide two mechanisms: an exponential approxi-
mation of the max-function yielding a smooth over-
all criteria and a reformulation by ‘equivalent con-
straints’. In the latter case the min-max problem can
be reformulated by an equivalent constrained prob-

lem. Let γ  be a new variable for which we impose

that max{ ( ), }
ij min
q T ij Sγ ≥ ∈ . Instead of (1), we

can solve an equivalent optimization problem with
the extended parameter vector ],[ γTx = . The aggre-

gation function to be minimized is simply γα =)(x .

Defined inequality and equality constraints are ap-
plied as in (1) while the components to be minimized
are added as additional constraints as

( ) ,
ij min
q x ij Sγ≤ ∈

The main advantage of this formulation is that the
functions are differentiable provided the defined
problem criteria are differentiable. The disadvantage
is that a problem of higher dimension is solved and
additional constraints are added. However, the appli-
cation of this formulation of the min-max problem is
recommended whenever a gradient based optimiza-
tion method is used. There is an option to choose

other aggregation functions like weighted sum:

: | |,
ij min

ij

q ij Sα = ∈∑
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Optimization Methods

At the moment 5 different methods to solve the op-
timization problem (1) are implemented for use with
Modelica:

1. Sequential quadratic programming (SQP)
2. Quasi Newton (Bounds)
3. Pattern search (Pattern)
4. Simplex method (Simplex)
5. Genetic algorithm (GA)

The Sequential Quadratic Programming (SQP) ap-
proach can be used to solve the general optimization
problem and has usually a super-linear convergence
(= faster than linear, and slower than quadratic con-
vergence). Bounds on tuners and linear equality and
inequality constraints are met exactly during the it-
erations. The SQP approach needs gradients of func-
tions and constraints. SQP in combination with the
reformulation of the min-max optimization problem
as an equivalent constraint problem is the method of
choice for general optimization or calibration prob-
lems.

The Quasi Newton method (Bounds) is an algorithm
intended to solve large optimization problems but
can only handle simple bounds constraints on the
tuners. “Bounds” needs also gradient information of
the aggregation function.

The Pattern Search approach is a derivative free
search method. It is numerically more robust in
tackling with non-smooth criteria than other meth-
ods.

The Simplex approach is also a derivative-free algo-
rithm and employs linear approximations to the ob-
jective and constraint functions. The main advantage
of SIMPLEX over many of its competitors is that it
treats each constraint individually when calculating a
change to the variables, instead of lumping the con-
straints together into a single penalty function. A
drawback of this method is that even bound con-

straints can be violated during computation.

The genetic algorithm (GA) is a global optimization
technique. The basic algorithm allows only simple
bounds on the variables. Thus, to address more gen-
eral constraints, penalty function techniques are em-
ployed. The genetic algorithm search method is
based on evolution principles which guarantee the
survival of the fittest individual. The use of GA for
optimization is normally quite costly in terms of
function evaluations.

5 Conclusions

An environment was presented to optimize Modelica
models in Dymola, especially with regards to design
optimizations and calibration of unknown model pa-
rameters.

It is possible to prepare a customized GUI in Dymola
for specific tasks such as optimization. This makes it
possible to customize the optimization menus. Since
the customization is performed in Modelica (annota-
tions) it is possible for an end-user to also adapt this

to his/her particular needs.
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Abstract 

A general technique to design advanced controllers 
for non-linear systems is described, using component 
oriented modeling and symbolic algorithms as used 
for Modelica models. Starting point are linear design 
techniques that use linear inverse models as a core 
part of the controller structure. Starting from such a 
structure, the approach is to replace the linear inverse 
model with a nonlinear one, resulting in a controller 
that is applicable over the full operating range of the 
(nonlinear) plant. It is shown that nonlinear inverse 
models may be automatically generated from the 
plant model in Modelica. 

1 Introduction 

The subject of this article is the systematic design of 
controllers for nonlinear systems, based on inversion 
of the plant model. Traditional design techniques 
require the nonlinear plant model to be linearised 
around a stationary operating point, after which lin-
ear methods may be applied to synthesize a control-
ler. In order to make this controller work over the 
full operating range of the plant, robust design tech-
niques and/or gain scheduling are applied. The first 
approach may considerably reduce achievable per-
formance if the plant dynamics vary strongly over 
the operating range, whereas the latter may involve 
designing many controllers at a grid of operating 
points and finding an interpolation scheme in be-
tween them. 
In linear design, inversion of plant dynamics is 
sometimes used to compensate for coupled input / 
output responses, or as an easy way to impose spe-
cific dynamic behavior of the closed-loop system [7]. 
Provision is that the linear plant model is minimum 
phase and, for some structures, stable. In a nonlinear 
context, the application of model inversion addition-
ally provides compensation of nonlinear dynamic 

behavior of the plant. This is exploited in design 
techniques such as feedback-linearization [19].  
The design approach in this article starts from any 
controller structure that is based on a linear inverse 
model of the plant. This model is replaced with a 
nonlinear inverse one, resulting in a controller that is 
valid for the full operating range of the plant. In case 
the plant model is available in Modelica, it will be 
demonstrated that inversion can be performed auto-
matically, exploiting symbolic algorithms and code 
generation features of a Modelica simulation envi-
ronment. This allows for a highly automated design 
process that directly results in nonlinear controllers 
that work in all operating conditions of the plant, 
avoiding the need for gain scheduling.  
This article is structured as follows. First general 
aspects of nonlinear inverse models are reviewed, as 
well as the possibility to derive these automatically 
from Modelica. In section 4, a number of common 
controller structures are discussed, for which the de-
scribed design approach is applied. Next, a design 
example will be discussed. In section 6 a number of 
common problems in deriving and applying nonlin-
ear inverse models will be described, as well as pos-
sible solutions or workarounds.  

2 Inversion of Nonlinear Models 

The goal is to use a nonlinear plant model in a con-
troller in order that the nonlinearities of the plant are 
directly taken care of in the control system. For lin-
ear systems, several control structures are known 
where an inverse plant model is part of the control-
ler. A single-input-single-output plant might be de-
scribed as transfer function  

 
( )
( )

n sy u
d s

=  (1) 

where “u” is the plant input, “y” is the plant output, 
“n(s)” is the numerator and “d(s)” is the denominator 
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of the transfer function. In section 4 several control 
structures will be investigated where an inverse 
model 

 
( )
( )

d su y
n s

=  (2) 

is part of the controller. Basically, the plant and the 
inverse plant model “cancel” each other due to the 
connection structure and by additional control blocks 
a desired transfer function of the closed loop system 
can be achieved. Although, this seems to be quite a 
“brute” force method, it will be shown that by ap-
propriate adaptations practically useful control sys-
tems can be designed. 
The essential idea is as follows: 
1. Take any control structure for linear systems that 

utilizes a linear inverse plant model. 
2. Replace the linear inverse plant model by a more 

detailed nonlinear inverse plant model. 
3. Determine the remaining part of the control sys-

tem by appropriate techniques, e.g., by tuning 
controller coefficients via parameter optimiza-
tion.  

Several different controller structures according to 
this technique will be discussed in section 4. The 
difficult part is issue (2): The nonlinear plant model 
should be constructed in a convenient way and the 
inverse model should be directly derived from the 
plant model. It turns out that Modelica is very well 
suited for this approach because Modelica is de-
signed to model complex systems, and since Mode-
lica tools, like Dymola [5], can generate nonlinear 
inverse models automatically: 
A continuous Modelica model is primarily mapped 
to a DAE (= set of Differential Algebraic Equations) 
of the form: 
 ( , , , )=0 f x x y u  (3) 

where x(t) are variables that appear differentiated in 
the model, y(t) are algebraic and u(t) are known in-
put functions of time t. It is possible to transform 
system (3) to the following state space form, at least 
numerically: 

 

1

2
1 1( , )

 
 
  =
 
 
 

x
x

f x u
y
w

 (4) 

where x1 and x2 form vector x such that the subset 
vector x1 is the state vector and contains the inde-
pendent variables of x. The new vector w contains 
higher order derivatives of x and of y that appear 

when differentiating equations of f(..) and that are 
treated as algebraic variables. For the computation of 
f1(..), it might be necessary to solve linear and/or 
non-linear algebraic systems of equations. The equa-
tions to be differentiated can be determined with the 
algorithm of Pantelides [15]. The selection of the 
state variables x1 can be performed with the “dummy 
derivative method” of Mattsson and Söderlind [16]. 
Both algorithms are, for example, available in the 
Modelica simulation environment Dymola [5]. 
An inverse model of the DAE (3) is constructed by 
exchanging the meaning of variables: A subset of the 
input vector, uinv, with dimension ninv, is treated no 
longer as known but as unknown, and ninv previously 
unknown variables from the vectors x and/ or y are 
treated as known inputs. The result is still a DAE 
which can be handled with the same methods as any 
other DAE. Examples are given in the following sec-
tions. This technique of constructing non-linear in-
verse models has been first applied in [17][18]. An 
inverse model can only be used in a controller if the 
DAE of the inverse model has a unique solution and 
if it is stable. For linear systems the latter require-
ment means that the plant must be a minimum phase 
system. In section 6 it is discussed how to proceed if 
these requirements are not fulfilled. 
Since the transformation from (3) to (4) might differ-
entiate equations, the known inputs of the inverse 
model may be differentiated too, i.e., the derivatives 
of these inputs must exist and must be provided ana-
lytically up to a certain order. These derivatives can 
be provided if, e.g., the inputs are available as ana-
lytic functions that can be differentiated sufficiently 
often, or by a desired reference model that in combi-
nation with the inverse DAE results in a DAE that 
does not require derivatives of inputs. Often, the ref-
erence model is selected as a filter such that a com-
bination of the filter states yields the needed deriva-
tives. For linear systems, this approach is well 
known. Take for example the following linear sys-
tem with one zero and two poles: 

 
1

( 2) ( 3)
sy u

s s
+=

− ⋅ +
 (5) 

The inverse model is constructed as 

 
( 2) ( 3) 1

( 1) ( 1)
s su y

s Ts
− ⋅ += ⋅

+ +
 (6) 

In order that the inverse model is causal (i.e., can be 
implemented as an algorithm), additional poles have 
to be added until the degree of the denominator is 
larger or, at least, as large as the degree of the nu-
merator. For this reason, a filter 1/( 1Ts + ) has been 
connected in series, making the combined transfer 
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function causal. Another possibility is not to control 
y, but one of its derivatives instead: 

( 1)
( 2) ( 3)

s sy s y u
s s

+= ⋅ = ⋅
− ⋅ +

 

The transfer function is proper now and may be in-
verted: 

( 2) ( 3)
( 1)

s su y
s s

− ⋅ +=
+

 

Connecting this controller with the plant (5) in series 
results in integrator behavior. A simple feedback 
loop may be added to place the integrator pole at a 
desired location. 

3 Constructing Inverse Models 

With a Modelica simulation environment, such as 
Dymola, the practical derivation of inverse models is 
straightforward, even for complex systems: 
1. Define the plant as Modelica model and include 

input and output signals of the plant over which 
the inversion shall take place. 

2. If necessary, provide a reference model or input 
filter of appropriate relative degree. The relative 
degree may be known from physical knowledge 
of the plant dynamics, or can be automatically 
derived by Dymola as described below. 

3. Connect the “u1” inputs of a “Mode-
lica.Blocks.Math.TwoInputs” block to the plant 
outputs, the “u2” inputs of this block to the out-
puts of the reference model, and the input of this 
model to an input signal connector (Mode-
lica.Blocks.Interfaces.RealInput) that defines the 
desired plant outputs. 

A typical example is shown in Fig. 1. On the left side 
the plant model with one input and one output is 

present. On the right side, a filter is used as reference 
model. The output of the filter should be connected 
to the output of the plant. This is not directly possi-
ble, because signal connectors can only be connected 
according to block diagram semantic and in block 
diagrams it is not allowed to connect two output sig-
nals with each other. For this reason the “TwoIn-
puts” block is used. It has two inputs u1 and u2 and 

is described by the equation “u1 = u2”. If the filter 
order is too low the DAE is not causal and Dymola 
prints an error message of the following form (Dy-
mola version 5.3b and later): 

Error: The model requires derivatives of 
some inputs as listed below: 
Order of input derivative 
  4        u1  
  2        u2  
  3        u3  
Error: Failed to reduce the DAE index 

In the second column the Modelica names of the in-
put signals are listed that need to be differentiated 
according to the differentiation order of the first col-
umn. The numbers in the first column are therefore 
the minimum order of the corresponding filters. 
If the inversion is to be based on a time derivative of 
the output, a sufficient number of integrators needs 
to be added, instead of increasing the filter order. 
There is always a filter order / number of integrators 
for which the system will translate. The higher the 
filter order, the more problems will occur when ap-
plying it in a control system. In such cases, one 
might remove dynamic elements from the plant and 
try it again. One might even use a stationary plant 
model. 

4 Example Controller Structures 

In this section different controller structures will be 
discussed that follow the general approach outlined 
in section 2. 

4.1 Inverse Model in Feedforward Path 

Different variants of linear controllers with two 
structural degrees of freedom are known. The most 
general form for linear, single-input/single-output 
systems has been proposed and analyzed by Kreis-
selmeier [12]. According to the approach sketched in 
section 2, the generalization using nonlinear inverse 
models is shown in Fig. 2. This structure has been 
applied in [22] to the control of robots and has been 
successfully validated with hardware experiments. In 
flight control, the “model following approach”, see 
for example [2], is a special case of this structure 
whereby the reference model is known as the “com-
mand block” providing state references for the in-
verse model as well as the feedback controller.  
In Fig. 2 the multi-input/multi-output plant has in-
puts u, measured signals ym and outputs yc that are 
primarily controlled. In many cases yc ∈ ym. For this 
controller structure the number of inputs must be 

Fig. 1. Definition of inverse model with Modelica 
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identical to the number of controlled variables: 
dim(yc) = dim(u). In this case the inverse plant 
model with (known) inputs yc and unknown outputs 
u is used in the feedforward path of the controller to 
compute the desired actuator inputs ud to the plant. 
A “reference model” defines the desired dynamic 
behavior of the closed loop system. It is often most 
convenient to use a filter, since the filter is param-
eterized by just the cut-off frequency, once the filter 
order and the filter type is fixed, and because a filter 
provides the “optimal” reference model with transfer 
function “1” below the cut-off frequency. There are 
also other useful choices of the reference model, see 
for example [2] for in-flight simulation.  
The outputs yc,dr of the reference model are the inputs 
to the inverse plant model. By solving a DAE system 
(3) or the symbolically transformed system (4), the 

inverse plant model computes the desired measure-
ment signals ym,d and the desired plant inputs ud. A 
feedback controller is used to stabilize the overall 
system and to improve robustness. This might be a 
simple PID like controller. 
It can be shown that the feedback controller has no 
effect, as long as the plant and the inverse plant 
models are identical, the plant and the inverse plant 
models are stable and both start at the same initial 
conditions. In this case the “reference model” deter-
mines the input/output behavior, i.e., it is the transfer 
function of the closed loop system. If these assump-
tions are not fulfilled, a control error occurs and the 
controller has to stabilize the system and cope with 
the imprecise inverse plant model and its initial con-
ditions. 
The structure in Fig. 2 has several advantages: 

ym,d

e u ycinverse
plant model feedback

controller plant

ud

uc
ym

-

reference
model

yc,d(t)

y c,dr,y c,dr..,y c,dr
(p)

controller

Fig. 2. Controller with two structural degrees of freedom and  
an inverse plant model in the feedforward path 

u yc

inv. desired
plant model

plant
uc

ym

controller part for robustness

filter

filter

ym f,ym f..,ym f
(p)

-

+

 
Fig. 5. Forcing a “desired plant” behavior using an inverse desired plant model in the feedback path 

yc,d

e uinverse
plant model

feedback
controller plant

yc = ym 

-

controller

 
Fig. 3. Compensation controller using an inverse plant model in the feedback path 

yc,d uinverse
plant model

feedback
controller

plant

controller
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Fig. 4. Feedback linearization 
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• The two controller parts (inverse plant model 
with reference model and feedback controller) 
can be designed independently from each other.  

• The controller structure can be applied to unsta-
ble plants provided the inverse model is stable, 
see section 6.1. 

• Since the inverse plant model is in the feedfor-
ward path, the calculation of ud and of ym,d might 
be performed offline if possible, so that hard 
real-time requirements for the solution of the in-
verse plant model are not present. 

The disadvantage of this structure is that for some 
applications the feedback controller may still have to 
be scheduled as a function of the operating condi-
tions. 
Inverse model-based feedforward control will be 
demonstrated at hand of an example in section 5. 

4.2 Compensation Controller 

The disadvantage of the inverse feedforward control-
ler can be avoided by moving the inverse model into 
the feedback path. This is shown in Fig 3. The feed-
back controller now only “sees” the combined in-
verse and plant model. The structure is a generaliza-
tion of the linear compensation controller described 
in Föllinger [10], page 266. For linear plant models 
the “feedback controller”, see Fig. 3, must have a 
relative degree that is equal or larger than the relative 
degree of the plant, in order that the system is proper. 
For single-input/single-output systems, a useful 
“feedback controller” is 

 
1

( ) 1cu e
r s

= ⋅
−

 (7) 

Under the assumption that the desired and the actual 
plant behavior is identical, the inverse and the actual 
plant model “cancel” each other and the transfer 
function from yc,d to yc is identical to 1/r(s), i.e., r(s) 
of the feedback controller defines the “desired” 
closed loop behavior. Note that it is assumed that yc 
is measurable (in this case, yc = ym). Alternatively, 
the procedure as described in section 2 may be ap-
plied: integrators are added to the inverse model in-
put before designing the feedback controller. 
This structure has the disadvantage that it can be ap-
plied to stable plants only. Also the inverse plant 
model needs to be stable. For a linear plant model 
this is obvious, since otherwise an unstable pole/zero 
cancellation occurs, resulting in an internally unsta-
ble system. For multi-input/multi-output systems it is 
nearly always possible (also for unstable plants) to 
construct the inverse of a stationary desired plant 
model. Once the control error e has reached a sta-

tionary value, the inverse plant model leads to a de-
coupled control loop. In other words, the different 
outputs might be controlled independently from each 
other by simple PID-like single-input/single-output 
controllers and the stationary inverse plant model is 
used to decouple the control loops from each other. 

4.3 Feedback linearization 

A complete theory to use nonlinear plant models as 
the controller kernel is “feedback linearization” (in 
aerospace applications also known as Nonlinear Dy-
namic Inversion, NDI), see for example Isidori [11] 
and Enns et. al. [7]. The basic structure is given in 
Fig 4. The principal difference compared with the 
compensation and feedforward controllers (Fig. 2,3) 
is that the states in the inverse model are obtained 
from the actual plant, via measurement and estima-
tion. Contrary to the compensation controller, the 
methodology can also be applied to unstable plants. 
When deriving feedback linearizing control laws 
manually, the outputs to be controlled are differenti-
ated until an analytical relation with a control input 
is found [19]. To this end “Lie” algebra is used. The 
number of required differentiations is the so-called 
relative degree of the specific output. If the system 
model is available in Modelica, the derivation of the 
control laws can be automated using a similar proce-
dure as described in section 2. However, instead of a 
filter of appropriate relative degree, a set of integra-
tors is added (see section 2): 

1
ii ipy

s
ν=  

where νi is the ith new model input, corresponding 
with the ith output (with relative degree pi). The de-
sired dynamic behavior of the closed-loop system is 
then imposed by application of an additional feed-
back law, like for example:  

(1) ( 1)
0, , , 1, , ( 1), ,( ) ( )... ( )pi

i i md i m i i m i pi i m ik y y k y k yν −
−= − − −   

(8)  
Note that this feedback law requires availability of 
the (pi-1)th derivative of the controlled output. This 
derivative may be obtained from measurements or, 
less favorably, from the computed value in the in-
verse model. In aerospace applications first or no 
time derivatives are usually required, since relative 
degrees of controlled variables tend to be low (1 or 
2). One reason for this is that control laws are de-
signed in the form of multiple cascaded loops [7]. In 
case the inverted model exactly represents the true 
system, the closed loop system becomes: 
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0,
, ,1

( 1), 1, 0,...
i

m i md ip p
p i i i

k
y y

s k s k s k−
−

=
+ + + +

 

Note that the coefficients may be selected to match 
the reference model in Fig. 2. 
In case time derivatives of the desired output yc,d,i are 
available, the relative degree (i.e. phase lag of the 
response) of this linear closed loop system may be 
reduced, provided that these are not too fast as to 
require too large control inputs.  
An important disadvantage of feedback linearization 
is that the state vector of the plant must be fully 
available from measurement and/or estimation. 
Automatic generation of feedback linearization con-
trol laws in Modelica will be illustrated in section 5. 
This procedure has been applied for an automatic 
landing system, see [13], and manual control laws 
for a fighter aircraft, see [21]. The software code for 
the automatic landing system was automatically gen-
erated with Dymola and successfully flight tested on 
a small passenger jet [3], see the figure below that 
shows one of the automatic landing tests. 

 

4.4 Robust Controllers 

All previous controller structures require that the 
plant model used as inverse system in the controller 
match the real plant “sufficiently” accurate. The 
controller structure in Fig. 5 uses an inverse model to 
achieve a more robust design. It was developed for 
linear systems with the goal to enhance robustness 
against disturbances and model errors, see [14][23] 
[1]. This structure is called “disturbance observer” in 
the literature although the name is misleading since it 
is actually an additional structural degree of freedom 
for a controller. It can be designed independently 
from the main control loop. In Fig. 5 the generaliza-
tion for nonlinear systems is shown: One important 
part is an inverse model of a desired plant behavior 
in the feedback path. Additionally, the same filter is 
present at two places. The standard disturbance 
observer uses a linear model for the inverse plant 
model. A nonlinear desired plant model provides 
more freedoms, since it might be impossible that a 
physical system can be forced to have the same 

linear behavior in its whole operating range. Note, 
there is the requirement that the number of 
measurement signals is identical to the number of 
plant inputs: dim(ym) = dim(u).  
For a single-input/single-output system where all 
parts are linear, the transfer function from uc to ym is 
given by: 

 
1

1 ( ) ( )
( ) ( )

m c

des

y uF s F s
P s P s

= ⋅− +
 (9) 

where F(s) is the filter, P(s) is the plant and Pdes(s) is 
the desired plant transfer function in the feedback 
loop. For low frequencies, F(s) ≈ 1 and therefore 

( )m des cy P s u≈ ⋅ . For high frequencies, F(s) ≈ 0 and 
then ( )m cy P s u≈ ⋅ . The effect of the disturbance 
observer is therefore, that it enforces the desired 
plant behavior for low frequencies. In other words, if 
there are modeling errors or disturbances then the 
disturbance observer enforces a desired plant behav-
ior below the cut-off frequency of the filter, i.e., the 
controller designed for the desired plant will usually 
work considerably better. 
The disturbance controller is usually combined with 
other controller structures. For example, by combin-
ing it with the structure from section 4.1, a controller 
with 3 structural degrees of freedom is obtained:  
• An inverse plant model from yc to u in the feed-

forward path is used for command following and 
for providing the desired measurements ym,d. 

• An inverse plant model from ym to u in the feed-
back path is used to make the closed loop system 
robust against model errors and disturbances. 

• The feedback controller in the feedback loop is 
used to stabilize the system. 

5 Example application 

In this section the feedforward and feedback lineari-
zation controller structures as discussed in the previ-
ous section will be illustrated on the following ex-
ample (the plant description is from Föllinger [9], 
page 279): 
A substance A is flowing continuously into a mixing 
reactor. Due to a catalyst, the substance reacts and 
splits into several base substances that are continu-
ously removed. The reaction generates energy and 
therefore the reactor is cooled with a cooling me-
dium. The cooling temperature Tc(t) in [K] is the 
primary actuation signal. Substance A is described 
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by its concentration c(t) in [mol/l] and its tempera-
ture T(t) in [K] according to the following DAE: 

 

/
0

11 12 13

21 22 23

T

c

c k e
c a c a a
T a T a a b T

εγ
γ
γ

−= ⋅ ⋅
= − ⋅ − ⋅ +

= − ⋅ + ⋅ + + ⋅

 (10) 

with 
14

0 11 21

12 22

13 23

1.24 10 0.00446 0.0303
10578 0.0141 2.41
0.0258 0.00378 1.37

k a a
a a

b a a
ε

= ⋅ = =

= = =

= = =

 

For the given input Tc(t) these are 1 algebraic equa-
tion for the reaction speed γ(t) and two differential 
equations for c(t) and T(t). The concentration c(t) is 
the signal to be primarily controlled (= yc) and the 
temperature T(t) is the signal that is measured (= ym). 

5.1 Inverse Model in Feedforward Path 

The inverse plant model is constructed from (10) by 
assuming that the variable to be controlled, i.e., the 
concentration c(t), is a known time function. By in-
spection or by using the Pantelides algorithm [15] it 
turns out that the first two equations of (10) have to 
be differentiated: 

 
/

02

11 12

Tcc T k e
T

c a c a

εεγ

γ

−⋅ = + ⋅ ⋅ 
 

= − ⋅ − ⋅
 (11) 

(10) and (11) are the inverse model of (10). A filter 
with an nth order pole on the negative real axis is 
used as “reference model”. Since the second deriva-
tive of the input appears (= c ), at least a filter of or-
der 2 is needed, such as: 

 
( )2

1
/ 1

desc c
s ω

= ⋅
+

 (12) 

with desc  the desired concentration, 2 fω π=  and f 
the cut-off frequency of the filter. A state space de-
scription of the filter is given by: 

 
( )
( )

desx c x

c x c

ω
ω

= − ⋅

= − ⋅
 (13) 

The needed second derivative of c is obtained by 
differentiating the second equation of (13): 

 ( )c x c ω= − ⋅  (14) 

Equations (10), (11), (13), (14) are the DAE of the 
inverse model of (10) with a prefilter of order 2, i.e., 
these are the connected blocks labeled as “inverse 
plant model” and as “reference model” in Fig. 2. It 

turns out that this DAE has two states. One possibil-
ity is to use the filter states {x, c} as state vector x1 
of the overall system. Here, the original plant states 
{c, T} are used as state vector x1. Transforming the 
equations to the state space form (4) results in the 
following sequence of assignment  statements to 
compute the derivative { },c T  of the state vector and 

of the output cT  as function of {c, T} 
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For notational clarity, the time derivatives of vari-
ables that are treated as purely algebraic variables (= 
“dummy derivative method”) are denoted with an 
apostrophe, such as γ ′ . Equations (15) are a set of 
differential equations in state space form: Given the 
desired concentrations desc , it is possible by numeri-
cal integration to compute the desired cooling tem-
perature cT  (= ud in Fig. 2) and the desired substance 
temperature T (= ym,d in Fig. 2). The latter is com-
pared with the measured substance temperature 
forming the control error e as input to the feedback 
controller. 
Even for this rather simple system, the derivation of 
the nonlinear feedforward controller is not so easy. 
Such a manual derivation becomes impractical if the 
plant model consists of hundreds or of thousands of 
equations as it is usual in complex Modelica models. 
It is now demonstrated how to derive this nonlinear 
feedforward controller in an automatic way: 
.

 

 
Fig 6. Modelica model of mixing unit with  

constant cooling temperature T_c 
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In Fig. 6 a Modelica model of the mixing unit is 
shown. The constant input is the cooling tempera-
ture; the outputs are the concentration c and the tem-
perature T of the substance. This model contains just 
the equations (10). Simulation results of this model 
are shown in Fig. 7. As can be seen, the system is 
unstable at this operating point 

In Fig. 8 the inverse model of the mixing unit is con-
structed by connecting the input “c_des” via a filter 
to the “c” output of the mixing unit, i.e., the concen-
tration c is treated as known input signal. 

 
When this system is translated without the filter, 
Dymola reports that the second derivative of c_des is 
needed. In a second step, the filter is included with 
order = 2 and Dymola translates without an error. 
Afterwards, the inverse model is connected with the 
plant model according to Fig. 2. The result is shown 
in Fig. 9. In order to not have a jump in the cooling 
temperature, a filter order of 3 instead of 2 is actually 
used. The cut-off frequency of the filter is set to 
1/300 Hz. It turns out that a simple P controller is 

sufficient to stabilize the system. A controller gain of 
20 is selected.  
Simulation results are shown in Fig. 10 for a jump of 
c_des = 0.492 to 0.237. The straight lines correspond 
to the nominal case, where the plant and the inverse 
plant model have the same parameters. The result is 
a good control behavior. The dashed lines corre-
spond to the case where the parameters of the plant 
are 50 % higher as the parameters of the inverse 
plant model to check the robustness of the design 
(only parameter ε  was not changed because the re-
sult is very sensitive to it). As can be seen, the result 
is still satisfactorily. For an actual design, it is useful 
to perform a Monte Carlo simulation by varying all 
model parameters and initial conditions of the plant 
systematically in order to determine how robust the 
control system is 

 

Fig. 7. Simulation results of mixing unit for c(t0) = 
0.237 mol/l, T(t0) = 323.9 K, T_c(t) = 308.5 K 

Fig 8. Inverse model of mixing unit

 

 

 
Fig. 10. Simulation results of mixing unit of Fig. 8
Straight line: same model parameters for plant and 

inverse plant model. Dashed line: model parameters 
of plant are enlarged by 50 % 

controller controller 

 
Fig 9. Control system with nonlinear feedforward path for mixing unit 
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5.2 Feedback linearization 

The compensation control scheme and the feedback 
linearization cannot be applied directly to the exam-
ple plant, since the concentration c is not measurable. 
One possibility is to use model knowledge in combi-
nation with estimation (e.g. a Kalman filter), but this 
is beyond the scope of this example. For this reason 
it is assumed that the concentration is measurable. In 
Modelica, design of feedback linearization and the 
compensation controllers start in the same way. This 
time two integrators are added, instead of an input 
filter, see Fig. 11. 

 
Fig 11. Inverse model of mixing unit for feedback lineari-

zation (compare with Fig. 8) 
In the case of the compensation controller, the inver-
sion work is done. For feedback linearization, the 
states in the inverse plant model must be replaced 
with measured ones. This can be performed by set-
ting the flag 

Advanced.TurnStatesIntoInputs = true 
before translation to transform all states into inputs 
in the generated code. This code can be incorporated 
with the export feature of Dymola in another envi-
ronment, such as Simulink from Mathworks. Cur-
rently, it is not possible to import this transformed 
system in Modelica again. Dynasim plans to support 
this in the future. For the example, the differentiated 
equations (11) are added manually to the model, and 
c  and the plant states (c,T) are selected as input 
variables (in case of complex models this manual 
derivation is not practical). The design is finished by 
adding the feedback controller. In case of feedback 
linearization, a usual choice is: 

ckcckc des 21 )(" −−=  

whereby c is available from measurement and c  is 
computed or obtained from differentiation. By 
choosing  

2
1 2(2 ) , 2(2 )k f k fπ π= = ,  

with f = 1/300 Hz, exactly the same closed loop dy-
namics is obtained as with the input filter of second 
order in section 5.1. Starting from the ideal response  

1
2

2 1

1
( )

k
r s s k s k

=
+ +

 

the feedback controller may also be shaped as: 
2

2 1
2

2

1
( ) 1c
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− +

 

 

 

 

 
Fig 13. Closed-loop and ideal step response of the mixing 

reactor 

 
Fig 12. Closed loop system of mixing reactor and feedback linearization controller 
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whereby in the numerator 2s  has been added, since 
the input of the inverse model is effectively the sec-
ond time derivative of cdes. Fig. 13 shows the re-
sponse of the closed loop system to the same com-
mand as in Fig. 10. The command input has been 
smoothed with a first order filter (as in Fig. 8). The 
over-all closed-loop system is depicted in Fig. 12. 

6 Difficulties with Inverse Models 

When constructing inverse models for industrial sys-
tems, it is often the case that the generated inverse 
models do not work as expected. In this section, the 
major reasons are discussed and it is explained how 
to circumvent such problems. 

6.1 Unstable inverse models 

Usually, it is required that the inverse model is a sta-
ble system. For example, in the structure of Fig. 2, 
the inverse model is in the feedforward path and if it 
would not be stable, the overall system would be 
unstable as well. For linear single-input/single-output 
systems this situation is well known and can be eas-
ily analyzed. For example, take the following linear 
plant model: 

 
1

( 2) ( 3)
sy u

s s
−=

− ⋅ +
 (16) 

The inverse model together with a reference model is 

 
( 2) ( 3)
( 1) ( 1)
s su y
s Ts

− ⋅ +=
− ⋅ +

 (17) 

As can be seen, the inverse model is unstable, be-
cause the plant has an unstable zero. In other words, 
for linear systems the plant must be a minimum 
phase system in order that the inverse model is sta-
ble. For a general DAE no stability proof exists. 
Therefore many simulations have to be performed 
with the inverse DAE to check whether it is stable in 
the desired operation region. For certain classes of 
DAEs, it might be possible to prove that the inverse 
model is stable. An alternative is to linearize the 
plant model around several stationary operating 
points and check whether the transmission zeros are 
stable. Of course, none of these checks can guarantee 
that the inverse DAE is stable for simulations or sta-
tionary points that have not been analyzed. 
If the inverse plant is unstable, only approximate 
inverse plant models can be used for the design. For 
linear single-input/single-output systems this can be 
achieved by removing unstable zeros before invert-

ing the plant. E.g., in the example above, the ap-
proximate inverse plant model would be: 

 2

( 2) ( 3)
( 1)

s su y
Ts

− ⋅ +=
+

 (18) 

For a non-linear plant, one might choose other out-
puts of the plant as inputs to the inverse model, since 
this might change the stability behavior of the in-
verse plant, see for example [20]. Alternatively, the 
plant might be modified before inversion. These ad-
vices are demonstrated by the crane example in Fig. 
14. 

The crane consists of a horizontally moving crab and 
a rope on which the load is attached. For simplicity, 
the load is modeled as a mass point. The crab is 
driven by the external force “f”. The horizontal posi-
tion of the crab “s1” and its derivative “v1” are 
measured. The goal is to move the load to a specified 
horizontal position “s2”. 
For a non-linear disturbance observer, the inverse 
model from s1 to f is needed, since s1 is measured. 
The system is first linearized around the stationary 
position where the rope hangs vertically down (ϕ = 
0). The transfer function from f to s1 has 2 conjugate 
complex zeros on the imaginary axis, signaling an 
undamped oscillation of the inverse model. This can 
be improved by including linear damping (= d ϕ⋅ ) 
in the revolute joint for the inverse plant used in the 
controller. If the damping constant d is large enough, 
the two zeros on the imaginary axis are moved to the 
negative real axis. The disturbance observer is able 
to force the plant (that does have low damping) mov-
ing in such a way as if there would be high damping. 
The major goal is to position the load, i.e., to control 
the horizontal position “s2” of the load. Therefore, 
the feedforward control should use the inverse model 
from s2 to f. The transfer function from f to s2 of the 
linearized model has no zeros and a relative degree 
of 4. Constructing the inverse model from the non-
linear plant model requires, however, a filter of order 
2 instead of 4 as suggested by the linearized model. 
Simulating the inverse model results in a division by 
zero if 0ϕ = °  or 180ϕ = ° . To summarize, the 
structure of the inverse model equations is different 

f

s1

s2

ϕ

 
Fig 14. Crane consisting of horizontal moving 

crab and a load on a rope 
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at these two points and at 0ϕ ≠ °  and 180ϕ ≠ °  (the 
DAE index is 5 for 0ϕ = °  and 180ϕ = °  and the 
DAE index is 3 otherwise). Since the division by 
zero occurs when computing ϕ , the plant model 
should be changed to compute ϕ  in a different way. 
This can be accomplished by taking the inertia of the 
load into consideration (previously it was neglected). 
With a non-zero inertia, the transfer function from f 
to s2 of the linearized plant has 2 conjugate complex 
zeros on the imaginary axis and a relative degree of 
2. Again, by introducing damping in the revolute 
joint, these two zeros are moved to the negative real 
axis. Note, that the inverse model is very insensitive 
with respect to the newly introduced load inertia. 
To summarize, for the crane example the inverse 
plant models from s1 to f and from s2 to f can be 
constructed by inverting a modified plant that has a 
load inertia and additionally damping in the revolute 
joint. A simpler alternative is also available: Before 
inversion, the angle φ is fixed to 0°  and therefore s1 
= s2, and the plant to be inverted is described by the 
equations (mcrab is the mass of the crab and mload is 
the mass of the load): 
 crab load 1( )m m s f+ ⋅ =  (19) 

which can be easily inverted. This example demon-
strates that it might be necessary to slightly modify 
the original plant model in order that the inverse 
model of the plant can be used in a controller. 

6.2 Equations that cannot be inverted 

A plant may have equations that cannot be inverted. 
Examples are time delays, backlash, friction, hys-
teresis. This can be fixed by approximating the prob-
lematic elements in such a way that the resulting 
equation leads to a unique inverse. 

A typical example is shown in Fig. 15. The original 
backlash characteristic y1 = f1(u) is not invertible 

because for y1 = 0, there are an infinite number of 
solutions (u = -1 ... +1). In Fig. 15 an approximation 
y2 = f2(u) is shown that is strict monotonic and 
therefore the inverse function has a unique solution.  
It might also occur that tables have to be inverted. 
Formally, a table in one dimension is defined as a 
function y = f(u). Inversion of this function means to 
solve a non-linear equation. This can be often quite 
easily avoided by providing already the inverse tabu-
lated values u = g(y) in the plant before inverting the 
plant model. The advantage is that the solution is 
faster and more robust. This problem was, e.g., en-
countered in [21], where control surface effective-
ness of a military jet tended to have a local maxi-
mum as a function of the deflection. This was solved 
by adapting tables and internal limitations of control 
commands. 
The inverse plant model may have also other singu-
larities at particular operating points or regions that 
prevent an inversion, e.g., due to divisions by zero, 
singular linear or singular non-linear systems. The 
reason is that the corresponding inverse model has 
no or infinitely many solutions in particular points or 
in particular regions of the state space. Again, one 
remedy is to change the plant model before the in-
version, e.g., by neglecting dynamic elements or by 
approximating components with functions that are 
less problematic to invert. 

6.3 Actuator limits 

Every control system is inherently limited by con-
straints in the actuator or other parts of the plant and 
therefore the question arises how to cope with these 
restrictions. When inverting a plant model, such con-
straints have to be removed before the inversion. 
Otherwise no unique solution of the inverse exists 
anymore, because there are infinitely many solutions 
when an actuator is in one of its limits. As a result, 
usually only the trivial action is possible to add ap-
propriate limiters to the outputs of inverse models. 
This will only help for short-time violations of the 
constraints because the control system is effectively 
switched off when the actuators are in their limits. 
The most effective way to cope with actuator con-
straints in any control system is to adapt the desired 
control signals, such as yc,d(t) in Fig. 2. In the most 
general case this means to solve a trajectory optimi-
zation problem, i.e., to determine actuator signals 
u(t) such that the plant outputs yc(t) have a desired 
behavior, e.g., reach the desired position in minimum 
time or with minimum energy, without violating the 
plant constraints. The result is used as yc,d(t). A typi-
cal example can be found in [8]. Note, if the plant is 
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Fig. 15. Backlash (y1) and approximate  

backlash (y2) 
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unstable and the inverse plant model is stable, it 
might be considerably simpler to solve the trajectory 
optimization problem with the inverse plant instead 
with the plant model. Usually, trajectory optimiza-
tion problems are difficult to solve and therefore 
highly simplified plant models are used. 
Take for example the crane model from section 6.1. 
The basic requirement is to move the crab from posi-
tion s1=a to s1=b in a short time. The plant model is 
simplified by fixing the angle to 0ϕ = °  resulting in 
equation (19). Based on (19), the actuator limit 

maxf f≤  can be directly transformed into a limit of 
the acceleration: 

 ( )1 max ,/ crab load maxs f m m≤ +  (20) 

Together with limits on the maximum speed, due to 
the maximum speed of the motor, 1 1,maxs s≤ , and 
the requirement to move in minimum time from a to 
b it is straightforward to construct the analytic solu-
tion of the desired movement s1,d(t). This solution is, 
e.g., available via the block Modelica.Blocks.-
Sources.KinematicPTP. Note, the plant model used 
for the trajectory optimization problem and for the 
inverse plant model in the feedforward path accord-
ing to Fig. 2 are identical here. In such a case, the 
feedforward controller can be removed and can be 
replaced by the result of the trajectory optimization: 

1,ds  and 1, , 1,( )d crab load max df m m s= + ⋅ . For the tra-
jectory optimization problem an fmax should be used 
that is, say, 10 % - 20 % smaller as the actual limit in 
order to provide some margin for the feedback con-
troller. 
If the desired control variables yc,d(t) are not known 
in advance but generated online, e.g., by an operator, 
online optimization techniques have to be used: The 
operator request is reduced such that the plant con-
straints are fulfilled in the next sample time instant. 
A well known measure in flight control is the so-
called daisy-chain. In case a control input saturates, a 
secondary, redundant control input is brought in that 
provides the remaining required control power. In 
[21] for example, lateral deflection of the thrust vec-
tor is used to yaw the aircraft in case the rudder satu-
rates. 

6.4 Real-time implementation 

If inverse plant models are part of the controller, lin-
ear and non-linear systems of equations as well as 
non-linear differential equations might have to be 
solved in every sampling interval of the controller. 
The techniques developed for hardware-in-the-loop 

simulations can be also applied for such an applica-
tion. The methods described in [6] are available in 
Dymola [5] with the Dymola real-time option and 
can be applied by selecting the appropriate options 
when translating the inverse model (Simulation / 
Setup / Realtime / Inline integration method). Only 
fixed step integrators can be used for a real-time ap-
plication. Via simulations, the appropriate step size 
of the integrator has to be determined. 

6.5 Robustness 

As already mentioned in section 5, the use of inverse 
model equations gives rise to robustness issues, since 
any mismatch between the inverted model equations 
and the actual plant will leave part of the nonlineari-
ties and couplings uncompensated. The usual ap-
proach is to provide robustness to model uncertainty 
via the (linear) feedback controller (Fig. 2,3,4) or the 
filter (Fig. 5). This can be done by application of a 
robust control synthesis technique [2], or by robust 
parameter tuning in a classical structure, e.g. using 
multi-model techniques and enforcing sufficient sta-
bility margins [13]. 
Tolerances on parameters in the model also appear in 
the inverse model equations. In [13] it has been 
shown that these parameters may be very effectively 
used as additional tuning parameters in multi-
objective optimization. The result is a model that is 
basically inverted at a location in the parameter 
space that provides the highest level of robustness. 

7 Summary 

Several control structures have been discussed that 
are based on non-linear inverse plant models. These 
structures are attractive since it is possible to cope 
directly with operating point dependencies. The dif-
ficult part to construct an inverse model can be per-
formed automatically even for complex systems: The 
plant is modeled with Modelica, inputs and outputs 
are exchanged and a Modelica simulation environ-
ment, such as Dymola, generates automatically the 
appropriate C code for the inverse plant model, in-
cluding real-time integration algorithms. The gener-
ated code can be easily embedded into Simulink 
from Mathworks using the corresponding Dymola 
export option. Via Mathworks Realtime-Workshop, 
the code can be finally downloaded to different tar-
get processors. 
The presented controller structures can be used in all 
types of areas such as control of robots, vehicles, 
aircrafts, satellites, ships, motors, air conditioning 
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systems. The most important requirement is that an 
appropriate plant model is available. Then, the in-
verse modeling approach is in principle fully auto-
matic, although the practical application is usually 
more difficult. The essential issues have been dis-
cussed in section 6 and also possible remedies 
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Abstract 

A typical problem which often appears in Modelica mod-
els is when too many/few equations are specified. This 
leads to a situation where the simulation model is incon-
sistent and therefore cannot be compiled and executed. 
We propose a methodology for detecting and repairing 
over- and under-constrained situations based on graph 
theoretical methods. Components and equations that cause 
the irregularities are automatically isolated, and meaning-
ful error messages for the user are presented. The poten-
tially large number of error fixing alternatives is reduced 
by applying filtering rules extracted from the modeling 
language semantics. 

The paper illustrates that it is possible to localize and 
repair a significant number of errors during static analysis 
of a Modelica model without having to execute the simu-
lation model. In this way certain numerical failures can be 
avoided later during the execution process. The paper 
proves that the result of structural static analysis per-
formed on the underlying system of equations can effec-
tively be used to statically debug real models.  

Keywords: Modelica, debugging, structural and static 
analysis, mathematical modeling, structural validation. 

1 Introduction 

Mathematical modeling and simulation of complex physi-
cal systems is emerging as a key technology in engineer-
ing. Modern approaches to physical system simulation al-
low users to specify simulation models with the help of 
equation-based languages. Such languages have been de-
signed to allow automatic generation of efficient simula-
tion code from declarative specifications. Complex simu-
lation models are created by combining available model 
components from user-defined libraries. The resulted 
models are compiled in a simulation environment for effi-
cient execution.  

Unfortunately, errors are made and inconsistencies are 
easily introduced in the simulation models. A significant 
part of the model development effort is spent on detecting 
deviations from specifications and subsequently localizing 
the sources of such errors. A typical problem which often 
appears in physical system modeling and simulation is 

when too many/few equations are specified in a system. 
This leads to a situation where the simulation model is in-
consistent and therefore cannot be compiled and executed. 
The user should deal with over- and under-constrained 
situation by identifying the minimal set of equations or 
variables that should be removed from the system in order 
to make the remaining set of equations solvable. For ex-
ample, if there are too many equations in a system of 
100 000 equations, which equations should be removed? 
Currently the only systematic technique is to remove 
equations one by one until the equation that caused the in-
consistency is identified and finally removed from the sys-
tem. It can easily be imagined that, if a static debugger 
presents a small subset of over-constraining equations, 
from which the user can select the equation that needs to 
be eliminated from the overall model can greatly reduce 
the amount of time required to get the simulation working.  

Currently there are essentially no advanced tools that 
can handle the debugging of equation-based languages at 
the source code level and provide useful error fixing solu-
tions. The aim of the research presented in this paper is to 
considerably improve the situation, especially with respect 
to debugging the Modelica language. However, powerful 
graph-theoretic methods can help to pinpoint possible 
candidates for erroneous equations. A dramatic reduction 
in the number of erroneous equation candidates can be 
achieved by applying new methods such as semantic fil-
tering.  

In this paper we describe an empirical evaluation of 
debugging of automated debugging techniques for detect-
ing and repair structural inconsistencies in equation-based 
simulation models. We focus on performance of debug-
ging tools that use static analysis tools integrated into a 
Modelica compiler where the main purpose was to reduce 
the number of debugging alternatives when structural in-
consistencies were present in the model. Static analysis 
techniques only involve statically available information, 
such as which variables are present in which equations in 
and equation-based model. No assumptions regarding the 
inputs and outputs of the simulation models are made. The 
development of static and dynamic techniques for equa-
tion-based languages have been addressed by our previous 
research (Bunus 2004 [1], Bunus and Fritzson 2003 [2], 
Bunus and Fritzson 2004 [3]). 

The remainder of the paper is organized as follows: 
Section 2 presents the problem formulation and a motiva-
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tional example. Section 3 gives a brief description of the 
algorithms for detecting and debugging over-constrained 
situations that arise during the modeling phase with equa-
tion-based languages. Section 4 presents an evaluation of 
our debugging framework based on several benchmarks. 
Section 5 presents the overall architecture of a prototype 
debugger developed in the context of a Modelica com-
piler. Finally Section 6 presents our conclusions and fu-
ture work. 

2 Problem Formulation and Motiva-
tional Example 

Mathematical modeling proceeds by specifying a set of 
mathematical equations or functional relations denoted 

1{ , }nE e e= …  involving a set of variables denoted 

1{ , }mV v v= … . In the general case a system of n equation 
with m variables or unknowns can be described by the fol-
lowing equality:  

1( , )i m ie v v c=…     (2.1) 

where ic are constants and 1i n= … . Solving the system 
of equations E is the problem of finding the set of solu-
tions 1 1{( , ) | ( , )}m

m nS s s T e s s= ∈… …  where T is the do-
main of equations, which fulfill the equality (2.1). The re-
lation (2.1) can be expanded into: 

11 1 1 1

1 1

m m

n nm m n

a v a v c

a v a v c

+ =

+ =

"
#

"
  (2.2) 

where , 1 , 1
ij

a i n j m= =… …  are real coefficients. In a ma-
trix-vector notation, (2.2) has the form: =Av c  

where 
11 1

1

m

n nm

a a

a a
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⎜ ⎟
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…
# % #
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1

m

v

v

⎛ ⎞
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v #  and 
1

n

c

c

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

c #    (2.3) 

A necessary condition for the existence and uniqueness of 
a solution S is that matrix A is a square matrix (the num-
ber of equations is equal to the number of variables) and 
there exists permutations 1 2P P  such that 1 2P AP has a non-
zero diagonal. This condition guarantees the structural 
singularity of the system of equations. The structural sin-
gularity checks whether the system of equations is well-
posed or not. It is only a necessary but not sufficient con-
dition for the existence and uniqueness of a solution. The 
more powerful notion of numerical singularity will guar-
antee the existence and uniqueness of a solution. However 
the checking the numerical singularity is as expensive as 
solving the system of equations. Therefore when analyz-
ing the system of equations in this stage we assume that 
the structural non-singularity is a sufficient abstraction for 
implying that the equation system has a unique solution. 
Further analysis based on numerical values and numerical 
singularities is delayed until the dynamic analysis stage.  

If the system of equations is structurally singular we 
switch from the problem of finding the set of solutions S 
to the problem of finding the maximal subset of equations  

1{ , }S tE e e= … where t n<  and SE E⊂  if n m> (we 
have more equations than variables ) or to the to the prob-
lem of finding the maximal subset of variables 

1{ , }S kV v v= …  where k m<  and SV V⊂  if n m< (we 
have more variables than equations ). 

As an example let us consider a Modelica model con-
sisting of a sinusoidal voltage source and a resistor con-
nected together. This model is trivial, but it serves as a 
straightforward vehicle for introducing several fundamen-
tal debugging concepts. 

 connector Pin 
 Voltage v; 
 Flow Current i; 

end Pin; 
model 

  TwoPin  Pin p, n ; 
 Voltage v; 
 Current i; 

equation 
 
v = p.v - n.v; 0 = p.i + n.i; i = p.i 

end 
  TwoPin; 

model Resistor 
 
extends 

  TwoPin; 
 
parameter Real R; 

equation 
 
R*i = v; 

end Resistor; 
model 

  VsourceAC 
 
extends 

  TwoPin; 
 
parameter 

  Real VA=220; parameter 
  Real  f=50; 

 
protected 

  constant Real PI=3.141592; equation 
 
v =VA*(sin(2*PI*f*time)); 

end 
  VsourceAC; 

model Ground 
 Pin p ; 

equation 
 
p.v = 0 

end Ground; 
model Circuit 
 Resistor R1(R=10); VsourceAC AC; Ground G; 

equation 
 
connect (AC.p,R1.p); connect (R1.n,AC.n); 

 
connect ( AC.n,G.p); 

end Circuit; 
 

We introduce an additional equation (i=23) inside the 
Resistor component in order to over-constrain the simu-
lation model. The flattened equations corresponding to the 
Circuit model is depicted in Figure 1.   

 eq1 R1.v = -R1.n.v + R1.p.v 
eq2   0 = R1.n.i + R1.p.i 
eq3  R1.i = R1.p.i 
eq4 R1.i R1.R = R1.v 
eq5 R1.i = 23 
eq6  AC.v = -AC.n.v + AC.p.v 
eq7 0 = AC.n.i + AC.p.i 
eq8  AC.i = AC.p.i 
eq9 AC.v = AC.VA*sin[2*time*AC.f*AC.PI] 
eq10 G.p.v = 0 
eq11 AC.p.v = R1.p.v 
eq12  AC.p.i + R1.p.i = 0 
eq13 R1.n.v = AC.n.v 
eq14 AC.n.v = G.p.v 
eq15 AC.n.i + G.p.i + R1.n.i = 0 

var1 R1.p.v 
var2 R1.p.i 
var3 R1.n.v 
var4 R1.n.i 
var5 R1.v 
var6 R1.i 
var7 AC.p.v 
var8 AC.p.i 
var9 AC.n.v 
var10 AC.n.i 
var11 AC.v 
var12 AC.i 
var13 G.p.v 
var14 G.p.i 
  

Figure 1. Flattened equations and variables corresponding 
to the Circuit model. 
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It should be noted that the number of equation is greater 
than the number of variables and therefore we are facing a 
structurally nonsingular problem.  

3 Debugging Over- and Under-
constrained Models 

The methods proposed in this section present a strategy to 
deal with overdeterminancy by identifying the minimal set 
of equations that should be removed from the system in 
order to make the remaining set of equations solvable. The 
idea is to isolate the over-constraining part of the bipartite 
graph associated to the underlying system of equations 
and to perform reasoning based on specific properties of 
the specified subgraph. Efficient graph transformations, 
based on rules derived from the semantics of the modeling 
language are also performed on the subgraphs. We are go-
ing to show how these rules are automatically derived 
from the modeling language semantics and how the asso-
ciated annotations to the equations contribute to the filter-
ing of the combinatorial explosion of possible error fixing 
solutions. Those interested in more details may wish to 
consult Bunus and Fritzson 2004 [3] or Bunus 2004 [1].  

Step 1: Isolating the over-constraining part. 

In step 1, from the flattened intermediate form of the 
equations the associated bipartite graph is derived and a 
maximum cardinality matching is found. The Dulmage 
Mendelsohn canonical decomposition (Dulmage and 
Mendelsohn 1963 [4]) will lead to two different sub-
graphs: a well-constrained part GW and an over-
constrained part +1

GO  as depicted  in Figure 2. The maxi-
mum cardinality matching is shown in Figure 2 with bold 
edges.  

 eq1 

eq4 

eq5 

eq6 

eq9 

eq10 

eq11 

eq13 

eq14 

var1 

var3 

var5 

var6 

var7 

var9 

var11 

var13 

eq2 

eq3 

eq7 

eq8 

eq12 

eq15 

var2 

var4 

var8 

var10 

var12 

var14 

over-constrained part 

well-constrained part 

 
Figure 2. Canonical decomposition of an over-constrained 
system. 

It can be seen that equation eq11 is not covered by the 
found maximum cardinality matching. Therefore equation 
eq11 is a non-saturated or free vertex of the equation set, 
therefore it is a source for the over-constrained part +1

GO . 
Next, starting from eq11, the directed graph can be de-
rived from the undirected bipartite graph, as illustrated in 
Figure 3, by exchanging all the matching edges into bidi-

rectional edges and orienting all other edges from equa-
tion to variable nodes. The layout of the directed graphs 
derived from the undirected bipartite graphs has been rear-
ranged into a tree representation for the purpose of in-
creasing understandability for the reader of the paper. 
 

 
eq11 

eq6 eq1 

var1 var7 

var11 

eq9 

var3 

eq13 

var9 

eq14 

var13 

eq10 

G.p.v = 0 

var5 

eq4 

var6 

eq5 
R1.i = 23 

AC.v = AC.VA* 
     sin[2*time*AC.f*AC.PI] 

 
Figure 3. A directed graph associated to the over-
constrained part. 

Step 2: Reducing the over-constraining equations 
by using structural information. 

The general error fixing strategy in the case of over-
constrained equation subsystems is to remove the extra 
equations. An immediate fix to the over-constrained part 
is to remove one of the equation nodes, which will lead to 
a well-constrained part. However, as it can be seen from 
Figure 4, not all the equation edges can be safely re-
moved. 
 

eq1 

var1 

var3 

eq13 

var9 

eq14 

var13 

eq10 

G.p.v == 0 

var5 

eq4 

var6 

eq5 
R1.i == 23 

eq11 

eq6 

var7 

var11 

eq9 

var3 

eq13 

var9 

eq14 

var13 

eq10 

G.p.v == 0 

var5 

eq4 

var6 

eq5 
R1.i == 23 

eq11 

eq6 

var7 

var11 

eq9 

 
Figure 4. The elimination of an unsafe equation node 
(eq1) from the over-constrained subgraph (on the left) 
leads to two disconnected components (on the right). 

By removing an equation node and the corresponding in-
cident edges from the bipartite graph the remaining undi-
rected graph must remain connected. In our particular ex-
ample the set of over-constraining equations that satisfy 
this condition is {eq11, eq13, eq10, eq5, eq9}. It should 
be noted that the safe removal of equation nodes only re-
fers to the bipartite graph representation of the intermedi-
ate code of the flattened set of equations, and it is influ-
enced by only structural properties of the bipartite graph. 
If we would like to further reduce this set of equations, 
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removal criteria derived from the semantics of the model-
ing language would need to be developed and included in 
the debugging strategy. 

Step 3: Reducing the over-constraining equations 
by using semantic information 

As we have seen in the previous example not all the over-
constraining equations are possible to remove without 
causing further structural failures in the model description. 
By taking into account simple rules derived from the lan-
guage semantics we can safely discard some other elimi-
nation alternatives as well.  

We note that equation eq11 (AC.p.v = R1.p.v) is 
generated by a connect equation from the Circuit 
model and the only way to remove the equation eq11 is to 
remove the original connect(AC.p, R1.p) equation. 
However, removing the above-mentioned equation will 
remove two equations from the flattened model since the 
connect equation expands into two equations. It is obvi-
ous that this modification cannot be performed by the user 
at the original source code level. 

In order to provide a mechanism to reason about the 
erroneous model under consideration based on language 
semantics rules the equations need to be annotated. We 
define an annotated equation as a record with the follow-
ing structure:   

< Equation,  

  Name,  

  Description,  

  No. of associated equations,  

  Class name,  

  Flexibility level,  

  Connector generated,  

  No. of linked equations  

>  

The Class Name indicates which class the equation comes 
from. This annotation is extremely useful in exactly locat-
ing the associated class of the equation and therefore pro-
viding concise error messages to the user in terms of 
original source code statements. 

The No. of associated eqs. field defines the number of 
equations which are specified together with the annotated 
equation inside the same model. For an equation that be-
longs to the TwoPin class the number of associated equa-
tions is equal to 3. If one associated equation of the class 
needs to be eliminated the value is decremented by 1. Dur-
ing debugging, if the equation R1.i * R1.R = R1.v is 
diagnosed to be an over-constraining equation and there-
fore needs to be eliminated, then the elimination is not 
possible because the model will be invalidated (the No. of 
associated eqs. cannot be equal to 0) and therefore other 
solutions need to be investigated. 

The flexibility level, in a similar way as defined in 
Flannery and Gonzalez 1997 [5], allows the ranking of the 
relative importance of the equation in the overall flattened 
system of equations. The value can be in the range of 0 to 
3, with 0 representing the most rigid equation and 3 being 

the most flexible equation. In practice, it turns out that the 
equations generated by connections are more rigid from 
the constraint relaxation point of view than the equations 
specified inside the model. This means that preference is 
given to repair strategies that involve the removal of equa-
tions which defines the behavior of a particular compo-
nent and not to topology changes of the circuit given by 
the connection equations. We set the flexibility value to 0 
for those equations that should not be removed or modi-
fied. These equations are locked for editing which means 
that an automatic debugger should not consider any repair 
strategy that would involve the modification or the re-
moval of the equations associated to such a component. 
For example the equations of components that come from 
well tested and trusted libraries can have this value set to 
zero. 

The Connector generated is a Boolean attribute 
which tells whether the equation is generated or not by a 
connect equation. Usually these equations have a very 
low flexibility level.  

The No. of linked equations attribute specifies how 
many other equations are linked with the current equa-
tions. Equations that come from connect equations or 
from parent objects (such as the TwoPin partial compo-
nent) have this attribute greater than zero. Removing an 
intermediate equation that has this attribute greater than 
zero will trigger the removal of other intermediate addi-
tional equations equal to the number of linked equations. 
This is due to the fact that the removal of an intermediate 
equation is only possible by removing the original source 
code that generated that equation. By doing this all the 
generated intermediate equations by the original equation 
will be removed. 

It is worth noting that the annotation attributes are 
automatically initialized by the static analyzer. These are 
incorporated in the front-end of the compiler, by using 
several graph representations of the declarative object-
oriented program code. Therefore the user does not need 
to manually annotate the source code. A debugger pre-
processor takes care of the automatic generation and ini-
tialization of the annotating code. In this way a mapping 
between the intermediate code and original declarative 
code is kept during the translation phases. 

The annotations associated to the set of equivalent 
over-constraining equations {eq11, eq13, eq10, eq5, eq9} 
are shown in Table 1. 

Table 1. The associated annotations of the remaining 
over-constraining equation set 
Name Equation No. of 

assoc. 
eqs. 

Class 

 name 

Flex. 

level 

Con. 

gen. 

No.of 
linked 
eqs. 

eq11 AC.p.v=R1.p.v 3 Circuit 1 Yes 1 

eq13 R1.n.v= AC.n.v 3 Circuit 1 Yes 1 

eq10 G.p.v=0 1 Ground 2 No 0 

eq5 R1.i=23 2 Resistor 2 No 0 

eq9 AC.v=AC*VA*sin.. 1 VsourceAC 2 No 0 

The equation node eq11 was already analyzed and can 
therefore be removed from the set. Equation node eq13 is 
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removed as well, for the same reasons as equation eq11. 
By analyzing the remaining equations {eq10, eq5, eq9}, 
one should note that they have the same flexibility level 
and therefore candidates for elimination with equal prob-
ability. However, by analyzing the value of the No. of as-
sociated eqs. annotation, equation eq10 and eq9 have this 
attribute equal to one, which means that they are the only 
equations that define the behavior of the model. Removing 
one of these equations will invalidate the corresponding 
model component, which is probably not the intention of 
the modeler and therefore not acceptable as an error fixing 
solution.  

By examining the annotations corresponding to equa-
tion eq5 one can see that it can safely be removed because 
its flexibility level is high. The removal of eq5 will not 
trigger the removal of any other equation since it has no 
linked equations (indicated by the value of No. of linked 
eqs. annotation which is equal to 0). Moreover, removing 
equation eq5 will not invalidate the model since there is 
another equation defined inside the Resistor model 
(R1.i * R1.R = R1.v) denoted by the value of No. of 
associated eqs. annotation which is equal to 2.  

Step 3: Outputting the debugging alternatives. 

After selecting the right equation for elimination the de-
bugger tries to identify the associated class of that equa-
tion based on the Class name parameter defined in the an-
notation structure. Having the class name and the interme-
diate equation form (R1.i=23), the original equation can 
be reconstructed (i=23) to exactly indicate to the user the 
equation that needs to be removed in order to make the 
simulation model well-constrained. In this case the de-
bugger correctly located the faulty equation previously in-
troduced by us in the simulation model. 

When multiple valid error fixing solutions are possi-
ble and the debugger cannot decide which one to choose, a 
ranked list of error fixes is presented to the user for further 
analysis and decision. In those cases, the user must take 
the final decision, as the debugger cannot know or does 
not have enough information to decide which equation is 
over-constraining. The advantage of this approach is that 

the debugger automatically identifies and solves several 
anomalies in the declarative simulation model specifica-
tion without having to execute the system. 

When debugging under-constrained systems (more 
variables than equations are present in the system) two 
distinct strategies can be considered. The first strategy 
considers the removal of the free variables while the sec-
ond strategy considers the addition of new equations to the 
overall system of equations, which must contain the free 
variables. Additionally, the second strategy takes into ac-
count extra variables that can be added to the introduced 
new equation. New equations can be introduced at differ-
ent levels in the object hierarchy. 

4 Experimental Validation 

In this paper we are interested in the quality of structural 
and semantics filtering rules employed in the proposed 
static debugging algorithm for correcting over- and under-
constrained system of equations extracted from simulation 
models expressed in the Modelica language.  

Firstly, we have modified several working simulation 
models by inserting additional equations in the model 
definitions at various places, thereby over-constraining the 
whole system models. In this first set of experiments we 
were interested if over-constraining situations are detected 
and how many repair possibilities are reported by the de-
bugger.  

A short description of the benchmark programs and 
the over-constraining nature for each example is given in 
Table 2. The measurements in Table 2. were performed as 
follows. We built several Modelica simulation models that 
were structurally correct. Then we have modified each ex-
ample by inserting an extra equation in different compo-
nents of the simulation model. In this way the models be-
came over-constrained. During the translation phase the 
system of flattened equation and each equation was anno-
tated. In the next step a canonical decomposition was per-
formed on the structurally singular system of flat equa-
tions and the over-constraining graph was isolated. Based 
on the over-constraining graph the reduced set of  

Table 2. Benchmark program description for over constrained systems. 

Test model Description 
No.  
of 
var. 

No 
of 
eq. 

Over 
contr. 
part 

Red. over 
constr. 
part 

Semantic 
filtering 

Debugging 
alt. 

1
scircuitR

+  
A simple electrical circuit model consisting of a resistor connected 
in parallel with a continuous voltage source. The Resistor 
component is over-constrained by an extra equation. 

14 15 9 5 1 1 

3
scircuitPin

+  
A simple electrical circuit model consisting two resistors con-
nected in parallel with a direct current source. The TwoPin com-
ponent is over-constrained by one extra equation. 

20 23 19 15 3 1 

2
generatorR

+

 

A generator circuit model similar where the Resistor compo-
nent is over-constrained by one an extra equation. 49 51 35 22 6 3 

1
dcmotorR

+  
A direct current motor circuit model where the Resistor com-
ponent is over-constrained by one an extra equation. 36 37 31 29 7 7 
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Figure 5. Number of over-constraining equations obtained after  
each reduction step during structural debugging.  

over-constraining equations was computed. 
This set of equations was further reduced by 
using semantic filtering rules. Based on this 
final set of equation the error messages are 
output to the user. The numbers of debugging 
alternatives are shown in the last column of 
Table 2. Figure 5 depicts the number of over-
constraining equations obtained after each 
reduction step.   

Secondly, we investigated the detection 
capabilities of the static debugger when un-
der-constrained situation were purposely in-
troduced in the simulation model by deleting 
equations or adding extra variables in the sys-
tem. The modifications performed on each 
model are described Table 3. The debugging 
of the under-constrained system was per-
formed by considering only those corrections 
that imply the removal of a free variable from 

Table 3. Benchmark program description for under-constrained systems 

Test model Description 
No 
of 
eq. 

No.  
of 
var. 

Under 
contr. 
part 

Red. over 
constr. 
part 

Semantic 
filtering 

Debugging 
alt. 

1
scircuitR

−  

A simple electrical circuit model consisting of a resistor connected 
in parallel with a continuous voltage source. In the Resistor 
component an extra variable has been declared (Real s) and the 
equation R*i=v*s was introduced instead of the correct equation 
R*i=v. 

14 15 8 5 1 1 

3
scircuitPin

−  

A simple electrical circuit model consisting two resistors con-
nected in parallel with a direct current source. The TwoPin com-
ponent is under-constrained by introducing an extra variable 
(Real s) and by exchanging equations 0 = p.i + n.i with 
s = p.i + n.i. 

20 23 7 4 3 1 

2
generatorR

−

 

A generator circuit model. In the Resistor component an extra 
variable has been declared (Real s) and the equation R*i=v*s 
was introduced instead of the correct equation R*i=v. 

49 51 28 21 3 1 

1
dcmotorR

−  

A direct current motor circuit model. In the Resistor compo-
nent an extra variable has been declared (Real s) and the equa-
tion R*i=v*s was introduced instead of the correct equation 
R*i=v. 

37 36 30 28 4 4 

 
the system. Figure 6 displays the number 
of under-constraining variables after each 
reduction step. After each step during the 
structural debugging the number of free 
variables that can be removed from the 
system is dramatically reduced. It should 
be noticed in Figure 6 that the largest re-
duction in the number of free variables 
and implicitly in the number of debug-
ging alternatives presented to the user is 
achieved by the semantic filtering phase. 

We are interested in the quality of 
structural and semantics filtering rules 
employed in the proposed static debug-
ging algorithm for correcting over- and 
under-constrained system of equations 
extracted from simulation models ex-

15

8

5

1 1

23

7

4
3

1

51

28

21

3
1

36

30
28

4 4

0

10

20

30

40

50

N
o.

 o
f 

va
ri

ab
le

s

 
No. of flat 
variables 

No. of under- 
constraining 
variables 

No. of reduced 
under-
constraining 
variables 

No. of 
semantically 
reduced 
variables 

No. of  
debugging  
alternatives 

1scircuitR −  

3scircuitPin −  

2generatorR −  

1dcmotorR −  

step 1 step 2 step 3 step 4 

Figure 6. Number of under-constraining variables obtained after each 
reduction step during structural debugging. 
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pressed in the Modelica language. Table 4 shows the per-
centage reduction in the number of equations/variables 
that need to be examined by user after each step in the de-
bugging process. 

Table 4. Percentage reduction of the number of equa-
tion/variables that need to be examined by the user after 
each reduction step. 
Test model No. of flat  

eq./.var 

Step1 Step 2 Step3 Step 4 

1
scircuitR

+  15 40.0% 66.7% 93.3% 93.3% 
3

scircuitPin
+  23 17.4% 34.8% 87.0% 95.7% 

2
generatorR

+  51 31.4% 56.9% 88.2% 94.1% 
1

dcmotorR
+  37 16.2% 21.6% 81.1% 81.1% 

1
scircuitR

−  15 46.7% 66.7% 93.3% 93.3% 
3

scircuitPin
−  23 69.6% 82.6% 87.0% 95.7% 

2
generatorR

−  51 45.1% 58.8% 94.1% 98.0% 
1

dcmotorR
−  36 16.7% 22.2% 88.9% 88.9% 

 
As can be seen in Figure 5, Figure 6 and from the percent-
age reduction Table 4, the proposed algorithm for debug-
ging over- and under-constrained systems is very efficient 
in reducing the number of debugging alternative shown to 
the user. On the average, 91% of the irrelevant candidates 
were eliminated, which allows the user to look for the bug 
among the few remaining candidates, thus dramatically 
improving bug localization effectiveness. 

5 Implementation 

For the previously presented graph decomposition tech-
niques to be useful in practice, we must be able to con-
struct and manage the graph representation of equation-
based specifications efficiently and integrate them into an 
automatic or semi-automatic debugging tool. The use of 
graph-based tools in structural analysis is of great interest 
both in displaying properties of systems of equations and 
also in following and performing symbolic manipulations 
of variables and equations when modeling with equation-
based languages (Harman 2005 [6]). We show how exist-
ing graph theoretical decomposition techniques can be 
adapted and integrated into debugging tools integrated 
into simulation environments that employs such lan-
guages. 

At this stage we are able to provide an overview of 
the proposed framework developed for the Modelica lan-
guage and Modelica-based simulation environments. Even 
if we have limited our prototype implementation to the 
Modelica language, the developed debugging kernels can 
easily be adapted to handle other object-oriented equation-
based languages as well. It is important to note that the 
proposed debugging framework can easily be integrated 
into the existing Modelica compilers.  

AMOEBA (Automatic MOdelica Equation-Based 
Analyzer) is the static analysis module that we have de-
signed and implemented in order to attach it to a Modelica 

compiler. The tool is able to successfully detect and pro-
vide error-fixing solutions for typical over and under-
constrained situations, which might appear during the 
modeling stage using Modelica. Figure 7 show the general 
architecture of our static debugger.  

 
Figure 7. AMOEBA integration into the compilation 
framework. 

Below we present each phase of the static analysis with 
the corresponding module: 

The flattened equations are transformed into the bi-
partite graph representation by a Graph Mapping module. 
The canonical decomposition algorithm applied by the 
BLT module in the compiler splits the graph into three dis-
tinct subgraphs corresponding to an over-constrained sys-
tem of equations (too many equations are present), an un-
der-constrained system (too few equations or too many 
variables are present in the system) and a well-constrained 
system of equations (the number of variables is equal to 
the number of equations). A simple heuristic filtering rule 
assumes that the well-constrained part obtained after de-
composition will lead to a solvable system of equations 
and therefore need not be included in any repair strategy. 
If under- or over-constrained situations are detected, this 
means that there are some inconsistencies in the model. 

The Over- and Under-Constrained System Analyzers 
applies the algorithms presented in previous sections, in 
order to transform these graphs into a well-constrained 
graph and elaborate the necessary program modifications.  

The Code Transformer module needs to validate the 
program correction: it must assure that there exists a se-
mantically correct source code program that can be trans-
lated into the intermediate program correction. The source 
code transformations must be performed only by using 
atomic changes at the original source code level. Finally, 
the error fixing solution is output by the debugger in terms 
of atomic changes that need to be performed on the origi-
nal source code in order to obtain a valid original source 
code program that will generate the corresponding pro-
gram modifications at the intermediate code level. When 
multiple error fixing solutions exist, the annotations at-
tached to the flattened equations are used in the process of 
eliminating some of the modifications and prioritizing the 
remaining ones.   

The Error Presentation module is responsible for pre-
senting error messages to the user based on the previously 
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obtained valid source code modifications. Before being 
presented to the user, the output is filtered. For example, 
all the modifications that would involve atomic changes 
on locked components are eliminated and the remaining 
corrections are ranked based on equations annotations. 
This module handles most of the user interaction neces-
sary for the debugger to complete the missing formal 
specification of the program. At this level the user can be 
confronted with several error fixing corrections that will 
eliminate the symptom of the detected inconsistency at the 
intermediate code level. The corrections that most closely 
correspond to the programmer's view of the model struc-
ture should be selected. 

6 Conclusions 

Structural analysis techniques are widely used for assess-
ing the correctness and the credibility of mathematical 
models expressed with the help of equations. Experience 
has taught us that pre-processing a system of equations 
pays high dividends by reducing the time for finding in-
consistencies and efficiently correcting them. From the 
user point of view, such techniques are extremely benefi-
cial because they provide guidance during early stages of 
the simulation model building process and do not require 
solving the equations system.  

The paper illustrates that it is possible to localize and 
repair a significant number of errors during static analysis 
of object-oriented equation-based modeling languages 
without having to execute the simulation model. In this 
way certain numerical failures can be avoided later during 
the execution process. The paper proves that the result of 
structural static analysis performed on the underlying sys-
tem of equations can effectively be used to statically de-
bug Modelica simulation models.  

This paper describes one of the first experimental 
studies on how these new static debugging techniques per-
form on erroneous model examples. We have presented an 
empirical evaluation of proposed static analysis based de-
bugging paradigm for equation-based languages. Our 
studies demonstrated that static analysis can dramatically 
reduce debugging time, suggesting the potential of struc-
tural analysis as a highly effective approach. 

Currently, the debugger’s functionality is limited 
mostly due to our inability to compile the full Modelica 
language. Therefore only a limited number of real world 
examples with limited size and complexity have been 
tested. The integration of the presented debugging tech-

niques into the Open Source Modelica framework is un-
derway. In order to provide a complete debugging frame-
work for the Modelica language we intent to integrate the 
proposed structural analysis techniques with  the existing 
debugger for the algorithmic subset of the Modelica lan-
guage proposed by  Pop and Fritzson 2005 [7].  

We claim that the techniques developed and proposed 
in this paper are suitable for a wide range of equation-
based languages and not only for the Modelica language. 
These techniques can be easily adapted to the specifics of 
a particular simulation environment. Our claim is based on 
the close integration of the developed debugging tech-
niques and the compilation process. Most of the existing 
compilers for equation based languages share the same 
principles.   
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