
Meta Programming and Function Overloading in OpenModelica

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus and Kaj Nyström
{petar,petfr,levsa,petbu,kajny }@ida.liu.se

Programming Environments Laboratory (PELAB)
Department of Computer and Information Science Linköping University, Sweden

Abstract

The OpenModelica framework is an Open Source ef-
fort for building a complete compiler for Modelica
started at the programming environments laboratory
at Linköping university. It is written in a language
called RML [10], Relational Meta Language, based on
natural semantics. Natural semantics is a popular for-
malism for describing the semantics (i.e. themeaning
of language constructs) for compilers. By using the
RML language this formalism is combined with effi-
cient compilation into optimized C code.
The OpenModelica framework is used to experiment
with new language features and language design for
the ongoing development of the Modelica language.
The design of the Modelica language is performed in
the Modelica Design Group (by the Modelica Associ-
ation) - an open group of Modelica users, resarchers,
vendors, etc., where the the Modelica language is
evolved through intensive discussions in threedays
workshops, three or four times a year.
Recently, support for Meta-programming and function
overloading (including an external interface to LA-
PACK) have been implemented in the OpenModelica
compiler. This paper present the design and imple-
mentation of these language constructs in the Open-
Modelica framework and illustrates how to utilize this
framework for research in e.g. language design, meta-
programming and modeling and simulation methodol-
ogy.

1 Introduction

The OpenModelica[6, 9] environment consist of a
compiler that translates Modelica [3, 5] code into flat
Modelica, which basically is the set of equations, al-
gorithms and variables needed to simulate the com-
piled Modelica model. The environment also includes
a shell, i.e. an interactive command and expression in-
terpreter, similar to a Matlab prompt, where models

can be entered, computations can be performed and
functions can be called. In this environment it is also
possible to execute Modelica scripts, i.e. Modelica
functions or expressions executed interactively or a set
of algorithm statements defined in a text file.

An example of a session in the OpenModelica shell
is given below:

> ./mosh.exe
Open Modelica 1.0
Copyright 2003, PELAB,
Linkoping University
>>> loadModel(Modelica)
true
>>> model A=Modelica.Electrical
.Analog.Interfaces.OnePort;
Ok
>>> translateModel(A)
record

flatClass = "fclass A
Real v;
Real i;
Real p.v;
Real p.i;
Real n.v;
Real n.i;

equation
v = p.v - n.v;
0.0 = p.i + n.i;
i = p.i;

end A;",
exefile = ""

end record
>>>

The OpenModelica compiler has been developed at
the programming environments laboratory (PELAB)
at the department of Computer and Information sci-
ence at Link̈oping University. It is used to conduct
research on Modelica and tools for modeling and sim-
ulation. Current research activities at PELAB involve
automatic paralleization [1], support for Partial Differ-
ential equations in Modelica [11] and debugging tech-
niques for Modelica [2]. The OpenModelica frame-
work is also used as a testbench for new language

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

constructs, discussed at the Modelica design meetings
held by the Modelica Association [7] approximately
four times per year. Many of the ideas presented in this
paper have originated from these meetings and some
have been elaborated and refined.

The rest of the paper is organized as follows. The
next section present the design of Meta-programming
in Modelica and how it is used in the OpenModelica
compiler. This is followed by a section on operator
overloading in Modelica. The paper ends with conclu-
sions and future work.

2 Meta-programming

Meta-programming is to write programs having other
programs (so called object-programs) as data [12]. A
program can for instance take another program as in-
put data, perform computations on the program by
traversing its internal structure (the abstract syntax of
the program) and return a modified program as output
data.

Often, the object program language and the meta-
program language are the same, like for instance in
LISP or Java reflection. This is also the approach we
have taken for Modelica. A language needs some way
of representing the object-program as data. A simple
and naive approach is to use strings for this. For ex-
ample as follows:

String equationCode =
"equation v = L*der(i);"

However, with this naive approach there is no inter-
nal structure of the object. We cannot even guarantee
syntactic correctness, e.g. that the program inside the
string corresponds to a valid (from a grammatical point
of view) piece of code. This is a major disadvantage,
and therefore most Meta-programming languages do
not use this approach.

Another solution is to encode the object-program
using data types of the meta-language. This basically
means that data types for the abstract syntax are de-
fined in the language itself. This approach has the ben-
efit of ensuring correct syntax of object-programs. It
is used in for instance Java reflection where the class
java.lang.Class is thedatatypefor a Java class.
The class has methods to query a Java class for its
methods, members, iterfaces, etc.

Our current design uses built-in Modelica types to
handle Modelica code, like for instanceTypeName
for a Modelica type name orVariableName for a
Modelica variable name.

To create data values of the object program in the
meta-program aquotingmechanism is needed. This

approach is used in several different programming lan-
guages, such as Tick-C [4], LISP, MetaML [13] and
Mathematica [14]. A quote is used to distinguish the
object-program from the meta-program. For instance
LISP use the quote character as quotation mechanism.

´(plus 1 3)

Furthermore to allow insertion of values into quoted
expressions an anti-quote mechanism is needed. An
anti-quote will lift the following expression up to the
meta-program level, and it will thus beevaluatedand
replaced by a piece of object code. For example in
LISP the anti-quote is the comma character.

(let x ’(plus z 3))
‘(foo ,x 1)

will result in

‘(foo (plus z 3) 1)

2.1 Design Requirements

The requirements for meta-programming support in
Modelica are the following:

• Ease of useMeta-programming should be easy
to learn and use. This means that e.g. the syntax
should be similar to what a Modelica programmer
is used to. It should be possible to write small
pieces of code and insert them with a singe com-
mand. For instance, adding an equation to an ex-
isting model should be a short one-line command.

• Advanced At the same time, it should be ad-
vanced enough to make it possible to perform the
tasks needed by an advanced user who for in-
stance wants to use meta-programming to write
diagnosis applications, system identification, ap-
plications or other technically advanced tasks
where a high level of automation is needed.

• Backwards compatibility The design of new
language constructs and semantic behavior
should be compatible with the current Modelica
language [8]. This means that old Modelica code
will work with these new extensions.

Considering these requirements, the proposed de-
sign is given in the next section.

2.2 Design for Meta-programming

For quoting Modelica code we propose the keyword
Code together with parentheses and for anti-quoting
we propose the keywordEval also with parentheses.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

A reasonable limitation forEval is to only allow it in
the same context as expressions, i.e. the Eval keyword
including parenthesis can only be used where expres-
sions can be used. This simplifies the parsing, without
limiting the practical usage of the anti-quote mecha-
nism.

The use of these two keywords are given in the fol-
lowing example:

myExpr := Code(der(x) + x);

Then the code expression

Code(equation x=Eval(myExpr))

will evaluate to

Code(equation x = der(x) + x;)

We also introduce built-in types forCode expressions.
A type for any piece of Modelica code is in our pro-
posal of the typeCode. Then we have subtypes (sub-
classes) of this type for specific Modelica code pieces,
like VariableName for code representing a variable
name,TypeName for code representing a type name.
Table 1 gives the type names for the proposed kinds of
Modelica code that can be constructed using theCode
quote.

Note that some of the cases are overlapping. For
instance a variable reference (componentreference)
is also an expression. In such cases, the most spe-
cialized type will be used. For instance, in this
case the expressionCode(a.b.c) will have the type
VariableName which is a subtype ofTypeName
which is a subtype ofExpression . This can be in-
convenient in some cases when for instance we want
to create a piece of code for a type name. To partly
remedy this lack we introduce an optional extra ”ar-
gument” toCode giving the type name of theCode
piece. For example to create a type name we can write1

Code(Modelica.SIunits, TypeName)

Also, to fulfill the ease-of-use requirement to a greater
extent, and allow for easy use of type and variable
names as arguments to functions, we also propose an
automatic quotingmechanism. The rule is quite sim-
ple and solves our problem mentioned above:

• When the expected type (formal parameters and
in operator arguments) of an expression is a sub-
type of Code (i.e. any of the types presented in
Table 1), if the type of the argument expression is
not a subtype of Code, the expression is automat-
ically quoted, i.e. becomes a Code literal with the
same type as the expected type.

1This also helps in implementing a parser for Code constructs,
since ambiguities can then be resolved by inspecting the second
argument to Code.

For example, if we have a functionfoo taking a
TypeName as an argument and we call it with

foo(a.b.c)

this will be automatically translated (by the automatic
quoting mechanism) into

foo(Code(a.b.c,TypeName))

With these constructs at hand it is possible to start us-
ing Meta-programming by a set of built-in functions
for updating Modelica code such as models and func-
tions. Such functions are already partly available in
the OpenModelica research compiler and will not be
presented in further detail. Instead we will give an ex-
ample on how to use Meta-programming and scripting
functionality to achieve a parameter sweep on a Mod-
elica model. The function is presented in Figure 2 and
can be used as follows: We call theparamSweep
function in the interactive environment and store the
result in the variable r:

>> r:=paramSweep(test,R1.R,1:10);
>>

Then we call the function typeOf which returns a string rep-
resentation of the type of a variable:

>> typeOf(res)
"SimulationResult[10]"
>>

which results inSimulationResult[10] , i.e. a vec-
tor of 10 elements with the element type being a record
of information about a simulation execution.

2.3 Implementation in OpenModelica

In this section we will describe how the Meta-
programming support has been implemented in Open-
Modelica. The support for the quoting mechanism
Code andEval is added to the internal representation
(the abstract syntax tree or AST) using the following
data types (in RML code):

datatype Code =
TYPENAME of Path |
VARIABLENAME of Component_ref |
EQUATIONSECTION of bool *

EquationItem list |
ALGORITHMSECTION of bool

* AlgorithmItem list |
ELEMENT of Element |
EXPRESSION of Exp |
MODIFICATION of Modification

The datatype declarations in RML are similar to
those in the Standard ML language. The vertical bar
(pipe character) indicates alternatives, the capital let-
ter words are names of node type constructors. For
instance, a data object of type Code is:

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

Type Non-terminal in gram-
mar

Description

TypeName name The name of a type, e.g.Modelica.SIunits
VariableName componentreference The name of a variable, e.g.a[3].b.c
EquationSection equationclause An equation section, e.g. equation x=y;

z=1;
AlgorithmSection algorithmclause An algorithm section, e.g. algorithm

x:=sin(y);
Element element A class definition, components, import statements

and extends clauses declared in a class.
Expression expression A Modelica expression, e.g.foo(1:3,a+1)+PI .
Modification modification A modification of a component declaration, extends

clause, etc. for instance ”=1.5” or ”(R=10)”.

Figure 1: Types for Code expressions.

function paramSweep
"A function for performing a parameter sweep of a model"
input TypeName modelName;
input VariableName variable;
input Real values[:];
input Real startTime=0.;
input Real stopTime=1.;
output SimulationResult result[size(values,1)];

protected
Boolean flag;
SimulationObject simObj;

algorithm
(flag,simObj) := translateClass(modelName);
assert(flag,"Error translating class.");
for i in values loop

result[i]:=simulate(
startTime=startTime,

stopTime=stopTime,
params = SimulateParams(

{Code(Eval(variable) = Eval(values[i]))},{})
);
// If variable is R1.R and values[i] is 5.6
// then parameters is Code(R1.R=5.6)

end for;
end paramSweep;

Figure 2: A parameter sweep function using Meta-programming.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

TYPENAME(
QUALIFIED("A",
IDENT("B")
)

)

which represents the AST for a typenameA.B . The
new AST type Code contain several different AST
nodes, such as aPath node for representing type
names, etc. The boolean values for equation and algo-
rithm sections indicate whether the section has prefix
initial, e.g. if it is an initial equation or initial algo-
rithm. TheEval construct does not need additional
AST types since it is limited to be used as an expres-
sion and can thus be expressed as a built-in operator
(e.g. a function call in the grammar).

The semantic parts needed forCode andEval are
straightforward to implement. For instance resolving
types forCode expressions can be done immediately
by using the built-in types presented in Table 1. The
semantic rules forEval must ensure that the evalu-
ated Modelica code has the correct type for insertion
in the abstract syntax of its context, i.e. that the result
from a eval expression is indeed an expression.

3 Function Overloading

What does it mean to have overloading of operators
and functions in a language, and why do we need it?
The main reason to have this mechanism in a program-
ming language is economy of notation — overloading
allows us to reuse well-known notation and names for
more than one kind of data structure. This is conve-
nient and gives more concise and readable code. The
concept of overloading can be defined roughly as fol-
lows:

• A function or operator isoverloadedif it has sev-
eral definitions, each with a different type signa-
ture.

The concept of Modelica function type signature is the
same as the Modelica class type of the function, and
can be defined roughly as follows:

• A Modelica function type signature consists of
the set of input formal parameter and result types
together with the names of the formal parame-
ters and results, in the order they are defined. To
avoid certain lookup and type resolution difficul-
ties, overloading is defined based on the input for-
mal parameters only.

In fact, overloading already exists to a limited extent
for certain operators in the standard Modelica 2.1. For
example, the plus (+) operator for addition has several
different definitions depending on the data type:

• 1+2 – means integer addition of two integer con-
stants giving an integer result, here 3.

• 1.0+ 2.0 – means floating point number addi-
tion of two Real constants giving a floating-point
number result, here 3.0.

• ”ab”+”2” – means string concatenation of two
string constants giving a string result, here ”ab2”.

• {1,2}+{3,4} – means integer vector addition of
two integer constant vectors giving a vector re-
sult, here{4,6}.

Overloading of certain built-in functions also exists.
For example, thesize function is defined for ar-
rays of different functionality and occurs in two vari-
ants: with one (e.g.size(A)) or two arguments (e.g.
size(A,1)). Scalar functions of one or more argu-
ments are implicitly defined also for arrays. However,
the above examples are just special cases. It is very de-
sirable for the user to be able to define the standard op-
erators as overloaded for user-defined data structures
of choice, and to define different overloaded variants
of functions with the same name.

To handle function overloading a new short class
definition construct is defined, similar to the enu-
meration defintion. It introduces the new keyword
overload and has the following grammar rule
(added to the class specifier rule):

’=’ overload ’(’ name_list ’)’

wherename list is a list of type names. It can only
be used to define functions, like for instance:

function solve =
overload(denseSolve,

sparseSolve,
bandSolve);

The description of user-defined overloaded operators
and functions in Modelica presented here is based on
design proposals that have been discussed at several
Modelica design meetings by the Modelica Associa-
tion. The presentation here is roughly the outcome of
those discussions, with a few small details added. This
design has reached the stage of being approved for test
implementation, but not yet made it into the Model-
ica language specification. Thus, there might be some
changes in the final version.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

Operator Operator Example Function Function Example
+ a+b plus plus(a,b)
+ +a unaryPlus unaryPlus(a)
- a-b minus minus(a,b)
- -a unaryMinus unaryMinus(a)
* a*b times times(a,b)
/ a/b divide divide(a,b)
ˆ aˆ b+ power power(a,b)
= a=b equal equal(a,b)
:= a:=b assign assign(a,b)
< a<b less less(a,b)
<= a<=b lessEqual lessEqual(a,b)
== a==b equalEqual equalEqual(a,b)
>= a>=b greaterEqual greaterEqual(a,b)
> a>b greater greater(a,b)
<> a<>b notEqual notEqual(a,b)
[] a[b,c,...] index index(a,{b,c,...})
[] := a[b,c,...] := v indexedAssign indexedAssign(a,{b,c,...},v)

Figure 3: Overloaded operators together with their associated built-in function names

3.1 Operator Overloading

The mechanism for overloading operators is only de-
fined for the standard operators mentioned in Table
3. Adding arbitrary new operators is not possible.
Each operator is associated with the name of a built-
in function, as defined in Table 3. Note that equality=
and assignment:= are not expression operators since
they are allowed only in equations and in assignment
statements respectively. All binary expression opera-
tors are left associative. When an operator is applied
to some arguments, e.g.a+b , this is interpreted as
an application of the corresponding built-in function,
e.g. plus(a,b) . The usual lookup of the function
definition of plus is performed. If a user-defined
function plus with matching type signature is found,
this function is used, otherwise the standard built-in
operator/function+/plus implicitly available in the
top-level scope is found if it is defined for the argu-
ment data types in question. For example, two addi-
tion functions named plus are defined within the same
scope, where each definition can be distinguished by
the nonequivalence of the second formal parameter
types:

function plus
input Real x;
input Real[2] y;
output Real z;
...

end plus;
function plus

input Real x;
input MyRecord y;

output Real z;
...

end plus;

A user-defined record classDiagonalMatrix ,
shown in figure 4, defines the+ (plus) and the[]
(index) operators for diagonal matrices that are in-
ternally represented compactly as vectors using the
DiagonalMatrix data type.

3.1.1 Lookup Rules

Lookup of function definitions (or operators repre-
sented by their corresponding built-in functions) will
follow the usual Modelica lookup rules[8], with the
following additions:

• Both the function name and the input formal pa-
rameter types of the called function are used dur-
ing the lookup process to distinguish matching
definitions. The matching criterion for lookup
of functions is identity of function names and
equivalence of input formal parameter types. In
such a match, if the function names are identi-
cal and some argument types are not equivalent
to corresponding formal parameter types, assign-
ment conversion of argument types, e.g. from
Integer to Real , is performed when appli-
cable, and then equivalence of types is checked
once more for failure or success of the match.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

package DiagonalMatrices
record DiagonalMatrix "Diagonal matrix stored compactly as a vector"

Real v[:] "Compact vector representation";
end DiagonalMatrix;
function plus "Addition of diagonal matrices"

input DiagonalMatrix a;
input DiagonalMatrix b;
output DiagonalMatrix c;

algorithm
// Insert matrix size checks here

c.v := a.v + b.v; // Use builtin array assignment
end plus;
function index "Indexing of a diagonal matrix"

input DiagonalMatrix a;
input Integer b[2]; // Exactly two indices are allowed
output Real c;

algorithm
c := if (b[1] == b[2]) then v[b[1]] else 0;

end index;
end DiagonalMatrices;

Figure 4: The DiagonalMatrix example, using operator overloading for addition.

• There is an implicit ”import” of the packages con-
taining the function argument type definitions,
where the desired operator or function definition
also might be found. If there is a package scope
containing the first argument type definition, this
scope is searched first during lookup. If this fails,
the package scope containing the second argu-
ment type is searched, etc., until this procedure
has been repeated for all arguments having a user-
defined type. This is the Koening lookup rule
originally used for lookup of overloaded defini-
tions in C++.

The second rule might sound strange, but makes the
lookup more specific, and avoids the need to write
many import statements specifically for importing
function definitions. It is enough to refer to the ar-
gument type. For example:

Matrices.Symmetric.Matrix A4;
equation

solve(A4,v2) + func2(5+5,v2) = 0;

Here the first argument to solve is the variableA4. Its
type is Symmetric.Matrix defined within the pack-
ageMatrices.Symmetric . Therefore the scope of this
package is searched first during the lookup, and the function
solve is found. However,func2 is searched in the usual
way since the type ofv2 is not defined within any package
scope.

3.2 Implementation in OpenModelica

Since operator overloading already exist in Modelica to-
day, the design and implementation of operator and function
overloading can be performed at a low effort. The largest
change is to introduce Koening lookup mechanism. For this
purpose we add the fully qualified type name to a type, giv-
ing a new definition of a type as a tuple

type Type = (TType * Absyn.path option)

Thus, a type now have the fully qualified class name of its
definition, making it possible to search for function defi-
nitions from the scope where the type is defined, i.e. the
Koening C++ lookup rule.

The same class name can also be used for function types
when deoverloading.

This is the major change needed to the type system.
The rest of the implementation is concerned with adding
the rules to the lookup mechanism and the actual de-
overloading mechanism, when the overloaded names are
looked up and replaced with the correct function name, ac-
cording to the types of the input arguments of the function
call.

The deoverloading of function calls is performed by
traversing a list of function types until a match is found.
The only addition needed in this case is to add the function
type candidates through the koening lookup rule. For this
purpose we add the relation2:

2A RML relation can be seen as a function call, taking argu-
ments as input and producing outputs

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

relation get_koening_function_types:
(Env.Env,
Absyn.Path,
Absyn.Exp list,
Absyn.NamedArg list)

=> Types.Type list

Its arguments are

• Env.Env The environment for lookup of types,
classes,etc.

• Absyn.Path The function name, e.g.A.foo or
solve .

• Absym.Exp list A list of expressions for the po-
sitional arguments.

• Absyn.NamedArg list A list of named argu-
ments (a pair of identifiers and expressions)

The result from this relation is a list of function types, to
be added to the rest of the function type candidates for the
deoverloading process. The relation checks each expression
in order to find its type. If the type is user defined, it will
look in the types scope to find potential function types.

Below follows a short example run in OpenModelica, us-
ing Complex numbers and operator overloading. First we
present a short Complex number package:

encapsulated package ComplexNumbers
record Complex

Real re;
Real im(start=0);

end Complex;

function foo = overload(
complexFoo,realFoo);

function complexFoo
input Complex x;
input Complex y;
output Complex res(

im=x.im + y.im,
re=x.re + 2 * y.re);

end complexFoo;

function realFoo
input Real x;
input Complex y;
output Complex res(

im=y.im,
re=x + y.re);

end realFoo;

function plus
"Overloaded user-defined

complex number addition"
input Complex x;
input Complex y;
output Complex res(

re = x.re + y.re,

im = x.im + y.im);
end plus;

function times
"Overloaded user-defined

complex number multiplication"
input Complex x;
input Complex y;
output Complex res(

re = x.re * y.re
- x.im * y.im,

im = x.re * y.im
+ x.im * y.re);

end times;

function unaryMinus
"Overloaded user-defined

complex number unary minus"
input Complex x;
output Complex res(re = -x.re,

im = x.im);
end unaryMinus;

end ComplexNumbers;

The package also contain an overloaded functionfoo , for
illustration of the overload operator. Then we define a test
class that uses operator and function overloading:

model test
import ComplexNumbers.Complex;
import Vectors.Q4Position;
Complex c1,c2,c3;
Q4Position p1,p2,p3;

equation
c1=c2+c3; // ComplexNumbers.plus
c2=c1*c3; // ComplexNumbers.times
c3=-c2; // ComplexNumbers.unaryMinus
c2=foo(c1,c2);

// ComplexNumbers.complexFoo
c3=foo(1.0,c1*c3);

// ComplexNumbers.realFoo
p1=foo(p2,p3); // Vectors.foo
p1=p2+p3; // Vectors.plus

end test;

We translate the model in the OpenModelica environment:

>>> translateClass(test)
record
flatClass = "fclass test
Real c1.re;
Real c1.im;
Real c2.re;
Real c2.im;
Real c3.re;
Real c3.im;
Real p1[1];
Real p1[2];
Real p1[3];
Real p1[4];

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

Real p2[1];
Real p2[2];
Real p2[3];
Real p2[4];
Real p3[1];
Real p3[2];
Real p3[3];
Real p3[4];
equation

TMP0 = ComplexNumbers.plus(c2,c3);
c1.re = TMP0.re;
c1.im = TMP0.im;
TMP1 = ComplexNumbers.times(c1,c3);
c2.re = TMP1.re;
c2.im = TMP1.im;
TMP2 = ComplexNumbers.unaryMinus(c2);
c3.re = TMP2.re;
c3.im = TMP2.im;
TMP3 = ComplexNumbers.complexFoo(c1,

c2);
c2.re = TMP3.re;
c2.im = TMP3.im;
TMP4 = ComplexNumbers.realFoo(1.0,

ComplexNumbers.times(c1,c3));
c3.re = TMP4.re;
c3.im = TMP4.im;
p1 = Vectors.foo(p2,p3);
p1 = p2 + p3;

end test;
",

exefile = ""

end record

4 Conclusions

In this paper we have presented two new areas of interest
for the design of the Modelica modeling language, Meta-
programming and function overloading. A design of these
two language features have been presented and a test im-
plementation has been made in the OpenModelica environ-
ment. The effort for implementing these two features have
been low, especially for function overloading since most of
the required mechanisms were already in place.

The OpenModelica research compiler for Modelica also
has some rudimentary support for simulation of Modelica
models. This makes it at the same time an interesting tool
and/or for Modelica beginners, wanting to learn the lan-
guage or use Modelica as a computational language, a free
replacement of e.g. Matlab or Mathematica.

Function and operator overloading are two modern lan-
guage mechanisms that make it easier for a user to write
programs. Thus, these two new potential additions to the
Modelica language will strengthen the Modelica language
as a computational programming language, allowing users
to write sophisticated numerical computation code, which
also allow fast execution due to the Modelica type system.
This aspect will also be aided by the Meta-programming

mechanisms, which will allow users toprogrammodels us-
ing scripts, to be used in e.g. design optimization, system
diagnosis, and adapting models in a more flexible way for
large and complex system modeling.

Future work on the compiler includes implementing full
support for Modelica version 2.1. Also, better support for
simulation of models must be added. There is also a great
need of an updated Modelica test suite, to be able to test
modelica compilers against the specification.

References

[1] P. Aronsson. Licentiate thesis:Automatic Paralleliza-
tion of Simulation Code from Equation Based Simu-
lation Languages. Department of Computer and In-
formation Science, Link̈opings universitet, Sweden,
2002.

[2] P. Bunus. Licentiate thesis:Debugging and Structural
Analysis of Declarative Equation-Based Languages.
Department of Computer and Information Science,
Linköpings universitet, Sweden, 2002.

[3] P. Fritzson, V. Engelson. Modelica - A Unified Object-
Oriented Language for System Modeling and Simula-
tion. In Proceedings of the 12th European conference
on Object-Oriented Programming, LNCS. Springer
Verlag, 1998.

[4] Dawson R. Engler and Massimiliano Poletto. A ’c
tutorial.

[5] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation. Wiley - IEEE Press, 2003. ISBN 0-
471-471631.

[6] P. Fritzson, P. Aronsson, P. Bunus, V. Engelson,
L. Saldamli, H. Johansson, and A. Karström. The
open source modelica project. InProceedings of the
2nd International Modelica Conference, Germany,
March 2002.

[7] The modelica association. http://www.modelica.org.

[8] The Modelica Association. The Modelica Lan-
guage Specification Version 2.1, June 2003.
http://www.modelica.org.

[9] P.Aronsson, P. Fritzson, L. Saldamli, and P. Bunus.
Incremental declaration handling in open source mod-
elica. InSIMS - 43rd Conference on Simulation and
Modeling on September 26-27, Oulu, Finland, 2002.

[10] Mikael Pettersson. Compiling Natural Semantics.
PhD thesis, Link̈oping Studies in Science and Tech-
nology, 1995.

[11] L. Saldamli. Licentiate thesis:PDEModelica - To-
wards a High-Level Language for Modeling with Par-
tial Differential Equations. Department of Com-
puter and Information Science, Linköpings univer-
sitet, Sweden, 2002.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

[12] Tim Sheard. Accomplishments and research chal-
lenges in meta-programming.Lecture Notes in Com-
puter Science, 2196:2–??, 2001.

[13] W. Taha and T. Sheard. Multi-stage programming
with explicit annotations. InPartial Evaluation and
Semantics-Based Program Manipulation, Amsterdam,
The Netherlands, June 1997, pages 203–217. New
York: ACM, 1997.

[14] S. Wolfram.The Mathematica Book, 5th Ed.Wolfram
Media, Inc, 2003.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

