

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Mike Dempsey
Claytex Services Limited:
Automatic translation of Simulink models into Modelica using
Simelica and the AdvancedBlocks library
pp. 115-124

Automatic translation of Simulink models into Modelica
using Simelica and the AdvancedBlocks library

 Mike Dempsey

Claytex Services Limited
5 Marston Close, Leamington Spa, UK

mike.dempsey@claytex.com
http://www.claytex.com/

Abstract

A new tool, Simelica™, is presented for converting
Simulink® models into equivalent Modelica®

models. The conversion is achieved while
retaining the original structure of the Simulink
model. The equivalent Modelica models are built
from a new library of components, the
AdvancedBlocks™ library.

The AdvancedBlocks library is designed to work
with Simelica but also brings a new range of
control system component models to the Modelica
environment. The blocks are designed to enable
the calculation method used to be varied in each
particular instance that the block is required. For
example, in the DiscreteIntegrator block you can
choose from 3 different integration algorithms,
whether to apply limits to the integrator or not, and
how the initial condition is specified amongst
many other options. The main focus is on
delivering a user-friendly library to aid control
system modelling.

Some example applications will be discussed to
illustrate how effective the translation process can
be.

1 Motivation

The use of system modeling and simulation is
increasing in the automotive industry as we strive
to reduce product development times whilst
increasing the complexity and quality of the
product. As the use of these simulation techniques
increases so does the requirement to include more
and more detail into the models and to ensure that
the interaction between the different systems is
being modeled adequately.

For many years Simulink has been the tool of
choice for much of the automotive industry to
develop both physical and control system
models[1,2,3]. The main attraction of Simulink
has been its flexibility and the range of toolboxes
available to aid control system design,
development and calibration. However, many
users of Simulink are finding that as the physical
system models increase in complexity, the task of
developing these models further is becoming
increasingly difficult and time consuming. Many
are now looking at alternative systems and
Modelica based tools are well placed in the market
to meet these needs.

The adoption of the Modelica tools is currently
limited to those departments within automotive
manufacturers that are currently pushing forward
the development of complex physical system
models[4,5]. This is leading to problems within
these companies where the control system
engineers are still developing models in Simulink
while the design engineers are developing physical
system models using Modelica.

Currently tools such as Dymola™ provide methods
to generate S-functions from the Modelica
models[6] and this then enables the models to be
simulated together in one environment. In our
experience this method has not been completely
successful. We have found that, with our more
complex physical models, the Simulink solvers are
unable to cope reliably with the generated S-
function models. This has led to simulations
effectively stalling where the time step becomes so
small that the simulation is no longer making
progress.

We then simply asked ourselves, why don't we
make the process work the other way round? Why
not convert the control system model into

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

Modelica and use that environment to simulate the
interactions between control system and physical
system. After all Modelica can support a block
diagram modeling style and our physical models
are working reliably in the Modelica environment.

2 Simelica

2.1 Overview

Simelica is a translation tool for converting
Simulink models into equivalent Modelica models.
It works as both a command line tool so that its use
can be incorporated into scripts and also as a
windows tool complete with graphical user
interface (GUI).

The translation works by reading the Simulink
.mdl file and interpreting this into a Modelica
model based on the AdvancedBlocks library.
Simelica is capable of dealing with all the
modeling methods used in Simulink including:
• From-goto systems
• Signal Bus systems
• Muxed signals
• Data store read/write/memory systems

The majority of the standard Simulink library can
be automatically translated into an equivalent
Modelica block although there are some exceptions
including the MatlabFcn, S-function and
Stateflow® blocks.

2.2 Using Simelica

The command line version of Simelica provides
simple functions to translate a single Simulink file
or all the Simulink files contained in a specified
directory. This version is useful for incorporation
into scripts but it does not provide many of the
features available through the GUI that most users
will find useful, such as highlighting unsupported
blocks. Figure 1 shows a screen shot of Simelica.

When running in GUI mode after the Simulink file
is read into the tool the structure of the model is
presented to the user. Any unsupported blocks are
highlighted to the user at this point along with a
brief explanation of what action the user must take
either now, or after the Modelica file is generated
to ensure that the translated model can be used.

Following translation, a log of the work done is
produced. This will list any problem blocks
encountered and include their full path in the
model. The user can then easily see what, if any,
parts of the translated model need further attention
before it can be used.

Figure 1: Screen shot of Simelica

As well as the need to translate a model it is also
essential to translate the data from the Simulink
environment into the Modelica environment. Data
can be imported and incorporated into a translated
model using Simelica. The model data has to be
stored as a Matlab® binary file, which can then be
read by Simelica and the data incorporated into the
model through the use of a record that is available
in every subsystem.

An additional consideration in the translation of
data is that Simulink can load different data files
into different points of the model through the use
of masked subsystems. In Simelica, masked
subsystems are identified and the user is given the
option of incorporating a data file directly into
each masked subsystem. In this case each masked
subsystem gains its own unique workspace record
to replicate the fact that Simulink defines local
workspaces for masked subsystems.

The Modelica models generated by Simelica are
based on the AdvancedBlocks library rather than
interpreting the model into a flat model file. This
ensures that the model appears similar and
maintains the same structure as the original
Simulink model. Figure 2 shows a comparison of
a translated model in Simulink and Dymola. It
shows that the model structure is preserved and the
layout and connection of blocks in the Modelica
version is similar to the original model.

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 2: Comparison of a translated
model in Simulink (top) and Dymola

3 AdvancedBlocks Library

3.1 Overview

A new Modelica library of control blocks has been
designed to provide equivalent blocks in Modelica
to those in the Simulink standard library. The
design of the library has focused on providing a
user-friendly library that can be used effectively as
a modeling library. The main focus has been on
providing simple ways to select the different
options available for each block, for example the
integrator method to be used, the port data type to
be used, etc. There are a number of areas of
interest in the design of the latest version of the
AdvancedBlocks library and these are described in
the following sections.

3.2 Connector Definition

The first step in developing the new library was to
define the connector for the blocks. A new
connector was required for a number of reasons;
firstly, Simulink supports the use of matrix, vector
and scalar signals whilst the original
Modelica.Blocks.Interface.InPort and OutPort
connectors[7] only support vector signals.
Therefore we needed to change the connector
definition to support matrix signals. During the
translation process Simulink scalar signals are
converted into Modelica matrices with only one
value and vector signals are converted into
Modelica matrices with only 1 row.

A second consideration was that Simulink cascades
sample times along the connections. This means
that a block can inherit a sample time from its
driving block. To achieve this in Modelica we
needed to add an additional signal to our connector
to carry the sample times from block to block. It is
necessary for this sample time signal to be a matrix
because when muxed signals are used in Simulink
it is possible for each signal to be carrying with it a
different sample time. To replicate this behavior in
the AdvancedBlocks library we actually pass a
sample trigger along the connections that tells the
connected block at which point in time it should
calculate its output.

The final consideration for designing the connector
was that Simulink signals could be different data
types. We therefore needed to find a way to define
a connector in which we could easily change the
data type. We also needed to find a structure that
would allow the connectors to be replaced even
though the basic data type of the signal might be
changing. The syntax for replaceable classes[8]
would specifically prohibit the simple swapping of
connectors if the basic types are different.
Fortunately it is possible to replace classes that
extend from the same base class.

To overcome the constraints of the language and to
meet the design requirements the connectors are
defined in packages and are created in a two-stage
process. Each connector package specifies either
an input or output connector for a specific data
type. All the connector packages are extended
from an appropriate base package that defines a
base connector and a base data type conversion
function. There is one base package for input
connectors, and one for output connectors. Figure

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

3 shows the base package definition for the output
connectors.

Figure 3: Base Connector Package
Definition

The data type conversion function is used to apply
the correct data type to the output signal. The
blocks within the AdvancedBlocks library all use
variables of type Real internally to handle the
calculations. To correctly convert the internal
signal type to that required in the connector a
function is used that changes the signal data type
and applies any limits to the value that may be
required for a specific data type.

A connector for each required data type is then
defined within its own package. This package
must include a connector and function definition
that extends from those in the base package.
Figure 4 shows how the output connector for the
uint8 (unsigned 8 bit integer) data type is defined
in the AdvancedBlocks library.

Figure 4: Definition of the uint8 connector

By declaring the different connectors within their
own package it makes it possible to replace both
the connector and conversion function using one
redeclare statement. By ensuring that the
connector and function names are the same in each
package, the replaced package automatically
changes the connector and conversion function to
the chosen data type. In figure 5 the replaceable
package Out1DataType is defined and then the

Outport connector is instantiated from this
replaceable package. The constraint on the
replaceable package ensures that we will only ever
be able to replace the connector package with
another valid package.

This structure to the design of the connectors and
data type conversion function means that each
connector in a block in the AdvancedBlocks
library can use a different data type and this is
achieved by simply redeclaring the relevant
package that defines that connector to match the
desired data type.

Figure 5: Example use of a connector

Unfortunately this design cannot be implemented
in the current version of Modelica because the data
conversion function does not generate an event but
integer values, such as those in the connector, are
only allowed to change at events. This means that
where we would like to use an Integer or Boolean
data type in the connector we are unable to do so.
The work around in the current version of the
library is that all the connectors use a Real data
type. The conversion functions also output a Real
data type regardless of the actual data type desired
but internally they apply the limits and round
values as appropriate, i.e. round to the nearest
integer if an integer data type is requested.

3.3 Continuous and Discrete time
modes

A large proportion of the blocks in the Simulink
standard library can run in different time-modes,
i.e. either continuous or discrete time modes. In
addition where blocks are able to run in discrete-
time mode they can be defined to run at a set
sample rate or they can inherit their sample time
from their parent system or from their driving
block.

partial package Base
 partial connector Outport "Output signal"
 parameter Integer n=1 "Dimension 1 of signal matrix";
 parameter Integer m=1 "Dimension 2 of signal matrix";
 output Integer sampletrigger[n, m] "Sample trigger to be
passed between blocks";
 end Outport;
 partial function Convert
 end Convert;
end Base;

package uint8 "uint8 (unsigned 8 bit integer) output signal"
 connector Outport "uint8 output signal"
 extends Base.Outport;
 output Types.uint8 signal[n, m] "Signal value";
 end Outport;
 function Convert
 extends Base.Convert;
 input Real u;
 output Types.uint8 y;
 algorithm
 y := integer(if u > 255 then 255 else if u < 0 then 0 else u);
 end Convert;
end uint8;

block OutputExample
 replaceable package Out1DataType =
 AdvancedBlocks.Interface.Connectors.Outputs.uint8 extends
 AdvancedBlocks.Interface.Connectors.Outputs.Base;
 Out1DataType.Outport out1(n=1, m=1);
protected
 Real y1[1,1] "Result of internal calculation";
equation
 out1.signal = Out1DataType.Convert(y1);
end OutputExample;

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

To enable blocks within the AdvancedBlocks
library to support running in these different time
modes they have been defined so that they extend
from a replaceable block that governs the
calculation method used. Within each block that
supports running in different time modes there is
an encapsulated package that contains the different
definitions required for operating in the different
time modes. Figure 6 shows how the
AdvancedBlocks.Math.Abs block is defined with
the ability to switch between continuous and
discrete time mode.

Figure 6: Block structure to support
different time modes

When the user then drags the Abs block into their
model for use they can simply switch time modes
by redeclaring the block TimeMode to be any of
the versions contained in the Options package.
This is made even easier in tools such as Dymola
where the version of TimeMode to be used can be
selected from a pull-down menu. In the Abs block
shown in Figure 6 it is possible to choose between
a Continuous time mode and a Triggered time

mode. In the Triggered time mode the sample time
is inherited from the parent system through the
outer variable sampletrigger.

The structure of the Modelica code means that the
actual equations defining the behaviour of the
block are separate to the equations that force the
block to act in a particular time-mode. This eases
the maintenance of the library by not repeating
blocks of code. This becomes a major
consideration in the more complicated blocks.

3.4 Integrator Block

The continuous time integrator in Simulink is one
of a number of blocks that can function in a variety
of different ways depending on the choices made
by the user each time the block is added to a
model. The options for the integrator block include
applying limits to the output, initialising with
internal or external initial conditions, allowing for
external reset signals, outputting state information
and information on the limit condition[9]. To
define all this in Modelica in a way that is easy to
use has been achieved by extending the ideas
described and used to change the time mode of the
Abs block. This has led to the encapsulated
package within the Integrator block becoming
much more complex including several levels of
hierarchy.

Each Integrator method is an extension of the same
base class defined in the encapsulated package.
The base block contains the definitions for the
input and output connections and instantiates these
from replaceable packages. This structure ensures
that each integration option can redeclare the input
and output layers to have the required number of
connectors for this method. For example, if an
external initial condition is required then two
inputs are needed rather than one.

The result of this structure for the user is that they
can easily choose what functionality they want
within the integrator block in each instance.
Figure 7 shows the dialog box produced by
Dymola for the integrator block. Each option can
be changed through the use of a pull-down menu
showing the available options.

This same structure idea has also been used for
many other blocks in the AdvancedBlocks library
including the discrete integrator, math function
block, trigonometric function block and many
others.

block Abs "Abs block"
 extends TimeMode;
 replaceable block TimeMode = Options.Continuous extends
Options.Base;

 encapsulated package Options
 import AdvancedBlocks.Interface;

 partial block Base "Base class and calculation function"
 extends Interface.BaseBlock "Icon and common properties";
 extends Interface.IOLayers.SI.Inports "Input definition";
 extends Interface.IOLayers.SO.Outports "Output definition";
 protected
 Real y[nout[1, 1], nout[1, 2]] "Result of internal calculation";
 equation
 y = abs(u1);
 end Base;

 block Continuous "Continuous time mode"
 extends Base;
 equation
 y1 = y;
 y1st = -ones(nout[1, 1], nout[1, 2]); // Sample trigger to next
block
 end Continuous;

 block Triggered "Discrete time mode"
 extends Base;
 protected
 outer Boolean sampletrigger[1];
 equation
 y1st = if sampletrigger[1] then ones(nout[1, 1], nout[1, 2]) else
zeros(nout[1, 1], nout[1, 2]); // Sample trigger to next block
 when sampletrigger[1] then
 y1 = y;
 end when;
 end Triggered;
 end Options;
end Abs;

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 7: Dymola dialog box for the
Integrator block

3.5 Iterator Systems

The latest version of Simulink includes for-iterator
and while-iterator subsystems. In these
subsystems the blocks are executed a number of
times at each time step. The actual number of
times that the sub-system interates at each time
step can vary from time step to time step. The
iterator subsystems have been introduced into
Simulink to encourage its use as a control system
software design and development tool. The key
improvement for users in introducing these blocks
is to facilitate the auto-coding of control system
software. These subsystems along with the range
of if-then-else and switch-case blocks make it
much easier for controls engineers to design and
develop the control system software.

Iterator subsystems can be translated into Modelica
where a fixed number of iterations are specified
such as in some instances of for-iterator
subsystems. In these cases the blocks within the
subsystem are instantiated into an array of blocks
where the size of the array equals the number of
iterations to be performed. For example, figure 8
shows how a simple subsystem would be defined if
it was required to iterate 5 times at each time step.
The output from this subsystem at the first time
step would be 25, after the second time step it
would be 50, etc.

In this example the constant, sum and memory
blocks are declared as component arrays where the
size of the array is equal to the number of
iterations. Each block within the component array
forms a different iteration of the for loop. The
subsystem output connector is only connected to

the Sum block in the final iteration of the for loop
so that we get the full value of the loop passed out
of this subsystem. The memory block is connected
so that it effectively spans the iterations. The input
to the memory block comes from the output of the
Sum block in the current loop. The output from
the memory block is connected to the input of the
Sum block in the next iteration. In the final
iteration of the loop the output from the memory
block is connected to the input of the Sum block on
the first loop.

To use this idea for while-iterator subsystems and
for-iterator subsystems where the number of
iterations can vary at each time step would require
the component arrays to vary in size at each time
step. It is not currently possible to implement this
type of system in Modelica where the number of
iterations varies at each time step.

Figure 8: Example Iterator subsystem

4 Example models

As well as a large number of relatively simple test
cases a number of complex real-world examples

model ForIteratorSubsystem
 extends AdvancedBlocks.Interface.Subsystem;
public
 constant Integer NumIterations ={5} “Number of iterations”;
 Sources.Constant[NumIterations] Constant(each k=[5]);
 Math.Sum[NumIterations] Sum;
 Continuous.Memory[NumIterations] Memory;
 Interface.Connectors.Outputs.Double.Outport out1;
equation
 for i in 1: NumIterations loop
 connect(Constant[i].out1, Sum[i].in1);
 end for;
 for i in 1: NumIterations loop
 connect(Sum[i].out1, Memory[i].in1);
 end for;
 for i in 1: NumIterations - 1 loop
 connect(Memory[i].out1, Sum[i + 1].in2);
 end for;
 connect(Memory[NumIterations].out1, Sum[1].in2);
 connect(Sum[NumIterations].out1, out1);
end ForIteratorSubsystem;

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

have been translated. Two examples of translating
real-world models are presented in the following
sections and the simulation performance and
results have been compared.

4.1 Cruise Control Simulation

In this example we have combined a detailed
physical powertrain model with the actual cruise
control function from an engine control system, see
figure 9. The cruise control function is developed
by the system supplier in Simulink and then used
by both the customer and supplier to develop and
calibrate the system into the end product.
Ultimately the actual code downloaded into the
engine control unit is generated automatically from
the Simulink model and so the latest version of the
cruise control strategy will always be available in
Simulink.

Figure 9: Powertrain model and converted

controller system model

This cruise control function is designed to work as
part of a torque structure engine management
system. This means that the when the cruise
control function is active it demands an engine
torque and feeds this into the torque structure
function which converts this torque demand into a
throttle position, spark timing and amount of fuel
to inject. These quantities are determined so that
the engine will produce as close to the demanded
torque value as is physically possible within the
constraints of the calibration.

For this example we have chosen to convert just
the cruise control function from Simulink into
Modelica using Simelica. This is then coupled to a

detailed powertrain model that does not include an
engine model. The torque demand from the cruise
control model is applied directly to the engine
flywheel. In this way we can eliminate the need to
calibrate the torque structure function on the
assumption that this will be calibrated to translate
the demanded torque into the actual engine torque
produced at a later date.

The aim of this model was to enable the calibration
of the cruise control function early in the
development process. The task of calibrating the
cruise control function traditionally requires a
significant amount of test work to achieve good
results. This is due to the difficulties involved in
repeating each test exactly and the wide range of
conditions that need to be tested. It is therefore an
ideal candidate for applying simulation techniques
which can reproduce the same test conditions
repeatedly and help produce an initial calibration.

Figure 10: Comparison of Simulink (top)
and Modelica Controller models

To translate the controller model and validate the
generated Modelica model a Simulink model was
generated that played measured data into the
control system and recorded the outputs. This
model, its parameter data and the measured data
were then translated into Modelica using Simelica.
Figure 10 compares the outputs from the controller
function in both Simulink and Modelica. By
ensuring that the Modelica controller model
produces the same results as the original Simulink

0 10 20 30 40 50 60 70 80 90 100
-100

0

100

200

300

400

500

Time (s)

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

model we can be sure that the translated model is
accurate.

Once we are satisfied that the translated controller
model was behaving in the same way as the
original Simulink model the new Modelica model
could then be used to attempt to calibrate the
control system. There are many parameters within
the control system that need to be calibrated and by
repeating the same test exactly the effect of
altering these parameters can be assessed and a
calibration can be defined. Figure 11 shows the
effect of altering one of the gains in the control
system on a given test.

Figure 11: Effect of controller gain on a
Cruise Resume Event

In this test the driver puts the vehicle into cruise
mode at 20 seconds but then presses the brake at
22 seconds forcing the vehicle out of cruise mode
and into a gentle deceleration. At 42 seconds the
driver presses the Resume button and the vehicle
enters back into cruise mode and attempts to regain
the speed it was travelling at when the driver first
put the vehicle into cruise mode. The three results
traces demonstrate the effect of altering one of the
gains in the cruise control function on the vehicle
response.

4.2 Central Heating System

The model shown in figure 8 was developed in
Simulink to predict the performance of a small

central heating system. The main motivator for
attempting to translate this model into Modelica
was to see if the simulation times would be
improved. As Dymola generates efficient
compiled models from the Modelica models and
Simulink interprets the model at runtime it would
provide an interesting comparison of simulation
performance.

Using Simelica the model has been translated into
Modelica and then compiled and simulated using
Dymola 5.1a. Figure 2 shows this model in both
Simulink and Modelica. It is clear from the
diagrams that the same model structure and layout
has been preseved during the translation process
and any visible differences in the two diagrams are
purely down to the way the two tools present the
models graphically.

Figure 12 shows the results traces produced by
both Dymola and Simulink versions of this model.
It can be seen that although the model has been
translated into Modelica the results obtained are
the same. The time required to simulate a 24 hour
period for the Modelica version of the model is 31
seconds but Simulink required just 9 seconds to
carry out the same simulation on the same PC.

Figure 12: Comparison of Simulink (top)
and Dymola simulation results

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

When comparing these simulation times it is also
essential to consider that in Dymola 493 signals
were stored but in the Simulink version only 12
signals were stored. In more complex systems the
immediate availability of all this data would be
very useful to help diagnose problems. To carry
out the same investigation in the Simulink version
of the model would require the user to manually
add scopes to areas of the model that they suspect
of causing the problem and then re-running the
model. This process of adding scopes and re-
running the model may have to be repeated several
times before the problem can be correctly
diagnosed.

5 Limitations

5.1 Limitations of Simelica

There are also some blocks available in Simulink
that cannot be automatical translated into
Modelica. These include blocks such as the
MatlabFcn and S-function. The MatlabFcn block
cannot be translated because it allows the user to
use any Matlab script or command in the model,
many of which do not have an equivalent in
Modelica. The S-function block cannot be
automatically translated because the c-code might
need to be changed significantly to work as an
external function in Modelica. It is possible to do
this manually though. There are a number of other
blocks that are currently unsupported but through
the continual development of the tool the majority
of these will be incorporated.

Another feature that cannot be automatically
handled is the initialisation commands that can be
fed into models and masked blocks. These cannot
be supported because they allow any Matlab
command to be used and executed during the
model initialisation and many of these commands
do not have an equivalent in Modelica. Rather
than attempt to handle this and get it wrong,
Simelica opts to simply copy all the commands
from the initialisation layer into a comment in the
block and then flag this to the user as a problem
requiring attention.

The final limitation in the translation process
currently is that matrix signals and signal data
types are not supported. Although many of the
features exist in the AdvancedBlocks library it is
not yet possible for Simelica to correctly translate

models that include these features. Where data
types other than the Matlab data type double are
used in the model the different data type will be
ignored by the translator and the converted model
will use the double data type. Models that contain
matrix signals will have the signal dimensions
incorrectly set. From the point-of-view of the
AdvancedBlocks library and Simelica a matrix
signal is any signal that has more than one row.
Many of the blocks within the AdvancedBlocks
library will not currently function correctly when
matrix signals are used. These issues will be
addressed in future versions of Simelica and the
AdvancedBlocks library.

5.2 Limitations of the Modelica
language

There are some key differences between the
Modelica language and what is possible in
Simulink. Modelica does not support the same
flexibility in block naming as Simulink does. For
example Simulink can use any special character in
the block names; names can also start with
numbers; names can contain white space
characters. Some transformations therefore have to
be made by Simelica to ensure that a block name
conforms to the Modelica specification. The
difficulty here can be that blocks that were named
differently in Simulink purely because of the
inclusion of a special character, or series of
characters that are prohibited in Modelica could
end up with the same name in the Modelica model
leading to errors.

Although many of the modelling methodologies
used in Simulink can be translated into a form for
use in Modelica it is not always possible to provide
an equivalent methodology in Modelica. For
example, signal buses are translated into simple
muxed signal systems where the bus selector is
defined to extract particular signals by index rather
than by name. In Simulink the names of the
signals are passed along the connection include the
heirarchy within the bus system. Signals can then
be extracted by selecting a particular signal name.
This feature is widely used in Simulink[10] as it
provides a powerful way to pass large groups of
signals around a model.

A large number of the blocks within the
AdvancedBlocks library contain encapsulated
packages that would ideally be hidden from the
user. This could be achieved by declaring the

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

package as protected but then all replaceable
classes and parameters would not be visible in the
GUI dialogs produced by Dymola. To get around
this all the parameters and replaceable classes
would then have to be declared in the block
containing the encapsulated package but this would
mean that the user is presented with options and
parameters that might not be valid because of other
selections they have already made. Another
method of hiding these packages from the user
whilst still making the parameters and replaceable
classes visible in the tool dialogs is required.
Ideally it would also be possible for the available
options and required parameters to change as
selections are made by the user.

6 Future

It is important to note that this paper refers to the
current version of Simelica and the
AdvancedBlocks library and that they will
continue to evolve and support more features.
They will both be continually developed to support
the latest versions of Simulink and Modelica.

7 Acknowledgments

Many people have provided support during the
design and development of Simelica and the
AdvancedBlocks library and I would like to extend
my thanks to them. Specifically Hilding Elmqvist,
Hans Olsson, Sven Erik Mattsson and Dag Bruck
from Dynasim, Martin Otter from DLR and Mike
Tiller from Ford Motor Company.

Matlab, Simulink and Stateflow are registered
trademarks of The Mathworks Inc. Modelica is a
registered trademark of The Modelica Association.
Dymola is a trademark of Dynasim AB. Simelica
and AdvancedBlocks are trademarks of Claytex
Services Limited.

8 References

1. S.R. Anderson, C.R. Ciesla, D.M. Carey, R.

Shankar, “A powertrain simulation for engine
control system development” , 1996 SAE
International Truck and Bus Meeting and
Exposition, SAE 962171

2. P.M. Fussey, C.L. Goodfellow, K.K. Oversby,
B.C. Porter, J.C. Wheals, ” Integrated
Powertrain (IPT) Model – Stage 2: Systems

Integration, Supervisory Control and
Simulation of Emissions Control Technology” ,
SAE 2001 World Congress, SAE 2001-01-
0928

3. J.A. MacBain, J.J. Conover, A.D. Brooker,
“Full-vehicle simulation for series hybrid
vehicles” , Future Transportation Technology
Conference, SAE 2003-01-2301

4. M. Tiller, W.E. Tobler, and M. Kuang,
“Evaluating Engine Contributions to HEV
Driveline Vibrations” , Proceedings of the 2nd
International Modelica Conference

5. S. Soejima, “Examples of usage and spread of
Dymola within Toyota” , Modelica Workshop
2000 Proceedings

6. “Dymola 5.0 User’s Manual” , Dynasim AB.
7. “Modelica Standard Library 1.5” , The

Modelica Association , 2002
8. “Modelica Language Specification, Version

2.0” , The Modelica Association, 2002.
9. “SIMULINK Release 13” (documentation),

The Mathworks Inc.
10. C. Belton, P. Bennet,. P. Burchill, D. Copp, N.

Darnton, K. Butts, J. Che, B. Hieb, M.
Jennings and T. Mortimer, “A Vehicle Model
Architecture for Vehicle System Control
Design” , SAE Congress 2003, SAE 2003-01-
0092

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003

