

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Adrian Pop, Peter Fritzson
PELAB, Linköping University:
ModelicaXML: A Modelica XML Representation with
Applications
pp. 419-430

ModelicaXML: A Modelica XML Representation with
Applications

 Adrian Pop Peter Fritzson

PELAB, Programming Environment Laboratory,
Department of Computer and Information Science,

Linköping University, SE-58183, Linköping, Sweden
adrpo@ida.liu.se, http://www.ida.liu.se/~adrpo
petfr@ida.liu.se, http://www.ida.liu.se/~petfr

Abstract

This paper presents the Modelica XML representation
with some applications. ModelicaXML provides an
Extensible Markup Language (XML) alternative
representation of Modelica source code. The language
was designed as a standard format for storage, analysis
and exchange of models. ModelicaXML represents the
structure of the Modelica language as XML trees, similar
to Abstract Syntax Trees (AST) generated by a compiler
when parsing Modelica source code. The ModelicaXML
(DTD/XML-Schema) grammar that validates
ModelicaXML documents is introduced. We reflect on the
software-engineering analyses one can perform over
ModelicaXML documents using standard and general
XML tools and techniques. Furthermore we investigate
how can we use more powerful markup languages, like
the Resource Description Framework (RDF) and the Web
Ontology Language (OWL), to express some of the
Modelica language semantics.

1 Introduction

The structure of a Modelica model can be derived from
the source code representation, by using a Modelica
compiler front-end (the lexical analyzer and the parser).

The compiler front-end takes the source code
representation and transforms it to abstract syntax trees
(AST), which are easier to handle by the rest of the
compiler. As pointed out in [20], a clear disadvantage of
this procedure is the need of embedding a compiler front-
end in every tool that needs access to the structure of the
program. Writing such a front-end for an evolving and
advanced language like Modelica is not trivial, even with
the support of automated tools like Flex/Bison or ANTLR
[28].

To overcome these problems, a standard, easily used,
structured representation is needed. ModelicaXML is
such a representation that defines a structure similar to
abstract syntax trees using the XML markup language.

This representation provides more functionality than a

typical C++ class library implementing an AST
representation of Modelica:
• Declarative query languages for XML can be used to

query the XML representation.
• The XML representation can be accessed via

standard interfaces like Document Object Model
(DOM) [3] from practically any programming
language.

The usages of the ModelicaXML representation for
Modelica models, combined with the power of general
XML tools, will ease the implementation of tasks like:
• Analysis of Modelica programs (model checkers and

validators).
• Pretty printing (un-parsing).
• Translation between Modelica and other modeling

languages (interchange).
• Query and transformation of Modelica models.

Although ModelicaXML captures the structured
representation of Modelica source code, the semantics of
the Modelica language cannot be expressed without
implementing specific XML-based tools. To address this
issue we have investigated the benefits of using other
markup languages like the Resource Description
Framework (RDF) and the Web Ontology Language
(OWL). These languages, developed in the Semantic
Web Community [13], are used to express semantics of
data in order to be automatically processed by machines.
We believe that using such technology for Modelica
models would enable several applications in the future:
• Models could be automatically translated between

modeling tools.
• Models could become autonomous (active

documents) if they are packaged together with the
operational semantics from the compiler, and
therefore, they could be simulated in a normal
browser.

• Software information systems (SIS) could more
easily be constructed for Modelica, facilitating model
understanding and information finding.

• Model consistency could be checked using
Description Logic (DL) [2].

• Certain models could be translated to and from the
Unified Modeling Language (UML) [15].

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

mailto:adrpo@ida.liu.se
http://www.ida.liu.se/~adrpo
mailto:petfr@ida.liu.se
http://www.ida.liu.se/~petfr

The paper is structured as follows: Related work is
presented in Section 2. Modelica, XML and the
ModelicaXML Document Type Definition (DTD) are
discussed in Section 3. In Section 4 we present the
software-engineering tasks one can perform on the
ModelicaXML representation using XML tools and
technologies. Section 5 investigates the use of RDF and
OWL for representing semantics of Modelica models.
Conclusions, future research directions and summary of
the work are presented in Section 6.

2 Related Work

In the field of general programming languages, JavaML
[20] has been developed as structured representation of
Java source code. JavaML emphasizes the power of such
structured representation when leveraging XML tools.
When it comes to domain specific modeling languages,
there are several [21, 22, 27] approaches to specifying
models in XML. These approaches deal with model
transformation, exchange and management (regarding
adaptation to already existing simulation tools) or with
code generation from the intermediate XML
representation to C++. Our interest focuses more on
providing flexible and general software-engineering
tooling support for the Modelica programmer. For this
purpose the ModelicaXML is covering the full Modelica
language [8, 23], including algorithm sections and
expression operators. Furthermore, we consider more
powerful markup languages for defining some of the
Modelica static semantics and we discuss future use of
such Semantic Web technologies.

3 Modelica XML Representation

Modelica [8, 23] is an object-oriented language used for
modeling of large and heterogeneous physical systems.
For modeling with Modelica, commercial software
products such as MathModelica [7] or Dymola [4] have
been developed. However, there are also open-source
projects like the OpenModelica Project [24]. Our research
is part of the OpenModelica Project and aims at
providing a more flexible framework with the use of
XML technologies.

In sub-section 3.1 we briefly introduce the concepts of
XML and DTD and give an example of a Modelica
model with its ModelicaXML representation.

3.1 The eXtensible Markup Language
(XML)

The Extensible Markup Language (XML) [5] is a
standard recommended by the World Wide Web
Consortium (W3C). XML is a simple and flexible text
format derived from Standardized Generalized Markup
Language (SGML) [14]. The XML language is widely

used for information exchange over the Internet. The
tools one can use for parsing, querying, transforming or
validating XML documents have reached a mature state.
Such tools exist both as open-source projects and
commercial software products.

A small example of an XML document is shown
below:

<?xml version=”1.0”?>
<!DOCTYPE persons SYSTEM “persons.dtd">
<persons>

<person job="programmer">
 <name hn Doe</name> >Jo
 <email>
 grigore@none.ro
 </email>
</person>
 …
<person job="manager">
 <comment>Classified</comment>
</person>

</persons>

An XML document is simply a text in which the
information is marked up using tags. The tags are the
names enclosed in angle brackets. For easy identification
we show elements in bold face and attribute names in
italics throughout the XML example. The information
delimited by <persons> and </persons> tags is an
XML element. As we can see, it can contain other
elements called <person> that nests additional elements
within itself.

The attributes are specified after the tag as an
unordered name/value list of name=”value” items. In
our example, the attribute job with the value
“programmer”.

The first line states that this is an XML document.
The second line express that an XML parser must
validate the contents of the elements against the
Document Type Definition (DTD) [18] file, here named
“persons.dtd”. The DTD provides constraints for the
contents much like grammars used for programming
languages.

There are two criteria to be met in order for an XML
document to be valid. First, all the elements have to be
properly nested and must have a start/end tag. Second, all
the contents of all elements must obey their DTD
grammar specifications.

We will define a DTD for the above example:
<!-- the person.dtd file -->
<!ENTITY % person-job-attribute
 “job(programmer|manager)
 #REQUIRED”>
<!ELEMENT persons (person*)>
<!ELEMEN personT
 ((name+, email*) | comment+)>
<!ATTLIST person
 project CDATA #IMPLIED
 &person-job-attribute;>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT comment (#PCDATA)>

The above DTD defines one entity, four elements, and

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

mailto:grigore@none.ro

one attribute list containing two attributes. The entities
are underlined, bold is used for elements, and attributes
are specified in italics.

The entity (ENTITY) declaration defines person-
job-attribute as a text value that can be used
anywhere inside the DTD and the XML document. The
XML parser will replace the entity with its defined text
where it is used. The principal element (ELEMENT)
declared in DTD is persons and has zero or more
elements person nested inside. The special characters
inside the element definitions are “*” meaning: zero or
more, “|” meaning: selection – either left side or right
side, “+” meaning: one or more.

The attribute (ATTLIST) list defines two attributes
for the person element: project and job.

The project attribute can contain character data
(CDATA) and is optional (#IMPLIED). The job
attribute can only have one of the two values, either
“programmer” or “manager”.

There is another XML document structure standard,
called XML-Schema [18], which is similar to DTD but is
encoded in XML. This standard reconstructs all the
capabilities of the DTD and extends them with:
namespaces, context sensitivity, the possibility to define
several root elements in the same schema, integrity
constraints, regular expressions, sub-typing, etc. Tools for
transforming XML-Schema representations from/to a
DTD representation are available. We use the DTD
variant in this example only because it is clearer than the
too verbose XML-Schema.

One can consult the World Wide Web Consortium
website [5, 18] for more information regarding XML,
DTD and XML-Schema.

3.2 ModelicaXML example

To introduce the Modelica XML representation, we give
a Modelica example and show its corresponding
representation as ModelicaXML.

Elements are in bold, attributes are in italic and
entities are using underline throughout this section,
except from Modelica keywords.

class dOrderSystem Secon
 parameter Real a=1;
 Real x(start=0); Real xdot(start=0);
equation
 x
end SecondOrderSystem;

dot=der(x); der(xdot)+a*der(x)+x=1;

For ease of presentation, a ModelicaXML document is
split into several parts, each representing a more nested
level. The ellipses from one level are detailed in the next
level:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE program SYSTEM
 "ModelicaXML.dtd">
<program within=”...”>
 <definition
 ident="SecondOrderSystem"
 restriction="class">

 ...
 definition> </
</program>

The root element is a Modelica program. The child
elements of program are a sequence of definition
elements and an optional within attribute (see Figure 1,
sub-section 3.3 for schemata).

<definition
 ident="SecondOrderSystem"
 restriction="class">
 <component>...</component>
 ...
 <equation>...</equation>
 ...
</definition>

The definition element can have import, extends,
elements, equation, or algorithm as sub-elements.
In our case we only have component (i.e., variable) and
equation sub-elements inside definition (see Figure
2, sub-section 3.3 for schemata).

<component
 ident="a" type="Real"
 variability="parameter"
 visibility ”> =”public
 <modification_equals>
 real_literal value="1"/> <
 </modification_equals>
</component>
...
<component
 ident="x"
 type="Real"
 visibility="public">
 <modification_arguments>
 <element_modification>
 <component_reference ident="start"/>
 <modification_equals>
 <real_literal value="0"/>
 </modification_equals>
 </element_modification>
 < modification_arguments> /
 </component>

The first component (i.e., variable, see Figure 3, sub-
section 3.3 for schemata) has the variability attribute
set to "parameter" as in "parameter Real a=1;".
The second component declaration (i.e., variable) in the
example represents the “Real x(start=0);” line from
our Modelica class. All components have the
visibility attribute set to “public”. The last
component is similar to the second component and is
not presented.

<equation>
 <equ_equal>
 <component_reference ident="xdot"/>
 <call>
 <component_reference ident="der"/>
 <function_arguments>
 <component_reference ident="x"/>
 function_arguments> </
 </call>
 </equ_equal>
</equation>

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

Equations are enclosed in the equation element (see
Figure 4, sub-section 3.3 for schemata)

The equation section of the SecondOrderSystem
model describes two equations. The first equation is quite
straightforward. Equality is represented by an
equ_equal element with two elements inside. The right-
hand side is a function call (using the call element) to a
derivative and the left hand side is a component reference
represented with the element with the same name. The
second equation below is more complex. It has function
calls represented using the call element, binary
operations (see Figure 6, sub-section 3.3 for schemata)
such as add, mul for addition (+) and multiplication
(*). The component_reference elements denote
variable references. For the function calls, the arguments
are specified using the element function_arguments
that can contain expressions, named arguments or for
indices.

<equation >
 <eq_equal>
 <add>
 <call>
 <component_reference ident="der"/>
 <function_arguments>
 <component_reference
 ident="xdot" />
 </function_arguments>
 </call>
 <add>
 <component_reference ident="x"/>
 <mul>
 <component_reference ident="a"/>
 <call>
 <component_reference
 ident="der"/>
 <function_arguments>
 <component_reference
 ident ="x" />
 < function_arguments> /
 < call> /
 </mul>
 </add>
 </add>
 <integer_literal value="1"/>
 < equ_equal> /
</equation>

ModelicaXML Schemata are explained in the next sub-
section.

3.3 ModelicaXML Schema (DTD/XML-
Schema)

When designing the ModelicaXML representation we
started from the Modelica grammar. We simplified the
common cases to compact the XML representation
without loss of information or structure. The Modelica
DTD/XML-Schema has a rather close correspondence to
the Modelica grammar with the following exceptions:
attributes are used to make the XML representation more
concise and the DTD/XML-Schema jumps over some
non-terminals from the Modelica grammar to make the

XML representation more compact.
The OpenModelica Project [29] parser for Modelica

source code, written in ANTLR [28], was changed to
output the ModelicaXML representation. There are many
components in the OpenModelica Project that use the
ANTLR Modelica parser. Using our ModelicaXML
language such tools can be decoupled from this parser.
One clear advantage of this approach is that only one
parser is maintained and future Modelica language
extensions or modifications could be easily integrated.

For presentation purposes we translated our first DTD
implementation to XML-Schema using XML Spy [19].
The purpose of this translation was to generate pictures
from the XML-Schema. Also, another reason was to have
schemata files in both formats for future use. Perhaps, the
DTD variant will be discontinued in the future because
the XML-Schema is more widely used now.

All elements from our schema have the optional
attributes from the location entity (which are sline,
scolumn, eline and ecolumn) and the info attribute,
which can be used to store additional information. These
location attributes are used to generate a mapping
between key elements in our schema and the Modelica
source code representation. In the following we present
some of the important elements from the DTD/XML-
Schema.

The content of our ModelicaXML root element,
namely program is depicted in Figure 1. Inside the root
element we can have none or several definition
elements. The optional attribute within can be used
inside a program element. The rounded corner boxes on
the line connecting two elements can be sequence (like in
Figure1) or choice (like in the bottom part of Figure 2).

Figure 1: The program (root) element of the

ModelicaXML Schema

The required attributes for definition are ident and
restriction (which can have one of the “class”,
“model”, “record”, “block”, “connector”,
“type”, “package”, or “function” values).
Optional attributes are final, partial,
encapsulated, replaceable, innerouter,
visibility (one of “public”, “private” values)
and string_comment.

The definition element is detailed in Figure 2.
Presented in the picture at the bottom are the derived
element (that handles constructs of the type “class X =
Y;”) and the enumeration element used to declare
enumeration types. The upper part of Figure 2 shows the
other allowed elements that can appear inside the
definition element. All the elements in the upper part
have the visibility attribute, taking one of the
“public” or “private” values. The visibility
attribute values are stating the “public” or “private”

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

part from the Modelica source code. We can see that the
definition element is recursive, which allows the
declaration of classes inside classes.

The definition element can contain import,
extends, external, equation, algorithm,
annotation and component elements. The latter can
use constrain element for handling statements like
“type X=Y extends Z;”.

Figure 2: The definition element from the

ModelicaXML Schema

Component elements, with schemata presented in Figure
3, have attributes representing the Modelica type prefix
(flow, variability and direction), and type name
(type).

The name of the component is stored in the ident
attribute. These attributes are important because one can
query the ModelicaXML representation for a specific
component having desired type and ident. How XML
query languages can be used is explained in section 4.

The type_array_subscripts element and the
array_subscripts element are expressing the fact that
Modelica array subscripts can be declared either at the
type level or at the component level.

One can use the element modification-
_arguments to further modify the component.
Comments for a component can be specified with the
comment element. The elements modification-
_equals and modification_assign are used to
modify the component; as sub-elements they can have
Modelica expressions.

Figure 3: The component element from the

ModelicaXML Schema

An equation element, presented in Figure 4, can have
initial as an attribute to state if it represents a
Modelica initial equation.

Figure 4: The equation element from the

ModelicaXML Schema

The content and the structure of the equation element
are closely following the definition from the Modelica
Language Specification [8]. The equ_connect element
takes component references as arguments here, instead of
connect references, as in the version 2.0 of the Modelica
Language Specification.

The collapsed parts from the equ_if and equ_when
elements are the Modelica expressions, detailed in Figure
6. The Modelica expressions are present in the collapsed
parts of the algorithm elements alg_if and alg_when
and alg_while.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 5: The algorithm element from the

ModelicaXML Schema

The algorithm element is presented in Figure 5. We
point out that the elements alg_break and alg_return
are recently added statements of the algorithm section in
the latest version (2.1) Modelica Language Specification.

Figure 6: The expressions from ModelicaXML schema

The elements that can appear in ModelicaXML
expressions can be found in Figure 6. These are binary
operations, literals, component references, array
constructions, array operators and logical operations.

The constructs from the ModelicaXML schemata not
covered here, along with the full “modelicaXML.xsd”
(the XML-Schema version) and “modelicaXML.dtd”
(the DTD version), can be found at the OpenModelica
Project website.

4 ModelicaXML and XML tools

This section introduces various XML tools and explains
their usage in conjunction with ModelicaXML. In the
following, in different sub-sections we cover: the
stylesheet language for transformation (XSLT) [6], the
query language for XML documents (XQuery) [17] and
the Document Object Model (DOM) [3].

4.1 The Stylesheet Language for
Transformation (XSLT)

XSL is a stylesheet language for XML. XSLT is the part
of XSL that deals with transformation of XML
documents.

Using XSLT one can implement pretty printers (un-
parsers) that can transform ModelicaXML back into
Modelica source code. Alternative transformations could
transform ModelicaXML into other general, modeling or
markup languages (HTML, XHTML, etc). Transformers
that translate other modeling languages (provided that
they have an XML representation) into ModelicaXML
can also be implemented with XSLT. Using XSLT and
ModelicaXML, implementation of HTML documentation
generators, similar with what the commercial software
Dymola provides, becomes trivial. We cannot provide the
HTML documentation generator here because of space
reasons, but it will be included in the OpenModelica
Project.

We illustrate the usage of XSLT with an example that
transforms Modelica code. For this example we assume
that Modelica code was already translated to
ModelicaXML. After the transformation, one can output
the Modelica code from the changed ModelicaXML
representation using our “modelica-
xml2modelica.xslt” stylesheet from the
OpenModelica Project.

Example of changing a component name, both in the
declaration of the component and in the component
references:

<xsl:stylesheet version="1.0 …>
<!-- example of component rename -->
<xsl:param name="comp_old_name"/>
<xsl:param name="comp_new_name"/>
<!-- we echo everything that is not a
component or a component reference -->
<xsl:template match="*|@*|text()">
 <xsl:copy>

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

 <xsl:apply-templates
 select="*|@*|text()"/>
 xsl:copy </ >
</xsl:template>
<!-- we match the old component and we
output the new name -->
<xsl:template match="component
 [@ident=$comp_old_name]">
 <component ident="{$comp_new_name}">
 <xsl:apply-templates/>
 </component>
<!-- we match the old component
reference and we output the new
component name -->
</xsl:template>
<xsl:template match="component_reference
 [@ident=$comp_old_name]">
 <component_reference
 ident="{$comp_new_name}">
 <xsl:apply-templates/>
 </component_reference>
</xsl:template>
</xsl:stylesheet>

The XSLT engine is using templates that match on the
XML tree structure. The matching is performed by the
XPath expression appearing as the value of the match
attribute. By using xsl:apply-templates element we
instruct the XSLT engine to apply the rest of the
templates on the sub-tree that we already matched. When
this stylesheet is applied on our SecondOrderSystem
example from section 3.2 with the parameters “xdot”
and “xdot_new” it will change the component name and
all the component references of xdot to xdot_new.

XSLT can distinguish between components with the
same name defined in different classes by the use of
XPath expressions. To rename such occurrences we first
match the class in which is defined and then the actual
component. This applies for both declarations and
component references.

A search-and-replace tool could perform this
transformation, but such a tool has no knowledge about
the context and it will replace even the occurrences
appearing inside comments.

4.2 The Query Language for XML
(XQuery)

XQuery is a query language similar with what SQL is for
relational databases. Using XQuery, one can easily
retrieve information from XML documents. The XQuery
and XSLT are overlapping in some features, and our
example could be implemented in XSLT also.

We give a short example of a query over our
“SecondOrderSystem.xml” example from section 3.2.
In words, “find all parameter components with type Real
and show the initialization value”:

<table border=”1”>
{
 for $b in
 (document("SecondOrderSystem.xml")/*/
 definition/component)

 where $b/@type = "Real" and
 $b/@variability="parameter"
 return <tr><td>
 { $b/@* }
 { $b/modification_equals }
 </td></tr>
}
</table>

We executed this query in the Qexo [9] implementation
of XQuery and the result in HTML is as follows:

<table border="1">
 <tr><td>
 ident="a" type="Real"
 variability="parameter"
 visibility="public"
 <modification_equals>
 <real_literal value="1" />
 </modification_equals>
 </td></tr>
</table>

As expected, the attributes and the set value of the
element corresponding to “parameter Real a=1;”
from our Modelica example was returned as the answer.

Using XQuery, any types of queries can be asked
about the Modelica model. This opens-up the possibility
of easily debugging very large models. User interfaces
can be implemented to hide the query building from the
user. Static type checking can also be implemented as a
series of queries on the model, but is not trivial, because
the class hierarchy is not explicitly defined in XML.

XQuery uses XPath as sub-language to select the part
of tree that matches the XPath expression. In our XML
representation one can match an entire component having
a specified ident attribute. The XPath language can be
used to handle scooping.

4.3 Document Object Model (DOM)

The Document Object Model (DOM) [3] is a standard
interface that allows programs to access/update the
content, structure and style of XML documents. DOM is
similar with a general tree-management library.

There are open-source implementations for DOM
APIs in Java, C, C++, Perl, Python and other
programming languages.

Any Modelica tool written in various programming
languages can use the DOM API to directly
access/modify the ModelicaXML representation.

5 Towards an Ontology for the
Modelica Language

This section investigates the possibility of using the
markup languages Resource Description Framework
(RDF) [11], RDF Vocabulary Description Language
(RDFS) [10] and OWL [16] developed in the Semantic
Web Community [13] for development of a Modelica
ontology.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

An ontology is a description (like a formal
specification of a program) of both the objects in a certain
domain and the relationships between them. In the
context of the Semantic Web there is a layered approach
for specifying increasingly richer semantics for the upper
layers as in Figure 7.

Figure 7: The Semantic Web Layers

At the bottom in top of Unicode and Uniform Resource
Identifiers (URI) is XML, namespaces (NS) and XML-
Schema. XML specifies a term list with no relations. On
top of XML comes RDF to define a vocabulary and some
relations. RDFS (RDF schema) defines a vocabulary for
constructing RDF vocabularies.

The Ontology layer uses languages like OWL to
define description logic relationships.

With ModelicaXML we are now at the XML level!
Using RDF we can express graphs and we can model
inheritance relationships and place queries over this
relation. This can be achieved easily with a smart parser.
Using OWL we can place restrictions over relations and
concepts and we can reason with inference using
Description Logics.

5.1 The Semantic Web Languages

This sub-section briefly introduces the Semantic Web
Languages: Resource Description Framework
(RDF/RDFS) and Web Ontology Language (OWL).

We illustrate the use of Semantic Web Languages by
taking a Modelica model and its representation in OWL.

class Body "Generic body"
 Real mass;
 S n
end ody;

tring ame;
 B

class CelestialBody "Celestial body"
 extends Body;
 constant Real g = 6.672e-11;
 parameter Real radius;
end CelestialBody;

CelestialBody moon(name = "moon",
 mass = 7.382e22, radius = 1.738e6);

Body body_instance(name = "some body",
 mass = 7.382e22);

Our Modelica model has two classes (concepts) Body and
CelestialBody the latter being a subclass of the former
(by using ”extends” statement).

The encoding in OWL is as follows:
<?xml version="1.0" ?>
<rdf:RDF

 <!-- namespaces declaration -->
 xmlns=".../inheritance.owl#"
 xmlns:modelica=".../inheritance.owl#"
 xml:base=".../inheritance.owl">
 <owl:Ontology rdf:about=
 ".../inheritance.owl" />

 <!-- define Body -->
 <owl:Class rdf:ID="Body">
 <rdfs:label>Generic Body</rdfs:label>

 </owl:Class>
 <! mass-- define -->

 <owl:DatatypeProperty rdf:ID="mass">
 <rdfs:domain rdf:resource="#Body"/>
 <rdfs:range
 rdf:resource chema#float"/> ="XMLS
 </owl:DatatypeProperty>
 <!-- define name -->
 <owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="#Body"/>
 <rdfs:range
 chema#string"/> rdf:resource="XMLS
 </owl:DatatypeProperty>

 <!-- define CelestialBody -->
 <owl:Class rdf:ID="CelestialBody">
 <rdfs:label>
 Celestial Body
 </rdfs:label>
 <rdfs:subClassOf
 rdf:resource="#Body" />
 <!-- cardinality restriction on the
 constant: o
 CelestialBody -->

g ne and only one in

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
 rdf:resource "#g"/> =
 <owl:cardinality rdf:datatype
 ="XMLSchema#nonNegativeInteger">
 1
 < owl:cardinality> /
 owl:Restriction> </
 </rdfs:subClassOf>
 </owl:Class>
 <!-- define g -->
 <owl:DatatypeProperty rdf:ID="g">
 <rdfs:domain
 rdf:resource="#CelestialBody"/>
 <rdfs:range ´
 rdf:resource Schema#float"/> =" XML
 </owl:DatatypeProperty>
 < radius !-- define -->
 <owl:DatatypeProperty
 rdf:ID="radius">
 <rdfs:domain
 rdf:resource="#CelestialBody"/>
 <rdfs:range
 rdf:resource=" XMLSchema#float"/>
 </owl:DatatypeProperty>

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

 <!--
 instance declaration of CelestialBody
-->
<CelestialBody rdf:ID="moon">
 <name rdf:datatype="XMLSchema#string">
 moon
 </name>
 <mass rdf:datatype="XMLSchema#float">
 7.382e22
 </mass>
 <radius rdf:datatype="XMLSchema#float">
 1.738e6
 < radius> /
 <g rdf:datatype="XMLSchema#float">
 6.672e-11
 </g>
 <g rdf:datatype="XMLSchema#float">
 intentional error
 (string is not float)
 </g>
</CelestialBody>

<!--
 instance declaration of Body
-->
<Body rdf:ID="body_instance">
 <name rdf:datatype="XMLSchema#string">
 some body
 </name>
 <mass rdf:datatype="XMLSchema#float">
 7.382e22
 </mass>
 <--
 intentional error
 (Body does not have a radius)
 -->
 <radius rdf:datatype="XMLSchema#float">
 1.738e6
 </radius>
</Body>

 </rdf:RDF>

In the OWL representation of the Modelica model we
first define Body as being an owl:Class with “Generic
body” as label. The attributes of Body, namely: mass
and name are represented as owl:DatatypeProperty.
The datatype is a binary relation having a range (type)
and a domain (in our case the Body concept). As range
we use the datatypes from XML-Schema, in our case, for
mass we use ”float” and for name we use ”string”.

The class CelestialBody is defined as
owl:subclassOf the Body class according to the
“extends” statement from our Modelica model. As an
OWL feature in the definition of CelestialBody we
show a local cardinality restriction placed on the g
relation. This means that in the instances of
CelestialBody, the g component has to appear exactly
once. The representation of g or radius components is
similar to the representation of mass or name.

The moon instance of the CelestialBody class sets
the values of the components. We intentionally added the
g component twice and with a wrong type. We also
declare an instance of the Body class that has a radius
component (which is an error).

To verify the model, our file: “inheritance.owl”
was fed into an OWL Validator [32].

The validator, as expected, reports the following
errors:
• For the g component that has a string as value:

“Range Type Mismatch. Use of this property implies
that object is of type XMLSchema#float”.

• For the radius component in the body_instance
declaration: ”Domain Type Mismatch. Use of this
property implies that subject is of type
#CelestialBody. Subject is declared type [Body]”

• For the moon instance: “Cardinality Violation.
Resource #moon violates the cardinality restriction
on class #CelestialBody for property #g. Resource
has 2 statements with this property. Maximum
cardinality is 1”.

The OWL language has more constructs than our
example has covered. One can consult the OWL website
[16] for more details.

5.2 The roadmap to a Modelica
representation using Semantic Web
Languages

In the example above we have presented a small ontology
that models our Modelica model, consisting of both
classes and instances. With a clever parser, such
ontologies could be generated from Modelica libraries
and then used for composing Modelica models.

The roadmap to a Modelica representation in OWL
has the following steps:
• Define an RDFS vocabulary for Modelica source

code constructs. Such a vocabulary should include
concepts like class, model, record, block, etc.

• Transform the Modelica libraries in their OWL
representation using the above vocabulary.

• An OWL validator can then check the correctness of
both the concepts and the instances of these
concepts.

At the end of this roadmap we would have Modelica
represented in OWL. The future benefits of such a
representation were underlined in the Introduction
section. Here, we briefly explain how they could be
achieved.

The Autonomous Models

In the OpenModelica Project [24], the Modelica compiler
is built from the formal specification (expressed in
Natural Semantics [26]) of the Modelica Language. This
specification can be compiled to executable form using
the Relational Meta-Language (RML) tool [30, 31]. The
rules from Natural Semantics could be translated to OWL
or RuleML [12] and shipped together with the model.
Using the rules from the model a normal browser could
compile and simulate the Modelica model. We assume
that the platform should have a C compiler.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

The Software Information System (SIS)

Having the Modelica ontologies that model the source
code one could use the approach detailed in [33] and
build the domain model of the problem. Merging them
together would result in a Software Information System.

Using such a Software Information System users can
ask queries about the Modelica source code concepts
(components, classes, etc) that are classified according to
the domain model concepts of the problem.

Model consistency could be checked using Description
Logic

Modelica models represented in OWL (Description
Logics) can be fed into a reasoning tool like FaCT [25]
for consistency checking.

Moreover, such support would be of great help to the
Modelica library designers that could formally check
relevant properties of the class hierarchies.

The checks one can do using Description Logics on
the Modelica OWL representation are the following:
• Ensure that the classes and the class hierarchy are

consistent (ensure that a class can have instances and
is not over-constrained).

• Find the explicit relations between classes, regarding
for example sub-typing or equivalence.

Translation of Models to/from Unified Modeling
Language (UML)

The UML language has its XML representation called
XMI [1]. Translation from Modelica models conforming
to a Modelica ontology to XMI could be possible using
XSLT.

6 Conclusion and future work

We have presented the ModelicaXML language and some
applications of XML technologies. We have shown that
there are some missing capabilities with such XML
representation and we addressed some of them. We have
presented a roadmap to an alternative representation of
Modelica in OWL and the use of representation together
with the Semantic Web technology.

As future work, we consider completing the
ModelicaXML with the definition of all the intermediate
steps representations from Modelica to flat Modelica and
further to the code generation. This complete
representation would allow various open-source tools to
act at these formally defined levels, independent of each
other. More information could be added in the future to
such XML representation, like: model configuration,
simulation parameters, etc.

Further insights in the direction of Semantic Web
Languages and their use to express Modelica semantics is
necessary. Compilation in both directions between OWL
and the Relational Meta-Language (RML) is worth
considering.

7 Acknowledgements

We would like to thank the anonymous reviewers for
their valuable and insightful comments or suggestions.

8 References

1. CORBA, XML and XMI Resource Page,
http://www.omg.org/xml/.

2. Description Logics Website. Description Logics,
http://dl.kr.org/.

3. World Wide Web Consortium (W3C). Document
Object Model (DOM), http://www.w3.org/DOM/.

4. Dynasim. Dymola, http://www.dynasim.se/.

5. Word Wide Web Consortium (W3C). Extensible
Markup Language (XML), http://www.w3.org/XML/.

6. Word Wide Web Consortium (W3C). The Extensible
Stylesheet Language Family (XSL/XSLT/XPath/XSL-FO),
http://www.w3.org/Style/XSL.

7. MathCore. MathModelica, http://www.mathcore.se/.

8. Modelica: A Unified Object-Oriented Language for
Physical Systems Modeling, Language Specification
version 2.1, Modelica Association, 2003.

9. Qexo - The GNU Kawa implementation of
XQuery,http://www.gnu.org/software/qexo

10. World Wide Web Consortium (W3C). RDF
Vocabulary Description Language (RDFS/RDF-Schema),
http://www.w3.org/TR/rdf-schema/.

11. Word Wide Web Consortium (W3C). Resource
Description Framework (RDF),
http://www.w3c.org/RDF.

12. The Rule Markup Initiative, http://www.dfki.uni-
kl.de/ruleml/.

13. Semantic Web Community Portal,
http://www.semanticweb.org/.

14. World Wide Web Consortium (W3C). Standard
Generalized Markup Language (SGML),
http://www.w3.org/MarkUp/SGML.

15. UML Website. Unified Modeling Language (UML),
http://www.uml.org/.

16. Word Wide Web Consortium (W3C). Web Ontology
Language (OWL), http://www.w3.org/TR/2003/CR-owl-
features-20030818/.

17. Word Wide Web Consortium (W3C). XML Query
(XQuery), http://www.w3.org/XML/Query.

18. Word Wide Web Consortium (W3C). XML Schema
(XSchema), http://www.w3.org/XML/Schema.

19. Altova. XmlSpy, http://www.xmlspy.com/.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

http://www.omg.org/xml/
http://dl.kr.org/
http://www.w3.org/DOM/
http://www.dynasim.se/
http://www.w3.org/XML/
http://www.w3.org/Style/XSL
http://www.mathcore.se/
http://www.gnu.org/software/qexo
http://www.w3.org/TR/rdf-schema/
http://www.w3c.org/RDF
http://www.dfki.uni-kl.de/ruleml/
http://www.dfki.uni-kl.de/ruleml/
http://www.semanticweb.org/
http://www.w3.org/MarkUp/SGML
http://www.uml.org/
http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Schema
http://www.xmlspy.com/

20. Greg Badros. JavaML: A Markup Language for Java
Source Code, in Proceedings of The 9th International
World Wide Web Conference,May 15-19, 2000,
Amsterdam, Nederlands.

21. Johansson Björn, Jonas Larsson, Magnus Sethson
and Petter Krus. An XML-Based Model Representation
for model management, transformation and exchange, in
ASME International Mechanical Engineering
Congress,November 17-20, 2002, New Orleans, USA.

22. Wolfgang Freiseisen, Robert Keber, Wihelm Medetz,
Petru Pau and Dietmar Stelzmueller. Using Modelica for
testing embedded systems, in Proceedings of The 2th
International Modelica Conference,March 18-19, 2002,
Munich, Germany.

23. Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica, Wiley-IEEE
Press, 2003.

24. Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim
Engelson, Levon Saldamli, Henrik Johansson and
Andreas Karstöm. The Open Source Modelica Project, in
Proceedings of The 2th International Modelica
Conference,March 18-19, 2002, Munich, Germany.

25. Ian Horrocks. The FaCT System,
http://www.cs.man.ac.uk/~horrocks/FaCT/.

26. Gilles Kahn. Natural Semantics, in Programming of
Future Generation Computers, Fuchi K. and Niva M.,
Editors, 1988, Elsevier Science Publishers: North
Holland. p. 237-258.

27. Jonas Larsson, Björn Johansson, Petter Krus and
Magnus Sethson. Modelith: A Framework Enabling Tool-
Independent Modeling and Simulation, in European
Simulation Symposium,October 23-26, 2002, Dresten,
Germany.

28. Terence Parr. ANTLR Practical Computer Language
Recognition and Translation, http://www.antlr.org/book/.

29. Peter Aronsson Peter Fritzson, Peter Bunus, Vadim
Engelson, Levon Saldamli, Henrik Johansson, Andreas
Karstöm. The Open Source Modelica Project, in
Proceedings of The 2th International Modelica
Conference,March 18-19, 2002, Munich, Germany.

30. Mikael Pettersson. Compiling Natural Semantics,
Lecture Notes in Computer Science (LNCS) 1549,
Springer-Verlag, 1999.

31. Mikael Pettersson. Compiling Natural Semantics,
Department of Computer and Information Science,
Linköping University, Linköping, Dissertation No. 413,
1995.

32. Dave Rager. OWL Validator. 2003,
http://owl.bbn.com/validator/#www.

33. Christopher Welty. An Integrated Representation for
Software Development and Discovery, 1996.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.antlr.org/book/

 The Modelica Association Modelica 2003, November 3-4, 2003

	Abstract
	Introduction
	Related Work
	Modelica XML Representation
	The eXtensible Markup Language (XML)
	ModelicaXML example
	ModelicaXML Schema (DTD/XML-Schema)

	ModelicaXML and XML tools
	The Stylesheet Language for �Transformation (XSLT)
	The Query Language for XML (XQuery)
	Document Object Model (DOM)

	Towards an Ontology for the Modelica Language
	The Semantic Web Languages
	The roadmap to a Modelica representation using Semantic Web

	Conclusion and future work
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

