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Abstract achieved through the application of a specific numeri-
cal method, namely thinite Element Methadwvhich
The complete development of a Modelica model fean approximate a PDE with a set®fdinary Differ-
1-D heat exchangers is presented. The numerigatial Equation§ODES). Second, to amply the library
method, termedrinite Element Methadis briefly re- of models for thermal power generation plants which
viewed and its application to heat exchangers partifds been developed here at Politecnico di Milano, of-
differential equations is presented. Implementation fgring to potential users a broader choice for the com-
sues are tackled as well, and the component developgskity and accuracy with which they would like to
is validated through simulation within the frameworkiodel some specific physical phenomena; this second
of ThermoPowera recently released Modelica libraryim is achieved exploiting the Modelica features for
for thermal power plants modelling, simulation angbject-oriented modelling and the standardized model
control. The component is included into such libraiyjterfaces which have been defined within the library
which is publicly available through the Web [1]. ThermoPowef1].
The paper is organized as follows: Section 2 recalls
the basic physical laws for HEs; Section 3 is a brief in-
troduction to the numerical methods used, while Sec-

. ion 4 shows how such methods can be used to develop
The process of heat exchange between two fluids tfr1nao?dels for HEs; Section 5 deals with the Modelica im-

are at different temperatures and separated by a solid : .
: ) . L HO ementation of the model and Section 6 shows some
wall occurs in many engineering applications. The

) . . . imulation results; Finally, conclusions and perspec-
device used to implement this exchange is termec?a y Persp

heat exchangefHE), and specific applications maylves on future work are given in Section 7.

be found in space heating and air-conditioning, power

generation, waste heat recovery, and chemical process- Ejrst Principle Model

ing [2].

In this paper it is presented a Modelica model of theynsider a compressible fluid flowing through a pipe-
fluid side of heat exchangers, developed using a "Waped volume\) with rigid boundary area and ex-

merical method known dite element metho@om-  .panging thermal energy through such boundary (fig-
plete models of HEs are then obtained by suitably s 1).

sembling such models with metal wall and heat ex-

change models. 0 L
Such model is included in the power generation Mod- | 3
elica libraryThermoPowef1].

The goal of this research is twofold. First, to show G@GG@GGG
how Modelica can be used effectively in the mod-

elling of physical phenomena described directly by Heat Flux

Partial Differential Equations(PDESs); this aim is

1 Introduction

Fluid Flow

*Corresponding author Figure 1: Heat Exchanger Scheme
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Assume that where Q denotes a bounded domair € Q) in O™
L _ _ _ with boundarydQ, T > 0 is a prescribed time value
¢ the longitudinal dimensionxf is far more rele- (t € (0,T)), u(xt) is the unknown (for example a
vant than the other two; temperature field)f (x,t) is given function,(xt) is

o the volumeV is “sufficiently” regular (that iy & given velocity field ,o(x,t) an adsorption coeffi-
is such that the fluid motion alongis not inter- cient, [ is the gradient operatotp = up(x) is the as-
rupted); signed initial datum and(x,t) is the assigne®irich-

let boundary condition defined on the inflow boundary

e there are no phase-changes along the pipe (that" = {x € 9Q|B(x,t)- T (x) < 0} (T is the unit out-

is the fluid is always either single-phase or tw@yard normal vector 0AQ).

phase). The equation (4) is calleime-dependant advection

e the Reynolds numbeR@ is such that turbulent €quation[3] and it can represent the energy equation
fluid flow is assured along all the pipe, which i%3) for heat exchangers.
turn guarantees almost uniform velocity and their the following, for the sake of simplicity, the equa-
modynamic state of the fluid across the radial dion (4) will have the forrn‘gt—u +Lu= f, whereL is the
rection; proper differential operator.

When water or steam is assumed as the working ﬂl;@e.apgror:(lmatﬁd solutllon of the |PDEh(43 f:an bﬁ
the last hypothesis does not hold at very low flowrat tained through several numerical methods; on the

however, in practical system simulations, the plaﬂ{hersme, only methods that allow to transform a PDE

never operates in such conditions for a long time. m_to a se_t of ordinary differe_ntial equations'(ODEs) or
It is then possible to define all the thermodynamic ilqjﬁ(_erentlal—algebralc equatpns_ (DAEs) W't_h respect
tensive variables with respect only to longitudinal afi? time are ;wtgble to use within thg Modelica fraf”e'
scissa X) and time {). Within this framework, the work. Within th_ls_paper the focus is on a numerical
conservation equations for mass, dynamic momentm’ﬁthOd termedrinite Element Metho@FEM) [3],[4].

(neglecting the kinetic term) and energy (neglecti ther imeres}tjng _meth_(f)fds for the ﬁpproximatioc;l of
the diffusion term) can be formulated as follows: ) _E (4) are théFinite Difference MethodFDM) an
Finite Volume MethodFVM) [3], [5]. The advantage

op ow of using FEM instead of FVM or FDM is that it can

AEJr&_ 0 1) provide more accurate solution or, in specific cases,
ow ap 9z Cs the exact nodal values for the unknown [3].
E+A&+ pgA&Jr 2pA2 WWW| =0 (2) he FEM is based on the discretization of the solution
oh  voh dp w region into elementary elements. The unknown vari-
E-I—WK& = VE+VK Pext (3) ableuis expressed in terms of assuneggbroximating

or interpolationfunctions within each element. The
whereA is the pipe cross-sectiop, the fluid density, interpolation functions are local, i.e. functions defined
wthe mass flow-ratep the fluid pressureg the gravity over smaller sub-domains, where these sub-domains
accelerationz the pipe heightC; the Fanning friction extend over a few elements, and are zero everywhere
coefficient, w the wet perimeterh the fluid specific e|se. The local interpolation functions are ordinarily
enthalpyy the fluid specific volumegex: the heat flux very simple functions, such as low-degree polynomi-
entering the pipe across the lateral surface. als. The interpolation functions are defined in terms

of the values of the variable at specified points called

3 Finite Element Methods For Time- nodes Nodes usually lie on the element boundaries

. . where adjacent elements are considered to be con-
Dependant Advection Equation nected. In addition to boundary nodes, an element may

also have a few interior nodes. The nodal valuesf

the variable and the interpolation functions for the el-
ements completely define the behavior of the variable
within the elements. For the finite element represen-

Consider the following first-order linegartial differ-
ential equationPDE):

u .

&JFB' Out+ou=f inQx(0,T) tation of a problem, the nodal values of the variable
u=g onoQN x (0,T) (4) become the new unknowns. Once these unknowns are
u=up onQfort=0, found, the interpolation functions define the variable
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throughout the assemblage of elements. Clearly, tadledN). In figure 2 the piece-wise lineak & 1) in-
nature of the solution and the degree of approxim@rpolating functions are depicted. The spacantdr-
tion depend not only on the size and number of tipelating functions will be called hereaftét, and its
elements used, but also on the interpolation functioingerpolating functiong;(x). Then theapproximated

selected [3]. solutionup(x,t) of uis expressed as
- - N
3.1 The Method of Weighted Residual Un(X,t) = Zl“i(t)q"(x) fort >0
i=
The Method of Weighted Residu@MWR) is a math- N (7)
ematical technique for obtaining finite element equa- Up,h(X) = Zluo_,i di(x) fort=0
tions from linear and non-linear PDEs. Referring to =

(4), the problem solved by the MWR is to find the )
nodal values of an approximated solutian(&.t)) so 3-3 Petrov-Galerkin Methods

as to make an error (called residual) In the following, for the sake of simplicity, the inner
functional product notatiorfu,v) = [, uvdxis used.
oun(X,t) iy o
Rn(x,t) = + Lun(x,t) — f(xt) (5) In addition the way boundary conditions are enforced
ot into the approximated equation is not included, since
small over the entire solution domad, i.e. itis presented separately later.
By expanding (6) and properly choosing the weighting
/ RVAAQ ~ 0, Wi € Vi (6) function space, th€etrov-Galerkin(PG) approxima-
Q ’ ’ tion of the PDE problem (4) consists in findinge W,
: . _— such that
wherevy(X) are linearly independenteighting func-
tions (as many as the nodal points) belonging to an d
appropriate finite dimensional spag The Petrov- gilUn Vo) + (Lun,Vh) = (f,Vh) YWh €Vh - (8)
Galerkinmethods used in the HE model development _ _
belong to this family. with W, 75 Vi, but dln’(\/w]) = dlm(Vh) =N, vh> 0.

Equation (8) has to be satisfied for anyc W, that is

it has to be satisfied for all the functions of any basis
of the spacé##, itself; the basis functions of, will be
denoted agy;i|i = 1...N}. The functional spac, is
termed the space oéstor weightingfunctions. Then
being{¢j|j = 1...N} a basis for the spadat, and
substituting (7) into (8), it can be obtained a sef\bf
ODEs for the unknown vectadJ (t):

3.2 Finite Element Basis Function and Space

L ® 0 h zh M-2h L

mEY A =F.v@ =t ©
~ WhereU(t) = [u(t)], F(t) = [(f.y)], Uo = [uo,],
—  Aj = (Lo}, W), Mij = (¢, i), fori,j=1...N. The
matrix M andA are called thenassandstiffnessma-
trix respectively.
Figure 2: The “triangular” basis functiors (x) General assumptions guarantee the existence and
uniqueness of a solution [3].
The solution domai is decomposed into element3he (standardfzalerkin method is a particular case
K of mesh sizehg. The finite element spacer‘f)ds of the PG one, where the test functions spagg is
the finite dimension space of continuous piecewisghosen to be the same as the approximating functions
polynomial functions of degrele defined within each space \\4,), thereforeM;; = (¢;,9i), Aj = (Ld;,¢i),
elementK. The basic idea of the FEM is therefor&;(t) = (f,¢i).
to approximate the infinite dimensional solution, b&he application of the standard Galerkin method to ad-
longing to a infinite dimension spacé with a finite vection dominated problems (as the one considered)
dimensional one, belonging qu (whose size will be could lead to solutions with oscillatory behavior due
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to numerical instabilities. To overcome such a prob-e In the case of flow reversal (change®sign in
lem it is possible to use stabilized Petrov-Galerkin equation 4) the inflow boundary changes. In the

method wf the state variables (i.e. the nodal values) are
The basic idea of stabilization methods is to relate the always the same since the nodal values on the
functional spac®}, to W, through a differential opera- boundary are also problem unknowns. Instead,
tor L, somewhat related to the differential operaitor in the sf, the nodal values on the boundary are
that isVih = {Wh + Lnwh|Wh € WhL}. The equation (8) known, so that the state variables depend on the
thus becomes flow direction.

d In the model developed the choice has been to adopt

gt (Un: Wh + LnWh) + (LUn, Wh + LaWh) = (10) thewf since it can be accurate aswhile providing

—(f,Wh+Lnwn)  Ywh € W easier implementation in the case of flow reversal [5].
3.4 Treatment of Boundary Conditions 4 FEM Model for Heat Exchangers

The boundary conditions (BCs) can be imposed in tio this section it will be shown how the numerical
different ways: methods introduced can be applied to the balance
equations so to transform them into a set of ODESs that
1. Strong formulation(sf): the the boundary con-can be used directly in Modelica models.
ditions are enforced directly in the definition ofrhe spatial domain@,L]) has been divided into a grid
the spacen, of the admissible solutions, whileof uniformly spaced elements with size- L/ (N — 1),
the test functionsvanish on the boundary. ThewhereN (> 2)is the number of finite elements that are
boundary conditions are satisfied at all nodes Igeing to be used.
ing onoQ". The interpolating functions have been chosen to be lin-

ear (figure 2); their analytical expression is
2. Weak formulatior{wf): the boundary conditions

are enforced indirectly in the unknown nodal val- | —x
ues of the approximated equation. The boundar§1(X) = T 0<x= |
conditions is not imposed exactly at all nodes of 0 otherwise
0Q", but a suitable linear combination between x—(N=2)I
them and the residual of the PDE is enforcedPn(X) = —— (N-2 <_X§ L
Therefore the problem formulation becomes: for . 0 otherwise
anyt € [0,T] find u, € W, such that X—(II—2)| (i 2)l <x< (i1l
i(X) = il —x ) _
;(Uhavh)Jr(LUh,Vh)/ B M uwvhdy #%) - (i—1l <x<ll
o 0 otherwise
= (f,vn) —/an B ﬁ’gnvhdy YWh € W ] (12)
un(0) = Uon Iunsgclje following the notatiory = [¢1---dn]' will be

tis | tant t te that the addit (Il'l)t The stabilized Petrov-Galerkin MethogrmedGALS
'S Important o hote that the additional in e'Galerkin/Least—Squar(—:'s)/vhich has been proven to
gral terms can be easily computed for the on

dimensional case sincaa™ is a finite set of e the most suitable one for the advection dominated
) case [6], has been used to obtain the test functions:
points (at most twox = 0 andx = L).

| déi(x
The main differences of the two boundary condition W;j(X) = ¢;(x) +as dj)(( )’
formulations are:

j=1..N (13)

wherea is a stabilization coefficient (& o < 1); for
¢ In thewf the nodal values on the boundary am = 0 the standard (i.e. non stabilized) method can be
unknown and therefore the number of finite el@btained.
ment equations to be solved is higher than thahe following hypothesis have been taken into account
obtained from the strong formulation. in the finite element formulation:
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e hlinear on each element 4.1 Energy Balance Equation
e T linear withh Consider the energy balance equation for the HE:
e Vvlinear withh oh voh dp+v o 16)
A rew Xt
e (ky linear on each element ot CAdx - dt
e w uniform along the HE with reference to the advection equation (4) used in
_ the finite element formulation, it resul= wz and
e puniform along the HE o = 0, while the termf is simply the right hand side

of the equation.
The application of a PG method, with weakly imposed
That meand, T, V, @ex: can be expressed as boundary conditions, leads to a setNODEs:

h =ht)T d(x), h=1[hy---hn]T / (Zlh¢>wjdx+/ ( Vi b Zlh. dx)
Ti(t)¢i(x) =TOTOX), T=[T T ydx+ aqin (YAV .Zlviq)i .Zlh‘q)i) Wjdx =
N i= i=
v(x,t) = _ZlVi(t)d)i(X) =v(t)" §(x), v=1[vi--w]" /L iviq)i <D+:)i(ﬂ¢i> pjdx+
0= i=

Pext(x,1) = 5 @(t o F(X), o= [gr---@]" w ¥
— i¢i hin | Pjdx, VYU €V
Z (14) +AW<A;Y¢ >%>g et

e p, h, ware the state variables

._M

T(xt) =

E_'M

17)
The considered hypotheses do not affect the generality
of the model, at least if there aren’t any phase chang#iere hiy is the fluid specific enthalpy at the inflow
along the HE. boundary. Such set of ODEs can be easier represented
In the balance equations both the fluid density speciigth the following differential matrix equation:
volume are involved, and their relation is well known

to bep = 1/v; sincev has been assumed to be linear Mh w Bh V—VCH — BMV wa <
. ST . - = =Y o+ —Kv, (18
with h (which is linear on each element), it should re- A + A PV A ? A (18)

N -1 . . . .
sultp= (T, vi$i) ~, thatispis not linear withh. As whereM., B, C. Y. K are defined as
a matter of fact, for the sake of simplicity, it has been

assumed that algpcan be expressed as

L
_ B M~:/¢wdx
Zﬁ ) =pt)" (), p=[p1--pn]’ SR I
L[ & do;
with pj = (v)™! Vi=1---N Bji:/0 ZVk¢k alpjdx
K=1
(15) .
It can be shown that the error introduced by this ap- Cji = /agzin <Z Vk ¢k> ijdx (19)
proximation (computed ay%‘(v*l —p)dx) is O(h). Nk:1
Among the balance equations, the mass and dynamic o /'— .
momentum ones describe the fast pressure and flow Vi = Z Vi O | diydx

rate dynamics, while the energy one describes the .

slower dynamics of heat transport with the fluid ve- Kiji = /agin hin ¢ip;dx

locity; the most relevant phenomenon, for power gen-

eration plant modelling, is the latter one, so that tAde detailed expressions for the matridé¢sB andY
equation (3) has been discretized with a fine appraate reported in appendix A, while the matri€eandK
imation through FEMs, while equations (1)-(2) hav@vhich express the BCs) will be analyzed thoroughly
been treated with a coarser approximation. in the next section.

The Modelica Association Modelica 2003, November 3-4, 2003



F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

4.2 Mass Balance Equation leading to the ODE
Consider the mass balance equation for the HE: _ dz
LW+ A(pL — po) + A P’ D+
o w_ . (20) X (28)
ot ox

Ciw T
+ WW|W| v D=0,
Since pressurep) and specific enthalpynf have been

chosen as the thermodynamic state variables, it res@g§uming the Reynolds number is sufficiently high,
Cs is approximately constant; for medium-range val-

ues ofRe it can be computed with Colebrook’s equa-
tion. When dealing with water/steam flow in indus-
o . : trial plants, the transition and laminar regimes corre-
_Substltutlng N sugh equation the expression reportg ond to very low pressure drops, which need not be
in (14) forh andp, it follows computed with high accuracy; therefore, a minimum
value ofRe= 2100 is assumed. Last, but not least, a

op Odpoh 0dpadp

3 onat apat (21)

ap e =
5= Ph (967) h+pppd (22) small linear friction term is added to enhance numeri-
cal stability at low or zero flowrate; the parametey
where pp = [%Mp' . %Lmhm,p] and pp, = should be much smaller than the nominal flowrate, so

5 S : - ) )
[%\hl,p-“%\m,p] that the added term is negligible during normal opera:

Then, integrating the mass balance equation along #98- Thus equation 28 becomes
spatial domain, it results dz
LW+ A(pL— po) + 9A—-p' D+
dx
(29)
Cf (V]

+ a7 W(W +W)V'D=0.

L dp 1 /Low
—dx= dax, (23)
o Ot

Ao ox
leading to the ODE

e 1 5 Modelica Implementation
Pno ER+pPp D= 7(Wo—w),  (24)
The developed model has been implemented in a com-

Wherewo andw_ are .the fluid mass flow-rate_ at abponent calledrFlowlDfem (figure 3) which is part of
scissa 0 and respectivelyE andD are a matrix and {hg |iprary ThermoPowef1].

a vector (details can be found in appendix A):

L L
Ei= [ ook, D= [ ok @5) .-o

4.3 Dynamic Momentum Equation Flow1Dfem

Consider the dynamic momentum balance equation

for the HE: Figure 3: The Modelica Model
ow  0p dz  Ciw For the present model, it has been assumed that the
—+A— A—+V—— ’
ot + 6x+pg dx+ 2A2 (26) fluid inside the HE is a water/steam mixture. The

Substituting the expression reported in (14) foand medium models used for water and steam are provided

vand integrating along the spatial domain, the folloy the free “ThermoFluid” library [7].

ing expressions resultg/dx is assumed as a constantNe component is perfectly interchangeable with the
parameter): actualThermoPowecomponent for 1-D HEs, since it

has the same connectors: two flanges for water/steam
'L ow L dp L dzN flow and a terminal for heat flux. Here the definition of
0 de+/() A&dx+/0 gA&i;pi¢‘dX+ such interfaces is reported, for further details see [1]:

wlw| =0

LCiw N connector WaterFlangeA
—|—/ WW|W| Zlvid)idXZO, Pressure p;
0 i= flow MassFlowRate w;
27) input SpecificEnthalpy hBA;
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output SpecificEnthalpy hAB; notation for the balance equations could increase the
end WaterFlangeA; computational burden; nevertheless, it has been dis-
connector WaterFlangeB covered (by direct inspection of the generated C code)
Pressure P that efficient compilers can simplify the set of ODEs
flow MassFlowRate w; btained di he diff ial . .
input SpecificEnthalpy hAB: 0 taine expan ing the di grentla matrix equations
output SpecificEnthalpy hBA; in the Modelica code, removing the terms correspond-

end WaterFlangeA; ing to the zero entries in the matrices.

connector DHT
parameter Integer N;

Temperature TINI; 5.1 Boundary Conditions and Flow Reversal
flow HeatFlux phi[N]; .
end DHT; One of the most relevant features of the model is the

capability to handle not only flow reversal in the HE,
In the codehAB and hBA are the fluid specific en-but also the most “unusual” transients for what con-
thalpies in case its direction is from an A-type flange t@rns flow, that is the model is able to handle also tran-
a B-type one and viceversa. Such connectors supmieht where the fluid is entering or exiting from both
flow reversal. In the model there is a connedtdt  the extremities (which are operating conditions which
of typeWaterFlangeA (correspondingt@=0) and can be experienced when suddenly decreasing or in-
a connectooutfl  of type WaterFlangeB corre- creasing the heat-flux).
sponding tox = L. The matrice€C andK, enforcing the boundary condi-
The model offers many customization possibilitiefons into equation (18), depend on the inflow bound-
through parameters: the HE geometry can be fullyy 0Q™". It can be noted that, in the 1-D case, the in-
specified (length, diameter, height); the dynamic mflew boundary can be constituted at most by the points
mentum ternmdw/dt can be switched off to avoid fasix = 0 andx = L, depending on the fluid mass-flow rate
pressure oscillations; th@s coefficient can be eitherdirection in that specific direction.
constant or computed by the Colebrook equation; tBeppose, for example, that the inflow boundary is just
compressibility effect deriving from the discretizatior = 0 (that meansnflw > 0 andoutflw < 0).
of equation (1) can be associated to either the upstre@onsidering the analytical expression @®andK and
or downstream pressure; the numerical stabilizatifor the interpolating and weighting function, it results
coefficienta can be chosen in the interviél 1].

It should be noted that the matrickk B, Y, E and the N

vectorD are completely defined once the parameter Gij = /x:o <kzl"k ¢k) di;dx=
has been chosen; thus they can be computed once for a L

all before the simulation starts by efficient Modelica {(1_ 2w fi=j=1
compilers. The definition of such matrices is made 0 otherwise

thought I , howed below: : _ :
ougnt some foops, as showed below The same happens if the inflow boundarxis L: the

M[1, 1] = /3 - [*alfa/4; only non-zero entries for the matricEsandK can be
ma‘ 2’\]‘] = V'? +I*';'°f‘gz’_43 (1,1) and(N,N). The code for such entries is obtained
MIN, (N__ 1] = U6 + Ialfa/a; through simple conditional equations:
if N > 2 then

for i in 22N - 1 loop C[1, 1] = if (infLw >= 0) then
M[i, i - 1] = I/6 + I*alfa/4; (1 - alfa/2)*v[1, 1] else O;

M[i, i] = 2*/3;

M, i + 1] = II6 - I*alfa/4;

M[1, i + 1] = O;
MIN, i - 1] = 0;

for j in 1:(i - 2) loop

C[N, N] = if (outflw >= 0) then
(1 + alfa/2)*v[N, 1] else O;

K[1, 1] = if (infLw >= 0) then
(1 - alfa/2)*infl.hBA else 0;

M[i, jl = 0O; K[N, N] = if (outflw >= 0) then
end for; (1 + alfa/2)*outfl.hAB else O;
for j in (i + 2):N loop
ML, ] = 0;
end for; . .
end for 6 Simulations

end if;

The component has been tested with other models

It can be noticed that many of the matrices entri&é®m the library ThermoPowerusing Dymola simu-
are zeros, so it could appear that the use of a matakon environment [8]; specific configurations have
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been set up in order to investigate the model behavic ==
with respect to the single balance equations and
their interactions in the most common layouts four
in power plants. Many simulations have been carritc =
out but, for the sake of brevity, only the most sign
ficative ones are reported here; all the test set ups
included in the library and are available on-line [1]. >
In all the reported simulations, the HE has a length
10mand radius Tm All the simulations us& = 20
nodes.
The first simulation reported is aimed at testing the €
ergy balance equation; the experimental layout is ¢
picted in figure 4: the HEhgeX is connected with a
mass flow rate source, an external source of heat flow,

a valve (which accounts for head losses) and a sink Figure 5: HE Outlet Temperature
with fixed pressure.

3204

3124

3044

296

SpecifcEntrapySiep The fluid involved in this experiment is superheated
vapor with temperature and pressure at about k36
. Constart and 1G Pa respectively; the mass flow rate flowing

startTirme={0}

through the HE is about 18 Kg/s.

FlowRateStep

il

startTime={50}

extPower Constantvatve

startTirme={30} \l

MassFlowStep

.

startTime={0.5}

k=(1}

Sink

Figure 4: First Experiment Layout

The fluid involved in the experiment is liquid water
at temperatures between 2B7and 322K, the pres- Figure 6: Second Experiment Layout
sure inside the HE during the experiment varies from

1.6° Pato 2° Paand the mass flow rate is comprised it time 0.5 sthere is a 10% step increment of the mass
the interval 02— 0.3Kg/s. flow rate; the consequent HE pressure transient is de-
At the initial time instant there is a step variation frorpicted in figure 7.

10° J/m® to 1.42-10° J/m? of the specific enthalpy The solution of the equations for such experimental
for the fluid of the flow rate source; at time 8@here setup, assuming uniform gas properties and ideal gas
is a step variation of the energy flux entering the Héontent, would lead to a first order transient whose
from 0 to 125-10* W/n¥; at time 50s there is a step time constant is in good accordance with the simula-
variation in the source mass flow rate fron8®g/s tion results.

to 0.2Kg/s. The last test reported here involves a two side HE
The temperature of the fluid at the end of the HE {gexAandhexB in counterflow configuration (figure
reported in figure 5. The exact solution (assuming8). The two fluid sides are separated by a metal wall
constant) for the underlying PDE would lead to a terd-mmthick.

perature step variation at tinhe= 10s and ramp vari- The operating fluid is liquid water with temperature in
ations at timet = 30s andt = 50 s; the simulation the range 29& — 321K and pressure about 30° Pa.
results show good accordance with such behavior. The experiment setup is such that the mass flow rates
The second experiment is aimed at testing the méasthe two HE sides have the same value3{Kg/s)
balance equation; the experimental layout, similar wgth residence time 9 s.

the first one, is depicted in figure 6. At time 50sthere is a step variation from 10/m? to
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Figure 8: HE Counterflow Configuration
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Figure 7: HE Pressure Figure 9: HE Temperatures: hexA inlet (continuous),
hexB outlet (dotted) and hexA outlet (dashed)

2-10° J/m? of the specific enthalpy for the fluid of the

flow rate source fohexA 7 Conclusions and Work in Progress

In figure 9 are reported the inlet temperatureiexA

(continuous line), the outlet temperature fiexB(dot- A Modelica FEM-based model for heat exchangers
ted line) and the outlet temperature foexA(dashed has been presented. The model has been implemented
line). into a specific componenE{ow1Dfem ) which is in-

It should be pointed out that the last experiment hekided in theThermoPowetibrary, developed for ther-
been conceived also to test the numerical robustng¥ power plants modelling, simulation and control.
for the model: the results have shown that the coupliige component, whose internal implementation is
of two FEM-based componentsgxAandhexB does completely shielded from the connectors, has been val-
not affect the numerical stability, even for large valdated through simulations for specific plants configu-
ues of the heat exchange coefficient. Further tests wigtions.

different stabilization coefficients, not reported for th€he possibility to effectively use Modelica to model
sake of brevity but available on-line, have confirmgehysical systems that are originally described by PDEs
the absence of numerical instabilities. has been shown in the specific case of the advection
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equation.
Current work is headed essentially in two directions:

o the further improvement of the developed model

with particular emphasis on extensions to handle
also phase changes along the spatial domain;

e the development of Modelica models for other

systems described by PDEs, such as flexible
robot links.
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