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Abstract

The complete development of a Modelica model for
1-D heat exchangers is presented. The numerical
method, termedFinite Element Method, is briefly re-
viewed and its application to heat exchangers partial
differential equations is presented. Implementation is-
sues are tackled as well, and the component developed
is validated through simulation within the framework
of ThermoPower, a recently released Modelica library
for thermal power plants modelling, simulation and
control. The component is included into such library
which is publicly available through the Web [1].

1 Introduction

The process of heat exchange between two fluids that
are at different temperatures and separated by a solid
wall occurs in many engineering applications. The
device used to implement this exchange is termed a
heat exchanger(HE), and specific applications may
be found in space heating and air-conditioning, power
generation, waste heat recovery, and chemical process-
ing [2].
In this paper it is presented a Modelica model of the
fluid side of heat exchangers, developed using a nu-
merical method known asfinite element method; com-
plete models of HEs are then obtained by suitably as-
sembling such models with metal wall and heat ex-
change models.
Such model is included in the power generation Mod-
elica libraryThermoPower[1].
The goal of this research is twofold. First, to show
how Modelica can be used effectively in the mod-
elling of physical phenomena described directly by
Partial Differential Equations(PDEs); this aim is
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achieved through the application of a specific numeri-
cal method, namely theFinite Element Method, which
can approximate a PDE with a set ofOrdinary Differ-
ential Equations(ODEs). Second, to amply the library
of models for thermal power generation plants which
has been developed here at Politecnico di Milano, of-
fering to potential users a broader choice for the com-
plexity and accuracy with which they would like to
model some specific physical phenomena; this second
aim is achieved exploiting the Modelica features for
object-oriented modelling and the standardized model
interfaces which have been defined within the library
ThermoPower[1].
The paper is organized as follows: Section 2 recalls
the basic physical laws for HEs; Section 3 is a brief in-
troduction to the numerical methods used, while Sec-
tion 4 shows how such methods can be used to develop
models for HEs; Section 5 deals with the Modelica im-
plementation of the model and Section 6 shows some
simulation results; Finally, conclusions and perspec-
tives on future work are given in Section 7.

2 First Principle Model

Consider a compressible fluid flowing through a pipe-
shaped volume (V) with rigid boundary area and ex-
changing thermal energy through such boundary (fig-
ure 1).

Figure 1: Heat Exchanger Scheme
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Assume that

• the longitudinal dimension (x) is far more rele-
vant than the other two;

• the volumeV is “sufficiently” regular (that isV
is such that the fluid motion alongx is not inter-
rupted);

• there are no phase-changes along the pipe (that
is the fluid is always either single-phase or two-
phase).

• the Reynolds number (Re) is such that turbulent
fluid flow is assured along all the pipe, which in
turn guarantees almost uniform velocity and ther-
modynamic state of the fluid across the radial di-
rection;

When water or steam is assumed as the working fluid,
the last hypothesis does not hold at very low flowrates;
however, in practical system simulations, the plant
never operates in such conditions for a long time.
It is then possible to define all the thermodynamic in-
tensive variables with respect only to longitudinal ab-
scissa (x) and time (t). Within this framework, the
conservation equations for mass, dynamic momentum
(neglecting the kinetic term) and energy (neglecting
the diffusion term) can be formulated as follows:

A
∂ρ
∂t

+
∂w

∂x
= 0 (1)

∂w

∂t
+A

∂p

∂x
+ρgA

∂z

∂x
+

Cf

2ρA2 ωw|w|= 0 (2)

∂h

∂t
+w

v

A

∂h

∂x
= v

dp

dt
+v

ω
A

φext , (3)

whereA is the pipe cross-section,ρ the fluid density,
w the mass flow-rate,p the fluid pressure,g the gravity
acceleration,z the pipe height,Cf the Fanning friction
coefficient,ω the wet perimeter,h the fluid specific
enthalpy,v the fluid specific volume,φext the heat flux
entering the pipe across the lateral surface.

3 Finite Element Methods For Time-
Dependant Advection Equation

Consider the following first-order linearpartial differ-
ential equation(PDE):

∂u

∂t
+β ·∇u+σu = f in Ω× (0,T)

u = g on ∂Ωin× (0,T)
u = u0 on Ω for t = 0 ,

(4)

whereΩ denotes a bounded domain (x ∈ Ω) in ℜm

with boundary∂Ω, T > 0 is a prescribed time value
(t ∈ (0,T)), u(x, t) is the unknown (for example a
temperature field),f (x, t) is given function,β(x, t) is
a given velocity field ,σ(x, t) an adsorption coeffi-
cient,∇ is the gradient operator;u0 = u0(x) is the as-
signed initial datum andg(x, t) is the assignedDirich-
let boundary condition defined on the inflow boundary
∂Ωin = {x∈ ∂Ω|β(x, t) · −→n (x) < 0} (−→n is the unit out-
ward normal vector on∂Ω).

The equation (4) is calledtime-dependant advection
equation[3] and it can represent the energy equation
(3) for heat exchangers.

In the following, for the sake of simplicity, the equa-
tion (4) will have the form∂u

∂t +Lu = f , whereL is the
proper differential operator.

The approximated solution of the PDE (4) can be
obtained through several numerical methods; on the
other side, only methods that allow to transform a PDE
into a set of ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs) with respect
to time are suitable to use within the Modelica frame-
work. Within this paper the focus is on a numerical
method termedFinite Element Method(FEM) [3],[4].
Other interesting methods for the approximation of
PDE (4) are theFinite Difference Method(FDM) and
Finite Volume Method(FVM) [3], [5]. The advantage
of using FEM instead of FVM or FDM is that it can
provide more accurate solution or, in specific cases,
the exact nodal values for the unknown [3].

The FEM is based on the discretization of the solution
region into elementary elements. The unknown vari-
ableu is expressed in terms of assumedapproximating
or interpolation functions within each element. The
interpolation functions are local, i.e. functions defined
over smaller sub-domains, where these sub-domains
extend over a few elements, and are zero everywhere
else. The local interpolation functions are ordinarily
very simple functions, such as low-degree polynomi-
als. The interpolation functions are defined in terms
of the values of the variable at specified points called
nodes. Nodes usually lie on the element boundaries
where adjacent elements are considered to be con-
nected. In addition to boundary nodes, an element may
also have a few interior nodes. The nodal valuesui of
the variable and the interpolation functions for the el-
ements completely define the behavior of the variable
within the elements. For the finite element represen-
tation of a problem, the nodal values of the variable
become the new unknowns. Once these unknowns are
found, the interpolation functions define the variable
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throughout the assemblage of elements. Clearly, the
nature of the solution and the degree of approxima-
tion depend not only on the size and number of the
elements used, but also on the interpolation functions
selected [3].

3.1 The Method of Weighted Residual

TheMethod of Weighted Residual(MWR) is a math-
ematical technique for obtaining finite element equa-
tions from linear and non-linear PDEs. Referring to
(4), the problem solved by the MWR is to find the
nodal values of an approximated solution (uh(x, t)) so
as to make an error (called residual)

Rh(x, t) =
∂uh(x, t)

∂t
+Luh(x, t)− f (x, t) (5)

small over the entire solution domainΩ, i.e.∫
Ω

RhvhdΩ ≈ 0, ∀vh ∈Vh , (6)

wherevh(x) are linearly independentweighting func-
tions (as many as the nodal points) belonging to an
appropriate finite dimensional spaceVh. The Petrov-
Galerkinmethods used in the HE model development
belong to this family.

3.2 Finite Element Basis Function and Space

Figure 2: The “triangular” basis functionsϕ j(x)

The solution domainΩ is decomposed into elements
K of mesh sizehK . The finite element space Xkh is
the finite dimension space of continuous piecewise-
polynomial functions of degreek defined within each
elementK. The basic idea of the FEM is therefore
to approximate the infinite dimensional solution, be-
longing to a infinite dimension spaceX, with a finite
dimensional one, belonging toXk

h (whose size will be

calledN). In figure 2 the piece-wise linear (k = 1) in-
terpolating functions are depicted. The space ofinter-
polating functions will be called hereafterWh and its
interpolating functionsϕi(x). Then theapproximated
solutionuh(x, t) of u is expressed as

uh(x, t) =
N

∑
i=1

ui(t)ϕi(x) for t > 0

u0,h(x) =
N

∑
i=1

u0,i ϕi(x) for t = 0

(7)

3.3 Petrov-Galerkin Methods

In the following, for the sake of simplicity, the inner
functional product notation(u,v) =

∫
Ω uvdx is used.

In addition the way boundary conditions are enforced
into the approximated equation is not included, since
it is presented separately later.
By expanding (6) and properly choosing the weighting
function space, thePetrov-Galerkin(PG) approxima-
tion of the PDE problem (4) consists in findinguh∈Wh

such that

d

dt
(uh,vh)+(Luh,vh) = ( f ,vh) ∀vh ∈Vh (8)

with Wh 6= Vh but dim(Wh) = dim(Vh) = N, ∀h > 0.
Equation (8) has to be satisfied for anyvh ∈Vh, that is
it has to be satisfied for all the functions of any basis
of the spaceVh itself; the basis functions ofVh will be
denoted as{ψi |i = 1. . .N}. The functional spaceVh is
termed the space oftestor weightingfunctions. Then
being{ϕ j | j = 1. . .N} a basis for the spaceWh, and
substituting (7) into (8), it can be obtained a set ofN
ODEs for the unknown vectorU(t):

M
dU(t)

dt
+AU(t) = F(t), U(0) = U0, (9)

Where U(t) = [ui(t)], F(t) = [( f ,ψi)], U0 = [u0,i ],
Ai j = (Lϕ j ,ψi), Mi j = (ϕ j ,ψi), for i, j = 1. . .N. The
matrix M andA are called themassandstiffnessma-
trix respectively.
General assumptions guarantee the existence and
uniqueness of a solution [3].
The (standard)Galerkin method is a particular case
of the PG one, where the test functions space (Vh) is
chosen to be the same as the approximating functions
space (Wh), thereforeMi j = (ϕ j ,ϕi), Ai j = (Lϕ j ,ϕi),
Fi(t) = ( f ,ϕi).
The application of the standard Galerkin method to ad-
vection dominated problems (as the one considered)
could lead to solutions with oscillatory behavior due
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to numerical instabilities. To overcome such a prob-
lem it is possible to use astabilized Petrov-Galerkin
method.
The basic idea of stabilization methods is to relate the
functional spaceVh to Wh through a differential opera-
tor Lh somewhat related to the differential operatorL,
that isVh = {wh + Lhwh|wh ∈Wh}. The equation (8)
thus becomes

d

dt
(uh,wh +Lhwh)+(Luh,wh +Lhwh) =

=( f ,wh +Lhwh) ∀wh ∈Wh

(10)

3.4 Treatment of Boundary Conditions

The boundary conditions (BCs) can be imposed in two
different ways:

1. Strong formulation(sf): the the boundary con-
ditions are enforced directly in the definition of
the spaceWh of the admissible solutions, while
the test functionsvanish on the boundary. The
boundary conditions are satisfied at all nodes ly-
ing on∂Ωin.

2. Weak formulation(wf): the boundary conditions
are enforced indirectly in the unknown nodal val-
ues of the approximated equation. The boundary
conditions is not imposed exactly at all nodes of
∂Ωin, but a suitable linear combination between
them and the residual of the PDE is enforced.
Therefore the problem formulation becomes: for
anyt ∈ [0,T] find uh ∈Wh such that

d

dt
(uh,vh)+(Luh,vh)−

∫
∂Ωin

β · −→n uhvhdγ

= ( f ,vh)−
∫

∂Ωin
β · −→n ghvhdγ ∀vh ∈Vh

uh(0) = u0,h
(11)

It is important to note that the additional inte-
gral terms can be easily computed for the one-
dimensional case since∂Ωin is a finite set of
points (at most two:x = 0 andx = L).

The main differences of the two boundary condition
formulations are:

• In the wf the nodal values on the boundary are
unknown and therefore the number of finite ele-
ment equations to be solved is higher than that
obtained from the strong formulation.

• In the case of flow reversal (change ofβ sign in
equation 4) the inflow boundary changes. In the
wf the state variables (i.e. the nodal values) are
always the same since the nodal values on the
boundary are also problem unknowns. Instead,
in the sf, the nodal values on the boundary are
known, so that the state variables depend on the
flow direction.

In the model developed the choice has been to adopt
the wf since it can be accurate assf while providing
easier implementation in the case of flow reversal [5].

4 FEM Model for Heat Exchangers

In this section it will be shown how the numerical
methods introduced can be applied to the balance
equations so to transform them into a set of ODEs that
can be used directly in Modelica models.
The spatial domain ([0,L]) has been divided into a grid
of uniformly spaced elements with sizel = L/(N−1),
whereN (≥ 2)is the number of finite elements that are
going to be used.
The interpolating functions have been chosen to be lin-
ear (figure 2); their analytical expression is

ϕ1(x) =

 l −x

l
0 < x≤ l

0 otherwise

ϕN(x) =

 x− (N−2)l
l

(N−2)l < x≤ L

0 otherwise

ϕi(x) =


x− (i−2)l

l
(i−2)l < x≤ (i−1)l

il −x

l
(i−1)l < x≤ il

0 otherwise
(12)

In the following the notationϕ = [ϕ1 · · ·ϕN]T will be
used.
The stabilized Petrov-Galerkin MethodtermedGALS
(Galerkin/Least-Squares), which has been proven to
be the most suitable one for the advection dominated
case [6], has been used to obtain the test functions:

ψ j(x) = ϕ j(x)+α
l

2

dϕ j(x)
dx

, j = 1. . .N (13)

whereα is a stabilization coefficient (0≤ α ≤ 1); for
α = 0 the standard (i.e. non stabilized) method can be
obtained.
The following hypothesis have been taken into account
in the finite element formulation:
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• h linear on each element

• T linear withh

• v linear withh

• φext linear on each element

• w uniform along the HE

• p uniform along the HE

• p, h, w are the state variables

That meansh, T, v, φext can be expressed as

h(x, t) =
N

∑
i=1

hi(t)ϕi(x) = h(t)T ϕ(x), h = [h1 · · ·hN]T

T(x, t) =
N

∑
i=1

Ti(t)ϕi(x) = T(t)T ϕ(x), T = [T1 · · ·TN]T

v(x, t) =
N

∑
i=1

vi(t)ϕi(x) = v(t)T ϕ(x), v = [v1 · · ·vN]T

φext(x, t) =
N

∑
i=1

φi(t)ϕi(x) = φ(t)T ϕ(x), φ = [φ1 · · ·φN]T

(14)

The considered hypotheses do not affect the generality
of the model, at least if there aren’t any phase changes
along the HE.
In the balance equations both the fluid density specific
volume are involved, and their relation is well known
to beρ = 1/v; sincev has been assumed to be linear
with h (which is linear on each element), it should re-
sultρ =

(
∑N

i=1viϕi
)−1

, that isρ is not linear withh. As
a matter of fact, for the sake of simplicity, it has been
assumed that alsoρ can be expressed as

ρ(x, t) =
N

∑
i=1

ρi(t)ϕi(x) = ρ(t)T ϕ(x), ρ = [ρ1 · · ·ρN]T

with ρi = (vi)−1 ∀ i = 1· · ·N
(15)

It can be shown that the error introduced by this ap-
proximation (computed as

∫ h
0 (v−1−ρ)dx ) is O(h).

Among the balance equations, the mass and dynamic
momentum ones describe the fast pressure and flow
rate dynamics, while the energy one describes the
slower dynamics of heat transport with the fluid ve-
locity; the most relevant phenomenon, for power gen-
eration plant modelling, is the latter one, so that the
equation (3) has been discretized with a fine approx-
imation through FEMs, while equations (1)-(2) have
been treated with a coarser approximation.

4.1 Energy Balance Equation

Consider the energy balance equation for the HE:

∂h

∂t
+w

v

A

∂h

∂x
= v

dp

dt
+v

ω
A

φext (16)

with reference to the advection equation (4) used in
the finite element formulation, it resultsβ = w v

A and
σ = 0, while the termf is simply the right hand side
of the equation.
The application of a PG method, with weakly imposed
boundary conditions, leads to a set ofN ODEs:

∫ L

0

(
N

∑
i=1

ḣiϕi

)
ψ jdx+

∫ L

0

(
w

A

N

∑
i=1

viϕi

N

∑
i=1

hi
dϕi

dx

)

ψ jdx+
∫

∂Ωin

(
w

A

N

∑
i=1

viϕi

N

∑
i=1

hiϕi

)
ψ jdx=

∫ L

0

N

∑
i=1

viϕi

(
ṗ+

ω
A

N

∑
i=1

φiϕi

)
ψ jdx+

+
∫

∂Ωin

(
w

A

N

∑
i=1

viϕi hin

)
ψ jdx, ∀ψ j ∈Vh

(17)

wherehin is the fluid specific enthalpy at the inflow
boundary. Such set of ODEs can be easier represented
with the following differential matrix equation:

Mḣ+
w

A
B h+

w

A
C h = ṗM v+

ω
A

Y φ+
w

A
Kv , (18)

whereM, B, C, Y, K are defined as

M ji =
∫ L

0
ϕiψ jdx

B ji =
∫ L

0

(
N

∑
k=1

vk ϕk

)
dϕi

dx
ψ jdx

Cji =
∫

∂Ωin

(
N

∑
k=1

vk ϕk

)
ϕiψ jdx

Yji =
∫ L

0

(
N

∑
k=1

vk ϕk

)
ϕiψ jdx

K ji =
∫

∂Ωin
hin ϕiψ jdx

(19)

The detailed expressions for the matricesM, B andY
are reported in appendix A, while the matricesC andK
(which express the BCs) will be analyzed thoroughly
in the next section.
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4.2 Mass Balance Equation

Consider the mass balance equation for the HE:

A
∂ρ
∂t

+
∂w

∂x
= 0 (20)

Since pressure (p) and specific enthalpy (h) have been
chosen as the thermodynamic state variables, it results

∂ρ
∂t

=
∂ρ
∂h

∂h

∂t
+

∂ρ
∂p

∂p

∂t
(21)

Substituting in such equation the expression reported
in (14) forh andρ, it follows

∂ρ
∂t

= ρh
(

ϕϕT) ḣ+ ṗ ρp ϕ (22)

where ρh = [∂ρ1
∂h |h1,p · · ·

∂ρN
∂h |hN,p] and ρp =

[ ∂ρ1
∂p |h1,p · · ·

∂ρN
∂p |hN,p]

Then, integrating the mass balance equation along the
spatial domain, it results∫ L

0

∂ρ
∂t

dx=−
1

A

∫ L

0

∂w

∂x
dx , (23)

leading to the ODE

ρh
T E ḣ+ ṗ ρp

T D =
1

A
(w0−wL) , (24)

wherew0 and wL are the fluid mass flow-rate at ab-
scissa 0 andL respectively;E andD are a matrix and
a vector (details can be found in appendix A):

E ji =
∫ L

0
ϕiϕ jdx , Di =

∫ L

0
ϕidx (25)

4.3 Dynamic Momentum Equation

Consider the dynamic momentum balance equation
for the HE:

∂w

∂t
+A

∂p

∂x
+ρgA

dz

dx
+v

Cf ω
2A2 w|w|= 0 (26)

Substituting the expression reported in (14) forρ and
v and integrating along the spatial domain, the follow-
ing expressions result (dz/dx is assumed as a constant
parameter):∫ L

0

∂w

∂t
dx+

∫ L

0
A

∂p

∂x
dx+

∫ L

0
gA

dz

dx

N

∑
i=1

ρiϕidx+

+
∫ L

0

Cf ω
2A2 w|w|

N

∑
i=1

viϕidx= 0 ,

(27)

leading to the ODE

Lẇ+A(pL− p0)+gA
dz

dx
ρTD+

+
Cf ω
2A2 w|w|vTD = 0 ,

(28)

Assuming the Reynolds number is sufficiently high,
Cf is approximately constant; for medium-range val-
ues ofRe, it can be computed with Colebrook’s equa-
tion. When dealing with water/steam flow in indus-
trial plants, the transition and laminar regimes corre-
spond to very low pressure drops, which need not be
computed with high accuracy; therefore, a minimum
value ofRe= 2100 is assumed. Last, but not least, a
small linear friction term is added to enhance numeri-
cal stability at low or zero flowrate; the parameterw0

should be much smaller than the nominal flowrate, so
that the added term is negligible during normal opera-
tion. Thus equation 28 becomes

Lẇ+A(pL− p0)+gA
dz

dx
ρTD+

+
Cf ω
2A2 w(|w|+w0)vTD = 0 .

(29)

5 Modelica Implementation

The developed model has been implemented in a com-
ponent calledFlow1Dfem (figure 3) which is part of
the libraryThermoPower[1].

Figure 3: The Modelica Model

For the present model, it has been assumed that the
fluid inside the HE is a water/steam mixture. The
medium models used for water and steam are provided
by the free “ThermoFluid” library [7].
The component is perfectly interchangeable with the
actualThermoPowercomponent for 1-D HEs, since it
has the same connectors: two flanges for water/steam
flow and a terminal for heat flux. Here the definition of
such interfaces is reported, for further details see [1]:

connector WaterFlangeA
Pressure p;

flow MassFlowRate w;
input SpecificEnthalpy hBA;
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output SpecificEnthalpy hAB;
end WaterFlangeA;

connector WaterFlangeB
Pressure p;

flow MassFlowRate w;
input SpecificEnthalpy hAB;

output SpecificEnthalpy hBA;
end WaterFlangeA;

connector DHT
parameter Integer N;
Temperature T[N];
flow HeatFlux phi[N];

end DHT;

In the codehAB and hBA are the fluid specific en-
thalpies in case its direction is from an A-type flange to
a B-type one and viceversa. Such connectors support
flow reversal. In the model there is a connectorinfl
of typeWaterFlangeA (corresponding tox= 0) and
a connectoroutfl of type WaterFlangeB corre-
sponding tox = L.
The model offers many customization possibilities
through parameters: the HE geometry can be fully
specified (length, diameter, height); the dynamic mo-
mentum term∂w/∂t can be switched off to avoid fast
pressure oscillations; theCf coefficient can be either
constant or computed by the Colebrook equation; the
compressibility effect deriving from the discretization
of equation (1) can be associated to either the upstream
or downstream pressure; the numerical stabilization
coefficientα can be chosen in the interval[0,1].
It should be noted that the matricesM, B, Y, E and the
vectorD are completely defined once the parameterα
has been chosen; thus they can be computed once for
all before the simulation starts by efficient Modelica
compilers. The definition of such matrices is made
thought some loops, as showed below:

M[1, 1] = l/3 - l*alfa/4;
M[N, N] = l/3 + l*alfa/4;
M[1, 2] = l/6 - l*alfa/4;
M[N, (N - 1)] = l/6 + l*alfa/4;
if N > 2 then

for i in 2:N - 1 loop
M[i, i - 1] = l/6 + l*alfa/4;
M[i, i] = 2*l/3;
M[i, i + 1] = l/6 - l*alfa/4;
M[1, i + 1] = 0;
M[N, i - 1] = 0;
for j in 1:(i - 2) loop

M[i, j] = 0;
end for;
for j in (i + 2):N loop

M[i, j] = 0;
end for;

end for;
end if;

It can be noticed that many of the matrices entries
are zeros, so it could appear that the use of a matrix

notation for the balance equations could increase the
computational burden; nevertheless, it has been dis-
covered (by direct inspection of the generated C code)
that efficient compilers can simplify the set of ODEs
obtained expanding the differential matrix equations
in the Modelica code, removing the terms correspond-
ing to the zero entries in the matrices.

5.1 Boundary Conditions and Flow Reversal

One of the most relevant features of the model is the
capability to handle not only flow reversal in the HE,
but also the most “unusual” transients for what con-
cerns flow, that is the model is able to handle also tran-
sient where the fluid is entering or exiting from both
the extremities (which are operating conditions which
can be experienced when suddenly decreasing or in-
creasing the heat-flux).
The matricesC andK, enforcing the boundary condi-
tions into equation (18), depend on the inflow bound-
ary ∂Ωin. It can be noted that, in the 1-D case, the in-
flow boundary can be constituted at most by the points
x= 0 andx= L, depending on the fluid mass-flow rate
direction in that specific direction.
Suppose, for example, that the inflow boundary is just
x = 0 (that meansinfl.w > 0 andoutfl.w < 0).
Considering the analytical expression forC andK and
for the interpolating and weighting function, it results

Ci j =
∫

x=0

(
N

∑
k=1

vk ϕk

)
ϕiψ jdx=

=

{
(1− α

2)v1 if i = j = 1

0 otherwise

The same happens if the inflow boundary isx = L: the
only non-zero entries for the matricesC andK can be
(1,1) and(N,N). The code for such entries is obtained
through simple conditional equations:

C[1, 1] = if (infl.w >= 0) then
(1 - alfa/2)*v[1, 1] else 0;

C[N, N] = if (outfl.w >= 0) then
(1 + alfa/2)*v[N, 1] else 0;

K[1, 1] = if (infl.w >= 0) then
(1 - alfa/2)*infl.hBA else 0;

K[N, N] = if (outfl.w >= 0) then
(1 + alfa/2)*outfl.hAB else 0;

6 Simulations

The component has been tested with other models
from the library ThermoPowerusing Dymola simu-
lation environment [8]; specific configurations have
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been set up in order to investigate the model behaviour
with respect to the single balance equations and to
their interactions in the most common layouts found
in power plants. Many simulations have been carried
out but, for the sake of brevity, only the most signi-
ficative ones are reported here; all the test set ups are
included in the library and are available on-line [1].
In all the reported simulations, the HE has a length of
10m and radius 1cm. All the simulations useN = 20
nodes.
The first simulation reported is aimed at testing the en-
ergy balance equation; the experimental layout is de-
picted in figure 4: the HE (hex) is connected with a
mass flow rate source, an external source of heat flow,
a valve (which accounts for head losses) and a sink
with fixed pressure.

Figure 4: First Experiment Layout

The fluid involved in the experiment is liquid water
at temperatures between 297K and 322K, the pres-
sure inside the HE during the experiment varies from
1.65 Pa to 25 Paand the mass flow rate is comprised in
the interval 0.2−0.3 Kg/s.
At the initial time instant there is a step variation from
105 J/m3 to 1.42· 105 J/m3 of the specific enthalpy
for the fluid of the flow rate source; at time 30s there
is a step variation of the energy flux entering the HE
from 0 to 1.25·104 W/m2; at time 50s there is a step
variation in the source mass flow rate from 0.3 Kg/s
to 0.2 Kg/s.
The temperature of the fluid at the end of the HE is
reported in figure 5. The exact solution (assumingρ
constant) for the underlying PDE would lead to a tem-
perature step variation at timet = 10s and ramp vari-
ations at timet = 30 s and t = 50 s; the simulation
results show good accordance with such behavior.
The second experiment is aimed at testing the mass
balance equation; the experimental layout, similar to
the first one, is depicted in figure 6.

Figure 5: HE Outlet Temperature

The fluid involved in this experiment is superheated
vapor with temperature and pressure at about 536K
and 105 Pa respectively; the mass flow rate flowing
through the HE is about 10−2 Kg/s.

Figure 6: Second Experiment Layout

At time 0.5s there is a 10% step increment of the mass
flow rate; the consequent HE pressure transient is de-
picted in figure 7.
The solution of the equations for such experimental
setup, assuming uniform gas properties and ideal gas
content, would lead to a first order transient whose
time constant is in good accordance with the simula-
tion results.
The last test reported here involves a two side HE
(hexAandhexB) in counterflow configuration (figure
8). The two fluid sides are separated by a metal wall
1 mmthick.
The operating fluid is liquid water with temperature in
the range 296K−321K and pressure about 3·105 Pa.
The experiment setup is such that the mass flow rates
for the two HE sides have the same value (0.31Kg/s)
with residence time 9.9 s.
At time 50s there is a step variation from 105 J/m3 to
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Figure 8: HE Counterflow Configuration

Figure 7: HE Pressure

2·105 J/m3 of the specific enthalpy for the fluid of the
flow rate source forhexA.
In figure 9 are reported the inlet temperature forhexA
(continuous line), the outlet temperature forhexB(dot-
ted line) and the outlet temperature forhexA(dashed
line).
It should be pointed out that the last experiment has
been conceived also to test the numerical robustness
for the model: the results have shown that the coupling
of two FEM-based components (hexAandhexB) does
not affect the numerical stability, even for large val-
ues of the heat exchange coefficient. Further tests with
different stabilization coefficients, not reported for the
sake of brevity but available on-line, have confirmed
the absence of numerical instabilities.

Figure 9: HE Temperatures: hexA inlet (continuous),
hexB outlet (dotted) and hexA outlet (dashed)

7 Conclusions and Work in Progress

A Modelica FEM-based model for heat exchangers
has been presented. The model has been implemented
into a specific component (Flow1Dfem ) which is in-
cluded in theThermoPowerlibrary, developed for ther-
mal power plants modelling, simulation and control.
The component, whose internal implementation is
completely shielded from the connectors, has been val-
idated through simulations for specific plants configu-
rations.
The possibility to effectively use Modelica to model
physical systems that are originally described by PDEs
has been shown in the specific case of the advection
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equation.
Current work is headed essentially in two directions:

• the further improvement of the developed model
with particular emphasis on extensions to handle
also phase changes along the spatial domain;

• the development of Modelica models for other
systems described by PDEs, such as flexible
robot links.
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