

Proceedings

of the 3rd International Modelica Conference,
Linköping, November 3-4, 2003,

Peter Fritzson (editor)

Paper presented at the 3rd International Modelica Conference, November 3-4, 2003,
Linköpings Universitet, Linköping, Sweden, organized by The Modelica Association
and Institutionen för datavetenskap, Linköpings universitet

All papers of this conference can be downloaded from
http://www.Modelica.org/Conference2003/papers.shtml

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science,

Linköping University, Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center,

Oberpfaffenhofen, Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of

Computer and Information Science, Linköping University, Sweden.

Local Organization: Vadim Engelson (Chairman of local organization), Bodil
Mattsson-Kihlström, Peter Fritzson.

Jörgen Svensson and Per Karlsson
Dept. of Industrial Electrical Engineering and Automation, Lund
University:
Adaptive signal management
pp. 179-188

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Adaptive signal management
- A Modelica and C++ interaction example, the SignalFlow Library

Jörgen Svensson and Per Karlsson

Lund University

Dep. of Industrial Electrical Engineering and Automation
Box 118

SE-221 00 Lund
Sweden

jorgen.svensson@iea.lth.se

Abstract

This paper presents an adaptive signal management
Modelica library, “SignalFlow”, interconnected with a
C++ class library. The objective is to simplify the signal
exchange in large simulation models based on modular
designs, which should correspond to the signal flow for
real applications by representing common networks as
models with general interfaces. The library enables
automatic configurations during simulation using
dynamic vectors and has additionally functions for
exchanging several types of signals in both continuous
and discrete mode. The work is an outcome for enabling
“plug and produce” capabilities in scalable distributed
power system applications that is exemplified.

1. Introduction

Communication interfaces are used in almost every
technical application that needs signals to be exchanged.
Control units may be embedded in components of
varying sizes, where a component itself might be
aggregated of others according to design and structure.
Dependent on complexity, there are several signal levels
both for horizontal and vertical interconnections [1,2].
This is complicated in real systems but even more in
simulation environments (SE). Several SEs have
hierarchical possibilities in modeling and define
terminal types for signal exchange. However, numerous
possibilities easy become a trap when using a multilevel
hierarchy of signal interconnections. In Figure 1a it is
shown that several different IO terminals easy become
disordered as the system become larger. Different
terminals represent various groups of signals that need
to be used for connecting the models. It is easy to
complicate the model structure by extending the number
of terminal types, which cause many and tricky
connections. For example, if adding a new type of
terminal in model M12 in Figure 1a, each model at all
levels need to be reconstructed by adding new
terminals. If modeling a large model with many levels
of aggregations it becomes even more complex. This is
simplified by using a model representing a general
communication bus, as shown in Figure 1b, where every
instance is interconnected to the same bus independent
in information level if so desired. Dependent on the

number and types of communication interfaces there are
alternative configuration opportunities for the signal
exchange in the models. For example, if throughout
using the same interface it might be practical for the
user to be spared assigning identities to every single
communication node. One model solution for the Figure
1b case requests a vector based signal bus, where the
bus vector merges together all the terminal vectors.
Although, this bring in a problem with always keeping
in mind the correct number of indexes dependent on the
number of connected components.

Figure 1. A combination of interconnections with
different types of terminals at several levels (a) and a
general signal bus using one type of terminal enabling a
plain structure (b)

Even the index of each component has to be determined
if a general approach is used. In this case it is necessary
to define the exact number of signals in every terminal
to be connected and the bus needs a pre-defined vector
index according to number of connected components. If
a uniform terminal is used with a large number of
signals where several models are not using but a small
amount of terminal signals, the SE will have an
unnecessary high number of signals to handle. It is
therefore desirable to be able to choose which internal
module signals to be exposed by limiting the terminal
signals. The goal of a general structure is a signal bus
that automatically assign the components with their
identities and that enables the user to mainly focus on
the signal to be exchanged and not on the under laying

M1 M2

M11
M1

M13M12 M1M11

M1 M2b)

a)

M12 M13

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

structure and functions that manage the signal
communication. The structure should be adaptive to
different user specific desires and also able to resemble
several types of communication, e.g. between software
processes, computers or in automation systems. One
solution based on Modelica interconnected to a C++
library will be further described and exemplified.

2. Design

The design is meant to work both in a SE and for real
applications. This calls for either an automatic
translation from the modeling language to the target
application or a smooth software interface between the
SE and the chosen program language. As the Modelica
language has nice facilities for external function calls
the main functions of the library is implemented in a
C++ library [3,4,5].

Figure 2. Signal management design overview

The basic idea is that independent of different types
software modules there should be simple means to
establish signal configuration and connection via some
type of communication media to another module as
depicted in Figure 2. A module could be a software
process, thread or a model in a SE where the
communication media could be an external or internal
communication link [6]. The design is divided in a
hardware and software structure, where the physical
part, communication lines, transmitters and receivers are
developed in the Modelica languages and the software
functions in C++. The principal structure in Modelica
builds upon signal nodes and signal flows where the
signal nodes may represent a temporary storage,
transmitter or receiver. The signal flows represent the
communication lines between the signal nodes with the
main tasks, in initiating mode, to inform the connected
nodes about the configuration and, in operation mode, to
control that the physical line is in order for signal
transmitting. The signal nodes creates in- and output
interfaces according to the signal flow configurations as
shown. The interfaces in turn create individual signal
objects for each specified signal. An input interface then
points to an output interface of another signal node
where the configurations are checked before switching
to operation mode. During operation, each signal object

updates the data when trigged by the signal node. Every
failure or configuration error is reported to an error
manager that writes the needed information in a file or
to the log window in the SE.

3. Signal classification and configuration

An important issue concerning signal classification is
how to enable several types of configurations without
making it too complex. The following signal
classifications are used to configure the signal flows.

• The Signal Identity (SI, SIdentity), which enables a

signal to have a unique identity, but this might
imply obstacles regarding dynamical capabilities

• The Signal Type (ST, SType), where each signal
must be specified by a unique type (e.g. command,
power set point, etc)

• The Signal Block Type (SBT, SBType): a
predefined number of signal types, which could be
uniformed (protocol)

• The Signal block Group Identity (SGI, SGIdentity)
can be used if several SBTs are connected between
the same source and destination. The unique group
identity enclosures SIs, STs or/and SBTs.

Signal flow configurations must at least have a
specification on a SIdentity or SType. Normally the
SIdentity is used as a unique identity that can be found
anywhere in a system model. However, if using a model
with several components of the same type and signal
interface together with a higher-level control unit
collecting and distributing signals, the SBTypes and
SGIdentities are requested as depicted in Figure 3.

Figure 3. Example of the signal classification and their
signification

First, by examine each component it is desirable to use
the same set of identities for the signals in each
component. As in this case there is at least two SBTypes
(11 & 12), one for input and one for output signals,
where each component signal flow need to be unique by
enclosure all the SBTypes in a SGIdentity as shown.
Further, it is possible to use only the STypes and not the
SIdentities at higher level, as the intention is a dynamic

SBT 11
ST SI
3 111
4 112
n -

SBT 11
Pos ST

1 3
2 3
n -

Distributor

SBT 12
ST SI
5 211
6 212
n -

SGI 1

SBT 12
Pos ST

1 5
2 5
n -

Collector

SBT 11
ST SI
3 111
4 112
n -

SBT 12
ST SI
5 211
6 212
n -

SGI 2

a b c d

Module
send

medium
Communication

interfaces
in & out

value

signal exchange

config. exchange

update
Error
Handler

write to file

dy
na

mic

Signal
node

Signal
flow

Module

Signal
node

receive

valueget()

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

distributor and collector at the higher level. Arrow “a”
and “b” in the Figure point out that it is the SType 3 at
position 1 and 2 that should be transmitted to
SGIdentities 1 and 2 respectively. For the collector it is
similar the SType 5 at position 1 for both SGIdentities 1
and 2 that should be transmitted to the two first
positions of the collector. If a new component is added
with SGIdentities 3, the distributor and collector per
automatic should extend the vector signal with
respective STypes.

4. Modelica library

The signal classifications are the basic parameters for
configuring the signal flows in the SE. The SignalFlow
library is built in Dymola, using the Modelica language.
Dymola is an object-oriented SE for modeling transient
physical systems that has god support for
interconnecting other object-oriented languages such as
C++, which is well exploit in this library [3,4,5,7].

Figure 4. The SignalFlow library

The SignalFlow library is depicted in Figure 4 and
mainly contains the following component models:
• The SignalNode (SN, SNode) model manage all in

and out coming signal interfaces initiated by the
SignalFlows

• The SignalFlow (SF, SFlow) model represents the
signal configuration between the SNodes.

• The SignalFlowOut (SFO, SFlowOut) model has a
standard Modelica output terminal to interconnect
with other library models.

• The SignalFlowIn (SFI, SFlowIn) model has a
standard Modelica input terminal that supplies the
signal system with signals.

• The SignalFlowDistributer (SFD) model is similar
to the SFlowIn but initiates an automatic search for
SFlowOut models that are configured according to a
predefined SType.

• The SignalFlowCollector (SFC) model initiates an
automatic search among SFlowOut models for
signal types to be collected (model with sum-sign).

• The SignalResourceManager (SRM) model
interacts by connecting a SNode where it accesses a
predefined resource type.

The main component models are constructed several
sub libraries within the Base library, which contain the
dConnector, dInterface, dIcon, dRecord, and dFunction
library. The sublibrary dConnector contains two
connector (terminal) types that are defined by the
following Modelica semantics:

connector SignalNodePort
 Real signalNode;
 flow signalLine;
end SignalNodePort;

The second connector “SignalFlowPort” is identical
except for the icon, which is a triangle instead of a
quadrangle as in the “SignalNodeConnector” case. The
model interfaces, within the dInterface sublibrary, are
composed as below where the node and flow have one
two connectors respectively.

partial model SignalNodeInterface
 extends dIcons.SignalNodeIcon;
 dConnectors.SignalNodePort nodePort;
 Real nodeS = nodePort.signalNode;
 Real lineS = nodePort.signalLine;
end SignalNodeInterface;

partial model SignalFlowInterface
 extends dIcons.SignalFlowIcon;
 dConnectors.SignalFlowPort flowPortA;
 dConnectors.SignalFlowPort flowPortB;
 Real nodeA = flowPortA.signalNode;
 Real lineA = flowPortA.signalLine;
 Real nodeB = flowPortB.signalNode;
 Real lineB = flowPortB.signalLine;
end SignalFlowInterface;

The user interface assigning the SNode parameters are
depicted in Figure 5 where the node type can be used to
force the node to be of storage type. The node identity is
normally automatically assigned but could also be
forced to a specific value, and the last parameter
determines if the node should be continuously or
discrete. The SNode in the SignalFlow library is
initiated and automatic assigned an identity by the
zNodeInit function. The function argument is a
configuration vector (cv) where all predefined
parameters are placed. Dependent on whether the
SNode should be discrete (sampled) or continuous the
variable nodeD or nodeC is assigned. When initiated the
node updates every time interval according to the SE
and extended equations are only one technique solving
the discrete or continuous options. The SNodes are
always initiated at simulation start and during
simulation the only input is the “lineS” that is one of the
arguments in the zNodeUpdate function.

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 5. User interface for assigning the parameters of
the SignalNode model

As the “lineS”, per Modelica-definition, is declared as a
“flow”, all connected SFlow models are summarized in
this variable enabling the node to examine which lines
that are active.

model SignalNode
 extends dRecords.SignalNodeRecord;
 extends dInterfaces.SignalNodeInterface;
protected
 Real nodeID(start=0.0);
 Real nodeC(start=0.0); // continuous
 Real nodeD(start=0.0); // discrete
 Boolean sampleTrigger;
equation
 when initial() then
 nodeID = dFunctions.zNodeInit(cv, cvSize);
 reinit(nodeC, nodeID);
 end when;
 sampleTrigger = if samplingON then
 booleanPulse1.outPort.signal[1] else false;
 when sampleTrigger then
 nodeD = dFunctions.zNodeUpdate(nodeID,
 lineS, time);
 end when;

 der(nodeC) = if samplingON then 0.0 else
 nodeID – dFunctions.zNode_
 Update(nodeID, lineS, time);
 nodeS = if samplingON then pre(nodeD)
 else nodeC;
end SignalNode;

By definition, the SFlow model has always a flow of
signals from A to B as shown by the icon and in the
“SignalFlowInterface” declaration where the two
terminals are denoted A and B. The SFlow model is
initiated as soon as the variables “nodeA” and “nodeB”
are positive. The initiating function, zFlowInit, then
automatically returns the line identities lineAID and
lineBID. In normal operation the SFlow only checks
that the line is correct for transmitting. If a failure
occurs on the line, the “”lineA” and “lineB” are assign
to an error code. When the line is restored the initiating
process once again is performed.

model SignalFlow
 extends dRecords.SignalFlowRecord;
 extends dInterfaces.SignalFlowInterface;
 Real flowID(start=0);
 Real lineAID(start=0);
 Real lineBID(start=0);
equation
 when (nodeA*nodeB > 0) then
 flowID = dFunctions.zFlowInit(nodeA, nodeB,
 cv, cvSize, signalType, sTypeSize,
 signalAID, sAIDSize, signalBID,
 sBIDSize);
 lineAID = dFunctions.zTryConnectFlowOut(flowID,
 nodeA, time);
 lineBID = dFunctions.zTryConnectFlowIn(flowID,
 nodeB, lineAID, time);
 end when;
 lineA = dFunctions.zFlowUpdate(flowID, nodeA,
 lineAID, nodeB, lineBID, time);
 lineB = dFunctions.zFlowUpdate(flowID, nodeB,
 lineBID, nodeA, lineAID, time);
end SignalFlow;

In the SignalFlowOut model the lineB is not used and in
the SignalFlowIn model the lineA is not used. They are
replaced by the “value” variable that is connected to the
standard Modelica Input or Output connectors.

 --SignalFlowOut ---
 lineA = zFlowUpdate(flowID, nodeA, lineAID);
 for index in 1:sTypeSize loop
 value[index] = zFlowGet(nodeA, lineA, index);
 end for;
 --SignalFlowIn ----
 lineB2 = zFlowUpdate(flowID, nodeB, lineBID,…);
 lineB = zFlowSet(nodeB, lineB2, value, valueSize);

In the zFlowInit function, the argument is equivalent to
the “SignalFlowRecord” that corresponds to the signal
classification in section 3 and in Figure 6.

Figure 6. User interface for assigning the parameters of
the SignalFlow model

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Both side A and B are represented with one identity
vector each enabling different identity assignments of
the same signal in different communication areas. Using
the library in the simplest case the identity is the only
parameter to be assigned.

record SignalFlowRecord
 parameter Integer[:] signalAID ={-1};
 parameter Integer[:] signalBID ={-1};
 parameter Integer[:] signalType={-1};
 parameter Integer groupID;
 parameter Integer blockType;
protected
 parameter Integer[:] cv={0,0,0,groupID,blockType};
 parameter Integer cvSize=size(cv, 1);
 parameter Integer sTypeSize=size(signalType, 1);
 parameter Integer sAIDSize =size(signalAID, 1);
 parameter Integer sBIDSize =size(signalBID, 1);
end SignalFlowRecord;

The SNode model has no direct limitation in connecting
the number of SFlow models, as the structure is
dynamic. Each new connection creates a new object that
might be automatically removed if disconnected a
predefined amount of time. The structure is simple and
can be connected with unlimited SFlows between
SNodes, Figure 7, and at any hierarchy level. In the
simplest case one SNode is used as a communication
bus where all SFlows are connected to that single bus.
The SFlows are normally embedded in some user
specific model hiding the pre-defined communication
interface interacting the bus.

Figure 7. Dynamic number of connections

The basic Modelica structure for connecting SNodes
and SFlows, depicted in Figure 8, prevents algebraic
loops, which is easily caused with a high degree of
control levels in a SE. Even if the SE can handle this, as
in the Dymola case, it might become a complicated
problem in large system models. The SNodes have a
state (node) corresponding to capacitors (voltage)
summarizing the variables from the SFlow models. The
SFlow assigns the lineA and lineB, identities,
corresponding to currents in the electrical case. The line
identities are then identified by using a “modulo 2”
function both when assigning and decoding the
identities, e.g. if four SFlows are connected and the
identities of them are 2, 4, 8 and 16 with the sum of 30,
it is easy for the SNode to decode the SFlows to
determine both if a new SFlow has to be configured and
if a line is broken. Referring to Figure 8, each node can
be connected to numerous signal flows where the
SNode assigns the terminal variable “nodeS” and the
line identities are summarized in the terminal variable
“lineS” of the node. In the SFlow, the lineA and lineB

are separated enabling the responsible node to change
the line identity if needed. In case of disconnecting one
SFlow model, it is not likely that the identities will be
the same in a dynamic environment. There is also a
cross coupling between the nodes by the arguments in
the update function, which uses the corresponding node
identities in order to avoid losing the equation tail in the
SE. The SE initiating process automatically assigns all
identities of the SNode and SFlow models.

Figure 8. Terminal assignments between SNodes and
SFlows

5. Interconnection to C++ library

The Modelica models in the SignalFlow library have
several functions for interacting the with C++ library.
All included functions are similarity declared as here
exemplified for the “zNodeUpdate” function.

function zNodeUpdate
 annotation (Library={"Libcore"});
 input Real nodeID;
 input Real flowSum;
 output Real y
external "C" y = zNodeUpdate(nodeID, flowSum);
end zNodeUpdate;

The “Libcore” assignment is the actual C++ library that
is linked to the SE by the “Libcore.lib” file, which is
placed under the “dymola\bin\lib” directory.

Figure 9. Modelica and C++ interconnection

A BA B A BA BA BA B
A BA B A BA B A BA B

AB ABAB AB
AB ABAB AB

AB AB
AB AB

SFlowSNode

ZModelicaInterface (C-functions)

A BA B A BA B A BA B

SFlowIn SFlowOutSNode

ZSignalSystemManager (C++ -library)

der(nodeS) = update(nodeID, lineS)

lineA=update(flowID,nodeA,lineAID,nodeB,lineBID)

lineB=update(flowID,nodeB,flowBID,nodeA,lineAID)

der(nodeS) = update(nodeID, lineS)

nodeB/lineB

nodeS/lineS

lineS=lineA1+lineA2
nodeS/lineS

nodeA/lineA
terminalASFlow

SNode

SNode

terminalB sFlow3
sFlow4
sFlowN

sFlow1 2

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Each SNode and SFlow model creates a separate object
in the C++ layer where the Modelica-layer models use
function calls to the ModelicaInterface and method calls
to the C++ library, as depicted in Figure 9. The header
declarations for the “ZModelicaInterface.h”, enables
method calls from the C++ implementation, as shown
below. By using the “ZModelicaInterface.cpp”, the
Modelica function calls are translated to method calls
from the “ZSignalSystemManager” class where all
methods can be found in each step interfacing the C++
library.

// --- ZModelicaInterface.h ---
#ifndef ZMODELICAINTERFACE_H
#define ZMODELICAINTERFACE_H

#include "ModelicaUtilities.h"
#include "ZSignalSystemManager.h"

#ifdef __cplusplus
extern "C" {
#endif
double zNodeInit(int cv[], int cvSize);
double zNodeUpdate(double nodeID, ….);
………. remaining functions

#ifdef __cplusplus
}
#endif
#endif // end

The description of the specification is here exemplified,
where the remaining functions are declared as the two
presented.

// --- ZModelicaInterface.cpp ---
#include "ZModelicaInterface.h"

ZSignalSystemManager sys; // C++ class

double zNodeInit(int cv[], int cvSize) {
 return sys.nodeInit(cv, cvSize);
);
double zNodeUpdate(double nodeID,...) {
 return sys.nodeUpdate(nodeID, ….);
}
.……… remaining functions
// end

The “ZSignalSystemManager” class is the actual
interface between the Modelica-layer that manages all
the ZSignalNode and ZSignalFlow objects using
dynamic vectors as is briefly shown here. The JVector
class is a dynamic vector (DV) equivalent to the
CVector class in the C++ standard library except for
some modifications making a smooth conversion to the
JAVA environment. The dynamic properties in the
library are based on the DV that is used for pointing out
all needed objects for the specific application. There are
facilities in Modelica allowing to declare void*-pointers
and external objects by defining a partial class
“ExternalObject” with constructor and destructor
functions that would make the ZSignalSystemManager

excessive. However, this is not used in this version but
might be implemented in the next.

typedef JVector<ZSignalNode*> ZSignalNodeVector;
typedef JVector<ZSignalFlow*> ZSignalFlowVector;

class ZSignalSystemManager
{
private:
 ZSignalNodeVector* m_nodeVector;
 ZSignalFlowVector* m_flowVector;
 int m_nodeCounter, m_flowCounter;
 ZOutFileManager* outfile;
public :
 ZSignalSystemManager();
 ~ZSignalSystemManager();
 double nodeInit(int cv[], int cvSize);
 double nodeUpdate(double node, flowS, time);
 double flowInit(double nodeA, nodeB, int ………....);
 double flowUpdate(double flow, nodeA, ...……..….);
 double tryConnectFlowIn(double flow, node, flowA);
 double tryConnectFlowOut(double flow, node);
 double flowSet(double node, flow, *value, ……...…);
 double flowGet(double node, flow, int index);
 void outputManager(const char* text,int type);
}; // end ZSignalSystemManager

6. The C++ class library

The key to manage the dynamic design interconnected
to a SE is to use higher levels of abstraction as in object-
oriented languages [6,8]. An example for this approach
is implemented in a C++ class library based on
implementation corresponding to the SNode and SFlow
models used in the Modelica layer.

Figure 10. C++ structure

Using the C++ class libraries, a designer can describe
components at a broad range of abstraction levels,
which result from the ability to perform signal and
control modification separately. As pointed out in
section 1, there are different levels of abstraction at
which C++ can be used for the signal management
system as depicted in Figure 10. The C++ library
mainly includes the following classes:

• The ZSignalNode (ZSN, ZSNode) class is

responsible for searching and joining together every
signal in each connected input and output signal

ZSF

ZSI getState

value

setV

ZSN

ZS

ZSI

value

ZS

ZSI

value

ZSN

ZSI

value

ZSignalSystemManager (C++ -library)

getV

node nodeflow

update
ZSZS

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

interface. The class is receptive to changes of new
interconnections and continuously controls all
connections for not being defected.

• The ZSignalInterface (ZSI, ZSInterface) manages
a pre-defined number of signals in a block that, for
example, could correspond to a protocol. This
object could be of several types such as inputs and
outputs for communication but also parameters for
configurations and specifications.

• The ZSignal (ZS, ZSignal) class is the object
containing the particular value of the signal and its
configuration. It could also be a reference pointing
at another ZSignal.

• The ZSignalFlow (ZSF, ZSFlow) class is the actual
configuration of the signals between two SNodes
including the needed types and identities.

As depicted in Figure 10, the SNode model is
interconnected to the ZSNode class and the SFlow
model to the ZSFlow class. The ZSNode includes DVs
pointing at ZSInterface objects that in turn also have
DVs pointing at ZSignal objects.

class ZSignalNode
{
private:
 ZIntegerVector* m_cv;
 ZSignalInterfaceVector* m_iv;
 ZSignalInterfaceVector* m_ov;
 int m_state;
 bool m_change; m_storage;
public:
 static int m_signalNodeCounter; // object counter
 // constructor and destructor
 ZSignalNode(int cv[], int cv_size);
 ~ZSignalNode(void);
 // --------- configuration functions ------------------------
 int verifyInInterface(int cv[], int cv_size);
 int addInInterface(ZSignalFlow* flow, doub. time);
 void removeInInterface(int iID);
 // corresponding functions for OutInterface
 void tryConfiguration(void);
 void configureAllSignals(void
 void verifyAllSignals(void);
 void findSignalByID(ZSignalInterface* di);
 void findSignalByType(ZSignalInterface* di);
 void findSignalByBlock(ZSignalInterface* di);
 // ----------- operational functions -----------------------
 void update(int nodeID, double ntime);
 void setValues(interfaceID, dou* value, int size);
 double getValue(int interfaceID, int index);
 // ----------- error and information functions ----------
 void checkConfiguration(int cv[], int cv_size);
}; // end ZSignalNode

At simulation start, the ZSNode is created and initiated.
A unique identity is then returned to the SNode model,
which represents a pointer to the ZSNode object. The
ZSNode object is at start in configuration state and
awaits method calls for SFlow connections. As soon as
the SFlow model is properly interconnected, it attempts
to call respective ZSNodes by the “zTryConnectFlow”
method. This checks the SFlow reference and then calls

for the “addInInterface” or the “addOutInterface” of the
ZSNode object dependent on if connected to the A- or
B-side. The “addInterface” method then creates a new
ZSInterface object according to the configuration of the
ZSFlow model and returns a unique line identity
according to the ZSInterface object. Every time a new
event occur in the SNode, the internal variable “change”
is set, which start internal methods to find in- and output
signals that are matching and then connects them
dependent on configurations. As soon as the ZSInterface
is correct interconnected, it is turned over to “operation”
state and starts updating the signals continuously or
according to a sample rate. Dependent on output
interface configurations the ZSNode has methods to
find input signals according to signal identity
(findSignalByID), or type (findSignalByType). In the
type case, there are also more specific methods
searching particular block types. This is, for example,
used when the output interface is of collection type,
which is expanding according to the number of input
interfaces including the requested signal type. In
operation state the ZSNode only uses the “update”
method that propagates the call to the affected
ZSInterface objects.

class ZSignalInterface
{
private:
 // Internal variables
 ZIntegerVector* m_cv;
 ZSignalFlow* m_flow; // configuration
 ZSignalVector* m_sv;
 ZSignalInterface* m_siConnected;
 Int m_state
 bool m_active, m_change;
 bool m_storage, m_destination;
public:
 static int m_signalInterfaceCounter; // object counter
 // constructor and destructor
 ZSignalInterface(int cv[], int cv_size, ZSFlow* flow);
 virtual ~ZSignalInterface();
 // ---------- configuration functions ----------------------------
 int getSize(void); // number of signals
 int getType(void); // interface type
 int getStorageType(void), getState(void);
 void setState(int state);
 int getGroupID(void);
 ZSignal* getSignalRefByIndex(int index);
 ZSignal* getSignalRefByID(int id);
 ZSignal* getSignalRefByType(int type);
 void connect(ZSignalInterface* di);
 void tryConfiguration(void);
 void verifyConfiguration(void);
 void addSignalElement(ZSignal* sObject);
 void removeAllSignalElements(void);
 bool change(void);
 // ------- operational functions --------------------------------
 void update(void);
 void setValues(double* value, int valueSize);
 double getValue(int index);
 double getSum(void), getMax(void), getMin(void);
 // ------- check functions (throwable) ------------------------
 void checkConfiguration(int cv[], int cv_size);
 }; // end ZSignalInterface

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

The ZSInterface is based on a vector (m_sv) including a
pre-defined number of ZSignal objects. The ZSInterface
has several functions for configuration, mainly to
interconnect and verify all included ZSignal objects to
the intended destinations for updating the flow when
turning to operation mode. If the ZSInterface object is
of input type it has also a reference (m_siConnected) to
an output ZSInterface of another ZSNode object. This
gives that an input ZSInterface can never leave the
configuration state until the reference-pointer points at
an output ZSInterface in operational state. This is the
actual control chain that implies that the source
ZSInterface is the first one turning in operational state
and then, step by step, permits the chain of ZSInterfaces
to the last instance, the destination ZSInterfaces, to
become operational. In the ZSInterface class, there are
additional methods (getSum, getMax, getMin) normally
used if utilizing the collector type, SFC model, which
collects specific signal types.

The bottom class, ZSignal, includes the value of one
signal and its signal specification. There are built-in
functions to determine whether the signal should be
locally stored or only point at another ZSignal object.
The ZSignal class and its methods are shown beneath.

class ZSignal
{
private:
 int m_signalID, m_signalType;
 int m_blockType, m_groupID;
 double m_value;
 double* m_valueRef;
 bool m_refOK, m_storage;
public:
 ZSignal(int bid, int id, int type, bool storage);
 virtual ~ZSignal();
 // --------- configuration functions -----------------
 void setValueRef(double* value);
 double* getValueRef(void);
 bool refOK(void);
 bool active(void);
 int getGroupID(void);
 int getBIockType(void);
 int getSignalType(void);
 int getSignalID(void);
 // ----------operational functions --------------------
 void update(void);
 void setValue(double value);
 double getValue(void);
 // --------- check functions (throwable) -----------
 void checkConfiguration();
}; // end ZSignal

The update, setValue and getValue methods are the
actual methods that the higher-level classes call for in
operation state. Consequently, all signal management is
only handled between the ZSignal objects that, in fact,
are not aware of the other classes. They are only utilized
to keep track and be prepared to change connections
according to the signal configurations and routings.

7. Verification by samples

The “SignalFlow” library is verified by using all the
components in several connections as depicted in Figure
11, which corresponds to the configuration example in
Figure 3. At the left hand, there are two identical areas
with internal control using the signal facilities. The
SGIdentities are assigned 1 respective 2 that in this case
also represents the two units. Unit 1 is not connected
until 0.3 second after simulation start for testing of
components added during simulation. Each unit has a
SNode (SN) corresponding either to a communication
intermediate storage area or a complete database for the
unit where a number of signals are selected. All SNodes
are assigned to 10 Hz sample rate. The SFlowOut of
unit 1 and 2 are only assigned with the SIdentities and
the SFlow models are assigned with SGIdentities,
SBTypes, STypes and SIdentities enabling
SFDistributors and SFCollectors to be used. The
SFDistributor distributes two signals that, at start, are
assigned 1.0 and 2.0. Reaching 0.8 second, the signals
are increased 0.5 to 1.5 and 2.5.

Figure 11. Signal system setup for validation of several
different signal exchange possibilities

The signals are distributed to the SFlowOut (SFO1,
SFO2) models of respective unit, which is depicted in
the upper graph in Figure 12, where the initiating for
configuration requires 3 samples. At this point, the
SFlowOut2 is in operation state and updates the signal
to the value 1.0. The SFlowOut1 should have been
operated in the same manner but is not connected until
time equal to 0.3 second, which then takes another 2
samples to be configured before turning to operating
state. At 0.8 second, the two signals are directly
increased to verify that there is no delay time in
operation state. This example shows that the SNodes
can handle altered configuration during simulation with
only a few samples of delay and that the signals are
distributed to the intended units. Moreover, in the other
signal flow direction, the sources of unit 1 and 2 are
constant 1.0 respectively 2.0. The SFlowOut3 are
configured by SIdentities to connect these to signals. In
the middle graph, Figure 12, this is also shown by first
being delayed 3 samples before operating the signal
from unit 2 and then additionally 2 samples for unit 1
due to the afterward connection at 0.3 second.
Assigning the SBTypes and STypes configures the
SFCollector in the third case. The bottom graph in

SFO

SFI

SF1

SF2

SFD1

SN

Source
SGI 1

SFO

SFI

Source

SN SF2

SF1
SGI 2

Distributor

Collector

SFlowOut

R...A B A B

ABAB

A

AB

R...

R...A B A B

ABAB

com...

start...
step11

start...

step21

start...

b...
s...

F
N

A B

SFC

1

2
3

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 12 shows that the configuration events are the
same as in the previous case. The value 1-3 corresponds
to the sum, max and min functions, which are correct at
0.5 second, where the sum is equal 1+2=3, max=2 and
min =1. However, this example is configured with a
small number of SNode and SFlow models that imply
that few samples are needed for the configuration state.
Consequently, in more complex system models the
configuration sample delay increases but not necessary
in time, dependent on the sampling rate.

Figure 12. Simulation results for the validation model

A more complex illustration, where the SignalFlow
library is frequently used is depicted in Figure 13, which
represents a modular wind power plant (WPP) model in
Dymola. The model is built from several model
libraries, the “SignalFlow”, the “ControlFlow” mainly
including control system related units, the “PowerFlow”
(converters, cables etc.) and the “WindPower“ library
(wind turbine units). The WPP model has several
control unit levels and consequently several
communication levels (CL). The four CLs included are
the production control level (CL4), plant control level
(CL3), process control level (CL2) and field control
level (CL1). The principles are similar at each level
including several controllable power units connected to
a control unit via a communication bus. At each level,
the SignalFlow library is used for exchanging signals. A
single SNode represents different types of
communication buses (B) dependent on the CL, and is
also used for inter-process communication within a
control unit. Between each CL, a control unit is
interconnected that contains two signal exchange (E)
units (SNode, SFlows) separating the CLs, and a
number of software modules (M) controlling the

connected units. A module includes several function
blocks (FB) that are connected by the SFlowIn and
SFlowOut models to a SNode representing the local
database. A selected number of signals are then
exchanged from the database to the external bus using
two SFlow models.

8. Conclusion

An adaptive signal management structure, based on
object-oriented dynamical programming, is presented. A
simulation library, “SignalFlow”, is developed in
Modelica, where the model components are
interconnected to the signal management structure. The
presented results verifies that the structure meet the
requirements. The structure forms a base level layer
enabling adaptation for higher-level control and
information flows. It is also a good example on how to
develop function calls, interacting external
programming languages with a simulation environment.

References

[1] Svensson, J. and Karlsson, P., "Wind Farm Control

Software Structure", Third International Workshop
on Transmission Networks for Offshore Wind
Farms, Royal Institute of Technology, Stockholm,
Sweden, April 2002

[2] Svensson, J., Karlsson, P. and Johnsson, A.,
"Information Structures for Scalable Distributed
Power Systems", 3:rd IASTED International
Conference on Energy and Power System,
Marbella, Spain, September 2003

[3] Freiseisen W.; Keber R.; Medetz W.; Pau P.,
Stelzmueller D.,”Using Modelica for Testing
Embedded Systems”, 2:nd International Modelica
Conference, Proceedings, pp. 195-201

[4] Pereira Remelhe, M.A.,”Combining Discrete Event
Models and Modelica - General Thoughts and a
Special modeling Environment”, 2:nd International
Modelica Conference, Proceedings, pp. 203-207

[5] Modelica™ – A Unified Object-Oriented Language
for Physical Systems Modeling, Languages
Specification, Version 2.0, http://www.modelica.org

[6] Svarstad, K.; Ben-Fredj, N.; Nicoleson, G.; Jerraya,
A., “A Higher Level System Communication Model
for Object-Oriented Specification and Design of
Embedded Systems”, Conference on Asia South
Pacific Design Automation 2001, Yokohama, Japan

[7] Dymola, Dynamic Modeling Laboratory, Dynasim
AB, Lund, Sweden, http://www.dynasim.com

[8] Al-Agtash, S., Al-Fayoumi, N. “A Software
Architecture For Modeling Competitive Power
system”, IEEE Transactions on Power Systems,
2000, pp. 1674-1679

3 samp. 2 samp.

a

2 samp. 1 s.

3 samp. 2 samp.

b

SFO1.value[1] ______ SFO2.value[1] _ _ _ _ _

SFO3.value[1] ______ SFO3.value[2] _ _ _ _ _

SFC.v[1] _____ SFC.v[2] __ __ SFC.v[2] _ _ _ _

3 samp. 2 samp.

a

2 samp. 1 s.

3 samp. 2 samp.

b

SFO1.value[1] ______ SFO2.value[1] _ _ _ _ _

SFO3.value[1] ______ SFO3.value[2] _ _ _ _ _

SFC.v[1] _____ SFC.v[2] __ __ SFC.v[2] _ _ _ _

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 13. Modular simulation model of a Wind Power
Plant including several communication levels (a), and
signal management models used in the WPP model (b)

Control Unit = CU

CU

