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How One Can Simulate Dynamics of Rolling Bodies via Dymola:
Approach to Model Multibody System Dynamics Using Modelica

Ivan I. Kossenko and Maia S. Stavrovskaia
MSUS, Moscow Region, Russia, kosenko@ccas.ru

Abstract

An attempt to build more accurately the method to
describe dynamics of multibody system (MBS) by
means of Modelica is undertaken. In frame of the
method under consideration can be simulated con-
straints of different types: holonomic/nonholonomic,
scleronomic/rheonomic.

The model of a constraint allows to isolate mutually
behavioral descriptions based on differential and alge-
braic equations correspondingly.

To illustrate an approach being applied the implemen-
tation of a constraint for bodies, rolling one relative to
another is described. As an example the model of rat-
tleback rolling on horizontal surface is investigated.

1 Preliminaries

A lot of methods to describe the structure of a multi-
body system using different graph approaches are
known. See for instance [1, 2, 3], and further refer-
ences one can find there. Usually MBS is assumed
to consist of rigid bodies. Note that in the frame of a
bondgraph approach the background of an energy in-
terchanges is used [4].

When implementing the MBS structural analysis
based on a force interactions either oriented or nonori-
ented graphs are used in dependence of the problems
to be resolved. Newton’s laws [5] allow to describe
dynamics within the so called Newton’s viewpoint. In
such a way the translational–rotational motion of each
body is described by the system of Newton–Euler’s
ODEs. The graph structure is derived from an anal-
ysis of mutual interactions for bodies the system com-
posed from. Such an interactions is caused mainly by
constraints. But there are cases of physical fields also
occurred. In general, Newton’s third law of dynam-
ics implies a dual nature of interactions between the

bodies.

Thus in a natural way from Newton’s viewpoint the
graph of an MBS structure is to be considered as a
nonoriented one. In some particular cases the graph
possesses special structure, and constraints are holo-
nomic (i. e. integrable). Such situation occurs for in-
stance in robotics where the structure is a tree. This
fact used to reduce the source Newton–Euler system of
ODEs with an attached subsystem of algebraic equa-
tions to some special kind of purely differential equa-
tions, for example of Lagrange ones. In this case natu-
ral approach assumes association of each dynamical
ODE of the second order with the object compris-
ing usually joint corresponding to a generalized co-
ordinate, and an appropriate generalized force. Both
usual linear force and torque of a couple can be in
use. This force mainly is control one. It arises due
to drive located at a joint. The solution of a kind pre-
viously described has been used in current Modelica
MBS library of classes. For instance one can find such
an approach inRevolute model where application of
d’Alembert’s principle relative to the revolution axis in
behavioral section is equivalent to use of one second
order ODE from Lagrange’s equations for the whole
holonomic mechanical system.

In general case the situation is more complicated, es-
pecially if nonholonomic (i. e. nonintegrable) con-
straints are used. Modeler has to take into account
equations of constraints of algebraic, or even transcen-
dental type. Fortunately today there exists background
to build the models mentioned above, in particular:
algorithms [6], modeling languages [7], and compil-
ers [8]. To describe the models of an MBS we start
from: (a) object–oriented paradigm [9] on one hand,
and (b) so called physical principles of modeling [10]
on the other one. Note that in our case of MBS dynam-
ics one can consider in a natural way the rigid body as
a main physical entity of the problems to be simulated.
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1.1 Formal Description

Consider an MBS consisting ofm + 1 bodies
B0, . . . ,Bm. Represent it as a setB = {B0, . . . ,Bm}.
HereB0 is assumed to be a base body. We suppose
B0 to be connected with an inertial frame of reference,
or to have a known motion with respect to the inertial
frame of reference. For example one can imagine the
base body as a rotating platform, or as a vehicle per-
forming its motion according to a given law.

Some bodies are considered as connected by me-
chanical constraints. But in general it is not nec-
essarily. Suppose all constraints compose the set
C = {C1, . . . ,Cn}. We include in our consider-
ations constraints of the following types: holo-
nomic/nonholonomic, scleronomic/rheonomic. The
latter properties mean the constraints having station-
ary/nonstationary parameters. For example one could
consider the surface moving according to a prescribed
law as a rheonomic constraint.

Figure 1.1: Multibody System

Thus one can uniquely represent a structure of the
MBS via an nonoriented graphG = (B,C ,I ). Here
I ⊂ C ×B is an incidence relation setting in a corre-
spondence the vertex incident to every edgeCi ∈ C of
the graph. According to physical reasons it is easy to
see that for any mechanical constraintCi there exist
exactly two bodiesBk,Bl ∈ B connected by this con-
straint.

The incidence relation generates an adjacency relation
S ⊂ B2 on the set of vertices. In our case this relation
has the properties: (a) antireflexiveness: a body isn’t
be connected with itself; (b) symmetry: because of the
graph is nonoriented if(Bk,Bl ) ∈ S , then(Bl ,Bk) ∈ S .

1.2 Architecture of Bodies Mutual Interac-
tions in MBS

It is clear that consideration of the graphG does not
provide a structural information sufficient for the MBS

dynamics description. Indeed, in addition to the force
interaction represented usually by wrenches between
bodiesBk, Bl through the constraintCi there exist kine-
matical conditions specific for different kinds of con-
straints. In turn wrenches themselves can be repre-
sented by constraint forces and constraint torques cou-
ples. These forces and couples are connected by virtue
of Newton’s third law of dynamics.

Thus if the system of ODEs for translational–
rotational motion can be associated with the object of
a model corresponding to rigid body, then the system
of the algebraic equations can be naturally associated
with the object of a model corresponding to constraint.
Note that according to consideration fulfilled above the
set of algebraic equations comprises relations for con-
straint forces, torques of couples, and kinematical re-
lations depending on kind of constraints. For such ap-
proach the differential and algebraic equations are said
incapsulated in behavioral sections of the mentioned
objects.

Thus all the “population” of any MBS model is re-
duced to objects of two classes: “Body” (objects
B0, . . . ,Bm), “Constraint” (objectsC1, . . . ,Cn). Accord-
ing to this approach simulating of the whole system
behavior is reduced to permament informational inter-
action between the objects of two considered types.
Within the frame of Newton’s laws of dynamics one
can construct the MBS as a communicative network
for this interaction. In this case the objects of bodies
“feel” the action of other ones through corresponding
objects of constraints.

Physical interactions are conducted in models due to
objects splitted also in two classes of ports: “Wrench
Port”, “Kinematical Port”. The first one is to be used
to transfer vectors of force, and torque of couple. In
addition, “Wrench Port” has to be used for transferring
the information about a current location of the point
constraint force acts upon.

Remark 1.1 In our idealized model the force in-
teraction between bodies is realized at a geometric
point. Its coordinates are fed outside constraint object
through “Wrench Port” permanently in time.

“Kinematical Port” is to be used to transfer the data
of rigid body kinematics: configuration (position of
center of mass, orientation), velocity (velocity of the
center of mass, angular rate), and acceleration (accel-
eration of the center of mass, angular acceleration).
Objects of classes “Body” and “Constraint” work as
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it is represented in Figure 1.2. The certain duality in a
behavior of these objects can be easily observed.

Figure 1.2: Typical Objects of MBS

Indeed, when getting force information through the
portsW1, . . . ,Ws from the incident objects of a class
“Constraint” the object of a class “Body” simultane-
ously generates, due to an integrator, kinematical in-
formation feeding outside through the portK. On
the other hand every object of a class “Constraint”
gets kinematical data from the objects corresponding
to bodies connected by the constraint under consider-
ation through its two “input” portsKA, KB. Simulta-
neously using the system of algebraic equations this
object generates information concerning forces and
torques of couples, and transmits the data to “output”
portsWA, WB for the further transfer to objects of bod-
ies under constraint.

According to classification of communicative ports
performed above one can similarly classify the con-
nectors used as “cables” for two purposes: (a) to trans-
fer information about forces and torques; (b) to trans-
fer the kinematical information.

Now it is possible to describe the architecture of in-
formation interactions within the particular constraint
Ci corresponding to an individual edge of graphG,
see Figure 1.3.

Figure 1.3: Architecture of Constraint

One should consider all connectors used above as bidi-
rected ones. Arrows in Figure 1.3 are used to show the
semantics of interactions. It’s clear that the whole con-
struction considered above is a virtual one. Construct-
ing the model the compiler extracts all equations from
the objects and assembles them composing the DAE
system optimized for a numeric integrator.

As usual physical fields one can implement by apply-
ing of inner andouter specifications.

2 Rolling of Rigid Bodies

It turned out that the attempts to treat problems of
nonholonomic mechanics within existing MultiBody
classes library are not effective. Indeed, this library
has been developed mainly for modeling of controlled
motion in mechatronics and theory of machines and
mechanisms. The case of rolling bodies, typical for
nonholonomic mechanics can’t be inserted in the for-
malism of joints and cuts in bodies. Here the position
of a point of interaction between the bodies depends
on dynamics of MBS.

Moreover, the situation turns being even more com-
plicated if the friction of different kinds is taken into
account, because relative sliding of bodies, unilat-
eral motions, and impacts are assumed being allowed.
To describe the dynamics of phenomena enumerated
above one can apply well–known methods of classi-
cal mechanics staying simultaneously on positions of
physical objects modeling. We mean differential equa-
tions of tranlational–rotational motion for interacting
bodies, known as Newton–Euler’s equations.

2.1 General Description

As an example for formal approach discussed above
let us consider the problem on description of one body
contiguous to another one. Such approach can be used
by designer in order to avoid derivation of dynamic
equations both for holonomic and nonholonomic me-
chanical systems. In the second case problem itself
may be complicated enough. Note that traditional cuts,
flanges, or joints as constraint interfaces seem to be
impossible for use in the situation under consideration.
In addition, one should take into account a useful prop-
erty of mutual isolation of differential and algebraic
equations incapsulated in the classes of types “Body”
and “Constraint” correspondingly.
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Consider a local fragment of a mechanical system,
and suppose that this fragment consists of a pair of
rigid bodies rolling one upon another. Then a general
schema in Figure 1.3 is satisfied. Suppose that all force
and kinematical data to be transferred through ports
are represented in a unified way: relative to the base
frameO0x0y0z0 of a reference connected with the body
B0. Wrench port consists of three arraysP,F,M ∈R3.
Here P is an array of coordinates for the point of a
contact between two bodies under constraint,F is a
constraint force vector,M is a constraint couple torque
vector. In general case components of the arrayP are
computed in the object of a constraint. The vectorsF,
M are assumed expressing the “action” of constraint
object to body object, of course in a virtual sense. The
class to transfer force information can read:

connector WrenchPort
SI.Position P[3];
SI.Force F[3];
SI.Torque M[3];

end WrenchPort;

The kinematical port consists of six arrays:
r ,v,a,ω,ε ∈ R3, T ∈ SO(3). The array r corre-
sponds to the radius–vector of the mass center of the
body, v corresponds to the velocity of this point,a
corresponds to its acceleration.T is an orthogonal
matrix of a current body orientation. The columns
of the matrixT consist of projections of unit vectors
of the orthonormal base connected with a moving
body into the axes of the base body frame. The class
“Kinematical Port” in Modelica can be defined as:

connector KinematicPort
SI.Position r[3];
SI.Velocity v[3];
SI.Acceleration a[3];
SI.Real T[3,3];
SI.AngularVelocity omega[3];
SI.AngularAcceleration epsilon[3];

end KinematicPort;

All the objects of a class “Constraint” must have
classes–inheritors as subtypes of a corresponding su-
perclass. According to Newton’s third law this super-
class must contain the equations of the form

FA +FB = 0, MA +MB = 0. (2.1)

in its behavioral section. Here arraysFA, MA andFB,
MB represent constraint forces and torques “acting in

directions” of bodies A and B correspondingly. Kine-
matical equations for different types of constraints are
to be added to equations (2.1) in different classes–
inheritors corresponding to these particular types of
constraints.

Properties (2.1) usually conducted throughflow –
variables are implemented here in a natural way in the
behavioral section of the base superclass for mechani-
cal constraints. They read:

partial model Constraint
KinematicPort InPortA;
WrenchPort OutPortA;
KinematicPort InPortB;
WrenchPort OutPortB;

equation
OutPortA.F + OutPortB.F = {0,0,0 };
OutPortA.M + OutPortB.M = {0,0,0 };

end Constraint;

Remark 2.1 Model developer can create classes of
complicated types of constraints such that equa-
tions (2.1) are not satisfied. For example such a con-
straint one can imagine as a thread thrown over the
pulley, see Figure 2.1. It is clear that this constraint
can be decomposed to components in such a way that
the equations (2.1) are satisfied for each elementary
constraint. However in applications it is often suitable
to deal with constraints of a complex, combined type
directly.

Figure 2.1: Example to Remark 2.1

Now start to construct behavioral equations for the ob-
ject simulating of a constraint of the rolling type, see
Figure 2.2. First of all let us describe the system of
equations defining the position of a contact point. A
constraint object has to “know”, i. e. to incapsulate
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inside itself the equations for contiguous surfaces

fA(xk,yk,zk) = 0, fB(xl ,yl ,zl ) = 0.

Here all equations are defined with respect to the frame
fixed in a corresponding body. Suppose that for the
instantt these surfaces are described by equations

gA(x0,y0,z0) = 0, gB(x0,y0,z0) = 0

written in the base frame. Here the expressions for the
functionsgA andgB can be easily obtained as

gA(r0) = fA
[
T−1

k (r0− rOk)
]
,

gB(r0) = fB
[
T−1

l (r0− rOl )
]
.

Here for sake of brevity we denoter0 = (x0,y0,z0)
T .

The vectorsrOk, rOl determine mass center positions
for the connected bodies. All radius vectorsr0, rOk,
rOl are assumed being represented in the base frame.
Note that computation of matrices inverse to orthogo-
nal ones is reduced simply to matrix transposition.

Figure 2.2: Vicinity of Contact Point

When rolling, the surfaces touch each other at the point
P which is to be found, see Figure 2.2. The necessary
condition of tangency reads

gradgA = λ ·gradgB. (2.2)

Hereλ is a scalar factor playing a role of additional
auxiliary variable. In general position the system (2.2)
defines uniquely a curve consisting of points in which
the surfaces

gA(r0) = α, gB(r0) = β

have common tangent planes. One can considerλ as
a coordinate on the curve. In general position such a
curve intersects the surface

gA(r0) = 0, or gB(r0) = 0 (2.3)

transversally. Thus the system of equations to find a
contact point can be composed using (2.2) and (2.3).
Here one has four scalar equations and four unknown
variables:x0, y0, z0, λ.

To complete the process of constructing the class
“Roll”, an inheritor of a superclass “Constraint” one
should append the condition of absence of sliding at
the point of a contact

vk +[ωk, r0− rOk] = vl +[ωl , r0− rOl ] (2.4)

to a system of equations (2.2), (2.3). Here vectors
vk, ωk, vl , ωl denote linear velocities of mass centers,
and angular velocities for the bodies subjected to con-
straint. Both sides of (2.4) are obtained from the rigid
body kinematics [5]. Corresponding inheritor has the
following Modelica code:

partial model Roll
extends Constraint;
SI.Position r[3];

equation
InPortA.v +
cross (InPortA.omega,r - InPortA.r) =
InPortB.v +
cross (InPortB.omega,r - InPortB.r);
OutPortA.P = r;
OutPortB.P = r;
OutPortB.M = {0,0,0 };

end Roll;

2.2 Dynamics of Rattleback

Further consider the simplified model of a rigid bodies
rolling, namely dynamics of the rattleback on an im-
movable horizontal surface [11]. In this case the base
body is supposed being fixed. Its boudary is a fixed
horizontal plane which is considered as a surface for
rolling. This body plays a role of the “Body A”, see
Figure 2.3. Thus it is the same body as above denoted
by B0. To describe its dynamics one need not the dif-
ferential equations. All kinematical variables are zero–
valued vectors. Matrix of orientationT0 is an identity
one.

Note objects of base bodies play a special role to de-
scribe the motion according to a predefined law. Cor-
responding classes have no any differential equations
in their behavior. One can write down superclass of
base body in the form:

partial model BaseBody
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KinematicPort OutPort;
end BaseBody;

Figure 2.3: Rattleback on Horizontal Surface

Since bodyB0 is supposed being fixed in the inertial
frame then the class–inheritor can be described as:

model Base
extends BaseBody;
VisualShape Plane(

r0= {0,0,0 },
Shape="box",
LengthDirection= {0,-1,0 },
WidthDirection= {1,0,0 },
Length=0.1,
Width=10,
Height=10,
Material= {0,0,1,0 });

WrenchPort InPortRoll;
equation

OutPort.r = {0,0,0 };
OutPort.v = {0,0,0 };
OutPort.a = {0,0,0 };
OutPort.T = [1, 0, 0;

0, 1, 0;
0, 0, 1];

OutPort.omega = {0,0,0 };
OutPort.epsilon = {0,0,0 };

end Base;

The rattlebackB1 plays a role of the “Body B”. Num-
ber of moving bodies in the MBS ism= 1. In super-
class “Body”, named in our package asRigidBody

dynamics of rigid body is described here by means
of Newton’s differential equations for the body mass
center, and by Euler’s differential equations for rota-
tional motion. The Euler equations are constructed us-
ing quaternion algebra [12] in a following way

dq
dt = 1

2q◦




0
Ω1

Ω2

Ω3


 , I dΩ

dt +[Ω, IΩ] = N.

Here first equation is kinematical one, and the second
equation is one for dynamics of rigid body. Quaternion
q = (q1,q2,q3,q4)

T ∈ H ' R4 uniquely defines rota-
tional matrixR; the quaternion algebraH is considered
as a linear spaceR4; the binary operation◦ denotes
quaternion multiplication. The matrix of inertia tensor
I , the vector of angular velocityΩ = (Ω1,Ω2,Ω3)

T ∈
R3, and vector of total torqueN are considered with
respect to central principal axes of inertia of the body.
Hence before exporting of kinematical data from the
object of classRigidBody one must perform the con-
versionω = RΩ. Similarly total torque after import-
ing and before using inside behavioral section also is
to be tranformedM 7→ N according to the formula
N = RTM .

Usually the rattleback, or wobblestone, or Celtic stone
is assumed being rigid body bounded by paraboloidal
or ellipsoidal surface. This body is assumed possess-
ing a central principal axes of inertia which are not
collinear to body’s axes of symmetry. Consider the
case of an ellipsoidal surface.

Suppose that the central principal moments of inertia
for the moving body read

Ix1x1 = 2, Iy1y1 = 3, Iz1z1 = 1.

Fix also its mass valueµ = 1. To be definite one can
suppose all physical measures based for instance on SI
units. Then the rattleback model can be represented in
the form:

model RollingBody
extends RigidBody;
outer Real[3] Gravity;
// Ellipsoid semi-diameters
outer SI.Length a1;
outer SI.Length b1;
outer SI.Length c1;
VisualShape Body(

r0=0,0,-c1,
Shape="sphere",
LengthDirection=0,0,1,
WidthDirection=1,0,0,
Length=2*c1,
Width=2*a1,
Height=2*b1,
Material=1,0,0,1);

SI.Energy E; // Full energy
SI.Energy K1;// Kinetic energy

// of translations
SI.Energy K2;// Kinetic energy

// of rotations
SI.Energy P; // Potential energy
WrenchPort InPortRoll;
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equation
F = m*Gravity + InPortRoll.F;
M = InPortRoll.M +

cross (InPortRoll.P - r,
InPortRoll.F);

Body.S = T;
Body.r = r;
K1 = 0.5*m*v*v;
K2 = 0.5*omega*I*omega;
P = -m*r*Gravity;
E = K1 + K2 + P;

end RollingBody;

Now consider the building of a constraint. Since
fA(x0,y0,z0) ≡ y0 thengradfA = (0,1,0)T . A bound-
ing surface for the bodyB is assumed to be of the el-
lipsoidal shape having the following semi–diameters
a1 = 2, b1 = 1, c1 = 3. The matrix of the correspond-
ing quadratic form relative to principal axes of the el-
lipsoid reads

B1 =




a−2
1 0 0
0 a−2

2 0
0 0 a−2

3


 .

Suppose that the second principal axis directed along
the axisO1y1 of the ellipsoid of inertia is coincident
to the axis of the body surface. outer shape directed
identically. Further, let us turn the second ellipsoid
relative to the first one aboutO1y1 by an angleδ =
π/10. Then the matrix of a quadratic form for rolling
ellipsoid relative to central principal–axis system has
the form

B = RB1RT , R=




cosδ 0 sinδ
0 1 0

−sinδ 0 cosδ


 .

The equations defining the positionr0 = rP of a con-
tact pointP read

(gradfA, rP) = 0,

gradfA = λ ·(T1 ·B·T−1
1

)
(r0− rO1) .

(2.5)

According to previous considerations the system (2.5)
comprises four scalar equations and four unknown val-
ues:xP, yP, zP, λ. First equation can be easily reduced
to the simple formyP = 0. Finally, class–inheritor for
the constraint under consideration takes the form:

model Ellipsoid_on_Plane
extends Roll;
outer SI.Length a1;

outer SI.Length b1;
outer SI.Length c1;
outer SI.Angle delta;
parameter Real R[3,3]=

[cos(delta), 0, sin(delta);
0, 1, 0;
-sin(delta), 0, cos(delta)];

parameter Real B1[3, 3]=
[1/a1ˆ2, 0, 0;

0, 1/b1ˆ2, 0;
0, 0, 1/c1ˆ2];

parameter Real B[3,3]=
R*B1* transpose (R);

parameter Real n[3]=0,1,0;
parameter SI.Length d=0;
Real lambda;

equation
n*r = d;
n = lambda*

InPortB.T*B*
transpose (InPortB.T)*
(r - InPortB.r);

end Ellipsoid_on_Plane;

Now we can compose the testbench model for simula-
tion of dynamics of the rattleback as:

model Test
parameter SI.Acceleration g=9.81;
inner parameter SI.Acceleration[3]

Gravity= {0,-g,0 };
inner parameter SI.Length a1=2;
inner parameter SI.Length b1=1;
inner parameter SI.Length c1=3;
inner parameter SI.Angle delta=

Modelica.Constants.pi/10;
Base Base1;
RollingBody RollingBody1(

q(start= {1,0,0,0 }),// Initial
// quaternion

r(start= {0,1,0 }),
I=[2, 0, 0; 0, 3, 0; 0, 0, 1],
v(start= {0.05,0,0 }),
omega(start= {0,-1,-0.05 }));

Ellipsoid_on_Plane
Ellipsoid_on_Plane1;

equation
connect (Base1.InPortRoll,

Ellipsoid_on_Plane1.OutPortA);
connect (Base1.OutPort,

Ellipsoid_on_Plane1.InPortA);
connect (

Ellipsoid_on_Plane1.InPortB,
RollingBody1.OutPort);

connect (
Ellipsoid_on_Plane1.OutPortB,
RollingBody1.InPortRoll);

end Test;
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Figure 2.4: General View of Simulation Results

The model described above has been developed using
Modelica language as a package. The high quality of
an approximation for the rattleback motions has been
verified through different simulations performed. For
one of the model runs general view of simulation re-
sults is shown in Figure 2.4. Initial conditions are de-
fined in a following way

rO1(0) =




0
1
0


 , v1(0) =




0.05
0
0


 ,

T1(0) =




1 0 0
0 1 0
0 0 1


 , ω1(0) =




0
−1
−0.05


 .

Integral of energy value was under monitoring see Fig-
ure 2.5. One can observe for this value an extremely
slow drift: height of the whole plot equals to0.0004
while base value is equal to11.31units of energy. Ob-
viously such a drift is caused by computational errors.

Figure 2.5: Preservation of Energy

Trajectory of a contact point in planez0x0, see Fig-
ure 2.6 was also under monitoring. The constraint is
satisfied with high accuracy permanently for all in-
stants of simulation time. Indeed, such an accuracy
can be investigated using variableyP from the equa-
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Figure 2.6: Contact Point Trajectory

tions (2.5). In Figure 2.7 we see that the functionyP(t)
performs only noisy oscillations almost vanishing near
its zero value. Here height of the plot equals to10−24

of length unit.

Figure 2.7: Preservation of Constraint Accuracy

Due to high quality of a numeric model one can easily

observe the known dynamical properties of the rattle-
back. These latter cause in particular change of direc-
tion of angular velocity vector corresponding to rota-
tion about central principal axisO1y1 of Celtic stone,
see Figure 2.8. Initially axisO1y1 is directed ver-
tically downwards, and rattleback rotates clockwise.
Initial direction of the angular velocity slightly devi-
ates from the local vertical. Then when time passes
value of t = 50 units vertical component of angular
velocity passes through its zero value, and one can
observe wobbling motions of the rattleback. One in-
stant of such wobbling is fixed in Figure 2.9. Note that
the total energy is a constant because the mechanical
system under consideration is conservative one. Then
rotation becomes almost permanent but now counter-
clockwise. It easy to see (in Figure 2.8) that the an-
gular velocity projection onto inertial axisy0 is scaled
from−1 to 1 during time of simulation. But its value
undergoes slight oscillations of several frequencies.

Using visual environment of Dymola one can also
easy build 3D–animation of the rattleback rolling on
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Figure 2.8: Behavior of Vertical Component of Angular Rate

a plane, see for example Figure 2.9.

Figure 2.9: Instant Shot at a Moment When Stone Is
Prepared to Change Orientation of Its Rotation

3 Directions of Further Development

Development of the Modelica code similar to one pre-
sented above opens a wide range of possibilities to

model easily complicated problems of MBS dynam-
ics. Among them: (a) dynamics of systems with slid-
ing subjected to friction of various kinds; (b) dynamics
of systems subjected to unilateral constraints with im-
pacts [13]. In both cases to realize models one can
apply Modelica’swhen clause in behavioral section.
Then different cases of sliding and friction correspond
to different cases of equations for forces and torques.
For instance in simplest cases numerical models of
tops rolling/sliding on surfaces can be investigated as
exercises. Note that modeling of dynamics with uni-
lateral constraints is also convenient for Modelica use
because of its facilities for events processing. In all
cases we deal with dynamics arranged as a piecewise
smooth motion.

It should be also interesting to construct realistic
model of dynamics for the truck rolling on a road of
different surface quality in different weather condi-
tions, and a model of dynamics for a heap consisting
of contacting bodies, etc.

Returning to the problem considered above note that
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the model also simplifies qualitative dynamical anal-
ysis for long time simulations. An existence of such
structures in phase space like attractors in dynamics of
the rattleback [14] can be demonstrated.

4 Conclusion

Computations corresponding to case of Kane and
Levinson have been performed. Results of simulations
are identical in all details. Moreover, no special differ-
ential equations for dynamics of nonholonomic sys-
tems have been used! This is a real way to achieve a
unified approach to modeling of both holonomic and
nonholonomic MBS. Compiler itself incapsulates im-
plicitly the use of equations of motion for nonholo-
nomic mechanical system in its algorithm. Thus the
known problem of ODEs derivation for such systems
sometimes nontrivial and difficult seems to be over-
come in automatic mode, at least for problems with
algebraic (nontrancedental) constraints, and for cases
of so called general position.
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