

Preface

The Modelica modeling language and technology is being warmly received by the world community
in modeling and simulation. It is bringing about a revolution in this area, based on its ease of use, visual
design of models with combination of lego-like predefined model building blocks, its ability to define model
libraries with reusable components, its support for object-oriented modeling and simulation of complex
industrial applications involving parts from several application domains, and many more useful facilities.
The Modelica Association is an open non-profit organization that promotes the use and development of the
Modelica language, libraries, and tools. In order to increase the distribution and usefulness of Modelica, the
Modelica Association has created a conference series especially for the Modelica end-users and developers,
to bring together Modelica users, engineers, researchers, language designers, library developers, and tool
vendors. This gives people an opportunity to be informed about the latest developments, to influence the
future development of Modelica and its libraries, and to get in touch with people solving similar modeling
problems.

In October 2000, the first event in this series took place in Lund, Sweden. This was a great success,
with more than 80 participants, and many high-quality papers. The next event, the second international
Modelica conference at DLR in Oberpfaffenhofen, Germany, March 18-19 2002, was an even greater
success with approximately 120 participants and an increased number of submitted and presented papers.

This volume contains the papers presented at the 3rd international Modelica conference at Linköping
University, Linköping, Sweden, November 3-4, 2003. A number of high-quality papers were received. The
program committee had the difficult task of planning the conference since not all papers could be
accommodated during the limited conference time of two days. Thirty-six papers were selected for regular
presentations, and six papers were selected for poster presentations.

More information about the Modelica language, the Modelica Association, this and future events can
be found at the web page http://www.modelica.org, including all papers from this proceedings and earlier
proceedings in the Modelica conference series.

The Modelica'2003 conference was arranged by the Modelica Association in cooperation with
PELAB - the Programming Environment Laboratory, Department of Computer and Information Science,
Linköping University, Sweden.

Linköping, October 10, 2003

Peter Fritzson

 The Modelica Association Modelica 2003, November 3-4, 2003

1

Program Committee
� Peter Fritzson, PELAB, Department of Computer and Information Science, Linköping University,

Sweden (Chairman of the committee).
� Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.
� Hilding Elmqvist, Dynasim AB, Sweden.
� Martin Otter, Institute of Robotics and Mechatronics at DLR Research Center, Oberpfaffenhofen,

Germany.
� Michael Tiller, Ford Motor Company, Dearborn, USA.
� Hubertus Tummescheit, UTRC, Hartford, USA, and PELAB, Department of Computer and Information

Science, Linköping University, Sweden.

Local Organization
� Vadim Engelson (Chairman of local organization).
� Bodil Mattsson-Kihlström.
� Peter Fritzson.

 The Modelica Association Modelica 2003, November 3-4, 2003

2

Contents

Index of authors 7

Session 2A
Automotive Simulation - I

9

Johan Andreasson Division of Vehicle Dynamics, Royal Institute of
Technology, Sweden: VehicleDynamics library

11

Stefan Heller, Tilman Bünte TU München; DLR Oberpfaffenhofen,
Germany: Modelica Vehicle dynamics library: Implementation of driving
maneuvers and a controller for active car steering

19

Hilding Elmqvist, Sven Erik Mattsson, Hans Olsson, Johan
Andreasson, Martin Otter, Christian Schweiger, Dag Brück Dynasim;
Royal Institute of Technology; DLR: Real-time Simulation of Detailed
Automotive Models

29

Session 2B
Thermodynamic Systems - I

39

Francesco Casella, Alberto Leva Dipartimento di Elettronica e
Informazione, Politecnico di Milano: Modelica open library for power
plant simulation: design and experimental validation

41

Tomas Skoglund Tetra Pak Processing Systems, Sweden: Simulation of
Liquid Food Process in Modelica

51

Martin Råberg, Jan Tuszynski Carl Bro Energikonsult, Sweden: Thermo
hydraulic library for power systems applications

59

Session 3A
Automotive Simulation - II

73

Michael Tiller, Paul Bowles, Mike Dempsey Ford Motor Company,
USA; Claytex, UK: Development of a Vehicle Modeling Architecture in
Modelica

75

Leo Laine, Johan Andreasson Chalmers Institute of Technology; Royal
Institute of Technology, Sweden: Modelling of Generic Hybrid Electric
Vehicles

87

Erik Surewaard, Eckhard Karden, Michael Tiller Energy Management
Group, Ford Forschungszentrum Aachen, Germany; Ford Motor
Company, USA: Advanced Electric Storage System Modeling in Modelica

95

Session 3B
Tools - I

103

Per Sahlin and Pavel Grozman Equa Simulation AB, Sweden: IDA
Simulation Environment - a tool for Modelica based end-user application
deployment

105

Mike Dempsey Claytex Services Limited: Automatic translation of
Simulink models into Modelica using Simelica and the AdvancedBlocks
library

115

 The Modelica Association Modelica 2003, November 3-4, 2003

3

Eva-Lena Lengquist Sandelin, Susanna Monemar, Peter Fritzson,
Peter Bunus PELAB , Linköping University: DrModelica - An Interactive
Tutoring Environment for Modelica

125

Session 4A
Automotive Simulation - III

137

John Batteh, Michael Tiller and Charles Newman Ford Motor
Company, USA: Simulation of Engine Systems in Modelica

139

Christian Schweiger, Martin Otter Institute of Robotics and
Mechatronics, DLR : Modeling 3D Mechanical Effects of 1D Powertrains

149

Session 4B
Electrical and Chemical Systems

159

Carla Martin, Alfonso Urquia and Sebastian Dormido Department of
Computer Science and Automatic Control, UNED, Spain: SPICELib -
Modeling and Analysis of Electric Circuits with Modelica

161

Gerald Reichl Department of Automation and Systems Engineering,
Technishe Universität Ilmenau: WasteWater - a Library for Modeling and
Simulation of Wastewater Treatment Plants in Modelica

171

Session 5: Poster session: 177

Jörgen Svensson and Per Karlsson Dept. of Industrial Electrical
Engineering and Automation, Lund University: Adaptive signal
management

179

Christian Hoffmann and Jens Kahler Department of Automation and
System Engineering, Technische Universität Ilmenau, Germany; De
Montfort University, UK: Object-oriented simulation of energy supply
systems on the basis of renewable energy

189

Torge Pfafferott, Gerhard Schmitz Department of Technical
Thermodynamics, Technical University Hamburg-Harburg:
Implementation of a Modelica Library for Simulation of Refrigeration
Systems

197

Jerzy Mikler and Vadim Engelson PELAB, Linköping University; Royal
Institute of Technology, Sweden : Simulation for Operation Management:
Object Oriented Approach using Modelica

207

Emma Larsdotter Nilsson and Peter Fritzson PELAB, Linköping
University : BioChem - A Biological and Chemical Library for Modelica

215

Dr S.Sumathi, K. Vinod Kumar PSG College of Technology,
Coimbatore, India : Simulation and Control of Induction Motor in Dymola

221

 The Modelica Association Modelica 2003, November 3-4, 2003

4

Session 7A
Mechatronic Systems - I

229

Gianni Ferretti, Marco Gritti, Gianantonio Magnani, Paolo Rocco,
 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy:
A Remote User Interface to Modelica Robot Models

231

Angelika Peer, Naim Bajcinca, Christian Schweiger Institute of Robotics
and Mechatronics, DLR: Physical-based Friction Identification of an
Electro-Mechanical Actuator with Dymola/Modelica and MOPS

241

Lars Eriksson Vehicular Systems, Linköping University: VehProLib -
Vehicle Propulsion Library. Library development issues

249

Session 7B
Thermodynamic Systems - II

257

Stefan Wischhusen, Bruno Lüdemann, Gerhard Schmitz Department of
Technical Thermodynamics, TU Hamburg-Harburg; Imtech Deutschland
GmbH, Germany: Economical Analysis of Complex Heating and Cooling
Systems with the Simulation Tool HKSim

259

Hilding Elmqvist, Hubertus Tummescheit and Martin Otter Dynasim,
Sweden; UTRC, USA; DLR, Germany: Object-Oriented Modeling of
Thermo-Fluid Systems

269

Rüdiger Franke, Manfred Rode, Klaus Krüger ABB Corporate
Research, ABB Utilities GmbH, Germany: On-line Optimization of Drum
Boiler Startup

287

Session 8A
Mechatronic Systems - II

297

Ivan I. Kossenko and Maia S. Stavrovskaia Moscow State University of
the Service, Russia: How One Can Simulate Dynamics of Rolling Bodies
via Dymola: Approach to Model Multibody System Dynamics Using
Modelica

299

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson DLR;
Dynasim: The New Modelica MultiBody Library

311

Peter Beater and Martin Otter Fachhochschule Südwestfalen in Soest;
DLR, Germany: Multi-Domain Simulation: Mechanics and Hydraulics of
an Excavator

331

Session 8B
Thermodynamic Systems - III

341

Francesco Casella and Francesco Schiavo Dipartimento di Elettronica e
Informazione, Politecnico di Milano: Modelling and Simulation of Heat
Exchangers in Modelica with Finite Element Methods

343

Magnus Holmgren Solvina, Sweden: Process simulation in industrial
projects

353

Andreas Idebrant and Lennart Näs MathCore Engineering AB; Alstom
Industrial Turbines AB, Sweden: Gas Turbine Applications using
ThermoFluid

359

 The Modelica Association Modelica 2003, November 3-4, 2003

5

Session 9A
Mechatronic Systems - III

367

Peter Beater and Christoph Clauss University of Applied Sciences
Südwestfalen, Soest; Fraunhofer-Institut für Integrierte Schaltungen,
Dresden: Multidomain Systems: Pneumatic, Electronic and Mechanical
Subsystems of a Pneumatic Drive Modelled with Modelica

369

Johann Bals, Gerhard Hofer, Andreas Pfeiffer, Christian Schallert
Institute of Robotics and Mechatronics, DLR: Object-Oriented Inverse
Modelling of Multi-Domain Aircraft Equipment Systems and Assessment
with Modelica

377

Mats Beckman and Johan Andreasson Division of Vehicle Dynamics,
Royal Institute of Technology, Sweden: Wheel model library for use in
vehicle dynamics studies

385

Niklas Pettersson, Karl Henrik Johansson Scania; Royal Instutute of
Technology, Sweden: Modelica Library for Simulating Energy
Consumption of Auxiliary Units in Heavy Vehicles

393

Session 9B
Tools - II

399

Wim Lammen, Jos Vankan, Robert Maas and Johan Kos National
Aerospace Laboratory, The Netherlands: Approximation of black-box
system models in Matlab with direct application in Modelica

401

Michael Tiller Ford Motor Company: Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applications

411

Adrian Pop, Peter Fritzson PELAB, Linköping University:
ModelicaXML: A Modelica XML Representation with Applications

419

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus and Kaj
Nyström PELAB, Linköping University: Meta Programming and Function
Overloading in OpenModelica

431

 The Modelica Association Modelica 2003, November 3-4, 2003

6

Index of Authors

Andreasson, Johan 11, 29, 87, 385
Aronsson, Peter 431
Bajcinca, Naim 241
Bals, Johann 377
Batteh, John 139
Beater, Peter 331, 369
Beckman, Mats 385
Bowles, Paul 75
Brück, Dag 29
Bunus, Peter 125, 431
Bünte, Tilman 19
Casella, Francesco 41,343
Clauss, Christoph 369
Dempsey, Mike 75, 115
Dormido, Sebastian 161
Elmqvist, Hilding 29, 269, 311
Engelson, Vadim 207
Eriksson, Lars 249
Ferretti, Gianni 231
Franke, Rüdiger 287
Fritzson, Peter 125, 215, 419, 431
Gritti, Marco 231
Grozman, Pavel 105
Heller, Stefan 19
Hofer, Gerhard 377
Hoffmann, Christian 189
Holmgren, Magnus 353
Idebrant, Andreas 359
Johansson, Karl Henrik 393
Kahler, Jens 189
Karden, Eckhard 95
Karlsson, Per 179
Kos, Johan 401
Kossenko, Ivan I. 299
Krüger, Klaus 287
Kumar, Vinod 221
Laine, Leo 87
Lammen, Wim 401
Larsdotter Nilsson, Emma 215
Lengquist Sandelin, Eva-Lena 125
Leva, Alberto 41
Lüdemann, Bruno 259
Maas, Robert 401
Magnani, Gianantonio 231
Martin, Carla 161
Mattsson, Sven Erik 29, 311
Mikler, Jerzy 207

Monemar, Susanna 125
Newman, Charles 139
Nyström, Kaj 431
Näs, Lennart 359
Olsson, Hans 29
Otter, Martin 29, 149, 269, 311, 331
Peer, Angelika 241
Pettersson, Niklas 393
Pfafferott, Torge 197
Pfeiffer, Andreas 377
Pop, Adrian 419
Reichl, Gerald 171
Rocco, Paolo 231
Rode, Manfred 287
Råberg, Martin 59
Sahlin, Per 105
Saldamli, Levon 431
Schallert, Christian 377
Schiavo, Francesco 343
Schmitz, Gerhard 197, 259
Schweiger, Christian 29, 149, 241
Skoglund, Tomas 51
Stavrovskaia, Maia S. 299
Sumathi, S 221
Surewaard, Erik 95
Svensson, Jörgen 179
Tiller, Michael 75, 95, 139, 411
Tummescheit, Hubertus 269
Tuszynski, Jan 59
Urquia, Alfonso 161
Vankan, Jos 401
Wischhusen, Stefan 259

 The Modelica Association Modelica 2003, November 3-4, 2003

7

 The Modelica Association Modelica 2003, November 3-4, 2003

8

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 2A

Automotive Simulation – I

9

 The Modelica Association Modelica 2003, November 3-4, 200310

VehicleDynamics library

Johan Andreasson
KTH Vehicle Dynamics, Sweden

johan@fkt.kth.se

Abstract

A Modelica library for vehicle dynamics problems has
been developed and a pre-release version is available.
The library is based on modular design and contain
models of components as well as suspensions, chassis
and vehicles. In this paper the modelling structure is
discussed and it is illustrated how this simplifies the
usage.

1 Introduction

Due to the multidomain qualities of Modelica, it has
for long been thought of as a suitable tool for com-
plete vehicle modelling. Detailed models of vehicle
power train are available [1] and chassis models have
also been presented [2, 3]. This paper presents the
VehicleDynamics library that provides models for
vehicle dynamics studies. A pre-release version is
available [4] for download.

The library is divided into sub packages contain-
ing models of vehicle chassis and wheels, environ-
ments and drivers. The library structure is best under-
stood by considering Figure 1. The chassis, which has
been the main focus within this work, contains body,
suspensions and wheels. To control the chassis’ mo-
tion a driver model is used. This could either be open
loop from a predefined input or a more advanced driver
model to mimic human behaviour.

The chassis have connectors to the wheels to al-
low the addition of a power train. There is is also
a MultiBody connector to the body to allow addi-
tional models to be attached. This is here illustrated
by an aerodynamic model and an additional load, but
it is also possible to attach e.g. trailers. Environments
representing ground and atmosphere conditions are se-
lected independent of the rest of the vehicle model.

airResistance

load

r={-lLoad,0,0}

L

splitMue constantWind

Figure 1: The layout of a vehicle model with a power
train and an additional load.

2 Chassis

In vehicle dynamics studies, the chassis is of great im-
portance. Not only the geometry of the suspensions
but also bushing and strut characteristics are of great
importance and thus, the models often tend to be de-
tailed, containing models representing different fields
of expertise. At the same time it is crucial that the
models are easily reconfigurable and that it is possi-
ble to grasp the contents of a model without needing
to understand the details. To allow this, the chassis is
defined in a modular and hierarchical way based on
four levels. The highest level is the vehicle level and
can be seen in Figure 1. The three remaining levels are
chassis, suspension and component levels and they are
illustrated in Figure 2.

Chassis levelWithin the chassis level a complete
chassis is built up using suspensions, wheels and
a body. Here, a four wheel chassis with front
wheel steer is shown, but other models can eas-
ily be defined, e.g. with four wheel steer or
six wheelers. However, there is no need to de-
fine a new chassis model for each configuration

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200311

wheelToRack

ratio=1/iSW

fr ameTrans lation

rig
ht
R
ac
k

leftR
ack

inertia

J=iSW

data_R

Data

data_S

Data

r=
rC

S_
sc

al
ed

u
p

pe
r

pa
pb

na

M
a

cP
he

rs
o

n

sp
rin

gR
o

d

a
b

outerRod

U

rCM=rCMU

st
ee

ri
ng

R
o

d

a
b

st
ee

ri
ng

Jo
in

t c
ta

tb

r=rC
L1_scaled

low
e

r

frontBar

rearBar

steeringLever

L

R

data

L

ground

x
y

w
heel_1

w
he

el
_2

w
heel_3

w
he

el
_4

freeM
otion

frontSuspension

left

MacPherson

rearSuspension

left

MultiLink

1

2

3a 3b

3c

frameTrans lation

le
ftB
a
r

ri
g
h
tB
ar

rightLever

leftLever

data

Data

rightLink

A

leftLink

A

Figure 2: The hierarchical levels of a chassis model. 1: the chassis level, 2: the suspension level, 3: the
component level represented by an anti roll bar linkage: 3a, a MacPherson linkage: 3b, and a steering rack: 3c.

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200312

of different suspensions or wheels. This is in-
stead handled as described in Section 6, using the
redeclare constructs in Modelica.

Suspension levelCommon for all individual suspen-
sions are the linkages that carry the wheels and
normally there is some kind of roll-suppressing
mechanism between these. If the suspension is
steerable there is also a steering rack. Each of
theses components can be used to build up new
suspensions. Thus, the suspension linkage, here a
MacPherson, could easily be replaced by another
linkage, e.g. a double wishbone or a multi-link.
In the same manner, the steering and the anti roll
linkages can also be replaced. Furthermore, all
parameters are gathered in a data record, making
it easy to change a whole suspension setup.

The idea with the suspension level is to make it
easy to reconfigure a car by just swapping suspen-
sion and therefore, all suspension models should
share the same basic interface, i.e. one MBS-cut
for the connection to the body. There should also
be an MBS cut for each wheel (normally two) that
is to be connected to the suspension. Addition-
ally, there may be some extra connectors depend-
ing on the suspension. For example, a steerable
suspension will also have a connector for a steer-
ing wheel.

Component level Within the component level, the
foundation for efficient reuse of vehicle models
is laid. Components like a-arms, bushings, Mac
Pherson struts, trailing arms, multi-links, anti roll
linkages, rack steerings etc. are available. In
this version, these components are based on the
Modelica andModelicaAdditions libraries.
Other basic models that are needed in the compo-
nent models, such as nonlinear spring-dampers,
are described in Section 4.

2.1 Parameterisation

The parameterisation of the chassis is based on a Body
Geometric Reference frame (BGR). This frame is ori-
entied according to the DIN standard, thex, y andz
axes point forward, left and upward respectively, see
Figure 3.

The geometry of the chassis and the suspensions
are then defined by a set of points where joints and

BGR

ground frame

x
y

z

Figure 3: The vehicles motion is specified by how the
BGR moves relative to the ground frame. From the
BGR, locations of e.g. centre of mass and construction
poins are defined.

bushings are located. Additionally, the mass and in-
ertia properties of the parts within the linkage can
be defined. For a comprehensive parameterisation of
these properties, a systematic definition of the param-
eter names is necessary.

The geometry is mainly defied by the connection
joint locations, connection points. Additionally, the
direction(s) of a joint’s degree(s) of freedom must be
given if not defined by the connection joint points. The
geometry parameters are defined as:

[geometry parameter]
=[property][connection] [wheel no]

[connection]
=[part 1][part 2]..[part n]

While the mass and inertia properties are component
specific and are thus named according to:

[component parameter]
=[property][part] [wheel no]

Where[property] and[part] are defined accord-
ing to Table 1.

When there are more than one part of the same
type, a number is added to the character. For exam-
ple, if there are more than one link, as in a double-
wishbone, they are numbered L1, L2, etc., starting at
the front upper link. The wheels are numbered from
front left towards right and rear. Some examples of
parameter names are give below:

rCL1 2 Location of connection joint between chassis
and link 1 at front right wheel.

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200313

r location
n direction of rotation or translation
m mass

rcm location of centre of mass
c stiffness
d damping
f force
t torque
i inertia element, (gear) ratio

q0 Relative offset
qInit Initial value

C chassis
R steering (rack)
U upright, part that holds the wheel
P pivot element
S strut, 1D force element
L link or rod
B body or bushing
A antiroll
X undefined/general part
W wheel

Table 1: Naming of parts and properties.

i22L1 3 Inertia element i22 of link 1 at rear left
wheel.

nCU 4 Direction of revolution of the joint that con-
nects the upright 1 to the chassis at the right rear
wheel. This could for example be the rotation
axis of a swing axle.

rUL1L2 1 Location of connection joint between the
upright and link 1 and 2 at the front left wheel.
This could for example be the upper spindle joint
at a double wishbone suspension.

In many cases it is convenient to mirror compo-
nents in a car, for example left and right suspensions.
To handle this, a three-dimensional scale factor is
used. This can rescale and mirror objects, for example
scaleFactor= {1,-1,1 } mirrors the model around
the xz-plane.

3 Wheels

Good tyre models are essential for driving simula-
tion of all ground vehicles using pneumatic tyres.
However, tyre behaviour is extremely complex, often

requiring different models to cover various aspects.
Therefore, these are packaged together with the rim
and the hub to form ready-to-use wheel models. The
models used in this package are based on a tyre model
suggested in [5] and implemented in Modelica in [2].
This model uses steady state force characteristics to-
gether with a simple tyre belt deflection model. Addi-
tionally, the Magic Formula [6, 7] is also available for
the tyre force calculation.

Common for both models are the assumption that
the contact patch between the tyre and the road can
be approximated by a point. To avoid coupling the
wheel and the road models, this contact point is cal-
culated using theinner/outer Modelica language
constructs to get information from the Environment
model about the current altitude and road condition.
As a consequence, the road properties can be defined
at the top-level of the model and can also be easily
changed.

Due to the contact point assumption, this model
has troubles travelling on roads with sharp edges,
which often is the case when a real road profile is
meshed. To manage this and other issues, a new
Wheels library is currently under development [8].

4 Utilities

For vehicle dynamics studies it is essential that the
characteristics of flexible elements such as struts and
bushings are modelled. To deal with this, a set of basic
force elements are available. These are either taking
into account the deformation along one degree of free-
dom, 1D-forces, or six degrees of freedom, 3D-forces.

The 1D-forces apply force depending on the de-
formation according to theModelica.Mechanics

definitions or depending on the distance between two
frames. The force versus deformation and its time
derivative are defined as look-up tables.

The 3D-forces calculates the relative rotation be-
tween two frames, either as a linearisation around a
zero deformation or nonlinear allowing deformations
up toπ radians. The force can be calculated as a non-
linear spring-damper element, without considering the
coupling effects. Linear spring-damper elements with
bump stops, taking into account the coupling between
the degrees of freedom, are also available. These use
two 6× 6 matrices for stiffness and damping to cal-
culate the resulting force and torque vectors from the

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200314

deformation:

[fa+f_bump; ta] =
-C*[r_rela-r_rela0;phi_rela-phi_rela0]
-D*[v_rela;w_rela];

Thef bump is an additional, stiff, spring-damper force
that is active whenr rela is outside the edge of the
linear region. It is directed perpendicular to the edge
that can be defined either as a cylinder, sphere or box.
More complex geometries and models, using e.g. frac-
tional derivatives, are currently not implemented.

In addition to the force elements, there are also
a set of joints particular relevant for vehicle dynam-
ics studies. Composite joint models (e.g. an aggrega-
tion of a revolute, a spherical and a universal joint) are
available to reduce the nonlinear algebraic loops that
normally occur in suspensions with ideal joints [9].

Also there are joints that applies unphysical con-
straints to the vehicle. For example, it is in many
cases interesting to be able to perform a maneouvre
at constant speed. In other simulation packages like
e.g. ADAMS [10] this is solved by adding a power
train and applying a cruise control. The drawback is
then that the user need to add unnecessary complexity
as well as unwanted dynamics to the analysis. Here, it
is instead possible to constrain the velocity along the
longitudinal axis of the car.

Other cases where it may be interesting to con-
strain the vehicle in an unphysical way is when study-
ing the effects of flexibility in the suspensions. Typi-
cally, there are very high eigen-frequencies due to high
stiffness and low mass that are irrelevant for the anal-
ysis and thus using joint models that do not consider
the acceleration may speed up the simulation without
loosing relevant accuracy.

5 Drivers

The driver models used in vehicle dynamics studies are
either open loop drivers that apply a predefined motion
on the steering wheel or more advanced models that
try to mimic the human behaviour, taking into account
some states of the body and sometimes also the force-
feed-back through pedals and steering wheel.

More advanced studies considering combined cor-
nering and braking/acceleration requires a tight inter-
action of steering wheel and pedal output. The in-
terface is prepared to be able to handle the aspects

described above, it consists of two rotational flanges
for steering and drive. For closed loop driver models,
an MBS connector is used to make the model able to
sense the vehicle’s motion.

6 Usage

The modular design of the vehicle models gives three
significant advantages. First, it is easy to reuse already
developed models. Secondly, because of the standard-
ised interfaces, much of the test rigs already imple-
mented can be used for new models as well, making it
easy to test and verify these. A third aspect that will be
illustrated further is the ability to exchange sub models
without redesigning the original model which leads to
very flexible use.

To illustrate this, it is here described how one
model can cover different combinations of suspen-
sions of a front steered four wheeled chassis.

1 Double-clicking the chassis in theStandardCar

example opens the dialog box showed in Fig-
ure 4.1. Here it is possible to select the desired
models for all the wheels as well as for the front
and rear suspension, respectively. As indicated in
the figure, a drop down box appears, listing all
possible choices.

2 Once the desired suspensions and tyre models
are chosen, the corresponding parameters can be
edited by pressing the triangle at the end of each
row. Since all suspension parameters are set in a
data record, Figure 4.2, it is easy to select the
desired setup from the dropdown box, again only
showing the relevant options. The geometry is
also indicated in a figure to make it more easy to
verify that the right suspension is selected and to
understand the parameterisation.

3 Even if a specific setup is chosen for the suspen-
sion or not, it is still possible to edit each value
separately as illustrated in Figure 4.3. Except for
the geometry parameters, it is also easy to change
mass and inertia properties as well as the charac-
teristics of the force elements.

4 To facilitate the modification of force elements,
which can be rather complex, it is possible to both
edit these as Modelica code, Figure 4.4 and to vi-
sulise the characteristics, Figure 4.5.

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200315

rCS

rUL4

rUS

rAL4

rUW

rUL1L2rUL3rCL2

rCA

rRL3

rCL1

1

2 3

4 5

Figure 4: Dialog boxes for modification and parameter settings.

Within the VehicleDynamics library, there is a
set of samples available to illustrate the use of the li-
brary. Except for theStandardCar , there is a model

of a Formula 3 race car, Figure 5 and a car with a
trailer. Furthermore, there are some examples show-
ing how components and suspensions can be tested in-

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200316

Figure 5: Animation view of the Formula 3 car exam-
ple.

dividually, see for example Figure 6.
Additionally, there are four variants of the

StandardCar corresponding to four different levels
of detail of a mid-sized car with a front MacPherson
suspension and a rear multi-link suspension. The main
idea is to illustrate how Modelica can be used to model
vehicles with a wide range of level of detail. The sim-
plest model uses look-up tables to define the deflec-
tion of the suspension and an Ackermann function for
the steering geometry. The second level uses linkages
with ideal joints while level three and four use bush-
ings. A more detailed description of these models can
be found in [9]. In Figure 7, two pictures of the level 2
car when performing a double lane change maneouvre,
ISO3888-1:1999, is shown.

7 Conclusions

In this work, a library for modelling of vehicle dynam-
ics related problems is realised. It uses the interfaces
from theModelica andModelicaAddtions pack-
ages to be compatible with other libraries.

VehicleDynamics provides an architecture for
vehicle modelling as well as components, suspensions
and chassis model to simplify for the user to extend
the library according to his/her needs. The modular
structure of the model design allows to take advantage
of the potential of the Modelica language.

VehicleDynamics is freely available and the
source code is completely open. The library can also
be used together with thePowerTrain package to
model complete vehicles.

0 0.1 0.2 0.3 [m]
-0.12

-0.08

-0.04

0

0.04

0.08

camber [rad]caster [rad] toe [rad]

deflection

Figure 6: Animation of a MacPherson suspension
along with a mapping of the change of camber, caster
and toe angles as function of bump motion.

8 Future work

The library is under constant development. Upcoming
improvements concern an extension of the flexibility
to include swapping between bushings and joints and
better ability to add active components such as con-
trollable dampers. To be able to study the gyroscopic
effects of the power train and torque oscillations due
to Cardan joints, multi-body models of drive shafts
and brakes will also be included. The intention is also
to convert theVehicleDynamics to the new MBS-
library [11] and to improve the documentation.

9 Acknowledgements

This library is based on models developed for the Driv-
ing Dynamics project within the Swedish National
Research Programme ”The Green Vehicle/FCHEV”.
Some components of this library, such as the Rill tyre
model and the aggregation joints for analytically solv-
ing kinematic loops, have been developed by Martin
Otter, from DLR - Institute of Robotics and Mecha-
tronics, Germany. Part of this library was developed
with financial support from Dynasim AB, Sweden and
DLR - Institute of Robotics and Mechatronics, Ger-
many.

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200317

Figure 7: Vehicle performing a double lane change at 20 m/s.

References

[1] M. Otter, M. Dempsey, and C. Schlegel. Pack-
age PowerTrain: A Modelica library for model-
ing and simulation of vehicle power trains. In
Peter Fritzson, editor,Proceedings of the Mod-
elica’2000 Workshop, Lund, October 2000. The
Modelica Association and Lund University.

[2] J. Andreasson, A. M̈oller, and M. Otter. Mod-
eling of a racing car with Modelicas MultiBody
library. In Peter Fritzson, editor,Proceedings
of the Modelica’2000 Workshop, Lund, October
2000. The Modelica Association and Lund Uni-
versity.

[3] S. Drogies and M. Bauer. Modeling Road Vehi-
cle Dynamics with Modelica. In Peter Fritzson,
editor,Proceedings of the Modelica’2000 Work-
shop, Lund, October 2000. The Modelica Asso-
ciation and Lund University.

[4] Modelica Association. http://www.modelica.org.

[5] G. Rill. Simulation von Kraftfahrzeugen.
Vieweg, 1994.

[6] E. Bakker, H.B. Pacejka, and L. Lidner. A new
tire model with application in vehicle dynamics

studies.SAE transactions, paper 890087, pages
83–93, 1989.

[7] H.B. Pacejka.Tyre and vehicle dynamics. But-
terworth Heinemann, 2002.

[8] M. Beckman and J. Andreasson. Wheel model
library in Modelica for use in vehicle dynam-
ics studies. In Peter Fritzson, editor,Proceed-
ings of the 3rd International Modelica Confer-
ence, Linköping, November 2003. The Modelica
Association and Link̈oping University.

[9] H. Elmqvist et al. Realtime simulation of de-
tailed physically based automotive models. In
Peter Fritzson, editor,Proceedings of the 3rd
International Modelica Conference, Linköping,
November 2003. The Modelica Association and
Linköping University.

[10] ADAMS, Mechanical Dynamics Inc.
http://www.adams.com/.

[11] M. Otter, H. Elmqvist, and S.E. Mattson. The
new Modelica MultiBody library. In Peter Fritz-
son, editor,Proceedings of the 3rd International
Modelica Conference, Linköping, November
2003. The Modelica Association and Linköping
University.

 J. Andreasson VehicleDynamics library

 The Modelica Association Modelica 2003, November 3-4, 200318

MODELICA vehicle dynamics library:
Implementation of driving maneuvers and a controller for active

car steering

Stefan Heller
�

Technische Universität München (TUM),
Institute for Real-Time Computer Systems (RCS),

D-80290 München, Germany

Tilman Bünte†

German Aerospace Center (DLR),
Institute of Robotics and Mechatronics,
Oberpfaffenhofen, D-82230 Wessling,

Germany

Abstract

This paper deals with the assessment and exploitation
of the recently released MODELICA-based vehicle
dynamics library. A setup of various driving ma-
neuvers is accomplished. These maneuvers will be
conducted by providing steering angle and gas/brake
position to the car model of the library. The common
linearized single track model is derived as an approxi-
mative model for the fully detailed vehicle dynamics
model. This model is used for synthesis of feedfor-
ward control and later also as a nominal model for
active car steering control aiming at vehicle dynamics
stability improvement. The applied robust steering
controller structure is known as the disturbance
observer. Simulations are used to demonstrate the
effectiveness of the vehicle dynamics enhancement in
comparison to the uncontrolled vehicle. Also some
experiences with the vehicle dynamics library are
pointed out.

1 Introduction

As a rather recent field of research the simulation
of multiphysical objects gets more and more weight.
The behaviour of car models during maneuvers is
of interest, e. g. for research and development of
cars. The general ability of executing the simulations
in real time is important for hardware-in-the-loop
investigations. The MODELICA language is able
to handle multiphysical objects. Concerning the

�

e-mail: Stefan.Heller@mytum.de
†e-mail: Tilman.Buente@dlr.de

real time ability MODELICA comprises some pow-
erfulpromising features: hybrid modelling, inline
integrators and symbolic preprocessing.
The MODELICA vehicle dynamics library [1] ba-
sically consists of a detailed mathematical model
comprising the governing multibody differential equa-
tions. Moreover, there are some rudimental steering
schedules for conducting simple maneuvers. This
library is also appropriate for the analysis, synthesis
and evaluation of control systems concerning vehicle
dynamics. All considerations in this paper refer
to an unofficial prerelease of the vehicle dynamics
library [1] and particularly to the chassis level 2. The
library and some significant features will be outlined
in section 2. For the setup of more sophisticated
and realistic maneuvers a generic driver module is
needed, which represents the action of a real driver.
This driver module conducts the maneuvers and is
therefore called maneuver control block.
The single track model is used as an approximative
model for the more detailed car model. It is used
for the synthesis of a lateral acceleration controller
which is contained in the maneuver control block.
The identification of the parameters of the single track
model is explained and the parameters are given in
section 3. The maneuver control block is introduced
in section 4. The lateral acceleration controller
provides steering wheel angle suitable for following a
predefined lateral acceleration profile. Alternatively,
the steering angle can be provided directly to the car
model. Analogue is the setting of the position of the
gas/brake pedal. This position and hence the speed of
the car model are controlled according to a predefined
speed profile.
Maneuvers executing full braking need ABS-
functionality. Therefore, a wheel slip controller

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200319

is introduced in section 5 which approximates the
function of a real ABS-system.
Section 6 deals with the application of the maneuver
control block. Four maneuvers are conducted which
illustrate the action of this block. Also the car
model of the vehicle dynamics library is evaluated by
means of these maneuvers. Moreover, the maneuvers
braking in a curve and µ-split braking demonstrate
the operation of the added wheel slip controller.
In section 7 the active car steering controller for
improvement of yaw dynamics is introduced. When
the car model is exposed to asymmetric conditions
like asymmetric load, side wind or asymmetric road
friction while braking critical yaw dynamics can cause
instability of the car. This instability can be reduced
and the car can be brought back into safe state by
active car steering. The controller used in this paper is
known as the disturbance observer [2]. It determines
an additional steering angle which is superimposed
mechanically to the steering wheel angle.
The controlled car is evaluated in section 8 by com-
paring simulations of the maneuvers to simulations
with the conventional car.
Finally, section 9 reports on some experiences about
working with the vehicle dynamics library.

2 MODELICA vehicle dynamics li-
brary

The vehicle dynamics library [1] is structured hier-
archically using four levels. The uppermost level is
called the vehicle level and contains the total model of
the car. This car model can optionally be completed
by a power-train, brakes, a block which has the func-
tion of a driver, and environmental conditions, like cer-
tain roadtypes (friction) or aerodynamics. On the next
level the chassis components are modeled explicitly, e.
g. with a front and a rear suspension, wheels and body.
The suspension level allows the reconfiguration of a
car with different suspensions. Therefore, the suspen-
sions have the same interface. The lowest level is the
component level with components like trailing arms,
struts, linkages etc. which are based on the standard
MODELICA and ModelicaAdditions libraries.

Fig. 1 shows our final setup from the vehicle level
for simulating the maneuvers with active car steering.
The dotted connections indicate the transmission of
the signals on the actual state of the car: speed vx,

lateral acceleration ay, position and orientation to the
maneuver control block; yaw rate r and speed vx to
the Vehicle Dynamics Control (VDC) block; speed vi

and rotational speed ωi of each wheel to the wheel
slip controller.
The gray connections refer to the steering angle
signals. During maneuvers with the conventional car,
the VDC block is inactive. Hence, the steering angle
from the maneuver control block is equivalent to the
input steering angle at the car model. The thin gray
connections are for transmission of the reference and
the actual additional steering wheel angle between
VDC block and mechanical steering angle addition
block.
The value for the gas/brake pedal position in the
maneuver control block is passed to the wheel slip
controller block. For a positive value the acceleration
is carried out by equal propelling torques on both
wheels of the rear axle. A negative value for the
pedal position means braking. Then the deceleration
command is distributed on the brakes of the four
wheels according to the wheel slip control. The black
bondings represent the propelling torques (solid) and
braking torques (dashed) of the wheels.

The steering angle is passed to the car model by use
of the position element of the Mechanics Package of
MODELICA. The position element is accordingly
used as interface for the gas/brake pedal position.
In the latter case the only additional feature is the
dependence on the signed value (as described before).

3 Single track model parameters

For controller design the common linearized single
track model [2][3] is employed as an approximative
model for the fully detailed vehicle dynamics model.
For example, the steady state gain GV

�
s � 0 from steer-

ing wheel angle δL to lateral acceleration ayde f is
needed to implement feedforward control for the steer-
ing controller in the maneuver control block. Hence,
first the parameters of the single track model are iden-
tified.
The single track model parameters corresponding to
the fully detailed vehicle dynamics model are deter-
mined by an optimization aiming at best matching of
the simulation results for both steady state cornering
and dynamic maneuvers. The parameters given in Tab
1 are the single track parameters for the car model in

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200320

Figure 1: structure of the simulation set up with active car steering controller

the vehicle dynamics library (which is by default pa-
rameterized as a BMW 3-series).

Table 1: Identified parameters of the single track
model

mass m 1482.9 kg
distance from front axle to cen-
ter of gravity

l f 1 � 0203m

distance from rear axle to center
of gravity

lr 1 � 5297m

tire cornering stiffness of the
front wheels

c f 91776 N
rad

tire cornering stiffness of the
back wheels

cr 77576 N
rad

transfer constant angle steering
wheel to angle front wheel

iL 16.94

moment of inertia w.r.t. the ver-
tical axis through centre of grav-
ity

J 2200kgm2

4 The maneuver control block

As mentioned before, this maneuver control block is a
model for the real driver’s actions which are necessary
to perform a certain maneuver. It operates the steer-
ing angle and gas/brake pedals of the car model. This
block needs information on the actual dynamic state of
the car i.e. virtual measurement signals of the actual
speed vx and the lateral acceleration ay. The maneuver
control block consists of a lateral dynamics controller
(Fig. 2) and a speed controller (Fig. 3).

−

PSfrag replacements

ayre f

ay

PI

1
GV

�
s � 0

δV
iL

δL
S

Figure 2: Controller for providing steering wheel an-
gle according to a predefined lateral acceleration pro-
file

The total steering wheel angle output by this block is
composed of a feedforward and a feedback part which

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200321

may individually be hooked up as adequate for a spe-
cific maneuver (Fig. 2). For some maneuvers, a mere
feedforward steering is sufficient. For others main-
taining a certain lateral acceleration requires feedback
control (this means incorporating the PI-controller by
closing switch S in Fig. 2). The block iL is the gear ra-
tio between steering wheel angle δL and average steer-
ing angle at the two front wheels.

Similarly to the steering angle controller the speed
controller (Fig. 3) consists of a feedforward and a
feedback part.

−

PSfrag replacements

vxre f

vx

PI

s
T s � 1

uP

1
kconst

Figure 3: Controller for the position of the gas/brake
pedal

The feedforward control is based on the assumption
that the actual longitudinal acceleration is proportional
to the gas/brake pedal position uP:

ax � 1
s

vx � kconst uP (1)

For the model of the library it is kconst �
0 � 0025m

�
s2 .This relation has been validated by sev-

eral simulations. The inverse is used for feedforward
control. The low pass filter in Fig. 3 is added for mak-
ing the included differentiator causal.

5 Wheel slip controller

To be able to execute full braking an ABS-
functionality is needed. Therefore, the actual speed vi

and rotational speed ωi of each wheel must be known
from the car model to calculate the actual longitudinal
slip at each wheel (with (2)). R is the radius of the
wheels.

Si � 1 � Rωi

vxi
(2)

These slips Si are then used to calculate the
average slip Savg of the four wheels: Savg �
∑4

i � 1
Si
4 . The slip controlled braking force TBi �

1
4 � 1 � �

Si
���

� 1 � Savg
�

TP is then calculated with the
braking force at the pedal TP for each wheel.
This ensures that the brake torque at the brake pedal
is distributed on the brakes of each wheel according to
the slip at the wheel. Blocking of a wheel is avoided
and the vehicle remains controllable. The wheel slip
controller was designed heuristically to copy the basic
ABS functionality. In our simulations it turned out that
it works satisfactory (see next section).

6 Driving maneuvers

Four different maneuvers have been chosen from
[4]. This election is made in regard to expressiveness
of the maneuvers to evaluate both the usage of the
vehicle dynamics library and the car model and also
the performance of a active steering controller for
vehicle dynamics. At first, the conventional car
(without additional steering) is considered. Therefore,
the VDC block is inactive.

Maneuver: steady state cornering . This maneuver
is conducted by maintaining a constant lateral accel-
eration which is adjusted by the steering wheel con-
troller from Fig. 2. Starting from a maximum value,
the speed is slowly decreased to cover a certain speed
operating domain.

Fig. 4 shows the results of maneuver steady state cor-
nering. To maintain a constant lateral acceleration
ay during a constant decline of speed vx the steering
wheel angle δL rises.

Maneuver: braking in a curve For this maneuver
the steering wheel angle is kept constant. Full braking
is applied. Simulation results are shown in Fig. 5.
When the braking is applied the vehicle is in the state

of a left turn with high lateral acceleration (� 6m
�
s2).

Fig. 5e shows the slip at the wheels. The rear left
wheel encounters the least vertical load. Therefore,
its slip exceeds the other wheels. However, the brak-
ing force at this wheel is reduced by the slip controller
(Fig. 5f, 5h). Hence the slip remains limited and block-
ing of the wheels is prevented.

Maneuver: sequence of alternating steering wheel
angle steps . A so called lateral acceleration level

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200322

0 50 100 150 200
0

20

40

60
actual speed

t/ s

v x/ m
/s

0 50 100 150 200

0

20

40

60

steering wheel angle

t/ s

δ L/ °

0 50 100 150 200
−2

0

2

4
chassis side slip angle

t/ s

β/
 °

0 50 100 150 200
−0.05

0

0.05

0.1

0.15
lateral acceleration

t/ s

a y/ m
/s

²

0 50 100 150 200
−0.1

−0.05

0

0.05

0.1

steady state gain
from steering wheel angle
to chassis side slip angle

t/ s

(β
/δ

L)/
 m

/s
²/

°

0 50 100 150 200
−10

0

10

20

steady state gain
from steering wheel angle

 to lateral acceleration

t/ s

(a
y/δ

L)/
 m

/s
²/

°

a. b.

c. d.

e. f.

Figure 4: Simulation results of the maneuver steady
state cornering

0 5 10
0

10

20

30

speed

t/ s

v x /
m

/s

0 5 10
0

20

40
steering wheel angle

t/ s

δ S
 /

°

0 5 10
−4

−2

0

2

chassis side slip angle

t/ s

β/
 °

0 5 10

0

2

4

6

lateral acceleration

t/ s

a y /
m

/s
²

0 5 10
0

0.1

0.2

slip at the wheels

t/ s

s ij

0 5 10

0

200

400

600

wheel torques

t/ s

t ij /
N

m

0 5 10

−2000

−1000

0

longitudinal force at the front wheels

t/ s

f x
ij /

N

0 5 10
−2000

−1000

0

longitudinal force at the rear wheels

t/ s

f x
ij /

N

f
x rl
f
x rr

f
x fl
f
x fr

t
fl
t
fr
t
rl
t
rr

s
fl

s
fr

s
rl

s
rr

a. b.

c. d.

e. f.

g. h.

Figure 5: Simulation results of maneuver braking in a
curve (indices: i= front,rear; j=right,left)

needs to be assigned prior to the simulation. The steer-
ing wheel angle is periodically switched between op-
posite values depending on the actual speed. The step
height is computed from the single track model such
that it corresponds to a steady state lateral accelera-
tion being equal to the preassigned lateral acceleration
level. Again, speed is decreased slowly to cover a cer-
tain speed range (Fig. 6). The resulting lateral ac-

0 50 100
0

20

40

60

80
speed

t/ s

v x /
m

/s

0 50 100
−10

−5

0

5

10
steering wheel angle

t/ s

δ L/ °

a. b.

Figure 6: Speed vx and lateral acceleration ay of ma-
neuver sequence of alternating steering angle steps

celeration (Fig. 7) gives information on the dynamic
steering responses of the car model.

0 10 20 30 40 50 60 70 80 90

0

0.05

0.1

t/ s

a y /
m

/s
²

a
y ref

a
y

Figure 7: Simulation results of maneuver sequence of
alternating steering angle steps

Maneuver: µ-split braking . The steering wheel
angle is zero (δL � 0 �) and not changed during the
whole maneuver. Initially the car model is driven at
constant speed (initial value: vxo � 30m

�
s). Then the

car model is driven along parallel lanes with different
friction. The wheels on the right side of the car drive
on the lane with low friction (µ � 0 � 4). When the
braking is applied the asymmetric road friction at the
wheels causes a disturbing yaw moment. It is expected
that the wheels on the lane with low friction, are less
detained and therefore the direction of the car tends
towards the lane with higher friction. Fig. 8 shows
the results of the simulation. The friction of the road
under the right wheels is reduced to µ � 0 � 4 and as ex-
pected rises again to µ � 1 (Fig. 8 b) when the wheels
enter the left lane. The stroboscopic diagram in Fig.

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200323

15 16 17 18
20

25

30

35
speed

t/ s

v x /
m

/s

15 16 17 18
0

0.5

1

friction between road and each wheel

t/ s

µ i /
%

15 16 17 18
−10

0

10

20

30
yaw angle

t/ s

ψ
/ °

15 16 17 18
−15

−10

−5

0

5
chassis side slip angle

t/ s

β/
 °

15 16 17 18
−5

0

5

10

15
lateral acceleration

t/ s

a y /
m

/s
²

15 16 17 18

0

500

1000

1500
slip controlled force at the brakes

t/ s

f b
i/ N

f
b fr
f
b fl
f
b rr
f
b rl

µ
fr

µ
fl

µ
rr

µ
rl

a. b.

c. d.

e. f.

Figure 8: Simulation results of the maneuver µ-split
braking

9 shows the course of the vehicle from bird’s eye view.

490 500 510 520 530 540 550
−2

0
2

x
(t)

 / m

y (t
) /

m

start of braking
µ=1

µ=0.4

Figure 9: Stroboscopic recorded course of the maneu-
ver µ-split braking

7 Controller for active car steering

The effect of the yaw disturbance torque shall now be
reduced by adding a controller for active car steering.
To improve the yaw dynamics of the vehicle a robust
steering controller known as the disturbance observer
[2] is added. This two degree of freedom control ar-
chitecture is used to improve vehicle handling and to
achieve better disturbance rejection.

The controller synthesis is based on the equation (3)
which describes the yaw dynamics of the vehicle
model [2].

r � GδV
�

d (3)

G is the transfer function between steering angle δV

at the front wheels and the yaw rate r. The external
disturbances are d. In equation (4) an adopted nominal
model GN and a multiplicative model uncertainty ∆M

are used for description of G.

r � � GN � 1 � ∆M
� �

δV
�

d (4)

The aim of the controller is to obtain the transfer func-
tion in (5) despite model uncertainty ∆M and external
disturbance d (δL is the steering wheel angle).

r
δL

� GN (5)

External disturbance and model uncertainty are treated
as an extended disturbance e (eq. (6) and (7)).

r � GN δV
� � GN ∆M δV

�
d

� � GN δV
�

e (6)

e � r � GN δV (7)

The front steering angle δV is set according to (8).

δV � δL
� δC (8)

δC � � GA
e

GN
� GA

�
δV � r

GN � (9)

The additive steering angle δC provided by the VDC
block is the output of the steering actuator GA (9). Eq.
(5) is approximated best with an ideal actuator � GA �
1

�
. For implementation, the feedback signals r and δV

are lowpass filtered to limit the controller to low and
medium frequency domain. The relative degree of the
low pass filter Q is chosen to be at least equal to the
relative degree of GN for causality of Q

�
GN . The filter

Q is chosen according to (10)

Q � 1
τQs

�
1

(10)

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200324

The structure of the controller according to equation
(11) is shown in Fig. 10.

δV � δL
�

GA

�
QδV � Q

GN
r � (11)

−

PSfrag replacements

δL

GA

δV G

δC

Q 1
GN

d

r

nδCre f

Figure 10: structure of the Disturbance Observer

The transfer function is given in eq. (12).

r
δL

� GN G
GN � 1 � GA Q

� �
GA GQ

(12)

Here, as nominal model, the dynamics of the single
track model is implemented. The virtue of this con-
troller is described in detail in [2]. For physical im-
plementation ”additional steering” is assumed, i. e.
mechanical superposition of the steering wheel angle
δL and the output of the actuator. In the model of the
actively steered car (1), the controller (11) is imple-
mented in the VDC block. A simple actuator model is
implemented as part of the mechanical steering angle
addition block.

8 Comparing maneuvers with active
car steering to conventional con-
ducted maneuvers

Finally, the car model with the active steering con-
troller is compared with the conventional car. There-
fore, the simulation results of four maneuvers are dis-
cussed. Both the conventional an dthe controlled car
are displayed.

Maneuver: braking in a curve . This maneuver is
known from section 6. The VDC block provides a
steering angle δC which is added to the steering wheel
angle δL. As shown in Fig. 11 the additive steering
angle first raises because the nominal model is valid
for the linear operating range of the tire characteris-
tics, whereas in the simulation the lateral wheel forces
are already close to their saturation. Also the yaw rate

r and the lateral acceleration ay are shown. When the
braking causes a disturbing yaw moment the additive
steering angle is reduced to compensate for this over-
steering. The cause of the temporary oscillations of ay

in Fig. 11 seems to be due to a (yet unclear) imperfec-
tion of the car model.

0 5 10
0

5

10

15

20

25

30
Speed

t /s

v
/m

/s

0 5 10
0

10

20

30

40

50

60

70

Steering wheel angle δ
S
; and δ

S

 added with angle of VDC δ
C

t /s

δ i /°

0 5 10
−2

0

2

4

6

8

Lateral acceleration

t /s

a y/ m
/s

²

0 5 10
−0.1

0

0.1

0.2

0.3

Yaw rate

t /s

r
/r

ad
/s

δ
S

δ
S
+δ

C

a
y conv

a
y VDC

r
conv

r
VDC

d. c.

a. b.

Figure 11: Comparing maneuver braking in curve

Maneuver: double lane change . Maneuver double
lane change is used for assessment of car dynamics in
research and development of both vehicles and con-
trol systems for vehicle dynamics. The speed of the
vehicle is kept constant during the whole maneuver
(vx � 30m

�
s). Resulting from one period of a sinu-

soidal steering angle input the vehicle completes a sin-
gle lane change. The lane change back is caused by a
corresponding steering input in the opposite direction.
For the assessment of the vehicle model of the MOD-
ELICA library the amplitude of the sinusoidal steering
angle and the time between the two sinusoidal signals
are adapted until the course of the vehicle (y-position
in Fig. 12 b.) fulfills the requirements of the standard-
ized double lane change (according to ISO 3888; the
boundaries of this course are marked in Fig. 12 b.).
This maneuver is performed as an open loop maneu-
ver, i. e. the drivers steering wheel input is not affected
by the course of the vehicle. For a better agreement
with reality, the maneuver control block needs to be
enhanced by a more sophisticated driver model in the
future. Nevertheless, in Fig. 12 the stability enhancing
effect of the controller can be recognized.

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200325

0 2 4 6

−50

0

50

Steering wheel angle δ
S
; and δ

S

 added with angle of VDC δ
C

t/ s

δ i /°

0 2 4 6

−3

−2

−1

0

1

2
y position

t/ s

y (t
)/ m

0 2 4 6

−5

0

5

Lateral acceleration

t/ s

a y/ m
/s

²

0 2 4 6
−0.5

0

0.5
Yaw rate

t/ s

r
/r

ad
/s

δ
S

δ
S
+δ

C

y
(t) conv

y
(t) VDC

a
y conv

a
y VDC

r
conv

r
VDC

a. b.

c. d.

o o o

o o o

o o o

o

o o o o

o o

o o o

o o o

Figure 12: Comparing maneuver double lane change

Maneuver: sequence of alternating steering wheel
angle steps . This maneuver shows how the con-
troller affects the steering transfer function of the vehi-
cle over the entire speed operating domain. The speed
is slowly but continously increased. Apart from that
the simulation is executed similarly as described in
section 6. Fig. 13 shows the results of the maneu-

0 20 40
0

10

20

30

40

50

Speed

t/ s

v x/
m

/s

0 20 40
−40

−20

0

20

Steering wheel angle δ
S
; and δ

S

added with angle of VDC δ
C

t/ s

δ i/
°

δ
S

δ
S
+δ

C

0 20 40 60

−1

0

1

2

Lateral acceleration

t/ s

a y/
m

/s
²

a
y conv

a
y VDC

0 20 40
−0.15

−0.1

−0.05

0

0.05

0.1

Yaw rate

t/ s

r
/r

ad
/s

r
conv

r
VDC

r
nom

a. b.

c. d.

Figure 13: Comparing maneuver sequence of alternat-
ing steering angle steps

ver simulations. The controller’s aim is to make the
yaw rate close to the nominal model despite of distur-
bances.

Maneuver: µ-split braking . This maneuver is al-
ready known from section 6.

Fig. 14 shows the results of the maneuver simulations.

0 5 10 15 20
0

10

20

30

speed

t/ s

v x/
m

0 5 10 15 20
−3

−2

−1

0

Steering wheel angle δ
S
; and δ

S
 added with angle of VDC δ

C

t/ s

δ i/
°

0 5 10 15 20

0

0.5

1

1.5

Lateral acceleration

t/ s

a y/
m

/s
²

0 5 10 15 20

0

0.02

0.04

0.06

Yaw rate

t/ s

r/
 r

ad
/s

r
conv

r
VDC

a
y conv

a
y VDC

δ
S

δ
S
+δ

C
v

x conv
y

x VDC

a.
b.

c. d.

Figure 14: Comparing maneuver µ-split braking

For better clearness the lines of the conventional vehi-
cle are printed dashed.
When braking is applied with the contolled car an ad-
ditional steering angle δC (Fig. 14 b.) compensates for
the increasing yaw rate (Fig. 14 c. and d.). This can
also be seen in the stroboscopic diagram in Fig. 15.
Compared to the conventional µ-split braking (Fig. 9),
the distinct stability improvement is obvious. A small

500 520 540 560 580
−5

0
5

x
(t)

/ m

y (t
)/

m

start of braking

µ=0.4

µ=1

Figure 15: Stroboscopic recorded course of the ma-
neuver µ-split braking with active steering controller.
(Compare to Fig. 9)

divergence is still present.

9 Experiences with vehicle dynamics
library

From a user’s point of view, the general advantage
of working with a vehicle dynamics model based
on MODELICA is its transparency and, as a matter
of course, the feasibility of multidisciplinary mod-
elling. Due to the component oriented philosophy,
user-specific enhancements to a car model taken from
the vehicle dynamics library may easily be accom-
plished. Our specific comments refer to an unofficial
pre-release version of vehicle dynamics library [1],

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200326

and particularly to the chassis level 2. Therefore, our
records may not be applicable to the consecutively re-
leased versions. As far as our experiences with the
vehicle dynamis library on the basis of the investi-
gated maneuvers are concerned, the simulation results
are commensurate with a typical mid-size passenger
car. The performance of the simulated vehicle appears
to be plausible and realistic but two exceptions which
are reported below. Firstly, during maneuvers where
the lateral vehicle dynamics is explicitly excited (e.g.
braking in a curve and alternating steering wheel steps)
poorly damped oscillations at 4Hz of the lateral accel-
eration occur at all speeds (see Figs. 7,11,13). We act
on the assumption that this effect is not realistic and
the model should be reviewed in this regard. Secondly,
a strange phenomenon appears during the µ-split brak-
ing maneuver. In the period between entering the low
friction lane (low µ) and the start of the full braking a
remarkable yaw disturbance torque is generated which
at first make the vehicle turn towards the low-µ lane.
This effect may be explained by the reduction of the
lateral force which is due to the toe-in angle of the
front tire on the low-µ side. However, the effect of this
fact seems to be much too excessive compared to re-
ality. We guess that checking the tire model will solve
this problem.

10 Conclusions

The vehicle dynamics library was assessed and ex-
ploited in this paper. The single track parameters for
the vehicle model of the library were identified. With
these parameters feedforward control for the setup of
various driving maneuvers was implemented. The
maneuvers were conducted by providing steering an-
gle and gas/brake. Also feedback control was imple-
mented for this maneuvers. A robust steering con-
troller for active car steering was introduced and im-
plemented. The stability enhancement concerning the
yaw dynamics of the vehicle was shown by execu-
tion of significant maneuvers. The model with active
car steering controller was compared with the conven-
tional model by means of these maneuvers.

11 Acknowledgement

The authors want to thank Univ.-Prof. Georg Färber
and Dipl.-Ing. Philipp Harms from the Institute for

Real-Time Computer Systems (RCS) of the Technical
University Munich (TUM) for their scientific support.

References

[1] J. Andreasson, “Vehicle dynamics library.” 3rd
International Modelica Conference, Linköping,
2003.

[2] T. Bünte, D. Odenthal, B. Aksun Güvenc, and
L. Güvenc, “Robust vehicle steering control de-
sign based on the disturbance observer,” Annual
Reviews in Control, vol. 26, pp. 139–149, 2002.

[3] P. Riekert and T. Schunck, “Zur Fahrmechanik
des gummibereiften Kraftfahrzeugs,” Ingenieur
Archiv, vol. 11, pp. 210–224, 1940.

[4] S. Beiker, “Verbesserungsmöglichkeiten des
Fahrverhaltens von Pkw durch zusammen-
wirkende Regelsysteme.” Fortschritt-Bericht,
2000.

 Stefan Heller, Tilman Bünte Implementation of driving maneuvers and a controller for active car steering

 The Modelica Association Modelica 2003, November 3-4, 200327

 The Modelica Association Modelica 2003, November 3-4, 2003

28

Real-time Simulation of Detailed Automotive Models

Hilding Elmqvist1, Sven Erik Mattsson1, Hans Olsson1,

 Johan Andreasson2, Martin Otter3, Christian Schweiger3, Dag Brück1

1Dynasim AB, Research Park Ideon, 223 70 Lund, Sweden, http://www.dynasim.se/,
{Hilding.Elmqvist, SvenErik.Mattsson, Hans.Olsson, Dag.Bruck}@Dynasim.se

2KTH Vehicle Dynamics, 100 44 Stockholm, Sweden
http://www.ave.kth.se/, Johan@fkt.kth.se

3German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen,
82234 Weßling, Germany,

http://www.robotic.dlr.de/control/, {Martin.Otter, Christian.Schweiger}@dlr.de

Abstract

This paper describes typical modeling and real-
time simulation issues that occur in automotive
applications. Real-time simulations of detailed
Modelica benchmark models for chassis and
powertrain are presented. They demonstrate the
powerful real-time capabilities of Dymola and the
Modelica modeling language. One of the
benchmark models for vehicle dynamics is a
detailed model with 72 degrees-of-freedom with
bushings in both the front and rear wheel
suspensions. It was simulated in real-time with a
sample rate of 500 Hz on the RT-LAB
environment from OPAL-RT using a Pentium 4,
3066 MHz processor. This is made possible by
Dymola‘s unique and elaborate symbolic
processing of the model equations.

1 Introduction
Hardware-in-the-loop simulation (HILS) has
become common practice in automotive
development. In order to cope with the real-time
constraints, only rough models are often used. In
this paper, we present means to symbolically
manipulate models with a high level of detail in
such a way that the simulation can be performed in
real-time. The effectiveness is demonstrated by
several benchmark examples and by corresponding
simulation results.

The methods are implemented in the simulation
environment Dymola [3, 4] that uses the Modelica
[7] modeling language for describing the models.
It is described how Dymola solves certain difficult
problems in hardware-in-the-loop simulation of
automotive systems. Two types of benchmark

models have been chosen to demonstrate the
capabilities of Dymola: a transmission model and a
set of vehicle dynamics models.

A transmission gearbox is somewhat special
because the connection structure changes due to
the engagement of clutches and brakes. Further-
more, effective inertias need to be calculated for
each of the possible structures. Dymola handles
this by appropriate preparation of the equations by
symbolic methods before generating the code for
the target HILS system.

Vehicle models of different complexities can be
used for analysis. Traditionally, idealized models
of wheel suspensions have been used, neglecting
fast dynamics due to bushings and replacing them
with ideal joints or just look-up tables. Dymola
has special numeric methods to handle such cases.
These methods require elaborate symbolic
preprocessing of the equations. One of the
benchmark models has 72 degrees-of-freedom with
bushings in both the front and rear wheel
suspensions. It was simulated in real-time with a
sample rate of 500 Hz.

Dymola generates C code which can be used in
Simulink and by use of RealTime Workshop
downloaded to different HILS targets. Evaluation
of the benchmark problems has been made on RT-
LAB from OPAL-RT [8], demonstrating real-time
performance of complex models.

2 Power train simulation
We will consider modeling and simulation of
automatic gearboxes. The figure below shows a
typical Modelica model of a gearbox (Lepelletier
wheelset, 6-speed, from the commercial Modelica
PowerTrain library [10] available from Dynasim;
usable, e.g., for the automatic gear box ZF 6 HP 26

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

29

from ZF). The model includes planetary and
Ravigneaux gear sets, clutches, brakes and inertias.

Figure 1: Gearbox model

2.1 Special problems

Simulation of gearbox models in real-time poses
special problems. If detailed models of the friction
of the clutches and brakes are used, the models
become stiff. Typically, ideal friction models are
used instead. This means that the number of
degrees-of-freedom (DOF) changes if a clutch or
brake is stuck or not. This can be handled by
constraining the relative acceleration, when in
stuck mode, to be zero.

Fast sampling
The differential equations of the gearbox need to
be solved at a high speed. The electronic control
unit (ECU) for the transmission typically samples
its inputs and calculates new control signals every
10 milliseconds. In order to reduce effects of
delays due to lack of synchronization, the model
variables need to be determined every millisecond.

Accuracy and discontinuities
Special attention is needed to accurately calculate
angular velocity. This is important because the
angular velocities of the various wheel sets are
typically output from the model to the hardware
and input to the ECU. The control algorithm of the
ECU acts differently when the angular velocity is
close to zero. Thus it is important to calculate
small velocities accurately. Another reason to
achieve high accuracy is that one might otherwise
get drift in the angle calculations. The difficulty in
achieving high accuracy in the angular velocities
close to zero is the highly nonlinear behavior when
a clutch sticks. The torque of the clutch in sliding
mode is calculated as a function of angular
velocity. When the clutch sticks, the constraining
torque is instead calculated in such a way that the

relative angular acceleration stays zero. There are
thus jumps in the relative angular acceleration.

Event handling
Integration algorithms for non-real-time simulation
typically handle discontinuities, such as the one
above for friction, by detecting when certain
variables cross a boundary. They then calculate the
time of the event by iteration and then change the
step size to advance the time exactly to the time of
the event (crossing). Also for real-time
applications, the Dymola run-time system includes
handling of calculation of the event time. This is
done with little overhead and without iteration. The
normal solving of the differential equations is for
the real-time case performed with fixed step size.
However, at an event the step size is decreased to
hit the time of the event. In order to synchronize
with real-time again, the size of the next step is
increased such as the sum of the two steps around
the event is equal to two normal steps. This
procedure introduces a small synchronization error
during one step, but gives better accuracy in the
solution. It has successfully been utilized for
gearbox HIL simulations for ECU testing.

Event propagation
After an event, for example if a clutch begins to
slide, there might be an immediate event as a
consequence. Another clutch might get stuck
because its torque decreases below a certain
threshold. Before a numerical solution of the
differential equations is resumed, event
propagation needs to be performed in order that all
variables get consistent values. Dymola generates
code for iterating the equations, called event
iteration, until all Boolean mode variables have
converged. This typically takes 1-3 extra
evaluations of the equations, i.e., the calculation
time to handle such an event might exceed the
available time for the step. This is typically
handled by configuring the HILS system to allow a
certain number of overruns.

Effective inertia calculation
The effective inertias depend on the selected gear.
Calculation of effective inertias shows up as
systems of equations that need to be solved
simultaneously.

Dymola symbolically converts the differential
and algebraic equations (DAE) to an algorithm for
calculating the derivatives. The integration
algorithm uses the derivatives to update the state
variables. Many times, the derivative algorithm is

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

30

just a sequence of assignment statements for
algebraic variables and derivatives. However, the
conditional constraint equations for torques and
accelerations in the clutch and brake models
implies that, in order to solve for the accelerations,
a system of simultaneous equations needs to be
solved. Dymola automatically calculates the
coefficients of the linear system of equations and
invokes a numerical solver for larger systems of
equations. Small systems of equations are solved
by producing symbolic code. The effective inertia
typically shows up as the determinant of such a
coefficient matrix. It should be noted that this is
not a domain-specific procedure, but Dymola does
it automatically by solving the systems of
equations.

Underdetermined models
In certain cases, several clutches are engaged,
giving parallel paths for the power. In such cases,
the torque at each clutch cannot be determined
individually; only the sum can be determined.
Mathematically, this shows up as a singular system
of equations. However, it is possible to find
consistent solutions. Dymola determines one such
consistent solution.

2.2 Transmission example

As a benchmark example, we will consider
modeling of a 6 speed gearbox (Lepelletier wheel-
set, e.g. ZF 6 HP 26) together with a simple
vehicle and driver model. This model is suitable
for carrying out driving cycle shift strategy
analysis and is available in the Powertrain library.
The hierarchical structure of the model and the 3D
representation used for animation is shown in the
picture below.

The engine model is based on steady-state
engine maps. The ECU function included in this
model controls idle and maximum speed, both
constant limits, by a proportional controller. The
transmission is a detailed model of an automatic
transmission and incorporates a torque converter
with a lock-up clutch. The gearbox itself is of
Lepelletier type, which provides six different gear
ratios. It is modeled using basic gearbox elements,
inertia elements and different clutches and brakes.
The different gear ratios are a result of applying
different pressures to the clutches and the brakes in
order to engage or disengage them.

 Figure 2: The transmission example with the gearbox model and its animation

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

31

The driveline model is essentially a rigid model
with no compliance in the drive shafts and no tire-
slip modeling. The vehicle is in this example
modeled as a lumped mass and the resistance
forces associated with the vehicle are modeled as
different physical effects. The control system
determines the shift point based on throttle position
and vehicle speed when compared to the defined
shift map. The driver model is based on a PI
controller.

The model has 689 nontrivial equations and 15
state variables. There is a linear system of 77
simultaneous equations corresponding to the mass
matrix inversion. After evaluating all parameter
values and simplifying, the system reduces to 50
simultaneous equations. Symbolic manipulation
reduces the size of the linear system of equations
that has to be solved numerically to 7. The model
was simulated with the explicit Euler method with
a step size of 1 ms. As shown, the car follows the
desired velocity very well.

Figure 3: Desired velocity (blue) velocity (red)

The results are shown with a comparison to offline
simulation using DASSL with a required relative
tolerance of 10-6. The difference is as shown below
very small.

Figure 4: Velocity error (Explicit Euler – DASSL)

The gearshift is identical for explicit Euler and
DASSL.

Figure 5: Gear shift

Figure 6: Engine speed

Also for engine speed, the agreement with the
DASSL result is good.

Figure 7: Engine speed error (explicit Euler –
DASSL)

Real-time simulation
The benchmark model was run in the RT-LAB
environment from OPAL-RT using a Pentium 4,
3066 MHz processorThe plot below shows the
actual CPU time needed per step.

Figure 8: CPU time/step (microseconds)

The plot shows that the simulation runs in real
time, because the time needed for each step is well
below 1 ms. The CPU time needed per step is not
constant, because of event handling due to locking
or unlocking of clutches or brakes during gear
shifting. Moreover, the linear system of size 7
being solved numerically has a coefficient matrix
or a Jacobian, which does not depend on any
continuous time variables, it changes only when
there are discrete events. Its elements are in fact
weighted sums of terms of the type

if axle.Break.locked then 1 else 0;

 if transmission.wheelset_E.locked
 then 0 else 1;

Dymola exploits the fact that the Jacobian does not
change during continuous time simulation. It

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

32

generates simulation code that only calculates the
Jacobian and its LU-factorization during event
iterations. This saves CPU time because the QR
factorization is a major effort compared to the back
substitution. The number of operations to factorize
is proportional to the cube of the number of
unknowns, i.e., O(n3), where n is the number of
unknowns, which in this case is seven. Back sub-
stitution to calculate the solution when having the
factorized Jacobian is much less computationally
demanding.

To illustrate the importance of symbolic
manipulation, a test was done where Dymola did
not reduce the original system of 77 equations, but
utilized that the Jacobian of the system only
changed at discrete events. The plot below shows
the actual CPU time needed per step.

Figure 9: CPU time/step (microseconds) for the
non-reduced case.

The plot shows that the CPU time needed per step
varies a lot. This simulation does not run in real
time. At certain steps the CPU time is nearly 25
ms. Much CPU time is needed, when there are
discrete events and the Jacobian of the linear
system with 77 unknowns needs to be calculated
and LU-factorized. During continuous time
simulation, the linear system is solved using the
factorized Jacobian for back substitution, which is
as shown a fast calculation.

3 Vehicle Dynamics Simulation

The free Modelica library VehicleDynamics [1] is
used as basis for the evaluations in this report. This
library is based on the multibody systems library
ModelicaAdditions.MultiBody. The library is
flexible since it is easy to replace wheel
suspensions, tire models, etc. In particular, wheel
suspensions are available with different levels of
detail.

3.1 Special problems

Symbolic simplifications
Symbolic simplifications are very important for
handling of multibody systems models. The model
equations are written in the most general form.
However, a motion could, for example, be
constrained to be a rotation around a certain axis
(e.g. {1,0,0}) in a local coordinate system.
Parameters that are exactly zero are important to
utilize symbolically; certain terms in the general
model equations are cancelled and thus better
efficiency can be achieved. The number of
operations in the generated code is typically
reduced by a factor of 3 to 10.

Mass matrix inversion
The differential-algebraic equations for a
multibody system have a special structure. For a
tree-structured mechanism, a large system of
simultaneous equations involving accelerations,
forces and torques will be present. It is important
that such systems can be identified and reduced in
size. It can typically be reduced in size to the
number of degrees-of-freedom. This corresponds
to finding the mass matrix of the mechanism.

Closed kinematic loops
Closed kinematic loops typically occur in
suspensions with ideal joints. In such cases, the
equations contain a nonlinear system of equations
for each loop involving positions and orientations
of the parts belonging to the loop. A linear system
of equations involving velocities also appears. On
acceleration level, equations from each loop appear
in one large system of equations (corresponding to
the mass matrix for tree-structured mechanisms
accompanied with the constraint equations on
acceleration level).

The non-linear system of equations is special in
the sense that it involves trigonometric relations. It
turns out that analytical solutions can be found [9].
The multibody library has been extended with
composite joint models, for which the equations
have been rewritten to give the analytical solution
for a large class of kinematic loops occurring in
vehicles and mechanisms.

Stiff models – Bushings
High fidelity models use bushing models instead of
ideal joints. Such bushings are very stiff. This
means that the differential equations are also stiff,
i.e., that the corresponding linearized model has

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

33

eigenvalues in a large range. The explicit Euler
method is not feasible for these models since a
very small step size needs to be utilized (typically
less than 50 microseconds). Implicit Euler allows a
larger step size, but the accuracy is often not good
enough. If neither the explicit nor the implicit
Euler method is satisfactory, Dymola can utilize
methods with higher order or mixed
explicit/implicit methods for such models.

Tire models
The VehicleDynamics library [1, 2] contains two
types of tire models: the standard tire model of
Pacejka and the tire model of Rill. The Rill tire
model is about 1 to 2 orders of magnitudes faster
than the Pacejka tire model and should therefore be
used when speed is important, such as for real-time
simulation. The Rill tire model is based on the
steady-state force/torque characteristics of a tire
together with a simple transient tire deflection
model.

3.2 Realtime Simulation Benchmarks

A mid-sized sedan with a front MacPherson
suspension and a rear MultiLink suspension has
been chosen as a benchmark model for vehicle
dynamics simulations.

Figure 10: Front MacPherson suspension and rear

MultiLink suspension.

The hierarchical structure of the vehicle models is
shown in Figure 11.

Figure 11: The hierarchical structure of the vehicle models

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

34

We have investigated models with different levels
of detail.

1. Suspension is modeled by tables defining
polynomials for Camber and toe-in angles.
Steering is defined by an Ackermann
function.

2. Suspension is modeled by linkages with
ideal joints.

3. Suspension is modeled by linkages joined
by bushings. The mass and inertia of the
bar connecting two bushings are neglected.

4. Suspension is modeled by linkages joined
by bushings where the small mass and
inertia of the bar connecting two bushings
are taken into account.

Level 1 – Linkage tables
The wheel suspensions are described by tables
defining Camber and toe-in angles as functions of
wheel bounce, i.e., a vertical motion of the wheel
with constrained changes of the Camber and toe-in
angles. This could easily be extended to handle
also Camber and toe-in as functions of side force,
which would make it possible to mimic the
behaviour of suspensions with bushings and other
flexible elements. This has been the common way
to model vehicle dynamics in order to keep model
complexity low for realtime simulation. Note, this
method requires that the characteristics must either
be measured, meaning that the suspension has to
be built, or that the suspension characteristics have
to be calculated from a more detailed model. This
approach is justified if the simulation model is
utilized, e.g., for improving controllers and ECUs
for an existing vehicle. It is not useful, if the
suspension and steering system shall be improved,
e.g., based on optimization or parameter studies of
a simulation model.

Steering is defined by an Ackermann function.
The tables for Camber and toe-in angles are
implemented as scaled polynomials. Dymola’s
symbolic engine differentiates these polynomials
twice to handle the reduction of degrees-of-
freedom.

The chassis has 6 degrees-of-freedom (DOFs),
each wheel has 2 DOFs (bounce and rotation each)
and the steering 1 DOF. The total DOF is 15. The
tires each have 2 state variables for the deflection
in x and y directions, i.e., 4*2 = 8 states. The total
number of states for the vehicle dynamics itself is
thus 2*15 + 8 = 38.

The steering in the benchmark model is a
parameterized, given function which is filtered by
a second order low pass filter to model driving
behavior. The driver model of the benchmark

model contains two additional state variables for
the accelerator behavior. This is not used in this
model since the vehicle maneuver is made with
idle gear. The total number of state variables is
thus 38 + 2 = 40.

Level 2 – Linkage with ideal joints
The table description used in level 1 is limited to
only Camber and toe-in angles. It would of course
be possible to extend to Castor angle trail as well
as track width and wheel base translations.
However, in many cases, in particular when trying
new designs, it’s easier to describe the suspension
in terms of the linkage that is used.

The suspensions in level 2 consist of rigid
mechanical components, i.e., all flexible elements,
except for the struts, are replaced by ideal joints.
Instead of a multi-link suspension, a trailing arm
with similar geometry is used. The advantage over
level 1 is that the suspension can be modelled with
physical data and no precalculations or
measurements are therefore needed.

The level 2 model uses a MacPherson type
front wheel suspension, with the wishbone
attached to the chassis via an ideal revolute joint (1
DOF). A strut is placed between the chassis and the
wishbone via two spherical joints. The
eigenrotation of the strut around its axis (1 DOF) is
constrained by the distance constraint of an
additional rod with two spherical joints on each
end (1 constraint). One of the spherical joints of
this rod is attached to the steering. In total, the
suspension has therefore one degree of freedom, if
the steering angle is given. The anti-roll bar is
approximated by a spring/damper combination
where the vertical force acting at its mount point
on the lower part of the MacPherson strut is
proportional to the relative vertical distance of the
left and the right mount points. The rear
suspension is a type of trailing arm with one DOF,
the anti-roll bar is modeled like in the front
suspension.

When using base elements of the MultiBody
library to build up the MacPherson suspension,
several non-linear algebraic loops appear. By using
composite joint models (e.g., an aggregation of a
revolute, a spherical and a universal joint) that
contain analytic solutions of the non-linear
kinematic relationships within the aggregation, the
non-linear algebraic loops no longer occur in the
generated code [9]. Note that this simplification is
transparent to the end user.

The total DOF is 15 as for the level 1 model;
The wheel bounce DOFs are replaced by the DOFs
of the two trailing arm rotations and the two

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

35

wishbone rotations. The model has also 40 states.
Note, that the elasticity of the tires in vertical
direction has been modified slightly (both for the
level 1 and the level 2 cars) in order to
approximately compensate for the neglected
bushings.

Level 3 – Linkage with bushings and
massless bars
Using ideal joint models for the linkage is not
accurate enough for severe driving conditions since
bushings with certain flexibility are used in the real
vehicle. Flexible elements are introduced in the
suspensions of the level 3 model. The front
suspension has bushings in the A-arm mounts. The
rear multilink suspension has no ideal joints and
the links are modelled as mass-less bars. If the
mass and inertia of the rod connecting two
bushings were not neglected 6 DOF would be
added for every such pushrod. However, the mass
and inertia are usually very small compared to the
wheel and carrier masses, and therefore it is a good
approximation to neglect the pushrod masses and
inertias.

If the bushings were described solely by
springs, then no states would be added, since
springs in series connection lead to algebraic
equations to solve for the spring deflections. Since
bushings have a damping part, there are the states
of the dampers (= 2*6). Once the states of one
damper are known, the states of the other damper
can be computed by relative kinematics. To
summarise, a pushrod has 6 states, if the mass and
inertia of the rod connecting the two bushings is
neglected. There are 3 such bushing pairs at each
rear wheel, i.e. the number of states is 2*3*6 = 36
states.

Additionally, the elasticity in the steering is
taken into account by having a spring/damper
system in the rack steering adding one additional
DOF.

The total DOF is 36 and the model has 118
states.

Level 4 – Linkage with bushings and non-
massless bars

A slightly more detailed model is obtained by
not neglecting the masses of the push rods. The
total DOF is 72 and the model has 2*72 + 8 + 2 =
154 states.

3.3 Simulation results

The benchmark models have been studied under a
double lane change maneuver. The steering wheel
has been operated as shown in Figure 12.

Figure 12: Steering wheel angle (rad)

We first show a comparison of the behavior of the
four models. Below are shown plots of the side
accelerations for the four cases.

Figure 13: Side accelerations for level 1-4 models.

The level 3 and 4 models show a different
behaviour than level 1 and 2. The differences can
be spotted especially in the section between the
lane changes: While the level 1 and 2 cars reach
zero yaw and lateral acceleration, level 3 and 4 are
too slow to get back to zero before the second lane
change is started. This is essentially because of the
elasticity in the suspensions. The level 1 and 2
models behave very similar. The tables used in
level 1 were generated from suspensions close to
those used in level 2. The behaviour of the level 3
and 4 models is practically identical. The
oscillations of the links with small masses have
very little effect on the deformation of the bushings
that carry the wheel.

Real-time simulation
Let us discuss the problems of using these four
models for real-time simulation.

It is possible to use explicit Euler with a step-
size of 1 ms for the models of level 1 and 2.
Comparisons with results from offline simulation
with DASSL (relative tolerance=10-6) show that
the error in side acceleration is less than 0.25%.
The major task when using the explicit Euler
method is the calculation of the derivatives. Each
of the level 1 model and the level 2 model has a

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

36

linear system of simultaneous equations corre-
sponding to the mass matrix inversion. Dymola’s
symbolic processing reduces this system of
equations to a system of about 10 equations. There
are no nonlinear systems of equations, because the
equations for the closed kinematics loops of level 2
have been solved analytically in the model library.
The RT-LAB environment from OPAL-RT using a
Pentium 4, 3066 MHz processor runs these two
models easily in real-time, because it needs only
0.1 ms for an Euler step for the level 1 model and
0.3 ms for the level 2 model.

It is not possible to use explicit Euler to
simulate the level 3 model or the level 4 model,
because these models use bushing models instead
of ideal joints. The bushings introduce very fast
modes. Explicit Euler requires the step size to be
smaller than the shortest time constant utilized
(typically less than 50 microseconds). Typically,
the fastest modes are not excited to a degree that it
is necessay to resolve them for the intended
purpose. In such cases the problem is referred as
stiff. The implicit Euler method solves the
numerical stability problem and allows larger step
sizes to be used. It is the accuracy required that
restricts how large step sizes can be used. Using
the implicit Euler method, on the other hand,
implies that a nonlinear system of equations needs
to be solved at every step. The size of this system
is at least as large as the size of the state vector, n.
Solving large nonlinear systems of equations in
real-time is somewhat problematic because the
number of operations is O(n3) and the number of
iterations might vary for different steps. Reducing
the size of the nonlinear problem is advantageous.
The method of inline integration [5, 6] was
introduced to handle such cases. The discretization
formulas of the integration method are combined
with the model equations and structural analysis
and computer algebra methods are applied on the
augmented system of equations. Implicit Euler
allows larger step size, but the accuracy is often
not good enough. If neither the explicit nor the
implicit Euler method is satisfactory, Dymola
utilizes methods with higher order or mixed
explicit/implicit methods for such models.

Each of the level 3 model and the level 4 model
has a linear system of simultaneous equations
corresponding to the mass matrix inversion.
Dymola’s symbolic processing reduces this system
of equations to a system of about 20 equations.

The level 3 model and the level 4 model have
been simulated with a special inline mixed
explicit/implicit method, developed by Dynasim.
This results in a nonlinear system of equations. For

the level 3 model the size is about 130 and for the
level 4 model the size is about 80. The level 4
model has 154 state variables. The large possible
reduction of the size of the implicit non-linear
system of equations from 154 to about 80 is due to
the fact that certain subsystems are linear even
after ammendment of the corresponding
discretization formulas. Dymola automatically
detects such structures during the structural
analysis of the equations. The remaining nonlinear
system of equations has to be solved by a Newton
method; 2-3 iterations are typically needed, i.e. 3-4
residual calculations need to be performed. The
step size was chosen to 2 ms. Comparisons with
results from offline simulation with DASSL
(relative tolerance=10-6) show that the error in side
acceleration is less than 0.5%.

Figure 14: Side accelerations for the level 4 model

The difference between the results of the implicit
method and DASSL is less than 0.5%

Figure 15: Side acceleration erros for the level 4

model (Euler – DASSL)

The realtime benchmarks were run on a computer
equipped with a Pentium 4 processor running at
3066 MHz and a 333 MHz single-channel memory
architecture.

As shown in Figure 16, the execution time is
shorter for some time intervals, because of slower
dynamics there requiring a smaller number of
Newton iterations.

Figure 16: CPU time/step, when simulating level 4

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

37

It is worth noting that the level 4 model runs faster
than the level 3 model, for which 1.7 ms per step is
needed, although the level 4 model is more
detailed. Obviously, the neglection of the push rod
masses is not useful when Dymola’s inline
integration method together with its symbolic
transformation capabilities are used. For offline
simulations it is the opposite: the level 3 model
runs faster as the level 4 model when using
DASSL.

4 Conclusions
The paper has described typical efficiency issues
in automotive real-time and HIL simulations. The
examples given demonstrate the powerful real-time
capabilities of Dymola and the Modelica modeling
language. The models presented may indeed serve
as benchmark examples as they are in the front-line
of what can be simulated in real-time today. One of
the benchmark models for vehicle dynamic
simulation has 72 degrees-of-freedom with
bushings in both the front and rear wheel
suspensions. It was simulated in real-time with a
sample rate of 500 Hz. The presented examples
show that it is possible to simulate high-fidelity
models in real-time for power trains and vehicle
dynamics simulations. This is made possible by
Dymola‘s unique and elaborate symbolic
processing of the equations.

Acknowledgements
This work was in parts supported by Bayerisches
Staatsministerium für Wirtschaft, Verkehr und
Technologie under contract AZ300-3245.2-3/01
for the project Test und Optimierung elektroni-
scher Fahrzeug-Steuergeräte mit Hardware-in-the-
Loop-Simulation.

5 References
[1] Andreasson, J.: VehicleDynamics library,
Proceedings of the 3rd International Modelica
Conference, Modelica 2003, Modelica homepage:
http://www.Modelica.org.
[2] Beckman, M. and J. Andreasson: Wheel model
library in Modelica for use in vehicle dynamics
studies, Proceedings of the 3rd International
Modelica Conference, Modelica 2003, Modelica
homepage: http://www.Modelica.org
[3] Brück, D., H. Elmqvist, S.E. Mattsson, H.
Olsson: Dymola for Multi-Engineering Modeling
and Simulation, Proceedings of Modelica 2002.
Modelica homepage: http://www.Modelica.org.
[4] Dymola. Dynamic Modeling Laboratory,
Dynasim AB, Lund, Sweden,
http://www.Dynasim.se
[5] Elmqvist, H., F. Cellier, M. Otter: Inline
Integration: A new mixed symbolic/numeric
approach for solving differential-algebraic
equation systems. Proceedings: European
Simulation Multiconference. June 1995 Prague,
pp: XXIII-XXXIV.
[6] H. Elmqvist, S.E. Mattsson, H. Olsson. New
Methods for Harware-in-the-loop Simulation of
Stiff Models. Proceedings of Modelica 2002.
Modelica homepage: http://www.Modelica.org.
[7] Modelica, http://www.Modelica.org.
[8] OPAL-RT, http://www.opal-rt.com.
[9] Otter, M., H. Elmqvist, S.E. Mattssson: The
New MultiBody Library. Proceedings of the 3rd
International Modelica Conference, Modelica
2003. http://www.Modelica.org.
[10] PowerTrain Library 1.0 - Tutorial, German
Aerospace Center (DLR), Oberpfaffenhofen, 2002,
http://www.dynasim.se/www/PowerTrainTutorial.pdf/

 The Modelica Association Modelica 2003, November 3-4, 2003

Hilding Elmqvist, et al. Real-time Simulation of Detailed Automotive Models

38

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 2B
Thermodynamic Systems - I

39

 The Modelica Association Modelica 2003, November 3-4, 200340

Modelica open library for power plant simulation:
design and experimental validation

Francesco Casella, Alberto Leva∗
Dipartimento di Elettronica e Informazione, Politecnico di Milano

Via Ponzio, 34/5 - 20133 Milano (Italy)

Abstract

The open Modelica library ThermoPower for the sim-
ulation of thermal power plants is presented, by illus-
trating the modelling principles and the main features
of the developed models. The library has been vali-
dated against experimental data coming from a labora-
tory drum boiler, and the main results are shown in the
paper. The library, plant model, and validation data are
publicly available through the Web.

1 Introduction

Dynamic simulation plays a key role in the design of
the control system of thermal power generation plant,
in particular when innovative design efforts are under-
taken. There is a long track of research and engineer-
ing effort in this field, dating from the pioneering paper
[8] through [12, 16, 1, 15] and numerous other works.
Also, many software packages have been developed
in the academic as well as commercial field, see e.g.
[4, 7, 21, 3, 2, 22, 19, 13, 17] and, in particular, [18].
Commercial modelling tools often suffer from the
drawback of being opaque: it is not clear to the user
which equations are actually been used to describe
a certain component, and it is hard, if not impossi-
ble, to incorporate the user’s specific know-how in the
model library [6]. Conversely, in university laborato-
ries many tools have been developed, in which the user
has full control over the model equations; however,
due to the intricacies of modelling thermo-hydraulic
systems and to the difficulty of integrating the corre-
sponding equations [16], ad-hoc modelling paradigms
and software packages are employed, which are nei-
ther interchangeable nor interoperable with each other,
not to mention their actual availability.
Moreover, when it comes to validating the models, it
is very difficult to obtain complete and accurate ex-

∗Corresponding author, e-mail leva@elet.polimi.it

perimental data sets from real plants [14]. Therefore,
there is a strong need for shared and agreed-on mod-
els, which can be actually run by by currently avail-
able simulation tools, as well as of benchmark data for
model validation. The adoption of the Modelica lan-
guage is a great opportunity in this direction.
The goals of the research work presented in this paper
can be summarised as follows.

1. Develop an open Modelica library for the mod-
elling of thermal power plants based on first prin-
ciple models, which is highly readable and ex-
tensible, and where models of the same physical
component with different level of detail may co-
exist.

2. Demonstrate that models of real-life complexity
can be dealt with by current Modelica tools.

3. Validate the library against experimental data
from a laboratory plant.

4. Make the library code and the experimental data
available to the scientific community.

The paper is organised as follows: Section 2 sum-
marises the principles by which the entire library has
been structured; Section 3 discusses the modelling
assumptions and the main features of the developed
models, while Section 4 is devoted to a brief descrip-
tion of the laboratory plant and of the experimental
data set; in Section 5, the main results obtained with
the plant simulator are shown. Conclusions and per-
spectives for future work are given in Section 6.

2 The library principles

This section outlines the principles of the presented li-
brary, motivating the adoption of Modelica as the host
environment. A more detailed discussion is reported in
[6], to which the interested reader is referred, while a

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200341

longer explanation of the modelling principles adopted
in the library can be found in [15], the correspond-
ing methodological foundations being discussed e.g.
in [11].

Use of first-principle equations. The equations of
the library models are derived from mass, energy and
momentum balances, and (when necessary) from well
established empirical correlations. Therefore, all the
quantities involved in the models can be given a phys-
ical meaning.

Openness and transparency. The features of Model-
ica are exploited to obtain a code that tightly matches
the way describing equation are written on paper. This
greatly facilitates documenting and maintaining the li-
brary, and allows the users to understand exactly what
they are simulating. Also, Modelica’s powerful syn-
tax can be exploited to investigate different modelling
options quickly, and the inherently open nature of the
environment permits modifications and improvements
with a limited effort.

Readability-reusability trade-off. The inheritance
mechanism is used sparingly, and with great care.
Even though inheritance appears very attractive when
structuring a component library, it is very difficult to
define sufficiently general basic models in the appli-
cation domain addressed here. Moreover, in a com-
plex hierarchy of models, modifying the equations of
some ancestor could have unexpected effects on the
siblings, potentially impairing readability, not to say
correctness. Since even fairly complex models can be
described with a few dozen lines of code, it is advis-
able that the behaviour of a single component be de-
scribed in a single place, rather than scattered through
many different classes. Inheritance should be limited
to the definition of ‘prototype’ components, i.e. par-
tial classes containing connector declarations and aux-
iliary equations such as ∆p = pin − pout . In the library
there is one notable exception to this design principle,
see section 3.4.1.

Partial Differential Equations. For the purposes of
this work, models based on 1-dimensional partial dif-
ferential equations are needed, which are not sup-
ported by Modelica in their native form. Therefore,
such equations are reduced to ordinary differential
ones by appropriate methods (e.g. finite volumes, fi-
nite elements) prior to their insertion in a Modelica
model.

Standard interfaces. In the library, connectors are de-
signed so as to be totally independent of the modelling
assumptions adopted for the component. The same ter-
minals are used no matter whether the fluid is assumed

to be one- or two-phase, the model is lumped- or
distributed-parameter, the momentum balance is static
or dynamic, the cross-sectional fluid velocity distribu-
tion is uniform or not, the phases in two-phase flows
are assumed to have the same velocity or not, and so
forth. To clarify with an example, we report the defini-
tion of the waterFlangeA and waterFlangeB con-
nectors, which describe the flanges of the components
that carry a water/steam flow:

connector WaterFlangeA

Pressure p;

flow MassFlowRate w;

input SpecificEnthalpy hBA;

output SpecificEnthalpy hAB;

end WaterFlangeA

connector WaterFlangeB

Pressure p;

flow MassFlowRate w;

input SpecificEnthalpy hAB;

output SpecificEnthalpy hBA;

end WaterFlangeB

In the code p is the fluid pressure, w is the mass
flowrate entering the component, hAB and hBA are the
specific enthalpies of the fluid in case its direction is
from an A-type flange to a B-type flange and vice-
versa. Correct models are obtained by always connect-
ing two flanges of complementary type. These connec-
tors support flow reversal.

The paradigm of connectors is exploited to standardise
also the interfaces involving 1-dimensional distributed
quantities used in modelling components like heat ex-
changers. Such connectors are characterised by a num-
ber of uniformly spaced nodes, and contain the nodal
values of the quantities under question, no matter how
the spatial discretisation is dealt with inside the com-
ponent. An example is the DHT connector, whose defi-
nition is

connector DHT;

parameter Integer N=2 "Number of nodes";

Temperature T[N];

flow HeatFlux phi[N];

end DHT;

Flexible level of detail. Encapsulation is exploited to
allow for models with different degrees of detail, and
fully interchangeable. This means that, in different sit-
uations, the same component or part of the plant can
be modelled with different detail levels, with a small

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200342

effort on the part of the analyst.
Substance property calculation. Medium models for
water, steam, and ideal gas mixtures are already pro-
vided by the free Thermofluid library [23]. Simula-
tion efficiency could possibly be increased by using
third-party property calculation packages written in C
or FORTRAN. The library is open to such extensions.
Models for different fluids. It would be possible
to make the equations of a component highly in-
dependent of the fluid contained, thus reducing the
total number of library components. This is not very
convenient for the presented library, however. In
thermal power plants there are essentially two fluids
(water/steam and ideal gas mixture), and the thermo-
hydraulic phenomena involving these fluids are
described by equations that can be very different also
from the structural standpoint. Therefore, attempting
to write equations in a ‘general’ form involves a
significant complication of the equations themselves.
It is preferable to write specialised models for the two
fluids, and this is the approach adopted. The same
specialisation applies to connectors, of course.

A great number of modelling environments and li-
braries for power plant simulation are available in the
literature, see e.g. [4, 7, 21, 2, 22, 13, 17, 5], and in the
last years several were developed within the Modelica
environment (a remarkable example is [23]). There is
not the space to give an exhaustive review here. How-
ever, two peculiarities of the proposed modelling ap-
proach, and therefore of the library, are worth point-
ing out. The first, as already mentioned, is the ‘flat’
structure of the model hierarchy, aimed at maximis-
ing the readability. The second is that, by writing the
models as is done here, one can (but is not obliged to)
reach the maximum level of detail that is advisable for
simulations aimed at system-oriented studies, i.e., for
example, at the synthesis and validation of the control
system.

3 Developed models

3.1 Boundary conditions

Ideal pressure sources and sinks have been defined
(SourceP, SinkP), as well as mass flowrate sources
and sinks (SourceW, SinkW); note that the difference
between source and sink is purely conventional, as
both of them can handle flow in either direction. Hy-
draulic and thermal variables can be either constant, or
determined by external signals.

3.2 Branching components

Flange terminals only support connection of
two components; therefore, the FlowJoin and
FlowSplit components are provided to model flow
branching. The model are based on static mass and
energy balances equations, supporting all the feasible
flow directions and avoiding numerical singularities.

3.3 Elementary physical components

3.3.1 Valves

The ValveLiq and ValveVap models are based on
the standard IEC 535 sizing equations for valves with
liquid and vapour flow, respectively [10]; critical flow
can be modelled in both cases, as well as check valve
behaviour. Flow reversal is supported, avoiding nu-
merical singularities for small or zero pressure drop.
The opening characteristic can be customised.

3.3.2 Mixers, collectors, tanks

The Mixer and Collectormodels are based on stan-
dard mass and energy balances, assuming uniform
pressure and temperature in the control volume; they
differ only by the number of connecting flanges. Heat
exchange with the metal wall can be also accounted
for. Tank models a gas-pressurised tank, with gas
charge and discharge valves.

3.3.3 Pumps

Since storage of mass and energy are negligible, the
PumpMechmodel is expressed by algebraic character-
istic equations derived from the manufacturer’s design
data, that relate the pump head and the resistant hy-
draulic torque applied by the fluid to the shaft to the
rotation speed and the volumetric flow rate. A boolean
parameter allows to account for the total rotor inertia,
when required. It is also possible to use the simpler
model Pump, where the rotation speed is an input sig-
nal, the hydraulic torque is not computed, and a con-
stant efficiency is assumed to determine the enthalpy
difference between the inlet and the outlet.

3.3.4 Drum

The Drummodel is the core of drum boilers models [9,
16]. In order to describe correctly the dynamics of fast
transient, the model does not assume that the liquid
and vapour phase are in thermodynamic equilibrium,
i.e. at saturation state. Referring to figure 1, the basic

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200343

wf

wd wr

wrv

wrl

wv

wc wcs wev

Qmv

Qml

Qvl

Qme

Figure 1: Steam drum.

equations are mass and energy balances for the liquid
and vapour phases:

dMv

dt
= wrv +wev −wv−wc−wcs (1)

dMl

dt
= wf +wrl +wc +wcs−wd −wb−wev (2)

dEv

dt
= wrvhrv +wevhvs −wvhv −wchls −wcshvs +

+Qmv−Qvl − p
dVv

dt
(3)

dEl

dt
= wf h f +wrlhrl +wchls +wcshvs −wdhd +

−wbhl −wevhvs +Qml +Qvl − p
dVl

dt
(4)

dEm

dt
= −Qml −Qmv−Qme, (5)

where Mv, Ml , Ev, El, Vv, Vl are the mass, internal
energy, and volume of the vapour and liquid phase
holdups, Em is the thermal energy of the metal wall,
p is the drum pressure, w is a mass flowrate, h is a
specific enthalpy, Q is a heat flow. The meaning of
the subscripts is: rv: risers (vapour fraction), rl: risers
(liquid fraction), l: liquid phase, v: vapour phase, c:
condensation, cs superficial condensation, ev: evapo-
ration, f : feed, d: downcomer, b: blowdown, vs: satu-
rated vapour, ls: saturated liquid.
The bulk and superficial condensation flowrates, evap-
oration flowrate and convective heat exchange be-
tween the two phases are computed according to

wc =
(1− xv)ρvVv

τc
(6)

wcs = KcsAsup(Ts(P)−Tl)) (7)

wev =
xlρlVl

τev
(8)

Qvl = KsupAsup (Tv −Tl) (9)

where ρl , ρv, Tl , Tv are the liquid and vapour densities
and temperatures, xl , xv are the steam qualities in the

liquid and vapour phases, τc, τev are suitable time con-
stants, Asup is the area of the liquid surface, and Kcs,
Ksup are suitable coefficients. The (non ideal) phase
separation at the risers outlet is modelled as follows:
hrl is the saturated liquid enthalpy at the drum pres-
sure, while hvl is such that the corresponding steam
quality is 1− (ρv/ρl)α.
The model is implemented in order to have the follow-
ing state variables: drum pressure, liquid and vapour
entropy, level, and metal wall temperature.

3.4 Building blocks for complex components

3.4.1 1-dimensional fluid flow

The Flow1D model describes the 1-dimensional flow
of single-phase water in a tube of constant cross-
section. The basic equations are the distributed-
parameter mass, momentum, and energy balances:

A
∂ρ
∂t

+
∂w
∂x

= 0 (10)

∂w
∂t

+A
∂P
∂x

+ ρgA
dz
dx

+
Cf ω
2ρA2

w|w| = 0 (11)

ρA
∂h
∂t

+ ρAu
∂h
∂x

−A
∂p
∂t

= ωϕ (12)

where ρ is the fluid density, w is the mass flowrate, p is
the pressure, A is the tube cross-section, g is the accel-
eration of gravity, z is the elevation, Cf is the Fanning
friction coefficient, ω is the tube perimeter, u is the
fluid velocity, h is the fluid enthalpy and ϕ is the heat
flux entering the tube across the lateral surface. Equa-
tions (10)–(11) describe the fast pressure and flowrate
wave dynamics, while Eq. (12) describes the slower
dynamics of heat transport with the fluid velocity; the
equations are then discretised with the finite volume
method, considering a single volume for the former
two (which need a coarser approximation in the fre-
quency range of interest for power generation models),
and many volumes for the latter.
Among the relevant features of this model, the follow-
ing ones are worth mentioning: flow reversal is fully
supported; the dynamic momentum term ∂w/∂t can be
switched off to avoid fast pressure oscillations; the Cf

coefficient can be either constant or computed by the
Colebrook equation; the compressibility effect result-
ing from the finite volume approximation of (10) can
be associated to either the upstream or downstream
pressure; a bank of identical tubes in parallel can also
be modelled.
The Flow1D2ph model can also deal accurately with
two-phase flow; although being based on the same

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200344

equations (10)–(12), the significant differences with
respect to to Flow1D suggest writing two completely
independent models.
The Flow1D2phDB model extends (in Modelica’s
terms) Flow1D2ph by also computing the heat trans-
fer coefficient γ via Dittus-Bölter equation; corre-
spondingly, the DHT connector (which is replaceable)
is substituted bye the extended DHThtc connector,
which makes the values of γ visible to the outside.

3.4.2 Pressure drop

The PressDrop model provides the model for a
generic pressure drop proportional to the kinetic pres-
sure. The equation is modified by adding a small
linear term, to avoid singularities with small or zero
flowrates, thus reading:

pin − pout =
Kf (|w|+Kl)w

ρ
(13)

The same modification also applies to the models de-
scribed in section 3.4.1.

3.4.3 Metal wall

The MetalWall model describe a generic cylindri-
cal metal wall, accounting for the thermal resistance
due to heat conduction and for the heat storage due to
thermal capacity; uniform temperature is assumed in
the radial direction. More sophisticated models could
be derived to better reproduce the actual radial temper-
ature dynamics, e.g. in thermal stress studies.

3.4.4 Heat exchange modules

The heat flux exchanged between two (or more) ob-
jects, such as a fluid flow and a metal wall, is in general
a function of the corresponding surface temperatures;
therefore, it can be computed by a model interfaced via
DHT connectors. The ConvHTe and ConvHTc models
provide simple examples for co-current and counter-
current 1D configurations, with given heat exchange
coefficient γ. ConvHTe gamma extends the former by
using a variable value of γ, provided by the connected
object through its DHT gamma connector. More com-
plex configurations can be easily described with a few
lines of code.

3.5 Complex physical components

A whole range of heat exchanger models can be as-
sembled using the components described in Section

Figure 2: The laboratory plant.

3.4, depending on physical configuration, operating
conditions and desired degree of detail. None of these
models probably deserves to be included in the library
as such; if a specific aggregate model is to be used
many time, the user can easily define it as a new model
inside his plant model. Some of them may neverthe-
less be included in the library to serve as examples.

4 The laboratory plant and data

4.1 Overview

The laboratory plant employed to validate the pre-
sented library is a physical model of the evaporating
section of a heat-recovery boiler, with a power scaling
factor of 1:600. The laboratory plant layout is shown
in fig. 2.
To be precise, only the circulating loop of the labo-
ratory plant exactly reproduces the thermo-hydraulic
conditions of the real boiler. The other components
(preheater, valves, pumps, etc.) provide the correct
boundary conditions for the evaporator. In particular,
the superheater supplies the necessary (limited) steam
superheating to allow a reliable measurement of the
steam flow upstream of the throttling valve.
The steam generation takes place at a nominal oper-
ating pressure of 60 bar, as in the real plant. The
evaporator is made of six electrically heated parallel
tubes, one downcomer and a vertical-axis drum, plus
the necessary headers and connection tubes. A feed-
water valve may be used for drum-level control, and
the throttling valve to control the drum pressure. The
heat rate to the evaporator is modulated by a power
regulator.

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200345

Figure 3: The available plant measurements.

The relevant process measurements are summarised in
fig. 3; the measurement of the electric power released
to the evaporator is also available.

4.2 Plant tests

Many static and dynamic tests were performed on the
plant. These tests are plant responses obtained by im-
posing step variations to the evaporator electric power,
the throttling valve position, and the feed-water con-
trol valve position. During these tests, the plant was in
an open loop. Step variations were given, starting from
two different sets of steady-state conditions: the for-
mer at high load (around 100% of the maximum load),
and the latter at about half load. The boiler pressure
was kept nearly proportional to the load: full-load tests
were done at about 60 bar, and half-load tests at about
30 bar. Step variations were always imposed both up-
wards and downwards, their amplitude being in the
range 10-15%. Altogether, seventeen step-response
tests were executed and logged.

4.3 Data reconciliation

Experimental data comong from the tests were anal-
ysed, in order to build a consistent database. The main
problem evidenced was a discrepancy between the
feed-water and the superheated steam flow rate mea-
surement. Those flow rates must balance at any steady
state, and even a small imbalance between causes a
significant modification of the drum-level transients.
Hence, it is very important that the corresponding
measurement errors be corrected. In the case at hand,
it is assumed that the feed-water flow is error-free (it is
in fact much more accurate than the steam flow mea-

surement).
On the basis of steady-state measurements, the cal-
ibration constant of the instrument was recomputed.
Moreover, to compensate for unpredictable measure-
ment errors, the record of steam flow rate relative to
every step response was biased, so as to impose per-
fect balance at the initial steady state.
A further problem is that the heat rate to the super-
heater (supplied by an electrical resistor) is not mea-
sured. At any steady state, the heat rate Q may be
estimated by means of the thermal balance

Q = wv (hv(pv,Tv)−hd) , (14)

where wv is the superheated steam mass flow rate, hd

the fluid enthalpy at the drum outlet, and hv(pv,Tv) the
steam enthalpy at the superheater outlet, evaluated at
the local steam temperature Tv and pressure pv. Unfor-
tunately, hd is not easy to evaluate because the fluid at
the drum outlet is generally wet steam, whose quality
xd is close to one, but unknown. It has been assumed
that the steam quality is 1, and hd = hvs(pd), where
hvs(pd) is the vapour saturation enthalpy at the drum
pressure pd . Note that a (realistic) wetness of 3%, at
60 bar, yields hvs(pd))− hd ≈ 47 kJ/kg, i.e. a tem-
perature difference of about 14◦C at the superheater
outlet. In addition, the analysis of experimental data
shows that xd is not constant when the operating con-
dition is changed, but the information available is not
sufficient for deriving an empirical correlation for xd .
This is the most important uncertainty in the experi-
mental data, that could not be removed. Fortunately,
this uncertainty is relevant only for the superheated
steam temperature, while it is almost negligible for the
evaluation of the other process variables. The heat rate
to the superheater was generally kept constant during
any dynamic test. Therefore, its value was computed
from the initial steady state, using (14) and the approx-
imation hd ≈ hvs(pd).
The experimental data records, completed with the
corrected steam flow rate and the superheater heat rate,
were assumed as the validation database.

5 Experimental validation

5.1 The simulation model

The Modelica diagram of the simulation model is
shown in figure 4. This model proves that cases of re-
alistic complexity (i.e., hundreds of differential equa-
tions) can be treated effectively. There is not the space
to give details. For further information, the reader is
referred to the library and model code.

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200346

Figure 4: Modelica diagram of the simulation model.

5.2 Model calibration

Steady-state measurements were used to estimate the
process parameters affected by an intrinsic uncertainty,
i.e. the friction coefficients for the different compo-
nents in the circulation loop, the friction correlation in
the superheater, and the heat losses of the evaporator.

For the evaporator, it was assumed that friction obeys
to Colebrook’s law, and a concentrated pressure drop
was introduced upstream of the evaporating tubes, to
account for the flow measurement orifices and other
flow discontinuities. A multiplicative corrective co-
efficient was introduced in the second flow equation,
and was calibrated with steady-state data to match the
circulation flowrate.

The calibration of the friction correlation for the su-
perheater was done selecting the tube roughness so
that the relation between the Reynolds number and the
friction coefficient matched the points computed from
experimental data. As for the evaporator heat losses,
considering the evaporator thermal balance at different
steady states, it was found that the experimental data
fit the formula

Qlost = k (Twd −Tamb) , (15)

where Qlost is the lost heat rate, Tamb the ambient tem-
perature, and Twd the drum metal wall temperature.
Note that Qlost is typically around 10% of the input
electrical power, and varies significantly with the drum
pressure.

5.3 Individual validation of components

Individual validation of a component can be carried
out for components when the available measurements
supply complete boundary conditions for that compo-
nent. In the case presented, only the model of the
chocked-flow valve could be validated individually,
since all its boundary conditions (inlet steam pressure,
flow rate and temperature) were measured.

5.4 Global validation of the plant model

The global validation of the whole plant model is
aimed specifically at the analysis of relevant alterna-
tives in terms of component modelling and overall
model structuring. In the following the validation tests
are listed, together with the results achieved from the
point of view of modelling. It is important to notice
that the tests were made in open loop and applying step

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200347

stimuli: this leads to very informative results on the
model correctness, as no control system can conceal
discrepancies between the model outputs and experi-
mental data, and the stimuli cover a frequency range
wide enough to evidence the model behaviour with re-
spect to phenomena that are ‘fast‘ with respect to the
dominant plant dynamics. It is also worth stressing
that the model was calibrated only once (at high load),
and non modification to the model parameters was
made to perform the various simulations presented.

5.4.1 Heat rate steps

Negative step variations were applied at high load to
the electrical power fed to the heating system. Feed-
water was not regulated, so the pressure variation due
to the heat rate perturbation caused also a variation of
the feed-water flow rate. To reproduce the actual con-
ditions, the simulator was fed with the measured feed-
water flow rate as an input.
The main result is that the process behaviour is re-
produced very accurately, except for the superheated
steam temperature. Its measurement is very noisy,
however, and its variations are comparable with the
errors due to uncertainty on the steam quality at the
drum outlet. Recall also that the heat rate released to
the superheater is not measured. These facts confirm
that the uncertainty exists, is relevant, cannot be elimi-
nated with the available measurements, but is confined
to the outlet steam temperature.
An example of these tests is shown in figures 5 and
6, depicting the drum pressure and level transients, re-
spectively. Notice that the pressure dynamics are re-
produced correctly over the frequency range that is in-
teresting for control (corresponding to a typical time
scale of some tenth or a few hundreds of seconds).
This is true thanks to the non-equilibrium model of the
drum.

5.4.2 Throttling valve steps

Responses to positive and negative throttling valve
steps, both at high and low load, showed good agree-
ment between the model output and data. For the rea-
son above, in these tests the feed-water flow rate (that
acts as a disturbance) was an input for the simulator.
In particular, the non-equilibrium phenomena repre-
sented in the drum model allow to reproduce both low-
and mid-frequency dynamics in the pressure responses
correctly, and are necessary for this purpose, as wit-
nessed by the effects of the involved parameters (e.g.,
τev) on the responses. Also the effects of thermal ex-

0 200 400 600 800 1000 1200
53

54

55

56

57

58

59

60

Time (s)

Drum Pressure (bar)

Figure 5: Drum pressure transient for a -10% heat rate
step at high load (simulated vs. experimental data).

0 200 400 600 800 1000 1200
0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

Time (s)

Level (m)

Figure 6: Drum level transient for a -10% heat rate
step at high load (simulated vs. experimental data).

changes between the fluid in the drum and the drum
metal wall were investigated, showing that the corre-
sponding heat transfer coefficient has a significant in-
fluence on the superheated steam temperature. This
phenomenon is often neglected in the simulation mod-
els proposed in the literature.

Figures 7 and 8 reports the drum pressure and the level
transients in one of these tests, namely a negative valve
step at low load, and confirm the considerations made
in the previous section. Notice that in this particular
transient bulk boiling actually takes place within the
liquid drum subvolume.

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200348

0 200 400 600 800 1000 1200
29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

34.5

Figure 7: Drum pressure transient for a throttling valve
step leading to a 13% pressure reduction at low load
(simulated vs. experimental data).

5.4.3 Feed-water valve steps

Positive and negative feed-water valve steps were ap-
plied. Figure 9 shows the drum level transient in one
of these tests, demonstrating good accordance between
model and data.

6 Conclusions and work in progress

An open Modelica library for the simulation of ther-
mal power plants has been presented. The library has
been used to build a high-fidelity model of a labora-
tory drum boiler, which has been successfully vali-
dated against available data.
The library has been conceived in order to emphasise
model readability and extensibility; it contains a lim-
ited number of components which nevertheless allow
modelling a wide range of different physical compo-
nents. It should be stressed that the Modelica language
allowed translating sophisticated modelling concepts
into working code with remarkable ease.
The library is being released to the public, and is open
to contribution from other research groups (see URL:
http://www.elet.polimi.it/upload/casella/thermopower/).
The benchmark boiler model together with the experi-
mental data is being released as well.
The development of component models using gases as
working fluid (compressor, turbine, combustion cham-
ber, basic components for heat exchangers etc.) and of
finite element models for the 1-dimensional fluid flow
model is planned for the near future. It could also be

0 200 400 600 800 1000 1200
0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Time (s)

Level (m)

Figure 8: Drum level transient for a throttling valve
step leading to a 13% pressure reduction at low load
(simulated vs. experimental data).

interesting to investigate the combined use of the Ther-
moPower library with control libraries and electro-
mechanic libraries to build complete models of power
generation equipment.

7 Acknowledgements

The authors are grateful to W. Prandoni and D.
Laudato, who realised the physical experiments, and
to the CESI research centre (particularly to G. Benelli),
who made the relative data available. Many thanks are
also due to prof. C. Maffezzoni, for inspiring the pre-
sented research and contributing to it with numerous
ideas, hints, discussions, and constructive criticisms.

References

[1] Åström, K.J. and Bell, R.D. (1993), “A nonlinear
model for steam generation process”, Prepr. 12th
IFAC World Congress, Sydney, 3, 395–398.

[2] Bartolini, A., Leva, A. and Maffezzoni, C.
(1995), “Power plant simulator embedded in a
visual programming environment”, Proc. IFAC
Conf. SIPOWER 95, Cancún, 119–124.

[3] Barton, P.I. and Pantelides, C.C. (1994), “Model-
ing of combined discrete/continuous processes”,
AiChE Journal, 6, 966–979.

[4] Breitenecker, F. and Solar, D. (1986), “Models,
methods, experiments - modern aspects of simu-

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200349

0 200 400 600 800 1000 1200
0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Time (s)

Level (m)

Figure 9: Drum level transient for a feed-water valve
step leading to a 40% feed-water mass flow rate reduc-
tion at low load (simulated vs. experimental data).

lation languages”, Proc. 2nd European Simula-
tion Conference, Antwerpen, San Diego, 195–
199.

[5] Carpanzano, E., Ferrarini, L. and Maffezzoni,
C. (1999), “Simulation environments for indus-
trial process control”, Proc. ESS ’99, Erlangen-
Nuremberg, 443–450.

[6] Casella, F. and Leva, A. (2003), “Modelling
of distributed thermo-hydraulic processes using
Modelica”, Proc. MathMod’03, Wien.

[7] Casti, J.L. (1992), “Reality rules - picturing the
world in mathematics: I, II”, Wiley, New York.

[8] Chien, K.L., Ergin, E.I., Ling, C. and Lee, A.
(1958), “Dynamic analysis of a boiler”, Trans.
ASME, 80, 1809–1819.

[9] Collier, J.G. (1981). “Convective boiling and
condensation (2nd ed.)”, McGraw-Hill, New
York.

[10] ISA (1986). “Flow equations for sizing con-
trol valves”, Instrument Society of America, Re-
search Triangle Park.

[11] Incropera, F.P. and DeWitt, D.P. (1981), “Funda-
mentals of heat and mass transfer”, Wiley, New
York.

[12] Lausterer, G.K., Franke, J. and Eitelberg, E.
(1983), “Modular modelling applied to a Benson

boiler”, Proc. 1st IFAC workshop on Modelling
and Control of Electric Power Plants, Como.

[13] Leva, A., Bartolini, A. and Maffezzoni, C.
(1998), “A process simulation environment
based on visual programming and dynamic de-
coupling”, Simulation, 71(3), 183–193.

[14] Leva, A., Maffezzoni, C. and Benelli, G. (1999),
“Validation of drum boiler models through com-
plete dynamic tests”, Control Engineering Prac-
tice, 7, 11–26.

[15] Leva, A. and Maffezzoni, C. (2003), “Modelling
of power plants”, in D. Flynn (Ed.), “Thermal
power plant simulation and control”, IEE, Lon-
don, 17–60.

[16] Maffezzoni, C. (1992), “Issues in modelling and
simulation of power plants”, Proc. IFAC Sym-
posium. on Control of Power Plants and Power
Systems, Munich, 1, 19–27.

[17] Maffezzoni, C. and Girelli, R. (1998), “MOSES:
modular modelling of physical systems in an
object-oriented database”, Mathematical Mod-
elling of Systems, 4(2), 121–147.

[18] Mattsson, S.E., Elmqvist, H. and Otter, M.
(1998), “Physical system modeling with Mod-
elica”, Control Engineering Practice, 6 (1998),
501–510.

[19] Oh, M. and Pantelides, C.C. (1996), ”Modelling
and simulation language for combined lumped
and distributed parameter systems”, Computers
& Chemical Engineering, 6-7, 611–633.

[20] Perry, R.H. (1984), “Perry’s Chemical engineer’s
handbook”, McGraw-Hill, New York.

[21] Sage, A.P. (1992), “Dynamic systems”, in Ather-
ton, D.P. and Borne, P. (Eds.),“Concise Encyclo-
pedia of Modelling and Simulation, Pergamon,
Oxford, 91–92.

[22] Troch, I. (1995), “Modelling for optimal control
of systems” Surveys on Mathematics for Indus-
try, 5 , 203–292.

[23] Tummescheit, H., Eborn, J. and Wagner
F.J. (2000), “Development of a Model-
ica base library for modeling of thermo-
hydraulic systems”. Proc. the Modelica Work-
shop 2000, Lund, 41–50. Library URL:
http://sourceforge.net/projects/thermofluid.

 F. Casella, A. Leva Modelica open library for power plant simulation: design and experimental validation

 The Modelica Association Modelica 2003, November 3-4, 200350

Simulation of Liquid Food Processes in Modelica

Tomas Skoglund
Tetra Pak Processing Systems, Ruben Rausings gata, S-22186 Lund, Sweden,

 tomas.skoglund@tetrapak.com, www.tetrapak.com

Abstract
Traditionally, liquid food processing equipment has
been designed and engineered from a static
perspective, where it has been taken for granted
that dynamic behaviour easily could be handled by
“add on” of control equipment such as sensors and
computers with control programs including control
loops. However, as production demands, e.g.
mixing accuracy, are escalated, this approach fails,
and the importance of simulating the dynamics of
the system becomes crucial. A tool that makes it
possible to minimise the cost and time for building
prototypes and making experiments would be of
considerable value, particularly if the tool enables
reuse of earlier work. Equally important is the
possibility to test various design ideas to improve
the equipment performance to en extent that
otherwise would not be conceivable.

This article describes how the Modelica based
tool Dymola1 has been used to build up a library
(“FoodProcessing”) primarily aiming at simulating
certain dynamic behaviour in liquid food
processing plants, particularly characterised by
incompressible fluids with complex rheologic
behaviour, transport delays and dynamically
changing concentrations.

1. Introduction
When starting a project aiming at building a model
library for simulation of liquid food processes, an
analysis should be performed to define:

1. Which processes and phenomena are
involved?

2. Which physical properties are involved?
3. Which product (fluid) properties are

relevant?
4. Which components shall be included?

Another important aspect to consider is to whom
the library is directed, i.e.:

1. Who is the user?
2. Which symbol standards are relevant?
3. How shall model variations be handled?

In this work the above premises were evaluated as
a base for the creation of a food processing library.

1 Dymola by Dynasim AB in Lund, Sweden

2. Basic library structure
To meet the demands from the analysis of above
mentioned questions, two major library design
decisions were taken:

1. To facilitate the usage of the
“FoodProcessing” library for process and
automation engineers, the library should:
− separate models “ready to use”, from

models used for building other models
(Fig. 2.1).

− use relevant symbol standards as much
as possible (see paragraph 6.3).

Fig. 2.1 The ‘top view’ of the library where the
coloured (grey) boxes contain models ready-to-use and
the black box contains models for model builders only.

2. New connectors must be created to enable
fluids with rheologic complex characte-
ristics and dynamically changing concen-
trations. The connectors contain inform-
ation about:

− Flow rate
− Pressure
− Thermal energy
− Fluid concentrations
− Fluid properties

There is more than one way to represent
these, but to facilitate the understanding
from the user group point of view, the
most commonly used physical properties
have been chosen. The Modelica code for
the connector ProductIn is:

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200351

connector ProductIn
flow SIunits.VolumeFlowRate Q;
SIunits.VolumeFlowRate Qs;
SIunits.Pressure p;
FoodProcessing.BasicStructure.Phys
Data.ProductData PrData;
end ProductIn;

where ProductData is:

record ProductData
SIunits.Density rho;
SIunits.ThermalConductivity
lambda;
SIunits.SpecificHeatCapacity cp;
SIunits.CelsiusTemperature TempC;
Real n "Flow behaviour index,
 dynamic viscosity power law
 n-value [-]";
Real K "Consistency, dynamic
 viscosity power law K-value,
 [Pa.s^n]";
Real Conc[5] "Concentration
 [weight %] of component 1-5";
end ProductData;

The across variable Qs is used as a copy of the
through (flow) variable Q to be able to easily “pick
up” the flow rate with flow sensors, something that
cannot be done directly with through variables.
(For sensor aspects, see paragraph 7.) The copying
of Q to Qs is done in the component models with
the simple equation:

ProductIn1.Qs = ProductIn1.Q;

3. Physical equations
The fundamental physical equations governing a
fluid system are partial differential equations. By
limiting the main scope to one-phase
incompressible fluids (even though some gas
phases also have to be dealt with), the room
discretization need only consider dynamically
change of fluid concentrations and temperature. In
other words, to obtain ordinary time differential
equations, the control volumes often can be quite
large. Furthermore, since this library is aiming at
bulk properties, only one-dimensional discretiz-
ation is required along the flow channels, such as
pipes and heat exchangers.

For the model description of the components
(with one ore more control volumes) groups of
relationships are included

• Conservation equations:
− mass conservation
− energy conservation (thermal)
− volume conservation (incompressibility)
− momentum conservation (dynamically from

Newton’s 2nd law). In a pipe with the length

L and the same cross section area throughout
the whole pipe we have:

hgppp
dt
dvL w ∆+∆+−= ρρ 21

where:
v = flow velocity [m/s]
ρ = density [kg/m3]
p1 = pressure at pipe inlet [Pa]
p2 = pressure at pipe outlet [Pa]
∆pw = pressure drop due to wall friction [Pa]
g = gravity constant of acceleration [9,81 m/s2]
∆h= difference in level between pipe inlet and
outlet [m]
This whole set of conservation equations is a
result of approximations (simplifications) due to
certain limitations in the aim of the simulation
objectives, i.e. neither kinetic energy nor comp-
ressibility is included. So far, in this scope, also
effects of chemical reactions can be ignored.

• Constitutive equations:
− pressure drop
− heat flow
− component characteristics
− etc
These equations are typically unique for
individual components and express relations
between the above variables and component
parameters/variables. Many times algebraic
equations are enough, but sometimes dynamic
effects need to be addressed, i.e. differential
equations are required.

The pressure drop model in pipes handles the
flow regime from laminar to turbulent for
smooth pipes.

• Transport delay:
As concentration and temperature may vary
when a fluid flows through a system, the
transport time from one point to another
becomes an important effect that needs to be
included in models of pipes etc. Including true
transport delay in the models reduces the need
for very high degree of discretization, which is
an approximation that converges as the discreti-
zation goes to infinity:

In case of constant flow; let the transfer
function G(s) represent the concentration in a
volume V through which there is a constant
flow rate Q, and in which there is a perfect
mixing. Then with τ = V/Q we have

 G(s) = 1/(1+sτ)
Suppose now that a pipe is seen as this
volume, but sliced into n pieces of volumes.
Then we get:

Gn(s) = [1/(1+sτ/n)]n → e-τs as n → ∞
Which proves the statement.

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200352

4. Media models
Many liquid food-stuffs behave strongly non-
Newtonian where only one viscosity parameter is
not enough, and the main concern is to choose
relevant rheologic model. A model that covers
many liquid foods is the Ostwald de Waele “power
law” model [7]:

nKγσ &= and 1−== nKγ
γ
σµ &
&

where:
σ = shear stress [Pa]
γ& = shear rate [s-1]
n = flow behaviour index [-]
K = consistency [Pasn]

At this stage this is the chosen model, but in the
future probably it has to be extended to a more
complex model such as “Herschel-Bulkley”. This
needs to be considered in the library structure to
facilitate a future “upgrade”.

In typical food processes the food is heated,
cooled or mixed. To be able to handle these
changes in temperature and concentration, models
are required for how relevant fluid properties
depend on these. In other words the relationships:

Fluid property = f(Temperature, Concentration)
is required for:

• Rheologic properties such as viscosity or,
for the Ostwald de Waele (power law)
model, consistency and flow behaviour
index. More complex fluids require more
parameters.

• Thermal properties. (Specific heat capacity
and thermal conductivity. Since the specific
heat capacity is well approximated with a
straight line dependency of the temperature
for relevant food stuffs, the thermal energy
can be handled by using just the specific
heat capacity and the temperature.)

• Density
Approximate models for these have been included
in the library.

5. Approximations and
simplifications
Generally speaking, the physical relationships and
media models have to be approximated/simplified
with the target in mind to get a library with
components and media that, when used within the
simulation scope, meet relevant demands concer-
ning the following aspects:

• accuracy
• speed
• robustness

In this library, models with more or less
approximations are built for conservation
equations, constitutive equations and media
models.

6. Component models
A library structure can be built in many different
ways. As mentioned above, this library structure is
built to facilitate simulations from a user
perspective. Therefore the components are divided
into component groups on the top level (Fig. 2.1).
In each group, models with different complexity
(more or less approximations) can be chosen. Fig.
6.1 shows the content of a sub library
“PipesAndFittings” containing various components
such as pipes and bends etc.

Fig. 6.1 Component sub library “PipesAndFittings”.

6.1 Variations in models
Sometimes there is a wish to easily run simulations
with different model types (e.g. more or less
approximations) without having to swap compo-
nent. Modelica has various features for that.
However, using such a feature would require that
the users write the Modelica code for it, e.g.
“replaceable….“ and “redeclare….”. Because of
this, some alternative model types are included in
one model and handled via parameters to change

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200353

the type with just a simple change of a (Boolean)
parameter. For example a PID-controller is
developed that handles both analogue and sampled
control depending on just a Boolean parameter.
(Fig 6.2 and 6.3)

Fig. 6.2 Parameter list where the parameter “Sampled”
is set to “true”

Fig. 6.3 Simulation results with plotted output from a
PID-controller in a certain scenario with parameter
“Sampled” set to “false” (smooth curve) and “true”
(stepwise curve). In the sampled case, the simulation is
slower due to a heavier computation task than in the
continuous (not sampled) approximation.

6.2 Parameter settings
To facilitate the work for the user, some of the
characteristics for the commercially available and
used flow components are stored in data files
referred to by a string parameter (the component
type name). In this way the user can easily choose
and change the type and size of the component,
e.g. valve type and size. (Fig 6.4)

Fig. 6.4 The single string parameter “ValveSize” points
on several valve parameters in a data file.

6.3 Component icons
Within the industry there are different standards for
symbols (e.g. ISO 3511, “Process measurement
control functions and instrumentation – Symbolic
representation”). Further more, within Tetra Pak,
these standards have been adapted to a branch and
company standard. To increase the intuitive
understanding the library icons follow these as
much as possible (Fig 6.5).

Fig. 6.5 Component sub library “Valves” with Tetra Pak
standard symbols built on ISO, branch and company
standards.

Also sequential function control charts (SFC)
(=Petri nets) have its industry standard symbols
(IEC 848, “Preparation of function charts for
control systems”). Fig 6.6 shows the limited sub
library SFC, e.g. parallel and alternative handling
are missing.

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200354

Fig. 6.6 Component sub library “SFC” for sequence
control.

7. Sensor and transmitter models
Sensors with transmitters are also important to
model since they are a part of closed loop systems.
They are also not perfectly describing the property
they are aimed for. Two “distortion” factors are
involved:

• dynamic behaviour
• inaccuracy

Another user aspect is that they should be able to
connect as standard symbols on a drawing, i.e. like
“pick-ups” on the measured point (Fig 7.1).

Fig. 7.1 Flow sensor with transmitter (FT11) connected
as a “pick-up” on a pipe in a flow rate control loop.

The possibility to simulate inaccuracy is valuable
for high performance control when the transmitter
accuracy or noise is in the same range as the target
of the control accuracy. Fig 7.2 shows a simulation
of start-up of a blending system with and without
noisy information from a concentration transmitter.

Fig. 7.2 Concentration in a pipe when the concentration
transmitter in the control loop is “perfect” or noisy.

8. Interfacing other libraries
Liquid food processing involves heating with
steam and an existing library handling that is
ThermoFluid [8]. Therefore, instead of developing
new models for steam systems, this model domain
is interfaced with the FoodProcessing domain by
certain components, such as steam injectors (Fig.
8.1), which are used to inject steam directly into
the food stream.

Fig. 8.1 Component “SteamInjector” with connectors to
interface FoodProcessing with ThermoFluid [8].

ThermoFluid connector
for steam flow

 FoodProcessing connectors
for liquid food flow

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200355

Process model Control model

9. Simulation example “in-line
blending”
In-line blending is commonly used as an efficient
way to produce standardised food such as standard
milk with a predefined content of fat. Modern
systems are designed in different ways depending
on flexibility requirements etc, but are typically
accurate and responsive to disturbances. To reach
the high control performance, the control system
sometimes becomes quite complex, as well as the
process systems. Fig. 9.1 shows a “top view” of a
simpler type of such a system. Fig. 9.2 shows the
process part of it and fig 9.3 and 9.4 show a 5-
minute simulation result of the same system.

Fig. 9.1 “Top view” with “process” and “control” of a
system model for milk blending.

Fig. 9.2 View of the “process system” model for milk blending.

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200356

Fig. 9.3 Simulation result of the system model for milk
blending. Flow rates: solid line = set point of total flow,
broken line = set point of skim milk flow and dotted
line = set point of cream flow.

Fig. 9.4 Simulation result of the system model for milk
blending. Fat concentration: solid line = set point,
broken line = process value at mixing point and dotted
line = process value 11 m downstream before a buffer
tank.

10. Conclusions
This article has described how simulation has a
great potential to contribute significantly to the
development of liquid food processing equipment
such as:

• pasteurizers for milk and juice
• sterilizers for milk and juice
• milk standardisation systems
• juice blending systems
• aseptic tank systems
• complete lines (evaluation of performance,

e.g. product loss)
Modelica/Dymola has shown many advantageous
possibilities within the area of liquid food process

simulation. This goes for model/library builders as
well as model/library users.

The described “FoodProcessing” library is
handling non-Newtonian fluids with characteristics
depending on concentration and temperature. It
also handles transport delays in fluid channels.
Today the library contains about 250 models
totally with approximately 2000 equations.

Beside simulation for development of food
processing equipment, further potential spin offs
have been identified, useful for manufacturers of
food equipment:

• training of operators
• education of process and control engineers
• demonstrations and sales
• testing of control systems (hardware-in-the-

loop)
• trouble shooting

The development of the “FoodProcessing” library
will proceed whereas the question concerning how
the potential spin offs are going to be explored,
will be answered by the future.

11. Acknowledgements
For discussions, ideas and help; Thank you Carl Cöster,
Jonas Eborn, Ivar Gustavsson and Hubertus
Tummescheit.

12. REFERENCES

[1] J. Eborn, On Model Libraries for Thermo-hydraulic
Applications, PhD thesis ISRN LUTFD2/TFRT - - 1061
- - SE, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden, (2001).
[2] H. Tummescheit, Design and Implementation of
Object-Oriented Model Libraries using Modelica, PhD
thesis ISRN LUTFD2/TFRT - - 1063 - - SE,
Department of Automatic Control, Lund Institute of
Technology, Lund, Sweden, (2002).
[3] M. Tiller, Introduction to Physical Modeling with
Modelica, Kluwer Academic Publishers, Massachusets,
USA, ISBN 0-7923-7367-7, (2001).
[4] J. Eborn and K. J. Åström, Modelling of boiler pipe
with two-phase flow instabilities, In Fritzon, Ed.,
Modelica 2000 Workshop Proceedings, pp. 79-88,
Modelica Association, Lund University, Lund, Sweden,
(2000).
[5] S.M.O. Fabricius and E. Badreddin, Modelica
Library for Hybrid Simulation of Mass Flow Transfer in
Process Plants, In Otter, Ed., Proceedings of the 2nd
International Modelica Conference, pp. 225-234,
Modelica Association and DLR, Oberpfaffenhofen,
Germany, (2002).

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200357

[6] Coulson, J. M. and Richardson, J. F., Coulson &
Richardson’s CHEMICAL ENGINEERING Volume 1,
Sixth edition, Fluid Flow, Heat Transfer and Mass
Transfer (Butterworth Heinemann, 1999).
[7] Bolmstedt U., Viscosity & Rheology – Theoretical
and practical considerations in liquid food processing,
New Food, Volume 3 Issue 2, pages 15-20, Russel
Publishing Ltd.
[8] J. Eborn and H. Tummescheit, Modelica library
ThermoFluid available via the Modelica home page
www.modelica.org.

 Tomas Skoglund Simulation of Liquid Food Processes in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200358

Thermo hydraulic library for power systems applications

 Martin Råberg Jan Tuszynski

Carl Bro Energikonsult AB

SE 205 09 Malmö, Sweden
martin.raberg@carlbro.se jan.tuszynski@carlbro.se

Abstract The structure and rules of the library establish a base

for easy use and consistent applications. The rules
were defined at the initial establishment of the
library and developed further based on practical
experience of the library use. We also found out that
when people used the library they found it difficult
and wanted to take short cuts, e.g. “I can do it
simply for this application only”, “ I have no time to
study handbooks...”, etc. We are now convinced that
this individual approach is the way to trouble –
missed quality, reuse not possible, poor
documentation, etc.

The thermo hydraulic library presented here has a
long history starting in the 70’s with dynamic
simulations of servo systems and power plants at
ASEA (ABB), then with parallel efforts in the 80’s
at Sydkraft, to finally in the 90’s move into the
ENERGY library of the Sydkraft group. The library
was initially implemented in the Dymola language
of Dynasim, and in recent years transformed
gradually into Modelica. This paper presents the
basic rules and structures of the library, and
provides examples of the dynamic modeling ordered
by the power industry from Carl Bro Energikonsult
AB1 in Sweden. The examples show both the
suitability of the rules of the ENERGY library, and
give important feedback of ‘lessons learned’ for
further library development and for identification of
missing features of Modelica and generally of
dynamic simulation capabilities today.

This paper will firstly present structures, rules and
components of the library, and then go through a
number of typical models delivered to Carl Bro
Energikonsult AB’s customers. The examples cover
model descriptions, results and ‘lessons learned’.
Conclusions of our applications address missing
features of the Modelica as experienced by us, and
general needs for complementary tools required for
efficient and cost effective modeling of the energy
systems. 1 Introduction

The history of modeling energy systems at Carl Bro
Energikonsult AB traces back to the application of
MMS2 by Sydkraft and development of the Dymola-
based ENERGY library in the 90’s. The library was
originally developed to model the complex thermo
hydraulic processes of thermal power plants, but it
proved applicable to energy systems in general
where various fluid media transport energy
throughout processes. Such a general “non-
intended” application of the library is modeling of
the ventilation system of complex buildings.
Various rules to model media transportation were
developed, and cover today different cases of heat
transfer, mixing media, chemical reactions etc.

2 Energy Lib

2.1 Model structure

The Energy library is a component archive for the
basic simulation tool Dymola / Modelica. The
foundation of the library is the classic concept of a
network of interconnected nodes, or finite thermo
dynamical control volumes.

VOL0
[p, T(h),
media]

VOL2
[p, T(h),
media]

VOL1
[p, T(h),
media]

Connect [m_dot] Connect [m_dot]
VOLn

Energy_in_media

External_Energy_
exchange

1 Carl Bro Energikonsult was formerly Sycon
Energikonsult AB - technical consultants of Sydkraft
utility.

Figure 1 Basic network 2 Modular Modeling System, EPRI, Babcock

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200359

mailto:martin.raberg@carlbro.se
mailto:jan.tuszynski@carlbro.se

2.2 Structure of the Energy library The state of the media transported through the
network, is calculated mainly in nodes, while node-
connecting elements calculate mass and energy
exchanged between the nodes. The main objective
of the modeling is then to simulate energy flows
carried in the media and energy flows passed
between the media containments and the
environment (energy sources and sinks)

The library is composed basically of four library
levels.
Level 0: ModelComponent
Level 1: SubUnit
Level 2: Unit
Level 3: System,
Shown in figure 2 The model structure builds then on a number of

basic rules / assumptions, where those most
important are the following:

EnergyLib
ModelComponentLib
SubUnitLib
UnitLib
SystemLib

CutLib
IconLib
SuperClassLib

CompartmentLib
FlowLib
MediumLib
AuxiliaryLib

ContainerUnitsLib
FlowUnitsLib
HeatingUnitsLib
AuxUnitsLib

TurbineSysLib
BoilerSysLib
GasifierSysLib
PumpCompressorSysLib
HeatExchangeSysLib
TubeValveSysLib
FuelAshSysLib
NuclearSysLib

SteamContainerLib
FurnaceAreaLib

TurbineLib
PumpCompressorLib

GasHeatExchangeLib
SteamWaterHeaterLib
OtherHeaterCoolerLib

BurnLib

TubeValveLib

FuelAshLib

EndTerminalLib
ActuatorLib

• The state of the media (liquid, gas or both) is
presented in a state vector of dynamically
calculated primary elements: pressure [p],
enthalpy/temperature [h/T], and media
composition [Χ].

• Media properties are derived from media
‘tables’ identified by Χ and [p, T] / [p, h] states.
The media property vector and state vector will
accordingly provide complete description of the
node behavior.

 • Each node is identified by the node pointer
(node identifier) available through node ports
for any component in the network. In the other
words, any component of the model can read
both node state and node media properties by
knowing node identifier only.

Figure 2 Structure of the Energy Lib

The components level 0 includes various basic sub-
components specific for energy models. The
original formulation, which builds on the object
inheriting features, is now redone to Modelica
formulations.

• Connecting elements transfer basically media
mass flow [w (m_dot)], and media energy
content [h] on the outlet.

The sub-unit level 1 includes all basic thermo-
dynamical concepts of the basic structure introduced
above. The library is divided into four groups:
CompartmentLib, FlowLib, MediumLib,
ActuatorLib and AuxiliaryLib. Some details
concerning compartments (i.e. VOL of figure 1) and
flows (connecting elements) are discussed below.

• Outlet energy content depends naturally on the
inlet energy and on the energy transfer between
the connecting element and the environment,
and can follow one of the basic “iso-
transformations”. Note that all energy content of
the media is expressed in the static enthalpy [h];
it is assumed that the media transform all their
kinetic energy (ν2/2) into ‘h’.

MediumLib covers ‘tables’, or modules describing
media properties. Initially the tables could be read
directly or indirectly. The direct method means high
resolution read-up by direct use of the media
properties tables of the external programs. Indirect
methods build on the polynomial or splines
matching of the selected working area of the media
table. The purpose of using polynomials instead of
table interpolation is to speed up calculations,
especially in calculations of derivatives, as Cp
(dh/dT) or the coefficients αh (dρ/dh) and αp
(dρ/dp). As media calculations recently generally
have improved and the modern algorithms address
derivability efficiently, we are going to reformulate
our original concepts accordingly.

• Connecting elements will normally not change
media composition, and accordingly outlet
media is assumed the same as on the inlet. This
assumption has implications for the simulation
of reversible flows.

• Each node (VOL) can change its media through
mixing of incoming media and through the
chemical reactions between the same

• Simplified nodes are allowed by inheriting
selected components of the node state vector of
the other nodes. E.g. Pressure calculated
dynamically in VOL0 (figure 1) could be
inherited by VOL1 and VOL2

• In the same way the connecting element can
inherit mass flow from other element, reducing
calculations to energy content only

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200360

ActuatorLib, and AuxiliaryLib cover various types
of valve actuators and e.g. auxiliary calculations of
heat transfer between different media and materials.
Here the heat transfer dynamics of the walls is
represented. Other modules of this group represent
chemical calculation (e.g. balance coefficients for
different groups of chemical reactions) and
calculations of special phenomena as (e.g. gas/steam
moisture removal, fast particle separators etc.)

The unit level 2 includes models of machinery and
equipment used at power plants (energy processes).
The library is structured basically in four groups:
ContainerUnitsLib, FlowUnitsLib, HeatingUnitsLib
and AuxUnitsLib.

The system level 3 covers mainly complex
machinery or whole plants. The library is filled up
gradually with models of the actual simulations and
only to a lesser extent as a result of library
development effort. It should be noted that the
specific solutions taken in plant simulation cases are
usually the supplier’s properties and general
availability of those for the Energy library must be
negotiated.

Levels 2 and 3 are introduced below through the
presentation of the actual simulation cases

2.3 Selected features of the basic
components

Basically all models of the Energy library are
derived of the local conservation equations (mass,
energy and momentum) converted to ordinary
differential equations valid for the distinct, separable
control volumes of the library modules. This
approach can be exemplified on the basic
components of VOL and the connecting element.

Node /Volume/
The basic structure of the VOL module is the
following:

1. Calculate media property [MP] vector according

to the node state vector [p, h, Χ]. This is
basically a call to media ‘tables’ of the media
identified by Χ. The MP-vector is composed of
the normally required property data as e.g.
density, entropy, viscosity, and saturation data
for steam (x – steam content in water, p_s, T_s,
etc). Our tables calculate as well a number of
derivate properties, e.g. Cp=dh/dT. The
derivates used for pressure and enthalpy

calculations are elasticity coefficients dρ/dp and
dρ/dT (ρ – density)

2. Two basic calculations characterizing the
particular node can now be expressed in,
- The sum of all mass flows (Σwi) connected to
the node
- The sum of all energy flows (Σei) passing
through the node3

3. As the media in the node is assumed to be in
rest (which is actually not necessarily true) mass
and energy conservation equations are used
here, but in an extensive form valid for the
whole volume. Those equations describing
dM/dt (M-total media mass in the node), and
dU/dt (total internal energy of the node), are
converted to state equations of, dp/dt and dh/dt,
functions of (Σwi, Σei, Χ_properties)4

Using Σwi and Σei as the inputs to the state
calculating equations allows easy adaptation of the
basic node model to the particular kind of the sought
after module.

dt
dVw=w

n

i
ii ⋅+∑∑

=

ρ
1

and

dt
dVphWQhw=e

n

i
iii ⋅−⋅−−+⋅∑∑

=

)(
1

ρ

where:
n number of ports connected
wi mass flow from (-) / to (+) the port
V node volume
Q heat energy flow in (+), out (-) of the

node
W work energy flow in (-), out (+) of the

node

Please note now that for simple, constant volume
nodes dV/dt = 0, and no additional heat transfer is
expected, = 0. On the other hand nodes with
moving pistons (as in compressors) can be modeled
by adding the term dV/dt, and Q can be given by
simple heat transfer through the walls (A*α*∆T), or
by the heat of the chemical reactions (combustion).

Adapting node dynamics to model frequency
It is quite well known that the models should be
adapted to the frequency range actual for the

3 Both Σwi and Σei should be treated as ‘auxiliary
variables’ and not strict physical meaning implied by
‘mass’ and ‘energy’
4 For single phase media we use states of [p, T];
derivative of dh/dt is then replaced then by dT/dt

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200361

particular application. The approach used in the
Energy library is through switching off dynamics of
nodes of frequencies out of the range simulated.
That switching off was done originally by replacing
derivatives by residua, e.g. residue(p) = Σwi; and
residue(h) = Σei. In the modern Modelica version the
same effect will be reached by simple zero setting of
both Σwi and Σei.

• Junctions, or direct coupling of pipes and
valves.
The junction problem can be described as
forcing calculations into non-relevant stiff nodes
where several pipes meet. Introducing a non-
dynamical node described above can solve the
problem, which means that we solve algebraic
equations instead of integrating state vector
derivatives. The library approaches junctions
through simple methods of finding resultant C
coefficient of the above forms, or by special
handling of pipe-valve-pipe group
approximating pressure drop over the valve

Elementary ‘Connecting Module’
Connecting element in its elementary form
transports media from the inlet to the outlet and
behaves according to the equation of the momentum
conservation, • Changing energy content of the media along the

connection.
For simple connectors we assume that no heat
exchange is taking place and accordingly
hout = hin. This is of course not true in case of a
change of energy content in the media. The
special modules are provided to calculate outlet
energy content at the isentropic (turbine
exhaust), isenthalpic or isothermal transitions.
The module is strongly coupled to the media
table modules

)F-pA-pA(+vw-vw=
dt

vMd
foutoutininoutoutinin ⋅⋅

⋅)(

For normal frequency ranges d(Mv)/dt can be
assumed = 0, and all pressure drop accounted to Ff;
loss on friction. Assuming Ff = Kloss*w2, the basic
form for calculation of pipes and valves will get into
the form of w= K*sqrt(∆p). Calculation of K is
based on the common knowledge of pipe and valve
characteristics. • A heat exchanger is a case of connector where

heat of the media is exchanged with the
environment. The basic heat flow is simple to
calculate as Q = C*(Tinside- Toutside), the problem
is anyhow serious as both temperatures are
varying along the connector, and lumped
parameter approach is not longer valid. Two
solutions are applied;

In case media inertia should be considered, the basic
momentum equation can be rewritten into a
differential equation of dw/dt,

)F-pA-pA(
L

=
dt
dw

foutoutinin ⋅⋅⋅
1

 1. By assuming logarithmic temperature
profile along the connector where L is the length of the pipe.

Note that having ‘w’ as a state variable of the
connection will actually simplify calculation of Ff ,
which requires knowledge of the Reynolds number
and depends accordingly on the mass flow in the
first place.

2. By dividing the whole length of the
connector in segments, each segment
composed of a node and single connector.
The nodes of this solution will calculate
dh/dt only inheriting average pressure of the
boundary nodes. In a similar way,
connectors will inherit common ‘w’ and
transport changing energy along all
segments.

Special cases of the connecting module
Pretty straight forward calculations of connecting
elements get complicated if,
 • Examples of our models presented below show

the second solution most often applied. The first
method takes no consideration of time aspects
of stabilizing the logarithmic temperature
profile, and can therefore not model the rapid
transients we have simulated.

• Compressible media transported at the over-
critical pressure drops over the element.
This case is solved by introducing in w-form
factor Φ allowing similar structure to the one
given above; w = K*Φ*sqrt(pin). Note that for p-
ratios higher than critical the Φ-factor will be
constant and ‘w’ will depend on pin only. The
form for ‘w’ is not reversible, as the known ‘w’
will not allow calculation of pout. Furthermore
the form is strongly non-linear close to pressure
ratios 1.

• Chemistry is actually a case of changing media
composition when media components are
reacting with each other in the node. Typical
examples are in burner chambers of gas
turbines, or in gasifiers. The problem is
addressed through the following:

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200362

1. The (dominating) chemical reactions are
identified

2. Reaction equilibrium form is defined, with
equilibrium coefficient expressed as an

empirical function of media state (normally
[p,T])

3. Mass balance equation is now expressed in
mole form, ΣNi.

3 Experience and Lessons Learned

3.1 Short overview

All modeling examples introduced here originate from our assignments from conventional and nuclear power
plants, from local utilities, or from using simulation models as a validation tool during research of the new
concepts of energy systems.

All modeling was done on commercial basis, where costs of the modeling were critically evaluated against
potential advantages. The following were the main reasons cited by our customers:
• Tool for designing control systems
• As above, for the control system evaluation including formal validation of concepts proposed
• Preparation of commissioning. Evaluation of tests proposed, selection of controller parameters, etc.
• Training and education

The examples below address those purposes and give the experience feedback of the lessons learned.

3.2 Controller Design

Customer: Barsebäck Kraft AB.
The customer required a model of the process for design and testing of the reactor water level controller for
the auxiliary feed-water system. There was no access to the real process during controller development.
Controller design through predefined load cases on models using pre-validated equations. The controller
parameters where then used on the real process with good result.

At the start of the project it did not include a modeling phase. Parameters from Oskarshamn Nuclear Power
Plant should be used with slight adjustments.

The controller strategy is fairly simple, it contains a reactor level controller connected in cascade with a flow
controller that acts on a valve. The flow controller can be tested on a cool reactor with a good result. The
dynamics of the level control loop changes with the reactor temperature and pressure. This could not be
tested on a cool reactor. A heated reactor is expensive and should be in operation.

A model is built to tune the level controller. The controller is tuned to be able to handle predefined load cases
in particular ways. To achieve this the model is changed several times as the load cases get more and more
complicated. In figure 3 the final model is shown.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200363

Figure 3. The model of the reactor and the main- and auxiliary feed water systems, (312) and (327).

The reactor model started as a model of an expansion vessel. The model was then upgraded in several stages
to accommodate the increased demands on the result.

Figure 4. The plot shows the simulated reactor level with two sets of controller parameters. The transient

originates from the start of the auxiliary feed-water pumps.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200364

The solid line is the filtered reactor level from the simulated controller. The line is from a simulation with the
controller parameters designed through simulation.

The dashed line is the reactor level from a simulation with the implemented controller parameters. The
derivative part was decreased in the implemented controller since it was thought to be too aggressive.

The controller implemented today is faster and more robust than the controller used before the start of the
project.

Lessons Learned: Pre-validated models can be used in other, not directly related, projects with good result.

3.3 Validation of the new concept

Customer: Elforsk AB and Sydkraft AB, Miljö och Utveckling.
Development and validation of models used to comprise an Evaporative Gas Turbine process (EvGT) model.
The plant is a research plant, with extensive instrumentation, located at Lund Institute of Technology. This
model includes non-linear processes, e.g. evaporation and condensation into a gas mixture with a fully
dynamic gas composition.

The model was developed over a period of several years and started within a licentiate thesis. The plant
model is composed of several, separately validated, component models, which consists of several sub
models.

Figure 5 The model of the pilot plant at LTH.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200365

The validation of component models was carried out through test benches. These test benches were fed with
series of measurements for flow, pressure, temperature, composition and so on. The result was then
compared with the measurements.

Figure 6 The test bench for the gas turbine.

In the test bench for the gas turbine several simplified component models had to be used to generate good
boundary conditions. These simplified component models used measurements during the simulation to get
the right boundary conditions. Please notice that the model is fed with measurements of the mass flow of fuel
and torque and that the shaft speed is free.

Figure 7 The exhaust gas temperature from the gas turbine in un-validated load case. The solid black line

is the measurement and the dashed line is the simulated values.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200366

The reason that there is a mismatch in the beginning is that the initial condition does not correspond with the
load case. The load case is a load change from 50 to 60% shaft power. The faster responses that can be
observed in the model are thought to depend on the transmitter, which is not included in the model.

The model shall be used to predict test runs on the pilot plant, stability tests and design tests on future plants.

Lessons Learned: The model delivers results with an error within 5% in load cases that the model was not
validated against. The dynamic model of the evaporation tower delivers better results than the static design
methods used.

3.4 Check of a complex pre-validated model

Customer: Värmeforsk AB (Växjö Energi)
Dynamic modeling of a direct condenser at Växjö Energi. A direct condenser is used to condense steam
during a turbine trip instead of letting it out to the atmosphere. This specific direct condenser heats the
district heating system, this means that the even the heat are used. The direct condenser is exposed to
powerful transients almost without any preceding sign. Still it is supposed to keep a stable steam pressure
and a steady temperature on the district heating water leaving the condenser.

Figure 8 The direct condenser test bench. The control system is modelled as islands according to their
function.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200367

Figure 9 Inside the direct condenser.

The tube model used here handles several parallel
identical tubes. It is divided in to six segments to get
a temperature profile in the flow direction to use in
the heat transfer calculations.

The condenser and the involved parts of the process
and control system where modelled using only
documentation available before commissioning.
When Carl Bro Energikonsult AB was ready the
model where sent to Värmeforsk and Växjö Energi
delivered measurements from a turbine trip, to be
used in the model, to Carl Bro Energikonsult AB.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

10

10,5

11

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

5,5

6

6,5

7

7,5

8

8,5

9

9,5

10

10,5

11

Tryck
SimTryck_sp
SimTryck

Figure 10 The pressure in the direct condenser in

bar.

There are some assumptions, e.g. regarding the heat transfer during condensation on vertical tubes, which
were not tuned to this particular case. Normally the uncertainty of a heat transfer calculation is ±10 to 20%.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200368

In this case dynamic factors of such complex processes as the build up of the condensate film on the tubes
have to be considered.

Lessons Learned: Although not a perfect fit the model delivers a result good enough to allow tuning of
control parameters and preventing design and commissioning problems.

3.5 Modeling of a small project (pressed for time)

Customer: Sydkraft Värme Syd AB:
Testing of the control scheme for solar collector system with a total area of 1 200 m2 with demands on high
availability. The problem was to interconnect five separate solar panels. The panels are an integrated part of
the walls on a recreation facility named Kockum Fritid.

This modeling was part-task in a project stage pressed for time and crucial for the final design of the system.
As a result of the wall integration collectors faced east, south and west.

Figure 11 The model of the solar collector side of the system.

This first model was too complex to handle in this project. The decision to go right to the core of the problem
was taken. This meant that the design work should carry on as in a normal project but the question if the flow

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200369

from all solar collectors could be mixed should be answered through simulation. The model used to answer
the core question is shown below.

Figure 12 The basic model of the solar collector side of the system.

From this model the conclusion that the solar collectors could be connected to one system was taken. While
the solar collector experts recommended a solution with five completely separate systems, the selected
solution validated in the model, showed to be more efficient and cheaper, more robust and easier to maintain.
The final system has a documented availability well above 99%.

Lessons Learned: The use of simulation can have a profound influence on the outcome when used in the
early design phase of a project. Simulation can be used as a design tool even in small projects pressed for
time and money.

3.6 Design through simulation.

Customer: Sydkraft Värme Syd, Kungsbacka
Simulation of a typical district heating system with several production units and an atmospheric heat
accumulator, allowing evaluation of the complete process architecture, including design data and control
system. The main idea behind the simulation was to study the interaction between the atmospheric heat
accumulator, the boilers and the rest of the district heating system. The atmospheric heat accumulator has
two functions; to store and distribute heat and maintain a constant pressure in the system.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200370

Figure 13 The model used to simulate the interaction of the atmospheric heat accumulator and the rest of

the district heating system.

The model showed that some of the valves were too small and that there is a problem in determining the
minimum pump speed. Besides this, the model delivers approximate controller parameters.

The load case shown in figure 14 and 15 is a boiler brake down during loading of the accumulator. The first
transients are caused by the fact that the initial condition does not correspond with the load case.

Figure 14 The mass flows in the district heating system.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200371

The solid line is flow through the distribution pump, the dashed line is flow through the bypass valve and the
doted line is the flow through the boiler.

Figure 15 The mass flows in connection with the atmospheric heat accumulator

The solid line is flow through the pump used for pressurization and the dashed line is flow through the
pressure control valve. The dotted line is the mass flow through the pump used for un-loading heat and the
dash-dotted line is the flow through the valve used for loading heat.

Lessons Learned: The method works and the results where trusted.

4 Conclusions
This paper provides a number of examples that
Dymola / Modelica is well suited to industrial
modeling of Energy systems. Our experience shows
that the technical and calculation issues can be
addressed and solved, and that the simulations show
a very high degree of correspondence between
models and measurements.

In the projects above it has been proven that the
method is commercially competitive. This is a
possibility only thanks to the structured Energy
library, providing not only reusable components but
also thoroughly tested modeling methodology.

We still need to improve efficiency of the modeling,
mainly in two areas The first one is the degree of
common understandability – here mainly making
systems simple enough to allow process engineers
to use models in their daily work of designing,
validating and commissioning.

The second is in the area of tools facilitating
modeling and simulations. A tool for calculation of
the initial, start-up conditions of the complex
systems we work with is our primary request.

Modelica development moves certainly in the
direction fulfilling our needs, and we are today fully
committed to base our future modeling and library
development on both Dymola tools and Modelica.

 Martin Råberg, Jan Tuszynski Thermo hydraulic library for power systems applications

 The Modelica Association Modelica 2003, November 3-4, 200372

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 3A
Automotive Simulation – II

73

 The Modelica Association Modelica 2003, November 3-4, 200374

Development of a Vehicle Model Architecture in
Modelica

Michael Tiller† Paul Bowles† Mike Dempsey‡

†Ford Motor Company, Powertrain Research Department
‡Claytex Services Limited

ABSTRACT

The real power and flexibility that comes from
using Modelica for physical modeling stems from
the combination of the acausal approach to
formulating physical connections combined with
sets of standard connector definitions in various
engineering domains. These features are important
because they help avoid a priori causality
assumptions (which promotes reuse of components)
and ensure physical compatibility across
connections. However, complex systems are
generally made up of several complex, multi-
domain subsystems with numerous connectors.
Such systems also benefit from having standardized
subsystem interface definitions. This paper will
focus on an initial proposal for a vehicle model
architecture for vehicle system applications.
Ultimately, we hope that feedback on this proposal
from other groups doing vehicle modeling will lead
to a consensus on the appropriate subsystem
interfaces such that we can achieve the same level of
flexibility and reusability for vehicle subsystem
models that we currently have with component level
models.

1 Motivation

Vehicle system modeling is an important part of
optimizing overall vehicle performance. To avoid
building up complete vehicle models from scratch
repeatedly, it is useful to develop a pre-wired
vehicle model architecture. We had two goals in
mind when formulating such a vehicle model
architecture. First, it should allow the exchange of
subsystem models between different organizations
(e.g. part/subsystem vendors, design organizations,
universities) without the need to "rework" the
models to fit into existing vehicle system models.
Second, it should greatly simplify the handling of
alternative vehicle system configurations by
allowing substitution of one particular subsystem or
strategy implementation for another.

Ideally, we hope that this architecture will
develop to the point that other groups, outside of
Ford, will adopt it. Given the growing number of
automotive related libraries in Modelica [1-4], both
freely available and commercial, such a vehicle
model architecture will be a practical necessity to
allow subsystem models from these libraries to be
easily assembled into complete vehicle models.

Previous efforts at Ford have focused on
providing a vehicle model architecture for models
developed in Simulink [5]. While not disputing the
value of a corporate standard for vehicle subsystem
models, groups working with Modelica were not
willing to give up the acausal flexibility in Modelica
for an approach that required a priori causality
assumptions. Furthermore, most existing vehicle
level modeling applications using Modelica at Ford
involved details (e.g. modeling the motion of the
powertrain mounts) that were was not possible with
the Simulink framework.

As a result of internal discussions, it was agreed
that an acceptable compromise would be to develop
a purely Modelica architecture using essentially the
same subsystem decomposition, as was done in
Simulink, but avoiding a priori causality
assumptions. In cases where Modelica models
would be useful to someone working in Simulink,
we hope to develop a set of standard "wrappers" for
each subsystem that will allow us to impose the
required causality on an otherwise acausal
subsystem model and then convert these into an S-
function using Dymola [6].

2 Architecture Structure

A complete vehicle system model must take into
account the response of the various physical
subsystems, the function of the controller modules
(both subsystem and vehicle level) as well as other
"external" influences like the environment and the
driver. The following sections will discuss the
decomposition in each of these categories.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200375

2.1 Physical Subsystems

The first category we will be discussing
includes all the physical subsystems in the vehicle.
This section will provide some discussion for each
physical subsystem and some explanation of what is
contained within each subsystem. The order of the
subsystems corresponds, roughly, to the order that
they appear (from left to right) in Figure 1.

Note that each physical subsystem is connected
to a subsystem controller. We will defer the
discussion of this connection until Section 2.2.3 and
instead focus, for now, on the physical connections
associated with each subsystem.

Figure 1: Vehicle Model Architecture

2.1.1 Accessories
The accessory subsystem is composed of those

components typically connected to the front end
accessory drive (FEAD) of an engine. Examples of
such components would include an alternator or AC
compressor. As shown in Figure 1, the accessories
are connected to the front side of the powerplant.
As a result, any torque required by these
components will be taken from the powerplant. The
accessories are also connected to the electrical
subsystem and they typically represent a significant
influence on the charging and discharging of the
electrical system.

2.1.2 Electrical
The electrical subsystem is composed of the

various purely electrical components in the vehicle.
Typical examples would include the battery, radio
and/or headlights. In addition to being the location

for all purely electrical components, the electrical
system is also the source of electrical power for
every other physical subsystem in the vehicle and,
as such, is subject to "external" influences that may
charge or deplete the battery (e.g. alternator,
regenerative braking).

2.1.3 Powerplant
The powerplant subsystem represents the

primary source of motive torque for the vehicle.
Typically, this would be an internal combustion
engine although it could also be, for example, an
electric motor. Like the battery, the powerplant
model provides power to the rest of the vehicle. As
such, there are physical connections from the
powerplant to the accessories and the transmission.

The powerplant is also connected to the
electrical subsystem. Although the electrical
influence of an internal combustion engine is
normally quite small (e.g. spark plug energy, etc), if
the powerplant were an electric motor, the
connection to the electrical system would become
quite important. In the case of hybrid electric
vehicles, additional electrical components, such as
electric motors, may be included in the powerplant
or they may be lumped into the transmission
(depending on the powertrain topology).

The physical connection between the driver and
the powerplant includes a signal representing the
physical position of the accelerator pedal.
Typically, this signal is translated directly into a
throttle position. However, in "drive by wire"
applications, it is assumed that the pedal position
sensor would be associated with the powerplant
subsystem and that sensor information would be
relayed to the powerplant subsystem controller
and/or vehicle controller where, for example, the
commanded throttle position (or motive torque, in
the case of an electric vehicle) would be calculated
and returned as an actuator command.

Finally, Figure 1 shows that the powerplant has
a third mechanical connection. This connection is
to the powertrain mounts and accounts for reaction
torque to the powertrain mount system.

2.1.4 Transmission
The transmission subsystem represents any

"gearing" done to deliver power from the
powerplant to the wheels. One side of the
transmission is connected to the powerplant while
the other side is connected to the driveline. Any
hydraulic function associated with the transmission
is assumed to be encapsulated within the
transmission subsystem.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200376

Like the powerplant, the transmission is also
connected to the powertrain mounts. This is an
important aspect that differentiates this architecture
from most vehicle level models because it accounts
for the influence of reaction torques in the
powerplant, transmission and driveline on the
motion of the powertrain. This is particularly
important for the transmission because it can be the
source of large amplitude, low frequency
disturbances not effectively isolated by the
mounting system [11].

As with all the physical subsystems, the
transmission subsystem is connected to the electrical
subsystem. In addition, the transmission is also
connected to the driver. The driver connection
represents the shifting mechanism for either a
manual or automatic transmission depending on the
configuration options chosen for the vehicle (these
will be discussed later in Section 3.3).

2.1.5 Driveline
The driveline subsystem is responsible for

modeling the distribution of transmission output
torque to each of the wheels. For many vehicles,
this distribution is determined by simple mechanical
connections (e.g. differentials in strictly front-wheel
or rear-wheel drive vehicles). In other cases, this
distribution is actively controlled (e.g. on-demand
four wheel drive systems).

Physically, the driveline is connected to the
output side of the transmission and generally has the
potential to influence each of the wheels. In order to
avoid a complex series of graphical connections, all
wheels are lumped into a single connector which is
also physically connected to both the brake and
chassis subsystems. Note that the driveline
subsystem is also connected to the mounting system
and the electrical system.

2.1.6 Brakes
The brake subsystem represents not only the

friction used to decelerate the vehicle but also, as
with the transmission, any encapsulated hydraulic
function. The brake subsystem is physically
connected to each wheel (via the single connector
described in Section 2.1.5), the electrical subsystem
and the brake pedal (associated with the driver). As
with the powerplant, the connection to the driver
could represent either direct actuator control by the
driver or a "brake by wire" configuration where the
brake pedal position sensor would be contained in
the brake subsystem with pedal position information
communicated to the brake subsystem controller
and/or vehicle controller.

2.1.7 Chassis
The chassis subsystem represents the vehicle

body, frame, wheels and suspension system. One
remaining issue with the decomposition described in
[5] is the handling of the steering mechanism. It is
still an open issue what the physical interface
between the steering mechanism and the suspension
system should be. For now, we have kept the
steering components inside the chassis while we
collect feedback from experts on the best way to
separate these two systems.

While for many applications the chassis may be
modeled as a simple unsprung mass constrained to
move longitudinally, the goal of this architecture is
to provide sufficient flexibility to accommodate
complex vehicle dynamics models ([1, 9]). The
chassis subsystem is physically connected to the
wheels and also to the powerplant, transmission and
driveline through the mounts. The modeling of the
mounts is handled inside the chassis system.
Furthermore, the actual physical type of the
mounting connections is configurable (e.g. 1D, 3D,
etc). The modeling of the road-tire interface is also
handled inside the chassis subsystem.

Physically, the chassis system is also connected
to the electrical system and the steering wheel. As
with the brake and powerplant models, the
connection to the driver may represent a "by wire"
connection.

2.2 Controllers

While analysis performed during the subsystem
design process can sometimes be accomplished
using simple open-loop control strategies for a
single subsystem, it is much more important that
vehicle level models include closed-loop control to
capture communication between each subsystem
plant and controller pair as well as physical
interactions across the various physical subsystems.

The subsystem controllers are decomposed
along similar lines as their physical counterparts.
Rather than categorize the controllers by subsystem,
we will focus on the controller hierarchy and how
the controllers communicate both with each other
and with the physical subsystems.

2.2.1 Vehicle System Controller
This vehicle architecture includes a hierarchy of

controllers. At the top of this hierarchy is the
vehicle system controller. The vehicle system
controller exists to control vehicle level functions
and deal with arbitration and apportioning of
subsystem functions (e.g. balancing how much

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200377

motive torque is delivered from the internal
combustion engine versus how much is delivered by
electric motors in a hybrid electric vehicle).

In order to function, a vehicle system controller
(if present, not all vehicles implement one) must
communicate with each of the subsystem controllers
on the vehicle. In an actual vehicle, this kind of
communication would be done through a vehicle
level communication bus (e.g. a Controller Area
Network, or CAN, bus). Although the behavior of
the bus itself can have a significant impact on
overall vehicle performance, modeling of the bus is
not currently within the scope of this architecture.

2.2.2 Subsystem Controllers
As shown in Figure 1, associated with each

physical subsystem is a controller for that
subsystem. These controllers are responsible for
controlling the function of their particular
subsystem. For example, for a vehicle with an
internal combustion engine, the powerplant
subsystem controller would be responsible for
determining spark timing, injector timing and other
specialized functions like cam phasing control.

Each subsystem controller must communicate
with its associated physical subsystem to exchange
sensor and actuator information. In addition, each
subsystem may receive supervisory commands from
a vehicle system controller. Finally, the architecture
should accommodate any combination of
continuous controllers (e.g. formulated using block
diagrams) and/or discrete controllers (e.g.
employing Petri-nets, z-domain blocks or embedded
code).

2.2.3 Communication Buses
As mentioned previously, bus behavior can have

a significant impact on vehicle performance.
Although we would like to capture these effects, we
feel it is important to focus initially on the
interactions between the physical subsystems and
controllers.

Even if we ignore the behavior of the
communication bus, we still need to represent the
information exchanged on the bus. This is
complicated by the fact that each subsystem design
can potentially have a wide variety of signals that
must be communicated between the subsystem
controller and its physical counterpart. For
example, one powerplant may contain an internal
combustion engine that has cam phasing while
another one does not (while a third may have an
electric motor as a powerplant and therefore an
entirely different set of sensor and actuator signals).

For each case, the subsystem controller must have
the appropriate architecture to deal with the varying
sets of sensors and actuators in each case. As a
result, the set of signals exchanged between the
controller and its physical counterpart must be
customizable on a per configuration basis.

In a similar way, the information exchanged
between the vehicle system controller and each of
the subsystem controllers will also depend on
whether a vehicle system controller is present and, if
so, what features are implemented at the system
level.

2.3 External Influences

Apart from the physical subsystems and
controllers, a vehicle system model must account for
two important external influences. The first
influence is the driver. While the driver is not
strictly part of the vehicle, the driver obviously has a
tremendous influence over the response of the
vehicle. The other external influence is the
environment. The environment could potentially
influence things like air temperature and
composition (used in predicting engine
performance), road surface effects (e.g. changes in
elevation, traction characteristics), obstacles or other
vehicles (potentially necessary in evaluating
intelligent cruise control and other active safety
features).

In some sense, the driver is both a physical
subsystem and a controller. Both of these functions
are lumped into a single driver model. The
environment is assumed to be purely autonomous
typically based purely on time and vehicle position.

3 Modelica Features

3.1 Acausal Modeling

The rich set of physical modeling and
configuration management features associated with
the Modelica modeling language [10] provide great
potential for vehicle system analysis [11].

Vehicle systems are typically modeled from
either a "forward" [12] or "backward" [13]
perspective. This limits the reusability of
component models because they must be developed
with these perspectives in mind. From a purely
physical perspective, the ability to build components
and subsystems without a priori causality
assumptions allows these components and
subsystems to be used in both "backward" and
"forward" vehicle modeling applications. Beyond

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200378

the reusability of components that results from this
acausal approach, the use of inheritance, subtype
constraints and the ability to declare replaceable
components and subsystems is often useful in
practice for large scale modeling projects. In this
section, we will discuss how these features allow us
to satisfy important requirements for our vehicle
model architecture.

3.2 Replaceable Subsystems and
Controllers

The cornerstone of configuration
management in Modelica is the ability to declare
types and components as replaceable. In fact,
all the physical subsystems, controllers and external
influence components shown in Figure 1 are
declared replaceable so that alternative
configurations can be easily created. Furthermore,
constraining types are also defined for each of these
components to prevent inappropriate substitutions
from being made.

One problem with making each component
replaceable is that it leaves open the possibility
that novice users will attempt to pair plant and
controller models together that are not compatible
with each other (e.g. the controller expects an
automatic transmission but the actual transmission
plant is a manual transmission). So, in addition to
making each component in Figure 1
replaceable, the set of models associated with
each subsystem (i.e. the plant, local controller bus
signals, local controller and global bus signals) are
grouped together (using replaceable packages) so
that entire subsystem configurations can be changed
in a single operation. This allows users to select
from pre-packaged, consistent and compatible
collections of these models that can be changed in a
single operation.

Ultimately, vehicle level models will extend
from the template shown in Figure 1 and then use
redeclarations (as class modifications) to create each
specific vehicle configuration. Furthermore,
alternative vehicle configurations can then extend
from each other ad infinitum to create many
different variations on a baseline design. This
approach allows users to easily control
configuration options while at the same time
maximizing reuse. In turn, this minimizes
redundant code and/or configuration options across
different configurations which greatly eases
maintenance of the models.

3.3 Subsystem Configuration Options

As mentioned in Section 2.2.3, the set of signals
communicated on each bus depends on the specific
set of features implemented in each subsystem. To
address this issue, our architecture contains a set of
replaceable packages that are used to propagate
specific definitions for connectors and/or records
that are configuration specific.

For example, the powerplant configuration
package includes a definition for the connector used
to communicate information between the physical
powerplant and the powerplant subsystem
controller. That definition, in turn, can be
customized (using replaceable type definitions) to
specify what kind of information is required for
each control feature. In this way, the fact that a
particular powerplant has, for example, a dual
independent cam phasing feature can be stated as a
configuration option which then automatically adds
the necessary signals to the connectors used on both
the physical powerplant and the powerplant
controller. In other words, for any given vehicle
model there is a single top-level configuration
option for each subsystem that ensures consistent
bus definitions throughout the vehicle model.

This is essentially the same idiom, utilizing
replaceable packages, that is sometimes used to
model different media in fluid modeling
applications [14].

3.4 Common Environment

The ambient environment in this architecture
contains information that is potentially relevant to
every subsystem. Since the environment is a model
(potentially with its own equations and states), it
isn't possible to propagate the environment
component through the vehicle hierarchy. Instead,
an inner qualifier is used to make the information
available to other components in the hierarchy.

3.5 Documentation

The ability to embed documentation about a
package, subsystem, connector, etc. into its
definition has already been utilized in this package
to provide model developers with a useful online
reference for the various interface definitions as well
as HTML versions of the same information which
can be posted, for example, on a corporate intranet
site for reference.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200379

4 Sample Application

To demonstrate how this architecture can be
used to build a specific vehicle, we started from the
base vehicle configuration shown in Figure 1 and
added specific engine, transmission, driveline,
brakes and chassis models. Along with these
physical subsystem models, controllers for the
engine and transmission were included to handle
spark timing and gear shifting. The accessory and
electrical subsystems were neglected in our
example. The purpose of the model is to evaluate
performance characteristics such as 0-60 MPH times
and 0-400 meter times.

(a)

(b)

Figure 2: (a) Powerplant Interface; (b) Sample Engine

4.1 Engine

The engine model used in this example
includes simple "filling and emptying" dynamics for
the engine manifold and uses a table to lookup

engine torque as a function of spark timing, air fuel
ratio and recirculated exhaust gas. Figure 2a shows
the basic interface definition for a powerplant.
Figure 2b shows our sample model which extends
from the interface definitions so it can inherit all the
physical and control system connectors required for
compatibility with the overall architecture. Since,
for this example, we are only interested in simple
1D rotational dynamics of the powertrain, the
powertrain mount connection has been redeclared as
a 1D rotational flange. Once this is done, the
subsystem model is populated with component
models which are connected to each other and to the
interface connectors. Note that this particular
subsystem translates driver accelerator pedal
position directly into a throttle angle, reads the
engine control parameters (i.e. spark, intended air-
fuel ratio and command exhaust gas recirculation)
from the subsystem control bus and writes the
engine speed back onto the subsystem control bus.

(a)

(b)

Figure 3: (a) Transmission Interface; (b) Sample
Transmission

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200380

4.2 Transmission

The transmission model represents a six
speed automatic transmission. The basic
transmission interface is shown in Figure 3a. By
extending from the interface, redeclaring connectors
and adding components we eventually end up with a
complete transmission model as shown in Figure 3b
which includes the torque converter, bypass clutch
and gearbox. The gearbox is further composed of a
series of planetary gear sets, inertias and clutches
(not shown). Note that in this model we assume that
the gear selection information is propagated back to
the transmission subsystem controller which, based
on this information, command the engaging and
disengaging of specific clutches inside the gearbox.

4.3 Remaining Subsystems

The remaining subsystems do not contain
much detail. Rather than presenting the interface
and implementation for each subsystem, we will just
summarize the behavior represented in each:
• Accessories – No accessory loads are

considered in this analysis.
• Electrical – The electrical system provides a

constant 12V to the other components (although
none of these simple models draw any current).

• Brakes – The brakes are modeled as simple
friction elements (from the Modelica standard
library).

• Driveline – The driveline provides power to the
front axle of the vehicle through a final drive
gearset and a simple differential element

• Chassis – The chassis response is purely
longitudinal. The tire behavior uses the Pacejka
characterization [7] and the vehicle mass is
represented by a single lumped mass. No
weight distribution effects are included.

4.4 Control

The only control functions required for this
analysis are spark control (to maximize mean engine
torque), shift scheduling and clutch control (i.e.
engaging and disengaging clutches depending on the
currently requested gear). In addition, the chassis
subsystem provides vehicle speed to its local
subsystem controller that transmits the information
to the transmission subsystem controller via the
vehicle level communication bus.

4.5 Results

The models used to demonstrate the
capabilities of this vehicle model architecture are
part of the training materials used within Ford to
familiarize engineers and model developers with
Dymola and Modelica. As such, it is important to
point out that the subsystem specifications and
system simulation results do not represent or reflect
the performance of any particular Ford vehicles. In
fact, the controller calibrations are intentionally
made sub-optimal to allow students to further refine
them.

The training exercise that these models were
taken from focuses on vehicle acceleration
performance. Figure 4 shows the vehicle
acceleration plotted as a function of time. From this
plot we can clearly see the "torque holes" that occur
while the transmission is shifting. In addition, the
upper limit on acceleration seen at the start of the
simulation represents the limited longitudinal
traction provided by the tires before they start to
slip.

Time [sec]

A
cc

el
er

at
io

n
[m

/s
^2

]

0 2.5 5 7.5 10 -2
0
2
4
6
8

10 chassis.chassis.der(v)

Figure 4: Vehicle Acceleration vs. Time

It is also interesting to examine the engine speed

during the simulation as shown in Figure 5.
Studying the RPM signal we can clearly see an
"engine flare" at about 5 seconds into the
simulation. Such flares occur when the shifting of
the clutches in the transmission is not well
controlled. As a result of poor control, the overall
torque capacity of the transmission is less than the
torque generated by the engine and the engine
accelerates rapidly until the clutches engage.

In addition to examining the physical signals
within the system (e.g. torques, speeds, etc), it is
also interesting to examine the communication
between the controllers. Figure 6 shows the clutch
and band engagement requests sent from the
transmission controller to the physical transmission.
These are actuator commands instructing the
hydraulic controllers within the transmission to
engage specific clutches and/or bands.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200381

Time [sec]

E
ng

in
e

[R
PM

]

0 2.5 5 7.5 10 1400

1600

1800
2000

2200

2400 powerplant.eng_RPM.inPort.signal[1]

Figure 5: Engine Speed

Time [sec]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_clutch[1]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_clutch[2]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_clutch[3]

0 2.5 5 7.5 10
0
1

...ission_bus.clutch_control.engage_band[1]

Figure 6: Clutch/Band Engagement

Similarly, in Figure 7 we can see the internal

decision making process of the transmission
subsystem controller by plotting its selection of gear
during the simulation. This information is what
ultimately dictates the detailed clutch/band
engagements show in Figure 6.

0 2.5 5 7.5 10
0

2

4

6 ...mission_control.shift_schedule.gear.signal[
1]

Time [sec]

Figure 7: Gear Selection

Finally, many insights can be gained by plotting
some of the simulation variables with respect to
each other. For example, if an engineer knows at
approximately what speed the peak in the engine
power curve appears, he might plot the commanded
gear selection as a function of engine speed, as
shown in Figure 8 for this example, to make sure
that the shift strategy appropriately straddles that
peak.

1400 1600 1800 2000 2200
0

1

2

3

4

5

6
...l[1](pow erplant.eng_RPM.inPort.s ignal[1])

Figure 8: Gear Selection vs. Engine RPM

This section demonstrates just a few of the
possible results that a vehicle level analysis can
uncover. Having a standardized set of interfaces not
only makes the exchange of models easier, it also
assures, to some degree, that signals will have
common names (at least those associated with the
provided interfaces).

5 Usability Considerations

Some of the more advanced Modelica language
features used in this architecture (e.g. replaceable
packages, choice annotations, subtype definitions
for classes, etc) are not necessarily accessible or
intuitive for end users. In this section, we describe
some ideas for representing the complex structure of
the vehicle so that end users can easily configure
and reconfigure vehicle models.

5.1 Handling User Choices

5.1.1 Link Choices to Component Icons
First, it should be possible to select a component

in a vehicle model and browse a set of compatible
alternative components. In other words, the set of
alternatives should be easily accessible from the
graphical icon associated with that component
rather than requiring users to find components in,
for example, the component browser (which
requires knowledge of what classes the components
were inherited from).

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200382

5.1.2 Consistent Handling of Choices
For complex "template" models (i.e. models that

are designed so that end users can merely "fill in the
blanks"), it is important that users be presented with
a complete view of the model including all
redeclarations/customizations they have made.
Redeclarations can affect many different "visual"
aspects of the model including its inheritance, its
component hierarchy, the parameter dialogs,
graphical appearance, results structure, associated
scripts, etc. It is important for tools to make sure
that all of these possibilities are always consistent
with the choices made by the end user when
customizing the models.

When interface definitions are influenced by
top-level choices (e.g. the physical powerplant
interface is altered by the choices made in the top
level powerplant configuration package), this should
influence the set of possibilities generated with the
choicesAllMatching annotation in the
models. For example, if the top-level configuration
specifies a powerplant with dual independent cam
phasing, the set of choices generated when
redeclaring the powerplant should only include
powerplant models that can satisfy that interface.

5.1.3 Carryover and Memory of Choices
While exploring alternatives, graphical tools

should perpetuate user modifications for identical
parameters and/or choices when possible and, when
not possible, remember those modifications in case
the same options reappear. For example, if a user
configures a model to use one particular 5 speed
transmission model and then switches to a different
5 speed transmission model, it should be possible to
carryover any common parameters (e.g. gear ratios)
or choices (e.g. torque converter model) between
the two alternatives. In addition, if they explore the
idea of a continuously variable transmission (CVT),
the tool should remember the gear ratio settings if
they decide to revert back to a 5 speed transmission.

5.2 Visualization

5.2.1 Decision Tree Visualization
With a template model as complicated as the

one shown in Figure 1, the options and possibilities
open to the end user can be quite disorienting. For
these kinds of models, it would be very useful to
have a compact representation of the tree of possible
choices open to the user. Such a tree would need to
be hierarchical and each decision that is made
should be reflected in the tree (i.e. the tree should
respond dynamically to user choices). Ideally, such

a tree should show, in a single comprehensive view,
choices that influence topological changes (e.g.
what transmission model is used) as well as
parameters.

5.2.2 Visualizing Configurations
Another issue with template models is the

proliferation of variations. It should be possible to
visualize in a coherent way the modifications
associated with a "tree" of configurations (in this
case, a tree based on the inheritance hierarchy as
opposed to the tree discussed in Section 5.2.1 which
is based on the compositional hierarchy).

6 Limitations

While Modelica provides some powerful
features to support the architecture described in this
paper, there are still some areas where the existing
features are still not sufficient. In this section, we
will discuss some of the limitations we encountered
and some ideas for overcoming those limitations.

As described in Section 3.3, we have chosen to
propagate configuration information from the top
down. In other words, decisions about connector
definitions are made at the top level and then
propagated to subsystems. This is awkward because
it is often unnatural for this information to either
appear or originate at the vehicle level. For
example, information about signals exchanged
between the powerplant and the powerplant
controller is really determined by the set of sensors
and actuators present on the powerplant itself but we
were not able to find a way of expressing this in
Modelica.

Along similar lines, the set of signals
communicated on the vehicle control bus should be
the union of all signals broadcast from each
subsystem controller. From a user perspective, it
would be best to simply choose the controller and
physical subsystem and have the information about
broadcast messages "propagate up" automatically to
the vehicle level controller bus.

In the current design, the subsystem bus
connector on the physical subsystems is always
declared inner. This is done to allow the use of
the SignalBus idiom [8] which allows sensors
and actuators to reference only the specific signals
they require (as opposed to all signals
communicated in that subsystem). Unfortunately,
the relationship between the bus connector and these
sensors and actuators is not explicit because it relies
on using inner and outer qualifiers. A better
solution would be to allow direct connections.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200383

Unfortunately, the current Modelica specification
requires each connector to contain exactly the same
signals. By relaxing this requirement and, for
example, allowing one connector to be a subtype of
the other, such connections would be possible and,
as a result, clearer.

One of the biggest problems in developing such
a framework is how to represent the fundamental
engineering assumptions present. For example, the
powertrain mounts might be represented as either
1D or 3D connections. Likewise, the electrical
system may support multiple voltage levels. Several
subsystem models can be impacted by these choices
and there is no easy way of understanding what
assumptions are made for particular models and
how that affects the assembly and compatibility at
the vehicle level. Rather than relying on complex
nested replaceable type definitions and interfaces,
the entire process might be more coherently
represented with features (e.g. layers) that provide
configuration based on a fixed set of possibilities.

7 Future Work

It is important to reiterate that the structure
defined in this document is merely a proposal and
that further discussion is required. Once a
consensus is reached on the appropriate subsystem
decomposition and interface definitions, there are
several potential directions for this work. For
example, it might be useful to extend the depth of
the current hierarchy to define architectures for each
of the various subsystems. For example, powerplant
templates could be developed for internal
combustion engines (e.g. I-4 or V-6 cylinder
configurations) and transmission templates could be
developed that decompose automatic transmissions
into individual models for a torque converter,
bypass clutch and gearbox (with interface
definitions for each). Finally, other top-level
architectures could be developed that reuse the
subsystem interface definitions. These architectures
may choose to use a subset of the subsystems shown
in Figure 1 (e.g. an engine connected to a
dynamometer) or they may choose to add additional
subsystems for more exotic vehicle configurations
(for towing applications, fuel cell vehicles, etc).

8 Acknowledgments

The architecture presented in this paper is
heavily based on a Ford Motor Company internal
initiative, by Mark Jennings, Judy Che, Bradley
Hieb, Tim Mortimer, Ken Butts, Chris Belton, Pete

Burchill, Peter Bennet, David Copp and Nick
Darnton, to develop a vehicle model architecture for
Simulink [5]. This work leverages a great deal from
the system decomposition and thorough analysis
that was done as part of that work. As a result, the
authors would like to recognize the significant
influence and impact that work had on the material
in this paper.

The authors would also like to thank John
Batteh, Chuck Newman, Erik Surewaard, Graham
King, Johan Andreasson, Christian Schweiger,
Martin Otter, Jonas Hellgren, Jonas Karlsson, Jonas
Fredriksson, Bengt Jacobson and Lars Eriksson for
their work in developing automotive component and
subsystem models which we hope will, at some
point, be compatible and freely exchangeable
through this architecture.

9 References

1. J. Andreasson, A. Möller and M. Otter,
"Modeling of a Racing Car with Modelica's
Multi-Body Library", Modelica Workshop 2000
Proceedings,
http://www.modelica.org/workshop2000/procee
dings/Andreasson.pdf

2. M. Otter, M. Dempsey and C. Schlegel,
"Package PowerTrain. A Modelica library for
modeling and simulation of vehicle power
trains", Modelica Workshop 2000 Proceedings,
p. 23-32,
http://www.modelica.org/workshop2000/procee
dings/Otter.pdf

3. P. Treffinger and M. Goedecke, "Development
of Fuel Cell Powered Drive Trains With
Modelica", Proceedings of the 2nd Modelica
Conference, p.125-131,
http://www.modelica.org/Conference2002/paper
s/p16_Treffinger.pdf

4. J. Hellgren, "Modelling of Hybrid Electric
Vehicles in Modelica for Virtual Prototyping",
Proceedings of the 2nd Modelica Conference, p.
247-256,
http://www.modelica.org/Conference2002/paper
s/p32_Hellgren.pdf

5. C. Belton, P. Bennet, P. Burchill, D. Copp, N.
Darnton, K. Butts, J. Che, B. Hieb, M. Jennings
and T. Mortimer, "A Vehicle Model
Architecture for Vehicle System Control
Design", SAE Congress 2003, SAE-2003-01-
0092.

6. "Dymola 5.0 User's Manual", Dynasim AB, p.
206.

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200384

7. H. B. Pacejka and E. Bakker, "The magic
formula tyre model.", Proceedings of the 1st
Tyre Colloquium, Delft, October 1991.

8. M. Tiller, W. E. Tobler and M. Kuang,
"Evaluating Engine Contributions to HEV
Driveline Vibrations", Proceedings of the 2nd
Modelica Conference, p. 19-24,
http://www.modelica.org/Conference2002/paper
s/p03_Tiller.pdf

9. S. Drogies and M. Bauer, "Modeling Road
Vehicle Dynamics with Modelica", Modelica
Workshop 2000 Proceedings, p. 161-168,
http://www.modelica.org/workshop2000/procee
dings/Drogies.pdf

10. "Modelica Language Specification, Version
2.0", Modelica Association, 2002,

11. M. Tiller, "Introduction to Physical Modeling
with Modelica", Kluwer Academic Publishers,
2001.

12. K. Wipke, M. Cuddy and S. Burch, "Advisor
2.1: A User-Friendly Advanced Powertrain
Simulation Using a Combined
Backward/Forward Approach", IEEE
Transactions on Vehicular Technology: Special
Issue on Hybrid Electric Vehicles, 1999,
http://www.ctts.nrel.gov/analysis/pdfs/advisor_2
1.pdf

13. A. Rousseua, S. Pagerit, G. Monney and A.
Feng, "The New PNGV System Analysis
Toolkit V4.1- Evolution and Improvement",
SAE 2001 Future Transportation Technology
Conference, SAE 2001-01-2536.

14. C. Newman, J. Batteh and M. Tiller, "Spark-
Ignited-Engine Cycle Simulation in Modelica",
Proceedings of the 2nd Modelica Conference, p.
133-142,
http://www.modelica.org/Conference2002/paper
s/p17_Newman.pdf

 Michael Tiller, Paul Bowles, Mike Dempsey Development of a Vehicle Modeling Architecture in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200385

 The Modelica Association Modelica 2003, November 3-4, 2003

86

Modelling of Generic Hybrid Electric Vehicles

Leo Laine, CTH, Sweden, laine@mvs.chalmers.se
Johan Andreasson, KTH Vehicle Dynamics, Sweden, johan@fkt.kth.se

Abstract

The software development of the control functions will
be a large part of the work when developing future ve-
hicles. Therefore, it is of great importance to be able
to reuse the control architecture for different hardware
configurations. In this work, a generic1 control ar-
chitecture for Hybrid Electric Vehicles has been mod-
elled with Modelica. Functional decomposition was
used to develop the generic control architecture. Func-
tions are identified and placed into a hierarchical par-
titioning structure. Three functional levels are sug-
gested; main control level, subsystem level, and actua-
tor/sensor level. The main control contains a driver in-
terpreter, energy management, vehicle motion control
and a strategic control. These main functions are made
independent of hardware and of hybrid configuration.
The subsystem level contains driver interface, chassis,
power supply and auxiliary systems. Two models, a
parallel and a series hybrid electric vehicle, are used
to demonstrate the implemented architecture.

1 Introduction

In order to handle the complexity of several actua-
tors/sensors interacting in future Hybrid Electric Ve-
hicles (HEVs) and to allow easy change of hard-
ware configuration, a control architecture with suitable
functional partitioning is necessary.

There are three main types of architectures for par-
titioning; centralised, hierarchical, and peer, as shown
in Figure 1. The centralised architecture collects in-
formation from all sensors and computes references
for all actuators. The benefit is that all signals are
available simultaneously. The drawback is the lack of
modularity that makes it hard to add new functionality.
The hierarchical structure consists of a top level con-
trol block and several low level control blocks. This
allows good modularity and also a central controller
is available to coordinate the interaction between the
actuators/sensors. The peer-to-peer architecture is the
most modular one, but without a coordinator between

1Generic: hardware and configuration independent

Central controller

S A S A S A

Central controller

S A S A S A

 Local

controller

 Local

controller

 Local

controller

S A S A S A

 Local

controller

 Local

controller

 Local

controller

Figure 1: Centralised, hierarchical and peer-to-peer archi-
tecture.

the different actuators/sensors conflicts will be hard to
avoid.

The architecture should be generic and work for
several types of HEV configurations such as parallel,
serial, and split etc and must therefore be modularised.
It must also fulfill the requirements on interfaces be-
tween automotive suppliers and manufacturers so that
brand specific qualities can be kept in-house. For both
these demands, the hierarchical control architecture is
suitable.

The purpose with the suggested control architec-
ture is to easily handle the variety of vehicles that the
authors believe will be found a decade from now and
further on. These future vehicles could be serial HEVs
with fuel cell as primary power unit, and with wheel
units that can apply driving, steering, and suspension
forces independently. However, to be really useful, the
architecture must also be able to handle today’s vehi-
cle in a well defined way.

Modelica [1] was chosen as a platform for test and
validation of ideas concerning generic modelling of
HEVs. The aim is to study how HEVs can be mod-
elled as a complete system and combine different areas
of interest, such as: control, energy management, and
vehicle dynamics. The first step is to evaluate if the
suggested generic control architecture really is generic
by modelling different hardware configurations with
Modelica. The second step is to study how the specific
strategies within Main Control should be designed. Fi-
nally, the sensibility to faults and inaccuracies will be
studied. In this paper the ideas behind the architectures
are first briefly described2 and then the implementation

2See [2] for a more thorough explanation.

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

87

DIf

lat

long

yaw

dir

mode

on/off

DIf

VMC

Ch

SCDIp EM

AuxPS

Figure 2: Main model architecture illustrating the main
functions within functional levels 1 and 2.

in Modelica is discussed.

2 Main model architecture

The main model architecture is divided into differ-
ent functional levels. The highest functional level is
called main control and includes the following func-
tions; Driver Interpreter (DIp) interprets the driver’s
demands as a desired path, Vehicle Motion Control
(VMC) that controls the vehicle according to these de-
mands and Energy Management (EM) assures that this
is done in an energy efficient way. Additionally there
is the Strategic Control (SC) which finalizes the orders
from Vehicle Motion Control and Energy Management
to the lower functional levels. It is only Strategic Con-
trol that can send orders to lower functional levels.
This to uphold the causality of the orders. If a criti-
cal state is recognised by Energy Management or Ve-
hicle Motion Control, Strategic Control will give pri-
ority to suggested signals from either part. The func-
tional level 2 contains the following: Driver Interface
(DIf), Chassis (Ch), Power Supply (PS), and Auxiliary
Systems (Aux).

In Figure 2 the main model architecture imple-
mented in Modelica shows functional levels 1 and 2.
All functions exchange generic signals via a bus, and
the chassis, power supply and auxiliary systems are
coupled with standardised mechanical and electrical
connectors. This allows each model to be changed
without having to redesign the others. In Figure 3
this is illustrated by a menue that shows how different
HEV configurations can be set up. Figure 4 shows the
signal flow between functional levels 1 and 2. Aux-
iliary systems and Driver Interface are here excluded
for simplicity.

Figure 3: The generic vehicle menue easily allows chang-
ing the Power Supply.

Vehicle Motion Control

Path

Controller

Chassis states

(Fx,Fy,Mz)des

Chassis
WU1

WUn

Force

Distributor

WUi

Controller

WUi

Plant

fx,y i

fi est
fi max

(Fx,Fy,Mz)max

Energy Management

ETF, ERB

SOC

Controller

Power Supply

PS

Controller

Buffer

F, P max PPU

F, P des

Force/Power

Controller

Power Supply states

Strategic

Controller

LIMITS

Place

orders

DEMANDS

DEMANDS

LIMITS

Driver

Interpreter

Vehicle Motion Control

Path

Controller

Chassis states

(Fx,Fy,Mz)des

Chassis
WU1

WUn

Force

Distributor

WUi

Controller

WUi

Plant

fx,y i

fi est
fi max

(Fx,Fy,Mz)max

Energy Management

ETF, ERB

SOC

Controller

Power Supply

PS

Controller

Buffer

F, P max PPU

F, P des

Force/Power

Controller

Power Supply states

Strategic

Controller

LIMITS

Place

orders

DEMANDS

DEMANDS

LIMITS

Driver

Interpreter

Figure 4: Signal between functional levels 1 and 2. Only
signals to Power Supply and Chassis are shown for simplic-
ity.

3 Modelica implementation

The Modelica implementation is gathered in the
Modelica library GenericVehicle. According to
Section 2 the main model consist of nine functions
and in the library, these represent a sub-packages each.
DriverInterpreter, VehicleMotionControl,
StrategicControl and EnergyManagement

cover the functional level 1. Additionally there
are DriverInterface, Chassis, PowerSupply

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

88

and AuxiliarySystems for level 2. Finally the
Bus package contain the models necessary for the
information exchange.

3.1 DriverInterpreter

The Driver Interpreter communicates with the driver
interface by interpreting the driver’s signals and by
sending proper feed-back. The driver’s intentions are
interpreted as a desired path, taking into account limi-
tations set up by the Vehicle Motion Control and exter-
nal inputs such as e.g. cruise control. The desired path
is defined by the velocity v, the vehicle’s slip angle β,
and the curvature ρ.

3.2 VehicleMotionControl

The Vehicle Motion Control includes a controller that
follows the desired path by the derivation of desired
global forces (Fx,Fy,Mz). These forces are then dis-
tributed between the wheels within the allowed limits
for each wheel unit. Thus, there is an optimisation task
and a control task. These are currently handled as de-
scribed in [3].

3.3 EnergyManagement

Energy Management controls the energy flow from the
Primary Power Unit (PPU) and the flow to the Buffer
(Bf). The simple version of Energy Management cal-
culates a State-Of-Charge (SOC) target by considering
the vehicle speed, see Equation 1. By comparing SOC
target with actual SOC simple strategies are used to
calculate how much Electrical Regenerative Braking
(ERB) and how much Electrical Traction Force (ETF)
should be applied. Both parameters are nominal val-
ues. The desired tractive force and the total desired
power needed from PS are the signals sent to Strategic
Control which places the orders to Power Supply. EM
Simple also calculates a power limit value for Auxil-
iary Systems.

SOCTarg = C0 −C1 · e
−C2|v(t)| (1)

where v(t) is the current vehicle speed, and C0 = 0.75,
C1 = 0.1, and C2 = 6 are constants.

3.4 StrategicControl

The Strategic Control is responsible for the commands
from level 1 to level 2 and handles the priorities be-
tween VMC and EM. The simple SC only places the
orders to functional level 2. Strategies about safety and
reliability will be located at SC, checking the critical
state signals from EM and VMC.

3.5 DriverInterface

The driver interface contains the actuators and sensors
that the driver can influence. These could be steering
wheel and pedals as well a joystick. DIf is here seen
as a full drive by wire subsystem. The longitudinal,
lateral and yaw signal are measured and then sent to
DIp.

3.6 Chassis

The chassis (Ch) is thought of as a body onto which
a number of wheel units are mounted. Each wheel is
then considered as an autonomous unit and is by de-
fault decoupled from the other wheels. Depending on
the linkage carrying the wheel as well as the available
actuators, there are different possibilities to generate
ground contact forces. A very simple example is a
wheel with only brakes and no steering possibility and
passive suspension, while other wheel units may have
drive, steering, camber control and active damping.

The Modelica implementation is based on the
VehicleDynamics library [4] components for three
dimensional Multi Body System (MBS) chassis mod-
elling. Additionally the PlanarMultiBody li-
brary [5] has been used to model simpler planar chas-
sis models. The latter are suitable when influences of
load transfer due to roll or pitch can be neglected since
these models speeds up simulation time considerably.

The distributed forces from the SC is realised at
each wheel unit that also sends information about max-
imum achievable force. For a future vehicle with in-
dependent wheel units, this is straightforward, but to-
day’s vehicles uses many passive components that in
some case limits the wheel motion and also couples
the wheels together. To deal with this, restrictors are
introduced to limit the degrees of freedom (DOF) of
the wheel.

3.6.1 Wheel Units

At each Wheel Unit (WU), the force commanded by
the SC should be generated. To avoid saturation, the
wheel unit provides the VMC with information about
it current limitations. From the desired forces, the de-
sired steering angle and wheel spin velocity are calcu-
lated 3.

To generate the wheel spin velocity, the wheel unit
checks how much rotational torque is available di-
rectly at the drive shaft from the PS and then coordi-
nates the available actuators to meet the desired order.

In Figure 5, three different WU models are shown,
illustrating the variety of modelling detail. The left-

3Details are found in [3].

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

89

data

control

y

x

y

x

data

..
l.

w

control
w

d
f

data

control
f

Figure 5: Wheel units with different level of detail. Left: A 3D MBS model of a control, linkage and wheel
with an electric motor, middle: a 2D MBS model with linkage replaced by a steering joint, and right: an ideal
Wheel Unit that generates the desired forces directly.

v
β

1/ρ

BGR

CoG

Figure 6: Screen shot of an animation showing a four
wheeled HEV with independent wheel corners. The path
(ρ,v,β) is indicated as well.

most example is a full 3D-model of a wheel and a link-
age, e.g. a MacPherson or a DoubleWishBone. Here, a
linkage suggested in [6] is used and an animation view
of a vehicle with these wheel unit models can seen in
Figure 6.

In many cases, when the details of the linkage are
of less importance, simulation time can be reduced by
using a simpler model as illustrated in Figure 5, mid-
dle. The linkage is reduce to an equivalent king-pin
(steer) axis and no vertical motion is considered.

Still, these two models have in common the need
to find steering angle and wheel spin velocity. The
model in Figure 5, right, instead applies the desired
forces directly.

3.6.2 Restrictors

As mentioned earlier, it is straightforward to use the
WU concept as long at each wheel is independent of
the others. This is not the case for today’s vehicles and

the restrictors are used to describe these relations. Typ-
ical restrictors are rack steerings and differentials that
constrains the steering angle and the force distributed
from the PS, respectively. To make the VMC aware
of their existence, they are connected to the bus and
send information about a) between what WU they act
and b) how they act. Active restrictors also receive in-
formation about the WU state and commands to figure
out how they should act. In Section 4, the usage of
restrictors is exemplified.

3.6.3 Bodies

The body is the frame that carries the WUs. It also
sends information about its states to the VMC. The
reason it is treated as a separate unit, and not just as
a least common divider of all chassis, is because there
will be an extension that handles more than one body,
coupled by restricors. Typical cases when this is rele-
vant are tractor-trailer combinations, articulated buses
and vehicles with a frame that cannot be considered as
rigid.

3.7 PowerSupply

The conventional power train concept with a combus-
tion engine, transmission, and drive line is not a valid
description for a HEV. The HEV concept includes han-
dling of a major electricity source in combination with
a conventional or parts of a conventional power train.
A more suitable name of this function is Power Sup-
ply. The PS includes both the Primary Power Unit and
a buffer and can be anything from an internal combus-
tion engine to a fuel cell. The buffer can be an electric
buffer such as a battery, super capacitor or a mechani-
cal one e.g. flywheel.

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

90

3.8 AuxiliarySystems

The Auxiliary systems is a gathering of all systems
that are not involved in the vehicle’s motion. Exam-
ples are air conditioning and lights. Aux calculates the
actual power needed and sends this information to EM.
EM limits the maximum power available for the Aux
and PS provides the needed electricity by a standard-
ised electrical connector.

3.9 Bus

The Bus contain generic information and orders that
are exchanged between functional levels 1 and 2. The
signals are named after their origin as exemplified be-
low:

EM Pauxlimit EM calculates a maximum power
limit for Aux.

SC Pauxlimit SC finalise the order to Aux.

Aux Pactual The actual power consumption from
Aux.

It is important that the signals are made hardware
independent to allow easy change of functions. The
Modelica implementation is based on the bus connec-
tors available in the standard library. All models of a
specific function e.g. EM, VMC, PS, and Ch share the
same base, defining the send and receive signals.

The signals on the bus give an idea of what infor-
mation is necessary for any kind of hardware configu-
ration for the specific function.

4 Examples

To demonstrate the suggested architecture’s ability to
handle different hardware configurations, two differ-
ent HEV configurations have been implemented. The
first one is a parallel HEV with wheel motors on the
front wheels, see Figure 7, left. As indicated in the
figure, the front and rear wheels are constrained by re-
strictors. The front wheels have a rack steering that
couples the steering angle of the two wheels. At the
rear wheels there is also a rack steering, but in this case
the range is set to 0, making the vehicle front wheel
steered. Additionally, there is also a differential that
distributes the driving torque from the PS.

The second case is a series HEV with wheel mo-
tors on all wheels, see Figure 7, right. Here no restric-
tors are used and each wheel is individually controlled.

The body weight and inertia for both cases is rel-
evant for a sports utility vehicle. For both cases, the
same models within functional level 1 are used.

receive

SC_SOCtarg

receive

SC_Electricbraking

receive

SC_Electrictraction

receive

SC_Pdes

PS_Pactual

send

PS_Pmax

send

PS_SOC

send

receive

SC_on

receive

Receiv eCh_v

receive

SC_Fdriv

ICE5_170BHP

GB5SP

Controller
ICE_ISG_GB

Ground1

receive

PS_Pact

receive

PS_Pmax1

Figure 8: PS with ICE, ISG, and a GB.

G
ear1 G

ea
r2

G
ear3 G

ea
r4

G
ear5

T45T21

T32

T23 T43

T54T34T12

Comp12

kphl32

Comp32

kphl21
kphli23

kphl34

Comp34

kphlim43
kphlim45

kphl54

Comp54

data

BusICE1

Cgear

send
receive

TdemNormalized

receive

v x

Figure 9: Petri net used for the shift strategy for the 5
speed gear box.

4.1 The parallel HEV case

The parallel HEV is equipped with PS containing an
Internal Combustion Engine (ICE) as a PPU, and an
Integrated Starter Generator (ISG), automated manual
Gear Box (GB), and a battery, see Figure 8. There is a
local controller that coordinates ICE, ISG and GB. The
gearshift strategy is based upon a petri net which uses
actual vehicle speed and desired torque for the boolean
expressions. The petri net is shown in Figure 9.

The ICE model uses one dimensional look up ta-
bles for maximum and minimum torque. The fuel con-
sumption is calculated by using the actual torque and
rotational speed as input for a two dimensional look up
table. The model is shown in Figure 10.

The Chassis contains wheel units with wheel mo-
tors for the front wheels and the rear wheels have a dif-
ferential restrictor applying the torque provided by PS,
see Figure 7, right. In this case the PS supplies both
mechanical torque and electrical power to the chassis.

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

91

x y x y

Figure 7: Chassis with independent wheel units used in the parallel HEV case, left and the serial HEV case,
right.

Idle speed when engine on

flywheel

J=data.Flywheelinertia

Trq

tau

S
p
e
e
d
S

e
n
...

w

Min

min()Maxtorque

Max1

max()

Mintorque

Fuelconsumpti...

tau

TorqueSe...

totalFc

I

k={1}

riselimiter1

T={data.T...

bus

TotalFC

send

FCInstant

send

Torque

send

Speed

send

CalcPow er Pow er

send

receive

Torque_Desired

data

Idlespeed

k={data.Idle...

zero

k={0}

ONOFF2

ONOFF

T
o
rq

u
e
d
e
s
0

k
=
{0

}

M
a
x
2

m
a
x
()

receive

ONOFFdes

Figure 10: The ICE model.

4.2 The serial HEV case

The Chassis contains wheel units with wheel motors
on all four wheels. In this case PS submits only elec-
tric power to the chassis, see Figure 7, left. The PS
contains a Fuel Cell (FC) as a PPU and a battery as
buffer, see Figure 11.

4.3 Simulation

Figure 12 shows results from a ramp simulation of the
parallel HEV vehicle starting from standstill. It is ac-
celerated to 10 m/s in 4 s and then the velocity is kept
constant for 1 s. Finally the velocity is decreased to
stand still at t = 8 s. The first graph shows the de-
sired speed from DIp and the actual speed. During the
first 2 s of the deceleration the actual speed is higher
than the desired. The second graph shows the actual
torques from the ICE and ISG. Third graph shows the
actual gear of the GB. Finally the fourth graph shows
the SOC level of the battery.

receive

SC_SOCtarg

receive

SC_Electricbraking

receive

SC_Electrictraction

receive

SC_Pdes

PS_Pactual

send

PS_Pmax

send

PS_SOC

send

receive

SC_on

receive

Receiv eCh_v

receive

SC_Fdriv

Ground1

Pdes Pact

f c

accfc

Pmax

Torque1

tau

Figure 11: PS with FC and battery .

The same simulation is also made for the serial
HEV configuration, see Figure 13. The first graph
shows the desired speed from DIp and the actual
speed. The second graph shows the desired power and
the generated power from FC. The third graph shows
the actual SOC level of the battery. The fourth graph
shows the instant and accumulated fuel consumption.
During deceleration the FC is shut down.

The results show that it is possible to use the same
VMC, EM, DIp and SC for both configurations. The
performance of the models are not optimal since the
scope of work have not been on sizing on components
nor to find the optimal strategies.

5 Conclusions and discussion

Modelica has been a useful way to describe, model
and test the architecture. It is a good platform because
it allows easy interaction of different domains such as

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

92

0 1 2 3 4 5 6 7 8

0

4

8

12 DIp_v [m/s] Ch_v [m/s]

0 1 2 3 4 5 6 7 8

-100

0

100

PS_ICETorque [Nm] PS_ISGTorque [Nm]

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5 PS_GBgear [-]

0 1 2 3 4 5 6 7 8
0.7

0.72

0.74

0.76 PS_SOC [-]

Figure 12: Ramp simulation for the parallel HEV configu-
ration.

multibody, electrical, mechanical, and control.
The sample cases demonstrates the architecture.

The results show that the architecture manage differ-
ent hardware configurations and that exchanging hard-
ware does not affect the highest functional level, i.e.
Main Control.

Even though the over-all impression is positive,
some limitations have been found. The size of the bus
is dependent on the number of wheel units, bodies and
restrictors and should thus be defined by the chassis
itself. Since the size of the bus must be fixed, this is
currently not possible. It would also be desirable to
be able to send the equations defining the restrictors
directly through the bus.

6 Future work

An extension of this work will mainly involve a) De-
velopment of a method to evaluate the reusability and
constraints applied by using the suggested architec-
ture. b) Verification of the reusability of the suggested
architecture for different configurations of HEVs. Es-
pecially different configurations of PS. c) Studies on
what control strategies within Main Control would ap-
ply for the foreseen HEV configurations. d) Studies
on how critical states could be handled so that they
are recognised by EM and/or VMC. e) More flexible
description of restrictor information from functional
level 2 to 1. f) Compensation for non-ideal sensors.

7 Acknowledgements

This work is financed by the Driving Dynamics and
Main Control projects within the Swedish National
Research Programme ”The Green Vehicle/FCHEV”.

0 1 2 3 4 5 6 7 8

0

4

8

12 DIp_v [m/s] Ch_v [m/s]

0 1 2 3 4 5 6 7 8
-1E5

-5E4

0

5E4

1E5 PS_Pact [W] EM_Pdes [W]

0 1 2 3 4 5 6 7 8
0.72

0.73

0.74

0.75

PS_SOC [-]

0 1 2 3 4 5 6 7 8
-0.5

0

0.5

1

1.5

2 PS_FCFc [g/s] PS_FCaccFc [g]

Figure 13: Ramp simulation for the serial HEV configura-
tion.

References

[1] Modelica Association. http://www.modelica.org.

[2] L. Laine and J. Andreasson. Generic control ar-
chitecture applied to a hybrid electric sports util-
ity vehicle. To be presented at the 20th Interna-
tional Electric Vehicle Symposium, Long Beach,
CA, November 15-19, 2003.

[3] J. Andreasson and L. Laine. Driving dynamics for
hybrid electric vehicles considering handling and
control architecture. 18th Int. Symp. IAVSD, Dy-
namics of Vehicles on Roads and Tracks, Japan,
August 2003.

[4] J. Andreasson. VehicleDynamics library. In
Peter Fritzson, editor, Proceedings of the 3rd
International Modelica Conference, Linköping,
November 2003. The Modelica Association and
Linköping University.

[5] J. Andreasson and J. Jarlmark. Modularised tyre
modelling in Modelica. In Peter Fritzson, edi-
tor, Proceedings of the 2nd International Model-
ica Conference, Oberpfaffenhofen, March 2002.
The Modelica Association and Deutches Zentrum
für Luft- und Raumfahrt.

[6] S. Zetterstrom. Electromechanical steering, sus-
pension, drive and brake modules. VTC 2002-
Fall,Vancouver, Canada, September 24-28, 2002.

 The Modelica Association Modelica 2003, November 3-4, 2003

Leo Laine, Johan Andreasson Modelling of Generic Hybrid Electric Vehicles

93

 The Modelica Association Modelica 2003, November 3-4, 2003

94

Advanced Electric Storage System Modeling in Modelica

Erik Surewaard and Eckhard Karden Michael Tiller

Ford Forschungszentrum Aachen (FFA)
Energy Management Group

Süsterfeldstrasse 200
52072 Aachen, Germany

Ford Motor Company
Powertrain Research Department

2101 Village Road
48121 Dearborn MI, USA

1 Abstract
This paper will discuss two important components in
the future electrical system of an automobile: the
battery and supercapacitor. Models of these
components have been developed in the Modelica
language. The power of the Modelica language is
shown by simulating a so-called dual storage
system, consisting of a supercapacitor and battery.
This paper also shows the comparison between the
simulation and measurement results.

2 Introduction
Due to the increased amount of electric content in a
vehicle, the electric powernet will have a significant
influence on the fuel economy of a vehicle. In
addition, new power supply/starting systems such as
Integrated Starter Generators (ISG) will enable new
features that improve fuel economy and emission
attributes of a vehicle. It is therefore necessary to
develop models that capture the detailed behavior of
the electric powernet.

This paper will discuss models of two important
components of the future powernet: the battery and
supercapacitor. A description of the models will be
given after which a simulation is performed with a
so-called dual voltage storage system (also known as
14+x). This is an electric storage system consisting
of a supercapacitor and battery in parallel, which
allows a Belt-driven Integrated Starter Generator (B-
ISG) to operate on two voltage levels. Such a system
has been published by Sebille in [1]. Finally,
simulation results will be compared with
measurement results.

3 Battery
At the Ford Forschungszentrum Aachen (FFA), a
battery model has been developed in Modelica,
which is based on work of the Aachen University
RWTH. This section describes both the model
background as well as the implementation in
Modelica.

3.1 Model Background

The battery behavior is characterized using
impedance spectroscopy. As part of this process,
the battery is excited with currents at different
frequencies. Different operating points are also
taken into account: temperature and State of
Charge (SOC). A schematic of an impedance
spectroscopy measurement of a battery is displayed
in Fig. 1.

Fig. 1 Schematic plot of an impedance measurement
of an automotive battery

A method has been developed by Buller et. al. [2],
[3] to represent the impedance measurement into
an electric equivalent circuit. This procedure is
schematically displayed in Fig. 2a. The electric
equivalent circuit for this representation is
displayed in Fig. 2b.

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200395

(a)

(b)

Fig. 2 (a) Approximation of a measured impedance
spectroscopy line by electrical elements, (b) electric
circuit representation for a battery

The measured impedance of the battery is
approximated by an internal resistance Ri, an
inductance Lbat and two depressed semi-circles in
the complex impedance domain: Zarc,1 and Zarc,2.
Inaccuracy arises at low frequencies where the
modeled impedance does not approximate the
measured impedance. Fig. 2b also includes the
open circuit voltage VOCV and the gassing reaction
(Rgas and V0,gas). The gassing reaction is mainly
important for overcharging situations, where the
charging efficiency of the battery decreases. This is
the result of current that is lost in the gassing
reaction. In the case of a valve-regulated lead-acid
battery, e.g. in Absorbent Glass Mat (AGM)
technology, other parasitic reactions have to be
added in the gassing branch (especially oxygen
recombination), but the topology remains valid.
 The two depressed semi-circles (Zarc,1 and
Zarc,2) are represented using specialized RC-
circuits. The number of RC-circuits that are used in
series to represent the depressed semi-circle is
described by N1 and N2 (Fig. 3). This number of

RC-circuits is critical for both simulation speed
and model accuracy.

Fig. 3 Representation of the two semi-circles in the
complex impedance domain (Zarc,1 and Zarc,2) by RC-
circuit elements

3.2 Model Implementation

The model as displayed in Fig. 2b is constructed in
Modelica. The result is displayed in Fig. 4.

The structure of the model is basically the
same as the structure displayed in Fig. 2b. On the
left you can see the internal resistance of the
battery, after which the main branch is divided into
two sub-branches. The upper branch shows the
gassing reaction. The lower branch shows an
element that calculates the SOC, the two depressed
semi-circle elements (Zarc,1 and Zarc,2) and the Open
Circuit Voltage (OCV) element. The battery
inductance is not taken into account since the
inductance of cabling and connectors to the battery
are much more significant.

Fig. 4 Implementation of the battery model

The SOC element (circle in Fig. 4) has been added
to monitor the energy content of the battery. Since

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200396

gassing current is not stored in the battery, this
SOC element is positioned in the lower branch.

Also added to the components of the
battery model are thermal connectors (going to the
'outside' thermal connector node). Not only the
behavior of the battery is dependent on
temperature, but the battery also generates a heat
flow. If the heat capacity of the battery is known,
the self-heating effect of the battery can be
simulated. This self-heating effect is of minor
effect (on the timescale of for instance a NEDC
drivecycle) for a regular flooded battery. When
however a more advanced lead-acid battery of the
AGM-type is used, the self-heating effect can
become significant. More detailed information of
thermal battery modeling can be found in Berndt
[4].

Since each battery type needs its own
impedance spectroscopy measurement and
parameterization, the battery model has been
programmed in a way that allows to change the
battery type (and its corresponding parameter set)
in the parameter window (Fig. 5).

Fig. 5 Parameter window for the battery model

In this parameter window it is possible to change
the battery initial charge (SOC_ini), its parameter
set (Parameters), the models that are used for the
gas reaction (GasReaction) and the description of
the first and second depressed semi-circle
(Z_Arc1, Z_Arc2). Currently, there are three types
of parameter sets available:

� Ford Motorcraft SLI flooded battery, 12V,

70Ah
� Hoppecke AGM, 36V, 27.5Ah
� JCI Optima Red Top, AGM, 12V, 44Ah

It is also possible to 'design' new batteries by
changing the voltage and capacity in the parameter
set. This should however be done very carefully,
since differences in technology and construction
over different type of batteries exist.

 The model enables replacing the model of
the first and second depressed semi-circle (Zarc,1
and Zarc,2). This makes it possible to (i) change the
number of RC circuits (Fig. 3) and (ii) remove the
capacitance of the Zarc,1 element. When larger
simulation time-steps are taken (in the order of
0.01s), the capacitance of the first Zarc,1 element
can be neglected since their time constants are
typically smaller than 0.01s. Removing this
capacitance will increase simulation speed.

4 Supercapacitor
As was the case with the battery model, the
Modelica supercapacitor model is based on work
of the Aachen University RWTH. Both model
background and the Modelica implementation are
discussed in this section.

4.1 Model Background

As with the battery model, use has been made of
impedance spectroscopy measurements to
characterize the supercapacitor behavior. For this
purpose, the supercapacitor is excited with AC
currents in different operating points: temperature
and voltage. Fig. 6 shows a typical impedance
curve for a supercapacitor.

Fig. 6 Schematic plot of an impedance measurement
of an automotive supercapacitor

To represent an impedance measurement of a
supercapacitor with an electric circuit, Buller
suggests in [5] to use the equivalent circuit shown
in Fig. 7. For the pore impedance Zpore there are
two implementation forms possible: (i) with an
RC-series networks and (ii) an RC-ladder network.

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200397

Fig. 7 Equivalent electric circuit for a supercapacitor
cell and the two implementation forms for the pore
impedance Zpore (RC-series and RC-ladder circuits)

4.2 Model Implementation

The model, as described in the previous section, is
constructed in Modelica. The number of RC-circuit
in either the RC-series or RC-ladder network can
be chosen. A for-loop has been used to connect
these RC-circuits. A code fragment of the
supercapacitor where the RC-circuits are
connected is:

connect(p, R.p);
connect(R.n, Rpore[1].p);
for i in 1:numberRC loop
connect(Rpore[i].n, Cpore[i].p);
connect(Cpore[i].n, n);
if (i < numberRC) then
connect(Rpore[i].n,Rpore[i+1].p);

end if;
end for;

First the positive connector on the supercapacitor
is connected to the resistor (R). After that the pore
impedance is represented by the RC-ladder
method. The number of RC-ladders is determined
by the parameter numberRC. The inductance of
the supercapacitor is not taken into account in the
model, since it is assumed that it can be neglected
compared with the inductance of the connection
and the cabling to the supercapacitor.
 As with the battery, a parameter window is
made available in which the parameter set (for the
specific supercapacitor) can be chosen. This
window is displayed in Fig. 8. The number of cells,
initial cell voltage, number of RC-circuit for the
approximation of the pore impedance Zpore and the
parameter set (type of supercapacitor) can be
chosen. Currently, the following parameter sets
are available:

� Montena 1400F
� Montena 2600F
� NESS 5000F

Fig. 8 Parameter window for the supercapacitor
model

5 Simulation results
The battery and supercapacitor model will be
simulated in a model of the so-called dual storage
system. This section will first describe the dual
storage system after which the Modelica
implementation and the simulation results are
displayed.

5.1 Dual Storage System

The dual storage system, also known as the 14+x
system, is displayed schematically in Fig. 9. More
information on the idea behind the dual storage
system can be found in [1].

Fig. 9 Electric circuit representation for the dual
storage system (14+x)

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200398

The dual storage system is particularly interesting
for use with a B-ISG. The B-ISG is actually an
advanced alternator, which has a higher efficiency
and facilitates both generating and motoring mode.
In this way the B-ISG can be used to crank the
engine (i.e. the starter motor can be omitted). To
deliver a high torque up to a high engine speed
during engine cranking, it is beneficial to have the
B-ISG operate on a higher voltage during cranking
than is the case during generating. A storage
system that can supply the B-ISG with two voltage
levels for cranking and generating mode is the dual
storage system:

� During motoring of the B-ISG, switch A1 is

closed and A2 open. In this case the B-ISG is
connected to the voltage of the supercapacitor.
Since the supercapacitor voltage is not
connected to the powernet, this voltage is
therefore allowed to fluctuate significantly.
The lower voltage-level of the supercapacitor
is determined by the minimum required for
cranking. The upper voltage level is
determined based on the nominal
supercapacitor voltage (lifecycle).

� During generating of the B-ISG, switch A1 is

open and A2 closed. In this case the B-ISG is
connected to the battery and the powernet,
which are at a relatively constant voltage of
14V compared to the supercapacitor voltage,
which is allowed to fluctuate.

A bi-directional DC-DC converter is used to
enable a current flowing between the battery and
supercapacitor and vice versa.

5.2 Modelica Implementation

A model of the dual storage system, as displayed in
Fig. 9, is constructed in Modelica. The DC-DC
converter is modeled with a table lookup model.
The MOSFET switch has been modeled as the
parallel connection of an ideal switch and an ideal
diode with treshhold voltage Vd. The code for this
MOSFET switch is:

model IdealMosfetSwitch
import Modelica.Electrical.Analog;
import Modelica.Blocks.Interfaces;
extends Analog.Interfaces.OnePort;
parameter Real Ron(final min=0) = 1E-5;
parameter Real Goff = 1E-5;
parameter Real Vd;

protected
Real s;
Boolean on;
Boolean u;

public
Interfaces.BooleanInPort BooleanInPort1;

equation
u = BooleanInPort1.signal[1];
on = not (u) or not (s < Vd);
if not (on) then
v = s;
i = s*Goff;

else
if u then
v = Vd + (s - Vd)*Ron;
i = s - Vd;

else
v = (s - Vd)*Ron;
i = s - Vd;

end if;
end if;

end IdealMosfetSwitch;

The resulting model is displayed in Fig. 10. Since
this model will be used in fuel economy studies in
Simulink1, input and output connectors have been
used for the switching and sensoring signals.

Fig. 10 Modelica model for the dual storage system

The model displayed in Fig. 10 is compiled to a
Simulink native S-function block (Fig. 11):

Fig. 11 Simulink block, compiled from the Modelica
model, which represents the dual storage system

1 Simulink is a registered trademark of The MathWorks,
Inc.

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 200399

The reason for making a Simulink S-function of
the dual storage system, is that presently Simulink
is the standard for control systems development
within the Energy Management Group of FFA.
That constructing the physical plant model in
Modelica has advantages compared with plant
modeling in Simulink is shown in [6].

5.3 Simulation Results

Simulation has been performed in Simulink using
the block in Fig. 11. Model inputs are taken from a
measurement that is performed with hardware of
the dual storage system. The results for the battery
are displayed in Appendix A. It should be
mentioned that the results for the battery voltage
do not completely agree due to the fact that the
overcharging behavior of the battery has not yet
been completely modeled. This will be improved
in future versions of the battery model. In [6] it is
already shown that the battery model shows
excellent results in discharging operation.

6 Conclusions
This paper shows complex models for a battery
and supercapacitor. These models are based on
impedance spectroscopy and have been modeled in
Modelica. Using these models, a dual storage
system is constructed and simulated. The
simulation results have been compared with
measurement results.

Acknowledgement
The authors gratefully acknowledge the
collaboration with Aachen University of
Technology, Institute of Power Electronics and
Electrical Drives (RWTH-ISEA), especially
Stephan Buller, Marc Thele and Dirk Linzen who
developed the theory behind the physical
representation of the battery/supercapacitor model
used in this paper, and the method of its
parameterization.

The authors also wish to thank Daniël Kok,
team leader of the Energy Management Group of
FFA for his support and ideas.

Contact
Erik Surewaard is a member of the Energy
Management Group of FFA. He graduated his
studies of mechanical engineering at Eindhoven

University of Technology in February 2002 on a
model, which he developed for describing what
occurs during cold cranking of an internal
combustion engine. He continued working for the
Energy Management Group and now develops
models, using Simulink and Dymola, to describe
(i) the electric powernet and (ii) the engine
cranking process. He can be reached by mail on:

Erik Surewaard
Ford Forschungszentrum Aachen (FFA)
Süsterfeldstrasse 200
52072 Aachen, Germany

Email is also possible: esurewa1@ford.com

References
1. Sebille, D., "Electrical Energy Management:

42V Perspective", MIT 42V meeting
Dearborn, March 6th, 2003
http://mit42v.mit.edu/Members/Meetings/2003
-03-Dearborn/Presentations/Sebille_Valeo.pdf

2. Buller, S., "Impedance-based simulation

models for energy storage devices in advanced
automotive power systems", Shaker-Verlag,
Aachen, 2003

3. Buller, S., Thele, M., Karden, E., De

Doncker, R.W., "Impedance-based non-linear
dynamic battery modeling for automotive
applications", Journal of Power Sources 113,
pp. 422-430, Elsevier, 2003

4. Berndt, D., "Valve-regulated lead-acid

batteries", Journal of Power Sources 100, pp
29-46, Elsevier, 2001

5. Buller, S., Karden, E., Kok, D. and De

Doncker, R.W., "Modeling the dynamic
behavior of supercapacitors using impedance
spectroscopy", IEEE transactions on Industry
Applications, Vol. 38 No. 6 Nov/Dec. 2002, pp
1622-1626

6. Surewaard, E., Tiller, M. and Linzen, D., "A

Comparison of Different Methods for Battery
and Supercapacitor Modeling", SAE paper
2003-01-2290, 2003

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003100

Appendix: Simulation Results

Battery

Supercapacitor

DC-DC converter

Difference is caused by
overcharging: is being solved

 Erik Surewaard, Eckhard Karden, Michael Tiller Advanced Electric Storage System Modeling in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003101

 The Modelica Association Modelica 2003, November 3-4, 2003

102

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 3B
Tools – I

103

 The Modelica Association Modelica 2003, November 3-4, 2003104

IDA Simulation Environment
a tool for Modelica based end-user application deployment

 Per Sahlin Pavel Grozman

Equa Simulation AB
Box 1376, 172 27 Sundbyberg, Sweden

http://www.equa.se/

Abstract

A new Modelica implementation based on IDA
Simulation Environment (IDA SE) is presented.
IDA SE is primarily used for development of equa-
tion based simulators for end-users with limited
modeling skills but provides interesting features also
for the advanced user. A recently developed Mode-
lica application for simulation of tunnel ventilation
for commuter rail networks illustrates IDA usage.
Excerpts of models from this application are pre-
sented in some detail as well as a list of present
limitations of the IDA based Modelica implementa-
tion.

1 Introduction
Modelica has proven to be of excellent service to

advanced modelers in several domains. However,
presently, there is usually close contact between
model developers and end-users. In fact, they fre-
quently coincide in a single person. As Modelica
uptake evolves, the need to deploy Modelica based
simulators among less experienced users is likely to
increase. IDA Simulation Environment (IDA SE)
has been developed to facilitate this process. Origi-
nally based on a Modelica predecessor, NMF [1],
IDA SE has been used for equation based end-user
application development since the early nineties.
Several real-scale simulation applications have been
developed, some of which have earned leading roles
in their respective markets.

IDA SE is based on the concept of pre-compiled
component models, i.e. most IDA application end-
users work only with fixed1 component models that
may be combined into arbitrary (input-output free)
configurations without need for compilation. Simu-
lators do not require a working compiler installation.

1 array sizes, including connector arrays, can be modified
after compilation

Encryption is not needed to preserve component
model secrecy. The new Modelica implementation
which has been included in the IDA SE package
retains this structure, separating the typical roles of
the model developer and end-user.

A large majority of potential simulation users
have little appreciation of the beauty and generality
of an advanced modeling language. They have a
design problem to solve and want quality answers
with minimum effort. Quite often the full mathe-
matical formulation of the problem is of less inter-
est. A good simulation application must communi-
cate in terms natural to the user and in most situa-
tions this does not involve any modeling language
but rather physical concepts from the target applica-
tion. Pipes, pumps and valves may well be the opti-
mal elements of communication rather than differ-
ential-algebraic equations.

The structure and main features of IDA Simula-
tion Environment are presented in the next section.
In Section 3, a sample IDA application is presented,
followed by a discussion about the current state of
the Modelica implementation. Some code details
from train traffic modeling are discussed in an Ap-
pendix.

2 IDA Simulation Environment
Figure 1 shows the three main software modules

of IDA SE:

IDA Modeler: the interactive front-end
IDA Solver: the numerical DAE solver
IDA Translator: the model source code editor and

processor
A development version contains all three, while a

runtime installation lacks IDA Translator. The de-
veloper uses IDA Translator to generate a set of C

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003105

or F77 routines for each component2, for equation
evaluation, analytical Jacobian evaluation and gen-
eral information about the model. The code is com-
piled from the translator into a Windows DLL
which is then linked to IDA Solver. The Modelica
(or NMF) source may or may not be shipped with
the application, depending on the desired level of
confidentiality. Also generated are native class de-
scriptions for IDA Modeler, containing structural
information about the model library. This code may
then be complemented by application specific ex-
tensions.

IDA Modeler

IDA Solver

IDA
Translator

*.C
*.F77

*.NMF
*.MO

*.IDA

*.EO

*.APP
*.LSP

Application definition files
Application specific source

Component description file

Component
source

Component equations

System
descrip-
tion file

Results

Figure 1: Structure of IDA Simulation Environment

Applications may be shipped stand alone, includ-
ing an IDA runtime environment or as separate
plug-ins for an existing IDA environment. Both the
model library and the user interface of an applica-
tion may be amended and altered by multiple extra
separate installations, for customizations and appli-
cation extensions. This allows efficient management
of complex version structures.

The cost of the runtime environment for each in-
stallation is significantly lower than that of the full
development environment, normally only a small
fraction of the cost of the end-user product.

2 A component or a compilation unit becomes an indi-
visible building block in the end-user application. The
Modelica source of a component model may be a com-
posite, hierarchical model. It is also possible to define
hierarchical models in IDA Modeler containing multiple
components.

IDA Simulation Environment is presently avail-
able as an off-the-shelf product only with NMF for
Microsoft Windows 98 or NT 4.0 and higher. IDA
Solver and Translator have previously been ported
to Unix platforms but are not maintained in this
setting. Modelica is presently supported only for
specific customers. We will return to the state of the
Modelica implementation in Section 4.

2.1 IDA Solver

In tools, such as Dymola, where equations are
globally reduced prior to integration, the numerical
solver will deal with a fairly dense system of equa-
tions but where each equation can be quite complex.
One can generally expect equation evaluations to
take some time while factorization of Jacobian ma-
trices is likely to be faster due to the dense problem
structure. In a pre-compiled setting, the situation is
the opposite: functions are rather simple (simple
enough to differentiate analytically!) while Jacobi-
ans are typically large and sparse.

IDA relies on standard software components for
sparse Jacobian factorization. Since large sparse
matrices occur in many technical and scientific ap-
plications a range of powerful solvers are readily
available for scalar as well as parallel architectures.
Available solvers for IDA are: SuperLU [2],
MUMPS [3] and UMFPACK [4]. The graph theo-
retical analysis of system structure is done by these
external solvers rather than in the context of a global
symbolic preprocessing.

There are many implications of this difference in
solution strategy. A thorough discussion of this is
beyond our current scope and we will merely point
out a few aspects:

+ Component structure is maintained during
integration. This allows for example: (1)
Exploitation of special component structure
by tailored methods. (2) Component level
co-simulation with external tools such as
FEMLAB (see Figures 2 and 3). (3) Com-
ponent level debugging.

+ Equation topology may change during simu-
lation. Since the graph theoretical analysis
may be done in each timestep, discontinui-
ties that alter the system structure can be ac-
cepted.

+ For few-timestep simulations, global compi-
lation may take a significant part of the total
execution time.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003106

- Pre-compiling component models precludes
some operations that are natural in a setting
where a global symbolic analysis is done.
The most serious limitation concerns index
reduction. Although index 2 systems gener-
ally can be simulated without any problems
in IDA Solver, serious high-index problems
are most likely better solved by means of
global symbolic analysis.

Figure 2: A FEMLAB-Simulink standard case

“Thermal controller.“ A heat source in a 2D region
is controlled by a thermostat.

10 1 102 103
10 0

10 1

10 2

10 3

10 4 TIME

NODES

IDA
Simulink

Figure 3: Execution time vs. FEMLAB spacial reso-
lution in the “Thermal controller case“. The original
Simulink model is compared to an identical FEM-

LAB-IDA model (from [5]).

IDA Solver is a variable timestep and order
solver based on the MOLCOL implicit multistep
methods, which include the most common implicit
methods such as BDF. Explicit methods are cur-
rently not available for the global integrator but may
be implemented for individual components.

A selection of methods for initial value computa-
tion are available: damped Newton, line-search,
gradient and homotopy (embedding) methods

2.2 IDA Modeler

IDA Modeler provides a framework for interface
development. It may be used to write simulation
oriented applications of sufficient quality for com-
petition with tools written from scratch but at a frac-
tion of the cost. IDA Modeler exploits the fact that
many tasks are common to most simulation applica-
tions: building and presenting models, editing pa-
rameters, interacting with a data base, making simu-
lation experiments, viewing results as diagrams and
reports, checking user licenses etc.

More elaborate IDA applications, divide the user
interface into three levels, to serve users with differ-
ent needs and capabilities:

Wizard
level:

Least demanding. Each required input
is presented in a sequence of user input
forms.

Standard
level

Intermediate. The user is required to
formulate a model, but in terms that are
natural to the domain.

Advanced
level

The user builds a model using equation
based objects. Facilities for model
checking, automatic mapping of global
data, selection of given variables and
similar tasks are available.

In such an IDA application, the Advanced level
interface offers a model-lab work bench similar to
that offered by other DAE environments, providing
the user with direct contact with the individual equa-
tions, variables and parameters of the mathematical
model. However, a great majority of end-users pre-
fer the tools of the Standard and Wizard level inter-
faces, where the basic mental concept is that of a
physical system and not of a mathematical model.

The kernel of IDA Modeler is written in Com-
mon Lisp but most application programming is done
interactively or by writing native scripts. Extensive
facilities are available to simplify common tasks
such as: building user interfaces in multiple natural
languages; defining a data bases for input data ob-
jects; report generation; data mapping etc. Some
user interface elements, such as dialog boxes with
complex logic, may be written via an API in other
languages.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003107

Figure 4: Applications may have multiple Wiz-

ard level interfaces for typical simulation tasks.
Each interface has a separate data model and a tai-

lored script language for data mapping between
levels is provided.

Special emphasis has been laid on tools for de-
velopment of web clients, running in a browser,
powered by an IDA based simulation engine on the
(Windows) server. A large portion of the native data
structures have been mapped to Java script, facilitat-
ing advanced web development with minimum ef-
fort.

Several examples of full-complexity applications
written in IDA Modeler are available. Equa markets
two such applications: IDA Indoor Climate and
Energy (IDA ICE) and IDA Road Tunnel Ventila-
tion. Others have been developed for specific cus-
tomers. IDA ICE is with more than 2000 users a
leading international tool for thermal building simu-
lation, available in six languages.

3 Ventilation and fire in com-
muter rail tunnel networks

The first full-complexity Modelica based IDA
application concerns prediction of air flows in tun-
nels and on platforms of commuter rail networks.
Results are needed for several reasons: hygienic
ventilation, thermal comfort, smoke propagation in
fire scenarios and for gas and particle dispersion
studies.

A primarily pulsating air movement through the
system is driven by train piston effect. Secondary
driving forces are thermal stack effect, wind pres-
sure on portals and openings and possible fan opera-
tion.

In this application, air has been modeled as,
weakly compressible, i.e. propagating pressure
waves have infinite speed but the temperature-
density relationship is modeled (perfect gas law) in
order to capture the stack effect. Solving the fully
compressible equations is often required for rail
tunnel studies to predict the effects of interacting
pressure waves but this has not been done here since
the solution of the resulting hyperbolic equations is
likely to be time consuming and otherwise problem-
atic.

Pressure drop in tunnels is modeled in 1D with
conventional pipe flow theory: With the fluid is
transported a series of fractions for computation of
CO2, age of air etc. Flows with altering directions,
often fluctuating around zero, may be numerically
difficult to handle in branched systems with high
Reynolds number since coarse approximations of
viscous losses tends to produce discontinuities. To
overcome these problems Gardel [6] empirical for-
mulae have been implemented for viscous loss coef-
ficients, providing continuity around zero flow
situations. Bulk air inertia is modeled leading to an
index 2 system. Figure 5 shows a model of a four-
station section.

A convenient way of expressing train traffic
through the system is essential. A design principle
has been to separate the models of the tunnel system
from the traffic models. Input data for a train route
through the system is depicted in Figure 6, including
line segmentation, speed limits, accelerations, dwell
times at stations etc. To add a new route, the user
selects a sufficient number of objects in the direc-
tion of the traffic to unambiguously determine a
path. The segmentation of the Route need not corre-
spond to the segmentation of the physical tunnel.
(The latter may e.g. depend on needed resolution of,
e.g., a smoke front.)

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003108

Figure 5: A model of a four-station underground

section of the Stockholm subway. Tunnels and other
airflow paths are modeled.

Each Route through the system is contained in a
single instance of the Route block (code extract in
Appendix). This block is then automatically con-
nected to each segment of the physical tunnel using
application specific code. The connection lines are
not visible, since the number of tunnel segments
may be exorbitant.

Figure 6: The IDA form for description of a train

route through the system.

The management of train routes is a good exam-
ple of application specific programming, where the
standard drag, drop and connect functionality needs
to be complemented. The Route form in Figure 6 is
an example of a native IDA form, which first has
been automatically generated and then subsequently
interactively altered. In the Outline tab, the user can
see all available parameters, variables and interfaces
of the block and in the Code tab, the Modelica code
can be browsed (but not edited).

Figure 7: Computed airflows at station Mariator-

get, with five minute traffic of C20 trains in one
direction.

4 Present state of Modelica in IDA
The current IDA Modelica implementation has

been developed to cater to the immediate modeling
needs of ongoing projects like the mentioned sub-
way ventilation study. It is our intention to continue
to enhance the tools in the scope of cooperative
modeling projects and then, at some future point,
release an off-the-shelf product.

The design of the Modelica language itself has
for natural reasons been centered around the only
presently available implementation by Dynasim. In
this section, we will outline a few issues where the
present Modelica design is less well suited to usage
in the pre-compiled setting of IDA and where
Modelica extensions have been introduced. Present
shortcomings of the implementation are also dis-
cussed.

4.1 Interpretation of Modelica code

The IDA Translator compiles classes, not com-
plete systems. Compiled models normally contain:

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003109

• public connectors
• more variables than equations
• outer elements
• arrays with non-constant sizes

All public non-partial and non-local classes de-
clared with keywords class, model or block
are compiled to IDA components. Blocks are pres-
ently compiled to IDA algorithmic models. Public
non-partial and non-local atomic types and connec-
tor classes are similarly compiled to IDA quantity
and link types.

A compiled model may be extended after compi-
lation by inserting and connecting submodels.

Public top-level connectors in compilation units
are preserved by the compiler available for connec-
tions.

Compilation units may contain unresolved outer
components. Such compiled models should be used
only as elements of models that contain correspond-
ing inner components. Unresolved outer classes are
not supported.

For each compilation unit, a symbolic analysis is
performed where as many variables as possible are
solved for symbolically, effectively removing them
from the global system of equations. Resulting
equations are differentiated and code for evaluation
of analytical Jacobians is generated. Although prin-
cipally possible, no index reduction is currently
done at this stage.

It is possible to allow the IDA Translator to
process entire simulation problems, resulting in just
a single compilation unit. However, this is not the
intended usage of the tool since the topological
flexibility of being able to re-configure pre-
compiled units is an essential feature of most IDA
applications.

4.2 IDA driven Modelica extensions

Events in functions and pre operator
The previous IDA language, NMF, supports

events in functions, also in foreign functions. This is
possible because the variables that monitor events
are explicit in NMF models. In Modelica, these
variables are automatically generated and not avail-
able for the programmer.

We have implemented events using the special
function mo_event(var, expr). The variable var is a
special kind of variable (called assigned state in

NMF) that keeps its value from the previous
timestep. The function modifies the value of var and
generates an event whenever it changes sign. In
order to be used in a function, the previous value of
var should be passed to the function and the modi-
fied value should be returned. To make this possi-
ble, we have changed the semantic of the pre opera-
tor. In our implementation, pre(v) is always the
value of v at the previous successful time step; this
is also valid for non-discrete variables.

The modified pre operator may also be used for
several other purposes, for example:

• To calculate a maximum value during the simu-
lation:
xMax = max(x, pre(xMax));

• To break an algebraic loop in order to simplify
solution of an equation with weak dependences:
RhoAir = 1/287.0 * pre(PAir) / Tair;

• To implement local integration methods, for
efficency or for limiting numerical dissipation in
PDE:s

A full account of the arguments for the extension
of the pre operator is beyond the scope of this pa-
per. However, uncontrolled numerical dissipation
due to large and variable timesteps is a fundamental
problem for many Modelica applications that should
be further discussed.

Conversion to strings
In Modelica 2.1 there are functions that converts

scalar values to strings, but there are no functions
for converting arrays and matrices. We have imple-
mented automatic conversion of non-strings to
strings. Example:
assert(x>0, "x = "+ x + " should be positive")

Graphics
• More named colors
• Arrow: Closed, Left, Right, {type,side}. The

size may be a vector
• lineThickness=0 - non-scaled minimal thickness
• Transformation: negative scale and aspectRatio

may be used instead of flip.

4.3 Features yet to be implemented

The following list is intended to give a flavor of
the present state of development.

Available variable and parameter types
� All variables and non-scalar parameter declared

as Integer or Boolean are converted to Real.
These variables cannot be used as arguments of
function calls.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003110

� Boolean scalar parameters are converted to In-
teger.

� String variables are not implemented (string
parameters are supported)

� Attributes (except value and start) should be
constant. They cannot be used in expressions.

� Attributes displayUnit, fixed, enable, nominal,
stateSelect are not used.

Connections
� Connection of subconnectors is not yet sup-

ported
Modification and redeclarations
� Modifications of class elements are not sup-

ported (i.e., when instantiating or extending a
class, it is not possible to modify local classes in
that class).

� No subtype checking in redeclarations. The
constraining clause is ignored.

� Choice annotations not supported.
Expressions
� Record constructors are not supported.
Iterations
� Multiple iterations (separated by “,”) not yet

supported.
� Ranges with step from:step:to are not supported.
� Vectors in indices only partially supported.
� The index end is not supported.
� Deduction of range is not implemented.
Arrays
� Array expressions (not instances) may not be

used as arguments to non-built-in functions.
Functions
� Optional arguments are not supported (except in

some built-in functions)
� Record arguments are not supported.
� Protected variables in functions are not sup-

ported.
� The annotation derivative is not yet supported.
� Some restrictions on external functions.
� Not all Modelica utility functions are imple-

mented.
� External objects are not implemented.
Initialization
� Initial equation/algorithm not implemented
Built-in functions and operators
� Not implemented functions: initial, terminal,

smooth, sample, edge, change, reinit, termi-

nate, div, rem, integer, cardinality.
Graphics
� Attribute visible and smooth is ignored.

� Cylinders and Sphere fill patterns are not sup-
ported.

� BorderPattern shown as rectangle with 3D bor-
der

� No line pattern if lineThickness >= 0.375
� Text rotation is not implemented
� Filled text is not implemented.
� Bitmaps: may be rotated by 90 degrees only,

imageSource not implemented, fileName just
copied (no directory information added).

5 Summary and further work
The present IDA Modelica implementation is a

sufficient base for complex application development
and delivery. Several partner projects are underway,
where Equa supports developers with needed new
functionality. Perceived user demand will determine
when a public product is released.

Equation based simulation is presently limited by
fragmentation into disparate single-vendor user
communities. As a technology, Modelica is suffi-
ciently neutral and powerful to break the presnet
status quo. Hopefully, another reasonably complete
independent implementation will aid this process.
However, it is vital that the present Modelica com-
munity focuses on the truly critical success factors
rather than on yet another intriguing technical issue.

References
1. P.Sahlin, E.F.Sowell, „A Neutral Format for Buil-

ding Simulation Models“, Proceedings of the IBPSA
Building Simulation '89 conference, Vancouver, Ca-
nada, 1989

2. J.W. Demmel, J.R. Gilbert and X.S. Li, “SuperLU
User’s Guide”, Technical Report, UC Berkeley,
USA, 1997

3. P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent,
“MUMPS Multifrontal Massively Parallel Solver v.
2.0”, Technical Report, CERFACS, France, 1998

4. T.A. Davis, “UMFPACK v. 4.0 User Guide”, Tech-
nical Report, Univ. of Florida, Gainesville, USA,
2002

5. C. Panagiotopoulos “Finite element models in a
lumped model simulation environment. An interface
between FEMLAB and IDA S.E.” Technical Report,
KTH, Stockholm, 2001

6. Gardel, A. (1957), “Les Pertes de Charge dans les
Ecoulements au Travers de Branchements en Te”,
Bull. Tech. De la Suisse Romande, 83, 123-130, 144-
148, 1957

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003111

Appendix - Structure of commuter rail model

The Traffic connector transmits information about train location, speed and acceleration between the Route
block and the physical tunnel model:

connector Traffic "Traffic line in tunnel segment"
Velocity speed(start=0) "traffic speed";
Real nFront "no of vehicle fronts per segment";
Real nBack "no of vehicle backs per segment";
Length lBody "total length of vehicles per segment";
Acceleration acc(start=0) "traffic acceleration";

end Traffic;

Below is the template for a Tunnel system. The end user may add instances of different models (sections,
platforms, ventilation shafts, traffic routes) into a compiled Tunnel system and then connect and simulate the
system (see Figure 5).

// The template for Tunnel document
model Tunnel "Tunnel Document"
inner parameter ArraySize nFract = 2 "Number of air fractions";
inner parameter ArraySize nVeh=1 "Number of vehicle types";
inner parameter Vehicle[nVeh] veh "Description of vehicles";
inner parameter Fraction[nFract] fract "Description of air fractions";
Ambient amb "Properies of ambient air";

end Tunnel;

A traffic route is modeled as a Modelica block. Each instance describes a route in one direction. The model
is connected (using traffic connector) with segments in tunnel sections and platforms (a tunnel section
may consist of several segments). The connection is done by the application; the user only draws the route on
the tunnel schema.
The route block is translated to an algorithmic model. It does not add equations to the tunnel system, but
only supplies the system with input data series (like a table). IDA SE supports also post-processing algo-
rithmic models, used for collecting and transforming measurements on a model.

block Route
// Array sizes
parameter ArraySize
nSched = 2 "Number of points in route schedule",
nSeg = 1 "Number of tunnel segments",
nRun = 5 "Max number of scheduled vehicles";

final parameter ArraySize nPos = nSeg + 1 "Number of segment ends";

// Route schedule
parameter Time tSched[nSched] = {0, 3600} "time column in schedule";
parameter Velocity vSched[nSched] = {10, 10} "speed column in schedule";
parameter Length xSched[nSched] "position column in schedule";
parameter Length xSched0 = 0 "start position for schedule";

// Tunnel segments
parameter Length lSeg[nSeg] "segment lengths";
parameter Boolean reverse[nSeg] = fill(false,nSeg) "traffic direction";
parameter Length xSeg[nPos] "segment ends";

// Time schedule
Integer lastRun(start=0) "last scheduled vehicle";
discrete Time

nextDep(start=time.start) "Next departure time",
interval(start=300) "departure interval",
depTime[nRun] (each start=-1) "Departures time";

parameter input Integer vehicleType = 1;
output Traffic[nSeg] traffic;
outer parameter ArraySize nVeh;
outer parameter Vehicle[nVeh] veh "Description of vehicles";

protected
Length xFront, xBack, xF, xB;
Velocity v;
Acceleration a;
parameter Length lVeh = veh[vehicleType].length;
parameter Time tMax "max route time";
parameter Time tFront[nPos], tBack[nPos];

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003112

// parameter processing
algorithm
// Calculate the train position at scheduled time points
xSched[1] := xSched0;
for i in 1:nSched-1 loop
xSched[i+1] := xSched[i] + 0.5*(vSched[i]+vSched[i+1])*(tSched[i+1]-tSched[i]);

end for;
// maximal time per route
tMax := tSched[nSched] +

(if vSched[nSched]==0 then 0 else lVeh/vSched[nSched]);
// segment lengths
lSeg := xSeg[2:nSeg+1] - xSeg[1:nSeg];

// the time then the train passes tunnel segments
for i in 1:nPos loop

tFront[i] := RouteTime(xSeg[i], nSched, tSched, xSched, vSched);
tBack[i] := RouteTime(xSeg[i]+lVeh, nSched, tSched, xSched, vSched);

end for;

algorithm
// calculate the traffic parameters on each segment
// the tunnel segments reads them (using traffic connector)

// Launch the next train
when time>=nextDep then
lastRun := mod(lastRun, nRun) + 1;
assert(depTime[lastRun]<0, "The max number of scheduled trains is exceeded");
depTime[lastRun] := nextDep;
nextDep := nextDep + interval;
end if;

// Initialize output variables
for iSeg in 1:nSeg loop
traffic[iSeg].speed := 0.0;
traffic[iSeg].nFront := 0.0;
traffic[iSeg].nBack := 0.0;
traffic[iSeg].lBody := 0.0;
traffic[iSeg].dSpeed := 0.0;
traffic[iSeg].acc := 0.0;

end for;
// loop over all running trains
for iRun in 1:nRun loop
if depTime[iRun]>=0 then // if not removed
if time >= depTime[iRun] + tMax then
// the train is out of tunnel, remove it
depTime[iRun] := -1;

else
// calculate the position, speed, and acceleration
(xFront, v, a) :=

RouteInt(time - depTime[iRun], nSched, tSched, xSched, vSched);
xBack := xFront - lVeh;
// loop over tunnel segments
for iSeg in 1:nSeg loop
// calculate the position of the train in the segment
xF := xSeg[iSeg+1];
xB := xSeg[iSeg];
// is the train on the segments (with events)?
if time>depTime[iRun]+tFront[iSeg] and time < depTime[iRun]+tBack[iSeg+1] then
traffic[iSeg].speed := if reverse[iSeg] then -v else v;
traffic[iSeg].acc := if reverse[iSeg] then -a else a;
if time<=depTime[iRun]+tFront[iSeg+1] then
// count the train fronts
xF := xFront;
traffic[iSeg].nFront := traffic[iSeg].nFront + 1;

end if;
if time>depTime[iRun]+tBack[iSeg] then
// count the train backs
xB := xBack;
traffic[iSeg].nBack := traffic[iSeg].nBack + 1;

end if;
// count the total length
traffic[iSeg].lBody := traffic[iSeg].lBody + (xF - xB);

end if;
end for;

end if;
end if;

end for;
protected
function RouteInt "Integrates the train movement along the route"
input Time t "time elapsed from the start point";

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003113

input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp[n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";
output Length x "train position";
output Velocity v "train speed";
output Acceleration a "train acceleration";

external;
end RouteInt;
function RouteTime "Returns the train time at given position"
output Time t "the calculated train time";
input Length x "the given train position";
input Integer n "number of intervals in the schedule";
input Time tp[n] "time column in schedule";
input Length xp[n] "position column in schedule";
input Velocity vp[n] "speed column in schedule";

external;
end RouteTime;

end Route;

The tunnel segments and platforms are connected using TunnelCut connector:

connector TunnelCut
outer parameter ArraySize nFract "Number of air fractions";

Pressure P;
flow MassFlowRate m_dot(start=0);

Temp_C T(start=10);
flow HeatFlowRate_M Q;

Real vf[nFract];
flow MassFlowRate vf_dot[nFract];

end TunnelCut;

The bi-directional flow of air with fractions (of CO2, NO, dust, smoke etc.) is modeled in a similar way as in
the Modelica Fluid package, but the implementation is different.
Here the end-user (working with pre-compiled components) is able to define media properties, especially
number of air fractions. Therefore the number of fractions nFract is defined as a parameter and not as a
constant as in the Modelica Fluid package.

 P. Sahlin, P. Grozman IDA Simulation Environment - a tool for Modelica based end-user application deployment

 The Modelica Association Modelica 2003, November 3-4, 2003114

Automatic translation of Simulink models into Modelica
using Simelica and the AdvancedBlocks library

 Mike Dempsey

Claytex Services Limited
5 Marston Close, Leamington Spa, UK

mike.dempsey@claytex.com
http://www.claytex.com/

Abstract

A new tool, Simelica™, is presented for converting
Simulink® models into equivalent Modelica®

models. The conversion is achieved while
retaining the original structure of the Simulink
model. The equivalent Modelica models are built
from a new library of components, the
AdvancedBlocks™ library.

The AdvancedBlocks library is designed to work
with Simelica but also brings a new range of
control system component models to the Modelica
environment. The blocks are designed to enable
the calculation method used to be varied in each
particular instance that the block is required. For
example, in the DiscreteIntegrator block you can
choose from 3 different integration algorithms,
whether to apply limits to the integrator or not, and
how the initial condition is specified amongst
many other options. The main focus is on
delivering a user-friendly library to aid control
system modelling.

Some example applications will be discussed to
illustrate how effective the translation process can
be.

1 Motivation

The use of system modeling and simulation is
increasing in the automotive industry as we strive
to reduce product development times whilst
increasing the complexity and quality of the
product. As the use of these simulation techniques
increases so does the requirement to include more
and more detail into the models and to ensure that
the interaction between the different systems is
being modeled adequately.

For many years Simulink has been the tool of
choice for much of the automotive industry to
develop both physical and control system
models[1,2,3]. The main attraction of Simulink
has been its flexibility and the range of toolboxes
available to aid control system design,
development and calibration. However, many
users of Simulink are finding that as the physical
system models increase in complexity, the task of
developing these models further is becoming
increasingly difficult and time consuming. Many
are now looking at alternative systems and
Modelica based tools are well placed in the market
to meet these needs.

The adoption of the Modelica tools is currently
limited to those departments within automotive
manufacturers that are currently pushing forward
the development of complex physical system
models[4,5]. This is leading to problems within
these companies where the control system
engineers are still developing models in Simulink
while the design engineers are developing physical
system models using Modelica.

Currently tools such as Dymola™ provide methods
to generate S-functions from the Modelica
models[6] and this then enables the models to be
simulated together in one environment. In our
experience this method has not been completely
successful. We have found that, with our more
complex physical models, the Simulink solvers are
unable to cope reliably with the generated S-
function models. This has led to simulations
effectively stalling where the time step becomes so
small that the simulation is no longer making
progress.

We then simply asked ourselves, why don't we
make the process work the other way round? Why
not convert the control system model into

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003115

Modelica and use that environment to simulate the
interactions between control system and physical
system. After all Modelica can support a block
diagram modeling style and our physical models
are working reliably in the Modelica environment.

2 Simelica

2.1 Overview

Simelica is a translation tool for converting
Simulink models into equivalent Modelica models.
It works as both a command line tool so that its use
can be incorporated into scripts and also as a
windows tool complete with graphical user
interface (GUI).

The translation works by reading the Simulink
.mdl file and interpreting this into a Modelica
model based on the AdvancedBlocks library.
Simelica is capable of dealing with all the
modeling methods used in Simulink including:
• From-goto systems
• Signal Bus systems
• Muxed signals
• Data store read/write/memory systems

The majority of the standard Simulink library can
be automatically translated into an equivalent
Modelica block although there are some exceptions
including the MatlabFcn, S-function and
Stateflow® blocks.

2.2 Using Simelica

The command line version of Simelica provides
simple functions to translate a single Simulink file
or all the Simulink files contained in a specified
directory. This version is useful for incorporation
into scripts but it does not provide many of the
features available through the GUI that most users
will find useful, such as highlighting unsupported
blocks. Figure 1 shows a screen shot of Simelica.

When running in GUI mode after the Simulink file
is read into the tool the structure of the model is
presented to the user. Any unsupported blocks are
highlighted to the user at this point along with a
brief explanation of what action the user must take
either now, or after the Modelica file is generated
to ensure that the translated model can be used.

Following translation, a log of the work done is
produced. This will list any problem blocks
encountered and include their full path in the
model. The user can then easily see what, if any,
parts of the translated model need further attention
before it can be used.

Figure 1: Screen shot of Simelica

As well as the need to translate a model it is also
essential to translate the data from the Simulink
environment into the Modelica environment. Data
can be imported and incorporated into a translated
model using Simelica. The model data has to be
stored as a Matlab® binary file, which can then be
read by Simelica and the data incorporated into the
model through the use of a record that is available
in every subsystem.

An additional consideration in the translation of
data is that Simulink can load different data files
into different points of the model through the use
of masked subsystems. In Simelica, masked
subsystems are identified and the user is given the
option of incorporating a data file directly into
each masked subsystem. In this case each masked
subsystem gains its own unique workspace record
to replicate the fact that Simulink defines local
workspaces for masked subsystems.

The Modelica models generated by Simelica are
based on the AdvancedBlocks library rather than
interpreting the model into a flat model file. This
ensures that the model appears similar and
maintains the same structure as the original
Simulink model. Figure 2 shows a comparison of
a translated model in Simulink and Dymola. It
shows that the model structure is preserved and the
layout and connection of blocks in the Modelica
version is similar to the original model.

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003116

Figure 2: Comparison of a translated
model in Simulink (top) and Dymola

3 AdvancedBlocks Library

3.1 Overview

A new Modelica library of control blocks has been
designed to provide equivalent blocks in Modelica
to those in the Simulink standard library. The
design of the library has focused on providing a
user-friendly library that can be used effectively as
a modeling library. The main focus has been on
providing simple ways to select the different
options available for each block, for example the
integrator method to be used, the port data type to
be used, etc. There are a number of areas of
interest in the design of the latest version of the
AdvancedBlocks library and these are described in
the following sections.

3.2 Connector Definition

The first step in developing the new library was to
define the connector for the blocks. A new
connector was required for a number of reasons;
firstly, Simulink supports the use of matrix, vector
and scalar signals whilst the original
Modelica.Blocks.Interface.InPort and OutPort
connectors[7] only support vector signals.
Therefore we needed to change the connector
definition to support matrix signals. During the
translation process Simulink scalar signals are
converted into Modelica matrices with only one
value and vector signals are converted into
Modelica matrices with only 1 row.

A second consideration was that Simulink cascades
sample times along the connections. This means
that a block can inherit a sample time from its
driving block. To achieve this in Modelica we
needed to add an additional signal to our connector
to carry the sample times from block to block. It is
necessary for this sample time signal to be a matrix
because when muxed signals are used in Simulink
it is possible for each signal to be carrying with it a
different sample time. To replicate this behavior in
the AdvancedBlocks library we actually pass a
sample trigger along the connections that tells the
connected block at which point in time it should
calculate its output.

The final consideration for designing the connector
was that Simulink signals could be different data
types. We therefore needed to find a way to define
a connector in which we could easily change the
data type. We also needed to find a structure that
would allow the connectors to be replaced even
though the basic data type of the signal might be
changing. The syntax for replaceable classes[8]
would specifically prohibit the simple swapping of
connectors if the basic types are different.
Fortunately it is possible to replace classes that
extend from the same base class.

To overcome the constraints of the language and to
meet the design requirements the connectors are
defined in packages and are created in a two-stage
process. Each connector package specifies either
an input or output connector for a specific data
type. All the connector packages are extended
from an appropriate base package that defines a
base connector and a base data type conversion
function. There is one base package for input
connectors, and one for output connectors. Figure

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003117

3 shows the base package definition for the output
connectors.

Figure 3: Base Connector Package
Definition

The data type conversion function is used to apply
the correct data type to the output signal. The
blocks within the AdvancedBlocks library all use
variables of type Real internally to handle the
calculations. To correctly convert the internal
signal type to that required in the connector a
function is used that changes the signal data type
and applies any limits to the value that may be
required for a specific data type.

A connector for each required data type is then
defined within its own package. This package
must include a connector and function definition
that extends from those in the base package.
Figure 4 shows how the output connector for the
uint8 (unsigned 8 bit integer) data type is defined
in the AdvancedBlocks library.

Figure 4: Definition of the uint8 connector

By declaring the different connectors within their
own package it makes it possible to replace both
the connector and conversion function using one
redeclare statement. By ensuring that the
connector and function names are the same in each
package, the replaced package automatically
changes the connector and conversion function to
the chosen data type. In figure 5 the replaceable
package Out1DataType is defined and then the

Outport connector is instantiated from this
replaceable package. The constraint on the
replaceable package ensures that we will only ever
be able to replace the connector package with
another valid package.

This structure to the design of the connectors and
data type conversion function means that each
connector in a block in the AdvancedBlocks
library can use a different data type and this is
achieved by simply redeclaring the relevant
package that defines that connector to match the
desired data type.

Figure 5: Example use of a connector

Unfortunately this design cannot be implemented
in the current version of Modelica because the data
conversion function does not generate an event but
integer values, such as those in the connector, are
only allowed to change at events. This means that
where we would like to use an Integer or Boolean
data type in the connector we are unable to do so.
The work around in the current version of the
library is that all the connectors use a Real data
type. The conversion functions also output a Real
data type regardless of the actual data type desired
but internally they apply the limits and round
values as appropriate, i.e. round to the nearest
integer if an integer data type is requested.

3.3 Continuous and Discrete time
modes

A large proportion of the blocks in the Simulink
standard library can run in different time-modes,
i.e. either continuous or discrete time modes. In
addition where blocks are able to run in discrete-
time mode they can be defined to run at a set
sample rate or they can inherit their sample time
from their parent system or from their driving
block.

partial package Base
 partial connector Outport "Output signal"
 parameter Integer n=1 "Dimension 1 of signal matrix";
 parameter Integer m=1 "Dimension 2 of signal matrix";
 output Integer sampletrigger[n, m] "Sample trigger to be
passed between blocks";
 end Outport;
 partial function Convert
 end Convert;
end Base;

package uint8 "uint8 (unsigned 8 bit integer) output signal"
 connector Outport "uint8 output signal"
 extends Base.Outport;
 output Types.uint8 signal[n, m] "Signal value";
 end Outport;
 function Convert
 extends Base.Convert;
 input Real u;
 output Types.uint8 y;
 algorithm
 y := integer(if u > 255 then 255 else if u < 0 then 0 else u);
 end Convert;
end uint8;

block OutputExample
 replaceable package Out1DataType =
 AdvancedBlocks.Interface.Connectors.Outputs.uint8 extends
 AdvancedBlocks.Interface.Connectors.Outputs.Base;
 Out1DataType.Outport out1(n=1, m=1);
protected
 Real y1[1,1] "Result of internal calculation";
equation
 out1.signal = Out1DataType.Convert(y1);
end OutputExample;

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003118

To enable blocks within the AdvancedBlocks
library to support running in these different time
modes they have been defined so that they extend
from a replaceable block that governs the
calculation method used. Within each block that
supports running in different time modes there is
an encapsulated package that contains the different
definitions required for operating in the different
time modes. Figure 6 shows how the
AdvancedBlocks.Math.Abs block is defined with
the ability to switch between continuous and
discrete time mode.

Figure 6: Block structure to support
different time modes

When the user then drags the Abs block into their
model for use they can simply switch time modes
by redeclaring the block TimeMode to be any of
the versions contained in the Options package.
This is made even easier in tools such as Dymola
where the version of TimeMode to be used can be
selected from a pull-down menu. In the Abs block
shown in Figure 6 it is possible to choose between
a Continuous time mode and a Triggered time

mode. In the Triggered time mode the sample time
is inherited from the parent system through the
outer variable sampletrigger.

The structure of the Modelica code means that the
actual equations defining the behaviour of the
block are separate to the equations that force the
block to act in a particular time-mode. This eases
the maintenance of the library by not repeating
blocks of code. This becomes a major
consideration in the more complicated blocks.

3.4 Integrator Block

The continuous time integrator in Simulink is one
of a number of blocks that can function in a variety
of different ways depending on the choices made
by the user each time the block is added to a
model. The options for the integrator block include
applying limits to the output, initialising with
internal or external initial conditions, allowing for
external reset signals, outputting state information
and information on the limit condition[9]. To
define all this in Modelica in a way that is easy to
use has been achieved by extending the ideas
described and used to change the time mode of the
Abs block. This has led to the encapsulated
package within the Integrator block becoming
much more complex including several levels of
hierarchy.

Each Integrator method is an extension of the same
base class defined in the encapsulated package.
The base block contains the definitions for the
input and output connections and instantiates these
from replaceable packages. This structure ensures
that each integration option can redeclare the input
and output layers to have the required number of
connectors for this method. For example, if an
external initial condition is required then two
inputs are needed rather than one.

The result of this structure for the user is that they
can easily choose what functionality they want
within the integrator block in each instance.
Figure 7 shows the dialog box produced by
Dymola for the integrator block. Each option can
be changed through the use of a pull-down menu
showing the available options.

This same structure idea has also been used for
many other blocks in the AdvancedBlocks library
including the discrete integrator, math function
block, trigonometric function block and many
others.

block Abs "Abs block"
 extends TimeMode;
 replaceable block TimeMode = Options.Continuous extends
Options.Base;

 encapsulated package Options
 import AdvancedBlocks.Interface;

 partial block Base "Base class and calculation function"
 extends Interface.BaseBlock "Icon and common properties";
 extends Interface.IOLayers.SI.Inports "Input definition";
 extends Interface.IOLayers.SO.Outports "Output definition";
 protected
 Real y[nout[1, 1], nout[1, 2]] "Result of internal calculation";
 equation
 y = abs(u1);
 end Base;

 block Continuous "Continuous time mode"
 extends Base;
 equation
 y1 = y;
 y1st = -ones(nout[1, 1], nout[1, 2]); // Sample trigger to next
block
 end Continuous;

 block Triggered "Discrete time mode"
 extends Base;
 protected
 outer Boolean sampletrigger[1];
 equation
 y1st = if sampletrigger[1] then ones(nout[1, 1], nout[1, 2]) else
zeros(nout[1, 1], nout[1, 2]); // Sample trigger to next block
 when sampletrigger[1] then
 y1 = y;
 end when;
 end Triggered;
 end Options;
end Abs;

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003119

Figure 7: Dymola dialog box for the
Integrator block

3.5 Iterator Systems

The latest version of Simulink includes for-iterator
and while-iterator subsystems. In these
subsystems the blocks are executed a number of
times at each time step. The actual number of
times that the sub-system interates at each time
step can vary from time step to time step. The
iterator subsystems have been introduced into
Simulink to encourage its use as a control system
software design and development tool. The key
improvement for users in introducing these blocks
is to facilitate the auto-coding of control system
software. These subsystems along with the range
of if-then-else and switch-case blocks make it
much easier for controls engineers to design and
develop the control system software.

Iterator subsystems can be translated into Modelica
where a fixed number of iterations are specified
such as in some instances of for-iterator
subsystems. In these cases the blocks within the
subsystem are instantiated into an array of blocks
where the size of the array equals the number of
iterations to be performed. For example, figure 8
shows how a simple subsystem would be defined if
it was required to iterate 5 times at each time step.
The output from this subsystem at the first time
step would be 25, after the second time step it
would be 50, etc.

In this example the constant, sum and memory
blocks are declared as component arrays where the
size of the array is equal to the number of
iterations. Each block within the component array
forms a different iteration of the for loop. The
subsystem output connector is only connected to

the Sum block in the final iteration of the for loop
so that we get the full value of the loop passed out
of this subsystem. The memory block is connected
so that it effectively spans the iterations. The input
to the memory block comes from the output of the
Sum block in the current loop. The output from
the memory block is connected to the input of the
Sum block in the next iteration. In the final
iteration of the loop the output from the memory
block is connected to the input of the Sum block on
the first loop.

To use this idea for while-iterator subsystems and
for-iterator subsystems where the number of
iterations can vary at each time step would require
the component arrays to vary in size at each time
step. It is not currently possible to implement this
type of system in Modelica where the number of
iterations varies at each time step.

Figure 8: Example Iterator subsystem

4 Example models

As well as a large number of relatively simple test
cases a number of complex real-world examples

model ForIteratorSubsystem
 extends AdvancedBlocks.Interface.Subsystem;
public
 constant Integer NumIterations ={5} “Number of iterations”;
 Sources.Constant[NumIterations] Constant(each k=[5]);
 Math.Sum[NumIterations] Sum;
 Continuous.Memory[NumIterations] Memory;
 Interface.Connectors.Outputs.Double.Outport out1;
equation
 for i in 1: NumIterations loop
 connect(Constant[i].out1, Sum[i].in1);
 end for;
 for i in 1: NumIterations loop
 connect(Sum[i].out1, Memory[i].in1);
 end for;
 for i in 1: NumIterations - 1 loop
 connect(Memory[i].out1, Sum[i + 1].in2);
 end for;
 connect(Memory[NumIterations].out1, Sum[1].in2);
 connect(Sum[NumIterations].out1, out1);
end ForIteratorSubsystem;

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003120

have been translated. Two examples of translating
real-world models are presented in the following
sections and the simulation performance and
results have been compared.

4.1 Cruise Control Simulation

In this example we have combined a detailed
physical powertrain model with the actual cruise
control function from an engine control system, see
figure 9. The cruise control function is developed
by the system supplier in Simulink and then used
by both the customer and supplier to develop and
calibrate the system into the end product.
Ultimately the actual code downloaded into the
engine control unit is generated automatically from
the Simulink model and so the latest version of the
cruise control strategy will always be available in
Simulink.

Figure 9: Powertrain model and converted

controller system model

This cruise control function is designed to work as
part of a torque structure engine management
system. This means that the when the cruise
control function is active it demands an engine
torque and feeds this into the torque structure
function which converts this torque demand into a
throttle position, spark timing and amount of fuel
to inject. These quantities are determined so that
the engine will produce as close to the demanded
torque value as is physically possible within the
constraints of the calibration.

For this example we have chosen to convert just
the cruise control function from Simulink into
Modelica using Simelica. This is then coupled to a

detailed powertrain model that does not include an
engine model. The torque demand from the cruise
control model is applied directly to the engine
flywheel. In this way we can eliminate the need to
calibrate the torque structure function on the
assumption that this will be calibrated to translate
the demanded torque into the actual engine torque
produced at a later date.

The aim of this model was to enable the calibration
of the cruise control function early in the
development process. The task of calibrating the
cruise control function traditionally requires a
significant amount of test work to achieve good
results. This is due to the difficulties involved in
repeating each test exactly and the wide range of
conditions that need to be tested. It is therefore an
ideal candidate for applying simulation techniques
which can reproduce the same test conditions
repeatedly and help produce an initial calibration.

Figure 10: Comparison of Simulink (top)
and Modelica Controller models

To translate the controller model and validate the
generated Modelica model a Simulink model was
generated that played measured data into the
control system and recorded the outputs. This
model, its parameter data and the measured data
were then translated into Modelica using Simelica.
Figure 10 compares the outputs from the controller
function in both Simulink and Modelica. By
ensuring that the Modelica controller model
produces the same results as the original Simulink

0 10 20 30 40 50 60 70 80 90 100
-100

0

100

200

300

400

500

Time (s)

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003121

model we can be sure that the translated model is
accurate.

Once we are satisfied that the translated controller
model was behaving in the same way as the
original Simulink model the new Modelica model
could then be used to attempt to calibrate the
control system. There are many parameters within
the control system that need to be calibrated and by
repeating the same test exactly the effect of
altering these parameters can be assessed and a
calibration can be defined. Figure 11 shows the
effect of altering one of the gains in the control
system on a given test.

Figure 11: Effect of controller gain on a
Cruise Resume Event

In this test the driver puts the vehicle into cruise
mode at 20 seconds but then presses the brake at
22 seconds forcing the vehicle out of cruise mode
and into a gentle deceleration. At 42 seconds the
driver presses the Resume button and the vehicle
enters back into cruise mode and attempts to regain
the speed it was travelling at when the driver first
put the vehicle into cruise mode. The three results
traces demonstrate the effect of altering one of the
gains in the cruise control function on the vehicle
response.

4.2 Central Heating System

The model shown in figure 8 was developed in
Simulink to predict the performance of a small

central heating system. The main motivator for
attempting to translate this model into Modelica
was to see if the simulation times would be
improved. As Dymola generates efficient
compiled models from the Modelica models and
Simulink interprets the model at runtime it would
provide an interesting comparison of simulation
performance.

Using Simelica the model has been translated into
Modelica and then compiled and simulated using
Dymola 5.1a. Figure 2 shows this model in both
Simulink and Modelica. It is clear from the
diagrams that the same model structure and layout
has been preseved during the translation process
and any visible differences in the two diagrams are
purely down to the way the two tools present the
models graphically.

Figure 12 shows the results traces produced by
both Dymola and Simulink versions of this model.
It can be seen that although the model has been
translated into Modelica the results obtained are
the same. The time required to simulate a 24 hour
period for the Modelica version of the model is 31
seconds but Simulink required just 9 seconds to
carry out the same simulation on the same PC.

Figure 12: Comparison of Simulink (top)
and Dymola simulation results

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003122

When comparing these simulation times it is also
essential to consider that in Dymola 493 signals
were stored but in the Simulink version only 12
signals were stored. In more complex systems the
immediate availability of all this data would be
very useful to help diagnose problems. To carry
out the same investigation in the Simulink version
of the model would require the user to manually
add scopes to areas of the model that they suspect
of causing the problem and then re-running the
model. This process of adding scopes and re-
running the model may have to be repeated several
times before the problem can be correctly
diagnosed.

5 Limitations

5.1 Limitations of Simelica

There are also some blocks available in Simulink
that cannot be automatical translated into
Modelica. These include blocks such as the
MatlabFcn and S-function. The MatlabFcn block
cannot be translated because it allows the user to
use any Matlab script or command in the model,
many of which do not have an equivalent in
Modelica. The S-function block cannot be
automatically translated because the c-code might
need to be changed significantly to work as an
external function in Modelica. It is possible to do
this manually though. There are a number of other
blocks that are currently unsupported but through
the continual development of the tool the majority
of these will be incorporated.

Another feature that cannot be automatically
handled is the initialisation commands that can be
fed into models and masked blocks. These cannot
be supported because they allow any Matlab
command to be used and executed during the
model initialisation and many of these commands
do not have an equivalent in Modelica. Rather
than attempt to handle this and get it wrong,
Simelica opts to simply copy all the commands
from the initialisation layer into a comment in the
block and then flag this to the user as a problem
requiring attention.

The final limitation in the translation process
currently is that matrix signals and signal data
types are not supported. Although many of the
features exist in the AdvancedBlocks library it is
not yet possible for Simelica to correctly translate

models that include these features. Where data
types other than the Matlab data type double are
used in the model the different data type will be
ignored by the translator and the converted model
will use the double data type. Models that contain
matrix signals will have the signal dimensions
incorrectly set. From the point-of-view of the
AdvancedBlocks library and Simelica a matrix
signal is any signal that has more than one row.
Many of the blocks within the AdvancedBlocks
library will not currently function correctly when
matrix signals are used. These issues will be
addressed in future versions of Simelica and the
AdvancedBlocks library.

5.2 Limitations of the Modelica
language

There are some key differences between the
Modelica language and what is possible in
Simulink. Modelica does not support the same
flexibility in block naming as Simulink does. For
example Simulink can use any special character in
the block names; names can also start with
numbers; names can contain white space
characters. Some transformations therefore have to
be made by Simelica to ensure that a block name
conforms to the Modelica specification. The
difficulty here can be that blocks that were named
differently in Simulink purely because of the
inclusion of a special character, or series of
characters that are prohibited in Modelica could
end up with the same name in the Modelica model
leading to errors.

Although many of the modelling methodologies
used in Simulink can be translated into a form for
use in Modelica it is not always possible to provide
an equivalent methodology in Modelica. For
example, signal buses are translated into simple
muxed signal systems where the bus selector is
defined to extract particular signals by index rather
than by name. In Simulink the names of the
signals are passed along the connection include the
heirarchy within the bus system. Signals can then
be extracted by selecting a particular signal name.
This feature is widely used in Simulink[10] as it
provides a powerful way to pass large groups of
signals around a model.

A large number of the blocks within the
AdvancedBlocks library contain encapsulated
packages that would ideally be hidden from the
user. This could be achieved by declaring the

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003123

package as protected but then all replaceable
classes and parameters would not be visible in the
GUI dialogs produced by Dymola. To get around
this all the parameters and replaceable classes
would then have to be declared in the block
containing the encapsulated package but this would
mean that the user is presented with options and
parameters that might not be valid because of other
selections they have already made. Another
method of hiding these packages from the user
whilst still making the parameters and replaceable
classes visible in the tool dialogs is required.
Ideally it would also be possible for the available
options and required parameters to change as
selections are made by the user.

6 Future

It is important to note that this paper refers to the
current version of Simelica and the
AdvancedBlocks library and that they will
continue to evolve and support more features.
They will both be continually developed to support
the latest versions of Simulink and Modelica.

7 Acknowledgments

Many people have provided support during the
design and development of Simelica and the
AdvancedBlocks library and I would like to extend
my thanks to them. Specifically Hilding Elmqvist,
Hans Olsson, Sven Erik Mattsson and Dag Bruck
from Dynasim, Martin Otter from DLR and Mike
Tiller from Ford Motor Company.

Matlab, Simulink and Stateflow are registered
trademarks of The Mathworks Inc. Modelica is a
registered trademark of The Modelica Association.
Dymola is a trademark of Dynasim AB. Simelica
and AdvancedBlocks are trademarks of Claytex
Services Limited.

8 References

1. S.R. Anderson, C.R. Ciesla, D.M. Carey, R.

Shankar, “A powertrain simulation for engine
control system development” , 1996 SAE
International Truck and Bus Meeting and
Exposition, SAE 962171

2. P.M. Fussey, C.L. Goodfellow, K.K. Oversby,
B.C. Porter, J.C. Wheals, ” Integrated
Powertrain (IPT) Model – Stage 2: Systems

Integration, Supervisory Control and
Simulation of Emissions Control Technology” ,
SAE 2001 World Congress, SAE 2001-01-
0928

3. J.A. MacBain, J.J. Conover, A.D. Brooker,
“Full-vehicle simulation for series hybrid
vehicles” , Future Transportation Technology
Conference, SAE 2003-01-2301

4. M. Tiller, W.E. Tobler, and M. Kuang,
“Evaluating Engine Contributions to HEV
Driveline Vibrations” , Proceedings of the 2nd
International Modelica Conference

5. S. Soejima, “Examples of usage and spread of
Dymola within Toyota” , Modelica Workshop
2000 Proceedings

6. “Dymola 5.0 User’s Manual” , Dynasim AB.
7. “Modelica Standard Library 1.5” , The

Modelica Association , 2002
8. “Modelica Language Specification, Version

2.0” , The Modelica Association, 2002.
9. “SIMULINK Release 13” (documentation),

The Mathworks Inc.
10. C. Belton, P. Bennet,. P. Burchill, D. Copp, N.

Darnton, K. Butts, J. Che, B. Hieb, M.
Jennings and T. Mortimer, “A Vehicle Model
Architecture for Vehicle System Control
Design” , SAE Congress 2003, SAE 2003-01-
0092

 M. Dempsey Automatic translation of Simulink models into Modelica using Simelica and the AdvancedBlocks library

 The Modelica Association Modelica 2003, November 3-4, 2003124

DrModelica
An Interactive Tutoring Environment for Modelica

Eva-Lena Lengquist Sandelin, Susanna Monemar, Peter Fritzson, Peter Bunus
PELAB, Programming Environment Laboratory

Department of Computer and Information Science

Linköping University, S-581 83 Linköping, Sweden

Email: {evale, x02susmo, petfr, petbu}@ida.liu.se

Abstract

This paper states the need for interactive teaching

materials for programming languages within the

area of modeling and simulation. We propose an

interactive teaching material for the modeling

language Modelica inspired by existing tutoring

systems for Java and Scheme.

The purpose of this new teaching material, called

DrModelica, is to facilitate the learning of Modelica

through an environment that integrates

programming, program documentation and

visualization. The teaching material is intended to be

used for modeling and simulation related courses at

the undergraduate and graduate level.

1. Background

The concepts of model, system, and experiment are

central in the area of modeling and simulation. “A

model of a system is anything an “experiment” can

be applied to in order to answer questions about that

system.” [1] “A simulation is an experiment

performed on a model.” [1]

Tools that are used for modeling and simulation are

becoming powerful aids in the product development

process. Using advanced tools and languages to

build a model of a product and then simulate its

behavior, before producing a physical prototype,

reduces the number of errors that can occur during

fabrication. This reduction consequently leads to a

decrease in the time needed to develop the final

product. Furthermore, the earlier the errors are

detected, the cheaper the corrections are.

Not too long ago in the history of modeling and

simulation technology, mathematical models were

implemented by hand. The models were usually

designed on paper using mathematical notation and

the programs written manually in a high-level

programming language, like C or Fortran, and stored

in text files. Much manual work was needed, making

not only maintenance of models expensive, but also

the modification of models hard in order to adapt to

new requirements [2].

2. Interactive Environments

Modelica helps solving problems concerning

modeling and simulation. In order for Modelica to be

used for this purpose, a modeling and simulation

environment is needed. In this section the

MathModelica environment is presented.

MathModelica is partly built on Mathematica

technology, which is also described below.

2.1. Mathematica

Mathematica [3] is a computer algebra system and

programming environment for performing

mathematical computations. The system can be used

in many different ways; the most basic functionality

involves using it as a “calculator”. The user types a

calculation and Mathematica performs it immediately.

However, there is a big difference between what a

traditional calculator can do and what Mathematica

can perform. The system seamlessly integrates a

numeric and symbolic computational engine, graphics

system, programming language, documentation

system, and advanced connectivity to other

applications.

Mathematica can also be used as a modeling and

simulation environment. When a model is simulated

in the environment, the results can be visualized in

various ways, using the Plot function.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003125

Mathematica is divided into two distinct parts: the

computer algebra engine and interpreter (“kernel”)

that receives and evaluates all expressions sent to it

and the user interface (“front-end”). The front-end

provides the programming interface to the user and

is concerned with such issues as how input is entered

and how computation results are displayed to the

user.

Mathematica’s front-end documents are called

notebooks. A notebook can contain specific

computations, text (including hyperlinks to other

notebooks), graphics, sounds and animations. Using

a hierarchical structure divided into sections,

subsections etc. A notebook can be made to look like

a traditional typeset document, with the advantage

that the calculations can remain active and can be re-

evaluated at any time.

2.2. MathModelica

MathModelica, from MathCore Egineering AB [4],

is a powerful engineering environment for physical

modeling, simulation, analysis and design [5, 6]. In

MathModelica, models are described using

Modelica. Dymola [7], developed by Dynasim [8], is

another powerful Modelica environment.

The MathModelica environment integrates modeling

and simulation with graphic design, advanced

scripting facilities, integration of code and

documentation, and symbolic formula manipulation

provided via Mathematica. Import and export of

Modelica code between internal structured and

external textual representation is supported by

MathModelica. The environment extensively

supports the principle of literate programming and

integrates most activities needed in simulation

design: modeling, documentation, symbolic

processing, transformation and formula

manipulation, input and output data visualization.

The user interface of MathModelica consists of the

Model Editor, the Simulation Center and

Mathematica notebooks. The Model Editor is a

graphical tool for designing models using predefined

library components. The Simulation Center is a

graphical user interface for running simulations and

plotting curves of the models. Mathematica

notebooks provide a text based programming

environment.

3. DrModelica

Understanding programs is hard, especially code

written by someone else. For educational purposes it

is essential to be able to show the source code and to

give an explanation of it at the same time [9].

Moreover, it is important to show the result of the

source code’s execution. In modeling and simulation

it is important to have the source code, the

documentation about the source code, the execution

results of the simulation model, and the

documentation of the simulation results in the same

document. The reason is that the problem solving

process in computational simulation is an iterative

process that often requires a modification of the

original mathematical model and its software

implementation after the interpretation and validation

of the computed results corresponding to an initial

model.

Most of the environments associated with equation-

based modeling languages focus more on providing

efficient numerical algorithms rather than giving

attention to the aspects that should facilitate the

learning and teaching of the language. There is a need

for an environment facilitating the learning and

understanding of Modelica. Also, users are reluctant

to using a programming language that does not

provide an adequate programming environment [10].

All the above-mentioned facts constitute our reason

for developing DrModelica [11], a teaching material

for Modelica. DrModelica is based on MathModelica

[4] and the ideas of Literate programming [12].

Literate programming is a programming methodology

that was introduced by Donald E. Knuth. It represents

the idea of organizing a source program in an “essay”

manner by combining the source code with the

corresponding documentation in the same document.

By doing so it is easier to read and understand the

program.

MathModelica has an interface allowing the user to

write source code as well as documentation in the

same document. The user does not have to switch to a

command prompt to compile the source code, since

this can also be performed in the environment. The

same document also contains plots of the simulation

results. Additionally, in DrModelica the whole

Modelica language is available to the user, unlike

many other tutoring systems, where it is common to

provide a subset of the language. Furthermore, we

have developed a web version of DrModelica, which

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003126

has a similar interface and includes most of the

functionality that can be found in MathModelica.

The interface for the web version of DrModelica is

currently available at http://www.DrModelica.org

although in order for the connection between the

interface and the Modelica compiler to work, the

OpenModelica compiler has to be downloaded first.

The difference between the web version and the

MathModelica version of DrModelica is that the

functionality of the web version is limited, for

example there is no possibility to show plots of a

simulated model.

Figure 1. The front-page notebook of DrModelica.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003127

Furthermore, the web version is intended to be used

as a testing environment for evaluating Modelica

code. It is not a teaching material, since there is no

text or examples that the user can learn from.

DrModelica has a hierarchical structure represented

as Mathematica notebooks. The front-page notebook

is similar to a table of contents that holds all other

notebooks together by providing links to them. This

particular notebook is the first page the user will see

(Figure 1).

In each chapter of DrModelica the user is presented a

short summary of the corresponding chapter of the

book “Principles of Object-Oriented Modeling and

Simulation with Modelica” by Peter Fritzson [1]. The

summary introduces some keywords, being hyperlinks

that will lead the user to another notebook describing

the keyword in detail.

Figure 2. HelloWorld class.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003128

Now, let us consider that the link “HelloWorld” in

section 2.1 in Figure 1 is clicked by the user. The

new notebook, to which the user is being linked (see

Figure 2), is not only a textual description but also

contains one or more examples explaining the

specific keyword. In the class, HelloWorld, a

differential equation is described.

No information in a notebook is fixed, which implies

that the user can add, change or remove anything in a

notebook. Alternatively, the user can create an

entirely new notebook in order to write his/her own

programs or copy examples from other notebooks.

This new notebook can be linked from existing

notebooks.

Figure 3. Chapter 9 in the main page of DrModelica.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003129

When a class has been successfully evaluated the

user can simulate and plot the result. These two

actions are performed by the Mathematica

commands Simulate and PlotSimulation.

Simulate compiles the code and

PlotSimulation shows a diagram of the result.

Figure 2 shows how HelloWorld uses the

Mathematica commands Simulate and

PlotSimulation.

After reading a chapter in DrModelica the user can

immediately practice the newly acquired

information by doing the exercises that concern the

specific chapter. We have written the exercises in

order to elucidate language constructs step by step

based on the pedagogical assumption that a student

learns better “using the strategy of learning by

doing”. The exercises consist of either theoretical

questions or practical programming assignments.

All exercises provide answers in order to give the

user immediate feedback.

Figure 3 shows Chapter 9 in the teaching material.

Here, the user can read about language constructs,

like algorithm sections, when-statements and

reinit and then practice by solving the exercises

corresponding to the recently read section.

Figure 4. Exercise 1 in chapter 9.

Exercise 1 in section 9.1.1 is shown in Figure 4. In

this exercise the user has the opportunity to practice

different language constructs and then compare the

solution to the answer for the exercise. Notice that

the answer is not visible until the Answer section is

expanded. The answer is shown in Figure 5.

Figure 6 shows that circuits created in the Model

Editor of MathModelica can be inserted in

DrModelica as pictures and it can be used to

generate Modelica code from.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003130

Figure 5. The answer section to Exercise 1 in chapter 9.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003131

Figure 6. Pictures from the Model Editor in MathModelica can be inserted in the environment.

4. Related Work

During the last two decades interactive teaching

materials have been developed with the purpose of

facilitating the learning process. For example,

DrJava and DrScheme are both interactive teaching

materials for Java and Scheme respectively. These

materials teach the language to the user both by

explaining the concepts of the language and by

letting the user write programs in a beginner-

adjusted environment [13, 14].

DrScheme [14] is a programming environment for

Scheme, providing a graphical user interface, in

which it is possible to edit and interactively evaluate

Scheme programs. The environment is especially

useful for students learning Scheme, since it guides

the student through Scheme in a way similar to an

introductory course [14].

DrJava is an open-source, pedagogic programming

environment for teaching Java. The environment is

influenced by DrScheme, which has served as a

model for DrJava [13]. To facilitate the learning of

Java, DrJava first introduces the concepts of coding,

as well as testing and debugging the source code, and

then focuses on the language semantics.

5. Evaluation of DrModelica

Evaluation methods are important tools for user

interface design. Such methods can be divided into

usability testing methods and usability inspection

methods. The difference between them is that users

are involved in usability testing methods but are not

involved in usability inspection methods. For

evaluation of DrModelica, both methods have been

used, with specially developed questionnaires [15]

and performing a heuristic evaluation [16].

Using a questionnaire is a usability testing method

and reflects the users’ subjective opinions. It is a

cheap method for testing a system and can be

distributed to many users.

Heuristic evaluation is a usability inspection method,

which is performed by an evaluator, using a checklist

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003132

of guidelines to determine the usability of the user

interface. This method is easy to learn and

inexpensive to perform. Most of the general usability

problems can be identified using a heuristic

evaluation. The method requires some experience

with heuristic evaluation principles for an optimal

result. However, even a non-expert can find many

usability problems using a heuristic evaluation.

5.1. Evaluation using Questionnaire

Twelve students attending a graduate Modelica

course at Linköping University tested DrModelica.

After a few weeks they were asked to answer a

questionnaire. All testers were engineering students,

either in the area of physics or computer science.

The questions in the questionnaire concerned their

expectations of the teaching material and if their

expectations were fulfilled, what they felt about the

approach using literate programming and the

structure and layout of the material. The results of

the questionnaire were positive. For example,

Literate programming was appreciated when

programming Modelica. The test group generally

found DrModelica to be a better way of learning a

programming language, compared to the way they

were used to.

The structure of DrModelica and the way of

navigating between the notebooks was, according to

the test group, fairly easy. The exercises at the end of

each chapter were also appreciated by the students.

In this way the student was able to “directly use the

collected knowledge”, referring to one of the testers.

5.2. Heuristic Evaluation

Three usability experts from HCS (Human Centered

Systems), at the Department of Computer and

Information Science (IDA) have performed a

heuristic evaluation on DrModelica. When

performing the evaluation, the evaluators used the

guidelines from “Ten Usability Heuristics” [17].

They are listed below:

1. Visibility of system status: The system should

always keep users informed about what is going

on, through appropriate feedback within

reasonable time.

2. Match between system and the real world: The

system should speak the users' language, with

words, phrases and concepts familiar to the user,

rather than system-oriented terms. Follow real-

world conventions, making information appear in

a natural and logical order.

3. User control and freedom: Users often choose

system functions by mistake and will need a

clearly marked "emergency exit" to leave the

unwanted state without having to go through an

extended dialogue. Support undo and redo.

4. Consistency and standards: Users should not have

to wonder whether different words, situations, or

actions mean the same thing. Follow platform

conventions.

5. Error prevention: Even better than good error

messages is a careful design which prevents a

problem from occurring in the first place.

6. Recognition rather than recall: Make objects,

actions, and options visible. The user should not

have to remember information from one part of

the dialogue to another. Instructions for use of the

system should be visible or easily retrievable

whenever appropriate.

7. Flexibility and efficiency of use: Accelerators --

unseen by the novice user -- may often speed up

the interaction for the expert user such that the

system can cater to both inexperienced and

experienced users. Allow users to tailor frequent

actions.

8. Aesthetic and minimalist design: Dialogues

should not contain information which is irrelevant

or rarely needed. Every extra unit of information

in a dialogue competes with the relevant units of

information and diminishes their relative

visibility.

9. Help users recognize, diagnose, and recover from

errors: Error messages should be expressed in

plain language (no codes), precisely indicate the

problem, and constructively suggest a solution.

10. Help and documentation: Even though it is better

if the system can be used without documentation,

it may be necessary to provide help and

documentation. Any such information should be

easy to search, focused on the user's task, list

concrete steps to be carried out, and not be too

large.

The evaluation gave many valuable results. The

evaluators found that learning how to use DrModelica

was easy in general. However, realizing how some of

the functionality works was, according to the

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003133

evaluators, not so intuitive. For example it can be

hard to discover the ability to collapse and expand

sections. Though, once it was known how to use the

functionality they found easy. Furthermore,

according to the evaluators it might be confusing that

a link in some cases opens a new window and in

other cases refers to another chapter in the same

window. This is a problem concerning heuristic

number 4. Another problem, when being linked to

another page, is that there is no feedback telling the

user that a new page has appeared in front of the

previous one. This is a problem mostly concerning

heuristics number 1, 2 and 3. When a new window is

opened in front of the other the user is not properly

informed about what is going on, since there is no

feedback that the window was just being opened (see

heuristic number 1). This involves another problem,

taking the user back to the former window. This is

currently resolved by closing the window, but it

would be better solved by having a “back”-button,

following real-world conventions (see heuristics 2

and 3). Heuristics number 5, 8 and 9 concern

dialogues and error messages, none of which exist in

neither DrModelica nor MathModelica, but that is

why the environment does not have a need for it.

Heuristic number 10 concerns help and

documentation. There is a help section on how to

start using DrModelica, which was appreciated by

the users.

The evaluators also found that DrModelica was less

intimidating than other programming environments,

since the user is presented with an environment

similar to a document showing only a small amount

of functionality. This leads the user to believe that

DrModelica is a reading material. However, after

using the material for a while the user discovers that

DrModelica could be used for programming as well.

A common approach adopted by many programming

environments is to lead the user in the opposite

direction, by presenting all functionality from the

beginning. This approach can have a discouraging

effect on the user.

6. Future Improvements

Considering the results of the evaluation and

comparing our work with related work we have

discovered some possible improvements that can be

implemented in the future. Here follows a list of

these improvements:

A suggestion from the students, attending the

Modelica graduate course, is to extend DrModelica to

contain more exercises on simple as well as more

complex constructs in order for the student to get

more practice.

Since it can be difficult to learn how to use the

functionality in DrModelica, an idea is to make an

introductory exercise for practicing the basics step by

step instead of just reading a long introductory text.

Links between files containing different variants of

the same term should be added.

Currently the exercises in the material mainly concern

language specific constructs, it would be desirable to

add exercises reflecting the purpose of Modelica. The

material needs to be extended with more exercises in

general.

Features, like parenthesis matching and keyword

highlighting, used in DrScheme and DrJava, would be

helpful when programming.

7. Summary and Conclusions

In this paper we have presented the interactive

teaching material for Modelica, based on

MathModelica, called DrModelica. DrModelica has

the goal of teaching Modelica in an environment that

has the purpose of facilitating the learning process of

the language. Because of the complexity of learning

Modelica there is a need for such a material.

DrModelica is based on Literate programming, which

enables the user to write, document and execute the

source code in the same file or entity. This file or

entity becomes a Literate program. In DrModelica the

documentation about the source code is not embedded

as comments in the code, but instead separated from

the code in specific sections only with the purpose of

containing text.

The Literate programming approach is extended in

DrModelica, in such a way that the result of the

executed Modelica program is included in the same

file or entity. The results of the source code can be

shown in the form of diagrams. This is a necessary

part of DrModelica, since Modelica is a programming

language used for creating models of complex

physical systems and there is a need to check if these

models’ behaviour follows the specification or

comply with the user intent.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003134

The evaluations of DrModelica resulted in many

valuable opinions. The members of the test group,

answering the questionnaire, generally found

DrModelica to be a better way of learning a

programming language compared to ways they are

used to. One conclusion that can be drawn from the

evaluation is that DrModelica is a good teaching

material for Modelica. The evaluators also found that

Literate programming is a methodology suitable for

learning Modelica. DrModelica is developed with

the programming environments DrJava (for Java)

and DrScheme (for Scheme) in mind.

There is a need for a programming environment for

Modelica and DrModelica will hopefully fill this

need and increase the usage of Modelica by

facilitating the learning process.

The interested reader can visit:

http://www.DrModelica.org, where a short version

of DrModelica is freely available for download. The

full version of the material is included in the

software MathModelica and in “Principles of

Object-Oriented Modeling and Simulation with

Modelica” by Peter Fritzson.

References
[1] Fritzson, P., Principles of Object-Oriented

Modeling and Simulation with Modelica. 2003:

IEEE Press and John Willey.

[2] Grubb, P. and A.T. Armstrong, Software

Maintenance Concepts and Practice (Second
Edition). 2003: World Scientific Pub Co.

[3] Wolfram Research, Mathematica. 4 ed. 1999,

Champaign, Illinois: Wolfram Research, Inc.

[4] Fritzson, P., J. Gunnarsson, and M. Jirstrand.

MathModelica - An Extensible Modeling and
Simulation Environment with Integrated

Graphics and Literate Programming. In

Proceedings of the 2nd International Modelica
Conference. 2002. Munich Germany.

[5] Jirstrand, M. MathModelica - A Full System

Simulation tool. In Preceedings of the 6th

Conference on Product Models, Global Product
Development. 2000. Linköping, Sweden.

[6] Fritzson, P., et al. The Open Source Modelica

Project. In Preceedings of the 2:nd International
Modelica Conference. 2002. Munich, Germany.

[7] Elmqvist, H., D. Bruck, and M. Otter, Dymola -

User's Manual. 1996, Dynasim AB, Research Park

Ideon: Lund.

[8] The Dynasim Home Page, Dymola for Your

Complex Simulations. Available at:

http://www.dynasim.se. Last accessed August,

2003.

[9] Nørmark, K. Requirements for an Elucidative
Programming Environment. In Preceedings of the

International Workshop on Program

Comprehension, IWPC'2000. 2000. Limerick,

Ireland.

[10] Ducassé, M. and J. Noyé, Logic Programming

Environments: Dynamic Program Analysis and
Debugging. 1994. 19/20: p. 351-384.

[11] Lengquist Sandelin, E.-L. and S. Monemar,

DrModelica - An Experimental Computer-Based

Teaching Material for Modelica, Master Thesis

Department of Computer and Information Science.

2003, Linköping University, Sweden.

[12] Knuth, D.E., Literate Programming. The

Computer Journal 1984. NO27(2): p. 97-111.

[13] Allen, E., R. Cartwright, and B. Stoler. DrJava: A

Lightweight Pedagogic Environment for Java. In

Preceedings of the 33rd ACM Technical
Symposium on Computer Science Education

(SIGCSE 2002). 2002. Northern Kentucky, USA.

[14] Findler, R.B., et al. DrScheme: A Programming
Environment for Scheme. A Preliminary Version

Appeared at Symposium on Programming

Languages: Implementations, Logics, and
Programs in 1997. 2001.

[15] Nielsen, J., Usability Engineering. 1993, San

Diego: Academic Press Inc.

[16] Nielsen, J. and R.L. Mack, Usability Inspection

Methods. 1994: John Wiley and sons inc.

[17] Nielsen, J., Ten Usability Heuristics. 1994.

Available at: http://www.useit.com/papers/

heuristic/heuristic_list.html. Last accessed

September 2003.

 Eva-Lena Lengquist Sandelin et al. DrModelica - An Interactive Tutoring Environment for Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003135

 The Modelica Association Modelica 2003, November 3-4, 2003

136

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 4A
Automotive Simulation – III

137

 The Modelica Association Modelica 2003, November 3-4, 2003138

Simulation of Engine Systems in Modelica

John Batteh Michael Tiller Charles Newman

Ford Motor Company, Powertrain Research Department
Dearborn, MI USA

{jbatteh, mtiller, cnewman}@ford.com

Abstract
This paper details the use of the Modelica
modeling language for the simulation of engine
systems. The first part of the paper briefly outlines
some of the challenging, multi-domain components
of engine system modeling and is followed by a
discussion of some of the connectors, interfaces,
and model templates that enable robust, efficient
model development. The remainder of the paper
presents selected modeling examples with
particular attention to the structure and
implementation of the models that promotes model
flexibility and re-use.

1 Introduction
As automobile manufacturers face increasing
pressure to reduce emissions, increase fuel
economy, reduce development costs, and enhance
vehicle performance and driveability, it has
become especially crucial to consider optimization
opportunities at the system level. While it is
conceptually possible to obtain system
improvements via prototype hardware fabrication,
this process is inefficient, costly, and sub-optimal.
With the development of modeling tools that allow
robust, multi-domain, system-level simulations, it
is becoming increasingly attractive to perform this
optimization process in the virtual environment.

Engine systems, in particular, contain a wide range
of multi-domain physical modeling challenges [1].
Table 1 contains a partial list of physical processes
and modeling domains that could be considered in
the modeling of a spark-ignited (SI) engine system
depending on the particular analysis and desired
level of detail. Due to the wide variety of physical
processes and modeling domains along with the
inherent interactions, it is imperative to have a
descriptive language that is capable of modeling
across the different physical domains. This need
only increases as more of the overall vehicle
system and associated attributes (e.g. NVH, safety,
etc.) are included.

Table 1. Physical processes and modeling
domains for an engine system

Physical Process Modeling
Domain(s)

Intake and exhaust valve actuation
mechanisms M, F
Intake and exhaust flow past the
valves T

Piston and crankshaft motion M
Manifold dynamics in the intake
and exhaust systems T, F
Injection and transport of liquid
fuel and fuel vapor T

In-cylinder fluid motion T, F
Ignition and flame propagation in
the combustion chamber T, Ch
Heat transfer between the gas, fuel,
coolant system, and metal surfaces Th
Frictional effects in engine,
valvetrain, and powertrain M, Th

Emissions formation and mitigation T, Th, Ch
Thermal response of the intake
system, engine, and exhaust system Th

Coolant and lubrication flow F
Powertrain, chassis, and mount
dynamics M

Legend
Ch = Chemical

F = Fluid (distributed)
M = Mechanical

T = Thermodynamic
Th = Thermal

Modelica1 [2] with its high-level, acausal,
declarative formulation for physical modeling is an
ideal language for multi-domain system
simulations. The Modelica standard
Mechanical, Rotational, MultiBody, and
Thermal libraries contain the connector
definitions, interfaces, and basic models that
provide the framework for the modeling of engine
systems. The sections that follow discuss the use

1 Modelica is a trademark of the Modelica Association

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003139

of these standard libraries along with the
supplemental connectors and associated models
that enable the formulation and simulation of
engine system models.

2 Physics Overview
For each of the physical processes described in
Table 1, models of varying level of detail can be
formulated. Due to the number of component
models used in a typical engine systems
simulation, it is impractical to discuss the physics
of particular models in detail. This section is
meant to give a very brief overview of some of the
physics involved in engine systems modeling.

Mechanical modeling in an engine system includes
a combination of 1D and multi-dimensional
dynamics. Typically, the multi-dimensional
dynamics are of interest in detailed models of the
vehicle dynamics and mounting systems. A 1D
approach is often used in modeling the engine
itself. Within the 1D framework, the model of the
valve actuation mechanism can either include
kinematic relationships (i.e. cam motion
constrained to the motion of the crankshaft with
valve lift prescribed as a function of the cam
motion) or dynamic behavior (see [3] for a
discussion of a dynamic, camless valve actuator
model). Similarly, the piston can be modeled as
massless using kinematic relationships between the
piston, crank-slider, and crankshaft or can include
the effects of piston mass from a force balance.

Modeling the thermodynamics is a crucial part of
engine systems modeling. Typically several
control volumes are formulated for which
fundamental equations for energy and mass
conservation are applied:

 WQ
dt

dU && −= (1)

 m
dt

dM
&= (2)

A typical engine model might include one (or
several) control volumes in the cylinder, the intake
system, and the exhaust system with mass and
energy exchange between the volumes. Flow past
the valves in an engine is typically modeled using
isentropic relationships for flow past an orifice
with an experimentally determined discharge
coefficient [1]. The calculations of the requisite
thermodynamic properties come from models with
varying treatments of the species (i.e. fuel, fresh
air, etc.) and levels of detail (i.e. constant cp and cv,

polynomial property functions, chemical
equilibrium mixture calculations [4], etc.). Fluid
modeling is similar to thermodynamic modeling
but usually involves a larger number of distributed
control volumes and may involve the conservation
of momentum as well. For example, accurately
capturing the pressure dynamics of the flow in
induction and exhaust systems requires a high level
of discretization, perhaps even with specialized
numerical techniques for shock capturing.

Heat transfer and thermodynamics are intimately
linked in engine systems via Eq. (1). Convective
heat transfer between the gas and the metal
surfaces affect the volumetric efficiency of the
engine, heat losses during the power stroke, heat
losses in the exhaust system, and the thermal
response of the engine and exhaust system
components. The convective heat transfer is
modeled from the fundamental constitutive
equation:
 ()wg TTAhQ −=& (3)

where the average convective heat transfer
coefficient comes from experimental correlations.
Cold start thermal response of the engine
components is key from the standpoint of both
mixture preparation and emissions formation and
mitigation.

Combustion is a highly complex process involving
thermodynamics, heat transfer, fluid motion, and
chemical kinetics. Combustion models come in
many flavors and with varying levels of fidelity.
The combustion process can be simplified to a
prescribed heat release process, such as a Wiebe
function [1] for mass fraction burned. More
detailed, predictive combustion models typically
can account for multi-zone combustion and heat
transfer, the effects of charge motion on the
combustion process, variations in the laminar
flame speed for different cylinder conditions, etc.
(see [4] and the references therein for a description
of a detailed combustion model in Modelica).

3 Interfaces
Standard interfaces are a key element for
developing flexible models. Experience has shown
that the most powerful and flexible Modelica
libraries are based on solid connector definitions.
The remainder of this section discusses some of the
modeling elements that comprise the engine
architecture.

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003140

3.1 Thermal Architecture
The heat transfer process plays a significant role in
engine systems modeling. The interaction between
the air in the cylinder and the metal surfaces in the
intake, exhaust, and cylinder affects the liquid fuel
preparation process along with the volumetric
efficiency, performance, and emissions of the
engine.

One challenge in modeling the thermal effects in
the engine is the variety of different models that
can be used to represent the thermal response of
the various pieces. For example, an engine thermal
response model could be formulated on a cylinder-
by-cylinder basis or could be a lumped model at
the engine level. To allow for both of these
formulations and to minimize the number of
connections between the engine or cylinder and the
thermal models, the special thermal connectors in
Figure 1 were developed. Modelica code
fragments for these connectors are shown in Figure
2. The CylinderTemperatures connector
is a “mega connector”- a connector that is an
aggregate of other connectors- and can be thought
of as a thermal bus. It contains a number of
thermal and friction connectors that comprise the
pre-defined standard thermal cylinder architecture.
This architecture defines the elements that are
included in every cylinder thermal response model
and is represented graphically in Figure 3. This
breakout box explicitly shows all the connectors
that are lumped into the single
CylinderTemperatures connector and is
used in the low-level cylinder heat transfer models
to facilitate the graphical connection of the
individual elements of the heat transfer model.
The ThermalEnvironment connector is the
engine-level connector and is an array of
CylinderTemperatures connectors. This
parametric representation scales with the number
of cylinders being modeled and, by consolidating
the signals onto one connector, allows for a single
connection between the engine and the engine
thermal response model at the top level. The
cylinder and engine connectors will be seen
repeatedly in the standard interfaces that follow.

(a) Cylinder (b) Engine

Figure 1. Thermal connectors

connector CylinderTemperatures
 import HeatTransfer=Modelica.Thermal.HeatTransfer;
 outer parameter Ford.Types.EngineTopology
 engine_topology;
 HeatTransfer.Interfaces.HeatPort_a head;
 HeatTransfer.Interfaces.HeatPort_a intake_valves[
 engine_topology.intake_valves];
 HeatTransfer.Interfaces.HeatPort_a block_coolant;
 HeatTransfer.Interfaces.HeatPort_a cylinder_liner;
 HeatTransfer.Interfaces.HeatPort_a piston;
 HeatTransfer.Interfaces.HeatPort_a oil;
 Ford.Engine.Interfaces.Friction valvetrain;
…
end CylinderTemperatures;
connector ThermalEnvironment
 outer parameter Ford.Types.EngineTopology
 engine_topology;
 CylinderTemperatures
cylinder_temperatures[engine_topology.cylinders];
end ThermalEnvironment;

Figure 2. Excerpts from the thermal connectors
models

Figure 3. Breakout box showing elements of

CylinderTemperatures connector

The thermal architecture in the engine provides the
framework for the interactions between the cycle
simulation models and the engine temperature
models, thereby allowing independent selection of
the either model. Roughly speaking, the cycle
simulation models are responsible for computing
the "metal-gas" thermal interactions while the
engine temperature models calculate the "metal-
fluid" interactions.

3.2 Cylinder Interface
The cylinder interface defines the framework for
the cylinder implementation process. The standard
interface is shown in Figure 4 and defines the
exterior connection points for the cylinder. The
partial model contains three 1D rotational
connectors, one each for the crankshaft, camshaft,
and engine block. The connection to the engine
block allows for the rotational motion of the engine
on the mounts. The interface also includes the

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003141

previously discussed CylinderTemperatures
connector for the cylinder thermal environment
along with thermodynamic connectors for both the
induction and exhaust systems. The
thermodynamic connectors contain pressure,
temperature, species mass fraction, species mass
flow rates, and convected energy along with
information related to fluid properties. It is
anticipated that these thermodynamic connectors
will be replaced with those from the Modelica
standard fluids library currently under
development [5].

Figure 4. Cylinder interface

3.3 Engine Interface
The standard engine interface is shown in Figure 5.
This partial model contains two 1D
rotational connectors, one each for the crankshaft
and the engine block. In addition, the interface
contains a ThermalEnvironment connector
to represent the engine thermal behavior. Note the
absence of the induction and exhaust system
thermodynamic connectors in the engine interface.
These connectors have been omitted from the
interface definition so that derived models can
define their own plenum configurations (i.e. single
plenum, dual plenum, etc.). Section 4.2 describes
models that extend from this engine interface and
instantiate the needed components (i.e. cylinders,
etc.) for a complete engine implementation.

Figure 5. Engine interface

3.4 Medium Models
The working fluid is defined using the
MediumModel idiom [4]. This approach defines a
consistent set of models, functions, constants, and
connectors that contain all the medium-specific
information and thus define a particular
implementation of the MediumModel idiom. For
example, the material property calculations,
equations of state, chemical species representation,
combustion chemical kinetics, and associated
helper functions could be included in the
formulation. Implemented via replaceable
packages, the MediumModel idiom enables the
orthogonal development of property models and
the components that use them (i.e. the
decomposition of medium and machine) and
provides an organized, consistent framework for
the development of models with varying levels of
detail.

Because the medium-specific information is
contained wholly within the replaceable package,
the working fluid specification can be changed at a
single place at the highest level of the model with a
consistent application of the change reflected
throughout the model hierarchy. This "flip of a
switch" flexibility is enhanced by the addition of
the choices annotation in the Modelica
language. The MediumModel concept is currently
being used in the development version of the
Modelica standard fluids library [5].

3.5 ModelData Structure
Populating hierarchical model structures with
consistent data is a non-trivial task, especially
considering the different data required for models
of the same type but with varying levels of fidelity.
To ensure a consistent application of data
throughout the modeling structure, the
MediumModel concept [4] has been adapted to
organize data required for the engine models. A
new ModelData package has been created to serve
as the repository for the data required for the
various models in the main library. Inside this
package are sub-packages that correspond to the
various subsystems in the vehicle (e.g. Engine,
Transmission, etc.). Finally, packages exist that
contain the particular data for a given entity (i.e. a
vehicle, specific transmission, etc.). The various
components that use the model data contain a
replaceable package called EngineData
from which specific elements are instantiated.
Thus, a single redeclare of the EngineData package
at the top-level of the model hierarchy populates

Crankshaft

Camshaft Engine
block

Cylinder
environment

Induction
System

Exhaust
System

Engine
block

Engine
environmentCrankshaft

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003142

the entire hierarchy with a consistent data set for
simulation of a particular system. The
redeclare is simplified by the support for the
choices annotation in the Dymola2 [6] GUI.

3.6 SignalBus Concept
The SignalBus concept [7, 8] is used to pass
control signals throughout the model hierarchy.
This concept uses the inner and outer
semantics to propagate the control signals without
requiring connections at every level in the model
hierarchy. This technique facilitates the
propagation of the control signals for replaceable
components which typically require varying
control signals for different levels of model
fidelity. The SignalBus concept requires a top-
level definition that represents the union of all the
control signals and is coupled with selective
definition and use of the control signals at the
lower model levels. The interested reader is
referred to [7, 8] for more discussion of the
implementation of the SignalBus idiom.

4 Model Templates
While the standard interfaces discussed in the
previous section provide a nice framework for a
flexible, reusable modeling system, it is highly
desirable to have more extensive models pre-built
to establish a higher-level starting point for the
model developer. This section provides some
sample template and configuration models with a
focus on the key Modelica language features that
contribute to the flexibility. Additional details of
the templates and configuration options are given
in [8].

4.1 Cylinder Configurations
The majority of the work in engine modeling is
focused on establishing the proper model for the
cylinder. This process involves choosing the
intake and exhaust system models (including the
valve actuation mechanism), the combustion and
heat transfer models, and populating the models
with the appropriate data (i.e. bore, stroke,
compression ratio, valve timings, etc.). To
streamline the effort in assembling the cylinder
design model, it is desirable to create a baseline
cylinder model that can be used as the starting
point for many different variants via the Modelica
replaceable feature. Figure 6 shows the
MinimalCylinder model that serves as a base

model for various cylinder designs (note the
components from the cylinder interface shown in
Figure 4). An excerpt of the Modelica code is
provided in Figure 7. Note the extensive use of
replaceable types. Currently, the modifiers
are applied to the instantiated components to
ensure that the modifiers are picked up during a
subsequent redeclare. In Modelica 2.1, the
semantics of redeclare have been defined
more explicitly to address the issue of modifiers
with replaceable and redeclare. The
combustion and heat transfer models are not
included in MinimalCylinder and are left to
be instantiated in an extending model. The
MinimalCylinder template provides a
flexible platform for creating cylinder models from
different configurations and fidelity levels.

2 Dymola is a trademark of Dynasim AB

Figure 6. MinimalCylinder template model

partial model MinimalCylinder
 extends Ford.Engine.BaseClasses.Cylinder;
 replaceable model ControlVolume =
 Thermodynamics.VariableControlVolume;
 Control Volume combustion_chamber(modifiers);
 replaceable model Piston=Drivetrain.MasslessPiston
 extends Ford.Engine.Interfaces.Piston;
 Piston piston(modifiers);
 Mechanical.Crank crank(modifiers);
 InCylinder.ChamberVolume chamber_volume(modifiers);
 replaceable model IntakeSystem =
 Ford.Engine.Interfaces.IntakeExhaust;
 IntakeSystem intake_system(modifiers);
 replaceable model ExhaustSystem =
 Ford.Engine.Interfaces.IntakeExhaust;
 ExhaustSystem exhaust_system(modifiers);
…
end MinimalCylinder;

Figure 7. Code excerpt for MinimalCylinder

Figure 8 shows such an extension of the
MinimalCylinder model with the intake and
exhaust systems redeclared to be conventional,
fixed valve timing models and the instantiation of

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003143

Wiebe [1] combustion and Woschni-type [9] heat
transfer models. Taking advantage of the
replaceable components allows model
variants to be quickly created with a minimum
amount of model re-wiring, configuration, and
code duplication. This sort of "plug and play"
flexibility allows model assembly via simple
redeclare statements for existing components.
In terms of the valvetrain models, model variants
exist to account for different valve actuation
mechanisms, timing and phasing strategies, and
configurations. The ideal piston could be replaced
with a model that accounts for the effects of piston
mass. Liberal use of the replaceable
components is the key Modelica language feature
for establishing these sorts of template models for
"plug and play" configuration.

Figure 8. Fixed timing, Wiebe cylinder model

4.2 Engine Templates
Having established a flexible framework for the
cylinder design process, it naturally follows that
templates should be established for the various
engine configurations. Again, these templates help
to minimize the modeling effort for assembling
model variants, which at the engine level means
building an engine model using a new cylinder
design. Templates exist for various engine/plenum
configurations (i.e. single cylinder, I4, V6, V8,
etc.) as shown in Figure 9. Each template extends
from the engine interface in Figure 5 and includes
all of the connections between the cylinder(s) and
the external interfaces. The key feature in each of
the engine configurations is the replaceable
CylinderModel shown in the code excerpt in
Figure 10. This CylinderModel is then
instantiated repeatedly for multi-cylinder engines.

Therefore, creating a stand-alone engine model is
simply a matter of extending from the appropriate
engine template and redeclaring the
CylinderModel. This single redeclare of the
CylinderModel type is then used for the
instantiation of each cylinder in the engine.

(a) Single cylinder engine

(b) I4 engine

(c) V6 engine with two intake plenums

Figure 9. Engine configurations

…
 replaceable model CylinderModel =
 Interfaces.Cylinder;
 CylinderModel Cylinder1(shift=crank_shift[1],
redeclare package MediumModel
 = MediumModel)
…

Figure 10. Code excerpt for engine templates

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003144

4.3 Experimental Templates
Extending the template abstraction even further,
templates have been created for common types of
simulation experiments. Figure 11 shows
examples of an experimental setup for an engine
on a dynamometer (a) and for a cranking engine
(b). Code excerpts from the template base class
are shown in Figure 12. These generic templates
can be simulated for a particular engine
configuration and cylinder design by simply
extending from the appropriate template and
adding a redeclare for Configuration and
CylinderModel. This technique allows single
templates to be used for every existing engine
configuration and cylinder design that conforms to
the interfaces in Figures 4-5.

(a) Dyno

(b) Cranking

Figure 11. Templates for dyno and cranking
experiments

…
 replaceable model CylinderModel =
 Interfaces.Cylinder extends
 Ford.Engine.Interfaces.Cylinder;
 replaceable model Configuration =
 Interfaces.Engine;
 replaceable Configuration engine(modifiers);
…

Figure 12. Code excerpt from experimental
template base class

5 Model Examples
This section presents some examples of engine
system simulations. These examples illustrate the
use of the experimental templates and also show

how models of increasing complexity can be built
using the modeling framework discussed
previously. Each model was simulated using
Dymola [6].

5.1 Engine Cranking
The key-on crank of the engine is a complex,
dynamic process involving the electrical system
and controls, along with the actual engine itself.
Controlling and optimizing the engine cranking
behavior is crucial from the standpoint of both
emissions and customer feel. This section shows
some results from a detailed, multi-domain model
of a cranking engine.

The crank model shown in Figure 13 is built upon
the cranking template in Figure 11b. The
Configuration has been defined as a single-
cylinder engine with a CylinderModel that
includes detailed, multi-zone, predictive
combustion [4]. The intake reservoir has been
replaced by a dynamic model of the manifold and
throttle. The engine warmup model is a simple,
fixed temperatures model. The control and
electrical systems have been simplified such that
the starter applies the commanded torque for 0.5s
at 0.25s. The treatment of the engine friction is
simplified in this model to a constant opposing
torque starting at 0.5s. In this simulation, the
throttle is closed to represent idle conditions.
During the cranking process, the liquid fuel
dynamics are extremely important since mixture
preparation is inhibited at low speeds, high
manifold pressures, and under cold conditions.
While these effects can be considered within this
modeling framework [3, 10], they are not included
in these simulations.

Figure 13. Model for cranking engine

simulation

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003145

This single-cylinder cranking simulation with fixed
metal temperatures has 207 components, 1033
time-varying variables, 1120 non-trivial equations,
and 53 states. Figures 14-15 show the response of
the engine speed and manifold pressure during the
first 3s of the cranking simulation. The starter
begins to spin the engine up at 0.25s. The
manifold starts at approximately ambient pressure
and then begins to pump down due to the emptying
and filling process between the upstream intake
reservoir (the ambient) and the engine. Note the
"gulping" from the manifold due to the single-
cylinder engine. A multi-cylinder engine results in
the smoothing of the pumping down of the
manifold due to the more frequent breathing from
the multiple cylinders. The engine speed increases
rapidly during the first few firing events since the
manifold pressure is still high, resulting in a large
amount of combustible mass in the cylinder. The
engine speed starts to drop as the manifold pumps
down and starts approaching a steady idle speed of
1700 RPM.

0 0.5 1 1.5 2 2.5 30

500

1000

1500

2000

2500

3000

Time [s]

En
gi

ne
 S

pe
ed

 [R
PM

]

Figure 14. Engine speed response

0 0.5 1 1.5 2 2.5 30

2

4

6

8

10

x 104

Time [s]

M
an

ifo
ld

 P
re

ss
ur

e
[P

a]

Figure 15. Manifold pressure response

5.2 Exhaust System Warmup
Vehicle thermal management is a critical issue in
light of the recent legislation mandating lower
emissions levels. The optimization of the engine
system, from start-up strategy to component design
of the intake, cylinder, and exhaust systems, is a
key enabler to meeting more stringent emissions
standards by reducing engine-out emissions and
light-off time for the three-way catalyst. This
section shows an engine system, cold start
simulation from crank for evaluation of the thermal
response of the exhaust system.

The model used in this simulation extends from the
cranking engine model discussed previously
(Figure 13). This version replaces the fixed
temperatures model for the engine with the
dynamic thermal response model shown in Figure
16. This model is extended from the work in [11]
and includes models for the warmup of the piston,
head, block, and valves along with a simplified
representation of the oil and coolant loops. This
simulation also includes a model, shown in Figure
17, of the exhaust system, including the exhaust
manifold and downpipe leading to the catalyst.
This model is based on [12] and includes
distributed models for the thermal interaction
between the exhaust gas and the pipe wall. The
effects of forced convection between the gas and
the wall, conduction along the pipe wall, and
natural convection between the pipe outer wall and
the ambient are included.

Figure 16. Engine thermal response model

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003146

Figure 17. Exhaust system model

The cold start, cranking model with variable metal
temperatures and an exhaust system has 924
components, 5476 time-varying variables, 5825
non-trivial equations, and 221 states. The increase
in the number of equations and states from the
cranking simulation discussed in Section 5.1
results mainly from the inclusion and discretization
of the pipes in the exhaust system. Each of the 8
pipes in Figure 17 was divided into 10 elements
along its length, and each element has 2 states (one
each for the temperature of the exhaust gas and the
temperature of the pipe wall in the element).

To simulate the start of the FTP drive cycle test for
emissions, the model was run for approximately 20
seconds. This test begins with a cold crank and
idle until approximately 20 seconds when the first
acceleration occurs. Figure 18 shows the thermal
response of some of the components in the engine
thermal model (Figure 16). Note that the
components that receive heat directly from the gas
in the cylinder (i.e. piston, head, liner) start to
warm first. The piston has a lower thermal
capacitance than does the liner and the head so it
warms more quickly. The temperature rise from
ambient is fairly modest due to the large thermal
capacitance of the engine and the short simulation
time (typical engine warm-up occurs over several
minutes).

The temperature of the exhaust gas as it traverses
the exhaust system is crucial as the thermal energy
in the gas is responsible for warming the three-way
catalyst to the elevated temperatures at which it
becomes effective. Figure 19 shows the transient
temperature of the exhaust gas as various points in

the system. The highest temperatures are at the
entrance to the exhaust port (just past the exhaust
valve) with temperatures decreasing along the
system due to heat loss to the cold pipe walls. The
highest exhaust gas temperature occurs roughly at
the maximum speed (see Figure 14) where
maximum amount of combustible mass is trapped
in the cylinder due to the high manifold pressure.
Note the large drops in temperature throughout the
system. Minimizing the amount of energy lost in
the exhaust manifold and piping leading to the
catalyst during a cold start is crucial for
minimizing catalyst light-off times. This sort of
engine system model can be used to effectively and
efficiently evaluate different engine startup
strategies and hardware designs and their effects on
exhaust system thermal response.

0 5 10 15 20

294

296

298

300

302

304

306

Time [s]

Te
m

pe
ra

tu
re

 [K
]

Piston
Liner
Head
Coolant (head)
Oil

Liner
Head

Coolant
Oil

Piston

Exhaust Port

Figure 18. Thermal response of engine
components

0 2 4 6 8

400

600

800

1000

1200

1400

Time [s]

Ex
ha

us
t G

as
 T

em
pe

ra
tu

re
 [K

]

Exhaust Port
Runner Junction
Manifold Exit
Catalyst Entrance

Runner Junction

Manifold Exit

Catalyst Entrance

Figure 19. Thermal response of exhaust gas

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003147

6 Conclusions
This paper describes the use of the Modelica
modeling language for engine system simulations.
A robust, flexible, and re-usable modeling
framework of connectors, interfaces and templates
is described for multi-domain engine system
modeling. Results from the detailed simulations
of the engine cranking process yield some insight
into the types of models that can be realized using
this framework and the vast amount of information
that can be obtained from these types of
simulations. These multi-domain models are well
suited for the evaluation and optimization of
hardware design and control strategies, especially
during the early concept assessment stage of the
design process. Future work will focus on the
validation of the individual submodels and system-
level models.

References
1. Heywood, J.B., 1988, Internal Combustion

Engine Fundamentals. McGraw-Hill.
2. Modelica Association, 2002, "Modelica

Language Specifications (Version 2.0)",
http://www.modelica.org

3. Puchalsky, C., et al., 2002, "Modelica
Applications for Camless Engine Valvetrain
Development", 2nd International Modelica
Conference Proceedings, pp. 77-86,
http://modelica.org/Conference2002/papers/p1
1_Puchalsky.pdf

4. Newman, C., Batteh, J., and Tiller, M., 2002,
"Spark-Ignited-Engine Cycle Simulation in
Modelica", 2nd International Modelica
Conference Proceedings, pp. 133-142,
http://modelica.org/Conference2002/papers/p1
7_Newman.pdf

5. Elmqvist, H., Tummescheit, H., and Otter, M.,
2003, "Principles of Object-oriented Modeling
of Thermo-Fluid Systems", 3rd International
Modelica Conference Proceedings.

6. Dymola. Dynasim AB, Lund, Sweden,
http://www.dynasim.se

7. Tiller, M., Tobler, W.E., and Kuang, M., 2002,
"Evaluating Engine Contributions to HEV
Driveline Vibrations", 2nd International
Modelica Conference Proceedings, pp. 19-24,
http://modelica.org/Conference2002/papers/p0
3_Tiller.pdf

8. Bowles, P. and Batteh, J., 2003, "A Transient,
Multi-Cylinder Engine Model Using
Modelica", SAE-2003-01-3127, Society of
Automotive Engineers.

9. Woschni, G., 1967, "A Universally Applicable
Equation for the Instantaneous Heat Transfer
Coefficient in the Internal Combustion
Engine", SAE-67-0931, Society of Automotive
Engineers.

10. Batteh, J.J. and Curtis, E.W., 2003, "Modeling
Transient Fuel Effects with Variable Cam
Timing", SAE-2003-01-3126, Society of
Automotive Engineers.

11. Kaplan, J.A. and Heywood, J.B., 1991,
"Modeling the Spark Ignition Engine Warm-
Up Process to Predict Component
Temperatures and Hydrocarbon Emissions",
SAE-91-0302, Society of Automotive
Engineers.

12. Laing, P.M., Shane, M.D., Son, S., Adamczyk,
A.A., and Li, P., 1999, "A Simplified Approach
to Modeling Exhaust System Emissions:
SIMTWC", SAE-199901-3476, Society of
Automotive Engineers.

 John Batteh, Michael Tiller and Charles Newman Simulation of Engine Systems in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003148

http://www.modelica.org/
http://modelica.org/Conference2002/papers/p11_Puchalsky.pdf
http://modelica.org/Conference2002/papers/p11_Puchalsky.pdf
http://modelica.org/Conference2002/papers/p17_Newman.pdf
http://modelica.org/Conference2002/papers/p17_Newman.pdf
http://www.dynasim.se/
http://modelica.org/Conference2002/papers/p03_Tiller.pdf
http://modelica.org/Conference2002/papers/p03_Tiller.pdf

Modelling 3D Mechanical Effects of 1D Powertrains

Christian Schweiger∗ Martin Otter†

German Aerospace Center (DLR)
Institute of Robotics and Mechatronics

Oberpfaffenhofen, 82234 Weßling, Germany
http://www.robotic.dlr.de/control/

Abstract

It is described how to extend one-dimensionally mod-
elled rotational mechanical systems such that they
can be mounted on three-dimensional multi-body sys-
tem models without neglecting any dynamic effects.
This is performed by adding support torques to ex-
isting drive train elements and by introducing new
components that take care of the gyroscopic torques
and the transformation of one-dimensional into three-
dimensional support torques. It is demonstrated that
this approach is convenient for the user and leads to
efficient simulation code.

1 Introduction

Dependent on the point of view, there are tradition-
ally two ways of modelling and simulating power-
trains. It is possible to obtain the complete dynamics
of a powertrain using multi-body systems simulation.
One drawback is the high effort needed in describ-
ing the powertrain in its complete geometry. Another
disadvantage is the comparative low efficiency of this
method concerning simulation of friction elements as
used in clutches and gearboxes. Since the latter are the
essential part of powertrains with a major impact on
the dynamics, multi-body systems simulation seems to
be not the appropriate method for realtime simulation.

For realtime simulation of powertrains, hybrid dis-
crete-continuous modelling techniques became quite
common. They allow modelling not only by dif-
ferential equations, but by additional boolean equa-
tions. This combination is very useful for modelling
of variable structure systems, especially of friction el-
ements. As friction elements are considered only one-
dimensional (1D), it was acceptable to neglect three-

∗Christian.Schweiger@dlr.de
†Martin.Otter@dlr.de

dimensional (3D) mechanical effects in the past. Their
neglect allowed to define the considered powertrain in
simply one dimension with high efficiency.

With the growing level of detail in the vehicle dy-
namics area, there is an upcoming interest on the in-
fluence introduced by the powertrain dynamics. For
example, the vehicle dynamics is influenced by the
support torques, which act on the vehicle body over
the mounting of the gearbox. Alsogyroscopic torques
could be important during gear shifts of a yawing ve-
hicle.

The objective of the work described in this paper
is to merge together the advantages of both 1D and 3D
modelling of powertrains by using appropriate compo-
nents, which provide the resulting torques of the pow-
ertrain to the 3D vehicle dynamics model without ne-
glecting any dynamic effects.

The basic idea is as follows: The bearings of a 1D
powertrain modelled with the 1D Rotational library
(Modelica.Mechanics.Rotational) and/or the 1D Pow-
erTrain library [1] are fixed rigidly on acarrier body
which moves in 3D space and which is modelled as 3D
multi-body system with the new Modelica MultiBody
library [2]. The 3D movement of the whole system is
described correctly and without any neglections in the
following way:

• It is assumed that all rotating bodies in the pow-
ertrain have rotational symmetry.

• The carrier body on which the powertrain is fixed
has to be defined in such a way that it has the
common mass, the common center-of-mass and
the common inertia tensor of the body together
with the powertrain under the assumption that the
rotating bodies in the powertrain are fixed relative
to the carrier body. It does not matter at which an-
gle the rotating parts are fixed, since it is assumed
that the bodies have rotational symmetry.

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

149

This approach is also convenient for the user: It suf-
fices to measure the mass, the center of mass and the
inertia tensor of, say, a complete automatic gearbox or
get this data from a CAD system. Additionally, only
the inertias of the rotating shafts around their axis of
rotation are needed, as required for 1D modelling of
powertrains. This approach is simpler and more prac-
tical as requiring to get mass, center of mass and com-
plete inertia tensor of every single piece of a power-
train.

In the next section it is described how to extend the
existing 1D components such that support torques are
computed. Section 3 introduces hybrid 1D/3D com-
ponents. Section 4 discusses the implementation of a
gearbox modelled solely with multi-body components
in order to be able to compare the different modelling
philosophies. An extract of the tests performed on the
components are presented in Sec. 5. The paper closes
with an application example in Sec. 6 and subsequent
conclusions.

2 Support Torque in 1D

As discussed in the previous section, the 3D me-
chanical effects of a powertrain comprise the support
torques for components which interact with the pow-
ertrain housing, e.g., gears and brakes. In the past,
these support torques have not been considered nei-
ther in theModelica.Mechanics.Rotational
nor in thePowerTrain library. This was disadvanta-
geous even for simple 1D powertrains: It was, e.g., not
possible to model the dynamics of a gearbox housing,
mounted on the ground via spring-damper-systems.

In order to overcome this deficiency, it is necessary
to introduce an additional 1D connector representing
the bearing flange. This bearing connector can be used
to fix components on the ground or on other rotating
elements or to combine it with force elements. As a
side effect, the support torque is computed explicitly.

For backward compatibility and convenience rea-
sons, it is desired not to be forced to connect this
connector in every case. With the Modelica operator
cardinality it is possible to inquire the number of
connections to a connector. This information is used to
provide different equations in case the connector is not
connected. Otherwise, the duplication of many models
would have been necessary.

In the following, it is shown for the model
Modelica.Mechanics.Rotational.Ideal-
Gear , Fig. 1(a), how the respective components of
the rotational library are adapted. In Lstg. 1 the flange

(a) Without bearing (b) With bearing

Figure 1: Ideal gearbox

connectors from the Rotational library are recalled.

Listing 1: Flange connectors from Rotational library
within Modelica.Mechanics.Rotational.Interfaces;
connector Flange

import SI = Modelica.SIunits;
SI.Angle phi "absolute flange angle";
SI.Torque tau "cut-torque in flange";

end Flange;

connector Flange_a = Flange;
connector Flange_b = Flange;

The previous implementation of theIdealGear
model is shown in Lstg. 2.

Listing 2: Previous gearbox implementation
model IdealGear

import Modelica.Mechanics.Rotational;

Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_b flange_b;

parameter Real ratio=1;
equation

flange_a.phi = ratio*flange_b.phi;
0 = ratio*flange_a.tau + flange_b.tau;

end IdealGear;

Since this change has to be carried out for a lot of
models, it is advisable to create a superclass including
common components and equations, cf. Lstg. 3.

Common equations are the torque balance and the
computation of the relative angles with respect to the
bearing flange.

If the bearing flange is not connected, i.e.
cardinality (bearing) == 0 , the Modelica
default connection rule definesbearing.tau = 0
and the additional equation supplied in the correspond-
ing if-section sets the bearing angle to zero, i.e., the
bearing does not move.

Otherwise, the support torque is identical to the
torque of the bearing flange and the bearing angle

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

150

Listing 3: Superclass including bearing torque
partial model TwoFlangesAndBearing

import Modelica.Mechanics.Rotational;

Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_b flange_b;
Rotational.Interfaces.Flange_a bearing;

Modelica.SIunits.Torque tau_support;
Modelica.SIunits.Angle phi_a;
Modelica.SIunits.Angle phi_b;

equation
0 = flange_a.tau + flange_b.tau + tau_support;

phi_a = flange_a.phi - bearing.phi;
phi_b = flange_b.phi - bearing.phi;

if cardinality (bearing) == 0 then
bearing.phi = 0;

else
bearing.tau = tau_support;

end if ;
end TwoFlangesAndBearing;

bearing.phi is defined from the component con-
nected to the bearing.

Using this superclass and inheriting from it, it is
a straightforward procedure to adapt the components.
The expressionflange_a.phi has to be changed
simply to phi_a and flange_b.phi to phi_b ,
which leads to the implementation given in Lstg. 4.
The icon shown in Fig. 1(b) indicates the function of
the bearing flange.

Listing 4: New gearbox implementation
model IdealGear

extends TwoFlangesAndBearing;

parameter Real ratio=1;
equation

phi_a = ratio*phi_b;
0 = ratio*flange_a.tau + flange_b.tau;

end IdealGear;

For components which had up to now only one
flange (Torque, Move etc.), the procedure is similar.

The described changes have been performed di-
rectly to the components of the Modelica Standard Li-
brary and the PowerTrain Library, since these changes
are backward compatible, i.e., existing user models are
not affected by this addition.

3 Hybrid 1D/3D Components

The 3D mechanical effects induced by a powertrain
on its carrier body are in fact additional torques, see
Sec. 1. In order to produce these torques on the car-

rier body, some components are needed with both 1D
(flanges) and 3D (frames) connectors. They are de-
scribed in this section.

3.1 3D Connector “Frame”

The definition of the needed 3D connector of the
MultiBody library is shortly sketched. For more de-
tails, see [2]. The variables of the Frame connector are
displayed in Fig. 2.

Figure 2: Variables of 3D connectorFrame

A coordinate system framea is rigidly fixed at an
attachment point of a 3D mechanical part. This frame
is described with respect to the world frame (i.e. an
inertial coordinate system) by the

• position vector0r0a that is directed from the ori-
gin of the world frame to the origin of framea
and is resolved in the world frame and by the

• orientation objectR0a describing the relative ori-
entation between the world frame and framea.

To ease usage, the MultiBody library is de-
signed such that knowledge about the actual de-
scription form of orientation is not necessary.
This is achieved by providing a pre-defined type
MultiBody.Frames.Orientation and utility
functions inMultiBody.Frames operating on in-
stances of this type. In the sequel, only the utility
function Frames.AngularVelocity2 is needed
to compute the angular velocity of the frame, resolved
in the local coordinate system attached to the part.

It is assumed that a cut is performed between me-
chanical parts that shall be connected together at frame
a. In the cut plane a resultant cut forceaf and a resul-
tant cut torqueaτ act on framea. Both vectors are
resolved in this frame.

The four previously defined variables are used in
connectorFrame , see Lstg. 5. The additional connec-
torsFrame_a andFrame_b have the identical defi-
nition as connector Frame. The only difference is that

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

151

Listing 5: MultiBody connector Frame
connector Frame

import SI = Modelica.SIunits;
SI.Position[3] r_0; // = 0r 0a

MultiBody.Frames.Orientation R; // = R0a

flow SI.Force [3] f; // = af
flow SI.Torque[3] t; // = aτ

end Frame;

connector Frame_a = Frame;
connector Frame_b = Frame;

Frame_a andFrame_b have different icons in or-
der to be able to distinguishFrame connectors more
easily in a composition diagram. The cut force and
cut torque are flow variables in order that the force
and torque balance at a point where several compo-
nents are connected together is fulfilled. Note, that two
connected frames (a andb) coincide, sincea.r_0 =
b.r_0 anda.R = b.R due to the connection rules
of Modelica.

3.2 New Component “Mounting1D”

In order to acquire support torques from the power-
train and to propagate them to the carrier body, a new
component calledMounting1D is used, see Fig. 3. It
has the equations of theRotational.Fixed com-
ponent and in addition a 3D frame connector for the
mounting on a multi-body component, as well as a pa-
rameter vectorn that defines the direction of the axis
of rotation of the 1D flange connector. At the same
time,n defines the direction of the support torque.

Figure 3: ComponentMounting1D for propagating
support torques to carrier body

This component transforms the 1D bearing torque
into 3D space, see Lstg. 6, and enables 3D movement
of all 1D elements connected to it.

All components of a powertrain that are connected
to a commonMounting1D element need to have
the same axis of rotation along parameter vectorn.
This means that, e.g., bevel gears where the axis of

Listing 6: Implementation of Mounting1D
model Mounting1D

import Modelica.Mechanics.Rotational;
Rotational.Interfaces.Flange_b flange_b;

parameter Modelica.SIunits.Angle phi0 = 0;
parameter Real[3] n={1,0,0};

equation
flange_b.phi = phi0;
frame_a.f = zeros (3);
frame_a.t = -n*flange_b.tau;

end Mounting1D;

rotation of flange_a and flange_b are differ-
ent cannot be described properly by connecting to the
Mounting1D component. It is discussed later, how
to treat this case.

3.3 New Component “Rotor1D”

Powertrain parts rotating relative to their carrier body
exert gyroscopic torques on this body, if the carrier is
rotating. This effect can be mathematically described
with a so-called gyrostat as illustrated in Fig. 4. It con-
sists of a carrier and a body with rotational symmetry,
called rotor, that is mounted on the carrier by rigid
bearings.

Figure 4: Gyrostat consisting of carrier and symmetric
rotor

Two coordinate systems are present: The carrier
frame is fixed in the carrier at the common center of
massCM of the total system. The rotor frame is also
fixed in the carrier but at the center of massCMr of the
rotor. The rotor frame is parallel to the carrier frame.

According to, e.g., [3, 4], the equations of motion of
this combined system are described by

J ω̇ + Jr ω̇rel +ω× (Jω + Jr ωrel) = τ (1)

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

152

with the absolute angular velocity of the carrier,ω, the
angular velocity of the rotor relative to the carrier,ωrel,
the inertia tensor of the total system with respect to its
common center of massCM, J, the inertia tensor of
the rotor with respect to the center of mass of the rotor
CMr , Jr , and the external torque with respect toCM,
τ . All vectors and tensors are resolved in the carrier
frame. Reordering of terms yields

J ω̇ +ω×Jω︸ ︷︷ ︸
τ body

+Jr ω̇rel +ω×Jr ωrel︸ ︷︷ ︸
τ gyro

= τ . (2)

By comparison with the equations of motion for a rigid
body, it can be seen, that the termτ body represents the
contribution of the total system with the rotor fixed on
the carrier andτ gyro represents the additional contribu-
tion caused by the rotation of the rotor relatively to the
carrier. Since the properties of the total system with
the non-moving rotor are modelled completely by the
carrier body, see Sec. 1,τ gyro has to be considered in
the Rotor component for gyroscopic torques.

The property of the rotor axis of rotation coincid-
ing with one of its principal axis of inertia yields the
simplification

nJr ω̇rel +ω×nJr ωrel = τ gyro (3)

with n being a unit vector in direction of the axis of
rotation of the rotor,Jr the moment of inertia around
n and ωrel the absolute value of the relative angular
velocity of the rotor with respect to the carrier.

Whereas (3) considers solely the rotational degrees
of freedom of the total system, the rotor has an ad-
ditional degree of freedom of its own, as an external
torqueτ r (t) is exerted on it. In [3, 4], the respective
equation of motion is derived as

nT (Jr ω̇ + Jr ω̇rel) = nT τ r . (4)

In a similar way as above, this equation can be simpli-
fied to

Jr n ω̇ + Jr ω̇rel = τ r (t) . (5)

The new componentRotor1D is constructed
by using the Modelica.Mechanics.Rota-
tional.Inertia model as a basis, attaching a 3D
Frame connector and adding the equations from (3)
and (5). The Modelica implementation is shown in
Lstg. 7.

The parameterNeglectCoupling was intro-
duced in order to optionally neglect the term
J*(n*z_a) , which corresponds toJr n ω̇ in (5). This
term is usually negligible if the powertrain accelerates
much faster as the base body (this is, e.g., the case in

Listing 7: Implementation of Rotor1D
model Rotor1D

import Modelica.Mechanics.Rotational;

Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_b flange_b;
MultiBody.Interfaces.Frame_a frame_a;

parameter Modelica.SIunits.Inertia J = 1;
parameter Real n[3] = {1,0,0};
parameter Boolean NeglectCoupling = false;

Modelica.SIunits.Angle phi;
Modelica.SIunits.AngularVelocity w_a[3];
Modelica.SIunits.AngularAcceleration z_a[3];
Modelica.SIunits.AngularVelocity w;
Modelica.SIunits.AngularAcceleration a;

equation
flange_a.phi = phi;
flange_b.phi = phi;

w = der (phi);
a = der (w);

J*a = flange_a.tau + flange_b.tau -
(if NeglectCoupling then 0 else J*(n*z_a));

w_a = MultiBody.Frames.angularVelocity2
(frame_a.R, der (frame_a.R));

z_a = der (w_a);

frame_a.f = zeros (3);
frame_a.t = n*(J*a) + cross (w_a, n*(J*w));

end Rotor1D;

vehicle powertrains). The essential advantage is that
an algebraic loop is removed since then there is only
an action on acceleration level from the powertrain to
the base body but not vice versa.

3.4 New Component “BevelGear1D”

A new component is needed for 1D modelling of gear-
boxes with non-parallel axes, see Fig. 5. In general,
the axes of rotation offlange_a and flange_b
and the direction of the support torque vector are dif-
ferent in this case. Therefore, it is necessary to attach
the 3D connector directly to this component.

In accordance to Fig. 6, the bevel gear is character-
ized by

i =
ωin

ωout
= −

τout

τin
(6)

with the gear speed ratioi, shaft angular velocitiesω
and shaft torquesτ [5]. As illustrated in Fig. 6, the
indices refer to the input and output shaft respectively.

With nin, nout vectors in direction of the input and
output shaft, respectively, a 3D torque balance results
in

0 = τin
nin

|nin|
+ τout

nout

|nout|
+τ support. (7)

The implementation is shown in Lstg. 8.

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

153

Figure 5: Gearbox with non-parallal axes

Figure 6: Quantities of a bevel gear

3.5 Animation

Most components of the PowerTrain library are an-
imated. All these components have been equipped
with a 3D Frame connector to provide the information
needed for deducing the 3D position and orientation of
the animation shapes. The possibility to switch off an-
imation and to completely remove the corresponding
code was conserved.

4 New Component “GearCon-
straint”

In order to be able to model gearboxes completely in
3D, a component to provide the gear constraint (6) for
multi-body systems was introduced. By default, the
component allows to model gearboxes with nonparal-
lel shafts as well.

In a first step, see Fig. 7, the 3D gear constraint
was implemented without using 1D rotational compo-
nents in order to be not forced to take care for support
torques. Therefore, the constraint equations have been

Listing 8: Implementation of BevelGear1D
model BevelGear1D

import Modelica.Mechanics.Rotational;

parameter Real ratio=1;
parameter Real n_a[3]={1,0,0};
parameter Real n_b[3]={1,0,0};

protected
parameter Real e_a[3]=n_a/sqrt(n_a*n_a);
parameter Real e_b[3]=n_b/sqrt(n_b*n_b);

public
Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_b flange_b;
MultiBody.Interfaces.Frame_a frame;

equation
flange_a.phi = ratio*flange_b.phi;
0 = ratio*flange_a.tau + flange_b.tau;

frame.f = zeros (3);
frame.t = -flange_a.tau*e_a - flange_b.tau*e_b;

end BevelGear1D;

given as Modelica text taking into account

τin = τ in
nin

|nin|
, τout = τ out

nout

|nout|
(8)

with the corresponding frame cut torqueτ and axis
of rotationn as shown in Fig. 6. The constraints (6)
implicitly define the torques to be applied at the two
revolute joints.

Figure 7: 3D gear constraint without 1D rotational
components

Since equivalent equations are provided byMode-
lica.Mechanics.Rotational.IdealGear ,
in a second step the 3D gear constraint was imple-

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

154

mented as shown in Fig. 8. No additional equations
are necessary.

Figure 8: 3D gear constraint using model IdealGear

5 Validation Examples

The following examples illustrate the usage of the in-
troduced components and are used in order to validate
the design by comparison of 1D with 3D realizations.

5.1 Gyrostat

As mentioned above, a so-called gyrostat consists of
a carrier body and a rotor, which is mounted on the
carrier body. There are two possibilities of modelling
such a system, especially the rotor. One possibility
is the usage of a rotating 3D body. Alternatively, the
rotor could be modelled by a non-rotating 3D body
in combination with the Rotor component described
in Sec. 3.3. It was intended to show the equivalence
of both possibilities. Several simulations have been
carried out with different joint combinations, axis di-
rections and driven or free rotor. In the following, a
selected setup is presented.

In the example shown in Fig. 9, the two rotors to
be compared are mounted in both cases on a carrier
cylinder of their own which is able to move in three ro-
tational degrees of freedom, since the latter is mounted
to the ground by a spherical joint.

At the start of the simulation, the carrier cylinders
are in an elevated position and start moving due to

Figure 9: Modelica model of rotating body and non-
rotating body with rotor

gravitation. The rotors are not actuated and have an
initial angular velocityω = 10 rad/s. All relevant sig-
nals, especially the mounting forces (Fig. 11) and the
body orientations, are identical.

Figure 10: Animation of the two gyrostat systems

5.2 Body-mounted Actuator

Another example is shown in Fig. 12. It consists of a
robot arm that is connected with a revolute joint to the
base (i.e. world frame). On the (moving) robot arm a
gearbox and a motor is present that drive the revolute
joint. One wheel of the gearbox is rigidly attached to
the axis of rotation of the revolute joint.

Again, two different Modelica models of this sys-
tem are compared. One model was implemented using
solely 3D components, cf. Fig. 13(a). The other model
replaces some 3D components by 1D equivalences, cf.
Fig. 13(b).

Both implementations yield identical results.

6 Application: Automatic Gearbox

The basic intention of modelling 3D mechanical ef-
fects of 1D powertrains was to be able to examine the

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

155

Figure 11: Mounting forces of the two gyrostat sys-
tems in x-, y-, z- direction in the world frame

Figure 12: Sketch of body-mounted actuator

interaction of vehicle and powertrain dynamics. The
example discussed in this section sketches the idea of
merging both modelling areas.

A six-speed automatic gearbox based on a Lepel-
letier wheelset [6], Fig. 14, is considered. A corre-
sponding model is available in the PowerTrain library.

This model was changed such, that the previous 1D
rotational mechanical components have been replaced
by these introduced above, cf. Fig. 15. As a conse-
quence, the Lepelletier wheelset model was equipped
with a MultiBody frame connector.

The obtained component is then used in the setup
shown in Fig. 16. A carrier body is connected to
the ground by a revolute joint and moved similar to
a yawing vehicle. The yaw rate was increased up to
2 rad/s and then held constant. The automatic gear-
box is mounted on the carrier body and connected with
two rotor components at the input and output shafts,
respectively. The drivetrain is accelerated by a torque
of 10 Nm.

Figure 17(a) shows the angular velocities of the ro-

(a) Solely using 3D MultiBody components

(b) Using both 3D and 1D components

Figure 13: Modelica models of body-mounted actua-
tor

tors at the input and output shaft. At a simulation time
of 4 s, a gear shift is initiated from the third to the
fourth gear, reducing the system’s ability to acceler-
ate. The influence exerted on the carrier body can be
seen in Fig. 17(b).

In Fig. 18, an animation screenshot illustrates the
assembly of the gearbox.

Figure 14: Schematic of Lepelletier wheelset

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

156

Figure 15: Modelica model of Lepelletier wheelset

Figure 16: Test setup similar to yawing vehicle

(a) Angular velocities of rotors

(b) Support torques of carrier body in x- and z-direction of world
frame

Figure 17: Simulation results for automatic gearbox
on yawing carrier

Figure 18: Animation screenshot for Lepelletier
wheelset

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

157

7 Conclusions and Outlook

All the details have been described how the one-
dimensional rotational Modelica libraries have been
extended in order that drive trains modelled with these
libraries can be mounted on parts of the MultiBody
library moving in three dimensions. All dynamic ef-
fects, such as support and gyroscopic torques, are
taken into account.

This approach has several advantages:

• Only the mass, the center of mass and the inertia
tensor of a complete powertrain, such as an au-
tomatic gearbox, has to be provided by the mod-
eller together with the rotational inertias along the
axes of rotations. For a convential modelling with
multi-body components, data for mass, center of
mass and inertia tensor is required from every sin-
gle piece of a powertrain.

• The powertrain can be modelled and tested first
as a pure one-dimensional system.

• Mounting a powertrain on a three-dimensionally
moving system just requires to connect the three-
dimensional Frame connectors of the power-
train components to appropriate mounting objects
(Mounting1D) that are fixed on the multi-body
parts.

• A hybrid 1D/3D model does not have problems
with possible overconstraining that is a major
problem for a 3D model of a powertrain.

Future work will include integration of powertrains
into vehicle dynamics models [7] and examination of
the interaction between vehicle and powertrain dy-
namics.

Acknowledgements

For fruitful discussions, the authors would like to
thank Bill Tobler and Michael Tiller from Ford Mo-
tor Company. This work was in parts supported by
Bayerisches Staatsministerium für Wirtschaft, Verkehr
und Technologieunder contract AZ300-3245.2-3/01
for the projectTest und Optimierung elektronischer
Fahrzeug-Steuergeräte mit Hardware-in-the-Loop-Si-
mulation.

References

[1] German Aerospace Center (DLR), Oberpfaffenhofen,
PowerTrain Library 1.0 – Tutorial, Dezember 2002.
http://www.dynasim.se/www/PowerTrainTutorial.pdf.

[2] M. Otter, H. Elmqvist, and S. E. Mattsson, “The
New Modelica MultiBody Library,” inProceedings of
the 3rd International Modelica Conference(P. Fritz-
son, ed.), (Linköping), The Modelica Association and
Linköping University, November 2003.

[3] J. Wittenburg,Dynamics of Systems of Rigid Bodies,
vol. 33 ofLeitfäden der angewandten Mathematik und
Mechanik. B. G. Teubner Verlag, 1977.

[4] M. Otter, Objektorientierte Modellierung mechatroni-
scher Systeme am Beispiel geregelter Roboter. Disser-
tation, Ruhr-Universität Bochum, 1994.

[5] J. Loomann,Zahnradgetriebe. Springer, 3rd ed., 1996.

[6] H. Dach, W.-D. Gruhle, and P. Köpf,Pkw-Automatge-
triebe, vol. 88 of Die Bibliothek der Technik. Lands-
berg/Lech: Verlag Moderne Industrie, 2nd, revised ed.,
2001.

[7] J. Andreasson, “VehicleDynamics Library,” inPro-
ceedings of the 3rd International Modelica Conference
(P. Fritzson, ed.), (Linköping), The Modelica Associa-
tion and Linköping University, November 2003.

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

 The Modelica Association Modelica 2003, November 3-4, 2003

Christian Schweiger, Martin Otter Modeling 3D Mechanical Effects of 1D Powertrains

158

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 4B
Electrical and Chemical Systems

159

 The Modelica Association Modelica 2003, November 3-4, 2003160

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003161

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003162

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003163

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003164

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003165

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003166

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003167

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003168

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003169

 C. Martin, A. Urquia, S. Dormido SPICELib - Modeling and Analysis of Electric Circuits with Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003170

WasteWatera Library for Modelling and Simulation of
Wastewater Treatment Plants in Modelica

Gerald Reichl
Technische Universität Ilmenau

Department of Automation and Systems Engineering
P.O.Box 10 05 65, 98684 Ilmenau, Germany

email: gerald.reichl@tu-ilmenau.de

Abstract

The Modelica application libraryWasteWatercontain-
ing three Activated Sludge Models of different com-
plexity with the essential components of municipal
wastewater treatment plants is presented. Component
models are got due to the physical and biochemical
modelling of activated sludge basins and secondary
clarifiers. The library is verified for different oper-
ational situations by a benchmark simulation study.
Simulation results of an example real-world waste-
water treatment plant are shown.

Keywords mathematical models, simulation, ob-
ject-oriented modelling, wastewater treatment

1 Introduction

From the point of view of a sustainable management
of water and its quality, multidisciplinary teams are
currently working to model, to simulate, and to opti-
mize the design and the operation of wastewater treat-
ment plants (WWTPs) with the global goal to reduce
the pollution of the environment (receiving water) as
well as the operational costs. Among other things this
is due to national and international regulations, e.g. the
Council Directives concerning urban wastewater treat-
ment (91/271/EEC and 98/15/EEC) of European Com-
mission. Nowadays large efforts are undertaken to
extend the consideration of wastewater treatment to a
plant wide scope, including such processes as sludge
dewatering, waste sludge disposal, energy transforma-
tion by bio gas production, etc. Even including the
whole or main part of the sewer system is subject of
investigations.
To achieve the goals mentioned above a better un-
derstanding of microbiological behavior is needed,

and its effects on wastewater control and management
processes must be evaluated. That’s why a number
of mathematical models were developed in the past,
e.g. [5, 6]. Most models are used for simulation pur-
poses. Sometimes they are used in connection with
simple control algorithms. This is also reflected in the
simulation tools available.
Because of the growing effort in establishing computer
models of large, complex, and heterogeneous physical
systems, e.g. [8, 9, 11], an object-oriented approach
has been chosen. The advantages are the suitability for
multi-domain modelling, the usage of general equa-
tions of physical phenomena, the re-usability of model
components, and a hierarchical model structure. The
main goal consists in establishing object-oriented sys-
tem models and furthermore in utilization of the auto-
matically generated, efficient simulation code suitable
both for simulation, and later on for control and opti-
mization purposes.
Therefore theWasteWaterlibrary for Modelica was
created that contains widely used and international
acceptedActivatedSludgeModels (ASM) and mod-
els for secondary clarifier describing the processes at
wastewater treatment plants (WWTP) according to its
physical laws with different mathematical complexity.
Currently three Activated Sludge Models which are
the ASM1, ASM2d and ASM3 [6] and five secondary
clarifier models for each ASM are included within the
library WasteWater. The most important parts at a
WWTP are the biological part (activated sludge basin)
and the secondary clarifier (settler). Components be-
longing to these parts are modelled for each ASM.
The verification of the approach is performed with the
benchmark plant proposed by the COST benchmark
study, [1]. The results published there could exactly
be reproduced. Following the libraryWasteWaterhas
been successfully applied to a real-world wastewater
treatment plant.

 Gerald Reichl WasteWater - a Library for Modeling and Simulation of Wastewater Treatment Plants in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003171

2 Process and Models

Municipal wastewater treatment consists of two stages
(a biological and a secondary clarification) and re-
moves carbon, nitrogen, and phosphorus from the
wastewater. Mechanical pre-treatment takes place pri-
or these stages. There are activated sludge tanks of
different properties. Nitrification takes place in an
aerated section where ammonium-nitrogen (NH+

4 -N)
is converted into nitrate-nitrogen (NO−3 -N) by spe-
cial bacteria under consumption of dissolved oxygen
and denitrification takes place without dissolved oxy-
gen and removes the nitrate-nitrogen. Both processes
use the carbon compounds in the wastewater as en-
ergy source. Biological phosphorus removal occurs
under absence of both dissolved oxygen and NO−

3 -N
e.g. anaerobic conditions. In the secondary settler the
activated sludge is separated from the cleaned water
by gravity and is returned to the biological stage.
Several models exist that describe the processes taking
place in the biological part of a wastewater treatment
plant and a few models describing the settling process
of the activated sludge within the secondary clarifier.
Mostly used and accepted are models from the ASM
model family [6] by the International Water Associa-
tion (IWA) and layer sedimentation models. Therefore
the ActivatedSludge Model No.1 [5], the ASM2d,
and the ASM3 as biological process models and the
secondary settling tank models by Takács [13], Ḧartel
[4], Otterpohl [10] and Krebs [7] are collected in a
WasteWaterlibrary. Simulation results of the library
where verified by the COST Benchmark plant config-
uration [1] that uses the ASM1 in connection with the
secondary clarifier by Takács.

2.1 Activated Sludge Models

To model a wastewater system object-oriented it is
useful to introduce the terms ‘potential variables’ and
‘flow variables’. The dissolved (Si) and particulate
concentrations (Xi) considered by an ASM are the po-
tential variables in a WWTP model. The volume flow
rateQ of the wastewater is considered as the flow vari-
able. These variables will be included into the compo-
nents interfaces (see 3.1) and determine the mass flow
rate between connected control volumes (basins). It is
assumed that a basin is fully mixed and has a constant
volumeV. For such a basin the mass balance equations
of an ASM define the model equations as follows:

dSi

dt
= (Si,in−Si)

Qin

V
− r i , (1)

i ∈ {I ,S,NO,NH,ND,ALK}

dSO

dt
= (SO,in−SO)

Qin

V
− rO + rair, (2)

dXi

dt
= (Xi,in−Xi)

Qin

V
− r i , (3)

i ∈ {I ,S,BH,BA,P,ND}

The indexi here stands as example for the concentra-
tions modelled in the ASM1 which are in equation (1)
the different dissolved concentrations like inert or-
ganic matter (SI), substrate (SS), nitrate nitrogen (SNO),
etc. and in equation (3) the particulate concentrations
which are among others the heterotrophic (XBH) and
autotrophic (XBA) biomass. Variables subscripted by
index ‘in’, e.g.Si,in, indicate concentrations carried by
the flowQin entering a considered tank. Equation (2)
describes the balance of the dissolved oxygen and has
an additional term for the oxygen uptake (aerationrair)
caused by the blowers. The reaction ratesr i resp.rO in
the balance equations (1 – 3) are given by the model
matrix of the Activated Sludge Models. The ASM1
models 13 relevant concentrations (state variables) and
eight processes (pi), the ASM2d is the most complex
model with 19 concentrations and 21 biological pro-
cesses, and the ASM3 has 13 wastewater components
with 12 processes. The complete description of the
models and their development is available in [6].

2.2 Settler System Models

The settler system models that are provided basically
rely on a layer theory [4, 10, 13]. Here the settler is di-
vided into horizontal layers of different properties with
mass exchange (hydraulic and sedimentation flux) be-
tween the layers. The basis on which the sedimenta-
tion flux is modelled makes the difference in the clar-
ifier models included in theWasteWaterlibrary. As
example the double-exponential settling velocity func-
tion (4) by [13], that is based on the solids flux concept
and applicable to both hindered and flocculant settling
conditions is given as follows:

vs j = v0e−rhX∗
j −v0e−rpX∗

j (4)

0≤ vs j ≤ v
′
0

with vs j - settling velocity in layerj, X∗
j - suspended

solids concentration in layerj subject to the limit-
ing conditionX∗

j = Xj −Xmin, Xj - suspended solids
concentration in layerj, Xmin = fnsXin - minimum
attainable suspended solids concentration,fns - non-
settleable fraction,Xin - mixed liquor suspended solids
concentration entering the settler.
A clarifier layer model contains at least of three lay-
ers. The clarifier models provided in the library are

 Gerald Reichl WasteWater - a Library for Modeling and Simulation of Wastewater Treatment Plants in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003172

composed of ten settler layers. All layers are charac-
terized by flux exchanges of adjacent layers caused by
hydraulic and settling mass transport. The feed layer
(clarifier inflow) receives the wastewater stream from
the biological part of a WWTP. There is an upward
directed hydraulic flow above the inflow caused by the
wastewater flow and a downward directed hydraulic
flow below the inflow caused by the return and waste
sludge flow at the bottom of the clarifier. In all layers
a sedimentation flux occurs due to the gravity that is
calculated by e.g. settling velocity function (4) multi-
plied by the corresponding suspended solids concen-
trationX∗

j .

3 Object-Oriented Modelling

The library WasteWater consists of sub-libraries
for each implemented Activated Sludge Model,
e.g. ASM1, ASM2d and ASM3 besides a sub-library
for icons and one for wastewater units. An ASM
library itself has an interfaces sub-library for par-
tial models and connectors, sub-libraries for pre-
clarifier and the secondary clarifier models, a sub-
library for example wastewater treatment plant mod-
els, and contains the necessary components for mod-
elling of wastewater treatment plants.

3.1 Definition of Connectors

In order to built up an Activated Sludge Model com-
ponent library the first step is to define the component
interfaces. The proper definition of the interfaces is an
essential part because the connectors determine the in-
dependent parts of a complex model. After definition
of the connectors, library components can be devel-
oped and tested independently. The main connector
of an ASM library withinWasteWateris that one be-
tween the different basins of a WWTP and consists
of the flow and potential variables described in sec-
tion 2.1. For example, this reads in Modelica mod-
elling language for the ASM1 as follows:

connector WWFlowASM1
package WWU = WasteWaterUnits;
flow WWU.VolumeFlowRate Q;
WWU.MassConcentration Si;
WWU.MassConcentration Ss;
...
WWU.Alkalinity Salk;

end WWFlowASM1;

Within the sub-libraries of the several secondary clar-
ifier models different interfaces to connect and inter-

change information between adjacent layers are pro-
vided.

3.2 ASM Library Components

In this section an overview over the components in-
side an ASM sub-library ofWasteWatershall be given.
An ASM library consists of components describing
the processes taking place in the biological stage of
a WWTP (e.g.Nitri , Deni), a blower, flow mixer, flow
divider, measurement devices (concentration sensors),
a source and sinks for the wastewater stream, and
a sub-librarySecClarcontaining the clarifier models
which each having classes that describe the sedimen-
tation processes in the different secondary clarifiers.
First of all the ASM parameters and equations (pro-
cess rates, reactions and derivatives of the states) and
the connector information that are needed in different
model classes are defined in apartial model which
gives this information to the components. In extracts
the partial model for the ASM1 reads as follows:

partial model ASM1Base
package WWU = WasteWaterUnits;
parameter Real mu_h=4.0;
...
WWU.MassConcentration Si,...;
Real p1...p8 "process rates";
Real r1...r13 "reactions";
Real inputSi,inputSo,...;
Real inputXi,inputXp,...;
Real r_air;
equation

p1 = ...;
r1 = ...;
// derivatives
...
der(Xp) = inputXp + r7;
der(So) = inputSo + r8 + r_air;
...

// Outputs
Out.Q + In.Q = 0;
Out.Si = Si;
...

end ASM1Base;

Following components are available for each ASM:

Deni: It inherits graphic information and the informa-
tion from the respective partial model e.g.ASM1Base
and extends it by a specific tank volume to model a
denitrification tank (r air = 0).

 Gerald Reichl WasteWater - a Library for Modeling and Simulation of Wastewater Treatment Plants in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003173

FR

FC

AN/DN(I)

influent

FC FC

FC

FC

N(III) DN(IV) N/DN(V) N(VI)DN(II)

effluent

air

surplus sludge

DO

QRC DO DO

QRC NH4−N
NO3−N

TSS

FQR

COD
NH4−N
NO3−N

QR

QRC

internal recirculation

external recirculation (return sludge)

secondary
clarifier

QR

P−tot

TSS

QRC

NO3−N

AN

primary clarifier

QR

COD
NH4−N
PO4−P

FR

Figure 1: Simplified scheme of the example wastewater treatment plant

Nitri : This component is used to model a nitrifica-
tion (aerated) tank of a WWTP which as well inher-
its graphic information and e.g.ASM1Baseand is ex-
tended by the tank volume and aeration system depen-
dent parameters.

model Nitri
extends Icons.nitri;
extends Interfaces.ASM1Base;
import SI = Modelica.SIunits;
parameter SI.Volume V "tank volume";
//aeration system parameters
parameter Real alpha=0.7;
...
Interfaces.AirFlow AirIn;
equation

r_air = ...*AirIn.Q_air*...;
// Volume dependent dilution
inputSi = (In.Si - Si)*In.Q/V;
inputXi = (In.Xi - Xi)*In.Q/V;
...

end Nitri;

SecClarModTakacs: Is a prepared component which
describes a ten-layer secondary clarifier model based
on Taḱacs [13] using the sub-librarySecClar.Takacs.
Blower: The blower can be used to model an air
flow between a minimal (Qmin) and a maximal (Qmax)
blower capacity as input to the nitrification tank based
on a control signal.
Pump: This component models a wastewater pump. It
generates a wastewater flow betweenQmin andQmax

that is controlled by an external control signal.
Mixer: There are two components available which mix
two respectively three different flows of wastewater of

different amount and different concentration. The out-
put is a single mixed wastewater stream.
Divider: These two elements divide one flow of
wastewater into two separate flows of same concen-
tration either by known flows or externally controlled
by a signal.
OxygenSensor: The concentration of oxygen in a tank
or a wastewater stream is measured and transformed
into an output signaly(t) that can be further processed.
Similar sensors for the concentration COD, nitrate-
nitrogen (SNO), ammonia-nitrogen (SNH), and others
are provided.
WWSource: Provides all ASM data at the influent of
a WWTP. The dimension depends on the used ASM.
The information can also be read from a file.
EffluentSink: Is the receiving water at the effluent of
a wastewater treatment plant and terminates a WWTP
model. A similar component is theSludgeSink.

4 Example of use

For verification and validation purposes of theWaste-
Water library’s components first of all the COST
benchmark plant layout was used. The results pub-
lished in [1] could exactly be reproduced using ASM1
components ofWasteWater. But this is not discussed
in more detail here.
Following the libraryWasteWateris applied to a real-
world WWTP. The plant is situated in Jena, Germany,
and has a size of 145,000 population equivalents. A
model of this plant is available in eachASM.Examples
sub-library as complex plant example. The configura-
tion of this WWTP is shown in Figure 1. The continu-
ous flow WWTP is a cascade type denitrification with

 Gerald Reichl WasteWater - a Library for Modeling and Simulation of Wastewater Treatment Plants in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003174

0 2 4 6 8

10

20

30

40

50

time [d]

E
ffl

ue
nt

 C
O

D
 [m

g/
l]

Jena Plant Effluent COD 13/03/03 − 20/03/03

on−line measured effluent COD
simulated effluent COD

0 2 4 6 8
0

1

2

3

4

5

time [d]

E
ffl

ue
nt

 N
H

4+ −N
 [m

g/
l]

Jena Plant Effluent NH
4
+−N 13/03/03 − 20/03/03

on−line measured NH
4
+−N effluent

simulated NH
4
+−N effluent

0 2 4 6 8
0

2

4

6

8

10

time [d]

E
ffl

ue
nt

 N
O

3− −N
 [m

g/
l]

Jena Plant Effluent NO
3
−−N 13/03/03 − 20/03/03

on−line measured NO
3
−−N effluent

simulated NO
3
−−N effluent

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

time [d]

E
ffl

ue
nt

 P
to

ta
l [m

g/
l]

Jena Plant Effluent P
total

 13/03/03 − 20/03/03

on−line measured P
total

 effluent
simulated P

total
 effluent

Figure 2: Simulated and on-line measured effluent values for the calibrated ASM2d WWTP example model

pre-clarification, biological and chemical phosphorus
removal, and secondary settling. The plant is de-
signed for a mean dry weather inflow of 28,500 m3/d.
The total volume of all activated sludge tanks is ap-
prox. 24,000 m3, of which 14,000 m3 can be aerated.
There are two flow feedbacks, one internal recircula-
tion from the last biological tank, and a return sludge
flow from the bottom of the secondary settler, see
Figure 1. An additional outflow, the surplus (waste)
sludge flow, occurs at the bottom of the settler. The
effluent of the WWTP is discharged to the receiving
water and is located at the settlers surface.

On-line measurements are available for the influent
flow rate and concentrations (chemical oxygen de-
mand (COD)), ammonia-nitrogen, and phosphate), in-
ternal and external recycle flow rates and total sus-
pended solids (TSS) concentrations, dissolved oxygen
in the aerated tanks, effluent quality (COD, ammonia-
and nitrate-nitrogen, and phosphate) as well as phos-
phate, ammonia- and nitrate-nitrogen at the outflow of
the cascade.

The software package DYMOLA [2] is used to im-
plement theWasteWaterlibrary and to perform the
example simulation scenarios. A simulation diagram
can be established by drag and drop of the several
components of theWasteWaterlibrary and linking
the elements together via the connectors. A system
of differential-algebraic equations (DAE), in the de-
scribed plant configuration using the ASM2d, with
3081 unknowns and equations and 252 state vari-
ables is established automatically by DYMOLA. The
DASSL integration procedure implemented in DY-
MOLA is used to solve the DAE system.

Simulating real wastewater treatment plants normally
needs a model calibration procedure, as the provided
ASM set of parameters by IWA that is implemented
in WasteWaterhas to be adapted and does not match
all WWTPs. Many of the biological and kinetic pa-
rameters may vary in a limited range. Such a model
calibration has been done for the ASM2d complex ex-
ample plant using genetic algorithms.

Figure 2 shows the simulated effluent values COD,

 Gerald Reichl WasteWater - a Library for Modeling and Simulation of Wastewater Treatment Plants in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003175

ammonia- (NH+4 -N) and nitrate-nitrogen (NO−3 -N),
and total phosphorus of the calibrated ASM2d exam-
ple model (dashed line) compared to the on-line mea-
surements from the SCADA system (solid line). The
simulation results are satisfactory so far for the preci-
sion of wastewater treatment process models. Obvi-
ous differences occur due to several assumptions and
simplifications which need to be done during the val-
idation phase. Further improvement of the results is
expected by applying initial state estimation which is
subject of current investigation.

5 Conclusion

An application libraryWasteWaterfor Modelica that
collects the Activated Sludge Models ASM1, ASM2d,
and ASM3 by the International Water Association
(IWA) including several secondary clarifier models
was developed. It contains essential WWTP compo-
nents according to an object-oriented approach and
based on physical modelling. TheWasteWaterlibrary
presented and its application to plants of several com-
plexity show the usefulness and the advantages of an
object-oriented modelling approach.
The compiled system model can be used for solv-
ing parameter and state estimation problems and es-
pecially as basis for ongoing control and optimization
applications, see [3].
Future work is directed to use the automatically com-
piled system model (DAE system) of an calibrated
WWTP model inside a model-predictive control algo-
rithm within a decision support system in order to opti-
mize the plant behavior. First open-loop optimization
results are already available.

6 Acknowledgment

This publication has been made possible by the tech-
nical and financial support of the SMAC project,
EVK1-CT-2000-00056, under EC’s 5th Framework
programme.

References

[1] J. B. Copp. The COST simulation bench-
mark.http://www.ensic.u-nancy.fr/
COSTWWTP/, 2000.

[2] H. Elmqvist, D. Br̈uck, S. E. Mattson, H. Olsson,
and M. Otter. Dymola – dynamic modeling lab-
oratory. User’s manual. Dynasim AB. Sweden,
2001.

[3] R. Franke. Formulation of dynamic optimization
problems using modelica and their efficient so-
lution. In M. Otter, editor,Modelica 2002, Pro-
ceedings of the 2nd International Modelica Con-
ference, pages 315–323, 2002.

[4] L. Härtel.Modellans̈atze zur dynamischen Simu-
lation des Belebtschlammverfahrens. PhD thesis,
TH Darmstadt, 1990.

[5] M. Henze, C. P. L. Grady Jr, W. Gujer,
G. v. R. Marais, and T. Matsuo. Activated sludge
model no. 1. Scientific and technical report no. 1,
IAWQ, 1987.

[6] M. Henze, W. Gujer, T. Mino, and M. v. Loos-
drecht. Activated Sludge Models ASM1, ASM2,
ASM2d and ASM3. Technical report, IWA Task
Group on Mathematical Modelling for Design
and Operation of Biological Wastewater Treat-
ment, 2000.

[7] P. Krebs and M. Armbruster. Numerische
Nachkl̈arbeckenmodelle. Korrespondenz Ab-
wasser, 47(7):985–999, 2000.

[8] S. E. Mattsson, M. Anderson, and̊Aström, K.
J. Object-oriented modeling and simulation. In
D. A. Linkens, editor,CAD for Control Systems,
pages 31–69. Marcel Dekker, New York, 1993.

[9] M. Otter. Objektorientierte Modellierung Physi-
kalischer Systeme, Teil 1.at - Automatisierungs-
technik, 47(1):A1–A4, 1999.

[10] R. Otterpohl and M. Freund. Dynamic models
for clarifiers of activated sludge plants with dry
and wet weather flows.Water Science and Tech-
nology, 26(5-6/90):1391–1400, 1992.

[11] H. Puta, G. Reichl, and R. Franke. Model based
optimisation of a waste water treatment plant.
European Control Conference ECC’99, Karls-
ruhe, Germany. Summaries vol. p. 189 (Full pa-
per on CD of Conference Proceedings)., 1999.

[12] G. Reichl, S. Hopfgarten, and H. Puta. Ob-
jekt-orientierte Modellierung von Abwasser-
reinigungsanlagen. InFrontiers in Simulation,
16. Symposium Simulationstechnik ASIM 2002,
pages 424–432, 2002.

[13] I. Takács, G. G. Patry, and D. Nolasco. A dy-
namic model of the clarification–thickening pro-
cess.Water Research, 25(10):1263–1271, 1991.

 Gerald Reichl WasteWater - a Library for Modeling and Simulation of Wastewater Treatment Plants in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003176

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 5

Poster session

177

 The Modelica Association Modelica 2003, November 3-4, 2003178

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Adaptive signal management
- A Modelica and C++ interaction example, the SignalFlow Library

Jörgen Svensson and Per Karlsson

Lund University

Dep. of Industrial Electrical Engineering and Automation
Box 118

SE-221 00 Lund
Sweden

jorgen.svensson@iea.lth.se

Abstract

This paper presents an adaptive signal management
Modelica library, “SignalFlow”, interconnected with a
C++ class library. The objective is to simplify the signal
exchange in large simulation models based on modular
designs, which should correspond to the signal flow for
real applications by representing common networks as
models with general interfaces. The library enables
automatic configurations during simulation using
dynamic vectors and has additionally functions for
exchanging several types of signals in both continuous
and discrete mode. The work is an outcome for enabling
“plug and produce” capabilities in scalable distributed
power system applications that is exemplified.

1. Introduction

Communication interfaces are used in almost every
technical application that needs signals to be exchanged.
Control units may be embedded in components of
varying sizes, where a component itself might be
aggregated of others according to design and structure.
Dependent on complexity, there are several signal levels
both for horizontal and vertical interconnections [1,2].
This is complicated in real systems but even more in
simulation environments (SE). Several SEs have
hierarchical possibilities in modeling and define
terminal types for signal exchange. However, numerous
possibilities easy become a trap when using a multilevel
hierarchy of signal interconnections. In Figure 1a it is
shown that several different IO terminals easy become
disordered as the system become larger. Different
terminals represent various groups of signals that need
to be used for connecting the models. It is easy to
complicate the model structure by extending the number
of terminal types, which cause many and tricky
connections. For example, if adding a new type of
terminal in model M12 in Figure 1a, each model at all
levels need to be reconstructed by adding new
terminals. If modeling a large model with many levels
of aggregations it becomes even more complex. This is
simplified by using a model representing a general
communication bus, as shown in Figure 1b, where every
instance is interconnected to the same bus independent
in information level if so desired. Dependent on the

number and types of communication interfaces there are
alternative configuration opportunities for the signal
exchange in the models. For example, if throughout
using the same interface it might be practical for the
user to be spared assigning identities to every single
communication node. One model solution for the Figure
1b case requests a vector based signal bus, where the
bus vector merges together all the terminal vectors.
Although, this bring in a problem with always keeping
in mind the correct number of indexes dependent on the
number of connected components.

Figure 1. A combination of interconnections with
different types of terminals at several levels (a) and a
general signal bus using one type of terminal enabling a
plain structure (b)

Even the index of each component has to be determined
if a general approach is used. In this case it is necessary
to define the exact number of signals in every terminal
to be connected and the bus needs a pre-defined vector
index according to number of connected components. If
a uniform terminal is used with a large number of
signals where several models are not using but a small
amount of terminal signals, the SE will have an
unnecessary high number of signals to handle. It is
therefore desirable to be able to choose which internal
module signals to be exposed by limiting the terminal
signals. The goal of a general structure is a signal bus
that automatically assign the components with their
identities and that enables the user to mainly focus on
the signal to be exchanged and not on the under laying

M1 M2

M11
M1

M13M12 M1M11

M1 M2b)

a)

M12 M13

179

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

structure and functions that manage the signal
communication. The structure should be adaptive to
different user specific desires and also able to resemble
several types of communication, e.g. between software
processes, computers or in automation systems. One
solution based on Modelica interconnected to a C++
library will be further described and exemplified.

2. Design

The design is meant to work both in a SE and for real
applications. This calls for either an automatic
translation from the modeling language to the target
application or a smooth software interface between the
SE and the chosen program language. As the Modelica
language has nice facilities for external function calls
the main functions of the library is implemented in a
C++ library [3,4,5].

Figure 2. Signal management design overview

The basic idea is that independent of different types
software modules there should be simple means to
establish signal configuration and connection via some
type of communication media to another module as
depicted in Figure 2. A module could be a software
process, thread or a model in a SE where the
communication media could be an external or internal
communication link [6]. The design is divided in a
hardware and software structure, where the physical
part, communication lines, transmitters and receivers are
developed in the Modelica languages and the software
functions in C++. The principal structure in Modelica
builds upon signal nodes and signal flows where the
signal nodes may represent a temporary storage,
transmitter or receiver. The signal flows represent the
communication lines between the signal nodes with the
main tasks, in initiating mode, to inform the connected
nodes about the configuration and, in operation mode, to
control that the physical line is in order for signal
transmitting. The signal nodes creates in- and output
interfaces according to the signal flow configurations as
shown. The interfaces in turn create individual signal
objects for each specified signal. An input interface then
points to an output interface of another signal node
where the configurations are checked before switching
to operation mode. During operation, each signal object

updates the data when trigged by the signal node. Every
failure or configuration error is reported to an error
manager that writes the needed information in a file or
to the log window in the SE.

3. Signal classification and configuration

An important issue concerning signal classification is
how to enable several types of configurations without
making it too complex. The following signal
classifications are used to configure the signal flows.

• The Signal Identity (SI, SIdentity), which enables a

signal to have a unique identity, but this might
imply obstacles regarding dynamical capabilities

• The Signal Type (ST, SType), where each signal
must be specified by a unique type (e.g. command,
power set point, etc)

• The Signal Block Type (SBT, SBType): a
predefined number of signal types, which could be
uniformed (protocol)

• The Signal block Group Identity (SGI, SGIdentity)
can be used if several SBTs are connected between
the same source and destination. The unique group
identity enclosures SIs, STs or/and SBTs.

Signal flow configurations must at least have a
specification on a SIdentity or SType. Normally the
SIdentity is used as a unique identity that can be found
anywhere in a system model. However, if using a model
with several components of the same type and signal
interface together with a higher-level control unit
collecting and distributing signals, the SBTypes and
SGIdentities are requested as depicted in Figure 3.

Figure 3. Example of the signal classification and their
signification

First, by examine each component it is desirable to use
the same set of identities for the signals in each
component. As in this case there is at least two SBTypes
(11 & 12), one for input and one for output signals,
where each component signal flow need to be unique by
enclosure all the SBTypes in a SGIdentity as shown.
Further, it is possible to use only the STypes and not the
SIdentities at higher level, as the intention is a dynamic

SBT 11
ST SI
3 111
4 112
n -

SBT 11
Pos ST

1 3
2 3
n -

Distributor

SBT 12
ST SI
5 211
6 212
n -

SGI 1

SBT 12
Pos ST

1 5
2 5
n -

Collector

SBT 11
ST SI
3 111
4 112
n -

SBT 12
ST SI
5 211
6 212
n -

SGI 2

a b c d

Module
send

medium
Communication

interfaces
in & out

value

signal exchange

config. exchange

update
Error
Handler

write to file

dy
na

mic

Signal
node

Signal
flow

Module

Signal
node

receive

valueget()

180

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

distributor and collector at the higher level. Arrow “a”
and “b” in the Figure point out that it is the SType 3 at
position 1 and 2 that should be transmitted to
SGIdentities 1 and 2 respectively. For the collector it is
similar the SType 5 at position 1 for both SGIdentities 1
and 2 that should be transmitted to the two first
positions of the collector. If a new component is added
with SGIdentities 3, the distributor and collector per
automatic should extend the vector signal with
respective STypes.

4. Modelica library

The signal classifications are the basic parameters for
configuring the signal flows in the SE. The SignalFlow
library is built in Dymola, using the Modelica language.
Dymola is an object-oriented SE for modeling transient
physical systems that has god support for
interconnecting other object-oriented languages such as
C++, which is well exploit in this library [3,4,5,7].

Figure 4. The SignalFlow library

The SignalFlow library is depicted in Figure 4 and
mainly contains the following component models:
• The SignalNode (SN, SNode) model manage all in

and out coming signal interfaces initiated by the
SignalFlows

• The SignalFlow (SF, SFlow) model represents the
signal configuration between the SNodes.

• The SignalFlowOut (SFO, SFlowOut) model has a
standard Modelica output terminal to interconnect
with other library models.

• The SignalFlowIn (SFI, SFlowIn) model has a
standard Modelica input terminal that supplies the
signal system with signals.

• The SignalFlowDistributer (SFD) model is similar
to the SFlowIn but initiates an automatic search for
SFlowOut models that are configured according to a
predefined SType.

• The SignalFlowCollector (SFC) model initiates an
automatic search among SFlowOut models for
signal types to be collected (model with sum-sign).

• The SignalResourceManager (SRM) model
interacts by connecting a SNode where it accesses a
predefined resource type.

The main component models are constructed several
sub libraries within the Base library, which contain the
dConnector, dInterface, dIcon, dRecord, and dFunction
library. The sublibrary dConnector contains two
connector (terminal) types that are defined by the
following Modelica semantics:

connector SignalNodePort
 Real signalNode;
 flow signalLine;
end SignalNodePort;

The second connector “SignalFlowPort” is identical
except for the icon, which is a triangle instead of a
quadrangle as in the “SignalNodeConnector” case. The
model interfaces, within the dInterface sublibrary, are
composed as below where the node and flow have one
two connectors respectively.

partial model SignalNodeInterface
 extends dIcons.SignalNodeIcon;
 dConnectors.SignalNodePort nodePort;
 Real nodeS = nodePort.signalNode;
 Real lineS = nodePort.signalLine;
end SignalNodeInterface;

partial model SignalFlowInterface
 extends dIcons.SignalFlowIcon;
 dConnectors.SignalFlowPort flowPortA;
 dConnectors.SignalFlowPort flowPortB;
 Real nodeA = flowPortA.signalNode;
 Real lineA = flowPortA.signalLine;
 Real nodeB = flowPortB.signalNode;
 Real lineB = flowPortB.signalLine;
end SignalFlowInterface;

The user interface assigning the SNode parameters are
depicted in Figure 5 where the node type can be used to
force the node to be of storage type. The node identity is
normally automatically assigned but could also be
forced to a specific value, and the last parameter
determines if the node should be continuously or
discrete. The SNode in the SignalFlow library is
initiated and automatic assigned an identity by the
zNodeInit function. The function argument is a
configuration vector (cv) where all predefined
parameters are placed. Dependent on whether the
SNode should be discrete (sampled) or continuous the
variable nodeD or nodeC is assigned. When initiated the
node updates every time interval according to the SE
and extended equations are only one technique solving
the discrete or continuous options. The SNodes are
always initiated at simulation start and during
simulation the only input is the “lineS” that is one of the
arguments in the zNodeUpdate function.

181

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 5. User interface for assigning the parameters of
the SignalNode model

As the “lineS”, per Modelica-definition, is declared as a
“flow”, all connected SFlow models are summarized in
this variable enabling the node to examine which lines
that are active.

model SignalNode
 extends dRecords.SignalNodeRecord;
 extends dInterfaces.SignalNodeInterface;
protected
 Real nodeID(start=0.0);
 Real nodeC(start=0.0); // continuous
 Real nodeD(start=0.0); // discrete
 Boolean sampleTrigger;
equation
 when initial() then
 nodeID = dFunctions.zNodeInit(cv, cvSize);
 reinit(nodeC, nodeID);
 end when;
 sampleTrigger = if samplingON then
 booleanPulse1.outPort.signal[1] else false;
 when sampleTrigger then
 nodeD = dFunctions.zNodeUpdate(nodeID,
 lineS, time);
 end when;

 der(nodeC) = if samplingON then 0.0 else
 nodeID – dFunctions.zNode_
 Update(nodeID, lineS, time);
 nodeS = if samplingON then pre(nodeD)
 else nodeC;
end SignalNode;

By definition, the SFlow model has always a flow of
signals from A to B as shown by the icon and in the
“SignalFlowInterface” declaration where the two
terminals are denoted A and B. The SFlow model is
initiated as soon as the variables “nodeA” and “nodeB”
are positive. The initiating function, zFlowInit, then
automatically returns the line identities lineAID and
lineBID. In normal operation the SFlow only checks
that the line is correct for transmitting. If a failure
occurs on the line, the “”lineA” and “lineB” are assign
to an error code. When the line is restored the initiating
process once again is performed.

model SignalFlow
 extends dRecords.SignalFlowRecord;
 extends dInterfaces.SignalFlowInterface;
 Real flowID(start=0);
 Real lineAID(start=0);
 Real lineBID(start=0);
equation
 when (nodeA*nodeB > 0) then
 flowID = dFunctions.zFlowInit(nodeA, nodeB,
 cv, cvSize, signalType, sTypeSize,
 signalAID, sAIDSize, signalBID,
 sBIDSize);
 lineAID = dFunctions.zTryConnectFlowOut(flowID,
 nodeA, time);
 lineBID = dFunctions.zTryConnectFlowIn(flowID,
 nodeB, lineAID, time);
 end when;
 lineA = dFunctions.zFlowUpdate(flowID, nodeA,
 lineAID, nodeB, lineBID, time);
 lineB = dFunctions.zFlowUpdate(flowID, nodeB,
 lineBID, nodeA, lineAID, time);
end SignalFlow;

In the SignalFlowOut model the lineB is not used and in
the SignalFlowIn model the lineA is not used. They are
replaced by the “value” variable that is connected to the
standard Modelica Input or Output connectors.

 --SignalFlowOut ---
 lineA = zFlowUpdate(flowID, nodeA, lineAID);
 for index in 1:sTypeSize loop
 value[index] = zFlowGet(nodeA, lineA, index);
 end for;
 --SignalFlowIn ----
 lineB2 = zFlowUpdate(flowID, nodeB, lineBID,…);
 lineB = zFlowSet(nodeB, lineB2, value, valueSize);

In the zFlowInit function, the argument is equivalent to
the “SignalFlowRecord” that corresponds to the signal
classification in section 3 and in Figure 6.

Figure 6. User interface for assigning the parameters of
the SignalFlow model

182

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Both side A and B are represented with one identity
vector each enabling different identity assignments of
the same signal in different communication areas. Using
the library in the simplest case the identity is the only
parameter to be assigned.

record SignalFlowRecord
 parameter Integer[:] signalAID ={-1};
 parameter Integer[:] signalBID ={-1};
 parameter Integer[:] signalType={-1};
 parameter Integer groupID;
 parameter Integer blockType;
protected
 parameter Integer[:] cv={0,0,0,groupID,blockType};
 parameter Integer cvSize=size(cv, 1);
 parameter Integer sTypeSize=size(signalType, 1);
 parameter Integer sAIDSize =size(signalAID, 1);
 parameter Integer sBIDSize =size(signalBID, 1);
end SignalFlowRecord;

The SNode model has no direct limitation in connecting
the number of SFlow models, as the structure is
dynamic. Each new connection creates a new object that
might be automatically removed if disconnected a
predefined amount of time. The structure is simple and
can be connected with unlimited SFlows between
SNodes, Figure 7, and at any hierarchy level. In the
simplest case one SNode is used as a communication
bus where all SFlows are connected to that single bus.
The SFlows are normally embedded in some user
specific model hiding the pre-defined communication
interface interacting the bus.

Figure 7. Dynamic number of connections

The basic Modelica structure for connecting SNodes
and SFlows, depicted in Figure 8, prevents algebraic
loops, which is easily caused with a high degree of
control levels in a SE. Even if the SE can handle this, as
in the Dymola case, it might become a complicated
problem in large system models. The SNodes have a
state (node) corresponding to capacitors (voltage)
summarizing the variables from the SFlow models. The
SFlow assigns the lineA and lineB, identities,
corresponding to currents in the electrical case. The line
identities are then identified by using a “modulo 2”
function both when assigning and decoding the
identities, e.g. if four SFlows are connected and the
identities of them are 2, 4, 8 and 16 with the sum of 30,
it is easy for the SNode to decode the SFlows to
determine both if a new SFlow has to be configured and
if a line is broken. Referring to Figure 8, each node can
be connected to numerous signal flows where the
SNode assigns the terminal variable “nodeS” and the
line identities are summarized in the terminal variable
“lineS” of the node. In the SFlow, the lineA and lineB

are separated enabling the responsible node to change
the line identity if needed. In case of disconnecting one
SFlow model, it is not likely that the identities will be
the same in a dynamic environment. There is also a
cross coupling between the nodes by the arguments in
the update function, which uses the corresponding node
identities in order to avoid losing the equation tail in the
SE. The SE initiating process automatically assigns all
identities of the SNode and SFlow models.

Figure 8. Terminal assignments between SNodes and
SFlows

5. Interconnection to C++ library

The Modelica models in the SignalFlow library have
several functions for interacting the with C++ library.
All included functions are similarity declared as here
exemplified for the “zNodeUpdate” function.

function zNodeUpdate
 annotation (Library={"Libcore"});
 input Real nodeID;
 input Real flowSum;
 output Real y
external "C" y = zNodeUpdate(nodeID, flowSum);
end zNodeUpdate;

The “Libcore” assignment is the actual C++ library that
is linked to the SE by the “Libcore.lib” file, which is
placed under the “dymola\bin\lib” directory.

Figure 9. Modelica and C++ interconnection

A BA B A BA BA BA B
A BA B A BA B A BA B

AB ABAB AB
AB ABAB AB

AB AB
AB AB

SFlowSNode

ZModelicaInterface (C-functions)

A BA B A BA B A BA B

SFlowIn SFlowOutSNode

ZSignalSystemManager (C++ -library)

der(nodeS) = update(nodeID, lineS)

lineA=update(flowID,nodeA,lineAID,nodeB,lineBID)

lineB=update(flowID,nodeB,flowBID,nodeA,lineAID)

der(nodeS) = update(nodeID, lineS)

nodeB/lineB

nodeS/lineS

lineS=lineA1+lineA2
nodeS/lineS

nodeA/lineA
terminalASFlow

SNode

SNode

terminalB sFlow3
sFlow4
sFlowN

sFlow1 2

183

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Each SNode and SFlow model creates a separate object
in the C++ layer where the Modelica-layer models use
function calls to the ModelicaInterface and method calls
to the C++ library, as depicted in Figure 9. The header
declarations for the “ZModelicaInterface.h”, enables
method calls from the C++ implementation, as shown
below. By using the “ZModelicaInterface.cpp”, the
Modelica function calls are translated to method calls
from the “ZSignalSystemManager” class where all
methods can be found in each step interfacing the C++
library.

// --- ZModelicaInterface.h ---
#ifndef ZMODELICAINTERFACE_H
#define ZMODELICAINTERFACE_H

#include "ModelicaUtilities.h"
#include "ZSignalSystemManager.h"

#ifdef __cplusplus
extern "C" {
#endif
double zNodeInit(int cv[], int cvSize);
double zNodeUpdate(double nodeID, ….);
………. remaining functions

#ifdef __cplusplus
}
#endif
#endif // end

The description of the specification is here exemplified,
where the remaining functions are declared as the two
presented.

// --- ZModelicaInterface.cpp ---
#include "ZModelicaInterface.h"

ZSignalSystemManager sys; // C++ class

double zNodeInit(int cv[], int cvSize) {
 return sys.nodeInit(cv, cvSize);
);
double zNodeUpdate(double nodeID,...) {
 return sys.nodeUpdate(nodeID, ….);
}
.……… remaining functions
// end

The “ZSignalSystemManager” class is the actual
interface between the Modelica-layer that manages all
the ZSignalNode and ZSignalFlow objects using
dynamic vectors as is briefly shown here. The JVector
class is a dynamic vector (DV) equivalent to the
CVector class in the C++ standard library except for
some modifications making a smooth conversion to the
JAVA environment. The dynamic properties in the
library are based on the DV that is used for pointing out
all needed objects for the specific application. There are
facilities in Modelica allowing to declare void*-pointers
and external objects by defining a partial class
“ExternalObject” with constructor and destructor
functions that would make the ZSignalSystemManager

excessive. However, this is not used in this version but
might be implemented in the next.

typedef JVector<ZSignalNode*> ZSignalNodeVector;
typedef JVector<ZSignalFlow*> ZSignalFlowVector;

class ZSignalSystemManager
{
private:
 ZSignalNodeVector* m_nodeVector;
 ZSignalFlowVector* m_flowVector;
 int m_nodeCounter, m_flowCounter;
 ZOutFileManager* outfile;
public :
 ZSignalSystemManager();
 ~ZSignalSystemManager();
 double nodeInit(int cv[], int cvSize);
 double nodeUpdate(double node, flowS, time);
 double flowInit(double nodeA, nodeB, int ………....);
 double flowUpdate(double flow, nodeA, ...……..….);
 double tryConnectFlowIn(double flow, node, flowA);
 double tryConnectFlowOut(double flow, node);
 double flowSet(double node, flow, *value, ……...…);
 double flowGet(double node, flow, int index);
 void outputManager(const char* text,int type);
}; // end ZSignalSystemManager

6. The C++ class library

The key to manage the dynamic design interconnected
to a SE is to use higher levels of abstraction as in object-
oriented languages [6,8]. An example for this approach
is implemented in a C++ class library based on
implementation corresponding to the SNode and SFlow
models used in the Modelica layer.

Figure 10. C++ structure

Using the C++ class libraries, a designer can describe
components at a broad range of abstraction levels,
which result from the ability to perform signal and
control modification separately. As pointed out in
section 1, there are different levels of abstraction at
which C++ can be used for the signal management
system as depicted in Figure 10. The C++ library
mainly includes the following classes:

• The ZSignalNode (ZSN, ZSNode) class is

responsible for searching and joining together every
signal in each connected input and output signal

ZSF

ZSI getState

value

setV

ZSN

ZS

ZSI

value

ZS

ZSI

value

ZSN

ZSI

value

ZSignalSystemManager (C++ -library)

getV

node nodeflow

update
ZSZS

184

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

interface. The class is receptive to changes of new
interconnections and continuously controls all
connections for not being defected.

• The ZSignalInterface (ZSI, ZSInterface) manages
a pre-defined number of signals in a block that, for
example, could correspond to a protocol. This
object could be of several types such as inputs and
outputs for communication but also parameters for
configurations and specifications.

• The ZSignal (ZS, ZSignal) class is the object
containing the particular value of the signal and its
configuration. It could also be a reference pointing
at another ZSignal.

• The ZSignalFlow (ZSF, ZSFlow) class is the actual
configuration of the signals between two SNodes
including the needed types and identities.

As depicted in Figure 10, the SNode model is
interconnected to the ZSNode class and the SFlow
model to the ZSFlow class. The ZSNode includes DVs
pointing at ZSInterface objects that in turn also have
DVs pointing at ZSignal objects.

class ZSignalNode
{
private:
 ZIntegerVector* m_cv;
 ZSignalInterfaceVector* m_iv;
 ZSignalInterfaceVector* m_ov;
 int m_state;
 bool m_change; m_storage;
public:
 static int m_signalNodeCounter; // object counter
 // constructor and destructor
 ZSignalNode(int cv[], int cv_size);
 ~ZSignalNode(void);
 // --------- configuration functions ------------------------
 int verifyInInterface(int cv[], int cv_size);
 int addInInterface(ZSignalFlow* flow, doub. time);
 void removeInInterface(int iID);
 // corresponding functions for OutInterface
 void tryConfiguration(void);
 void configureAllSignals(void
 void verifyAllSignals(void);
 void findSignalByID(ZSignalInterface* di);
 void findSignalByType(ZSignalInterface* di);
 void findSignalByBlock(ZSignalInterface* di);
 // ----------- operational functions -----------------------
 void update(int nodeID, double ntime);
 void setValues(interfaceID, dou* value, int size);
 double getValue(int interfaceID, int index);
 // ----------- error and information functions ----------
 void checkConfiguration(int cv[], int cv_size);
}; // end ZSignalNode

At simulation start, the ZSNode is created and initiated.
A unique identity is then returned to the SNode model,
which represents a pointer to the ZSNode object. The
ZSNode object is at start in configuration state and
awaits method calls for SFlow connections. As soon as
the SFlow model is properly interconnected, it attempts
to call respective ZSNodes by the “zTryConnectFlow”
method. This checks the SFlow reference and then calls

for the “addInInterface” or the “addOutInterface” of the
ZSNode object dependent on if connected to the A- or
B-side. The “addInterface” method then creates a new
ZSInterface object according to the configuration of the
ZSFlow model and returns a unique line identity
according to the ZSInterface object. Every time a new
event occur in the SNode, the internal variable “change”
is set, which start internal methods to find in- and output
signals that are matching and then connects them
dependent on configurations. As soon as the ZSInterface
is correct interconnected, it is turned over to “operation”
state and starts updating the signals continuously or
according to a sample rate. Dependent on output
interface configurations the ZSNode has methods to
find input signals according to signal identity
(findSignalByID), or type (findSignalByType). In the
type case, there are also more specific methods
searching particular block types. This is, for example,
used when the output interface is of collection type,
which is expanding according to the number of input
interfaces including the requested signal type. In
operation state the ZSNode only uses the “update”
method that propagates the call to the affected
ZSInterface objects.

class ZSignalInterface
{
private:
 // Internal variables
 ZIntegerVector* m_cv;
 ZSignalFlow* m_flow; // configuration
 ZSignalVector* m_sv;
 ZSignalInterface* m_siConnected;
 Int m_state
 bool m_active, m_change;
 bool m_storage, m_destination;
public:
 static int m_signalInterfaceCounter; // object counter
 // constructor and destructor
 ZSignalInterface(int cv[], int cv_size, ZSFlow* flow);
 virtual ~ZSignalInterface();
 // ---------- configuration functions ----------------------------
 int getSize(void); // number of signals
 int getType(void); // interface type
 int getStorageType(void), getState(void);
 void setState(int state);
 int getGroupID(void);
 ZSignal* getSignalRefByIndex(int index);
 ZSignal* getSignalRefByID(int id);
 ZSignal* getSignalRefByType(int type);
 void connect(ZSignalInterface* di);
 void tryConfiguration(void);
 void verifyConfiguration(void);
 void addSignalElement(ZSignal* sObject);
 void removeAllSignalElements(void);
 bool change(void);
 // ------- operational functions --------------------------------
 void update(void);
 void setValues(double* value, int valueSize);
 double getValue(int index);
 double getSum(void), getMax(void), getMin(void);
 // ------- check functions (throwable) ------------------------
 void checkConfiguration(int cv[], int cv_size);
 }; // end ZSignalInterface

185

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

The ZSInterface is based on a vector (m_sv) including a
pre-defined number of ZSignal objects. The ZSInterface
has several functions for configuration, mainly to
interconnect and verify all included ZSignal objects to
the intended destinations for updating the flow when
turning to operation mode. If the ZSInterface object is
of input type it has also a reference (m_siConnected) to
an output ZSInterface of another ZSNode object. This
gives that an input ZSInterface can never leave the
configuration state until the reference-pointer points at
an output ZSInterface in operational state. This is the
actual control chain that implies that the source
ZSInterface is the first one turning in operational state
and then, step by step, permits the chain of ZSInterfaces
to the last instance, the destination ZSInterfaces, to
become operational. In the ZSInterface class, there are
additional methods (getSum, getMax, getMin) normally
used if utilizing the collector type, SFC model, which
collects specific signal types.

The bottom class, ZSignal, includes the value of one
signal and its signal specification. There are built-in
functions to determine whether the signal should be
locally stored or only point at another ZSignal object.
The ZSignal class and its methods are shown beneath.

class ZSignal
{
private:
 int m_signalID, m_signalType;
 int m_blockType, m_groupID;
 double m_value;
 double* m_valueRef;
 bool m_refOK, m_storage;
public:
 ZSignal(int bid, int id, int type, bool storage);
 virtual ~ZSignal();
 // --------- configuration functions -----------------
 void setValueRef(double* value);
 double* getValueRef(void);
 bool refOK(void);
 bool active(void);
 int getGroupID(void);
 int getBIockType(void);
 int getSignalType(void);
 int getSignalID(void);
 // ----------operational functions --------------------
 void update(void);
 void setValue(double value);
 double getValue(void);
 // --------- check functions (throwable) -----------
 void checkConfiguration();
}; // end ZSignal

The update, setValue and getValue methods are the
actual methods that the higher-level classes call for in
operation state. Consequently, all signal management is
only handled between the ZSignal objects that, in fact,
are not aware of the other classes. They are only utilized
to keep track and be prepared to change connections
according to the signal configurations and routings.

7. Verification by samples

The “SignalFlow” library is verified by using all the
components in several connections as depicted in Figure
11, which corresponds to the configuration example in
Figure 3. At the left hand, there are two identical areas
with internal control using the signal facilities. The
SGIdentities are assigned 1 respective 2 that in this case
also represents the two units. Unit 1 is not connected
until 0.3 second after simulation start for testing of
components added during simulation. Each unit has a
SNode (SN) corresponding either to a communication
intermediate storage area or a complete database for the
unit where a number of signals are selected. All SNodes
are assigned to 10 Hz sample rate. The SFlowOut of
unit 1 and 2 are only assigned with the SIdentities and
the SFlow models are assigned with SGIdentities,
SBTypes, STypes and SIdentities enabling
SFDistributors and SFCollectors to be used. The
SFDistributor distributes two signals that, at start, are
assigned 1.0 and 2.0. Reaching 0.8 second, the signals
are increased 0.5 to 1.5 and 2.5.

Figure 11. Signal system setup for validation of several
different signal exchange possibilities

The signals are distributed to the SFlowOut (SFO1,
SFO2) models of respective unit, which is depicted in
the upper graph in Figure 12, where the initiating for
configuration requires 3 samples. At this point, the
SFlowOut2 is in operation state and updates the signal
to the value 1.0. The SFlowOut1 should have been
operated in the same manner but is not connected until
time equal to 0.3 second, which then takes another 2
samples to be configured before turning to operating
state. At 0.8 second, the two signals are directly
increased to verify that there is no delay time in
operation state. This example shows that the SNodes
can handle altered configuration during simulation with
only a few samples of delay and that the signals are
distributed to the intended units. Moreover, in the other
signal flow direction, the sources of unit 1 and 2 are
constant 1.0 respectively 2.0. The SFlowOut3 are
configured by SIdentities to connect these to signals. In
the middle graph, Figure 12, this is also shown by first
being delayed 3 samples before operating the signal
from unit 2 and then additionally 2 samples for unit 1
due to the afterward connection at 0.3 second.
Assigning the SBTypes and STypes configures the
SFCollector in the third case. The bottom graph in

SFO

SFI

SF1

SF2

SFD1

SN

Source
SGI 1

SFO

SFI

Source

SN SF2

SF1
SGI 2

Distributor

Collector

SFlowOut

R...A B A B

ABAB

A

AB

R...

R...A B A B

ABAB

com...

start...
step11

start...

step21

start...

b...
s...

F
N

A B

SFC

1

2
3

186

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 12 shows that the configuration events are the
same as in the previous case. The value 1-3 corresponds
to the sum, max and min functions, which are correct at
0.5 second, where the sum is equal 1+2=3, max=2 and
min =1. However, this example is configured with a
small number of SNode and SFlow models that imply
that few samples are needed for the configuration state.
Consequently, in more complex system models the
configuration sample delay increases but not necessary
in time, dependent on the sampling rate.

Figure 12. Simulation results for the validation model

A more complex illustration, where the SignalFlow
library is frequently used is depicted in Figure 13, which
represents a modular wind power plant (WPP) model in
Dymola. The model is built from several model
libraries, the “SignalFlow”, the “ControlFlow” mainly
including control system related units, the “PowerFlow”
(converters, cables etc.) and the “WindPower“ library
(wind turbine units). The WPP model has several
control unit levels and consequently several
communication levels (CL). The four CLs included are
the production control level (CL4), plant control level
(CL3), process control level (CL2) and field control
level (CL1). The principles are similar at each level
including several controllable power units connected to
a control unit via a communication bus. At each level,
the SignalFlow library is used for exchanging signals. A
single SNode represents different types of
communication buses (B) dependent on the CL, and is
also used for inter-process communication within a
control unit. Between each CL, a control unit is
interconnected that contains two signal exchange (E)
units (SNode, SFlows) separating the CLs, and a
number of software modules (M) controlling the

connected units. A module includes several function
blocks (FB) that are connected by the SFlowIn and
SFlowOut models to a SNode representing the local
database. A selected number of signals are then
exchanged from the database to the external bus using
two SFlow models.

8. Conclusion

An adaptive signal management structure, based on
object-oriented dynamical programming, is presented. A
simulation library, “SignalFlow”, is developed in
Modelica, where the model components are
interconnected to the signal management structure. The
presented results verifies that the structure meet the
requirements. The structure forms a base level layer
enabling adaptation for higher-level control and
information flows. It is also a good example on how to
develop function calls, interacting external
programming languages with a simulation environment.

References

[1] Svensson, J. and Karlsson, P., "Wind Farm Control

Software Structure", Third International Workshop
on Transmission Networks for Offshore Wind
Farms, Royal Institute of Technology, Stockholm,
Sweden, April 2002

[2] Svensson, J., Karlsson, P. and Johnsson, A.,
"Information Structures for Scalable Distributed
Power Systems", 3:rd IASTED International
Conference on Energy and Power System,
Marbella, Spain, September 2003

[3] Freiseisen W.; Keber R.; Medetz W.; Pau P.,
Stelzmueller D.,”Using Modelica for Testing
Embedded Systems”, 2:nd International Modelica
Conference, Proceedings, pp. 195-201

[4] Pereira Remelhe, M.A.,”Combining Discrete Event
Models and Modelica - General Thoughts and a
Special modeling Environment”, 2:nd International
Modelica Conference, Proceedings, pp. 203-207

[5] Modelica™ – A Unified Object-Oriented Language
for Physical Systems Modeling, Languages
Specification, Version 2.0, http://www.modelica.org

[6] Svarstad, K.; Ben-Fredj, N.; Nicoleson, G.; Jerraya,
A., “A Higher Level System Communication Model
for Object-Oriented Specification and Design of
Embedded Systems”, Conference on Asia South
Pacific Design Automation 2001, Yokohama, Japan

[7] Dymola, Dynamic Modeling Laboratory, Dynasim
AB, Lund, Sweden, http://www.dynasim.com

[8] Al-Agtash, S., Al-Fayoumi, N. “A Software
Architecture For Modeling Competitive Power
system”, IEEE Transactions on Power Systems,
2000, pp. 1674-1679

3 samp. 2 samp.

a

2 samp. 1 s.

3 samp. 2 samp.

b

SFO1.value[1] ______ SFO2.value[1] _ _ _ _ _

SFO3.value[1] ______ SFO3.value[2] _ _ _ _ _

SFC.v[1] _____ SFC.v[2] __ __ SFC.v[2] _ _ _ _

3 samp. 2 samp.

a

2 samp. 1 s.

3 samp. 2 samp.

b

SFO1.value[1] ______ SFO2.value[1] _ _ _ _ _

SFO3.value[1] ______ SFO3.value[2] _ _ _ _ _

SFC.v[1] _____ SFC.v[2] __ __ SFC.v[2] _ _ _ _

187

 Jörgen Svensson and Per Karlsson Adaptive signal management

 The Modelica Association Modelica 2003, November 3-4, 2003

Figure 13. Modular simulation model of a Wind Power
Plant including several communication levels (a), and
signal management models used in the WPP model (b)

Control Unit = CU

CU

188

Object-oriented simulation of energy supply systems
on the basis of renewable energy

Christian Hoffmann1 Jens Kahler2

1Technische Universitaet Ilmenau
P.O. Box 10 05 65, 98694 Ilmenau, Germany

Christian.Hoffmann@systemtechnik.tu-ilmenau.de
2De Montfort University

Water Software Systems, Queens Building, LE1 9BH, Leicester, UK
JKahler@dmu.ac.uk

Abstract
The usage of renewable energy sources has become
more important in recent times mainly due to
shortage of fossil fuels. Thus new challenges arise
for the control and planning of heat supply systems.
These systems work with different renewable
energy sources (earth heat, solar radiation, exhaust
air heat from building), which therefore lead to
control problems with a higher rank of difficulty.
The main goal of these control strategies is the
reduction of operational cost as well as an increase
in the rate of return for the investment.
This paper describes the simulation of a heat supply
system using Dymola [13] by means of object-
oriented modelling with Modelica. The final aim of
such a simulation is to develop a model predictive
control strategy on the basis of the proposed object-
oriented model in Modelica. To develop such a
control strategy it is necessary to gain knowledge
about the heat demand of buildings and the power
usage of its different components. The use of
Computer Aided Engineering (CAE) can lead to a
further reduction of development costs. A Dymola
library named RECOMB has been created to
support of modelling and simulation of such heat
supply systems. The name RECOMB stands for
Renewable Energy Components mOdelling and
optiMisation of Buildings. The library itself consists
of sub-libraries:

• Weather (chapter 1)
• Predict (chapter 2)
• HESYS (chapter 3)
• Buildings (chapter 4)

The components and the resulting models for the
thermodynamic models of the sub-library HESYS

have been validated by comparing them with
existing simulation software [11], [12], while the
building models have been validated with help of
German guidelines [9] as well as with other
simulation software [8], [10].

1 The sub-library Weather
The sub-library Weather contains measured weather
data for several German cities and a selection of
other cities for validation purposes. The data has
been obtained with the help of the database program
Meteonorm. This program can supply various
climatic information (e.g. total radiation, diffuse
radiation, relative air humidity, wind speed,
environmental temperature, etc.) in a desired output
format (every second, hourly, daily).
Unfortunately, solar radiation is only available as
radiation on a horizontal surface. But outside walls
of building models normally are vertical and solar
panels are also tilted to maximise radiation input.
Therefore, a component is needed that allows
correct calculation of radiation on a tilted surface
from the available horizontal radiation data.
This component iscalled SolarRadiationTransformer
(SRT). The SRT allows correct calculation of the
radiation on a tilted surface. The formula of Liu and
Jordan [4] has been implemented:

()

2
cos1

cos1
2
1

,

,

,,

βρ

β

−⋅⋅+

⋅+⋅+

⋅=

totalhorenv

diffusehor

beamhorbtiltedtotal

G

G

GRG

(1.1)

where

Gtotal, tilted total radiation on tilted surface

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003189

Ghor,beam direct radiation on horizontal surface
Ghor,diffuse diffuse radiation on horizontal surface
Ghor,total total radiation on horizontal surface
�env reflection factor of environment
� angle of tilted surface

The calculated weather data is then passed on as
information values to the connected models.

2 The sub-library Predict [6]
The sub-library Predict can be used for short-term
prediction of climate data. This is essential for
developing control strategies for regions where none
or very few weather data can be provided. The
library contains different methods to forecast
climate values. Sometimes difficulties arise in data
rededication, when climate data is not clearly
correlated as this causes problems for most
algorithms used for prediction. To handle these
difficulties three different prediction methods had to
be implemented:

• Peristence
• Stochastic methods, AR-modeling
• Heuristic methods

- fast fuzzy based forcasting
- Neural network

Prediction using the method of persistence is the
simplest method of forecasting climate data. No
model knowledge is needed to apply it, but it is only
useful for slowly
changing processes as
the environmental
temperature.
Autoregressive
prediction (AR) is a
model-based algorithm
(figure 2.1). The
predicted value for the
next time-step is
calculated by taking the
preceding values into
account and applying
weighting factors to
them. Nevertheless the
most powerful method
of prediction used in
this library is the fast
fuzzy prediction (figure
2.2.) This method
compares the actual situation with situations already
known from the past, which are similar to the

current one and then generates the new value. Since
the algorithm uses known patterns from situations
already occurred in the past, the method belongs to
the group of pattern based prediction methods.
Finally, a method using neural networks has been
implemented. This neural network works on the
basis of a multi-layer perceptron to forecast the
actual weather data
(figure 2.3). Important
filters to remove trends
as well as modules for
scaling values and to
calculate statistical
values for time series
have been implemented
into the sub-library
Predict. To make full
use of the Modelica language options, some
parameter calculations are carried out using external
C/C++ functions. The implemented methods of
forecasting have been validated on short-term
prediction with the available data from the program
Meteonorm. In connection with the long-term data
provided by weather institutes and databases, the
combination of the two forms of climate prediction
leads to a powerful tool for controlling and
maximising the output of solar thermal and
photovoltaic constructions. Again the predicted data
is passed on as information values to the connected
models.

3 The sub-library HESYS
This library contains all components necessary to
model and simulate Heat and Energy Supply
SYStems. Together with the sub-library Buildings
(chapter 4) this is the core of the library RECOMB.
The library itself is divided into two sub-libraries to
separate those elements necessary to model and
simulate solar-thermal systems, heat pumps and
conventional heating from elements necessary to
model photovoltaic systems.

HESYS

Thermal Electric
- collectors - solar cells
- heat storages - photovoltaic modules
- hydraulic eq. - buck converter
- tubes - boost converter
- heat exchangers
- controllers
- additional heatings

Fig. 2.1 Yule-Walker
Parameter estimation

Fig. 2.2 Prediction
using Fuzzy logic

Fig. 2.3 Neural network
prediction

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003190

Unlike other model libraries, the components of
HESYS have been modelled especially for
controlling aspects, as it is the main aim to develop
efficient control strategies for the use of renewable
energies. This aspect is also shown in the design of
the connectors. For the use of the sub-library
Thermal a HeatPort Connector as it can be seen in
figures 3.1 – 3.3 has been implemented, which
contains three variables. To completely describe the
energy flow, only two variables would be sufficient
(temperature T, heat flowQ�), but in this case the
mass flow m� has also been integrated. This is due to
the fact that the mass flow later will become the
actual control variable:

partial connector HeatPort
"Thermal port for 1-dim. heat

transfer"
SIunits.Temp_K T "Port

temperature";
flow SIunits.HeatFlowRate Q_dot;
flow SIunits.MassFlowRate m_dot;

end HeatPort;

Fig. 3.1 Heat Port Connector in Modelica

connector HeatPort_in
"Thermal port for 1-dim. heat

transfer"
extends HeatPort;

end HeatPort_in;

Fig. 3.2 Heat Port In Connector in Modelica

connector HeatPort_out
"Thermal port for 1-dim. heat

transfer"
extends HeatPort;

end HeatPort_out;

Fig. 3.3 Heat Port In Connector in Modelica

The connector for the photovoltaic components of
the sub-library Electric is based on the connectors
from the general electric library from Modelica
PositivePin and NegativePin. This also allows the
use of components defined in that library.
To demonstrate the use of some of the basic
elements of the sub-library HESYS two simple
examples, one for each of the underlying
sublibraries, are shown.
Figure 3.4 shows a collector array with a size of
A = 4m2. The basis for the model of the collector is
the static general collector model [1]:

2
2

100

)(

)(

envout

envoutabs

TTa

TTaGaq

−⋅−
−⋅−⋅=�

(3.1)

where
a0 optical efficiency factor
a1, a2 thermal loss coefficients

absq� specific absorbed heat flow per m2 collector
size

G0 total radiation on surface
Tout fluid temperature at collector exit
Tenv environmental temperature

The parameters used to obtain the results shown in
figure 3.5 resample a Prinz Lux 2000 collector. The

Fig. 3.5 Simulation results of a collector field

upper left graphic shows the environmental
temperature over a one-day horizon and the graphics
in the upper right the radiation on the collector
surface. The two lower graphics show the
temperature of the fluid entering the collector (left)
and at the exit. The benefits can be seen clearly, as
the fluid reaches temperatures around 100 degrees
Celsius at the collector exit during noon.
The photovoltaic module as it can be seen in figure
3.6 consists of 36 solar cells connected in series.

Fig. 3.4 Dymola/Modelica model of a collector field with 4
collectors in series

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003191

The simulation model looks similar to the model of
the collector array seen in figure 3.4.

Fig. 3.6 Dymola simulation model of a photovoltaic module

The simulation shows, that several factors influence
the output of a photovoltaic module, e.g. the
temperature of the module itself and the point of
maximum performance, obtained from the specific
solar cell characteristics. For simulation purposes a
solar cell can be considered a diode in its behaviour
and 2-diode-model can be used to calculate current
and voltage of the cell [1]:

I
R

RIU
Um

RIU
I

Um
RIU

II

P

S

T

S
s

T

S
sPh

−⋅+−−
⋅

⋅+⋅

−−
⋅

⋅+⋅−=

)1)(exp(

)1)(exp(0

2
2

1
1

(3.2)

where
Rp current losses along the borders of the cell
Rs voltage drop
Iph photo current
Is1, Is2 satisfactionary currents
m1, m2 diode specific parameters
UT voltage drop depending on temperature
I current through cell
U voltage drop over cell

The results can be seen in figure 3.7.
Again, the two upper graphics show the
environmental temperature (left) and the radiation
on the surface of the photovoltaic module (right)
over 24 hours. The lower left graphics shows the
temperature on top of the photovoltaic module and
the power produced during that particular day can
be seen in the graphics in the lower right corner of
figure 3.7.
As it is the overall aim of the project to maximise
the use of renewable energy sources both introduced
models are only a smaller part of a system. In figure

3.4 the heat sink in reality is in most cases a water
tank, the main purpose of which is to provide heated
water to a connected household. This so heated
water is then available for domestic use or to supply
floor or ceiling heating, both becoming more
popular in low-energy houses.

Fig. 3.7 Simulation results of a photovoltaic module

To simulate the heat demand of a regular household,
the sub-library also offers components to model
complete heat supply circuits, including tubes,
pumps, flow-heaters and storages. One of the major
parts in these systems is of course a water storage
tank. At the moment two common types of storages
tanks are available. A mixed-liquid storage tank,
where the hot water is supposed to be mixed ideally
with the colder water of the storage as well as the
more frequently used stratified storages including a
stratification charger to minimize heat losses. The
latter ones are better in terms of cost and energy
savings, since hot water is injected into a
corresponding layer of water with almost identical
temperature in the tank. This leads to less extra
conventional heating. Nevertheless mixed-liquid
tanks are still widely used due to their lower
investment costs. If there is no internal or external
heat exchanger used, the change in storage
temperature can be calculated [3]:

Vc

QQQ

dt

dT

storagestoragep

lossusedcollectorstorage

⋅⋅
−−

=
ρ,

���

(3.3)

where

collectorQ� heat flow from the collector

usedQ� heat flow from storage to user

lossQ� heat loss through walls, top and bottom of
tank

cp,storage specific heat capacity of stored fluid

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003192

�storage density of stored fluid
V Volume of storage tank

A complete solar thermal model with storage tank
can be seen from figure 3.8.
In the same sense, the energy produced by the
photovoltaic components can be used. The energy
can be used directly to feed domestic energy sinks
(e.g. TV, bulbs) using buck or boost converters.
The results obtained from both the solar thermal and
the photovoltaic models have been compared with
results from other common simulation software
packages like T-Sol [12] and the Simulink Toolbox
CARNOT [13]. The results justify an approach
using the modules from the sub-library HESYS.

Fig. 3.8 Dymola simulation model of a simple heat supply system

4 The sub-library Buildings [5]
An essential part in developing efficient control
strategies to work with renewable energy
components is to have high knowledge about the
thermal behaviour of the actual energy sink. In this
case, a building, not necessarily a low-energy house,
is considered to be the main energy consumer.
Therefore, the sub-library Buildings contains
components (walls, windows, models of exchange
of radiation inside rooms) to build realistic models
of any kind of buildings.

There exist already several libraries to simulate
thermal behaviour, even one designed with
Modelica [10]. Still the authors decided to develop
one of their own. This again was driven by the
control approach, as it was necessary to connect the
components from the HESYS with building
components as well as with the controllers.
Nevertheless, both libraries share similarities, for
example the modelling of heat transmission between
walls or other heat emitting elements inside a room
(machines, persons). The library allows the use of
the two-star model [7], which approximates the heat
transmission. This model is very efficient for non-
rectangular rooms or rooms with additional heat
emitters. For validation purposes, exact models to
calculate heat exchange between opposite or
perpendicular heat radiation emitting elements [9]
are implemented as well.
Major differences can be found in the
implementation of walls of windows. Even though a
wall can easily be divided into objects for different
layers, it is considered to be a better approach to
implement a wall as a single object. This allows a
more exact realisation of a wall consisting of
different layers.
Starting from the partial differential equation from
Fourier:

ip q
t
T

t
T

c �+
∂
∂⋅−=

∂
∂⋅ 2

2

* λρ (4.1)

with

� density of material
cp specific heat capacity
� heat conductivity

iq� heat flux density
T absolute temperature

it is useful to then generate a discrete approximation
of this equation. In [5] it is shown that it is more
accurate to use an implicit method for
differentiating. Therefore, the reverse quotient for
differentiating is used to calculate the temperature
distribution through the wall. Since a wall normally
consists of layers of different materials, it can be
physically justified to consider each wall layer a
numerical layer. This leads to the following system

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003193

Fig. 4.1 Dymola simulation model of a simple room with air conditioning

of equations for heat conduction inside a wall
element:

�
�
�

�

�
�
�

�

�

=+⋅−⋅

<<+⋅−

=+⋅−⋅

=

−

−+

niifTTT
d
a

niifTTT
d
a

iifTTT
d
a

dt
dT

nninside
n

n

iii
i

i

outside

i

)2(

1)2.(

1)2(

12

112

122
1

1

(4.2)

with

a thermal diffusivity
d thickness of layer
n number of layers

The temperatures on the inside and the outside of
the wall can be calculated using the heat balances
on these surfaces:

)(

0

1
1

1

,

outside

shortwavelongwaveoutsideconvection

TT
d
A

QQQ

−⋅⋅+

++=

λ

���

(4.3)

)(

0 ,

ninside
n

n

shortwavelongwaveinsideconvection

TT
d
A

QQQ

−⋅⋅+

++=

λ

���

(4.4)

where

shortwaveQ� heat transmission caused by short-wave
radiation

longwaveQ� heat transmission caused by long-wave

radiation

convectionQ� heat transmission caused by convection
on inside or outside of element

A area of wall
d1, dn thickness of first/last wall layer
� heat conductivity of wall layer
T absolute temperature

The same approach is used for the model of the
windows. As originally low-energy houses have
been considered, a window can also be seen as a
wall element with, in case of double-glazing, at
least three layers, where the intermediate layer is a
vacuumed space or filled with gas. But heat
transmission through a layer of glass is different
to that of a wall. To generate an exact model this

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003194

has to be considered. Shortwave radiation does
normally not get absorbed in glass layers.
Nevertheless, after being absorbed by objects in
the room it is transformed and emitted as long-
wave (heat) radiation. For this radiation, glass
layers are impenetrable. This leads to a natural
heating of the room and this effect is commonly
known as the greenhouse effect. Furthermore, for
glass layers reflection and absorption between
layers has to be considered. This is accomplished
by using the ray-tracing method.
Another major part of the sub-library next to
model buildings is to model the interior behaviour
of a room. This is again done with respect to the
overall aim of developing the control strategies.
To minimise conventional heat sources, low
energy houses also make use of heat recovery
in air conditioning systems. Hence, these
systems obviously have an influence on the total
heat absorbed or emitted inside a room. Therefore,
it has to be implemented in a complete model as
well as conventional heat suppliers like radiators.
The sub-library allows to model realistic air
conditioning systems, which can be extended to a
heat recovery system due to the object-oriented
nature of the simulation environment.

Another extension of the available library is the
possibility to simulate the room behaviour with
respect to hygienic factors. The general purpose of
the library was also to generate a room climate
that is generally considered comfortable by a
human being. Therefore in addition to heat
transmission, emission and absorption, factors for
relative humidity, moisture on the insides of walls
and air pollution by CO2 have to be considered.
Furthermore, it is possible to control the room
behaviour with simple PID – controllers as well as
with state space controllers. This already leads to
a good impression of the total heat consumption
of a single room or house under different
requirements of comfort.
The models generated using the sub-library
Buildings have been validated using an exemplary
configuration for a room under certain conditions
obtained from [9] as well as comparing the results
with those from the “Baukonstruktionslehre”
(BKL) – house introduced by Feist [7]. The
Verband Deutscher Ingenieure (VDI) offers a
range of examples in one of their guidelines to
compare total heating and/or cooling load or for a
selected week of rooms under defined conditions.
Figure 4.2 shows the complete model of the VDI
example 13 as it appears in Dymola.

Fig. 4.2 Dymola simulation model of the VDI example room 13

The VDI has used five different simulation
programs to get results for the maximum heating
and cooling load as well as for the total heating
and cooling load over a one-year period. The
results have been grouped into a minimum, a
maximum and an average. A model can be
suggested as validated, if the simulated values for
the mentioned are in between the range of the
other five simulation programs.
As it can be seen from figure 4.3 the model build
with components from RECOMB fulfil this
requirement, as only the maximum value for the
cooling load violates the constraint by eight per
cent.

Validationofsub-libraryBuildings
(VDIGuideline6020,Example13)

68
1

38
2

66
8

46
9

84
1

49
5

70
4

49
5

98
3

60
4

74
9

55
4

94
4

57
5

76
0

51
2

0

200

400

600

800

1000

1200

max.heatingloadinW totalyearlyheatingloadinkWh max.coolingloadinW totalyearlycoolingloadinkWh

VDIMinimum VDIAverage VDIMaximum RECOMB

Fig. 4.3 Validation results VDI - RECOMB

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003195

Comparing the results with the BKL –
Vergleichshaus, has also validated the model. The
difference is, that the BKL Vergleichshaus is
actually a three 2-level houses in a row, sharing
one side. Thermodynamically speaking, the one in
the middle is the most interesting one, as it is
connected to the other houses on its east and west
side. Only the front (facing south) and the back
(facing north) are in contact with the environment
as well as the roof. Figures 4.4 shows thedifferent
temperatures in the ground floor and the 1st floor
as they appear in the middle section of the BKL –
Vergleichshaus. It can be seen that the
temperature in the top room (upper trajectory)
varies more than the temperature in the lower
room. Also due to extra heat gains during the
summer through the flat roof the temperature in 1st

floor is higher than in the ground floor room.

Fig. 4.4 Room temperatures for the BKL - Vergleichshaus

5 Further work
The development of the introduced library
RECOMB is an ongoing process and is far from
completion. As has been mentioned briefly in the
introduction, the overall aim of this library is to
develop powerful and efficient control strategies
to minimise the use of conventional heat
resources. Therefore, a major part in the near
future will involve developing modules to
calculate optimal control trajectories to work with
the heat and energy supply systems and/or air
conditioning systems inside rooms. This might
eventually lead to re-designing some of the
already existing modules.
Also the library aims to give help to another area
important for maximising the benefits from
renewable energy resources. Already being
developed but far from being presentable, the
authors currently work on modules to help
determine the optimal size of a heat and energy
system, e.g. optimal size of a collector field for a
normal houses.
Finally, as seen from the introduced figures of the
library, the graphical output of the models has to
be improved to offer the user an easier way of
generating simulation models. Well-designed

icons for buildings and heat and energy supply
components will further improve the usability of
the library.

6 Acknowledgements
This research was partially supported by the
EPSRC Grant No. GR/N26005.

7 References
[1] V. Quaschning, (1999), Regenerative
Energiesysteme, 2. Auflage, Carl Hanser Verlag
[2] Duffie and Beckmann, (1991), Solar
Engineering of Thermal Processes
[3] H. P. Garg, S.C. Mulick and A.K. Bhargava,
(1985) Solar Thermal Engergy Storage, D.Reidel
Publishing Company
[4] B.Y.H. Liu and R.C. Jordan (1963), The Long-
Term Average Performance of Flat-Plat Solar
Energy Collectors, Solar Energy Vol.7
[5] J. Kahler, (2002), Entwicklung einer
Gebäudekomponentenbibliothek für kontrolliert-
belüftete und –entlüftete Niedrigenergiehäuser,
Diplomarbeit TU Ilmenau, Inst. für
Automatisierungs- und Systemtechnik
[6] M. Kisser, (2002), Entwicklung einer
Prognoseverfahrensbibliothek fuer Klimadaten in
Dymola/Modelica, Diplomarbeit TU Ilmenau,
Inst. für Automatisierungs- und Systemtechnik
[7] W. Feist, (1994), Thermische
Gebäudesimulation: kritische Prüfung
unterschiedlicher Modellierungsansätze
[8] C. Nytsch-Geusen , (2001), Berechnung und
Verbesserung der Energieeffizienz von Gebäuden
und ihren energietechnischen Anlagen in einer
objekt-orientierten Simulationsumgebung,
Dissertation, TU Berlin
[9] VDI Richtlinie 6020, (2001), Anforderungen
an Rechenverfahren zur Gebäude und
Anlagensimulation
[10] F. Felgner et al., (2002), Simulation of
thermal building behaviour in Modelica,
Proceedings of the 2nd International Modelica
Conference
[11] Solar-Institut Juelich, (1999), CARNOT
Blockset Version 1.0 User manual
[12] Dr. Valentin EnergieSoftware GmbH, (1999),
T-Sol 2.0 User manual
[13] Dymola User’s Manual, (2002), Dynamsin

AB Lund

 C. Hoffmann and J. Kahler Object-oriented simulation of energy supply systems on the basis of renewable energy

 The Modelica Association Modelica 2003, November 3-4, 2003196

Implementation of a Modelica Library for
Simulation of Refrigeration Systems

Torge Pfafferott
�

Gerhard Schmitz†

Technical University Hamburg–Harburg, Department of Technical Thermodynamics
Denickestr. 17, D–21073 Hamburg

October 2003

Abstract

The physical modelling and transient simulation of
refrigeration systems can be useful within the spec-
ification, development, integration and optimisation.
Therefore, a model library for vapour compression cy-
cles has been implemented. The library is based on
the free Modelica library ThermoFluid and contains
basic correlations for heat and mass transfer and pres-
sure drop, partial components for control volumes and
flow resistances and advanced ready-to-use models for
all relevant components of refrigeration systems like
pipes, heat exchangers, compressor, expansion devices
and accumulator. The library currently enables the use
of two refrigerants (CO2 , R134a), but due to the struc-
ture of the library the extension to other refrigerant
medium models is quite easy to realise. The modelling
approach, the structure of the library and some valida-
tion results are presented in this paper.

1 Introduction

The modelling and simulation of refrigeration systems
is of interest for several problems:

� Development and testing of control strategies and
controller configurations

� Prediction and investigation of cycle dynamics
like cool-down performance, start-up behaviour,
pressure gradients and torque at the compressor

� Prediction of power consumption and COP (Co-
efficient Of Performance)

� Design and evaluation of heat exchangers
�

pfafferott@tuhh.de
†schmitz@tuhh.de, tel.: +49–40–42878–3144

� Determination of optimal refrigerant charge

� Integration of refrigeration system as a subsystem
within other systems like air-conditioning sys-
tems of automotives, buildings and aircrafts

� Development of combined heat pump systems for
cooling and heating

� ...

This listing is incomplete but it clarifies the need of
transient analysis of refrigeration systems by dynamic
simulation.
The development of a Modelica library for refrigera-
tion systems is being realised within two joint research
projects founded by Airbus Deutschland GmbH, Ham-
burg, and DaimlerChrysler AG, Stuttgart. The aim of
both projects is the development of a tool for transient
simulation to support the research and development
of new refrigeration technologies and to optimise cur-
rently used systems. In general, both projects focus on
vapour compression cycles. A schematic of a vapour
compression cycle is shown in Figure 1 (left figure).
The main components are compressor, condenser, ac-
cumulator, expansion valve and evaporator. The work-
ing fluid is compressed in the compressor from suction
line state to the high pressure line. In the following
condenser the heat is rejected isobaric from the work-
ing fluid to the ambient or to a secondary coolant. Af-
ter the condenser the accumulator is placed, where the
subcooled fluid is dried by a desiccant. The expansion
valve throttles the fluid isenthalpic to the low pressure
level. In the evaporator the fluid is evaporated and su-
perheated isobaric by removing a heat flux from the
cooling medium.
The working fluid has to fulfil several requirements
depending on the area of application. One of these

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003197

requirements is the environmental sustainability of re-
frigerants. At the moment, this fact is an important
driving force for the development of new refrigera-
tion technologies, since the prohibition of currently
used refrigerants is discussed. In the beginning of
the 1990s the HCFCs based refrigerants were prohib-
ited due to their ozone depletion potential (ODP). The
used substitutes, the so called CFCs, have no ODP but
the global warming potential of these refrigerants is
very high in comparison to other, so called natural re-
frigerants like water, CO2 , ammonia or hydrocarbons
(propane, butane) [1]. Therefore, the prohibition of
CFCs is discussed within the European Union and it
seems to be realistic, that these refrigerants will be
prohibited until the end of this decade [2].
Carbon dioxide (CO2 , R 744) as a natural refrigerant
was rediscovered and has recently demonstrated a very
high potential to substitute currently used refrigerants
in the area of mobile/automotive air-conditioning and
cooling [3], [4]. This development is caused by the
thermodynamic, transport and environmental proper-
ties of CO2 . A schematic of a transcritical CO2 cycle
is shown in Figure 1 (right figure). The cycle consists
of the same components as other vapour compression
cycles, but it is supplemented by an internal heat ex-
changer. The internal heat exchanger is an essential
component in a CO2 -cycle to realise an acceptable
COP.
For the automotive application the working fluid
R134a is state-of-the-art. Therefore one purpose of the
developed library is focused on this area. In the au-
tomotive application the AC-system is one important
key for the passenger’s comfort. On the other hand the
AC-system influences the fuel consumption and the
emission of the vehicle. For future automotives and
for the aircraft application new, CO2 -based refrigera-
tion technologies are investigated [5]. The support of
this development is also one purpose of the library. In
this paper the basis of the library and an outline of the
library content is given. Furthermore validation results
of the CO2 -models are presented and discussed with
regard to the measurement uncertainty and the uncer-
tainty of parameters.

2 Library for refrigeration systems

The aim of the modelling is to implement a library
with physical based models of components of refrig-
eration systems. At the moment the library enables
investigations with two refrigerants (CO2 , R134a).
But the realised structure allows the extension of the

library by other refrigerants. Such a library can be
used for investigations of components and complete
refrigeration cycles. Furthermore it is of great interest
to conduct dynamic simulation as well as steady state
simulation of systems and single components, espe-
cially heat exchangers. This should be able with one
tool and using the same models. The numerical inves-
tigation of heat exchanger components is of particular
interest to find optimised heat exchangers for limited
space. On the other hand, the concept of connectors in
Modelica provides the opportunity of using the same
heat exchanger models for single component simula-
tion as well as for a complex cycle simulation. Finally,
the library can be used for simulation and evaluation
of different system designs in various applications.

2.1 ThermoFluid library

The implemented refrigeration library is based on the
free Modelica library ThermoFluid [6], [7], [8]. The
ThermoFluid library, especially its base classes and
partial components, offers a good base for the mod-
elling of refrigeration systems with respect to the im-
plementation of the three balance equations and the
method of discretisation. The basic design principles
of the library are:

� models are designed for system level simulation,

� one-dimensional one- and two-phase flow is con-
sidered,

� one unified library for lumped and distributed pa-
rameter models,

� bi- and unidirectional flows are supported,

� conservation laws are implemented separately
from the medium models, in order to improve
reusability.

The use of distributed parameter models suggests the
finite volume method as discretisation method. The fi-
nite volume method is very common for system mod-
elling and one-dimensional discretisation [9]. The
thermodynamic model holds the equations for total
mass and internal energy for a control volume with
constant volume:

dM
dt

� ṁin
� ṁout (1)

dU
dt

� ṁin
� hin

� ṁout
� hout

�
Q̇

�
Ẇs (2)

The fluxes on the border of the control volume are cal-
culated by the half grid staggered flow model, which

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003198

Figure 1: Schematic of vapour compression cycle and of a transcritical CO2 process

holds either a stationary pressure drop model or the
dynamic momentum balance:

∆z �
dṁ
dt

� İin
� İout

���
pin

� pout � A
� ∆plossA � M � g � sin

� β ��� (3)

The state variables of � M, U � for the thermodynamic
model are numerically not efficient. Therefore, the
equations (1) and (2) are transformed into a form with
� p, h � as state variables. The constitutive equations
needed for the calculation of pressure drop and heat
flow in the equations (2) and (3) are not implemented
in the ThermoFluid library yet.

2.2 Content of the library

So far, the most important models and classes have
been implemented in the model library. As already
mentioned the structure of the library enables the ex-
tension by other refrigerant models. This leads to a
separation into a more general part and a specialised
part. The general part holds the implementation of
base and partial models like heat transfer and pressure
loss correlations or flow resistance. All these models
are independent of a specific medium model. Never-
theless, most of the models need medium properties
for their execution. Therefore, the different medium
models have to be implemented in the same way using
the same names of variables and records and realising
the same structure. In the specialised part of the library
holds ready-to-use models.

Some of the models which have been implemented in
the library are:

� Heat transfer and pressure loss relations for
the whole fluid region:
These constitutive equations are used for the cal-
culation of heat flux and pressure drop due to fric-
tion, which are terms within the balance equa-
tions of energy and momentum. Most of the im-
plemented correlation are state-of-the-art:
The heat transfer of single phase flow can be cal-
culated with Nusselt-Number based correlations
for laminar and turbulent flow and smooth tran-
sition between both [10]. The heat transfer co-
efficient for condensation is computed by the as-
sumption of film condensation using the correla-
tion from Shah [11]. For the boiling heat transfer
a superposition model introduced by Chen can be
used, which takes forced convection and nucleate
boiling into account [11]. These correlations are
valid for two phase flow of refrigerants in gen-
eral. A more accurate correlation has been im-
plemented for the evaporation of R134a, which is
based on the superposition model and has been
adapted by Gungor and Winterton [12]. All these
correlations calculate local heat transfer coeffi-
cients. Therefore, a discretised modelling of flow
with heat transfer is required.
The pressure drop of single phase flow is calcu-
lated depending on the Reynolds-Number [13].
To avoid event iterations, a function has been
implemented generating a smooth transition be-

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003199

tween the different correlations and the areas of
validity [16]. The pressure drop of two-phase
flow is computed by a correlation of Friedel,
which is simple but fairly accurate [10]. The
implemented correlations have been validated for
R134a [12] and CO2 [14] with experimental data
and they show mostly a fair accuracy. The ad-
vantage of using the same correlations for both
refrigerants is the simplicity of their implemen-
tation. The loss of accuracy by not using spe-
cialised correlations is acceptable since the most
important heat transfer is outside the pipe.

� Models for the air side of heat exchangers:
The balance equation of energy is implemented
by the finite volume method [9]; heat transfer cor-
relations for the air side have been implemented
[15] as well as medium properties of air using
polynomial fitting. The condensation of humid-
ity is taken into account in the energy balance but
not in the heat transfer coefficient. The approach
for modelling the condensation is quite simple: If
the air temperature is equal to or below the dew
point temperature of the humid air, condensation
occurs. By this approach the humid air is satu-
rated at the outlet.

� Medium models:
The medium properties are calculated based
on the implementation in ThermoFluid. The
medium models for R134a and CO2 have been
customised with regard to the implemented con-
stitutive equations; e.g. the transport properties,
the phase boundary properties and the surface
tension are calculated within the medium model.
To avoid event iterations at the phase boundary a
crossing function has been implemented generat-
ing a smooth transition between the model of the
two phase and that of the single phase area.

� Pipes and heat exchangers:
Based on the medium model, classes of Ther-
moFluid, the heat transfer and pressure drop
correlations and the air side models, pipes and
heat exchangers have been modelled. The pipes
are modelled as one-dimensional discretised flow
just like the air flow itself. By this assumption the
refrigerant flow is treated as homogenous. For the
air side a non-homogenous distribution of the air
mass flow can be provided. Since the heat ex-
changers are built up from basic elements for the
refrigerant flow, the wall and the air flow, differ-
ent types of heat exchangers can be modelled eas-

ily. Due to the discretisation of the flow, the state
of the refrigerant and the heat transfer along the
heat exchanger can be predicted with the mod-
els. Up to now several types of counter flow,
cross flow and cross-counter flow heat exchang-
ers have been modelled and validated success-
fully. A more detailed description of the mod-
elling of the heat exchangers is given in [16] and
[17].

� Compressor:
The model is made for a reciprocating compres-
sor. Therefore, the mass flow is calculated by the
general equation (4) of a reciprocating compres-
sor and the enthalpy change is calculated accord-
ing to the isentropic efficiency by equation (5):

ṁco
� f � λ � ρin � co

� Vdv (4)

∆hco
� hout � co

� hin � co
� hout � co � is � hin � co

η
(5)

By using these equations the compressor is as-
sumed to have no dynamics. The efficiencies can
be provided by measured characteristic fields of a
known component or are set as constant parame-
ters if they are unknown and must be estimated.

� Expansion valve:
The throttling process is treated as isenthalpic and
the pressure drop is calculated according to the
flow coefficient of the valve using an algebraic
equation [18]:

ṁev
� 1

3600
� KV

� Y � N6
�

�
x � pin � ev

� ρin � ev (6)

where is:

x � pin � ev
� pout � ev

pin � ev
(7)

Y � 1 �
x

3 � Fγ � xT
(8)

Since the flow coefficient KV and the critical dif-
ferential pressure ratio xT result from specific
valve data and construction, the model has to be
parameterised with corresponding data.

� Accumulator / Receiver:
In general, the function of an accumulator or a re-
ceiver in a refrigeration system is to accumulate
refrigerant, since the necessary refrigerant charge
depends on the operating mode of the system.
Therefore, additional charge has to be stored. In
R134a systems the accumulator is placed after the

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003200

condenser and contains a desiccant for drying the
refrigerant, see Fig 1. Whereas the receiver in
CO2 systems is placed at the suction line after the
evaporator, see Fig 1. For modelling, the receiver
is separated in a separator, a tube for the gaseous
outflow, an orifice for the liquid outflow and a
junction mixing the two outflows. This modelling
approach is similar to [19]. The incoming two
phase flow is separated into its liquid and vapour
phase. The outlet condition is calculated by mix-
ing the two mass flows through the tube and the
orifice, which are modelled as flow resistances
with specific friction factors. The friction factors
can be estimated for steady state; then the vapour
fraction at the receiver outlet is the same as at the
receiver inlet. The receiver is modelled as adia-
batic.

� Flow splits and junctions:
For these models, classes of ThermoFluid are
used. The pressure drop in the momentum equa-
tion uses special correlations for splits and junc-
tions taking the ratio of mass flow into account
[20]. The change of mass flow direction is also
taken into account in the implementation.

3 Experimental setup

The experiments were carried out at the CO2-
experimental system built at the Department of Air-
craft Systems Engineering of the TUHH described in
detail by Schade [21]. The test rig was constructed
with prototype components of the automotive appli-
cation. It realises the process of a transcritical cy-
cle introduced by Lorentzen and Pettersen [22], which
is extended in the realisation by three, parallel cool-
ing points/evaporators. The main objective of the ex-
perimental investigations is control-oriented. Further-
more, steady state and transient data from the test rig
should be used for the validation of the simulation
models. The gas cooler is a cross-flow heat exchanger
with three passes at the refrigerant side. The evap-
orators are cross-counter flow heat exchangers with
eight passes in two layers. The internal heat exchanger
is built as a counter-flow heat exchanger with coax-
ial tubes. The used compressor consists of an axial
piston unit with variable or fixed displacement. The
gas cooler is installed in an open channel whereas the
evaporators are built in closed loop air-cycles. The
temperature and mass flow rate of the air at the heat
exchanger inlet is conditioned by electrical air heaters

and fans. The temperature of CO2 at inlet and exit of
each component is measured with thermocouples at-
tached to the surface. The pressure is also measured at
inlet and exit of each component. The CO2 mass flow
rates are measured at different points in the system by
using Coriolis type meters. Hot-wire anemometers are
used to measure the air mass flow rates through the
heat exchangers. The air inlet and exit temperatures
are measured by thermocouple grids. The uncertain-
ties for the measurements are listed in Table 1. Espe-
cially the uncertainties of the air temperature after the
gas cooler is very high due to the inhomogeneous dis-
tribution of temperature. Due to error propagation the
resulting uncertainty of the calculated capacities can
be up to � 12 % for both gas cooler and evaporator.

Table 1: Absolute, resp. relative error of measurement

Pressure at suction line � 50 kPa
Pressure at high pressure side � 100 kPa
CO2 temperature � 0.7 K
Air temperature evaporator in/out � 1 K
Air temperature gas cooler in � 1 K
Air temperature gas cooler out � 3 K
CO2 mass flow rate � 0.2 %
Air mass flow rate � 4 %

4 Validation of air-CO2 heat ex-
changer models

Simulations in a test configuration have been run with
the gas cooler model discretised with nCO2

� 9 for the
CO2 flow and nair

� 4 for the air-side flow; the evapo-
rator was discretised with nCO2

� 8 and nair
� 4. These

discretisations were chosen for the simulation due to
acceptable execution time for a simulation run of a
complete refrigeration cycle.
The test configuration consists of a source providing
pressure and enthalpy at the heat exchanger inlet and
a mass flow sink generating a defined mass flow at
the outlet. The source and sink are used to set the
boundary conditions resulting from measured data at
the component.
Figure 2 shows the measured and simulated capacity
at the gas cooler for a wide set of operating conditions
(pCO2:7-11.3 MPa, ṁCO2:45-230 kg/h, TCO2 � in:345-400
K). What can be seen from the comparison, is, that
most of the simulated capacities are in within the er-
ror of � 12 %. The deviation becomes higher near

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003201

the critical point which can be traced back to the cho-
sen discretisation of the model. A higher discretisation
would represent the influence of the pseudo-critical
point more accurately. The discretisation also affects
the exit CO2 temperature, which the model predicts
for supercritical gas cooling within 1 � 1 K and 2 � 6 K
higher than the experimental data and outside the er-
ror of � 0.7 K, see Figure 2. For operating conditions
below the critical pressure the model predicts the ca-
pacity very well. The influence of discretisation with
regard to consistence with experimental data is shown
by Limperich [17].

In Figure 3 the results of the evaporator model are
compared with experimental data. The boundary con-
ditions were pCO2 within 3.017-5.01 MPa and ṁCO2

within 45-140 kg/h. As Figure 3 shows, the model pre-
dicts the capacity within � 7 � 4 %. The air outlet tem-
perature is predicted within � 0.8 K which is within
the uncertainty of measurement. The humidity of the
air was not taken into account since the evaporator is
integrated in a closed loop air-cycle. Therefore it can
be assumed that the air is dehumidified after a short
time of operation.

The validation of the internal heat exchanger is shown
in Figure 4. The comparison of the transferred heat
fluxes shows a good agreement within an uncertainty
of � 10 %.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Measurement [kW]

S
im

ul
at

io
n

[k
W

]

+10%

−10%

Figure 4: Measured and simulated capacity at the in-
ternal heat exchanger within � 10 %

5 Transient simulation of a CO2-
system

In the following, results of the transient simulation of
the above mentioned CO2-system are presented. The
simulated model is shown in an object diagram in Fig-
ure 1. This configuration represents the available CO2-
test rig on basic level with one evaporator. The results
are compared with data of a start up of the system and
following step changes in compressor speed as shown
in Figure 5. The air inlet temperature of the evapo-
rator also changed during the experiment, Figure 5.
The other boundary conditions stayed constant and are
listed together with the initial states in Table 2. All
these data were taken from the experiment.

0 350 700 1050 1400
0

5

10

15

20
S

pe
ed

 [s
−

1]

Time [s]
0 350 700 1050 1400

290

294

298

302

306

T
em

pe
ra

tu
re

 [K
]

Speed
Air inlet temp.

Figure 5: Step changes in compressor speed and run
of air inlet temperature at the evaporator in the experi-
ment; set as boundary condition of simulation run

Table 2: Boundary conditions and initial values of the
simulation run corresponding to the experiment

Compressor fixed displacement
Vdv � 33 � 5 ccm

Expansion valve 100 % open
Kv � 0 � 0264 m3/h

Gas cooler ṁair � 2100 kg/h
Tair� in � 312 K

Evaporator ṁair � 760 kg/h
System volume Vtot � 3 � 62 l
Specific refrigerant charge 267 kg/m3

Initial value p0 � 5 � 7 MPa
h0 � 425 kJ/kg

Initial value receiver p0 � 5 � 7 MPa
h0 � 295 kJ/kg

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003202

2 3 4 5 6 7 8
2

3

4

5

6

7

8

Measurement [kW]

S
im

ul
at

io
n

[k
W

]

295 300 305 310 315 320
295

300

305

310

315

320

Measurement [K]

S
im

ul
at

io
n

[K
]

−1 K

+1 K

Figure 2: Measured and simulated cooling capacity at the gas cooler within � 10 % and approach of refrigerant
temperature at gas cooler exit (� 1 k)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

Measurement [kW]

S
im

ul
at

io
n

[k
W

]

+10%

−10%

270 275 280 285 290 295 300
270

275

280

285

290

295

300

Measurement [K]

S
im

ul
at

io
n

[K
]

+1K

−1K

Figure 3: Measured and simulated cooling capacity at the evaporator within � 10 % and approach of air outlet
temperature (� 1 k)

In Figure 6 the simulated and measured pressure at
compressor inlet and exit is plotted versus time. The
plotted experimental data are filtered due to the very
high measurement noise. What can be seen from the
comparison is a fair agreement of the absolute values
as well as the time response for the pressure at the
compressor inlet. At the compressor exit there is only
a partial agreement; especially at the beginning there is
a clear deviation in absolute values and time response.
The model predicts a pronounced undershoot whereas
the experimental data show a smaller undershoot. This
behaviour can also be seen in the comparison of the
mass flow rate at the expansion valve in Figure 7. In
general, there is a systematic underestimation of the
mass flow rate by the model, which is larger then the

tolerance of the used mass flow meter. The run of pres-
sures and mass flow rates are coupled in such systems.
Therefore deviation of one value influences the other
values and vice versa. Reasons for this behaviour can
be seen in the modelling of the compressor using al-
gebraic equations instead of a physical model. This
leads to the use of characteristic fields for the efficien-
cies, which were generated by measurements at steady
state. Especially at the start up of the system the used
efficiencies in the model are probably different from
the real behaviour of the compressor. Furthermore the
available values of the flow coefficient of the expan-
sion valve are independent from the inlet state and the
pressure difference at the valve. The flow coefficient is
only a function of the open ratio. From physical point

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003203

of view it seems to be obvious, that this simplified
characteristic does not represent the complete operat-
ing range. So, the uncertainty of component-specific
parameters like compressor efficiencies and flow co-
efficient of the valve influences the simulation results.
This known influence can be accepted for the level of
system simulation and has to be taken into account for
the validation of the models.

0 350 700 1050 1400
30

40

50

60

70

80

90

100

P
re

ss
ur

e
[b

ar
]

Time [s]

Simulation LP in
Measurement LP in
Simulation HP out
Measurement HP out

Figure 6: Transient run of the pressure at compres-
sor inlet and exit; comparison between simulation and
measurement

0 350 700 1050 1400
0

0.01

0.02

0.03

0.04

M
as

s
F

lo
w

 R
at

e
[k

g/
s]

Time [s]

Simulation
Data

Figure 7: Transient run of the mass flow rate at the
expansion valve; comparison between simulation and
measurement

The object diagram of a CO2 -loop with two parallel
evaporators is shown in Figure 8. This schematic rep-
resents the extension of the above mentioned CO2 test
rig. By this example it can be shown that the transient
simulation of such a system, especially the split of the
mass flow is predicted correctly by the models. In Fig-
ure 9 the simulated and measured mass flow rates are

plotted. Their comparison shows a good agreement.
The mass flow rates in the branches differ, since the
expansion valves have different flow characteristics.

Figure 8: Object diagram of the simulated CO2 -
loop with two parallel evaporators; representing the
CO2 test rig

0 100 200 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
as

s
flo

w
 r

at
e

[k
g/

s]

Time [sec]

Simulation
Measurement
Compressor
Evaporator 1
Evaporator 2Compressor

total mass flow

Evaporator 2

Evaporator 1

Figure 9: Simulated and measured mass flow rates

6 Conclusion

In this paper the modelling and implementation of a
Modelica library for refrigeration systems was pre-
sented. The implemented library provides both base
models for modelling of components and usable mod-
els of components for the automotive and aircraft ap-
plication. The intention is to create a library for the
simulation of single components and complete cycles.

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003204

Such a library can be used to make fundamental inves-
tigations of refrigeration systems. Furthermore, it can
be used for the optimisation of specific heat exchang-
ers, for the evaluating of an optimal system configu-
ration and for the layout and optimisation of the sys-
tem control. The presented simulation results for the
steady state of different types of CO2-heat exchangers
show a fair correspondence with measured data. The
results of the transient simulation show a good agree-
ment in comparison with experimental data.

References

[1] McMullan JT. Refrigeration and the environment
- issues and strategies for the future. Int J Refrig-
eration 2002; 1; 89-99.

[2] Bundesumweltministerium. Umsetzung des na-
tionalen Klimaschutzprogramms im Bereich der
fluorierten Treibhausgase. Bonn, 2002.

[3] Lorentzen G. Revival of carbon dioxide as refrig-
erant. Int J Refrigeration 1994; 5.

[4] Billard F. Editorial - Use of carbon dioxide in re-
frigeration and air conditioning. Int J Refrigera-
tion 2002; (25); 1011-1013.

[5] Pfafferott T, Schmitz G. Modelling and Simula-
tion of Refrigeration Systems with Natural Re-
frigerant CO2. In: Proceedings of the 9th Int. Re-
frig. and Air Conditioning conf. at purdue. Pur-
due university, IN, USA, 16-19. July 2002

[6] Eborn J. On Model Libraries for Thermo-
hydraulic Applications. Lund, Sweden: PhD the-
sis, Department of Automatic control, Lund In-
stitute of Technology, 2001.

[7] Tummescheit H. Design and Implementation of
Object-Oriented Model Libraries using Model-
ica. Lund, Sweden: PhD thesis, Department of
Automatic control, Lund Institute of Technology,
2002.

[8] Tummescheit H, Eborn J. Chemical Reaction
Modeling with ThermoFluid/MF and Multi-
Flash. In: Proceedings of the 2th Modelica
Conference 2002, Oberpfaffenhofen, Germany,
Modelica Association, 18-19 March 2002.

[9] Patankar SV. Numerical Heat Transfer and Fluid
Flow. Washington: Hemisphere Publ. Corp.,
1980.

[10] VDI-Wärmeatlas - Berechnungsblätter für den
Wärmeübergang (in German). Düsseldorf: VDI-
Verlag, 7. Edition, 1994.

[11] Stephan K. Wärmeübergang beim Kondensieren
und beim Sieden (in German). Berlin: Springer-
Verlag, 1988.

[12] Melin P. (Editor) The behaviour of HFC-134a,
HFC-152a and HCFC-22 in Evaporators. IEA
Heat Pump Centre (Sittard, The Netherlands),
1994.

[13] Bohl W. Technische Stroemungslehre.
Wuerzburg: Vogel Fachbuchverlag; 11.Edi-
tion, 1998.

[14] Pettersen J, Rieberer R, Munkejord ST. Heat
transfer and pressure drop for flow of supercrit-
ical and subcritical CO2 in microchannel tubes.
Trondheim, SINTEF Energy Research, Techni-
cal Report A5127, 2000.

[15] Kakac S, et al. Handbook of Single-Phase con-
vective Heat Transfer. New York: John Wiley &
Sons Inc., 1987.

[16] Pfafferott T, Schmitz G. Modeling and Simula-
tion of Refrigeration Systems with Natural Re-
frigerant CO2. In: Proceedings of the 2th Mod-
elica Conference 2002, Oberpfaffenhofen, Ger-
many, Modelica Association, 18-19 March 2002
.

[17] Limperich D, Pfafferott T, Schmitz G. Tran-
sient simulation of CO2-heat pump systems us-
ing Dymola/Modelica (in German). In: DKV-
Tagungsbericht 2002 Band III, volume 29,
Magdeburg, Germany, 20-22 November 2002

[18] IEC 60534-2-1. Industrial-process control valves
- Part2-1: Flow capacity - Sizing equations for
fluid flow under installed conditions. German
Version EN 60534-2-1. Berlin: Beuth Verlag,
2000.

[19] Schwarz T, et al. Model to investigate the per-
formance of accumulators in vapor compression
systems. In: Proceedings of 9th International
Refrigeration and Air Conditioning Conference
at Purdue, Purdue University, USA, 16-19 July
2002.

[20] Idelchick IE. Handbook of Hydraulic Resistance.
Florida: CRC Press, 1994.

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003205

[21] Schade O, Carl U. Controll of direct-expansion
CO2-refrigeration plants (in German). In: DKV-
Tagungsbericht 2002 Band II.2, volume 29,
Magdeburg, Germany, 20-22 November 2002

[22] Lorentzen G, Pettersen J. A new, efficient
and environmentally bening system for car air-
conditioning. Int J Refrigeration 1993; 16(1); 4-
12.

 Torge Pfafferott, Gerhard Schmitz Implementation of a Modelica Library for Simulation of Refrigeration Systems

 The Modelica Association Modelica 2003, November 3-4, 2003206

Simulation for Operation Management :
Object Oriented Approach using Modelica

 Jerzy Mikler,
IIP, The Royal Institute
of technology, Sweden,

jerzy@iip.kth.se

Vadim Engelson,
IDA, Linköping

University, Sweden,
vaden@ida.liu.se

WWW: http://www.ida.liu.se/~vaden/or

Abstract1

Operation management provides methods and tools
for decision making in production systems. There
are both mathematical and simulation-based
methods for finding optimal production parameters.
Simulation models are based on both continuous
and discrete event simulation. These models can be
reused on both component level and pattern
(template) level. Modelica fits well into these
requirements; one of case studies revealing related
problem is discussed in this paper.

1 Introduction
Simulation is an important tool for executives in
their day-to-day decision making activities. The
problems occurring in sales departments, on the
shop floor, and all the other departments of a
company are more often difficult and complex.
They cross the functional boundaries, and are
dynamical in nature. Figure 2 shows a simplified
causal loop diagram (CLD) of a generic assembly
system. It shows all the identified factors relevant
for the system flexibility, together with their
relations.

The relations (arrowed lines connecting the
factors) mean that the one factor affects the other2.
The problem is yet more complicated by the fact,
that the influence is most often delayed, adding the

1 This article describe ongoing work carried out in the
VISP project supported by Vinnova foundation, Sweden.
Information about the current status can be found at
http://www.ida.liu.se/~vaden/or
2 Arrows indicate the direction of causality. Signs (+ or -)
imply the polarity of relationships: a'+' indicates that an
increase in the independent variable causes the dependent
variable to increase. A loop is identified by number and
sign (-) or (+). (-) indicates restoration of balance by an
action, whereas (+) implies either reinforcing vicious
cycle or virtuous cycle.

time dimension, what in turn makes the
understanding of the behaviour (the consequences)
impossible without aid of simulation. To simulate
the behaviour of this system one has to build system
dynamic (SD) model of the CLD above. SD
approach has been initially defined by Forrester[4].
Relations between the factors in SD are described
with a system of differential algebraic equations
(DAE) with delays. Such a model of a part of the
system in Fig. 2 (the “operations”) is shown in Fig.
1. A Modelica library for system dynamic modelling
has been developed by Fabricius [3].

These kinds of models are typical for
analysis tasks – i.e. when the real structure of the
system is not known, and we examine the patterns
of behaviour to identify the structure. In this case
the suitable tools are system thinking and system
dynamics (based on time continuous simulation).
Another type of problems arises when we know the
components and synthesize them to a system in the
aim to achieve a desired behaviour of this system. In
this case a suitable tool is discrete event simulation.
These kinds of problems are typical for shop floor
design and operations. The inventory problem
evaluated later in this paper is an example of that
(see even Fig. 3).

Fig. 1. The system dynamics model of the sector
“Operations” on the CLD in Fig. 2, modelled in the
Stella environment. System Dynamics library in
Modelica uses similar graphical notation. Boxes
denote levels (stocks), circles denote rates (e.g.
flows between levels). Source: Zahn [1]

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003207

mailto:jerzy@iip.kth.se
mailto:vaden@ida.liu.se

Fig. 2. Causal loop diagram of generic assembly systems. Source: Zahn [1]

Where
we are?

Where
should we

be?

Current
state

Future,
desired

state

Gap Objectives

Proble
m

Pa
th

?

Synthesis
of concepts

Analysis
of

concepts

EVALUA
TION OF

CONCEPT
S

EVALUA
TION OF

CONCEPT
S

Decision

Decision

Solution

Development of operations strategy

Design of operations

Constraints on production
technology, plant layout,

planning and control,
organization and management,

...Analysis of business
strategy, market product
capabilities of the firm

experiences

Requires models
of functionality,
structure, and

dynamics
(communication)

Does the developed
system fulfills the

objectives ?
 Is the system feasible

?
Does the developed
system fulfills the
requirements on

financial performance
?

Risks ?

Aid of
simulation

Discrete
Event

Systems

Systems
dynamics

Fig. 3. Structure of a design process, based on work of B.Wu.[13]

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003208

2 . Operation Management
Operations Management is an established discipline
providing insights, methods and tools facilitating
decision-making in production systems. It spans the
whole spectrum of managerial problems in a
company – from the formation of strategy, trough
product and process design, to the run time
operation. These decisions are usually divided into
the four categories [5]:
1. Strategic choices – determination of competitive

priorities and strategies how to best design the
product and production processes that fit the
priorities (operations strategy)

2. Product and Process design –

a. Product design3 (decisions concerning concept
generation, screening, preliminary design,
evaluation and improvement, prototyping and
final design)

b. Process design
i. Network design – considers the whole
network of operations for a given product
(“from dirt to dust”). At this stage we have to
consider three issues:
1. The shape of the network, distribution of

influence and responsibilities leading to
make/buy decisions (vertical integration),

2. Decide upon location for each node, and
3. Decide upon capacity of each node (chasing

strategy, level and balancing)
ii.Layout and flow – the physical location of all

the machines, equipment, and stuff, as well
as the flow of materials and information.

iii.Process technology – decisions upon
1.what technologies to use,
2.the scale of automation to use
3.the degree of integration of the technology

iv.Job design – decisions upon the work methods
to be used. The work methods define liaison
between the people the used technology.

3. Operating decisions – production planning and
control– decisions during the day-to-day operation
after the production system was build; coordination
of activities in the internal and external supply
chain, forecast of demand, inventory control,
resource planning, scheduling (prioritising of jobs).

4. Improvement – methods of improving
existing processes.

Until recently, much of the research work in the
production system area was directed towards
problem solving rather than theory building. Models

3 Not discussed in this paper

developed within the Operation Research area (OR)
give us valuable insights in basic trade-offs when
analysing the problems, but it is neither an
explanatory nor predictive method. Also, the
proposed solutions frequently fails, because models,
often adapted to capability of the chosen solution
techniques, cover only certain aspects of the
analysed problems, neglect the effect of numerous
factors and most of all lucks an ability to generate
understanding (and this requires synthetic thinking

[6]).
Recently the OM research community noticed the

increasing importance of theory and theory driven
empirical research and we observe an explosive
transformation of operations management to a
science discipline. This implies development of
explanatory and predictive models of the operational
processes – that is models, that could be used to
explain or predict the output or performance of the
process as a function of process characteristics,
process states, and inputs to the process, as a main
object of study in OM [7].

Joining these efforts, we positioned our research
as a model-based approach to knowledge generation
by building models explaining dynamic behaviour
of real-life operational processes (an axiomatic
descriptive research) and decision-making problems
(an axiomatic normative research) for design and
operation of manufacturing systems.

Our research is based on computer simulation and
experimental design. We expect that much more
complex problems may be studied than in the case
of using mathematical models. The aim of our work
is to create library with standard components and
patterns that can easily be embodied and configured
for solving particular OM problems.

As the OM decision types listed above are typical
for most businesses, well demarcated, and may be
defined on high level of abstraction, a tempting idea
is to represent them in form of parameterised
patterns consisting of primitive components. Use of
object-oriented paradigm would considerably
simplify the modelling and simulation process
during evaluation of alternatives due to
specialisation, class replacement and override
mechanisms. Also the possibility of merging both
continuous (system dynamics) and discreet time
simulation in one and the same environment is
crucial as well. The reason why we choose Modelica
for the VISP project is, that it provides both of the
features.

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003209

3 Simulation support for decision-
making.

Benefits of implementing simulation support should
include increased quality of decision-making,
knowledge preservation and thorough understanding
of the structure of the problem as well as the
decision-making process. Figure 3 shows a
formalized model of the OM problem solving
process [7,8]. Usually, such a process is an iterative
process of incremental refinement aimed to guide
the designer throughout the design process and
ensure that all the necessary aspects were
considered. Decision-making is associated with
choice between a finite numbers of feasible
alternatives generated in the synthesis and the
analysis process respectively.
There are three facts indicating, that our efforts
should end with promising results – firstly, decision
criteria (cost, quality, dependability, flexibility,
speed [5]), and inference mechanisms are to great
extend recognised, and available in the OM
literature, secondly, the evaluation of the design
concepts may be categorised – typically we have to
evaluate feasibility (is the concept feasible?),
acceptability (how much does it cost?), and risks
(what risks are connected with a particular
solution?), and thirdly, recent development in
knowledge engineering give us a solid ground in
structuring of the decision making process [12].

4 The case study – the case
specification

As an example of the method proposed above, in
this paper we will evaluate an inventory system
design problem called “one-machine-multi-storage-
point” shown in Fig. 4. This is one of very typical
problems in operation management. The inventory
system has a number of products (that should be
manufactured), each with associated variable daily
demand, with different and variable lead times4, and
required service level5 on the demand side.
Manufacturing is organized in batches of identical
products. To meet the required demand levels we
have to determine safety stocks for each product, as
well as a suitable prioritising strategy for the

4 Lead time: the time required between placing an order
and receiving the ordered product
5 Service level: the desired probability of not running out
of stock in any one ordering cycle, which begins at the
time an order is placed and ends when it arrives in stock

production process (the sequencing of jobs, i.e.
production orders).
The traditional approach to modelling an inventory
with continuous review (the well-known Wilson
formula) has a number of presumptions: stock outs
are prohibited; demand is known with certainty and
is constant over time; lead-time is known and
constant; the cost of the products is fixed; adequate
capacity and capital exist to implement the
suggested strategy; the strategy does not affect other
products the organisation handles. Unfortunately, as
we can realise no one of these presumptions holds in
our case, and solving it mathematically is very hard
if not impossible. Also Operation Research cannot
suggest any solvable mathematical model of this
problem (queuing networks are not applicable here).
Our approach is to build suitable simulation model
to gain the understanding of the problem, generate
possible solution alternatives, perform stochastic
simulation with different input parameters and then
choose the optimal alternative and optimal
parameters.

manufacturing
process

raw
materials

(always available)

products

Random variations
in procesing time.
Batch processing

daily demand,
variation in demand,

when to order?
safety stock?
job sequencing (prioritising)?

setup time

Fig. 4. The “one-machine-multi-storage-point”
model.

With this example we assess the benefits of using
Modelica as a simulation platform in operations
management decisions.
The simulation model is shown in Fig. 5, and the
object interaction diagram in Fig. 6 respectively.

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003210

<multiobject>
PRODUCTION

ORDER

EXECUTOR

PROCESS

< updates stock

places production
orders >

<multiobject>
INVENTORY

< get order

 <generates days generates time intervals >

PRIORITIZING
STRATEGY

< prioritize

Fig. 5. The simulation model for “one-machine-
multi-storage-point” problem, in UML notation.
Note that in Modelica notation a specific prioritising
strategy (such as “FIFO” or “least processing time –
first”) should replace the placeholder for
“Prioritising Strategy”.

executor <multiobject>
inventory

<multiobject>
production order process

day
compute balance;
if inventory position
is lower then target,
and the difference is
bigger than the
batch size create
production order

create

prioritizing
strategy

use prioritizing
strategy to select next
production order

select

check the process time;
if the processing time
elapsed update inventory,
otherwise do nothing

time increment

update stock

time increment state:
empty

state:
busy

state:
busy

state:
empty

?

Fig. 6. The object interaction diagram for the
simulation model in UML notation6

To find the dependency between specific prioritising
strategy choice, size of safety stocks and the demand
characteristics for each product we use tree-variable
experimental design model [2], running each
combination of values a sufficient number of times
to achieve required confidence interval.

6 The pictures 4 and 5 do not show data collection
functionality that is “hidden” to keep simplicity

5 Using Modelica for the case
study

A Modelica library for discrete event simulation
targeted for operating decision support is under
construction. The library contains components of
business or manufacturing process, such as
scheduled and random event generators, queues,
delays, triggering actions, sequence schedulers,
gathering statistics, etc. Therefore declarative style
of modelling, high level of abstraction and ease of
combining components into a working system is
achieved. Some components, e.g. sequence
schedulers are modelled using Modelica algorithms
and functions. Signals should be used for
synchronisation between the components. Since
there is no explicit signal send/receive in Modelica,
event-triggering mechanism will be used.
The DEVS Modelica library has been previously
designed by Bunus [8]. The DEVS formalism is
defined by Zeigler [9]. It describes basic discrete
event entities from which complex models can be
built. Atomic DEVS components are state machines;
state depends on internal (timeout) and external
(change in input port) components.
In addition to basic primitives, the library will
contain patterns, i.e. collection of ready-made
complex models, traditionally used in operation
research. In order to simulate such patterns the user
has to modify them by replacing necessary
replaceable classes, as well as by parameterisation.
Since just triggering signals is not sufficient, in the
library some non-trivial connectors should be used
for communicating information about incoming
orders and product movement.
Possible difficulties we expect with Modelica use
for the operating decision simulation is connected
with data handling. As noted by Remelhe [10], an
event list of a scheduler has to be realized by a fixed
length vector. If just queue length is simulated, an
integer variable is sufficient to describe a queue.
However if queue elements contain some essential
information (product identification, time stamps), a
dynamic data structure would be very convenient.
These should be unnaturally modelled by globally
accessible vectors, indexing mechanism and
predetermined maximal length.
Adding full scale dynamism to data structures would
certainly break nice declarative properties of
Modelica, complicate the type system and would
make implementation more difficult. As a first step
to limited dynamism we would suggest introduction
of arrays with dynamically changing size. Such
array size should be a discrete integer variable. For

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003211

DES systems it is sufficient if all variables within
dynamic arrays are discrete. Number of equations
and variable is not known when system simulation
starts but it is always a linear combination of all
dynamic array lengths. For continuous systems
things become more complex.

6 Test model
In order to test our ideas about future library a test
package has been constructed in Modelica in order
to simulate the “one-machine-multi-storage-
point” model. The UML notation above has
been taken as model specification. First a rapid
prototype has been created in Mathematica in
completely functional programming style. It
took just few hours to write such model and test
it for typical situations.
It has been more difficult task to do it with
Modelica. We attempted to use declarative
Modelica style for this package. Unfortunately
most of computations here take place in
conjunction with an inventory database. Such
databases can be modelled in Modelica as
arrays of records and records of arrays.
However the visual structure of UML notation
cannot be represented here directly. Our
Modelica model contains two databases and one
“sampler”. The databases are used as input
(ddata and dbase) and output (dbase)
arguments of many functions. Separation of
these databases to smaller components would
lead to more inconvenient design. The sampler
can be divided into two samplers – one for
production time and one for day start. The
sampler is based on an algorithm in with when-
section.
Some functions (normal, makeCriteria) can be
replaced by user-defined functions if necessary.
Simulation results are shown in Figure 8.
package ormodel13
 final constant Integer nr=2 "Number of products";

record ddata "data which are not returned from update
functions"
 parameter Real[nr] demand "average product demand";
 parameter Real[nr] demandDistr
 "normal distribution of product demand";
 parameter Real[nr] processingTime
 "average processing time for a batch";
 parameter Real[nr] processingTimeDistr
 "its normal distrib ution";
 parameter Integer[nr] batchSize "required batch size";
 parameter Real[nr] wantedLevel "safety stock level";
 Real thetime "time of last event";
end ddata;

 record dbase "data which returned from update functions"
 discrete Real[nr] level "current stock level";
 discrete Real[nr] backorder "current missed deliverables";
 discrete Real[nr] todayCustomerOrder "today's demand";
 discrete Integer[nr] orderedBatches "computed nr of batches";
 discrete Real[nr] criteria "computed criteria for sorting";
 discrete Integer[nr] ordering "ordering of producion orders after
sorting";
 discrete Integer orderindex "currently processed production
order";
 end dbase;

 function busyFun "actual (random) proceessing time for each
batch"
 input dbase db;
 input ddata dd;
 output Real busyVar;
 algorithm
 busyVar := normal (dd.processingTime [db.ordering [
db.orderindex]], dd.thetime);
 end busyFun;

 function normal
 "random number, distributed in some way; should be replaced”
” by some more meaningful distribution law"
 input Real mean;
 input Real thetime;
 output Real randval;
 algorithm
 randval := mean + mod(thetime, 0.5) - 0.25;
 end normal;

 function updateinventory
 "updates inventory when production order has been fullfilled"
 input dbase dbin;
 input ddata dd;
 output dbase dbout "returns updated database here";
 protected
 Real production;
 Integer productidx;
 algorithm
 dbout := dbin;
 productidx := dbout.ordering[dbout.orderindex];
 production := dbout. OrderedBatches [dbout . orderindex] * dd
. batchSize[productidx];
 (dbout.level[productidx],dbout.backorder [productidx]) :=
update (dbout , productidx, production);
 end updateinventory;

 function update "updates inventory information for a single
product"
 input dbase db;
 input Integer pindex "product index";
 input Real production "amount of produced product";
 output Real newlevel;
 output Real newbackorder;
 algorithm
 newbackorder := db.backorder[pindex] + db .
todayCustomerOrder[pindex];
 if (production + db.level[pindex] >= newbackorder) then
 newlevel := db.level[pindex] + production - newbackorder;
 newbackorder := 0;
 else
 newbackorder:=newbackorder-(production+db.level[pindex]);
 newlevel := 0;
 end if;
 end update;

 function endday "statistics can be gathered here"
 input dbase dbin;
 output dbase dbout;
 algorithm
 dbout := dbin;

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003212

 end endday;

 function makeCriteria "computes criteria; can be replaceable
function"
 input dbase dbin;
 input ddata dd;
 input Integer i;
 output dbase dbout;
 algorithm
 dbout := dbin;
 dbout.criteria[i] := dd. ProcessingTime [i] * dbout .
orderedBatches [i]
 "criteria is shortest processing time first. Here the prioritising
strategy is defined";
 end makeCriteria;

 function sort "bubble-sorting"
 input Real[:] qinp "sequence of criteria values";
 output Integer[nr] ordering "permitation";
 protected
 Real qtmp; Integer itmp; Real[nr] q;
 algorithm
 q := qinp;
 for i in 1:nr loop ordering[i] := i; end for;
 for i in 1:nr loop for j in 1:nr - 1 loop
 if (q[j] > q[j + 1]) then
 qtmp := q[j];q[j] := q[j + 1];q[j + 1] := qtmp;
 itmp := ordering[j];ordering[j] := ordering[j + 1];
 ordering[j + 1] := itmp;
 end if; end for; end for; end sort;

 function startday "preparations at start of the day"
 input dbase dbin;
 input ddata dd;
 output dbase dbout;
 algorithm
 dbout := dbin;
 for i in 1:nr loop
 dbout.todayCustomerOrder[i] := normal(dd.demand[i], dd.
thetime) ;
 end for "today's demand randomly chosen";
 for i in 1:nr loop
 dbout.orderedBatches[i] := integer((dd.wantedLevel[i] +
dbout.backorder[i]+dbout.todayCustomerOrder[i] - dbout.level [i])
/ dd.batchSize[i]);
 end for "necessary number of batches";
 for i in 1:nr loop
 dbout := makeCriteria(dbout, dd, i);
 end for;
 dbout.ordering := sort(dbout.criteria);
 dbout.orderindex := 0
 " production orders are performed according to this ordering
now ";
 end startday;

 model sampler "production unit and sampler"
 outer dbase db;
 outer ddata dd;
 discrete Real nextSampling(start=0.1) "when unit will become
free";
 discrete Real busyTime(start=1) "duration of production time";
 discrete Real daystart(start=0) "when day started";
 Boolean signal "the signal could be sent over to other
components,
 but this is not needed";
 algorithm
 signal := time >= nextSampling;
 when (pre(signal)) then

 if db.orderindex < nr then
 db.orderindex := db.orderindex + 1 "start next order";
 dd.thetime := time "used for randomizer";
 daystart := pre(daystart);

 db := updateinventory(db, dd) "we assume that order is
done";
 busyTime := busyFun(db, dd) "production time for a new
order";
 else
 busyTime := 1 "stay idle one more hour";
 end if;
 nextSampling := pre(nextSampling) + busyTime;

 if (time - daystart > 24) then
 daystart := time;
 db := endday(db);
 db := startday(db, dd) "new day started";
 end if;
 end when;
 end sampler;

 model factory
 inner dbase db(
 backorder(start={0,0}), level(start={3,4}),
 todayCustomerOrder(start={10,12}),
 orderedBatches(start={0,0}), criteria(start={0,0}),
 ordering(start={1,2}), orderindex(start=1));

 inner ddata dd (demand={5,6}, demandDistr={2,2},
processingTime={2,3} , processingTimeDistr = {2,2}, batchSize
= {3,3} , wantedLevel={5,5});

 sampler S;
 end factory;

end ormodel13;

Fig. 8. Result of simulation of the “factory” model
for 1000 hours. Production stock levels do not
exceed the safety stock ({5,5}), and no backorder
occurs.

An alternative sampler based on an when-
equations would allow to build a structure
consisting of models and blocks instead (or in
addition to) functions. This approach is the next
step in our ongoing work.

7 Future research

The plans for research include design of multiple
modelling patterns for typical operation
management problems. Also it is necessary to create
user-friendly modelling and simulation tools that
can easily be configured for solving particular
problems of business operation management.

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003213

8 The VISP project
The VISP project [11] is a cooperation between the
departments of Machine Design and Production
Engineering at KTH, The Dept. of Computer
Science at Linköping University, IVF, The Institute
for Engineering Science at Skövde University
College, and a number of Swedish companies.
The expected output is the development of an
information platform for industry-adapted product
realization based on a common, integrated map over
workflows and data access during concurrent
development of a product program and a
manufacturing system. The work includes
development of methodology, modularisation and
configuration of simulation models of products and
production systems, a pilot installation of the
methodology with a commercial software, and
evaluation of the achieved results in several real
industrial cases.
References

[1] Zahn, E., Dillerup, R., Schmid, U.: “Strategic
evaluation of flexible assembly systems on the basis
of hard and soft decision criteria”. System
Dynamics Review Vol.14, Winter 1998.
[2] Bergman, B. “Industriell försöksplanering och
robust konstruktion”, Studentlitteratur 1992
[3] Fabricius, S. ”SystemDynamics Modelica
Library”, available from www.modelica.org, 2002

[4] Forrester J. “Principles of Systems, Wright-
Allen Press, Cambridge, U.S.A, 1969
[5] Slack, N., et al. ”Operations Management”.
Prentice Hall 2001
[6] Ackoff. Russell, L. Operation Research: „after
the post mortem“. “System Dynamics Review” Vol.
17. No4 Winter 2001
[7] J Will M Bertrand; Jan C Fransoo. “Operations
management research methodologies using
quantitative modeling”, International Journal of
Operations & Production Management, Year: 2002
Volume: 22 Number: 2 Page: 241 – 264
[8] Bunus P., Fritzson, P., DEVS-Based Multi-
Formalism Modeling and Simulation in Modelica.
Proc. of the 2000 Summer Computer Simulation
Conf. (Vancouver, Canada, Jul. 16-20).
[9] Zeigler, B.P., Multifaceted Modeling and
Discrete Event Simulation, Academic Press.
London, 1984
[10] Remelhe, M.A.P., Combining discrete event
models and Modelica – General thoughts and a
Special Modelling environment. Proc. of Modelica
2002 conf. (Oberpfaffenhofen, Germany)
[11] VISP Project site, http://extra.ivf.se/VISP/
[12] Schreiber, G., at al, “Knowledge engineering
and management”, MIT Press, 2000.
[13]. Wu, B., “Manufacturing systems design and
analysis”, Chapman&Hall, 1992.

 Jerzy Mikler, Vadim Engelson Simulation for Operation Management: Object Oriented Approach using Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003214

http://www.modelica.org/
http://www.ida.liu.se/~pelab/members/?3

BioChem
– A Biological and Chemical Library for Modelica

Emma Larsdotter Nilsson and Peter Fritzson
Linköpings universitet

PELAB – Programming Environment Laboratory
Department of Computer and Information Science

SE-581 83 Linköping, Sweden
{emmni, petfr}@ida.liu.se

Abstract
Many biological, biochemical and chemical sys-
tems have been mathematically defined for dec-
ades. As laboratory techniques are becoming in-
creasingly sophisticated, more systems can be
mathematically defined. But sophisticated tech-
niques usually means more expensive and time-
consuming. Simulation and modeling tools have
today therefore become a very important part of
biological and chemical research. In this paper the
advancement on developing a library for simula-
tion of cellular pathways in the Modelica language
will be presented.

Keywords: Modelica, biological systems, chemi-
cal reactions, cellular pathways, SBML.

1 Biological Systems
All living things can be seen as systems. The prey-
predator relation between foxes and rabbits, the
cycle of energy-forest, the life of a bacterium or
the human body are all more or less complex
examples of biological systems surrounding us.
Many of these systems are easy to model or simu-
late, their mathematical definitions have been
known for years, if not decades. Other systems
such as the human body or bacteria’s intercellular
processes, we don’t know so much about, yet.

2 Cells and Cellular Pathways
One type of systems that we are just about to learn
more about is the cell. Cells are the basic building
blocks of all living organisms. No matter if the
cells are part of a multicellular organism or consti-
tute unicellular organisms the processes inside
them do not differ that much. A cell’s metabolism
involves the uptake, decomposition, and rebuilding
of different compounds and can be seen as a com-
plex web or graph. The nodes are the different sub-
stances and the edges are the reactions that trans-
form one substance to another. These complex

webs, consisting of up to a couple of hundred sub-
stances and more than twice as many reactions are
referred to as cellular pathways. Some of the reac-
tions in these pathways are already well defined,
while some are not even discovered yet.

3 Why Modelica
Many biological, biochemical, and chemical sys-
tems have been mathematically defined for dec-
ades. As laboratory techniques are becoming more
sophisticated, even more systems are defined and
sometimes redefined. Better laboratory techniques
also make it possible to analyze larger and more
complex systems than before. However better tech-
niques can also mean more expensive and some-
times more time-consuming analyses. A good mod-
eling/simulation tool can in many cases extensively
cut the cost and time.

Due to being equation-based Modelica is very suit-
able for modeling of biological, biochemical, and
chemical systems. One major benefit is that the
classes are acausal and thereby adapt to more than
one data flow context [1]. The complexity of these
types of systems will not be a problem, Modelica‘s
strength as a modeling language for complex
technical systems is well proven [2]. Another bene-
fit of Modelica is that it is possible to model both
discrete and continuous systems as well as hybrids
thereof. Especially hybrid systems are quite com-
mon in the biological/chemical area. Modelica’s
strong software component model makes the lan-
guage ideally suited as an architectural description
language for complex systems, such as complex
pathway models. Finally, the use of Mathematica
[6] notebooks and commands for the simulations
makes Modelica easy, even for non-computer sci-
ence user. This is very important since most biolo-
gists and chemists have none or very little experi-
ence in computer science.

 The Modelica Association Modelica 2003, November 3-4, 2003

Emma Larsdotter Nilsson, Peter Fritzson BioChem - A Biological and Chemical Library for Modelica

215

4 BioChem Package
The work of building a Modelica library for cellu-
lar systems has only just started. So far the main
effort has been to develop classes for nodes and
chemical reactions frequently occurring within cel-
lular pathways.

4.1 Package structure
The structure of the package is shown in Figure 1.

package BioChem
 package BioChemUnits "Types and their units"
 end BioChemUnits;
 package Icons "Definitions of icons"
 end Icons;
 package Interfaces
 "Definitions of interfaces"
 end Interfaces;
 package Compartments
 "Definitions of compartments"
 end Compartments;
 package NodeElements
 package Nodes "Substance nodes"
 end Nodes;
 package SpecialNodes "Sources and Sinks"
 end SpecialNodes;
 end NodeElements;
 package Reactions
 package BasicReactions
 "Stochiometric Reactions”
 end BasicReactions;
 package SBMLReactions "SBML Reactions"
 package GenericSBML "Generic reactions"
 end GenericSBML;
 package IrreversibleSBML
 "Irreversible reactions"
 end IrreversibleSBML;
 package ReversibleSBML
 "Reversible reactions"
 end ReversibleSBML;
 package MultiSBML
 "Multi reactant SBML reactions"
 end MultiSBML;
 end SBMLReactions;
 end Reactions;
end BioChem;

Figure 1. Structure of the BioChem package.

4.2 Package Icons
The package BioChem.Icons contains icons used
in the drag-and-drop interface in MathModelica.
Icons for substance nodes are represented by cir-
cles, reactions are represented by uni and bidirec-
tional arrows, and all other chemical signs and op-
erators are represented by their standard symbols.

4.3 Package Interfaces
The package BioChem.Interfaces contains
basic objects such as connectors and partial models
used for most components in the BioChem pack-
age. The ReactionConnection (Figure 2) is the
connector used for connecting the different compo-
nents in the model.

connector ReactionConnection
 extends Icons.BlueX;
 BioChemUnits.Concentration c;
 flow BioChemUnits.MolarFlowRate r;
end ReactionConnection;

Figure 2. The connector ReactionConnection.

The connector is used on all connectable ends of
reaction arrows, connectable parts of special nodes
and signs, and for all normal nodes. All normal
nodes are represented by the partial model Node-
Connections (Figure 3), which contains eight
connectors in order to make it easier to connect
more than one reaction to a node.

partial model NodeConnections
 ReactionConnection rc_1;
 ReactionConnection rc_2;
 ReactionConnection rc_3;
 ReactionConnection rc_4;
 ReactionConnection rc_5;
 ReactionConnection rc_6;
 ReactionConnection rc_7;
 ReactionConnection rc_8;
end NodeConnections;

Figure 3. The partial model NodeConnections used
for all normal nodes in the pathway web.

4.4 Package Compartments
In order to be able to control the environment of
the reaction during a simulation a chemical reac-
tion must take place in a restricted screened-off
volume. The Compartments package contains
models for all the different types of compartments
in a cell.

4.5 Package NodeElements
The package BioChem.NodeElements.Nodes
contains the different types of nodes that can ap-
pear in a metabolic pathway. The nodes must have
some attributes corresponding to the properties
studied during simulation of a metabolic pathway.
The name of the substance and the surrounding
compartment, the electrical charge (in case of the
substance being an ion) and the amount of the sub-
stance and the flow through the node are such ba-
sic attributes.

The partial model BasicNode (Figure 4) contains
all these basic attributes along with some equations
needed for calculating the flow and the concentra-
tion of the substance.

 The Modelica Association Modelica 2003, November 3-4, 2003

Emma Larsdotter Nilsson, Peter Fritzson BioChem - A Biological and Chemical Library for Modelica

216

partial model BasicNode
 extends Interfaces.NodeConnections;
 parameter String substanceName("");
 outer parameter String compartmentName;
 outer parameter BioChemUnits.Volume V_0;
 parameter BioChemUnits.Charge charge = 0;
 parameter BioChemUnits.Concentration
 tolerance = -1e-6;
 outer BioChemUnits.Volume V;
 BioChemUnits.Concentration c;
 BioChemUnits.MolarFlowRate r_net;
equation
 r_net = rc_1.r + rc_2.r + rc_3.r + rc_4.r +
 rc_5.r + rc_6.r + rc_7.r + rc_8.r;
 c = rc_1.c; rc_1.c = rc_2.c;
 rc_2.c = rc_3.c; rc_3.c = rc_4.c;
 rc_4.c = rc_5.c; rc_5.c = rc_6.c;
 rc_6.c = rc_7.c; rc_7.c = rc_8.c;
end BasicNode;

Figure 4. The partial model for the properties of a node.

In most cases the model Node (Figure 5) is used
to represent a substance. In this type of node the
concentration of the substance is allowed to change
throughout the simulation without any restrictions.
The total amount of substance in the node is
though conserved at any time.

model Node
 extends BasicNode;
 extends Icons.WhiteNode;
 parameter BioChemUnits.Concentration
 c_0 = 1.0;
 BioChemUnits.AmountOfSubstance
 n(start = c_0 * V_0;
equation
 der(n) = r_net;
 c = n/V;
 assert(c > tolerance,
 "Node: c is negative!");
end Node;

Figure 5. The most commonly used node model.

All nodes except the node used for static reactions
have an assert statement that checks that the con-
centration never falls lower than the tolerance be-
low zero. If the concentration goes more than the
tolerance below zero during simulation an error
will be generated.

model FixedConcentrationNode
 extends NonStaticSubstanceNode;
 extends Icons.YellowNode;
 parameter BioChemUnits.Concentration
 c_fixed = 1;
 BioChemUnits.AmountOfSubstance n;
equation
 c = c_fixed;
 c = n/V;
 assert(c > tolerance,
 "FixedConcentrationNode: c is negative!");
end FixedConcentrationNode;

Figure 6. Model for nodes with fixed concentration.

Under some circumstances it is desirable to keep
the concentration of a substance at a fixed value
during the whole simulation. For these cases the

model FixedConcentrationNode (Figure 6) is
used to represent the substance node. The total
amount of substance in the node is still conserved
at any time.

Under some circumstances it is desirable to stati-
cally pump a substance into a node from a sink or
from a node into a source (Figure 7). The pump
(flow) rate to or from the node is in most simula-
tions kept at a constant level, but it is also possible
to change the flow during a simulation.

model FixedSink
 extends Icons.YellowNode;
 extends Icons.Sink;
 parameter BioChemUnits.MolarFlowRate
 sinkFlow = 1;
 Interfaces.ReactionConnection
 sinkConnection;
equation
 sinkConnection.r = -sinkFlow;
end FixedSink;

model FixedSource
 extends Icons.YellowNode;
 extends Icons.Source;
 parameter BioChemUnits.MolarFlowRate
 sourceFlow = 1;
 Interfaces.ReactionConnection
 sourceConnection;
equation
 sourceConnection.r = sourceFlow;
end FixedSource;

Figure 7. Models for source and sink nodes.

4.6 Package Reactions
The package BioChem.Reactions.BasicRe-
actions contains different types of elementary
reactions needed in a metabolic pathway. An ele-
mentary reaction is a reaction that cannot be bro-
ken down into a simpler reaction.

For a reaction to take place there need to be at least
one starting substance, the substrate, and one end-
ing substance, the product. The substrates appear
on the left side, and the products on the right side
of the reaction arrow in a reaction equation. A reac-
tion can be either irreversible, going in one direc-
tion, or reversible, going in both directions. A reac-
tion coefficient determines the speed with which
the substrate is turned into the product. The
reversible reaction can be seen as two irreversible
reactions and have therefore got one forward and
one backward reaction coefficients.

All reactions inherit some basic attributes, such as
concentration of one substrate and one product,
forward reaction coefficient, and the maximum
speed of the reaction (maximum volumetric reac-
tion rate) along with some basic equations from the
partial model BasicReaction (Figure 8).

 The Modelica Association Modelica 2003, November 3-4, 2003

Emma Larsdotter Nilsson, Peter Fritzson BioChem - A Biological and Chemical Library for Modelica

217

partial model BasicReaction
 parameter String reactionName("");
 parameter BioChemUnits.ReactionCoef k1=1;
 parameter BioChemUnits.StoichiometricCoef
 n_S1=1;
 parameter BioChemUnits.StoichiometricCoef
 n_P1=1;
 BioChemUnits.Concentration c_S1;
 BioChemUnits.Concentration c_P1;
 BioChemUnits.VolumetricReactionRate v;
 outer BioChemUnits.Volume V;
 Interfaces.ReactionConnection rc_S1;
 Interfaces.ReactionConnection rc_P1;
equation
 c_S1 = rc_S1.c;
 c_P1 = rc_P1.c;
end BasicReaction;

Figure 8. The partial model for elementary reactions.

The partial models for irreversible (OneWayReac-
tion) and reversible (TwoWayReaction) reac-
tions are shown in Figure 9.

partial model OneWayReaction
 extends BasicReaction;
equation
 rc_S1.r = n_S1*v*V;
 rc_P1.r = -n_P1*v*V;
end OneWayReaction;

partial model TwoWayReaction
 extends BasicReaction;
 parameter BioChemUnits.ReactionCoef k2=1;
equation
 rc_S1.r = n_S1*v*V;
 rc_P1.r = -n_P1*v*V;
end OneWayReaction;

Figure 9. The partial models for irreversible and
reversible reactions.

The foundation of chemical kinetics is the so called
law of mass action, which states that the rate of an
elementary reaction is proportional to the amount
of substance present. For the simplest elementary
reaction:

nA AØ
k nB B

k is the reaction coefficient, and nA and nB are the
stoichiometric coefficients for the substances A and
B, respectively. The reaction rate (v) for the reac-
tion is expressed as:

v = k[A]nA

where [A] is the concentration of substrate A. The
Modelica code for the uni-uni irreversible reaction
is shown in Figure 10.

model OneWayReactionUniUni
 extends OneWayReaction;
 extends Icons.Irreversible1to1Arrow;
equation
 v = k1*c_S1^(n_S1);
end OneWayReactionUniUni;

Figure 10. The model for uni-uni irreversible reactions.

The uni-uni irreversible reaction is quite simple. A
more thorny elementary reaction is the bi-bi
reversible reaction:

nA A+nB BF
k2

k1
nC C +nD D

This reaction has two substrates, A and B, which
are turned into two products, C and D, under the
influence of the forward reaction coefficient k1.
The products are also reversibly turned into the
substrates under the influence of the backward
reaction coefficient k2. The reaction rate (v) for the
reaction is expressed as:

v = k1[A]nA[B]nB- k2[C]nC[D]nD

where [A], [B], [C], and [D] are the concentrations
of the substances A, B, C, and D, respectively. The
Modelica code for the bi-bi reversible reaction is
shown in Figure 11.

model TwoWayReactionBiBi
 extends TwoWayReaction;
 extends Icons.Reversible2To2Arrow;
 parameter BioChemUnits.StoichiometricCoef
 n_S2=1;
 parameter BioChemUnits.StoichiometricCoef
 n_P2=1;
 BioChemUnits.Concentration c_S2;
 BioChemUnits.Concentration c_P2;
 Interfaces.ReactionConnection rc_S2;
 Interfaces.ReactionConnection rc_P2;
equation
 c_S2 = rc_S2.c;
 c_P2 = rc_P2.c;
 rc_S2.r = n_S2*v*V;
 rc_P2.r = -n_P2*v*V;
 v = (k1*c_S1^(n_S1))*c_S2^(n_S2) –
 (k2*c_P1^(n_P1))*c_P2^(n_P2);
end TwoWayReactionBiBi;

Figure 11. The model for bi-bi reversible reactions.

Reactions can also be under the influence of an
inhibitor or an activator. An inhibitor is a substance
that through its presence slows the reaction down,
but is neither consumed nor changed during the
process. The basic partial model for an inhibited
reaction inherits properties from the basic irreversi-
ble reaction and is thereby an irreversible reaction.
The difference is the addition of the inhibitor, and
some equations making sure that the inhibitor is
not consumed during simulation (Figure 12).

partial model InhibitedReaction
 extends OneWayReaction;
 extends Icons.InhibitorSign;
 extends Icons.SingleArrowModulation;
 BioChemUnits.Concentration c_I;
 Interfaces.ReactionConnection rc_I;
equation
 c_I = n_I.c;
 rc_I.r = 0;
end InhibitedReaction;

Figure 12. The partial model for inhibition reactions.

 The Modelica Association Modelica 2003, November 3-4, 2003

Emma Larsdotter Nilsson, Peter Fritzson BioChem - A Biological and Chemical Library for Modelica

218

For the elementary inhibited reaction:

nA A Ø
k HI L
nB B+ nC C

k(I) is the reaction coefficient, and nA, nB and nC
are the stoichiometric coefficients for substance A,
B, and C, respectively. The reaction rate (v) for the
reaction is expressed as:

v = k(I)[A]nA[I]-1

where [A] and [I] are the concentrations of sub-
strate A and the inhibitor I. The Modelica code for
the uni-bi irreversible inhibition reaction is shown
in Figure 13.

model InhibitedReactionUniBi
 extends InhibitedReaction;
 extends Icons.Irreversible1To2Arrow;
 parameter StoichiometricCoef n_P2=1;
 BioChemUnits.Concentration c_P2;
 Interfaces.ReactionConnection rc_P2;
equation
 c_P2 = rc_P2.c;
 rc_P2.r = -n_P2*v*V;
 v = k1/c_I*c_S1^(n_S1);
end InhibitedReactionUniBi;

Figure 13. The model for uni-bi inhibition reactions.

An activator is a substance that through its pres-
ence speeds up the reaction, but is neither con-
sumed nor changed during the process. The basic
partial model for an activated reaction looks just
like the partial model for the inhibited reaction
(Figure 14).

partial model ActivatedReaction
 extends OneWayReaction;
 extends Icons.ActivatorSign;
 extends Icons.SingleArrowModulation;
 BioChemUnits.Concentration c_Ac;
 Interfaces.ReactionConnection rc_Ac;
equation
 c_Ac = n_Ac.c;
 rc_Ac.r = 0;
end ActivatedReaction;

Figure 14. The partial model for activation reactions.

For the elementary activated reaction:

nA A+nB B Ø
k HAc L. nC C

k(Ac) is the reaction coefficient, and nA, nB and nC
are the stoichiometric coefficients for substance A,
B, and C, respectively. The reaction rate (v) for the
reaction is expressed as:

v = k(Ac)[Ac][A]nA[B]nB

where [A], [B] and [Ac] are the concentrations of
substrate A and B, and the activator Ac. The Mode-
lica code for the bi-uni irreversible activation reac-
tion is shown in Figure 15.

model ActivatedReactionBiUni
 extends ActivatedReaction;
 extends Icons.Irreversible2To1Arrow;
 parameter BioChemUnits.StoichiometricCoef
 n_S2=1;
 BioChemUnits.Concentration c_S2;
 Interfaces.ReactionConnection rc_S1;
equation
 c_S2 = rc_S2.c;
 rc_S2.r = n_S2*v*V;
 v = k1*c_Ac*c_S1^(n_S1)*c_S2^(n_S2);
end ActivatedReactionBiUni;

Figure 15. The model for bi-uni activation reactions.

4.7 SBML
The Systems Biology Markup Language (SBML)
is a computer-readable format for representing
models of biochemical reaction networks. SBML is
applicable to metabolic networks, cell-signaling
pathways, genomic regulatory networks, and many
other areas in systems biology [8].

In order to make models created in Modelica inter-
changeable with other biological or chemical simu-
lation and modeling tools a two-way translator be-
tween Modelica and SBML is under development.
The package BioChem.Reactions.SBMLReact-
ions contains reactions specified in the second
release (Level 2) of SBML [3, 5].

5 Current work
To make it even easier for biologist/chemist to use
Modelica for modeling and simulation a drag-and-
drop graphical interface is currently being devel-
oped for MathModelica [4, 7]. Current work also
focuses on building pathway models using the
classes in the BioChem package.

Acknowledgments
The authors whish to thank Eva-Lena Lengquist
Sandelin, Linköpings universitet for valuable feed-
back, and MathCore Engineering AB for supplying
the MathModelica tool. Emma Larsdotter Nilsson
was in part funded by the Swedish National
Graduate School in Computer Science (CUGS).

 The Modelica Association Modelica 2003, November 3-4, 2003

Emma Larsdotter Nilsson, Peter Fritzson BioChem - A Biological and Chemical Library for Modelica

219

References
[1] Fritzson, P. Principles of Object-Oriented

Modeling and Simulation with Modelica. IEEE
Press and Wiley. 2003.

[2] Fritzson P and P. Bunus. Modelica – A General
Object-Oriented Language for Continuous and
Discrete-Event System Modeling and Simula-
tion. (In Proceedings of the 35th Annual
Simulation Symposium. San Diego, California,
April 14-18, 2002. IEEE Press. 2002.

[3] Finney, A. and M. Hucka. Systems Biology
Markup Language (SBML) Level 2: Structures
and Facilities for Model Definitions.
http://www.cds.caltech.edu/erato/sbml/docs/.
2003.

[4] Fritzson P, J. Gunnarsson, and M. Jirstrand.
MathModelica – An Extensible Modeling and
Simulation Environment with Integrated
Graphics and Literate Programming, In Pro-
ceedings of 2nd International Modelica
Conference Munich, March 2002
(www.modelica.org). 2002.

[5] Hucka, M. et al. Systems Biology Markup
Language (SBML) Level 1: Structures and Fa-
cilities for Model Definitions.
http://www.cds.caltech.edu/erato/sbml/docs/.
2003.

[6] Wolfram, S. The Mathematica Book. Wolfram
Media. 1997.

[7] MathModelica web site. www.mathcore.com.
[8] SBML web site. www.sbml.org.

 The Modelica Association Modelica 2003, November 3-4, 2003

Emma Larsdotter Nilsson, Peter Fritzson BioChem - A Biological and Chemical Library for Modelica

220

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 7A
Mechatronic Systems – I

229

 The Modelica Association Modelica 2003, November 3-4, 2003230

A Remote User Interface to Modelica Robot Models

G. Ferretti, M. Gritti, G. Magnani, and P. Rocco
Politecnico di Milano - Dipartimento di Elettronica e Informazione

Via Ponzio 34/5, 20133 Milano (Italy)
phone: +39 02 2399 3673, fax: +39 02 2399 3412

e-mail:
�
ferretti, gritti, magnani, rocco � @elet.polimi.it

Abstract

A remote interface for simulating robots via the In-
ternet is presented. This environment is dedicated to
simulations of robotic arms whose models are written
in some descriptive language like Modelica. The ac-
tual application runs on robot models compiled by Dy-
mola. This work has been developed within a project
whose purpose is the Modelica/Dymola implementa-
tion of models of space robots and servomechanisms,
and their dissemination to partner firms and to the
scientific community. The remote simulation envi-
ronment has been tested with a model of the Spider
robotic arm.

1 Introduction

The purpose of the SIMECS1 (Integrated MECha-
tronic Simulation for Space systems) project is to build
up a library of models of mechatronic components
used in space systems. Such components are build-
ing blocks for virtual prototyping robots and systems
which will be exploited in future space missions.
Typical simulation environments like Dymola [1] or
Simulink [2] embed powerful modeling toolboxes for
building models of any kind of dynamic system. This
gives the user the maximum flexibility and applicabil-
ity. But once a model has already been built and tested
by an expert user of such tools, only a user friendly
simulation software is needed, while modeling func-
tionalities become superfluous. That could be happen-
ing during the fine tuning of the model parameters, or
while inspecting the behavior of the system for pro-
gramming the sequence of working actions.
Moreover, there are scenarios in which the model-

1The project website is online at http://www.elet.
polimi.it/res/simecs/. The latest version of the client of
the application which is described in this paper can also be down-
loaded there.

ing expert and the ultimate simulation user not only
are distinct persons, but also work in different places
for distinct organizations that cooperate on the same
project. This happens in SIMECS. Within this project,
extremely complex models of robotic components
were developed as academic research topic; then com-
ponent models were assembled into models of robot2

prototypes used as case studies. Working robot mod-
els will be finally put at disposal of partner firms which
have to build the various parts of one real robot.
The presented scenario is not isolated, because many
little establishments exist that do not have the expertise
for developing complex models using complex mod-
eling environments, and cannot afford to invest in it,
but could improve the quality of their production by
means of studying on pre-packed models with easy-
to-use software tools.
The approach of running simulations remotely, instead
of deploying the compiled models on site, is supported
by the assumption that who builds the models should
also be capable of dimensioning them to the compu-
tational power available for simulation. On the con-
trary, deploying models to the unknown computers of
the end users would entail the risk that their computa-
tional power could be inadequate for running the sim-
ulations in a reasonable time, which would mean to
make the deployed models practically unusable.

2 Application Requirements

The SIMECS-RI (SIMECS-Remote Interface) is a vi-
sual simulation environment dedicated to simulations
of executions of commands assigned to robotic arms
which operate in space. Requirements of such an ap-
plication have been traced from different perspectives.

2As it will be said in section 5, the robot taken into account is
the Spider arm, for which different control system solutions were
tested by means of a number of simulations.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003231

2.1 Functional Requirements

The application should be flexible enough to deal with
any kind of manipulator. This means it should be able
to present information about any kind of mechanical
chain and motion control system, and it should be also
able to initialize and run simulations of robots which
accept commands at different abstraction levels.
Information to be presented about the robot model can
be divided into three categories:� Robot model documentation;� Model parameters and main variables;� Virtual model of the robot.

The model documentation could only be read and no
change to the model should be allowed. This means,
for example, that neither links could be attached to
or removed from the mechanical chain, nor dynamic
or algebraic blocks could be attached to or removed
from the control system. The simulation environment
should instead allow the user to change the values of
the model parameters, such as all the gains in the mo-
tion control system, or the masses and lengths of the
physical links. The application should possibly re-
member parameter value changes after the simulation,
for further reutilization. Also the main variables of
the model should be accessible, and the user should be
allowed to plot variables, for transient analysis. Possi-
bly, variable plots should be visible during the sim-
ulation also and updated while the simulation is in
progress. Virtual prototype animation should be al-
lowed after the simulation, and possibly also while
simulation is in progress.
Depending on the model inputs, robot commands that
one could assign for simulation are:

Direct input
�

Open loop: current amplitudes,
Closed loop: canonical set points;

Movement
�

Joint space,
Cartesian space;

High level �� � Action,
Task,
Mission.

For each of these categories, a user friendly way for
selecting the actual command should be provided.
Finally, the application should also feature an easy
way for choosing the initial robot configuration.

2.2 Operational Requirements

Basically, an application like SIMECS-RI should al-
low the user to choose a robot model from a library
of available models, to assign model parameters, and
arbitrary initial state, to define assign and simulate the
execution of a robot command, and finally to analyze
the simulation results.
The precise steps of a typical use case are:

1. choice and loading of the robot model;

2. model inspection and parameters configuration;

3. choice of the variables which values should be
updated during the simulation;

4. choice of the initial state;

5. robot command definition;

6. simulation parameters setup;

7. robot command assignment;

8. simulation, with online result presentation;

9. loading of the transients of the variables which
trend has to be analyzed;

10. variables transient analysis;

11. result saving.

Items that have been emphasized constitute function-
alities which should be given special attention during
the design phase. These features should be designed in
a way that enhances the usability of the robot simula-
tion interface. On the contrary all other functionalities
are not affected by the requirement of building an ap-
plication dedicated to robotic arms.
Documentation could be loaded together with the
robot model, and presented simply as a collection of
data sheets of the robot mechanical chain and control
system. Hyper textual format could be adequate, so the
user would navigate inside and outside of robot com-
ponents and subcomponents, seeing the component
connections and relationships, with all model equa-
tions explained, and all constant values listed.
Parameters should be well separated from the read-
only documentation. They should be presented in a
clear way: possibly a list, or maybe a tree in which
those belonging to the same component are grouped
together under the same branch. Parameters should be
also coupled with their descriptions.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003232

The robot virtual prototype should be displayed in a
separate window; possibly, the 3D robot model should
be surrounded by a model of its real environment.
Solid shapes are preferable to wire frames. Changes
in parameter values which affect the robot appearance
should be reflected immediately in the virtual proto-
type.
Before performing the simulation, robot initial posi-
tion should be assigned by choosing the positions of
its joints. It could be assumed that the robot is always
initially still. This restriction is consistent with the fact
that when a command is assigned to a real robot, the
robot is always still.
Concerning command definition, if the restriction of
dealing only with robotic arms is adopted, robot com-
mands belong to well known categories. So com-
mands and trajectory parameters can be separated
from other parameters, and the way a command is is-
sued can be differentiated from a simple change in
some input parameter. Robot commands should be
edited in a comfortable manner. A visual tool emu-
lating one distinct teach pendant for each level of ab-
straction is preferable with respect to a textual prompt
where each command is issued by entering a line of
text.
Finally, robot command assignment could simply co-
incide with simulation startup.

Figure 1: Application overall structure.

2.3 Structural Requirements

The structural requirements of the application are
mainly two: first, as said in section 1, simulations have

to run on a server computer, while simulation results
should be presented on a client computer; second, sim-
ulations have to be performed by an application which
is external to the SIMECS-RI server.
The choice of exploiting an external software tool for
dynamic simulation is motivated by the fact that sev-
eral tools [1][2][3] already exist which are capable of
that, and so it would be anachronistic to start by now
the development of a new one. On the other hand,
since exploiting an already existing simulation tool
means to exchange with it information about robot
models and model inputs, most important would be
now to compensate the lack of standards in the way
robotic systems are defined. This would simplify the
interaction with such generic simulation tools.

3 Application Structure

Te SIMECS-RI overall structure is shown in figure 1
through a UML [4][5] deployment diagram. This is
a pure client/server strucure. The diagram emphasizes
the fact that the application core is by now only a proxy
to a distinct process which performs the simulations.
The server can handle multiple connections, which
means that many users at a time can perform their
own simulation. The maximum number of contempo-
rary users is limited by the computational power of the
server, which should be capable of running one simu-
lation per user.

3.1 Server Structure

The structure of the server is shown in figure 2 through
an UML component diagram. As it can be seen, a
component based architecture has been adopted. The
three main components of the application are the Sim-
ulation Server, the Low Level Proxy, and the Hot Feed-
back Manager. The Low Level Simulator Machine,
which is the process that actually simulates the robot
motion and motion control, does not belong to the ap-
plication itself. Both the Low Level Simulator Ma-
chine and SIMECS-RI have their own configuration
files. The last component, i.e. the Action Level Simu-
lator is not currently implemented, and will be useful
for future extensions which will be illustrated in sec-
tion 6.
The Simulation Server waits for requests incoming
from the client, and parses and executes them once
they arrive. To serve the requests, the Simulation
Server relies on the interfaces that the Low Level
Proxy exports. The client of the Simulation Server

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003233

Figure 2: Server structure.

is a component of the SIMECS-RI client. These two
physical components together constitute a conceptual
Communication component.
This design has been adopted because it is general, and
does not obstruct any kind of possible future develop-
ment. A client/server mechanism has been adopted in
spite of a remote procedure call mechanism for decou-
pling the two main parts of the application. Indeed,
a communication layer based on an application-level
protocol allows the client and the server to be imple-
mented by means of different technologies. This also
allows any one to implement a client for the SIMECS-
RI, provided that he respects the communication pro-
tocol. On the other hand, abstracting a conceptual
communication component allows at any step of the
development process to change the way communica-
tion is performed, without affecting any other part of
the application. This simplifies the way both the com-
munication protocol and the communication mecha-
nism can be changed, if this is considered useful.
The Low Level Proxy exports some interfaces used for
gathering the robot model and the simulation results
from the files of the external simulator, and some other
interfaces used for controlling the external simulator
itself. Building a component dedicated to the transla-
tion of simulator independent commands into simula-
tor dependant ones has been useful during the design
phase because it allowed to abstract from their imple-
mentation in the exploited simulator. A separate Low
Level Proxy component is useful for the maintenance
of the application also, since it allows to more easily

change the external simulator by means of changing
the proxy, and letting the rest of the application un-
changed.
Finally, the Hot Feedback Manager watches for the re-
sults (i.e. the transient of the variables) incoming from
the simulator while a simulation is in progress, and
outputs these results to the client, so they can be im-
mediately presented to the user. Results are gathered
by the Low Level Proxy from the simulator through
some mechanism of interprocess communication, and
fired as events to the Hot Feedback Manager. Event
paradigm has been adopted since result arriving is un-
predictable. The Hot Feedback Manager can reduce
the sampling rate of the results that are forwarded. Not
exceeding a prefixed forward rate prevents the com-
munication channel from saturations. If a user wants
to analyze the entire transient of a variable he can in
any case reload it when the simulation is terminated.

3.2 Client Structure

The structure of the client is shown in figure 4 through
a UML component diagram. The two main compo-
nents of the client are the User Interface and the Simu-
lation Client. The event paradigm has been adopted for
exchanging information between them. This means
that as soon as the User Interface receives a command
from the user as a signal coming from the computer
hardware, whenever this command implies a request
to the SIMECS server, the User Interface itself prop-
agates the signal as an event to the Simulation Client.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003234

Figure 3: User interface structure.

Also when the Simulation Client reads results coming
from the server, it fires events for propagating data to
the User Interface.
The Simulation Client component is the counterpart of
the Simulation Server component of the SIMECS-RI
server. Its purposes are to translate the requests of the
user into strings of the communication protocol and
to dispatch the results coming from the SIMECS-RI
server.

Figure 4: Client structure.

The User Interface is a super-component. Figure 3
shows the User Interface decomposed into its sub-
components. For assuring the maximum decoupling,
their interconnections also are asynchronous. The
main sub-component is the Simulation Interface; other
sub-components are the Joint Position Interface, the
Robot Command Interface, the Robot Model Interface,
the Time Presentation, the Trend Presentation, and the
Virtual Presentation.
The Simulation Interface is responsible of instantiating

all other visual sub-components and of assigning them
a place on screen. Visual components are dedicated to
a specific type of interaction with the user. The Joint
Position Interface allows the user to drive the joints
of the robot into a desired position. The Robot Com-
mand Interface allows the user to build and assign a
path in the Cartesian or joint space. The Robot Model
Interface allows the user to inspect the robot param-
eters and variables, to change the parameters values,
and to select the variables which transient he wants to
see. The Time Presentation indicates the progress of
the simulation, with respect to its total time; it also al-
lows the user to pause or abort the simulation. The
Trend Presentation displays the transient of a variable,
through an interactive plot3. Finally, the Virtual Pre-
sentation displays the robot virtual prototype within its
workspace.

4 Application Technology

The SIMECS-RI has been implemented in Java [6].
Java is a pure object-oriented programming language,
and exploiting of interfaces to the classes it allows the
realization of well decoupled software components.
Moreover, Java is a general purpose language, and it is
provided with libraries that can be exploited for build-
ing applications which span over many different pro-
gramming fields.
A language which is pure object-oriented makes it
harder to obtain inconsistencies between the UML

3User can see more than one plot at a time, by creating multiple
instances of the Trend Presentation component.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003235

structural design and its implementation. This im-
proves the software quality, and makes it easier to
maintain and evolve the application. Improvements
are important also in the design in-the-large, were Java
interfaces have been exploited to export the methods of
the various components.
JavaBeans technology has been adopted for the im-
plementation of the SIMECS-RI client. Beans are the
Java proposal for component-oriented software archi-
tectures. Beans interact exchanging events, and are
well suited for light-weight visual components4 like
those of the SIMECS-RI client.
The SIMECS-RI graphical user interface has been im-
plemented using the Swing library for windowing, the
Java2D library for graph plots, and the Java3D [7] li-
brary for the robot virtual presentation. Thanks to Java
portability, the SIMECS-RI client can be run on any
platform5 for which such libraries exist.
The SIMECS-RI server, on the other hand does not
need an interface to the user, but one for interacting
with the simulator process, and it is constrained to run
on the same platform for which the simulator has been
compiled. In the actual version of the SIMECS-RI
server, Dymosim has been exploited as external sim-
ulator. Dymosim is a Windows executable file auto-
matically generated by Dymola [1], by means of trans-
lating the Modelica code into C code, and then com-
piling the C code. Since Dymola compiles a new Dy-
mosim executable for every Modelica model, a library
of Dymosim executables is stored on the server, each
of which corresponding to a single compiled model.
The Dymosim executable reads the simulation settings
and the actual values of the parameters of its own
model from an input file, and stores into an output file
the variables transient evaluated during the simulation.
So, the Proxy Simulator can actually exchange infor-
mation with the simulator by writing its input file, and
by reading its output file.
Dymosim allows another way also for exchanging
data: the DDE (Dynamic Data Exchange) [8] inter-
process communication technology. DDE is Windows
native, and is based on shared memory areas. Commu-
nication through DDE has been made possible in Java
by exploiting the JNI (Java to Native Interface) API. It
is so by means of DDE that the Proxy Simulator gath-
ers from Dymosim the data that are forwarded to the
SIMECS-RI client while simulation is in progress.

4For example, all the javax.swing library of windowing com-
ponents is implemented through JavaBeans.

5SIMECS-RI has been tested successfully, by now, on Linux
and Windows.

5 A Case Study: The Spider Arm

The SIMECS-RI has been tested on compiled Model-
ica models of the Spider robotic arm, which is shown
in figure 5. By now, three different types of motion
control systems have been modeled and applied to the
same blocks of the Spider mechanical chain and ac-
tuators array [10]. These are: joint independent con-
trol, operational space motion control, and operational
space hybrid control. At current stage of development,
SIMECS-RI is able to work with the first of them.

Figure 5: The Spider arm.

5.1 The Robot Model

The Spider model with joint independent control sys-
tem has been provided with a joint space trapezoid
speed trajectory generator which accepts as inputs the
initial and final positions of each joint, and the percent-
ages of the maximum values of joint speed and accel-
eration. The model [10] features P/PI cascade con-
trollers with motor and joint position sensors, dynam-
ics of brushless two-phase motors, current controllers,
elastic transmissions with backlash and friction, and a
seven degrees of freedom multi-body chain with op-
tional payload. A total of more than 12,000 equations
are listed at compile time.
The Modelica model of the motor (see6 figure 6)
describes the electrical dynamics of the two phases,
the electro-mechanical conversion (block EMF_2), the

6All figures referred within this section are Dymola [1]
schemes.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003236

Figure 6: Scheme of the Modelica brushless two-phase motor model.

Figure 7: Scheme of the Modelica elastic gear model.

equivalent rotor inertia, the viscous friction of the mo-
tor, and it also includes the encoder. The electro-
mechanical conversion block offers the interesting
possibility of simulating the effect of the most impor-
tant torque disturbances due to the motor dynamics,
like the ripple caused by torque phase unbalanced, the
ripple due to shape functions imperfections, and the
detent torque, which is present also when current is
null.
The Modelica model of the analog current controller
includes two analog PI regulators with anti-windup
compensation. This component allows to set the value
of the current offset, which is useful to simulate sensor
polarization. This way, this component can reproduce
a torque disturbance on the motor.
A realistic transmission model has been built using the
Rotational objects taken from Modelica Standard Li-
brary. The Gear_Box Modelica component (see fig-
ure 7) includes:

� a continuous-nonlinear friction model (LuGre);

� a mechanical efficiency model;

� an equivalent gear train inertia model;

� torsion flexibility, damping and backlash models;

� an ideal reducer model.

The analog7 joint control system is equipped with two
resolvers for each joint (at motor and load sides). The
control scheme is constituted by an inner loop (PI
part), for motor speed control, and by an outer loop (P
part), for joint position control. Anti-windup compen-
sation mechanism and velocity feed-forward are also
present in the inner loop.
The Spider mechanical chain model has been imple-
mented exploiting the Modelica Multi-body library.
In order to make the SIMECS-RI application able

7A digital control system has been implemented and tested as
well, but in order to maximize the speed of the remote simulations,
its equivalent analog version has been finally preferred.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003237

Figure 8: Scheme of the Modelica link model.

to graphically represent and animate robots, a gen-
eral way of specifying robot kinematical chains with
graphical appearance has been conceived. This allows
to change link lengths at simulation time without loos-
ing the link appearances.
In figure 8 the Modelica scheme of the Link compo-
nent in the Spider mechanical chain is shown. As it
can be seen, a central translation with associated body
is preceded by an initial rotation and is followed by a
final translation. The initial rotation has a null com-
ponent around the axis of the joint preceding the link,
and the final translation has a null component along
the axis of the link. The central translation can have
a non-zero component only along the x axis, and its
value equals the length of the link.
Shapes that can be attached to the robot links are
currently modeled in separate Modelica components.
Many elementary solid shapes can be attached to the
same robot link (i.e. mass plus roto-translation), but
only one shape object can change its dimension along
one of its axes according to the link length. The resiz-
able shape can be virtually of any type, but it is more
appropriate if it has a constant orthogonal section with
respect to its resizable axis. This in order to avoid mis-
shaping the robot link appearance in the 3D model,
when the length is changed. Modelica shapes that are
appropriate in this sense are Cylinder, Pipe, Box,
and Beam.

5.2 The Application

The main window of SIMECS-RI is shown in figure 9,
with the joint controlled Spider arm model loaded. As
it can be seen, the window is divided in three main
sections: at the left side there is the parameters tree,
in the middle is the robot virtual presentation, and at
the bottom is the joint command panel. Additionally,

a simple toolbar is placed at the top of the window.
The toolbar is used to access the simulation parameters
setup window, the model documentation window, and
the models list window. The initialization panel is also
accessible by means of this toolbar.
The initialization panel (which is not shown in fig-
ure 9) is a popup menu, and is identical to the one that
is shown in figure, which is used to assign destinations
in a joint space path. The initialization panel is con-
stituted by an array of sliders, one per joint. When the
user changes the robot joints positions, the 3D robot
model is immediately updated.
In practice, the user can move the robot by acting di-
rectly on its joints. This is also known as kinematical
simulation. By means of this feature, the user can im-
mediately perceive the position of the robot moving
within its environment, and so he/she can easily place
the robot in the desired initial position.
Notice that, from the user point of view, initialization
consists only in choosing the joint positions of an ini-
tially motionless robot. All internal states of the model
components8 which have to be updated for maintain-
ing consistency with the initial joint positions are auto-
matically computed by the SIMECS-RI server on the
basis of some algebraic expressions stored in an auxil-
iary file. These expressions state the relations between
the joint positions and the unknown quantities when
the robot is in an equilibrium state9, and should be sup-
plied with the robot model.
Robot model parameters and variables trees share the
same space in the window, and it is possible to switch

8In the actual model these are motor initial positions, and the
initial states of the pseudo-derivatives blocks of the control sys-
tems.

9For example, the algebraic relation between each motor angle
and the correspondent joint angle is simply qm �

nql , where n is
the gear ratio. The effect of an elastic transmission is neglected
since the robot is supposed to operate in zero-gravity conditions.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003238

Figure 9: The SIMECS-RI graphical user interface.

from one to the other by choosing the correspond-
ing tab at the top left corner. Parameter values can
be changed by means of the table at the bottom left
corner, while parameter descriptions appear as tool tip
texts. Variables plots are accessed by double-clicking
the variable names in the variables tree.

The 3D graphics model is built by interpreting infor-
mation stored in the simulator input file. This can
be done provided that the the guidelines sketched in
section 5.1 are followed while the modeler builds the
kinematical chain of the robot and its graphical appear-
ance

The joint command panel is used for building and as-
signing joint free space paths, which are sequences of
path nodes. Every node has a destination (i.e. a via
point of the overall path), and two parameters which
state speed and acceleration reduction to be applied in
the corresponding path segment. Paths that can be as-
signed are a subset of the ones that can be defined by
means of the PDL2 [9] move instruction. Actually,
only the first node of any path is really issued to the
simulator. This limitation is applied for compliance
with the trajectory generator of the model.

6 Future Work

SIMECS-RI is a complete simulation environment for
robotic arms moving in free space. By now, robot
commands can be given at joint level. The most nat-
ural way of extending such an application is to make
it capable of dealing with more complex simulations,
always within the field of articulated robotics.

First, it is planned to handle the case of simulations
of contact situations between the robot and its sur-
rounding environment: this includes both the case of
a manipulator grasping objects and the case of a robot
whose end effector slides onto a surface; second it is
planned to allow to perform simulations of movements
in an environment with obstacles. Extensions to such
cases not only imply to design and implement novel
command interfaces for robotic arms, but also to de-
sign the corresponding command interpreters, and, last
but no least, to build models that can handle such new
complexities.

It is planned also to modify the SIMECS-RI server in
order to make it able to interface itself with hardware-
in-the-loop simulators, where only the robot electro-

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003239

mechanical parts are simulated, while the motion con-
troller is a real one.
Finally, the application user interface can be extended
to allow telemanipulation of a real robot.

Acknowledgments

The authors would like to thank Gianpaolo Cugola
for its important contribution to the design of the
SIMECS-RI application, Paolo Donadeo for the im-
plementation of the Virtual Presentation component,
and Luca Viganò for having provided all Modelica
models of the SIMECS library.

References

[1] Dymola Multi-Engineering Modeling and Simu-
lation [Online]. Available:
http://www.dynasim.se/

[2] Simulink: Design and Simulate Continuous and
Discrete-Time Systems [Online]. Available:
http://www.mathworks.com/
products/simulink/

[3] MBDyn - MultiBody Dynamics Software, [On-
line]. Available:
http://www.aero.polimi.it/
˜mbdyn/

[4] OMG UML Specification [Online]. Available:
http://www.omg.org/uml/

[5] G. Booch, J. Rumbaugh, and I. Jacobson,
The Unified Modelling Language User Guide,
Addison-Wesley Pub Co; 1st ed. Septem-
ber 1998.

[6] B. Eckel, Thinking in Java, Prentice Hall PTR;
3rd ed. December 2002.

[7] D. J Bouvier, Java3D API Tutorial, Sun Mi-
crosystems Inc. [Online]. Available:
http://developer.java.sun.com/
developer/onlineTraining/java3d/

[8] C. Petzold, Programming Windows, Microsoft
Press; 1st ed. 1988.

[9] Linguaggio di Programmazione PDL2 - Ver-
sione 3.0 [in Italian], COMAU S.p.A. Robotics
Division; 1992.

[10] L. Viganò, Modellistica del Braccio Robotico
Europa con Analisi del Controllo nello Spazio
Operativo [in Italian], Master’s Thesis, Politec-
nico di Milano; June 2003.

 G. Ferretti, M. Gritti, G. Magnani, P. Rocco A Remote User Interface to Modelica Robot Models

 The Modelica Association Modelica 2003, November 3-4, 2003240

Physical-based Friction Identification
of an Electro-Mechanical Actuator
with Dymola/Modelica and MOPS

Angelika Peer Naim Bajcinca Christian Schweiger

German Aerospace Center (DLR)
Institute of Robotics and Mechatronics

Oberpfaffenhofen, 82234 Weßling, Germany
http://www.robotic.dlr.de/control/

Abstract

An identification procedure consisting of iterative pa-
rameter optimization and model validation tasks using
the optimization tool MOPS and Dymola/Modelica
simulation environment is presented. This method
is used for modelling of a force-feedback electro-
mechanical actuator with Harmonic-Drive gear. A
modelling approach for speed and torque dependent
gear losses introduced in a prior work is validated.

1 Introduction

Several objectives, such as model-based control, sim-
ulation and design of complex systems require accu-
rate system models. Especially, mechanical systems
exhibit complex nonlinear phenomena, e.g. stick-slip
effects, whose modelling may play an essential role
in the dynamics of the whole system. Such complex
modelling tasks require tools, which should provide
a clear hierarchical model structure, efficient equation
solvers and fast component parametrization. These re-
quirements are e.g. fulfilled by Dymola/Modelica sim-
ulation environment. Modelica is a physical object-
oriented modelling language suitable for modelling
and simulation of heterogeneous multi-physical sys-
tems. It is designed in such a way, that the user can
build a physical model in a natural way, as he would
build it in real-world. Additionally, due to symbolical
code preprocessing, Dymola/Modelica enables real-
time simulation of complex physical systems, [OE00].
While the structure of a model is physically defined
by Modelica, yet for modelling completion, its pa-
rameters need to be computed or identified via mea-
surements. A convenient environment for parameter

identification is the optimization tool MOPS (Multi-
Objective Parameter Synthesis), [JBL+02]. Multi-
objective optimization is enhanced by providing ro-
bust gradient-free direct-search solvers and an intuitive
user interface. Parameter optimization with MOPS
is especially convenient since different measurement
data can be handled simultaneously in the context of
a multi-objective optimization task with respect to dif-
ferent criteria types (typically least-squares).

The main aim of this paper is to present an identifica-
tion procedure for accurate modelling in the example
of an electro-mechanical actuator. Therefore an iden-
tification feedback-loop consisting of iterative param-
eter optimization and model validation tasks. While
the latter is performed in a Dymola/Modelica simula-
tion environment, the parameter optimization is done
in MOPS.

A natural way of a parameter identification task is to
split it in subtasks by discriminating between differ-
ent physical conditions, which primarily excite a cer-
tain parameter subset. This paper uses this strategy
for separate identification of linear stiffness, damping
and inertia, as well as, non-linear bearing- and mesh-
friction parameters. Thereby, a modelling formalism
for gear friction as proposed in [PSO02] has been
used. The latter work introduces a tabular descrip-
tion of friction (loss table), which includes speed- and
torque-dependent gear losses terms, i.e. bearing- and
mesh-friction parameters for braking and driving gear
conditions. While carrying out of physical conditions
needed to measure the loss table sets great demands
on technical equipment, in this paper it is shown that
identification is an effective alternative.

The paper is organized as follows. In the next sec-
tion the electromechanical force-feedback actuator is

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003241

introduced. Section 3 describes the identification loop
with MOPS and Dymola/Modelica. Section 4 pro-
vides the identification of a linear actuator model,
including the Dymola/Modelica actuator scheme and
linear parameter identification with MOPS. Section 5
recalls the modelling approach of gear losses as pro-
posed in [PSO02], which has been further used to ex-
tend the linear model by inclusion of nonlinear gear
losses. Finally, concluding remarks and future related
work complete the paper.

2 Actuator physical description

This chapter provides the physical description of an
electro-mechanical actuator, see Fig. 1 and Fig. 2,
which has been used in a steer-by-wire control struc-
ture for force-feedback. In order to avoid rotating
wiring a strain-gauge torque sensor is placed between
the motor housing and a fixed console, as shown in the
figure. Thus, in addition to the torque at the output
shaft, a dynamical component resulting from housing
rotation is measured, as well.

Figure 1: The force-feedback actuator

stator circular spline

sensor

output shaft

housing

wave generator flexspline
console

bearing

rotor

Figure 2: Force-feedback actuator components

Besides the torque sensor, the main component in the
force feedback actuator is a Harmonic Drive series
hollow-shaft gear. In Fig. 3 its main components,
Wave Generator, Flexspline and Circular Spline are
shown. The teeth on the nonrigid Flexspline and the
rigid Circular Spline are in continuous engagement.
Since the Flexspline has two teeth fewer than the Cir-
cular Spline, one revolution of the input causes relative
motion between the Flexspline and the Circular Spline
equal to two teeth. With the Circular Spline rotation-
ally fixed, the Flexspline rotates in the opposite direc-
tion to the input at a reduction ratio equal to one-half
the number of teeth on the Flexspline. Typical charac-
teristics of a Harmonic-Drive gear are high positioning
accuracy, virtually no backlash, periodic torque ripples
and a high gear ratio. One of the main topics of this
paper is modelling of friction losses of this gear using
Modelica.

Wave Generator Flexspline Circular Spline

Figure 3: Harmonic Drive gear components

3 Parameter identification with Dy-
mola/Modelica and MOPS

Modelica is an object-oriented language for modelling
of large, complex and heterogeneous multi-physical
systems involving mechanical, electrical and hydraulic
subsystems. The engineer can build its model in a
fraction-by-fraction manner, as he would build it in
real-world, that is link components like motors, pumps
and valves using their physical interfaces. Such a sim-
ulation framework is very convenient to use in an iden-
tification feedback-loop consisting of parameter op-
timization and simulation tasks, as shown in Fig. 4.
Thereby, one can perform parameter identification of
specific components or/and of specific physical con-
ditions independently and integrate them easily in the
next identification setup. The insight into physical sys-
tem is important for decoupling of different physical
conditions which primarily excite a known set of pa-
rameters. Note that using Modelica for physical sim-

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003242

ulation may be indispensable for complex systems,
since a signal-flow simulation model may be essen-
tially influenced by additional physical fractions.

MOPS

Dymola

optimization

simulation
parameter-
adaptation

parameters

simulation
results

measurements

Figure 4: Identification loop

The parameter optimization in the fraction-by-fraction
identification procedure is done using the optimiza-
tion tool MOPS (Multi-Objective Parameter Synthe-
sis), [JBL+02]. Basically, MOPS provides a multi-
objective optimization environment for the design of
systems with a large amount of parameters and cri-
teria, but it may be used equally well for parame-
ter estimation in identification problems. The multi-
criteria optimization problem in MOPS is handled by
reformulating it as a standard Nonlinear Programming
Problem (NLP) with equality, inequality and bound
constraints. MOPS uses several available gradient-
free direct-search solvers, which are more robust com-
pared to though more efficient gradient-based solvers.
These include algorithms such as sequel quadratic pro-
gramming (SQP), Quasi-Newton, pattern search, sim-
plex method and genetic algorithms. To overcome
the problem of local minima to some extent, solvers
based on statistical methods or genetic algorithms can
be alternatively used. An identification problem may
be formulated as a multi-objective optimization prob-
lem, whereby measured data corresponding to differ-
ent physical conditions or/and inputs define a set of
optimization objectives. Different scalar or/and vector
criteria may be defined, e.g least-square-error, error-
vector, etc.

4 Linear model

4.1 Actuator Modelica Model

Fig. 5 represents a Modelica modelling setup of the
electro-mechanical actuator. Since a Harmonic-Drive
gear can be classified as a typical sun-carrier-ring plan-
etary gear (Wave Generator corresponding to the sun,
Circular Spline to the carrier and Flexspline to the
ring), a planetary gear component from the Modelica

rotational mechanics library has been used for its mod-
elling. The torque balance and angular equations of
Harmonic-Drive are modelled as follows,

τC = (n−1)τW

τF = −nτW

ϕW = (1−n)ϕC +nϕF ,
(1)

with
τC: torque at the Circular Spline
τF : torque at the Flexspline
n: gear ratio
ϕC: Circular Spline angle
ϕF : Flexspline angle.

Note that in the linear model the losses of this compo-
nent are neglected.

sensor motor gear

cS

dS

JS JR JG
n cG

dG

JL

load

Figure 5: Linear physical model of the actuator

The following listing introduces the physical descrip-
tion of the setup parameters.
n: gear transmission ratio
JL: gear output inertia
dS: sensor damping
cS: sensor stiffness
dG: gear damping
cG: gear stiffness
JR: rotor inertia
JS: stator (housing) inertia.

4.2 Parameter identification

Two different physical conditions are respectively dis-
criminated for parameter identification of the linear
and nonlinear actuator model. In the linear model the
friction losses in Harmonic-Drive gear are neglected.
In order to match the physical model as close as possi-
ble to such a linear one, the non-linear effects excited
on Harmonic-Drive gear are minimized by fixing the
output shaft.
With the output shaft keeping fixed, load inertia,
JL in Dymola/Modelica model in Fig. 5 has no dy-
namical effect. While several parameters, such as
Harmonic-Drive gear ratio (n = 50), theemf motor
constant (Km = 0.7 Nm/rad), torque sensor stiffness
(cs = 130000Nm/rad) and Flexspline stiffness (cG =
25500Nm/rad) are given by the manufacturer, the rest

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003243

of parameters, i.e. sensor damping (dS), motor hous-
ing inertia (JS) and Flexspline damping (dG) need to
be identified. Their initial values for optimization are
set to reasonable values estimated by some simple ex-
periments,

dS = 0.6 Nm s/rad,

JS = 0.003kgm2,

dG = 50Nm s/rad.

Thereby, as input data in Fig. 4 are used measure-
ments corresponding to a set of current inputs (step,
sinusoidal and PRBS) of different amplitudes and fre-
quencies and torque response is measured by the sen-
sor. After 18 successive iterations of the identification
feedback-loop in Fig. 4, the parameter values listed be-
low result,

dS = 2.66Nm s/rad,

JS = 0.003039kgm2,

dG = 70.625Nm s/rad.

The respective optimization history is shown in Fig. 6.
Further in Fig. 7 several validation results for different
input and measurement data are collected.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

time / s

to
rq

ue
 /

N
m

measured data

final optimization
result
intermedial optimization
results

Figure 6: Optimization step response history of linear
model

5 Nonlinear model

5.1 Gear losses

The nonlinear model of Harmonic-Drive Gear used in
this paper is based on the friction modelling approach
proposed in [PSO02]. Therefore, the gear model
implemented in componentLossy Planetary of

the Modelica Power Train library includes a torque-
dependent (due to mesh friction in the gear teeth con-
tact) and speed-dependent friction (due to bearing fric-
tion). Similar to the standard Modelica friction model,
the three modesforward sliding, stuckandbackward
sliding are available. The friction torque∆τ for the
sliding modes is given by Table 1, wherebyτW denotes
the driving torque,τbf the bearing friction andηmf the
mesh friction coefficient.

ωW τW ∆τ =
> 0 ≥ 0 (1−ηmf1)τW + |τbf1| (= ∆τmax1≥ 0)
> 0 < 0 (1−1/ηmf2)τW + |τbf2| (= ∆τmax2≥ 0)
< 0 ≥ 0 (1−1/ηmf2)τW−|τbf2| (= ∆τmin1≤ 0)
< 0 < 0 (1−ηmf1)τW−|τbf1| (= ∆τmin2≤ 0).

Table 1:∆τ = ∆τ(ωW,τW) in sliding mode

It can be shown, that the linear torque equations in (1)
are extended by the friction component,∆τ as follows,

τF = −n(τW−∆τ)
τC = (n−1)τW−n∆τ. (2)

The typical relationship betweenτW and ∆τ is illus-
trated in Fig. 8 for both the sliding and the stuck mode
and in combination in Fig. 9.

∆τ

τW

∆τmax1, ωW > 0

∆τmax2, ω
W > 0

∆τmin2, ωW < 0 ∆τmin1, ω
W < 0

ωW > 0

∆τ(ωW=0)

∆τ

ωW

τW

τW

Figure 8: friction torque in sliding and stuck mode

The parameters to be provided are the stationary gear
ration and tablelossTable to define the gear losses,
see Table 2.
Wheneverηmf1, ηmf1, τbf1 or τbf2 are needed, they are
determined by interpolation inlossTable . The inter-
face of this Modelica model is therefore defined as

parameter Real i = 1;
parameter Real lossTable[:,5]

= [0, 1, 1, 0, 0];

using the unit gear ratio and no losses as a default.

5.2 Parameter Identification

This section deals with identification of the
lossTable in Table 1. For mesh friction, it is

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003244

time / s

Sine 750mA, 10Hz

time / s

Step 500mA

to
rq

ue
 /

N
m

to
rq

ue
 /

N
m

simulation measurement

0 0.05 0.1 0.15 0.2
�-5

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5
�-40

�-20

0

20

40

time / s

PRBS 800mA

to
rq

ue
 /

N
m

0 0.1 0.2 0.3 0.4 0.5
�-100

�-50

0

50

100

time / s

PRBS 500mA

to
rq

ue
 /

N
m

0 0.1 0.2 0.3 0.4 0.5
�-60

�-40

�-20

0

20

40

60

time / s

Step 1000mA

to
rq

ue
 /

N
m

0 0.05 0.1 0.15 0.2

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5
�-10

�-5

0

5

10

time / s

Sine 500mA, 5Hz

to
rq

ue
 /

N
m

Figure 7: Validation results linear model

|ωW| ηmf1 ηmf2 |τbf1| |τbf2|
...

...
...

...
...

Table 2: Format of tablelossTable

natural to assume no-loss (ideal gear) conditions as
initial values. Besides, it is relatively difficult to set
an experimental setup for its measurement, since
additional drives have to be installed on the output
shaft for covering the whole set of conditions as
described in Table 2. While measurement of bearing
friction is not essentially simpler, it may be roughly
assumed that,

τb f1 ≈ τb f2.

However, assuming ideal conditions as initial ones
may cause difficulties in optimization of bearing-
friction, since the solvers are required to change the
initial structure by including additional damping into
the model. Fortunately, using the above assumption
initial values are relatively easily estimated in a setup
with free rotation of the output shaft (no external load)
at different constant velocities. Given that torque sen-
sor sits between the input and output bearing friction,
it can see just the output bearing friction. Thus, assum-
ing that the torque generated on the motor shaft bal-
ances the net (both input and output) bearing friction

speed input to
rque

fr
ic

tio
n

to
rq

ue

1

-1
-1

-1

1

1

Figure 9: Friction model

(output load effects due to the Flexspline inertia are ne-
glected), motor current can be used for its estimation.
Fig. 10 presents the estimation results corresponding
to rotation in both directions. From this curve theτb f1,
i.e. τb f2 are read as initial values for the optimization.
Note that the above figure indicates clearly the appear-
ance of the Stribeck effect when switching from stuck
to sliding mode.

For completion of thelossTable the identification
procedure is repeated for different constant velocities.
Each identification step corresponds to a row in the
lossTable .

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003245

�-300 �-200 �-100 0 100 200 300
�-0.2

�-0.15

�-0.1

�-0.05

0

0.05

0.1

0.15

0.2

speed at the input shaft / rad/s

fr
ic

tio
n

to
rq

ue
 /

N
m

Stribeck effect

Figure 10: Bearing friction measurement

5.3 Model validation

For illustration purposes the row corresponding to the
rotor speed of 10rad/s will be discussed. Based on
the previous discussion the initial values are chosen to
be,

ηm f1 = 1,

ηm f2 = 1

τb f1 = 0.09

τb f2 = 0.09.

After 103 optimization/simulation iterations in Fig. 4
these parameters converge to the values,

ηm f1 = 0.923,

ηm f2 = 0.864

τb f1 = 0.058

τb f2 = 0.058.

For model validation the authors have set the setup
shown in Fig. 12, whereby a defined torque at the out-
put shaft has been applied by an excentric load. Differ-
ent load conditions may be realized by varying the load
radius. The Dymola/Modelica actuator model corre-

cS

dS

JS JR + JG
n cG

dG

JL

load

Figure 11: Modelica model with excentric load

Figure 12: Excentric load experiment

|ωW| ηmf1 ηmf2 |τbf1| |τbf2|
10 0.979 0.945 0.086781 0.086781
15 0.9625 0.92125 0.090313 0.088438
20 0.854 0.847 0.0565 0.049

Table 3: Format of tablelossTable

sponding to the physical situation in Fig. 11 is aug-
mented as shown in the above figure, by making use
of the new Multi-body Modelica Library, [OEM03].

0 5 10 15 20 25 30
-30

-20

-10

0

10

20

30

time / s

to
rq

ue
 /

N
m

measured data

final optimization
result
intermedial optimization
results

Figure 13: Optimization history of nonlinear model

The identification history of the loop in Fig. 4 for the
row 10rad/sassumingτb f1 = τb f2 is shown in Fig. 13.

In a next identification step the assumptionτb f1 =
τb f2 is removed. Table 3 shows three rows of
lossTable corresponding to the rotor speeds of 10,
15 and 20rad/s. Notice thatτb f1 ≈ τb f2.

Finally, Fig. 14 collects the validation results for dif-
ferent input current signals.

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003246

0 10 20 30 40 50
�-50

0

50

0.2 rad/s, max. load 35.5Nm

to
rq

ue
 /

N
m

0 10 20 30 40 50
�-60

�-40

�-20

0

20

40

60

to
rq

ue
 /

N
m

0.6 rad/s, max. load 35.5Nm

0 10 20 30 40 50
�-30

�-20

�-10

0

10

20

30

0.4 rad/s, max. load 13.5Nm

time / s

to
rq

ue
 /

N
m

0 10 20 30 40 50
�-30

�-20

�-10

0

10

20

30

time / s

to
rq

ue
 /

N
m

0.6 rad/s, max. load 13.5Nm

0 10 20 30 40 50
�-30

�-20

�-10

0

10

20

30

to
rq

ue
 /

N
m

time / s

0.2 rad/s, max. load 25Nm

0 10 20 30 40 50
�-40

�-20

0

20

40

time/ s

to
rq

ue
 /

N
m

0.6 rad/s, max. load 25Nm

time / s

time / s

simulation measurement

Figure 14: Validation results for nonlinear model

6 Conclusions

It is shown that iterative parameter optimization with
MOPS and model validation using Dymola/Modelica
is a powerful identification environment. This method
is used for modelling of a force-feedback electro-
mechanical actuator with Harmonic-Drive gear. A
modelling approach for speed and torque dependent
gear losses introduced in a prior work is validated. Fu-
ture work might include identification of dynamical
friction models. The procedure presented in this pa-
per may be applied for dynamics identification of other
gear technologies.

References
[JBL+02] JOOS, Hans-Dieter ; BALS, Johann ; LOOYE, Gert-

jan ; SCHNEPPER, Klaus ; VARGA, Andras: A multi-
objective optimisation-based software environment for
control systems design. In:IEEE International Sympo-
sium on Computer Aided Control System Design Pro-
ceedings. Glasgow, September 2002

[OE00] OTTER, Martin ; ELMQVIST, Hilding: Modelica —
Language, Libraries, Tools, and Conferences. In:Sim-
ulation News Europe(2000), December

[OEM03] OTTER, Martin ; ELMQVIST, Hilding ; MATTSSON,
Sven E.: The New Modelica MultiBody Library. In:
Proceedings of the 3rd International Modelica Confer-
ence. Linköping, November 2003

[PSO02] PELCHEN, Christoph ; SCHWEIGER, Christian ; OT-
TER, Martin: Modeling and Simulating the Efficiency
of Gearboxes and of Planetary Gearboxes. In:Pro-
ceedings of the 2nd International Modelica Confer-
ence. Oberpfaffenhofen, March 2002, S. 257–266

 A. Peer, N. Bajcinca, C. Schweiger Friction Identification of an Electro-Mechanical Actuator…

 The Modelica Association Modelica 2003, November 3-4, 2003247

 The Modelica Association Modelica 2003, November 3-4, 2003

248

VehProLib – Vehicle Propulsion Library
Library development issues

Lars Eriksson
Vehicular Systems, Department of Electrical Engineering

Linköping University, SE-581 83 Link̈oping, Sweden
larer@isy.liu.se, http://www.fs.isy.liu.se/ ∼larer

Abstract

A Modelica library calledVehicle Propulsion Library
VehProLib is under development. Its structure and
important design issues are described and the cur-
rent status is shown. The vehicle propulsion library
aims at providing functionality for studying and an-
alyzing the performance of different powertrain con-
figurations. The included components cover the range
from zero dimensional in-cylinder models to longitu-
dinal models for complete vehicles.

1 Introduction

The performance of vehicles and their powertrains
are continuously being improved and computer based
models and simulation tools are used routinely in in-
vestigations. Models and libraries that can be reused
also provide leverage to the investigations. Vehicle
powertrains are truly multi domain and Modelica is
therefore a well suited modeling language for building
a library upon.

Intended users are both engineers in the automotive
industry and less experienced students. The aim is
to provide the engineers with a basic structure that
provide a platform for collaboration and exchange of
component models. Students should be provided with
a set of basic components that can be used to learn the
functionality of powertrains and to investigate differ-
ent structures.

The initial development of the package is focused on
the engine components since these form the founda-
tion for the torque production in vehicles. Impor-
tant phenomena in the engine components such as
in-cylinder heat transfer and combustion propagation
where well established models are used in the com-
bustion engine models.

2 Library Structure

The library is under development and the structure will
change with the acquired knowledge and from feed-
back from the users. Currently, the library has the fol-
lowing structure, only the package names are written
and the indentation show the hierarchy.

VehProLib
Types
Functions
Interfaces
Partial
GasProp
Engine

Functions
Partial
Examples

Chassis
Driveline

Components
HEV
DrivingCycles
Examples
Tests

These packages contain models for the different com-
ponents as well as full example models. Some of the
components that are included in the library will be
covered in the upcoming sections.

3 Development Guidelines

One aim of the package is that it shall be possible
to use it jointly with the powertrain library, which
provides more comprehensive component models for
powertrains. Therefore the interfaces will be designed
to agree with those of the powertrain library, currently
the interfaces are implemented using the Modelica
rotational library and there is no control bus imple-
mented.
Furthermore it is important that it is easy to exchange
different component models e.g. to exchange a sim-

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003249

Figure 1: Components in the engine library that are
building blocks in engines and that can be used to de-
velop new engines.

ple model for an engine with one that is more complex
when more detailed knowledge is needed. On the en-
gine level it should also be possible to exchange the
models for the working fluid in a simple manner and
the fluid models are therefore separated from the en-
gine components.
Finally the library should also facilitate the study of
advanced driveline topologies like electric and hybrid
vehicles.

4 Engine Components

Several components are included in theEngine pack-
age, see Figure 1. The library contains basic compo-
nents for flow restrictions and control volumes.

• compressible and isentropic restrictions (fixed
and variable area)

• incompressible restrictions (fixed area)

• control volumes

• exchangeable gas properties

• mean value engine models

• single zone, zero dimensional in cylinder models
with and without heat transfer.

Many of the components in the model library are par-
tial components that provide a basis for users to de-
velop new components at a suitable level of refinement
for their usage. The basic structure for the components
are to use flow components in series with control vol-
umes. An assumption in all these engine models is that
the influence of the potential energy (due to gravity) on
the gas flow is so small that it can be neglected.

4.1 Flow Connector

The simplest approach for flow connectors are used in
the current implementation. There are two intensity
variables pressure and temperature, and two flow vari-
ables enthalpy flow rate and mass flow rate.

connector FlowCut_i "Standard connector"
package SI = Modelica.SIunits;
SI.Pressure p(nominal=100000, start=100000)

"Pressure sensed by the connector";
SI.Temperature T(nominal=500, start=300)

"Temperature sensed by the connector";
flow SI.EnthalpyFlowRate H

"Enthalpy flow through the connector";
flow SI.MassFlowRate W

"Mass flow through the connector";
end FlowCut_i;

Inertia effects that rely on the momentum balance are
neglected when using this connector.

4.2 Control Volume Design Issue

Control volumes are described using mass- and
energy-balance equations (positive directions are in-
ward)

dm
dt

= ∑
i

Wi

dU
dt

=
d
dt

Heat+
d
dt

Work+∑
i

Hi

Using these formulation directly in the code results in
that mass and energy will be selected as state variables.
This in turn results in trouble when specifying initial
conditions since an engineer working within this area
can specify initial values on temperature and pressure.

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003250

The energy equation is therefore rewritten by assum-
ing an ideal gas, which gives

mcv
dT
dt

=
d
dt

Heat+
d
dt

Work+∑
i

(Hi −mi ui)

The result when implementing this equation is that the
temperature is selected as state variable. A differen-
tial equation for the pressure could also be determined
by differentiating the ideal gas law, but this is a spe-
cial case for the pressure, therefore the mass balance
is selected as the second balance equation. The initial
pressure, which is a parameter in the control volume,
is then used together with the temperature and the ideal
gas law to give an initial value for the mass. It is im-
portant to note that the equation above and the initial
conditions for the mass will be revised when non ideal
gases will be included in the library. It is worth to
note that the base class for the gas model, shown in
Appendix A, does not contain any assumptions about
ideal gases. So it is general.

4.3 In-Cylinder Models

The in-cylinder models considered here are zero di-
mensional and have a single zone, see e.g. [2]. In-
cylinder models are control volumes and the discus-
sion about initial conditions also apply here. Several
different versions of the in-cylinder models are imple-
mented there are those that are adiabatic and other that
have heat transfer and these are implemented for com-
paring the effects, these are shown in Figure 1.
There are two heat transfer functions implemented,
one comes from Woschni [6] and the other comes from
Hohenberg [3]. To describe the combustion two dif-
ferent choices are available one is the standard Sig-
moid function and the other is the well known Vibe-
function [5].
Currently the equations for mechanics and fluid are
collected in only one component but these will be sep-
arated in the future, so that the cylinder is modeled in
a truly multi-domain manner.

4.3.1 MVEM

There are also engine components implemented that
fall in the category of Mean Value Engine Models
(MVEM). These have lower complexity and are faster
to simulate compared to the in-cylinder pressure mod-
els. Since they are less complex and faster they are
used for studying control design and for complete ve-
hicle simulation. Both the in-cylinder models and the
MVEMs have inherited the same interfaces so they are

Figure 2: The components in the four cylinder engine
used in the example. This model shows the compo-
nents that are included in theMultiCylEngine1 in
Figure 3.

easily exchangeable with the models. A common sce-
nario is to set up a simulation problem using a MVEM
to see that all components work together as expected.
Then when more detailed knowledge is required and
the more advanced engine model is inserted instead of
the MVEM.

4.4 A Four Cylinder Engine

A four cylinder engine on a dynamometer, that is in-
cluded as an example in the package, is used as an
demonstration to show the simulation results from
one of the models. Figures 2 shows the components
in the four cylinder engine, where the throttle input
goes to the butterfly throttle. Figure 3 shows how the
four cylinder engine is arranged with the dynamome-
ter tank and the step change in the accelerator pedal at
t=0.2 s.
The resulting cylinder pressure traces are shown in
Figures 4 and 5. Figure 4 shows the cylinder pres-
sures for the four cylinders and the result from the step
change in throttle angle is clearly visible. Note that
there is a delay from the step to when the maximum
cylinder pressure is affected by the change, this i due
to the delay caused by the intake stroke and compres-
sion stroke.
Figure 5 shows the simulation result presented in a pV-
diagram. Two groups of loops can be seen, the lowest
comes from the period before the step change and the

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003251

Figure 4: Figure showing the cylinder pressures from a four cylinder engine included in the examples of the
library. At t = 0.2s a step change is made in the throttle angle, and the response is clearly seen in the model.

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003252

Figure 3: The multi-cylinder engine on the dyno. The
dyno maintains the engine at a constant speed. A step
input is applied to the throttle input at t=2 s.

higher comes from the period after the step change.
This model family was proposed by Gatowski et.al. [1]
and has been widely studied and is well known that it
is can give a good description of measured in-cylinder
pressures during an engine cycle.

5 A Complete Vehicle

To show some of the components that are available
in the Driveline and Vehicle packages an example is
used. Figure 6 shows an example of a model for a
vehicle in longitudinal motion, with engine, driveline,
and vehicle components. This example shows some of
the components that are included in the library. For ex-
ample there are models for vehicle body with air drag
and rolling resistance, tires. The basis for the driveline
modeling was presented in [4]. The driveline consists
of clutch, five step gearbox, final drive, flexible drive
shafts, brakes and wheels. Also included in the library
is a driver which uses a driving cycle, implemented as
a speed and gear table. Finally the engine is selected
from the mean value engine, since it is less complex
and gives much shorter simulation time compared to
the multi cylinder engine model that was shown previ-
ously.
The results from a simulation running the longitudinal
vehicle model with the driver following the New Euro-
pean Driving Cycle is shown in Figure 7. The top plot
shows the vehicle speed as a function of time. Both

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
-5E5

0

5E5

1E6

1.5E6

2E6

2.5E6

3E6

3.5E6

4E6

4.5E6
MultiCylEngine1.eng1.cyl.p(MultiCylEngine1.eng1.cyl.V)

Figure 5: Figure showing the pv diagram for cylinder
one shown in Figure 4 The step change in throttle at
t = 0.2s gives a change between the lower pressure
traces to the higher in the pv-diagram.

the desired and actual vehicle speeds are shown and
it is seen that the driver is well tuned and manages to
follow the desired speed well. The middle plot shows
the engine speed and the bottom plot shows the gear
number and clutch position.

6 Future Work

The library is continuously being developed and some
of the areas with highest priority are:

• Decoupling of the mechanics and thermodynam-
ics in the engine.

• A more general gas model and an extended con-
nector that includes multi-component flow. Fol-
low the work by the Modelica standardization
group on thermofluid library and decide if the full
library should be implemented.

• Implement and incorporate more engine compo-
nents, foremost turbocharger models.

• Implement and incorporate more driveline and
vehicle components, for example hybrid compo-
nents.

• Continuously build up test models for the compo-
nents that are added to the library.

The model library development is an ongoing task and
everybody that are interested in contributing to the li-
brary are encouraged to contact the author by e-mail.

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003253

Figure 6: A complete vehicle modeled using components from VehProLib and standard Modelica components.
The example shows some of the components included in the library. Here the mean value engine model is used
instead of the multi cylinder model since the vehicle follows a longer driving cycle.

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003254

Figure 7: Simulation results from the model shown in
Figure 6. The plots show: top–vehicle speed, middle–
Engine speed, and bottom–gear and clutch position.
The top plot shows both desired and actual vehicle
speed.

7 Summary

A library VehProLib for vehicle propulsion model-
ing is being developed. Design issues related to the
engine components have been addressed. The com-
ponents in theVehicle andDriveline packages
have been illustrated using a model for a complete ve-
hicle in longitudinal motion.

Acknowledgments

The library is currently being extended with the help
of the MSc students Otto Montell and Johanna Wallin.
Some icons for the models have been provided by
Michael Tiller at Ford and he is greatly acknowledged.

References

[1] J. A. Gatowski, E. N. Balles, K. M. Chun, F. E.
Nelson, J. A. Ekchian, and J. B. Heywood. Heat
release analysis of engine pressure data.SAE
Technical Paper 841359, 1984.

[2] J. B. Heywood.Internal Combustion Engine Fun-
damentals. McGraw-Hill series in mechanical en-
gineering. McGraw-Hill, 1988.

[3] Günter F. Hohenberg. Advanced approaches for
heat transfer calculations.SAE Technical Paper
790825, 1979.

[4] Per Nobrant. Driveline modelling using mathmod-
elica. Master’s thesis, Link̈oping University, SE-
581 83 Link̈oping, 2001.

[5] I.I. Vibe. Brennverlauf und Kreisprocess von Ver-
bennungsmotoren. VEB Verlag Technik Berlin,
1970. German translation of the russian original.

[6] G. Woschni. A universally applicable equation for
the instantaneous heat transfer coefficient in the
internal combustion engine.SAE Technical Paper
670931, 1967.

A Gas property base

The gas property base, shown below, defines what
functionality the gas model must have. This partial
model is then extended by the gas models in the li-
brary.

partial class GasPropBase
"Base class for gas properties"

package SI = Modelica.SIunits;
SI.Pressure p "Pressure";
SI.SpecificVolume v "Specific volume";
SI.Temperature T "Temperature";
SI.Density rho "Gas density";
SI.SpecificEnthalpy h "Mass specific enthalpy";
SI.SpecificEnergy u "Mass specific internal energy";
Real R(final unit="J/(kg.K)") "Gas constant";
SI.MolarMass M "Molar mass";
SI.SpecificHeatCapacityAtConstantPressure c_p

"Specific heat capacity at constant pressure";
SI.SpecificHeatCapacityAtConstantVolume c_v

"Specific heat capacity at constant volume";
SI.RatioOfSpecificHeatCapacities gamma

"Ratio of specific heats";
equation

gamma = c_p/c_v;
h = u + p*v;
rho*v = 1;

end GasPropBase;

 Lars Eriksson VehProLib - Vehicle Propulsion Library. Library development issues

 The Modelica Association Modelica 2003, November 3-4, 2003255

 The Modelica Association Modelica 2003, November 3-4, 2003

256

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 7B
Thermodynamic Systems – II

257

 The Modelica Association Modelica 2003, November 3-4, 2003258

Economical Analysis of Complex Heating and Cooling Systems
with the Simulation Tool HKSim

Dipl.-Ing. St. Wischhusen1
�

Dr.-Ing. B. Lüdemann2
† Prof. Dr.-Ing. G. Schmitz1

1 Technical University Hamburg–Harburg, Department of Technical Thermodynamics,
Denickestr. 17, D–21073 Hamburg.

2 Imtech Deutschland GmbH & Co. KG, Zentrale Ingenieurtechnik,
Tilsiter Str. 162, D–22047 Hamburg.

Abstract

Dynamic simulations of energy systems are essential
when it comes to transient analysis and design of com-
plex plants. Besides the choice of efficient subcom-
ponents, like boilers, pumps or chillers, the control
strategies have a large impact on the running costs of
a cooling, heating or combined heating and cooling
plant. This paper describes an applied simulation tool
for heating and cooling systems. The economical ben-
efits are discussed by means of a typical application:
the simulation and optimisation of a complex indus-
trial energy system.

1 Introduction

In cooperation with Imtech Deutschland GmbH & Co.
KG (formerly known as Rudolf Otto Meyer GmbH &
Co. KG and Rheinelektra Technik) a research project
was conducted. The aim of the project was to develop
a simulation tool, called HKSim [1, 2], for heating
(Fig. 1) and cooling systems in building applications.
This tool enables configuration studies and dynamic
system simulations with time scales from a few sec-
onds up to one year. For this purpose the simulation
environment of Dymola [3], containing the object-
oriented modelling language Modelica, is used to
model complex heterogeneous systems. The graphical
user interface, including the integration of Dymola
and a data base for project management, was created
by the department “Zentrale Ingenieurtechnik” of
Imtech Deutschland while the model libraries [4] were
developed at the Department of Technical Thermody-
namics at the Technical University Hamburg–Harburg.

�

wischhusen@tuhh.de, tel.: +49–40–42878–3267
†bruno.luedemann@imtech.de, tel.: +49–40–6949–2546

Heating centre

Consumers

Electric
meters

Gas
meter

Heating
requirement
(ext. files)

Pipework

Figure 1: System schematic of a heating centre with
distributed consumers and an earth–laid pipework

The component models are focused on the simulation
of entire years. Therefore, the model equations have
to be formulated as efficient as possible. The model
design philosophy, which results from this important
requirement, will be discussed in detail with respect to
typical system components. The components can be
mostly parameterised using manufacturer information
or values resulting from own measurements. The
handling of the models is primarily focused on users
who want to use the models as they are provided or
with alternative parameter settings. Expert–users are
able to exchange model equations (e.g. models for

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003259

medium properties, pressure losses and heat transfer)
by means of replaceable models and develop their
own components from the existing base classes. The
boundary conditions of the system simulation can be
supplied by data files from a building simulation or
even measurement data.

Due to the separation of the building from the system
simulation an efficient calculation for performance
studies is realised when simulating complex plants.

The simulation tool HKSim was used successfully in
several projects for the economical analysis of en-
ergy systems. In this article a typical project will
be described, beginning with the selection of compo-
nent models, followed by the consideration of individ-
ual control elements and determination of necessary
boundary conditions. The last item usually consists of
local weather data and calculated or measured heating
and / or cooling requirement.

2 Current Library Content

So far, the most important components of cooling and
heating systems have been supplied by the model li-
braries. All components are compatible by using iden-
tically defined hydraulic interfaces. Some elements
which have been modelled and integrated into the li-
braries are [4]:

� normal, low-temperature and condensing boilers,

� cogeneration plants,

� consumers for heating, cooling and domestic wa-
ter,

� pipes and storage tanks,

� splits and joints, mixing valves,

� controlled and uncontrolled pumps,

� heat exchangers [1],

� mechanical driven chillers,

� absorption chillers,

� cooling towers and dry coolers,

� special controllers (beyond: utilisation of Model-
ica’s standard libraries [5]),

� electric and gas meter, oil supply.

Nevertheless, the development of new parts is contin-
uing. In future, a model for different types of fuel cells
will also be offered.

Figure 2: Screenshot of selected packages of typical
heating and cooling components

In practice, it is important to have models with differ-
ent levels of control and efficiency descriptions. Usu-
ally, a new project starts with the modelling of a sys-
tem base layout. This first approach takes a lot of time
because a correct understanding of the system’s ther-
mal and hydraulic behaviour is required. Generally,
every single component which is part of the whole sys-
tem should be modelled as accurate as possible. Un-
fortunately, this requirement contradicts most compo-
nent manufacturers’ information policies. Addition-
ally, information of existing plants is often incomplete
or not available. For this reason, models with a differ-
ent depth of physical description are supplied by the li-
braries. For example, one can start with a boiler model
which has a constant efficiency with the opportunity to
replace it with a refined model later on.
For the user it is important, that the models use pa-
rameters, which are easily available or which can be
determined without model knowledge.

3 Applied Thermal and Hydraulic
Model Concept

The models are designed to enable a quick synthesis of
plant models. This requirement is already considered
in the modelling process in such a way that emphasis
is placed on the calculation of the thermal behaviour.
The hydraulic behaviour of a plant is not neglected but

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003260

simplified in that direction, that the mass flow can be
directly influenced at split and joint elements. The dis-
play of a transient pressure is not possible in favour of
a fast and stable simulation. In combination with the
concept of a load dependent simulation, designed to
satisfy thermal loads, the calculation of the mass flow
rate ṁ is implemented in the model of the thermal con-
sumers. Applying the first law of thermodynamics, the
heat (or cooling) requirement Q̇build of the building (or
consumer, resp.) equals:

Q̇build
� ṁ � c � � ϑ f � ϑr ��� (1)

If the feed temperature ϑ f of the liquid and its heat
capacity c is given two unknowns remain in this alge-
braic equation. By a second equation the dependency
of the mass flow and the return temperature ϑr can be
modelled applying heat transfer laws or measurement
data. A simple but efficient approach is a proportional
gain k of that mass flow rate, which is theoretically
necessary to deliver the needed heat under the assump-
tion of a perfect heat transfer (ϑr

� ϑbuild)

ṁ � k � Q̇build

c
�
ϑ f � ϑbuild � � (2)

The constant gain factor k may vary between 1 . . . 3.
Another problem is that the mass flow rate should
never be higher than the rated capacity of the installed
pumps. In order to take this important limitation into
account the rated mass flux of the pump ṁmax is added
to the hydraulic interfaces (see Fig. 3). Furthermore,
this value is divided at splitting elements with regard
to the actual load q � Q̇build of parallel consumers.

Figure 3: Input and output signals of the consumer
model

In addition to this, the pumps head H must overcome
the pressure losses of the plant. This is checked during
an initial calculation assuming worst case conditions.
The pressure check functionality is implemented in the
model of an expansion vessel, which is also used as a
sink for the algebraic signals (e.g. mass flow) in closed
loops.

Expansion Vessel

Boiler

Gas meter Electric meter

Pump Feed pipe

Consumer

Return pipe

Heat demand

Temperature

Data sink Data source

Figure 4: Simple heating plant

The base configuration for a simple heating plant is
shown in Fig. 4. A minimum composition for a de-
termined equation system must at least consist of the
following three components:

� a consumer model for the calculation of a mass
flow signal,

� a pump model for limiting the maximum mass
flow rate and

� an expansion vessel which checks for a suffi-
cient pump head (under worst case conditions)
and avoids algebraic signal loops (e.g., mass flow
rate).

Since the hydraulic simplifications lead to a het-
erogeneous data flow the user has to follow a few
rules during the plant model generation. Those rules
are visually supported by coloured interfaces which
identify sources (triangle with black background),
sinks (grey background) and neutral components
(no background). Following the rules even complex
plant models can be composed by the user without
causing over- or underdetermined system models.
Furthermore, some models must allow a flexible data
flow due to numerical reasons. For example, the pump
model can be switched into a mass flow source, when
it is used in independent circuits without consumers.
This is a common situation in complex applications
where hydraulic bypasses are needed to realise a fail
safe control strategy. By introducing a structural
parameter it is possible to switch the model equations
on demand. With regard to this feature on one hand
and the connection rules on the other hand it would

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003261

be very convenient for the model developer and the
model user to have graphical annotations which can
be controlled by structural parameters. Additionally,
an update of graphical icons, when replaceable objects
like interfaces are exchanged, would be very helpful.

To verify the used hydraulic concept, it was validated
with measurement data from a complex cooling
system displayed in Fig. 5. The chillers are shown
on the left hand side of the picture including one
conventional water chiller and two heat exchangers
which are part of a chiller / ice storage circuit. The
total capacity is 1,600 kW at a system temperature
of 7 � C/ 15 � C. The cold water pump of chiller #3
operates with a constant speed in contrast to all other
pumps, which are controlled. Therefore, a hydraulic
bypass between the feed and return duct is necessary
(see Fig. 5).

Chiller 3

HX of chiller 2

HX of chiller 1

Bypass

7°C

7°C

15°C

Consumers

dp-const pumps

J

Qdot

mdot

mdot

mdot

J

J

J

Figure 5: Schematic of the original plant and location
of measuring points

As an input to the simulation the output temperatures
of the chiller and heat exchangers were provided as
well as the mass flow rates of the controlled pumps.
Furthermore, the cold water mass flow through the
buildings and the cooling requirement is known.
Since the returning water’s temperature is an im-
portant system variable it can be compared with the
measurement to determine the quality of the consumer
model description.

The corresponding system model to the description
above is shown in Fig. 6. In this model the cold water
temperature and flow is already merged to a single
flux in the source model on the left hand side. A
potential overshoot of cold water can be passed to
the return side through the bypass. Moreover, the
four feed pumps and five buildings are modelled as a
single feed model with the same capacity since a local

deviation cannot be resolved by the measurement
data. The consumer model refers to the equations 1
and 2. The model can be adjusted rather easily by
two parameters: the constant gain, which was set
to k � ϑr � ϑ f

ϑbuild � ϑ f

� 1 � 75 and the building reference
temperature ϑbuild

� 21 � C. The simulation was
carried out with measurement data of one week during
November with a peak load of approximately 530 kW
and base load of 300 kW at the weekend (16th and
17th of Nov.).

Pump Feed pipe

Consumer

Return pipe

Electric meter

Cooling demand

Average room
temperature

Bypass

Source

Sink

Figure 6: Modelica model of the cooling plant

Comparing the temperature of the returning water
after the bypass in Fig. 7, a very good agreement with
the measured values can be found. Some very few
exceptions are due to the lack of information about
the exact switch off times of chiller #3. Here only
the output temperature was available. Instead, it was
assumed that a cold water temperature of more than
7 � C indicates a turned off chiller. Knowing that the
water temperature during operation usually varies
between 6.0 and 6.8 � C and the outlet temperature due
to a good insulation increases from 6 � C to 20 � C in
more than 2 days, the temperature deviation shown in
Fig. 7 can be explained.

The validation of the mass flow rate shown in Fig.
8 reveals that this value depends strongly on the
cooling load. Obviously, there are periods where the
agreement of measurement and simulation is very
good but on some days there is a higher deviation. In
a sensitivity analysis it was found that the building
reference temperature of ϑbuild

� 21 � C may have a
large influence on the mass flow rate. Especially, Nov.

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003262

17.11 18.11 19.11 20.11 21.11 22.11 23.11
8

9

10

11

12

13

14

15

16

Time[dd.mm]

[°
C

]
ϑ

ret
 Sim

ϑ
ret

 Mes

Figure 7: Comparison of the return temperature

19th and 20th were colder days (� 0 � C) in contrast
to the 22nd which had a higher ambient temperature
(4 � C). Hence, it can be suggested that the unknown
average room temperature was not constant during
the measurement. Changing the temperature by 1 or
2 � C gives the right mass flow rate.

17.11 18.11 19.11 20.11 21.11 22.11 23.11
5

10

15

20

25

30

35

40

Time[dd.mm]

[k
g/

s]

17.11 18.11 19.11 20.11 21.11 22.11 23.11
0

100

200

300

400

500

600

[k
W

]

mdot Sim
mdot Mes
Qdot

Figure 8: Cooling requirement and comparison of the
water mass flow rate

It should be pointed out that the consumer model pre-
sented in this paper though it is based on a very simple
approach can predict the mass flow and the return tem-
perature with a sufficient accuracy. In addition to this,
it enables a very fast model generation and simulation
with computation times of a few seconds for a whole
year. The model is also equipped with an overload rou-
tine which enables stable simulations when the heating
and cooling capacity is too small for peak loads. In
such an event the lack of energy will be compensated
when the demand decreases again. A flag variable in-
dicates that the plant’s capacity is not sufficient.

4 Simulation of a Complex Industrial
Energy Supply System

Within the development of an innovative energy
supply system for a production facility the simulation
tool HKSim was used to analyse the efficiency of
the design concept and the running costs. After
the simulation of the original layout optimisation
measures were developed to increase the economical
and technical efficiency.

The plant produces heat for the production lines, the
heating system and the domestic hot water supply.
Cold water is needed for industrial cooling processes
and for air conditioning. The total cooling requirement
reaches a maximum level of 2.6 MW in summer. The
main idea behind the given plant schematic in Fig. 9
is to save primary energy by reusing as much waste
heat as possible. Therefore, the heat needed for the
periodic production processes is recovered and the su-
perheat of the refrigerant after the compressor and the
superheat of the compressed air is also transferred to
the heating system. To ensure a minimum feed tem-
perature a steam heat exchanger is implemented as a
backup heat source. For cooling purposes, the con-
tinuous fresh water supply for steam production and
domestic use is treated as a heat sink.
Since the continuous operation of the production lines
has the highest priority it has to be ensured that the
production lines are supplied with a sufficient amount
of cooling water independent of the actual heat de-
mand of the associated heating system. Hence, cool-
ing towers with a large capacity were installed as a
backup. Two of the three existing cooling towers can
be switched between cooling of production lines, air
compressors and chillers or free cooling of returning
cold water to increase the average utilisation. The wa-
ter of the cooling system is stored in two parallel tanks
with a capacity of 700 m3.
The following questions and tasks were identified and
should be clarified by means of the system simulation:

1. How much heat can be recovered to decrease the
additional heat input for the facilities heating? A
coverage of 70% by waste heat would allow a
cheaper building insulation with regard to Ger-
man regulations.

2. Which inexpensive optimisation measures could
help to realise a further reduction of running
costs?

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003263

Figure 9: Simplified schematic of the original plant
concept

Starting with the modelling of the original schematic
displayed in Fig. 9 the plant model is divided into
three supermodels (modules): the “heating module”
(shown in Fig. 10), the “cooling module” integrating
the cooling towers and the “cold water module”.
The model of the heating and the production heat
recovery system consists of eight different consumers
(1), a boiler model representing the backup steam
heat exchanger (2), four heat sources standing for
the production heat recovery (8) and a number of
hydraulic interfaces to the two other modules (4, 6,
7). The modules are connected in a supermodel. The
reason for dividing the plant into subsystems is that
the schematic is much clearer and the graphical update
of Dymola works quicker, too.

After the model generation all necessary boundary
conditions have to be determined. This data set in-
cludes the ambient temperature and humidity which is
provided by a test reference year of the corresponding
region in Germany. This fundamental input is also
used in combination with the known rated loads to
derive the thermal demand profiles for the air condi-
tioning and heating with a simple linear approach. By
means of measurements carried out on the existing
production processes the possible heat recovery was
determined and implemented using table interpolation
models. The production processes can be described
by a characteristic, transient heat output (Fig. 11).
As a result from that fact, the outlet temperature of
the heat exchanger’s cold side varies between 45 and
95 � C during a period of a few minutes.

Based on a simulation of the original plant layout, po-
tential modifications for an improved performance are
determined, regarding the hydraulic circuit and gov-
erning control of the plant and its components:

0

200

400

600

800

1000

1200

1400

1600

0,0 2,5 5,0 7,5 10,0 12,5

Time [h]

[k
W

]

Figure 11: Periodic heat output of one production pro-
cess

� Modification 1: All heat exchangers connected
to the return side of the cold water storage tank
are connected to the return side of the cold water
consumers, whereby the heat exchanger’s input
temperature is increased since the mass flow of
the chiller pumps is always higher than the mass
flow of the main pumps.

� Modification 2: A fixed periodical day / night
switch of the cooling towers is replaced by a
temperature dependent control to account for a
changing level of primary cooling demand of the
production lines. This measure shall increase the
free cooling capacity, when more heat is trans-
ferred to the heating system.

� Modification 3: Cooling water with a tempera-
ture level below the desired value of the feed tem-
perature is hydraulically connected to the cooling
heat exchangers.

� Modification 4: The set point of the heating feed
temperature is dependent on the actual heat de-
mand and can be decreased if high temperatures
are not necessary.

The simulations of the actual and the modified layout
are carried out with identical boundary conditions
and except from the modified parts the models are
identical. The reference system for the economical
analysis is a non-coupled heating and cooling sys-
tem without heat recovery. All modifications are
investigated separately as well as combined, since
their impact may show a compensation effect in the
coupled system. The investigation is focused on the
possible savings of natural gas, which result from
the demand of heating and domestic hot water with
variable heat recovery.

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003264

6 Hyd. interface to module “cooling water”
7 Hyd. interface for service water from

module “cold water”
8 Heat recovery from production processes and

air compressors

1 Heat consumers
2 Backup steam heat exchanger (boiler model)
3 Hot water storage tank
4 Hyd. interface to module “cold water”
5 Service water heat exchangers

Legend:

1

2

3

4

5

6

7

8

Figure 10: Modelica model of the heating module

Fig. 12 reveals the development of the primary energy
consumption for the conventional system (the steam
exchanger covers the total load), the original layout
and the optimised system. Since the total heat demand
is 9,546 MWh and the original concept is only able to
cover it with not more than 38% waste heat the first
requirement is not satisfied with this approach. The
situation changes when the plant layout is modified
in the way described above. Now, the heat recovery
contributes more than 80% to the heat load which is
sufficient enough to reduce the compulsory thermal
insulation of the associated buildings. The total
savings of gas needed for backup heating by the steam
heat exchanger sum up to 148,000 EUR in one year
regarding the difference between the original and final
layout. This corresponds to 4,000 MWh (-68%) less
heat supply at a heat price of 37 EUR/MWh. This
moderate price results from experiences of the plant
owner and also considers costs for maintenance and
amortisation of the devices.

Comparing the remaining cooling load of the chillers
before and after the optimisation one can determine
an increased coverage of the cooling demand (15,445
kWh) by the cooling towers from 3.1% to 15.8%

compared to a separated conventional heating and
cooling plant. This result can be explained by the
enhanced free cooling, especially during winter,
spring and autumn (Fig. 13 and 14) since the return
temperature is higher and the operation time of the
cooling towers in free cooling mode is prolonged.

Conventional system Original concept Optimised concept
0

2

4

6

8

10

12

14

16

[M
W

h/
a]

15.445
14.967

13.0061,158,375 Eur/a
1,122,525 Eur/a

975,450 Eur/a

9.546

5.888

1.877

353,202 Eur/a

217,856 Eur/a

69,449 Eur/a

heating load
chiller cooling load

Figure 12: Development of the primary energy con-
sumption for heating and cooling and reduction of run-
ning costs for the conventional separated system with-
out heat recovery, the original concept with heat re-
covery and the optimised plant

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003265

It has to be emphasised that this study in this depth
was only possible by means of transient simula-
tion which enables the display of the temperatures
throughout all components under consideration of the
thermal capacities. This unique feature of a dynamic
simulation is one advantage when the temperatures
have a large impact on the efficiency of the process
(i. e. the COP of chillers, denoting the quotient of the
cooling capacity to the electric power consumption)
and dominating capacities are characterising the
energy system (i. e. storage tanks). A static simulation
is not able to consider these important effects.

6.01 8.01 10.01 12.01
0

50

100

150

200

250

300

350

400
Free cooling in winter

Time [dd.mm]

[k
W

]

original
optimised

5.07 7.07 9.07 11.07 13.07
−50

0

50

100

150

200

250

300

350
Free cooling in summer

Time [dd.mm]

[k
W

]

original
optimised

Figure 13: Cooling impact of the heat exchanger for
free cooling in winter (t.) and summer (b.) - optimised
plant including all modifications

The remaining cooling load of each calculation is
multiplied with a fixed cooling price of 75 EUR/MWh
resulting from experiences of the plant owner, again.
The original concept could already save 36,000
EUR/a. Taking all modifications of the optimisation
into account the costs could be drastically decreased
by 183,000 EUR/a. These cost reductions are mainly
due to the optimisation of the free cooling heat

exchanger position. The plot of the heat, transferred
by the free cooling heat exchanger, is shown in Fig. 14.

Regarding the economical effect of the simulation, it
is evident, that the optimised plant layout can save
295,000 EUR/a in comparison to the original concept
and more than 465,000 EUR/a if the plant would
have been built in a conventional way without heat
recovery. Apart from the costs for the changed piping
the modifications of the optimisation do not require
expensive components.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5
x 10

6 Free Cooling

Time [m]

[k
W

h]

original
optimised

Figure 14: Amount of free cooling - optimised plant
including all modifications

The computing time for a year time simulation of the
original model and the optimised model are in the
range of 10 to 24 hours depending on the installed pro-
cessor.

5 Conclusions

This article is dedicated to the transient simulation
of complex energy systems like they appear in large
buildings and industrial plants. For this purpose a
simulation tool, called HKSim [1, 4], was developed
by Imtech Deutschland GmbH & Co. KG and the
Department of Technical Thermodynamics of the
Technical University of Hamburg–Harburg. It was
pointed out, that such a tool is capable to simulate
even complex systems. The computational effort can
be justified by the prevention of possible failures in
system layouts and estimation of possible savings,
which are of economic interest as could be shown
in the described optimisation. In the carried out
simulation of the industrial plant the savings will pay
back the investment in a short period of time.

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003266

In addition, a model of a thermal consumer was pre-
sented, which is necessary to integrate the heating or
cooling demand from an external file into the system
simulation. The model is designed for fast model gen-
eration and simulations of whole years and it predicts
the mass flow rate and the return temperature with a
good agreement to measurement data.

References

[1] B. Lüdemann, St. Wischhusen, O. Engel, G.
Schmitz: Optimierte Energiesysteme, BWK, Bd.
55, Nr. 9, Springer VDI-Verlag, Düsseldorf, Ger-
many, 2003.

[2] St. Wischhusen, G. Schmitz: Numerical
Simulation of Complex Cooling and Heat-
ing Systems, Proceedings of the 2nd Int.
Modelica–Conference, Modelica Association,
Oberpfaffenhofen, Germany, 2002.
http://www.modelica.org/confer-
ence2002/papers.shtml

[3] Dynasim AB, Dymola 5.1, Lund, Sweden, 2003.

[4] St. Wischhusen, G. Schmitz: Abschlussbericht
zum Projekt “Entwicklung eines Simulations-
werkzeuges zur wirtschaftlichen und energe-
tischen Planung von Prozessen zur Wärme– und
Kälteerzeugung – Entwicklung der Komponen-
tenmodelle”, Department of Technical Thermo-
dynamics, Technical University of Hamburg–
Harburg, Hamburg, Germany, 2003.

[5] Modelica–Association: Modelica Standard
Library, Linköping, Sweden, 2002.
http://www.modelica.org/librar-
ies.shtml

[6] B. Lüdemann: Auslegung, Energiebedarf
und Komfort von Anlagen zur Heizung und
Warmwasserbereitung im Niedrigenergiehaus
bei Berücksichtigung des Nutzerverhaltens,
PhD thesis at the Department of Techni-
cal Thermodynamics, Technical University
Hamburg–Harburg, Books on Demand, 2002.
http://www.bod.de

 S. Wischhusen, B. Lüdemann, G. Schmitz …Analysis of Heating and Cooling Systems with HKSim

 The Modelica Association Modelica 2003, November 3-4, 2003267

 The Modelica Association Modelica 2003, November 3-4, 2003

268

Object-Oriented Modeling of Thermo-Fluid Systems

Hilding Elmqvist1, Hubertus Tummescheit2, and Martin Otter3
1Dynasim AB, Lund, Sweden, www.dynasim.se, Elmqvist@dynasim.se

2UTRC, Hartford, U.S.A., Hubertus@control.lth.se
3DLR, Germany, www.robotic.dlr.de/Martin.Otter, Martin.Otter@dlr.de

Abstract
Modelica is used since 1998 to model thermo-fluid
systems. At least eight different libraries in this field
have been developed and are utilized in
applications. In the last year the Modelica
Association has made an attempt to standardize the
most important interfaces, provide good solutions
for the basic problems every library in this field
have and supply sophisticated base elements,
especially media descriptions. This paper
summarizes the design, new Modelica language
elements, new symbolic transformation algorithms
and describes two new libraries – for media
description and for fluid base components – that will
be included in the Modelica standard library.

1 Introduction
Careful decomposition of a thermodynamic system
is essential to achieve reusable components. This
paper discusses appropriate Modelica interfaces to
handle thermodynamic properties, empirical closure
relations like pressure drop correlations, mass
balances and energy balances. Special attention has
been placed on allowing flows with changing
directions and allowing ideal splitting and merging
of flows by connecting several components at one
junction as well as parallel flow paths having zero
(neglected) volume. A purely declarative approach
solves the problem of splitting and merging flows in
a physically based way. For mixing, the resulting
specific enthalpy or temperature is implicitly defined
and is obtained by solving a system of equations.

All balance equations are provided in their
natural form. Necessary differentiations are carried
out by a tool through index reduction. Due to newly
developed symbolic transformation algorithms, the
described approach leads to the same simulation
efficiency as previously developed thermo-fluid
libraries, but without having their restrictions.

The discussed method is implemented in two
new Modelica libraries, “Modelica_Fluid” and
“Modelica_Media” that will become part of the free
Modelica standard library as Modelica.Fluid and

Modelica.Media. “Media” contains a generic
interface to media property calculations with
required and optional media variables. A large
amount of pre-defined media models are provided
based on media models of the ThermoFluid library
Tummescheit and Eborn (2001). Especially, about
1200 gases and mixtures of these gases, as well as a
high precision water model based on the IF97
standard are included. The “Fluid” library provides
the generic fluid connectors and the most important
basic devices, such as sources, sensors, and pipes
for quasi 1-dimensional flow of media with single or
multiple phases and single or multiple substances.
The same device model is used for incompressible
and compressible flow. A tool will perform the
necessary equation changes by index reduction
when, e.g., an incompressible medium model is
replaced by a compressible one in a device model.

The “Fluid” and “Media” libraries are a good
starting point for application specific libraries, such
as for steam power plants, refrigeration systems,
machine cooling, or thermo-hydraulic systems.

2 Devices, medium models,
balance volumes and ports

We will consider thermodynamic properties of
fluids in coupled devices, such as tanks, reactors,
valves as well as pipes, Figure 1. Control volumes
(or balance volumes) will be considered for all
devices.

Figure 1. Connected devices

2.1 Medium models
The thermodynamic state of the fluid at any point is
represented by two variables, e.g., pressure p and

R.port

Device R

Device S

Device T

S.port_a

S.port_b

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

269

specific enthalpy h. Other thermodynamic quantities
may be calculated from the chosen thermodynamic
state variables. It is important that a model for a
device can be written in such a way that it can be
used in combination with different media models.
This property is achieved by representing the media
as a replaceable package. The details are given in
Section 5. Such a media package contains, among
other definitions, a model with three equations as
shown in the following partial example for a simple
model of air based on the ideal gas law:

package SimpleAir
 ...
 constant Integer nX = 0;
 model BaseProperties
 AbsolutePressure p;
 Temperature T;
 Density d;
 SpecificInternalEnergy u;
 SpecificEnthalpy h;
 MassFraction X[nX];
 constant Real R_air = 287.0506;
 constant Real h0 = 274648.7;
 equation
 p = d*R_air*T;
 h = 1005.45*T + h0;
 u = h – p/d;
 end BaseProperties;
 ...

end SimpleAir;

How such a media package can be utilized in a
model is shown in the following heated device
model without incoming or leaving mass flows.

model ClosedDevice
 import M = Modelica.Media;
 replaceable package Medium=
 M.Interfaces.PartialMedium;
 Medium.BaseProperties medium
 parameter …
equation
 // Mass balance
 der(m) = 0;
 m = V*medium.d;

 // Energy balance
 der(U) = Q;
 U = m*medium.u;

 end ClosedDevice;

When using this device model, a specific medium
has to be defined:

ClosedDevice device(redeclare
 package Medium = SimpleAir);

The device model is not influenced by the fact that
the medium model is compressible or
incompressible.

2.2 Ports
Figure 2 shows a detailed view of a connection
between two devices. An important design decision

Figure 2. Details of device connection

is the selection of the Modelica connector that
describes a device port. For the Modelica_Fluid
library the connector is defined for quasi one-
dimensional fluid flow in a piping network, with
incompressible or compressible media models, one
or more phases, and one or more substances. The
connector variables are selected such that the
equations of the connect(...) statements of connected
components fulfill the following balance equations:
• mass balance
• substance mass balance (of a medium with

several substances).
• energy balance in the form of the “internal

energy balance” (see Section 3).
Additionally, a non-redundant set of variables is
used in the connector in order to not have any
restrictions how components can be connected
together (restrictions would be present, if an
overdetermined set of describing variables would be
used in the connector). These design requirements
lead to a unique selection of variables in the
connector:

Pressure p, specific (mixing) enthalpy h,
independent (mixing) mass fractions X, mass flow
rate m_dot, enthalpy flow rate H_dot, and the
independent substance mass flow rates mX_dot
connector FluidPort
 replaceable package Medium =
 Modelica_Media.Interfaces.PartialMedium;

 Medium.AbsolutePressure p;
 flow Medium.MassFlowRate m_dot;

 Medium.SpecificEnthalpy h;
 flow Medium.EnthalpyFlowRate H_dot;

 Medium.MassFraction X [Medium.nX]
 flow Medium.MassFlowRate mX_dot[Medium.nX]
end FluidPort;

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

270

Due to the design of the connectors, the mass and
energy balance is fulfilled in connection points (see
also discussion of perfect mixing in the next
Section). Since the momentum balance is not taken
into account, device couplings with a considerable
amount of losses (e.g., if pipes with different
diameters are connected) have to be modeled with a
dedicated loss model.

2.3 Splitting, Joining and Reverse Flow
Figure 2 also shows the control volumes associated
with the devices and the boundary conditions. The
flow through the port of a device is equal to the flow
through the corresponding boundary of the control
volume. Note that the specific enthalpy might have
a discontinuity.

The connector variable FluidPort.h represents
the specific enthalpy outside the control volume of
the device. In fact, for two connected devices R and
S, with FluidPort instances named “port”, R.port.h =
S.port.h represent the specific enthalpy of an
infinitesimally small control volume associated with
the connection. The relation between the boundary
and the port specific enthalpy depends on the flow
direction. It is established indirectly by considering
the enthalpy flow. We will introduce the notation
hport = R.port.h = S.port.h and will for simplicity of
notation neglect spatial variation of the specific
enthalpy, hR and hS, within each control volume. The
enthalpy flow rate into device R, RH& is then
dependent on the mass flow rate, Rm& as follows.

 >

=
otherwise

0

RR

RportR
R hm

mhm
H

&

&&
&

This equation has to be present within the model of
device R. Such conditional expressions could be
written as if-then-else expressions, but to facilitate a
recently identified set of powerful symbolic
simplifications a new function, semiLinear(...), has
been proposed for inclusion in the Modelica
language (see also Figure 3), that can be used as
follows in model R:

port.H_dot =
semiLinear(port.m_dot, port.h, h);

The corresponding equation for a device S is

 >

=
otherwise

0

SS

SportS
S hm

mhm
H

&

&&
&

Devices R and S, see Figure 2, are connected
together with a connect(...) statement of the form:

connect(R.port, S.port);

leading to the following zero sum equations that are
equivalent to the mass and energy balance of the
infinitesimal small control volume at the connection
point:

SR

SR

HH

mm
&&

&&

+=

+=

0

0

Figure 3. The semiLinear(...) function

From these four equations, hport can be solved

=
<
>

=
0undefined
0
0

R

RR

RS

port

m
mh
mh

h
&

&

&

According to Modelica flow semantics, 0>Rm&
corresponds to flow into component R and therefore
the specific enthalpy flowing across the boundary is
hS at the device boundary, hport. It should be noted
that although hport is undefined for zero mass flow
rate, RH& and SH& are well-defined as zero, i.e., the
dynamics of the system are independent of what
value is chosen for hport.

We will now consider the connection of three
ports R.port, S.port and T.port. A symbolic solution
of the common specific enthalpy,

h = R.port.h = S.port.h = T.port.h
is given by

h = -(
(if R.port.m_dot > 0 then 0 else
 R.port.m_dot*R.h)+
(if S.port.m_dot > 0 then 0 else
 S.port.m_dot*S.h)+
(if T.port.m_dot > 0 then 0 else
 T.port.m_dot*T.h))
/ (
(if R.port.m_dot > 0 then
 R.port.m_dot else 0)+
(if S.port.m_dot > 0 then
 S.port.m_dot else 0)+
(if T.port.m_dot > 0 then
 T.port.m_dot else 0))

For a splitting flow, for example from R to S and T,
i.e., R.port.m_dot < 0, S.port.m_dot > 0
and T.port.m_dot > 0, we get

H&

m&

porth

h
slope

slope

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

271

h = -R.port.m_dot*R.h /
 (S.port.m_dot + T.port.m_dot)

Since
0 = R.port.m_dot + S.port.m_dot +

 T.port.m_dot

the specific enthalpy h in the port is computed as
h=-R.port.m_dot*R.h/(-R.port.m_dot)

or
h = R.h

For a merging flow, for example, from R and T into
S (i.e., R.port.m_dot < 0, S.port.m_dot <
0 and T.port.m_dot > 0) we get

h = -(R.port.m_dot*R.h +
 S.port.m_dot*S.h) / T.port.m_dot

or
h=(R.port.m_dot*R.h+S.port.m_dot*S.h)
 /(R.port.m_dot + S.port.m_dot)

i.e., the perfect mixing condition.
The degenerate case that all mass flows are

zero can be handled symbolically by the tool, as it
does not influence the dynamics: For two connected
devices R and S, the division with R.port.m_dot can
be performed symbolically leading to

h = if R.port.m_dot > 0 then R.h
 else S.h

As a result, for zero mass flow rate h = S.h. For
three and more connected devices, the equation
system is underdetermined. From the infinitely
many solutions the one can be picked that is closest
to the solution in the previous integrator step.

It should be noted that a similar approach
could be used to handle flow composition for flows
with several substances.

Earlier attempts tried to solve a restricted
problem of changing flow direction in a
programming style, i.e., by explicitly defining the
temperature depending on the flow direction. Such a
method cannot be generalized to mixing flows,
because the temperature is not given by equations in
just one volume. The presented solution for splitting
and joining flows is derived by considering the
equations of a small connection volume. By setting
it's mass to zero, the usual sum-to-zero equations for
mass flow rate and energy flow rate are obtained.
This means that the usual flow semantics is
appropriate for modeling of splitting and merging
flows.

3 Mass-, momentum- and energy-
balances

We will show a general implementation of the
governing equations, which might serve as a

template for specialized models. Consider the
equations (mass, momentum and energy balances)
for quasi-one-dimensional flow in a device with
flow ports in the ends such as a pipe, Thomas
(1999) [16], Anderson (1995) [1].

2

22

() ()
0

() ()

(())(())

()

22

1
2

F

F

F

A Av
t x
vA v A p z

A F A g
t x x x

v u Au A

t x
T

kA
x x

p vv

zF v A vg
x

F v v fS

ρ ρ

ρ ρ ρ

ρρ ρ

ρ

ρ

∂ ∂
+ =

∂ ∂
∂ ∂ ∂ ∂

+ = − −
∂ ∂ ∂ ∂

∂ + +∂ +
+ =

∂ ∂
∂ ∂
∂ ∂

−

∂− − +
∂

=

where t represents time, x is the spatial coordinate
along device, ρ is the density, v is the velocity, A
is the area, p is the pressure, FF represents the
friction force per length, f is the Fanning friction
factor, S is the circumference, g is the gravity
constant, z is the vertical displacement, k is the
thermal conductivity and medium properties:

ρ
ρ
ρ

/
),(
),(

puh
Tuu
Tpp

+=
=
=

where h is the specific enthalpy and u is the specific
internal energy.

The energy equation can be considerably
simplified by subtracting the momentum balance
multiplied by v. Simplifications that are shown in
the appendix, give the result.

(())
()

()
v u A

uA p T
vA kA

t x x x x

pρ
ρ ρ

∂ +
∂ ∂ ∂ ∂

+ =
∂ ∂ ∂ ∂ ∂

+

Finite volume method
Such partial differential equations can be solved by
various methods like finite difference, finite element
or finite volume methods. The finite volume method
is chosen because it has good properties with
regards to maintaining the conserved quantities. The
device is split into segments, for which the PDEs are
integrated and approximated by ODEs. Let x=a and
x=b be the coordinates for the ends of any such
segment. Integrating the mass balance equation over
the spatial coordinate, x, gives

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

272

()
0

b

x b x a
a

A
Av Av

t
dxρ ρ ρ

= =

∂
+ − =

∂∫

Assuming the segment boundaries (a, b) to be
constant, we can interchange the integral and
derivative:

0
()

x b x a

b

a Av Av
d Adx

dt
ρ ρ

ρ

= =
+ − =

∫

In order to handle the general case of changing
volumes for, e.g., displacement pumps, tanks, or
moving boundary models of two phase flows, this
formula needs to be extended by use of the Leibnitz
formula.

Introducing appropriate mean values for
density and area and introducing incoming mass
flow rates m& , i.e. b x b

m Avρ
=

= −& and a x a
m Avρ

=
=& ,

we can rewrite the mass balance as:
()()m m

a b

d A
m m

dt
b aρ

= +
−

& &

Introducing m mm A Lρ= and L b a= − gives the
desired form of the mass balance

a b
dm m m
dt

= +& &

We proceed in a similar way with the momentum
balance:

2 2()

1
2

b

x b x a
a

b

x b x a
a

b b

a a

vA
dx v A v A

t

A
Ap Ap pdx

x

z
v v fSdx A g dx

x

ρ ρ ρ

ρ ρ

= =

= =

∂
+ −

∂

∂
= − + + −

∂

∂
−

∂

∫

∫

∫ ∫

and introducing appropriate mean values gives:

zgALSfvv

ppA

AvAvL
dt

Avd

mmmmmmm

bam

axbx
mmm

∆−−

−=

−+ ==

ρρ

ρρρ

2
1

)(

)(22

with 2/)(bam AAA += . Substitution by m& and the
values at the respective boundaries and introducing

the approximation
2

a b
m

m m
m

+
=
& &

& gives

()

zgALSfmm
A

ppA
pA

m
pA

mL
dt
md

mmmmmm
mm

bam
bb

b

aa

am

∆−−

−+−=

ρ
ρ

&&

&&&

2

22

1
2
1

We will make the approximation that a b mρ ρ ρ= =

evaluated at mean pressure
2

a b
m

p p
p

+
= .

Integrating the energy balance for internal energy
gives:

()b

x b x a
a

x ax b

b

a

uA
hvA hvA

t

T T
kA kA

x x

dx

pvA dx
x

ρ ρ ρ
= =

==

∂
+ − =

∂

∂ ∂
−

∂ ∂
∂ +
∂

∫

∫

Substitution and approximation gives
()

()

m m m
b b a a

m m b a
x b x a

d u A
m m h

dt
T T

v A p p k k
x x

L hρ

= =

− − =

∂ ∂
−

∂ ∂
− +

& &

Introducing m m m mU A muu Lρ= = , the inner energy
and hmH ⋅= && , the enthalpy flow rate give

axbx

abmmba

x
TkA

x
TkA

ppAvHH
dt

dU

== ∂
∂−

∂
∂+

−++=)(&&

The diffusion term contains the temperature
gradients at the segment boundaries. A first order
approximation of the gradient is

() ()
2 2

x a

x x
T a T aT

x x=

∆ ∆
+ − −∂

=
∂ ∆

It should be noticed that ()
2
x

T a
∆

− is a property of

an adjacent segment, i.e. not directly accessible.
However, such diffusion terms are already available
in the model ThermalConductor of the
Modelica.Thermal.HeatTransfer library. This means
that we can introduce a heat flow port with mT and

Q& and write the energy equation as

QppAvHH
dt

dU
abmmba

&&& +−++=)(

The flow variable Q& will be the sum of the
diffusion from neighboring segments at x=a and x=b

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

273

and external heat transfer (for example in a heat
exchanger).

Modelica model
The Modelica model equations corresponding to the
mass- momentum and energy balances derived
above are given below. In addition, a medium
component is used for the mean quantities. The
semiLinear function is used to handle the interfacing
of the balance volume boundary quantities with the
quantities of the device ports as discussed earlier.
model DeviceSegment

replaceable package Medium =
Modelica_Media.Interfaces.PartialMedium;
FluidPort port_a (redeclare package
 Medium=Medium);
FluidPort port_b (redeclare package
 Medium=Medium);
Medium.BaseProperties medium;
// Variable and parameter declarations
equation
// Mean values
medium.p =(port_a.p + port_b.p)/2;
m_dot_m = (port_a.m_dot-port_b.m_dot)/2;
d_m = medium.d;

// Mass balance
der(m) = port_a.m_dot + port_b.m_dot;
m = medium.d*A_m*L;

// Substance balances
port_a.mX_dot = semiLinear(port_a.m_dot,
 port_a.X, medium.X);
port_b.mX_dot = semiLinear(port_b.m_dot,
 port_b.X, medium.X);
der(mX) = port_a.mX_dot + port_b.mX_dot;
mX = m*medium.X;

// Momentum balance
L*der(m_dot_m) =
 A_m*(port_a.p - port_b.p)
 + port_a.m_dot*port_a.m_dot/(A_a*d_m)
 - port_b.m_dot*port_b.m_dot/(A_b*d_m)
 - m_dot_m*abs(m_dot_m)/
 (2*d_m*A_m^2)*f*S*L
 - A_m*d_m*g*(Z_b - Z_a);

// Energy balance
port_a.H_dot = semiLinear(port_a.m_dot,
 port_a.h, medium.h);
port_b.H_dot = semiLinear(port_b.m_dot,
 port_b.h, medium.h);
der(U) = port_a.H_dot + port_b.H_dot +
m_dot_m/d_m*(port_b.p - port_a.p) +

 heatPort.Q_dot;
U = m*medium.u;
heatPort.T = medium.T;

end DeviceSegment;

The model derivation given above is generic. It can
be generalized and extended in many ways. For
example, to allow changing volume of the segment,
the integrations can be carried out with variable

boundaries, using the Leibnitz rule. In the above
derivations, simple definitions of the mean values
were used. It is possible to get better accuracy, for
example, by using an upwind scheme taking into
account the flow direction when calculating the
mean values.

A staggered grid is sometimes used for
solving such PDEs. It is claimed to give better
convergence properties in certain cases by a better
approximation of the pressure gradient. It is possible
to make such an implementation in Modelica. In
fact, the ThermoFluid library uses the staggered grid
approach. In this case, the equation for momentum

is integrated over another interval ,
2 2

L L
a a− +

.

This momentum can be included in a flow element
model. The mass and energy balances are included
in a finite volume model. There are special problems
of communicating, for example, the momentum
term 2 2

/ 2 / 2x a L x a L
v A v Aρ ρ

= + = −
− since the flow

element is assumed to have the same mass flow rate
at both its connectors. Additional, non-physical,
connectors or additional connector variables need to
be introduced in order to communicate these
variables to neighboring flow elements.

4 Pressure Loss due to Friction
The momentum balance contains a term for the
friction force

LSfmm
A

F mmmm
mm

fric &&
2

1
2
1

ρ
=

Often, the pressure loss is used instead of the
friction force (pLoss = Ffric/Am) and different
equations are in use to compute the pressure loss
from the mass flow rate. In the Modelica_Fluid
library a component to model this pressure loss is
available that provides two versions of a generic
pressure loss equation:

if end

else

thenif

,...)(

,...)(
 from_dp

2

1

mLoss

Lossm

mfp

pfm

&

&

=

=

Using the parameter “from_dp” in the “Advanced”-
menu, users can select whether the mass flow rate is
computed from the pressure loss (this is the default)
or whether the pressure loss is computed from the
mass flow rate. Depending on how the device is
connected in a network, there might be fewer non-
linear equations if parameter “from_dp” is selected

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

274

correspondingly. In a future version, this selection
might be performed automatically by a tool.

The user can currently choose between three
variants of the pressure loss model:
1. Constant Laminar: mkpLoss &⋅=

It is assumed that the flow is only laminar. The
constant k is defined by providing Lossp and m&
for nominal flow conditions that, for example,
are determined by measurements.

2. Constant Turbulent: mmkpLoss && ⋅⋅= .
It is assumed that the flow is only turbulent.
Again, the constant k is defined by providing

Lossp and m& for nominal flow conditions. For
small mass flow rates, the quadratic, or in the
inverse case the square root, characteristic is
replaced by a cubic polynomial. This avoids the
usual problems at small mass flow rates.

3. Detailed Friction: provides a detailed model of
frictional losses for commercial pipes with non-
uniform roughness (including the smooth pipe
as a special case) according to.:

m
A
D

k
D
L

D
LpLoss

&⋅
⋅

=⋅⋅=

⋅∆=⋅∆=

⋅⋅⋅⋅∆=

ηη
ρ

λ
ρ

ηλ

ρλ

DvRe

)(Re,
2

)(Re,

|v|v
2

)(Re,

2233

2

2

with
λ : friction coefficient (= 4·fm)
λ2 : used friction coefficient (= λ·Re·|Re|)
Re : Reynolds number.
L : length of pipe
A : cross-sectional area of pipe
D : hydraulic diameter of pipe

 = 4*A/wetted perimeter
 (circular cross Section: D = diameter)

δ : Absolute roughness of inner pipe wall
 (= averaged height of asperities)

∆ : Relative roughness (=δ/D)
ρ : density
η : dynamic viscosity
v : Mean velocity
k2 abbreviation for Lη2/(2D3ρ3)

Note that the Reynolds number might be negative if
the velocity or the mass flow rate is negative. The
"Detailed Friction" variant will be discussed in more
detail, since several implementation choices are
non-standard: The first equation above to compute
the pressure loss as a function of the friction
coefficient λ and the mean velocity v is usually used
and presented in textbooks, see Figure 4. This form

is not suited for a simulation program since λ =
64/|Re| if |Re| < 2000, i.e., a division by zero occurs
for zero mass flow rate because Re = 0 in this case.
More useful for a simulation model is the friction
coefficient λ2 = λ·Re·|Re| introduced for the pipe loss
component, because λ2

 = 64·Re if Re < 2000 and
therefore no problems for zero mass flow rate occur.
The characteristic of λ2 is shown in Figure 5 and is
implemented in the pipe loss model. The absolute
roughness δ of the pipe is a parameter of this model.

Figure 4. Moody Chart: lg(λ) = f (lg(Re), ∆)

The pressure loss characteristic is divided into three
regions:

Region 1: For Re ≤ 2000, the flow is laminar and
the exact solution of the 3-dim. Navier-Stokes
equations (momentum and mass balance) is used
under the assumptions of steady flow, constant
pressure gradient and constant density and viscosity
(= Hagen-Poiseuille flow):

λ2
 = 64·Re or m

A
DkpLoss &⋅

⋅
⋅⋅=

η
264

Figure 5. λ2 = λ2(Re, ∆) = λ·Re·|Re|.

(x-axis: lg(Re), y-axis: lg(λ2))

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

275

Region 3: For Re ≥ 4000, the flow is turbulent.
Depending on parameter “from_dp” either of two
explicit equations are used: If from_dp = true
()(1 Losspfm =&), λ2

 is computed directly from pLoss
using λ2

 = pLoss/k2. The Colebrook-White equation
(Colebrook (1939); Idelchik (1994) p. 83, eq. (2-9))

∆⋅+⋅−= 27.0

Re
51.2lg21

λλ

gives an implicit relationship between Re and λ.
Inserting λ2 = λ·Re·|Re| allows to solve this equation
analytically for Re:

)sign(27.051.2lg2Re 2
2

2 λ
λ

λ ⋅

∆⋅+⋅−=

These are the full-line curves in Figure 4 and
Figure 5. If from_dp = false ()(2 mfpLoss &=), λ2
is computed by an approximation of the inverse of
the Colebrook-White equation (Swamee and Jain
(1976); Miller (1990) p. 191, eq. (8.4)) adapted to
λ2:

sign(Re)
Re

74.5
7.3

lgRe/25.0

2

9.02 ⋅

+∆⋅=λ

These are the dotted-line curves in Figure 4 and
Figure 5.

Region 2: For 2000 ≤ Re ≤ 4000 there is a
transition region between laminar and turbulent
flow. The value of λ2 depends on more factors than
just the Reynolds number and the relative
roughness, therefore only crude approximations are
possible in this area. A laminar flow up to Re =
2000 is only reached for smooth pipes. The
deviation Reynolds number Re1 at which the
transition region starts is computed according to
(Idelchik (1994), p. 81, sect. 2.1.21):

∆≤∆=
⋅=

/0065.010.00653
7451Re 3

elsethenifk
ek

Between Re1 = Re1(∆) and Re2 = 4000, λ2 is
approximated by a cubic polynomial in the "lg(λ2) =
f(lg(Re))" chart (see Figure 5) such that the first
derivative is continuous at these two points. In order
to avoid the solution of non-linear equations, two
different cubic polynomials are used for the direct
and the inverse formulation (from_dp = false/true).
This leads to some discrepancies in λ and λ2 if ∆ >
0.003 (= differences between the full and the dotted
curves in the above Figures). This is acceptable,
because the transition region is not precisely known
since the actual friction coefficient depends on

additional factors and since the operating points are
usually not in this region.

The pressure loss equations above are valid
for incompressible flow. According to (Idelchick
(1994) p. 97, sect. 2.1.81) they can also be applied
for compressible flow up to a Mach number of
about Ma = 0.6 with a maximum error in λ of about
3 %. In a wide region the effect of gas
compressibility can be taken into account by:

47.0
2Ma

2
11

−

 ⋅−+⋅= κλλcomp

where κ is the isentropic coefficient (for ideal gases,
κ is the ratio of specific heat capacities cp/cv). This
effect is not yet included in the pipe friction model.
Another restriction is that the pressure loss model is
valid only for steady state or slowly changing mass
flow rate. For large fluid acceleration, the pressure
drop depends additionally on the frequency of the
changing mass flow rate.

To summarize, the pipe friction component
provides a detailed pressure loss model in pipes in
the form),(1 ∆= Losspfm& or),(2 ∆= mfpLoss & .
These functions are continuous and differentiable,
are provided in an explicit form without solving
non-linear equations, and do behave well also at
small mass flow rates. This pressure loss model can
be used stand-alone in a static momentum balance
and in a dynamic momentum balance as the friction
pressure drop term. It is valid for incompressible
and compressible flow up to a Mach number of 0.6.

5 Standard Medium Interface
The main properties of a single substance medium
are described by 3 algebraic equations between the 5
thermodynamic variables pressure (p), temperature
(T), density (d), specific internal energy (u) and
specific enthalpy (h). In a medium model, three of
these variables are given as function of the
remaining two. For multiple substance media,
additionally nX independent mass fractions X[nX]
are present. For example, if p and T are selected as
independent variables besides X, a medium model
provides the algebraic equations

),,(
),,(
),,(

XTphh
XTpuu
XTpdd

=
=
=

The mass and energy balance equations in a device
structurally have the following form for a single
substance medium (see Section 3):

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

276

balanceenergy //

balance mass//

∑∑

∑

+=

=

⋅=
⋅=

Qhm
dt

dU

m
dt
dm

umU
Vdm

i
i

i

i
i

&

&

where m is the mass and U is the internal energy in
the control volume. Since the time derivatives of m
and U appear, the derivatives of density d and
internal energy u are implicitly needed which in turn
means that the partial derivatives of d(p,T) and
u(p,T) with respect to the independent variables p
and T have to be calculated. As a result, the balance
equations are reformulated in the variables p, T and
this requires differentiation and formula
manipulation.

Depending on the modeled device, additional
fluid properties are needed, e.g., the dynamic
viscosity if friction is modeled directly or the
thermal conductivity for heat transfer coefficients or
if diffusion is taken into account. Finally, a fluid
may undergo phase changes and/or multiple
substances may be involved.

Obtaining and computing the discussed fluid
properties often takes the most effort in the
modeling process. The availability of measurement
data or correlations defines the level of accuracy
that can be obtained with a thermo-fluid model. The
needs of applications vary broadly from very simple
properties with constant density and constant heat
capacity to highly accurate non-linear models.

In order to ease fluid
modeling with
Modelica, a free
Modelica library has
been developed that
provides (a) a
standardized interface
to media models and
(b) a growing number
of at once useable
media models based
on this interface, see
Figure on the left. The
temporary name of
this library is
“Modelica_Media”. It
is planned to include

this package in the Modelica standard library as
Modelica.Media after an evaluation phase.

The Modelica_Media library is designed such
that it can be used in different thermo-fluid libraries
that may, e.g., have completely different connector

definitions and design philosophies. In particular,
the Modelica_Fluid library discussed in previous
sections is based on this library, but it might also be
useful for other thermo-fluid libraries. The
Modelica_Media library has the following
fundamental properties:
• Different independent medium variables may be

used for media description, e.g., p,T or p,h or
d,T or p,d.

• The definition of the medium is decoupled from
the formulation of the balance equations in
order that the balance equations can be
formulated in their most natural form. There is
enough information available for a tool to
transform the medium equations into the form
needed by the balance equations. This is
achieved with the same efficiency as a usually
used balance equation dedicated to a particular
set of independent medium variables.

• Device models can be implemented
independently of the choice of medium model.
For example, exchanging an incompressible by
a compressible medium model or a single by a
multiple substance medium model is usually
possible and has no major influence on the
design of the device model.

5.1 Structure of Medium Interface
A medium model of Modelica_Media is essentially
a package that contains the following definitions
(the basic idea for this approach is from Newman et
al (2002)):
• Definition of constants, such as the medium

name or the number of substances.
• A model in the package that contains the 3 basic

thermodynamic equations that relate the 5+nX
primary medium variables.

• Optional functions to compute medium
properties that are only needed in certain
circumstances, such as dynamic viscosity. These
optional functions need not be provided by
every medium model.

• Type definitions, which are adapted to the
particular medium. For example, a type
“Temperature” is defined where the attributes
“min” and “max” define the validity region of
the medium. In a device model, it is advisable to
use these type definitions, e.g., for parameters,
in order that medium limits are checked as early
as possible.

Note, although we use the term “medium model”,
this is actually a Modelica “package” that contains
all the constants and definitions required for a
complete “medium model”. The basic interface to a

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

277

medium is defined by Modelica_Media.
Interfaces.PartialMedium that has the following
structure:

partial package PartialMedium
 import SI = Modelica.SIunits;

 constant String mediumName;
 constant String substanceNames;
 constant Boolean incompressible;
 constant Boolean reducedX;
 constant Integer nX = size(
 substanceNames,1);

 record BasePropertiesRecord
 AbsolutePressure p;
 Temperature T;
 Density d;
 SpecificInternalEnergy u;
 SpecificEnthalpy h;
 MassFraction X[nX];
 end BasePropertiesRecord;

 replaceable model BaseProperties
 extends BasePropertiesRecord;
 // parameter declarations
 end BaseProperties;

 // optional medium properties
 replaceable partial function
 dynamicViscosity
 input BasePropertiesRecord
 medium;
 output DynamicViscosity eta;
 end dynamicViscosity;
 // other optional functions

 // medium specific types
 type AbsolutePressure =
 SI.AbsolutePressure (
 min = 0,
 max = 1.e8,
 nominal = 1.e5,
 start = 1.e5);
 type DynamicViscosity = ...;
 // other type definitions

 end PartialMedium;

We will discuss all parts of this package in the
following paragraphs. An actual medium model
should extend from PartialMedium and has to
provide implementations of the various parts.

The constants at the beginning of the package
(with exception of nX) do not have a value yet (this
is valid in Modelica), but a value has to be provided
when extending from package PartialMedium. Once
a value is given, it cannot be changed any more. The
reason to use constants instead of parameters in the
model BaseProperties is that some of these
constants have to be used in connector definitions

(such as the number of mass fractions nX). When
defining the connector, only constants in packages
can be accessed, but not parameters in a model,
because a connector cannot contain an instance of
BaseProperties.

The record BasePropertiesRecord contains the
variables primarily used in balance equations. Three
equations for these variables have to be provided by
every medium in model BaseProperties. Optional
medium properties are defined by functions, such as
the function “dynamicViscosity” (see code Section
above) to compute the dynamic viscosity. Model
BaseProperties extends from the record and the
optional functions have an instance of this record as
an input argument. This construction simplifies the
usage considerably as demonstrated in the following
code fragment:
 replaceable package

 Medium = PartialMedium;
Medium.BaseProperties medium;
Medium.DynamicViscosity eta;
 ...
U =m*medium.u; //Internal energy

 eta=Medium.dynamicViscosity(medium);

“Medium” is the medium package that satisfies the
requirements of a “PartialMedium” (when using the
model above, a value for Medium has to be
provided by a redeclaration). The “medium”
component is an instance of the model
“Medium.BaseProperties” and contains the core
medium equations. Variables in this model can be
accessed just by dot-notation, such as medium.u or
medium.T. If an optional medium variable has to be
computed, the corresponding function from the
actual Medium package is called, such as
“Medium.dynamicViscosity”. The medium instance
can be given as input argument to this function,
because model Medium.BaseProperties is a subclass
of BasePropertiesRecord – the argument required
from the function.

If a medium model does not provide
implementations of all optional functions and one of
these functions is called in a model, an error occurs
during translation since the not redeclared optional
functions have the “partial” attribute. For example,
if function dynamicViscosity is not provided in the
medium model when it is used, only simple pressure
drop loss models without a reference to the viscosity
can be used and not the sophisticated ones.

At the bottom of the PartialMedium package
type declarations are present that are used in all
other parts of the PartialMedium package and that
should be used in all models and connectors where a
medium model is accessed. The reason is that
minimum, maximum, nominal and sometimes also

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

278

start values are defined and these values can be
adapted to the particular medium at hand. For
example, the nominal value of AbsolutePressure is
1.0e5 Pa. If a simple model of water steam is used
that is only valid above 100 °C, then the minimum
value in the Temperature type should be set to this
value. The minimum and maximum values are also
important for parameters in order to get an early
message if data outside of the validity region is
given. The “nominal” attribute is important as a
scaling value if the variable is used as a state in a
differential equation or as an iteration variable in a
non-linear system of equations. The “start” attribute
is useful to provide a meaningful default start or
guess value if the variable is used, e.g., as iteration
variable in a non-linear system of equations. Note,
all these attributes can be set specifically for a
medium in the following way:

package MyMedium
 extends PartialMedium(
 ...
 Temperature(min=373);
);
 ...

 end MyMedium;

The type PartialMedium.MassFlowRate is defined
as

type MassFlowRate = SI.MassFlowRate
 (quantity =

 "MassFlowRate." + mediumName);

Note that the constant “mediumName”, that has to
be defined in every medium model, is used in the
quantity attribute. For example, if mediumName =
“SimpleLiquidWater”, then the quantity attribute
has the value “MassFlowRate.SimpleLiquidWater”.
This type should be used in a connector definition of
a fluid library:

connector FluidPort
 replaceable package Medium =
 PartialMedium;
 flow Medium.MassFlowRate m_dot;
 ...

 end FluidPort;

In the model where this connector is used, the actual
Medium has to be defined. Connectors can only be
connected together, if the corresponding attributes
are either not defined or have identical values. Since
mediumName is part of the quantity attribute of
MassFlowRate, it is not possible to connect
connectors with different media models together. In
Dymola this is already checked when models are
connected together in the diagram layer of the
graphical user interface.

5.2 Defining Medium Models
The definition of a new medium model based on the
PartialMedium interface is demonstrated using a
simple model for air. First, the template package
“Modelica_Media.Interfaces.TemplateMedium”
should be copied and renamed. Afterwards, all parts
of this template should be adjusted to the actual
medium model. In particular:

package SimpleAir
 extends Modelica_Media.Interfaces.
 PartialMedium(
 mediumName = "SimpleAir";
 substanceNames = fill("",0);
 incompressible = false;
 reducedX = true;
);
 ...

 end SimpleAir;

The new medium package is extended from
PartialMedium and all constants that do not have a
value in PartialMedium are defined now. If the
medium consists of only one substance, set the
dimension of the substanceNames vector to zero
with the fill(..) operator. If the medium defines the
density to be a constant, set “incompressible” to
true. If there is only one substance, set reducedX
also to true (the meaning of this flag will be
explained below).

In a next step, implementations of model
BaseProperties and of all supported functions have
to be provided. With the current Modelica language,
this is cumbersome, since new classes with different
names have to be introduced and then the
PartialMedium classes have to be redeclared to the
new names. A more convenient Modelica definition
could be:

redeclare model BaseProperties
 extends;
 ...

 end BaseProperties;

This just means that model BaseProperties, which is
available due to “extends PartialMedium” is
replaced by a model with the same name and all
properties defined in PartialMedium.BaseProperties
are included via the “extends” statement. This
proposed language construct is available as a test
implementation in Dymola. At the next Modelica
design meeting, a formal decision will be made
whether this or something similar will be included
into the Modelica language. For the simple air
model the redeclaration takes the form:

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

279

package SimpleAir
 ...
redeclare model BaseProperties
 import Modelica.SIunits.
 conversions.*;
 extends(
 p(stateSelect = ..),
 T(stateSelect = ..)
);
 constant Real R_air = 287.0506;
 constant Real h0 = 274648.7;
equation
 p = d*R_air*T;
 h = 1005.45*T + h0;
 u = h – p/d;
end BaseProperties;
 ...

 end SimpleAir;

The “stateSelect = ...” statements read
stateSelect =
 if preferedMediumStates then
 StateSelect.prefer
 else
 StateSelect.default

This is the essential definition to decouple balance
and medium equations: “preferedMediumStates” is
a Boolean parameter defined in PartialMedium. In
every device that needs medium properties for
balance equations in the form of differential
equations, this flag has to be set to true. If no
derivatives of any of the 5+nX basic thermodynamic
variables are needed, this flag has to be set to false.
Due to the above if-expression, the stateSelect
attributes of the independent medium variables are
set to “prefer” if preferedMediumStates = true.
This in turn means that implicitly equations of the
form “pd = der(p)“ and „Td = der(T)“ are present
and that p and T should be selected as states, if this
is possible. This is important, if the property
functions, such as u(p,T) are non-linear in the
independent variables. If the independent variables
would not be selected as states, this would result in
non-linear systems of equations for the inversion of
the property function.

The balance equations and the medium
equations together with the above definition of
preferred states define a DAE (= Differential
Algebraic Equation system) of index 2. For
example, if p and T are used as independent medium
variables, this DAE consists of the following
equations:

TTd
ppd

Tphh
Tpuu
Tpdd

&

&

=

=
=
=
=

),(
),(
),(

equations medium//

balanceenergy //...

balance mass//...

equations balance//

=

=

⋅=
⋅=

dt
dU
dt
dm

umU
Vdm

Modelica models often result in higher index DAEs.
Dymola solves this problem by using (a) the
Pantelides algorithm (Pantelides (1988)) to
determine the equations that have to be
differentiated and (b) the dummy derivative method
(Mattsson and Söderlind (1993), Mattsson et.al.
(2000)) to select appropriate states. For the above
code fragment, the Pantelides algorithm determines
that the equations of m, U and therefore also of d
and u need to be differentiated resulting in the
following additional equations:

T
T
up

p
uu

T
T
dp

p
dd

umumU
dVm

&&&

&&&

&&&

&&

⋅
∂
∂+⋅

∂
∂=

⋅
∂
∂+⋅

∂
∂=

⋅+⋅=

⋅=

With the dummy derivative method it is possible to
select p and T as states from the original set of
potential states (p,T,m,U), especially since p and T
have the “prefer” attribute. Using symbolic formula
manipulation it is possible to solve the above
equations efficiently for Tp && , .

Note, it is important to set the stateSelect
attribute to its default value when
preferedMediumStates = false. Otherwise, a tool
would have to compute the derivative of p and T,
although these derivatives are not needed. Worse, in
order to compute these derivatives most likely other
device equations would have to be differentiated.

After implementation of the BaseProperties
model, the optional functions supported by the
medium model have to be defined, e.g., a constant
dynamic viscosity for the simple air model:

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

280

package SimpleAir
 ...
redeclare function dynamicViscosity
 input BasePropertiesRecord medium;
 output DynamicViscosity eta;
 algorithm
 eta := 1.82e-5;
end dynamicViscosity;
 ...

 end SimpleAir;

Note, instead of using the short “extends;” as in the
BaseProperties model, it is also possible to just
repeat the declaration of the function (this is
possible with Modelica’s type system). For the
optional functions, this is a bit longer but seems to
be easier to understand for someone looking up the
function definition.

The essential part of the medium model is
now defined and can be utilized. However, there are
additional issues that have to be taken into account,
especially for non-linear medium models. This is
discussed in the next subsections.

5.3 Initialization
Since variables of the medium are used as states,
and the device models using the medium model do
(on purpose) not know what independent variables
are defined in the medium, initialization has to be
defined in the medium model.

For fluid modeling, two types of standard
initializations are common: steady state and
prescribed initial conditions. A third alternative is
additionally supported in the Modelica_Media
library: The time scales of the energy- and mass
balance related dynamics can be very different for
fluid systems and are therefore treated differently in
the initialization. A potential state that is determined
by the mass balance dynamics (pressure or density)
is initialized in steady state i.e., der(d)=0 or
der(p)=0. A potential state that is determined by
the energy balance equation (temperature or specific
enthalpy) is directly set (e.g. T = 300.0 or h =
2.5e6). This case occurs also when, e.g., initial
temperatures are determined by measurements.

In package PartialMedium, several parameters
are declared in order to define the initialization. A
Dymola screen shot of the “Initialization” menu tab
is shown in Figure 6. In the lower part, start values
for p or d, T or h, and X can be defined. The
meaning of a start value, e.g., whether it is a guess
value or a definite start value is defined by the first
parameter “initType”. It is defined with a selection
box containing several alternatives (this is
implemented as Integer with annotations to specify
the content of the selection box, since Dymola does

Figure 6 Initialization menu of PartialMedium

not yet support Modelica enumerations):
• Selection NoInit (the default) does nothing, to

allow user-specific initialization.
• Selection InitialStates means that the

independent variables of the medium model
should be initialized with start values.

• Selection SteadyState sets the time derivatives
of the independent medium variables to zero.
The start values are interpreted as guess values
for the occurring non-linear algebraic equations.

• Selection SteadyMass sets one of the equations
der(p) = 0.0 or der(d) = 0, depending whether p
or d is an independent variable of the medium
model. The start value for p or d is interpreted
as a guess value. The start value for T or h is
used to initialize the remaining independent
variable of the medium model.

In the lower part of the “Initialization” menu, start
values can be defined. If the Boolean init_p =
true, then the start value p_start for pressure is
used, otherwise the start value d_start for
density. Correspondingly, if init_T = true, the
start value T_start for temperature is used,
otherwise the start value h_start for specific
enthalpy. Additionally, for multiple substance
fluids, start values for mass fractions X_start can
be defined. Start values that are not needed are used
as initial guesses, where appropriate.

While this is not a fully exhaustive list of
useful initializations for fluid models, it provides a
broad range of practically important cases.

The above parameters are defined in package
PartialMedium. An actual implementation must be
provided by every medium model. For example, the
simple air model, needs the following additions:

package SimpleAir
 ...
redeclare model BaseProperties
 import C = Choices.Init;
 protected
 parameter T_start2 =
 if init_T then
 T_start
 else

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

281

 (h_start – h0)/cp_air;
 parameter h_start2 =
 if init_T then
 cp_air*T_start + h0
 else h_start;
 parameter p_start2 =
 if init_p then
 p_start
 else R_air*d_start*T_start2;
 parameter d_start2 =
 if init_p then
 p_start/(R_air*T_start2)
 else d_start)
 public
 extends(
 p(start = p_start2, stateSelect=..,),
 T(start = T_start2, stateSelect=..,),
 d(start = d_start2),
 h(start = h_start2),
 u(start = h_start2 – p_start2/
 d_start2)
);
 constant Real R_air = 287.0506;
 constant Real cp_air = 1005.45;
 constant Real h0 = 274648.7;

Above is the first part of the initialization. In the
extends clause of the BaseProperties model together
with the new protected Section, start values for all
variables are calculated from the given start values.
This requires to evaluate the medium equations with
the given start values. In situations with more
complex equations, it is often useful to define them
with functions and call the functions for start value
calculation and in the equation section. The reason
to provide consistent start values for all variables is
that these variables are potentially iteration variables
in non-linear algebraic loops and need therefore
reasonable guess values. It is not known beforehand
which iteration variable the symbolic translator will
select. In the remaining code, the initialization
equations and the medium equations are defined:

initial equation
 if preferedMediumStates then
 if initType == C.InitialStates then
 p = p_start2;
 T = T_start2;
 elseif initType==C.SteadyState then
 0 = der(p);
 0 = der(T);
 elseif initType == C.SteadyMass then
 0 = der(p);
 T = T_start2;
 end if;
 end if;
equation
 p = d*R_air*T;
 h = cp_air*T + h0;
 u = h – p/d;
end BaseProperties;
 ...

 end SimpleAir;

Initial equations are only provided if
preferedMediumStates = true, i.e., if medium
variables should be used as states. Depending on
parameter initType, the different initialization
equations are defined. These equations depend on
the independent variables of the medium model.

5.4 Multiple Substance Media
Media that consist of several (non-reacting)
substances are both supported from the
Modelica_Media and the Modelica_Fluid library. In
Modelica_Media essentially the mass fractions X of
the substances are used as independent variables to
compute the medium properties. Two common
approaches are supported by the Modelica_Media
library:
• From the n substances, n-1 substances are

treated as independent, i.e., n-1 mass fractions
are additional independent variables. If needed,
the n-th mass fraction is computed from the
algebraic equation X_n = 1- sum(X[1:n-1]).

• All n substances are treated as independent
during simulation, i.e., n mass fractions are used
as independent variables and there are n
additional substance mass balance equations.
Since the constraint that the mass fractions sum
up to one, is not utilized, a slight drift of the
mass fractions may occur. Of course, the initial
mass fractions have to be defined such that they
are summed up to one (this is checked in the
PartialMedium package).

In order to not have special cases, the
Modelica_Media and Modelcia_Fluid libraries
define the constant “nX” of PartialMedium to be the
“number of independent” mass fractions. This might
be n-1 or n substances of a multiple substance
medium. In order to be able to make some checks,
such as for initialization, the constant “reducedX”
must be defined. If true, nX characterizes n-1
substances, if this flag is false, nX characterizies n
substances.

Note, for single substance media, no mass
fraction vector or substance mass flow rate vector is
present, because nX = 0 in this case and zero sized
vectors are removed in the code generation phase.

6 Medium Models in
Modelica_Media

In this Section, some of the more advanced medium
models available in the Modelica_Media package
are discussed in more detail. All of them are based
on the medium interface described in the last
Section.

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

282

6.1 High Accuracy Water Model IF97
The Modelica_Media library contains a very
detailed medium model of water in the liquid, gas
and two phase region based on the IF97 standard
[6]. It is an adapted and slightly improved version
from the ThermoFluid library (Tummescheit and
Eborn (2001), Tummescheit (2002)).

High accuracy thermodynamic properties of
fluids are modeled with two kinds of multi-
parameter, fundamental equations of state:

• An equation for the specific Helmholtz free
energy f(ρ,T) or f(v=1/ρ,T)

• An equation for the Gibbs free enthalpy
g(p,T)

For numerical reasons the fundamental equations
use dimensionless variables which are most often
scaled with the critical parameters. The IF97
industrial steam tables uses both equation types and
furthermore divides the overall fluid state into 5
regions in order to achieve high accuracy
everywhere with a lower number of parameters. In
spite of the complexities of the underlying
formulation, the user interface for calling the
properties is very simple. The medium interface is
implemented with utility functions that have a
simple interface, e.g.

rho = Water.IF97.rho_ph(p,h);
 //density
T = WaterIF97.T(p,h);
 //temperature
s = WaterIF97.s_ph(p,h);

 //specific entropy

Common sub-expression elimination and nested
inlining of function calls ensure that the
computationally expensive call to one of the
fundamental equations happens only once. A record
containing the fundamental derivatives of the
equation of states is used by Dymola in the common
sub-expression elimination and is thus only
computed once. The fundamental derivatives for the
free Helmholtz energy f(ρ,T) are:

TTv

TT

T

T

Tfc

ffp

fp

fs

ffp

−=

+=

=

−=
∂
∂==

ρρρρ

ρ

ρ

ρρ

ρ

ρ
ρρ

2

2

22

2

Here the short subscript notation is used for partial
derivatives, see explanation above. A similar set of
fundamental derivatives exists for the Gibbs free
enthalpy g(p,T):

ppp

ppp

pTT

p

T

Tgc

gv

gv

gv
gs

−=

=

=

=
−=

From these fundamental derivatives, all other partial
derivatives of thermodynamic properties with
respect to other properties can be computed using
thermodynamic determinants, e.g.

22

2

22 ,)(

Tv

T

Tv

Tv

Tpcp
p

phTpcp
pc

hp +
=

∂
∂

+
+=

∂
∂

ρρ ρ
ρρ

ρ
ρρρ

When needed, e.g. for index reduction to change the
states to numerically favorable ones, these partial
derivatives can be computed with minimal effort
from the fundamental derivatives in the property
record. In order to add other Helmholtz-or Gibbs-
based equations of state to Modelica_Media, only
the fundamental derivatives need to be computed,
the functions to compute the standard properties are
part of the library.

The partial derivatives are used in two
situations where the Modelica_Media properties
provide unique features for efficiency and model
order reduction. For all property calls that may have
to be differentiated for index reduction, efficient
derivative functions are provided. A very useful
model order reduction for large two-phase heat
exchangers is to equate the metal mass and boiling
water temperatures, e.g. as in the drum Boiler model
in [3]. Equating the temperatures leads to an index
reduction problem. The algorithm for index
reduction needs to compute the time derivative of
temperature as a function of the time derivatives of
the states. When pressure p and specific enthalpy h
are the states, the expansion reads:

region phase twoin the if

phase singlein if

p
T

dt
dT

h
T

p
T

dt
dT

sat

ph

∂
∂=

∂
∂+

∂
∂=

These derivatives are automatically computed when
needed without user interaction. This allows writing
the equations in the most natural form, as
demonstrated in [3]. The same algorithmic
procedure is used to transform the “natural” form of
the mass- and energy balances into equations using
the input to the property routines as states.

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

283

Density as a Function of Enthalpy and Pressure

200

1000

2000

4000 1

0.1

1

10

100

1000

Density [kg/m3]

Enthalpy [kJ/kg]
100 1000

10
Pressure [bar]

400

x = 0

x = 1

Figure 7: log.-plot of ρ(p,h) for IF97 water

6.2 High Accuracy Ideal Gas Models
Ideal gas properties cover a broad range of
interesting engineering applications: air
conditioning and climate control, industrial and
aerospace gas turbines, combustion processes,
automotive engines, fuel cells and many chemical
processes. Critically evaluated parameter sets are
available for a large number of substances. The
coefficients and data used in the Modelica_Media
library are from [9]. Care has been taken to enable
users to create their own gas mixtures with minimal
effort. For most gases, the region of validity is from
200 K to 6000 K, sufficient for most technical
applications. The equation of state consists of the
well-known ideal gas law TRp ⋅⋅= ρ with R the
specific gas constant, and polynomials for the
specific heat capacity)(Tcp , the specific enthalpy

)(Th and the specific entropy),(pTs :

−=

+

−
++−−=

+

−
++−=

=

−

=

−

=

=

−

∑

∑

∑

0
0

2

37

4
3

2
2

1
0

1
37

3
22

1

7

1

3

ln)(),(

3
)log(

2
)(

2
)log()(

)(

p
pRTspTs

b
i
TaTa

T
a

T
aRTs

T
b

i
Ta

T
Ta

T
aRTTh

TaRTcp

i

i
i

i

i
i

i

i
i

The polynomials for)(Th and)(0 Ts are derived via
integration from the one for)(Tcp and contain the
integration constants 21,bb that define the reference
specific enthalpy and entropy. For entropy
differences the reference pressure p0 is arbitrary, but
not for absolute entropies. It is chosen as 1 standard
atmosphere (101325 Pa). Depending on the intended
use of the properties, users can choose between
different reference enthalpies:

1. The enthalpy of formation Hf of the molecule
can be included or excluded.

2. The value 0 for the specific enthalpy without Hf

can be defined to be at 298.15 K (25 °C) or at 0
K.

For some of the species, transport properties are also
available. The form of the equations is:

()

() ()
ρνη

λ

ν

λ
λλ

λ

⋅=

+++⋅=

+++⋅=

D
T
C

T
BTA

D
T
C

T
BTAk

2

2

lglg

lg
10

lg

with the kinematic viscosity ν , dynamic viscosity
η , thermal conductivity λ and parameters A,B,C,D
and k. Note, though, that the thermal conductivity is
only the “frozen” thermal conductivity, i.e., not
valid for fast reactions.

6.3 Ideal Gas Mixtures
For mixtures of ideal gases, the standard, ideal
mixing rules apply:

() ,ln)ln()()(

)()(

01

1

−−=

=

∑

∑

=

=

p
pRxyRTsTs

xThTh

nspecies

i
iiiimix

nspecies

i
iimix

where the ix are the mass fractions, the iR are the
specific gas constants and the iy are the molar
fractions of the components of the mixture. Most
other properties are then computed just as for single
species media. Dynamic viscosity and thermal
conductivity for mixtures require interaction
parameters of a similar functional form as the
viscosity itself and are (not yet) implemented.

For mixtures of ideal gases, three usage
scenarios can be distinguished:

1. The composition is fixed and is the same
throughout the system. This means that a
new data record can be computed by
preprocessing the component property data
that can be treated as a new, single species
data record (assuming ideal mixing).

2. The composition is variable, but changes in
composition occur only through convection,
i.e. slowly.

3. The composition is variable and may
change through reactions too, i.e.
composition changes are possibly very fast.

Case 1 and 2 above can be handled within a single
model with a Boolean switch, case 3 needs to extend
from that model because usually a number of

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

284

additional properties are needed, e.g. the parameters
to compute chemical equilibrium reaction constants.
Modelica_Media will initially not contain models
for reactive flows, but all data is present for users
who wish to define such models.

7 Conclusions
Thermodynamic fluid modeling is complex in many
ways. This paper has shown a careful structuring of
libraries for medium and fluid components in such a
way that the same component models can be used
with different easily replaceable media. To our
knowledge this is the first approach that is able to
treat compressible and incompressible fluids in a
unified framework. A careful consideration of
numerous issues concerning numerical efficiency,
model structuring and user friendliness has been
presented in this paper:

• Suitable device interfaces
• Principles for handling of reversing, joining

and splitting flows
• The governing partial differential equations

and their transformation into ODEs
• Pressure loss calculations
• Medium interface design
• Initialization
• Media available in Modelica_Media

Much design effort has been spent on considerations
for robust and efficient simulation. The presented
framework and libraries have the potential to serve
as a powerful base for the development of
application-oriented libraries.

Appendix – Energy balance
This appendix contains the derivation of the
equivalent but simpler energy balance.

Multiplication of the momentum balance by v
gives

2() ()

F

vA v A
v

t x

p z
vA vF vA g

x x

ρ ρ

ρ

∂ ∂
+ =

∂ ∂

∂ ∂
− − −

∂ ∂

Utilizing the mass balance, this equation can be
rewritten as

2 3((/ 2)) ((/ 2))

F

v A v A

t x
p z

vA vF vA g
x x

ρ ρ

ρ

∂ ∂
+ =

∂ ∂
∂ ∂

− − −
∂ ∂

To show the equivalence, consider the two left hand
sides:

2

1

() ()

() ()

() ()

vA v A
LH v v

t x
v A v vA

v A v vA v
t t x x

v v A vA
v A vA v

t x t x

v v
v A vA

t x

ρ ρ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

ρ ρ

∂ ∂
= + =

∂ ∂
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂ ∂
+

∂ ∂

2 3

2

2
2

2
2

2

2

((/ 2)) ((/ 2))

(/ 2) ()
(/ 2)

(/ 2) ()
(/ 2)

()
(/ 2)

()
(/ 2)

v A v A
LH

t x

v A
A v

t t

v vA
vA v

x x
v A

v A v
t t
v vA

v vA v
x x

v v
v A vA

t x

ρ ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ ρ

∂ ∂
= + =

∂ ∂

∂ ∂
+ +

∂ ∂

∂ ∂
+ =

∂ ∂
∂ ∂

+ +
∂ ∂
∂ ∂

+ =
∂ ∂

∂ ∂
+

∂ ∂

i.e. 1 2LH LH= .
Subtracting the equation derived above from

the energy balance gives

(())
()

()

p
v u A

uA p T
vA kA

t x x x x

ρ
ρ ρ

∂ +
∂ ∂ ∂ ∂

+ = +
∂ ∂ ∂ ∂ ∂

Acknowledgements
The design of this library has been a collaborative
effort and many have contributed. Many thanks to
Mike Tiller for suggesting the package concept and
useful discussions and proofreading the paper.
Many thanks to Rüdiger Franke for the first realistic
tests of the libraries and his feedback, many thanks
to Daniel Bouskela, Andreas Idebrant, Gerhart
Schmitz, John Batteh, Charles Newman, Jonas
Eborn, Sven Erik Mattsson, Hans Olsson and the
users of the ThermoFluid library for many useful
comments and feedback.

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

285

Bibliography
[1] Andersson J.D., Jr. (1995): Computational Fluid

Dynamics – The Basics with Applications,
McGraw-Hill International Editions, ISBN 0 07
001685 2.

[2] Colebrook F. (1939): Turbulent flow in pipes with
particular reference to the transition region
between the smooth and rough pipe laws. J. Inst.
Civ. Eng. no. 4, pp. 14-25.

[3] Dymola (2003): Dymola Users Guide, Version
5.1. Dynasim AB, http://www.dynasim.se/

[4] Elmqvist, H. (1978): A Structured Model
Language for Large Continous Systems. PhD-
Thesis, Lund Institute of Technology, Lund,
Sweden.

[5] Idelchik I.E. (1994): Handbook of Hydraulic
Resistance. 3rd edition, Begell House, ISBN 0-
8493-9908-4

[6] IAPWS (1997); Release on the IAPWS Industrial
Formulation 1997 for the Thermodynamic
Properties of Water and Steam. The International
Association for the Properties of Water and Steam.

[7] Mattsson S.E.; Söderlind G. (1993): Index
reduction in differential-algebraic equations
using dummy derivatives. SIAM Journal of
Scientific and Statistical Computing, Vol. 14 pp.
677-692, 1993.

[8] Mattsson S.E., Olsson H., Elmqvist H. (2000):
Dynamic Selection of States in Dymola. Modelica
Workshop 2000 Proceedings, pp. 61-67,
http://www.modelica.org/workshop2000/-
proceedings/Mattsson.pdf

[9] McBride B.J., Zehe M.J., and Gordon S. (2002):
NASA Glenn Coefficients for Calculating
Thermodynamic Properties of Individual
Species. NASA report TP-2002-211556

[10] Miller D.S. (1990): Internal flow systems. 2nd
edition. Cranfield:BHRA(Information Services).

[11] Newman C.E., Batteh J.J., Tiller M. (2002): Spark-
Ignited-Engine Cylce Simulation in Modelica. 2nd
International Modelica Conference, Proceedings,
pp. 133-142.

[12] Pantelides C. (1988): The Consistent Initialization
of Differential-Algebraic Systems. SIAM Journal
of Scientific and Statistical Computing, pp. 213-
231.

[13] Rüdiger Franke (2003): On-line Optimization of
Drum Boiler Startup. Proceedings of the 3rd
International Modelica Conference, Linköping,
2003

[14] Span R. (2000): Multiparameter Equations of
State – An Accurate Source of Thermodynamic
Property Data, Springer-Verlag.

[15] Swamee P.K., Jain A.K. (1976): Explicit equations
for pipe-flow problems. Proc. ASCE, J.Hydraul.
Div., 102 (HY5), pp. 657-664.

[16] Thomas P. (1999): Simulation of Industrial
Processes – For Control Engineers, Butterworth,
Heinemann, ISBN 0 7506 4161 4.

[17] Tummescheit H. (2002): Design and
Implementation of Object-Oriented Libraries
using Modelica, PhD thesis, Department of
Automatic Control, Lund Institute of Technology.

[18] Tummescheit H., Eborn J. (2001): ThermoFluid
Modelica Library. Homepage:
http://www.control.lth.se/~hubertus/ThermoFluid/

 The Modelica Association Modelica 2003, November 3-4, 2003

H. Elmqvist, H. Tummescheit, M. Otter Object-Oriented Modeling of Thermo-Fluid Systems

286

On-line Optimization of Drum Boiler Startup

Rüdiger Franke, Manfred Rode
ABB Corporate Research

Wallstadter Str. 59
68526 Ladenburg, Germany

Klaus Krüger
ABB Utilities GmbH

Kallstadter Str. 1
68309 Mannheim, Germany

E-Mail:
�
Ruediger.Franke, Manfred.Rode, Klaus Krueger � @de.abb.com

Abstract

On-line optimization of industrial processes is increas-
ingly important to minimize cost and environmental
impact of a plant during its operation. The new Model-
ica.Media and Modelica.Fluid base libraries allow the
dynamic modeling of process systems [4]. Their ap-
plication to dynamic optimization is discussed on a tu-
torial example.

The optimization is based on a simple non-linear drum
boiler model from the literature [1]. The model is im-
plemented in Modelica using the new Modelica.Media
and Modelica.Fluid base libraries.

The model exhibits three control inputs: feed water
flow rate, heat input, and position of a valve at the
steam outlet. A PI control is embedded into the model
for the feed water flow. The remaining two control in-
puts are optimized. Optimization results are compared
with a straightforward control strategy.

On-line optimization based on a sophisticated boiler
model is currently being applied to a 700 MW coal
fired power plant.

1 Introduction

The primary aim of on-line optimization of industrial
processes is to minimize cost and environmental im-
pact of a plant during its operation. This cost includes
energy and raw material consumption, losses due to
off-spec production, waste and exhaust treatment as
well as maintenance. Especially for complex pro-
cesses with many mutually interacting decision vari-
ables and constraints, a secondary aim often is to au-
tomatically find a feasible and reproducible operation.

A dynamic model can serve as basis for on-line opti-
mization. An optimal control problem is formulated

for the model. The problem is solved in real-time and
the optimization results are applied to the process.

On-line optimization is especially interesting as sim-
ulation models are being reused. However, the op-
timization is computationally expensive. This is be-
cause control trajectories are being sought and as con-
straints have to be fulfilled for state and output tra-
jectories. Time discretization leads to large numbers
of optimization variables and constraints, as opposed
to a comparable small number for design optimization
problems. That is why advanced numerical optimiza-
tion methods are required to solve the large-scale op-
timization problems in real-time.

The on-line optimization can be performed repeatedly
in a control loop. The resulting Nonlinear Model
based Predictive Control (NMPC) is advantageous if
a process model is available or effordable and if

� multiple controlled and manipulated variables
need to be considered

� state constraints have to be fulfilled

� the control problem is non-linear

The example discussed here exhibits all these features.

2 Drum boiler model

2.1 Generic drum model

The drum boiler model from [1] is used. Inside the
drum there is water in two phases: liquid an vapour.
The thermodynamic state of both phases is assumed to
be at the phase boundary. Feed water enters the drum
and saturated steam leaves the drum. A furnace sup-
plies energy for heating up and evaporating the feed

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

287

water. The model assumes a global mass balance

dm
dt � qm � W � qm � S (1)

for feed water entering and steam leaving the drum and
with the mass

m � ρvVv
� ρlVl

�
mD � (2)

See the code in figure 2 for a list of variables. The
global energy balance is

dU
dt � qF

�
qm � W hW

� qm � ShS � (3)

with the internal energy

U � ρvhvVv
� ρlhlVl

� p � Vv
�

Vl � �
mDcp � DTD (4)

considering vapour phase, liquid phase, volume work,
and the thermal energy in the surrounding metal, re-
spectively. It is assumed that the specific enthalphy
of steam leaving the boiler is equal to the vapour en-
thalpy: hS � hv. Furthermore, ideal heat transfer be-
tween the water inside the drum and the surrounding
metal is assumed. Consequently the metal temperature
is equal to the saturation temparature of water for the
pressure inside the drum: TD � Tsat � p � . The constant
total volume inside the drum boiler is

Vt � Vv
�

Vl � (5)

Thermal stress occures in the thick walled drum if
there are spatial temperature differences, which are
caused by fast temperature variations, e.g. during start-
up. As this stress leads to fatigue or even destruction, it
needs to be hold within given limits. Here the thermal
stress is modeled proportional to the time derivative of
the metal temparature

σD � k
dTD

dt � (6)

Note that the modeling of temperature gradients is also
of practical importance when no measurements of wall
temperatures are available.

2.2 Mathematical model analysis and trans-
formation

The physical oriented generic model formulation
given in subsection 2.1 can directly be formulated in
Modelica. Mathematical details are treated automati-
cally by the Modelica tool Dymola. Nevertheless the
model is analyzed in this section, in order to outline
important mathematical details.

The model forms a system of differential and alge-
braic equations (DAE). It has a number of disadvan-
tages when applied to on-line optimization. The bal-
ance equations are formulated for mass and internal
energy that are not measured. Drum pressure, temper-
ature and liquid water level are important quantities for
drum boiler control. The physical oriented model de-
fines them via an implicit non-linear relationship, be-
ing numerically disadvantageously.

Moreover, equation (6) for thermal stress causes a
high-index DAE, as the time derivative of drum tem-
perature is used.

That is why the model shall be transformed into a more
appropriate form prior to its application. In [1] it is
proposed to use pressure p and volume of liquid Vl as
state variables. It is explained, how the model equa-
tions for mass and energy balance can be transformed
accordingly. This results into

e1 � 1 dVl

dt
�

e1 � 2 d p
dt � qm � W � qm � S � (7)

e2 � 1 dVl

dt
�

e2 � 2 d p
dt � qF

�
qm � W hW

� qm � ShS (8)

with

e1 � 1 � ρl
� ρv (9)

e1 � 2 � Vv
∂ρv

∂p
�

Vl
∂ρl

∂p
(10)

e2 � 1 � ρlhl
� ρvhv (11)

e2 � 2 � Vv

�
hv

∂ρv

∂p
� ρv

∂hv

∂p 	 (12)�
Vl

�
hl

∂ρl

∂p
� ρl

∂hl

∂p 	 (13)

� Vvl
�

mDcp � D ∂Tsat � p �
∂p

(14)

Furthermore, equation (6) can be re-written as

σD � k
∂TD

∂p
d p
dt � (15)

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

288

package WaterPhaseBoundaryIF97
"Physical properties for water at phase boundary at boiling and dew curves"
extends Modelica_Media.Interfaces.PartialMedium(

mediumName = "WaterIF97",
substanceNames = fill("", 0),
incompressible = false,
reducedX = true,
MassFlowRate(quantity="MassFlowRate.WaterIF97"));

// basic property definitions required for each medium model
redeclare model BaseProperties

extends;
parameter Integer region = 0 "specify region 1 (liquid) or 2 (vapour)";

equation
assert(region == 1 or region == 2,

"WaterPhaseBoundaryIF97 medium model only valid for regions 1 and 2");
T = Modelica_Media.Water.IF97.BaseIF97.Basic.tsat(p);
if region == 1 then
d = Modelica_Media.Water.IF97.BaseIF97.Regions.rhol_p(p);
h = Modelica_Media.Water.IF97.BaseIF97.Regions.hl_p(p);

else
d = Modelica_Media.Water.IF97.BaseIF97.Regions.rhov_p(p);
h = Modelica_Media.Water.IF97.BaseIF97.Regions.hv_p(p);

end if;
u = h - p/d;

end BaseProperties;
end WaterPhaseBoundaryIF97;

Figure 1: Property model for water at phase boundary between liquid and vapour

This model can now easily be applied to study the sys-
tem dynamics and to determine relevant terms for a
control application. After the non-linear state-space
transformation, the implicit dependency of pressure
and liquid volume has become linear.

2.3 Model implementation

The model implementation consists of three steps: The
selection of appropriate medium models, the imple-
mentation of the evaporator component model, and the
assembling of a complete system model allowing the
simulation of the drum boiler.

The Modelica.Media library contains accurate proper-
ties for water and steam according to the IAPWS/IF97
standard [5]. Here a new medium model is formulated
for the phase boundaries at the boiling and dew curves,
using available low level function calls for property
evaluation.

Figure 1 shows the Modelica formulation. The
medium model is defined as a package assembling
general information, like medium name, and actual
property definitions. The package is derived from

the predefined Modelica.Media.Interfaces.Partial-
Medium. As the medium model is for a single
substance, the flag for reduced mass fraction vector
X is set to true, resulting in dim � X � � n � 1 � 0 for
n � 1 substance. Substance names are not defined.

The model BaseProperties contains the actual property
definitions. It defines saturation temperature, density,
enthalpy and specific total energy as functions of pres-
sure. The region parameter is used to determine at
which boundary the properties are evaluated.

This medium model can now be used to formulate the
evaporator component model. Note that in Modelica
the physically oriented model is directly formulted.
Model transformations required for efficient and ro-
bust simulation, as e.g. discussed in subsection 2.2, are
left to the Modelica translator.

Figure 2 shows the Modelica formulation. Consider-
ing that just the model given in subsection 2.1 is im-
plemented, the listing appears relatively long. This is
because many parameters and variables are involved
that are declared one per line.

The evaporator model first imports the re-used
libraries Modelica.Fluid.Interfaces and Model-

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

289

model Evaporator
import Modelica_Fluid.Interfaces.*;
import Modelica.SIunits.Conversions.*;
import SI = Modelica.SIunits;
// property and interface declarations
package Medium = WaterPhaseBoundaryIF97;
Medium.BaseProperties medium_a(region=1, p=port_a.p) "Medium in port_a";
Medium.BaseProperties medium_b(region=2, p=port_b.p) "Medium in port_b";
FluidPort_a port_a(redeclare package Medium = Medium);
FluidPort_b port_b(redeclare package Medium = Medium);
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a heatPort;
Modelica.Blocks.Interfaces.OutPort V(redeclare type SignalType = SI.Volume)

"liquid volume (level)";
Modelica.Blocks.Interfaces.OutPort sigma_D "Thermal stress in metal";
// public parameters
parameter SI.Mass m_D=300e3 "mass of surrounding drum metal";
parameter SI.SpecificHeatCapacity cp_D=500

"specific heat capacity of drum metal";
parameter SI.Volume V_t=100 "total volume inside drum";
parameter SI.Pressure p_start=from_bar(1) "initial pressure";
parameter SI.Volume V_start=67 "initial liquid volume";

protected
SI.Pressure p(start=p_start, stateSelect=StateSelect.prefer)

"pressure inside drum boiler";
SI.Volume V_v "volume of vapour phase";
SI.Volume V_l(start=V_start, stateSelect=StateSelect.prefer)

"volumes of liquid phase";
SI.SpecificEnthalpy h_v=medium_b.h "specific enthalpy of vapour";
SI.SpecificEnthalpy h_l=medium_a.h "specific enthalpy of liquid";
SI.Density rho_v=medium_b.d "density in vapour phase";
SI.Density rho_l=medium_a.d "density in liquid phase";
SI.Mass m "total mass of drum boiler";
SI.Energy U "internal energy";
SI.Temperature T_D=heatPort.T "temperature of drum";
SI.HeatFlowRate q_F=heatPort.Q_dot "heat flow rate from furnace";
SI.SpecificEnthalpy h_W=port_a.e "feed water enthalpy";
SI.SpecificEnthalpy h_S=medium_b.h "steam enthalpy";
SI.MassFlowRate qm_W=port_a.m_dot "feed water mass flow rate";
SI.MassFlowRate qm_S=port_b.m_dot "steam mass flow rate";

equation
// balance equations
m = rho_v*V_v + rho_l*V_l + m_D;
U = rho_v*V_v*h_v + rho_l*V_l*h_l - p*V_t + m_D*cp_D*T_D;
der(m) = qm_W + qm_S;
der(U) = q_F + qm_W*h_W + qm_S*h_S;
T_D = medium_a.T;
// ideal heat transfer between metal and water
V_t = V_l + V_v;
// pressure and specific total enthalpies at ports
port_a.p = p;
port_b.p = p;
port_b.E_dot = semiLinear(port_b.m_dot, port_b.e, h_v);
port_a.E_dot = semiLinear(port_a.m_dot, port_a.e, h_l);
// thermal stress
sigma_D.signal[1] = 60*der(T_D);
// liquid level
V.signal[1] = V_l;

end Evaporator;

Figure 2: Evaporator component model

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

290

Figure 3: DrumBoiler system model in Dymola

ica.SIunits. Then the medium models and ports are
declared together with parameters in a public section.
The medium model defined above is instantiated
twice: one for the liquid phase and one for the vapour
phase. Internal model variables are declared in a
protected section. Finally the model equations are
stated and internal model variables are assigned to the
public ports.

Note the use of semiLinear to define the energy flow
through each port. This mechanism enables the treat-
ment of reversible flow, see [4]. For example at port a,
either water with given total enthalphy port a.e may
enter, or liquid with enthalpy h l may leave the evapo-
rator.

A further important detail is the stateSelect attribute
defined for pressure p and liquid volume Vl . This tells
the translator to do the model transformation outlined
in subsection 2.2.

Having the medium model and the evaporator com-
ponent model ready, a complete system model is as-
sembled in the third step, adding a feed water pump, a

valve at the steam outlet, sensors, and an ambient ref-
erence point. The composition of a system model is
easiest done graphically. Figure 3 shows the complete
drum boiler model assembled with Dymola.

The feed water flow needs to be controlled so that the
water level inside the drum is kept at its set point. A PI
control loop is added to the system model for this pur-
pose. These additional component models are taken
from the standard Modelica.Blocks library.

2.4 Model translation

Prior to numerical calculations, the Modelica model
is translated to a mathematical system of differential-
algebraic equations (DAE) and further transformed to
a system of ordinary differential equations (ODE)

ẋ � t � � f � x � t � � u � t � � p � t � � (16)

f : IRnx � IRnu � IRnp �� IRnx �
y � t � � g � x � t � � u � t � � p � t � � (17)

g : IRnx � IRnu � IRnp �� IRny �

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

291

0 600 1200 1800 2400 3000 3600
0

500

q F
 [M

W
]

0 600 1200 1800 2400 3000 3600
0

0.5

1

Y
V

al
ve

0 600 1200 1800 2400 3000 3600
0

100

200

q m
,S

 [k
g/

s]

0 600 1200 1800 2400 3000 3600
0

50

100

p S
 [b

ar
]

0 600 1200 1800 2400 3000 3600
0

200

T
S
 [°

C
]

0 600 1200 1800 2400 3000 3600
−10

0

10

σ D

time [s]

Figure 4: Simulation results applying a ramp to the heat flow and holding the valve open.

Model variables are internal continuous-time states
x � IRnx , controlled inputs u � IRnu , constant param-
eters p � IRnp , and model outputs y � IRny .

In the drum boiler example there are

u � � qF � YValve � (18)

x � � Vl � pS � xPI � (19)

y � � TS � pS � qm � S � Vl � σD � (20)

with xPI coming from the PI controller.

The model exhibits a nonlinear dynamics caused by
material properties of water and steam, the large range
of operation passed during startup, and the embedded
control of the water level.

3 Boiler startup problem

During startup, a specified set point for steam temper-
ature, pressure and mass flow rate shall be reached as

fast and efficient as possible, considering constraints
on process variables. The most important constraints
arise from thermal stress on thick-walled parts that are
heated up, σD in the example treated here, cf. (6).

The boiler startup can be simulated for a given control
strategy using e.g. Dymola [2] or Simulink [12]. Here
the HQP optimization solver is applied, see next sec-
tion, which provides initial-value simulation as a sub-
functionality. Figure 4 shows simulation results when
increasing the heat flow in the form of a ramp during
45 minutes and holding the valve at the steam outlet
open. With this strategy, the startup takes about 45
minutes. The constraint on thermal stress is violated.

4 Optimal boiler startup

The boiler startup problem can be treated as optimal
control problem minimizing an objective function sub-
ject to constraints.

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

292

0 600 1200 1800 2400 3000 3600
0

500

q F
 [M

W
]

0 600 1200 1800 2400 3000 3600
0

0.5

1

Y
V

al
ve

0 600 1200 1800 2400 3000 3600
0

100

q m
,S

 [k
g/

s]

0 600 1200 1800 2400 3000 3600
0

50

100

p S
 [b

ar
]

0 600 1200 1800 2400 3000 3600
0

200

T
S
 [°

C
]

0 600 1200 1800 2400 3000 3600
−10

0

10

σ D

time [s]

Figure 5: Optimal startup control minimizing the optimization objective subject to constraints.

In the example treated here, the objective is to min-
imize the deviation of generated steam pressure and
mass flow rate from given reference points over the
time horizon � t0 � t f �

J � t f�
t � t0

wT � � pS � t � � pre f � 2

� qm � S � t � � qm � re f � 2 � dt � min
u � t � (21)

with the reference point being pre f � 110bar � qm � re f �
180kg/s and the vector of weighting terms w �� 10 � 3 � 10 � 4 � T . The objective shall be minimized sub-
ject to the system model (16).

Constraints that have to be fulfilled over the entire op-
timization horizon t � � t0 � t f � can be divided into con-
trol input constraints and state or output constraints.
Input constraints are the control bounds

0 � qF � 500MW (22)

0 � YValve � 1 (23)

and the rate-of-change bound on the heat flow

� 25MW � min � d qF � d t � 25MW � min (24)

The thermal stress is formulated as output constraint

� 10 � σD � 10 � (25)

Figure 5 shows the solution of the optimal startup con-
trol problem. As a result of the dynamic optimiza-
tion, the startup time can be reduced to less than 30
minutes, fulfilling all constraints. This is mainly due
to better exploitation of allowed limits and the mutual
dependence of multiple process variables. Especially
the thermal stress limit is exploited during almost the
complete startup. The valve position is used to fine
control the startup, especially at times when the heat
flow is limited by the rate-of-change bound (between
1000 and 1500 seconds).

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

293

5 Solver issues

The dynamic optimization problem was solved using
the HQP code [7]. The optimizer accesses the same
compiled model (16) as a simulator. In fact the model
is loaded dynamically as Simulink S-function. Dur-
ing each optimization iteration, HQP solves the model
differential equations and internally derived sensitivity
equations, in order to evaluate optimized control input
trajectories and to find directions for further improve-
ment, respectively. The dynamic optimization prob-
lem is transformed to a non-linear optimization prob-
lem with the method of control vector parameteriza-
tion. In total 121 parameters (free optimization vari-
ables) are introduced to describe the two control tra-
jectories. 183 additional optimization variables are in-
troduced for discrete-time states. The state constraint
is evaluated at 120 sampling time points. The solution
of the optimization problem takes 34 seconds on a PC
Pentium IV, 1.8 GHz. It can be reduced down to 5
seconds applying a fixed step-size implicit integration
rule to differential and sensitivity equations (cf. inline
integration for real-time simulation [3]).

While accessing the same model as a simulation
solver, an optimization solver generally has stronger
requirements on a model. HQP implements a sparse
Sequential Quadratic Programming algorithm that is
of quasi Newton type and considered state-of-te art for
large-scale non-linear optimization. The model needs
to be smooth with respect to the optimization vari-
ables, allowing the determination of model sensitivi-
ties. This strongly limits the use of features like dis-
crete events, reversible flows, and the like, that can be
treated by simulation solvers without any problem.

Model sensitivities are obtained by integrating sensi-
tivity equations together with model equations. The
sensitivity equations are based on model Jacobians,
see [6] for more details. That is why a model being
translated for optimization should contain Jacobians,
besides the compiled model equations. Note that the
used Simulink S-function format supports Jacobians
and that Dymola can generate them.

The Modelica.Fluid and Modelica.Media libraries
were designed such that model Jacobians can be de-
rived automatically by a Modelica tool. This is espe-
cially important for medium models accessing exter-
nal functions that can not be differentiated automati-
cally by a Modelica tool. An annotation syntax exists
to refer to Jacobian information as available.

The automatic generation of model Jacobians does

not work for high-index DAE’s and medium models
providing first order derivatives only, as the example
treated here. This is because the first order derivatives
are already used for the transformed model, cf. sub-
section 2.2. Second order derivatives of the state de-
pendent medium properties would be needed for the
model Jacobian. Even higher order derivatives would
be needed for a DAE index � 2. If a medium model
is formulated using internal Modelica functions, like
Water.IF97 used here, a Modelia tool might apply al-
gorithmic differentiation to automatically obtain re-
quired derivatives [9].

6 On-line application

The method discussed in this paper is being applied
to a 700 MW coal fired power plant. The model used
there is significantly more rigorous, esp. with respect
to the thermal stress models, see also [10]. It consid-
ers additional important components like the furnace,
economizer, superheaters, headers, spray water injec-
tion and long pipes.

A number of new challanges arise in an on-line appli-
cation, ranging from repeaded update of the solution in
a control loop, on-line identification of transient initial
states and numerical robustness, through issues of the
integration with the control system, supervision of the
optimization and fall-back strategy, up to user inter-
face design and acceptance by operating staff. It is not
in the scope of this paper to discuss these issues. More
details about implications on the optimization finds in
[8]. More application specific information is given in
[11].

7 Conclusions

This paper discusses the application of a drum boiler
simulation model taken from the literature to dynamic
optimization. The model is formulated in Model-
ica exploiting the new Modelica.Media and Model-
ica.Fluid base libraries. The mathematical model
transformation performed automatically by the Dy-
mola tool is outlined.

Based on the model, the optimal control problem is
specified with an objective function and constraints.
The optimal control problem is solved as large-scale
non-linear optimization problem. For the example, the
startup time can be reduced from 45 minutes to less

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

294

than 30 minutes, while constraint on thermal stress is
fulfilled better.

The new Modelica.Fluid and Modelica.Media libraries
allow the formulation of thermo-fluid models from a
physical point of view. The object-oriented design
supports a flexible design. Many mathematical details
that traditionally had to be treated by a human modeler
have been automated, making the modeling more effi-
cient and allowing better re-use. Such details include
the treatment of high-index DAEs, non-linear state-
space transformations and the automatic detection of
flow directions for multiple inter-connected fluid ports,
including support for flow reversal.

The new libraries are applicable to on-line optimiza-
tion. While making the job for human modelers eas-
ier, the libraries pose high requirements on a Model-
ica translator for the generation of efficient simula-
tion code. Most important are the analytical treatment
of connection equations and the elimination of com-
mon sub-expressions for multiple property evaluations
at the same point, e.g. in inter-connected components.
Dymola offers these features.

Reversible flows must be used carefully in optimiza-
tion models as they are treated discontinuously, caus-
ing problems for the sensitivity analysis. A model al-
lowing for reversible flow does not cause problems if
flow does not revert, however, switching may also oc-
cur due to small numerical errors if flows are zero. For
models with known unidirectional flows, one would
like to be able to fix the direction in the model and
to enforce correct results with optimization constraints
instead. An other point that might be improved by tool
vendors is the automatic differentiation of medium
functions, as required for DAE index reduction and
for the calcualtion of model sensitivities. Currently
derivatives have to be provided explicitly together with
medium functions in a model library.

References

[1] K.J. Åström and R.D. Bell. Drum-boiler dynam-
ics. Automatica, 36:363–378, 2000.

[2] Dynasim AB. Dymola: Dynamic Modeling Lab-
oratory. http://www.dynasim.se.

[3] H. Elmquist, S.E. Mattsson, and H.Olsson. New
methods for hardware-in-the-loop simulation of
stiff models. In Proceedings of the 2nd Interna-
tional Modelica Conference. Oberpfaffenhofen,
Germany, March 2002.

[4] H. Elmqvist, H. Tummescheit, and M. Otter.
Modeling of thermo-fluid systems – Model-
ica.Media and Modelica.Fluid. In Proceedings
of the 3rd International Modelica Conference.
Linköping, Sweden, November 2003.

[5] W. Wagner et. al. The IAPWS Industrial For-
mulation 1997 for the thermodynamic properties
of water and steam. Transactions of the ASME,
122:150–182, 2000.

[6] R. Franke. Formulation of dynamic optimiza-
tion problems using Modelica and their efficient
solution. In Proceedings of the 2nd Interna-
tional Modelica Conference. Oberpfaffenhofen,
Germany, March 2002.

[7] R. Franke, E. Arnold, and H. Linke. HQP: a
solver for nonlinearly constrained large-scale op-
timization. http://hqp.sourceforge.net.

[8] R. Franke, K. Krüger, and M. Rode. Nonlinear
model predictive control for optimized startup
of steam boilers. In Proceedings of the GMA-
Kongress 2003. Baden-Baden, Germany, June
2003.

[9] A. Griewank. Evaluating Derivatives: Princi-
ples and Techniques of Algorithmic Differentia-
tion, volume 19 of Frontiers in Applied Mathe-
matics. SIAM, Philadelphia, 2000.

[10] K. Krüger, R. Franke, and M. Rode. Optimiza-
tion of boiler startup using a nonlinear boiler
model and hard constraints. In Proceedings of the
15th International Conference on Energy, Costs,
Optimization, Simulation and Environmental Im-
pact of Energy Systems (ECOS 2002), volume II,
pages 1310–1318. Berlin, Germany, July 2002.

[11] M. Rode, R. Franke, and K. Krüger. Optimize
IT model predicteve control for boiler start-up
(BoilerMax). ABB Review, 3:30–36, 2003.

[12] The MathWorks, Inc. Simulink: for
model-based and system level design.
http://www.mathworks.com.

 The Modelica Association Modelica 2003, November 3-4, 2003

Rüdiger Franke, Manfred Rode, Klaus Krüger On-line Optimization of Drum Boiler Startup

295

 The Modelica Association Modelica 2003, November 3-4, 2003

296

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 8A
Mechatronic Systems – II

297

 The Modelica Association Modelica 2003, November 3-4, 2003298

How One Can Simulate Dynamics of Rolling Bodies via Dymola:
Approach to Model Multibody System Dynamics Using Modelica

Ivan I. Kossenko and Maia S. Stavrovskaia
MSUS, Moscow Region, Russia, kosenko@ccas.ru

Abstract

An attempt to build more accurately the method to
describe dynamics of multibody system (MBS) by
means of Modelica is undertaken. In frame of the
method under consideration can be simulated con-
straints of different types: holonomic/nonholonomic,
scleronomic/rheonomic.

The model of a constraint allows to isolate mutually
behavioral descriptions based on differential and alge-
braic equations correspondingly.

To illustrate an approach being applied the implemen-
tation of a constraint for bodies, rolling one relative to
another is described. As an example the model of rat-
tleback rolling on horizontal surface is investigated.

1 Preliminaries

A lot of methods to describe the structure of a multi-
body system using different graph approaches are
known. See for instance [1, 2, 3], and further refer-
ences one can find there. Usually MBS is assumed
to consist of rigid bodies. Note that in the frame of a
bondgraph approach the background of an energy in-
terchanges is used [4].

When implementing the MBS structural analysis
based on a force interactions either oriented or nonori-
ented graphs are used in dependence of the problems
to be resolved. Newton’s laws [5] allow to describe
dynamics within the so called Newton’s viewpoint. In
such a way the translational–rotational motion of each
body is described by the system of Newton–Euler’s
ODEs. The graph structure is derived from an anal-
ysis of mutual interactions for bodies the system com-
posed from. Such an interactions is caused mainly by
constraints. But there are cases of physical fields also
occurred. In general, Newton’s third law of dynam-
ics implies a dual nature of interactions between the

bodies.

Thus in a natural way from Newton’s viewpoint the
graph of an MBS structure is to be considered as a
nonoriented one. In some particular cases the graph
possesses special structure, and constraints are holo-
nomic (i. e. integrable). Such situation occurs for in-
stance in robotics where the structure is a tree. This
fact used to reduce the source Newton–Euler system of
ODEs with an attached subsystem of algebraic equa-
tions to some special kind of purely differential equa-
tions, for example of Lagrange ones. In this case natu-
ral approach assumes association of each dynamical
ODE of the second order with the object compris-
ing usually joint corresponding to a generalized co-
ordinate, and an appropriate generalized force. Both
usual linear force and torque of a couple can be in
use. This force mainly is control one. It arises due
to drive located at a joint. The solution of a kind pre-
viously described has been used in current Modelica
MBS library of classes. For instance one can find such
an approach inRevolute model where application of
d’Alembert’s principle relative to the revolution axis in
behavioral section is equivalent to use of one second
order ODE from Lagrange’s equations for the whole
holonomic mechanical system.

In general case the situation is more complicated, es-
pecially if nonholonomic (i. e. nonintegrable) con-
straints are used. Modeler has to take into account
equations of constraints of algebraic, or even transcen-
dental type. Fortunately today there exists background
to build the models mentioned above, in particular:
algorithms [6], modeling languages [7], and compil-
ers [8]. To describe the models of an MBS we start
from: (a) object–oriented paradigm [9] on one hand,
and (b) so called physical principles of modeling [10]
on the other one. Note that in our case of MBS dynam-
ics one can consider in a natural way the rigid body as
a main physical entity of the problems to be simulated.

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003299

1.1 Formal Description

Consider an MBS consisting ofm + 1 bodies
B0, . . . ,Bm. Represent it as a setB = {B0, . . . ,Bm}.
HereB0 is assumed to be a base body. We suppose
B0 to be connected with an inertial frame of reference,
or to have a known motion with respect to the inertial
frame of reference. For example one can imagine the
base body as a rotating platform, or as a vehicle per-
forming its motion according to a given law.

Some bodies are considered as connected by me-
chanical constraints. But in general it is not nec-
essarily. Suppose all constraints compose the set
C = {C1, . . . ,Cn}. We include in our consider-
ations constraints of the following types: holo-
nomic/nonholonomic, scleronomic/rheonomic. The
latter properties mean the constraints having station-
ary/nonstationary parameters. For example one could
consider the surface moving according to a prescribed
law as a rheonomic constraint.

Figure 1.1: Multibody System

Thus one can uniquely represent a structure of the
MBS via an nonoriented graphG = (B,C ,I). Here
I ⊂ C ×B is an incidence relation setting in a corre-
spondence the vertex incident to every edgeCi ∈ C of
the graph. According to physical reasons it is easy to
see that for any mechanical constraintCi there exist
exactly two bodiesBk,Bl ∈ B connected by this con-
straint.

The incidence relation generates an adjacency relation
S ⊂ B2 on the set of vertices. In our case this relation
has the properties: (a) antireflexiveness: a body isn’t
be connected with itself; (b) symmetry: because of the
graph is nonoriented if(Bk,Bl) ∈ S , then(Bl ,Bk) ∈ S .

1.2 Architecture of Bodies Mutual Interac-
tions in MBS

It is clear that consideration of the graphG does not
provide a structural information sufficient for the MBS

dynamics description. Indeed, in addition to the force
interaction represented usually by wrenches between
bodiesBk, Bl through the constraintCi there exist kine-
matical conditions specific for different kinds of con-
straints. In turn wrenches themselves can be repre-
sented by constraint forces and constraint torques cou-
ples. These forces and couples are connected by virtue
of Newton’s third law of dynamics.

Thus if the system of ODEs for translational–
rotational motion can be associated with the object of
a model corresponding to rigid body, then the system
of the algebraic equations can be naturally associated
with the object of a model corresponding to constraint.
Note that according to consideration fulfilled above the
set of algebraic equations comprises relations for con-
straint forces, torques of couples, and kinematical re-
lations depending on kind of constraints. For such ap-
proach the differential and algebraic equations are said
incapsulated in behavioral sections of the mentioned
objects.

Thus all the “population” of any MBS model is re-
duced to objects of two classes: “Body” (objects
B0, . . . ,Bm), “Constraint” (objectsC1, . . . ,Cn). Accord-
ing to this approach simulating of the whole system
behavior is reduced to permament informational inter-
action between the objects of two considered types.
Within the frame of Newton’s laws of dynamics one
can construct the MBS as a communicative network
for this interaction. In this case the objects of bodies
“feel” the action of other ones through corresponding
objects of constraints.

Physical interactions are conducted in models due to
objects splitted also in two classes of ports: “Wrench
Port”, “Kinematical Port”. The first one is to be used
to transfer vectors of force, and torque of couple. In
addition, “Wrench Port” has to be used for transferring
the information about a current location of the point
constraint force acts upon.

Remark 1.1 In our idealized model the force in-
teraction between bodies is realized at a geometric
point. Its coordinates are fed outside constraint object
through “Wrench Port” permanently in time.

“Kinematical Port” is to be used to transfer the data
of rigid body kinematics: configuration (position of
center of mass, orientation), velocity (velocity of the
center of mass, angular rate), and acceleration (accel-
eration of the center of mass, angular acceleration).
Objects of classes “Body” and “Constraint” work as

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003300

it is represented in Figure 1.2. The certain duality in a
behavior of these objects can be easily observed.

Figure 1.2: Typical Objects of MBS

Indeed, when getting force information through the
portsW1, . . . ,Ws from the incident objects of a class
“Constraint” the object of a class “Body” simultane-
ously generates, due to an integrator, kinematical in-
formation feeding outside through the portK. On
the other hand every object of a class “Constraint”
gets kinematical data from the objects corresponding
to bodies connected by the constraint under consider-
ation through its two “input” portsKA, KB. Simulta-
neously using the system of algebraic equations this
object generates information concerning forces and
torques of couples, and transmits the data to “output”
portsWA, WB for the further transfer to objects of bod-
ies under constraint.

According to classification of communicative ports
performed above one can similarly classify the con-
nectors used as “cables” for two purposes: (a) to trans-
fer information about forces and torques; (b) to trans-
fer the kinematical information.

Now it is possible to describe the architecture of in-
formation interactions within the particular constraint
Ci corresponding to an individual edge of graphG,
see Figure 1.3.

Figure 1.3: Architecture of Constraint

One should consider all connectors used above as bidi-
rected ones. Arrows in Figure 1.3 are used to show the
semantics of interactions. It’s clear that the whole con-
struction considered above is a virtual one. Construct-
ing the model the compiler extracts all equations from
the objects and assembles them composing the DAE
system optimized for a numeric integrator.

As usual physical fields one can implement by apply-
ing of inner andouter specifications.

2 Rolling of Rigid Bodies

It turned out that the attempts to treat problems of
nonholonomic mechanics within existing MultiBody
classes library are not effective. Indeed, this library
has been developed mainly for modeling of controlled
motion in mechatronics and theory of machines and
mechanisms. The case of rolling bodies, typical for
nonholonomic mechanics can’t be inserted in the for-
malism of joints and cuts in bodies. Here the position
of a point of interaction between the bodies depends
on dynamics of MBS.

Moreover, the situation turns being even more com-
plicated if the friction of different kinds is taken into
account, because relative sliding of bodies, unilat-
eral motions, and impacts are assumed being allowed.
To describe the dynamics of phenomena enumerated
above one can apply well–known methods of classi-
cal mechanics staying simultaneously on positions of
physical objects modeling. We mean differential equa-
tions of tranlational–rotational motion for interacting
bodies, known as Newton–Euler’s equations.

2.1 General Description

As an example for formal approach discussed above
let us consider the problem on description of one body
contiguous to another one. Such approach can be used
by designer in order to avoid derivation of dynamic
equations both for holonomic and nonholonomic me-
chanical systems. In the second case problem itself
may be complicated enough. Note that traditional cuts,
flanges, or joints as constraint interfaces seem to be
impossible for use in the situation under consideration.
In addition, one should take into account a useful prop-
erty of mutual isolation of differential and algebraic
equations incapsulated in the classes of types “Body”
and “Constraint” correspondingly.

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003301

Consider a local fragment of a mechanical system,
and suppose that this fragment consists of a pair of
rigid bodies rolling one upon another. Then a general
schema in Figure 1.3 is satisfied. Suppose that all force
and kinematical data to be transferred through ports
are represented in a unified way: relative to the base
frameO0x0y0z0 of a reference connected with the body
B0. Wrench port consists of three arraysP,F,M ∈R3.
Here P is an array of coordinates for the point of a
contact between two bodies under constraint,F is a
constraint force vector,M is a constraint couple torque
vector. In general case components of the arrayP are
computed in the object of a constraint. The vectorsF,
M are assumed expressing the “action” of constraint
object to body object, of course in a virtual sense. The
class to transfer force information can read:

connector WrenchPort
SI.Position P[3];
SI.Force F[3];
SI.Torque M[3];

end WrenchPort;

The kinematical port consists of six arrays:
r ,v,a,ω,ε ∈ R3, T ∈ SO(3). The array r corre-
sponds to the radius–vector of the mass center of the
body, v corresponds to the velocity of this point,a
corresponds to its acceleration.T is an orthogonal
matrix of a current body orientation. The columns
of the matrixT consist of projections of unit vectors
of the orthonormal base connected with a moving
body into the axes of the base body frame. The class
“Kinematical Port” in Modelica can be defined as:

connector KinematicPort
SI.Position r[3];
SI.Velocity v[3];
SI.Acceleration a[3];
SI.Real T[3,3];
SI.AngularVelocity omega[3];
SI.AngularAcceleration epsilon[3];

end KinematicPort;

All the objects of a class “Constraint” must have
classes–inheritors as subtypes of a corresponding su-
perclass. According to Newton’s third law this super-
class must contain the equations of the form

FA +FB = 0, MA +MB = 0. (2.1)

in its behavioral section. Here arraysFA, MA andFB,
MB represent constraint forces and torques “acting in

directions” of bodies A and B correspondingly. Kine-
matical equations for different types of constraints are
to be added to equations (2.1) in different classes–
inheritors corresponding to these particular types of
constraints.

Properties (2.1) usually conducted throughflow –
variables are implemented here in a natural way in the
behavioral section of the base superclass for mechani-
cal constraints. They read:

partial model Constraint
KinematicPort InPortA;
WrenchPort OutPortA;
KinematicPort InPortB;
WrenchPort OutPortB;

equation
OutPortA.F + OutPortB.F = {0,0,0 };
OutPortA.M + OutPortB.M = {0,0,0 };

end Constraint;

Remark 2.1 Model developer can create classes of
complicated types of constraints such that equa-
tions (2.1) are not satisfied. For example such a con-
straint one can imagine as a thread thrown over the
pulley, see Figure 2.1. It is clear that this constraint
can be decomposed to components in such a way that
the equations (2.1) are satisfied for each elementary
constraint. However in applications it is often suitable
to deal with constraints of a complex, combined type
directly.

Figure 2.1: Example to Remark 2.1

Now start to construct behavioral equations for the ob-
ject simulating of a constraint of the rolling type, see
Figure 2.2. First of all let us describe the system of
equations defining the position of a contact point. A
constraint object has to “know”, i. e. to incapsulate

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003302

inside itself the equations for contiguous surfaces

fA(xk,yk,zk) = 0, fB(xl ,yl ,zl) = 0.

Here all equations are defined with respect to the frame
fixed in a corresponding body. Suppose that for the
instantt these surfaces are described by equations

gA(x0,y0,z0) = 0, gB(x0,y0,z0) = 0

written in the base frame. Here the expressions for the
functionsgA andgB can be easily obtained as

gA(r0) = fA
[
T−1

k (r0− rOk)
]
,

gB(r0) = fB
[
T−1

l (r0− rOl)
]
.

Here for sake of brevity we denoter0 = (x0,y0,z0)
T .

The vectorsrOk, rOl determine mass center positions
for the connected bodies. All radius vectorsr0, rOk,
rOl are assumed being represented in the base frame.
Note that computation of matrices inverse to orthogo-
nal ones is reduced simply to matrix transposition.

Figure 2.2: Vicinity of Contact Point

When rolling, the surfaces touch each other at the point
P which is to be found, see Figure 2.2. The necessary
condition of tangency reads

gradgA = λ ·gradgB. (2.2)

Hereλ is a scalar factor playing a role of additional
auxiliary variable. In general position the system (2.2)
defines uniquely a curve consisting of points in which
the surfaces

gA(r0) = α, gB(r0) = β

have common tangent planes. One can considerλ as
a coordinate on the curve. In general position such a
curve intersects the surface

gA(r0) = 0, or gB(r0) = 0 (2.3)

transversally. Thus the system of equations to find a
contact point can be composed using (2.2) and (2.3).
Here one has four scalar equations and four unknown
variables:x0, y0, z0, λ.

To complete the process of constructing the class
“Roll”, an inheritor of a superclass “Constraint” one
should append the condition of absence of sliding at
the point of a contact

vk +[ωk, r0− rOk] = vl +[ωl , r0− rOl] (2.4)

to a system of equations (2.2), (2.3). Here vectors
vk, ωk, vl , ωl denote linear velocities of mass centers,
and angular velocities for the bodies subjected to con-
straint. Both sides of (2.4) are obtained from the rigid
body kinematics [5]. Corresponding inheritor has the
following Modelica code:

partial model Roll
extends Constraint;
SI.Position r[3];

equation
InPortA.v +
cross (InPortA.omega,r - InPortA.r) =
InPortB.v +
cross (InPortB.omega,r - InPortB.r);
OutPortA.P = r;
OutPortB.P = r;
OutPortB.M = {0,0,0 };

end Roll;

2.2 Dynamics of Rattleback

Further consider the simplified model of a rigid bodies
rolling, namely dynamics of the rattleback on an im-
movable horizontal surface [11]. In this case the base
body is supposed being fixed. Its boudary is a fixed
horizontal plane which is considered as a surface for
rolling. This body plays a role of the “Body A”, see
Figure 2.3. Thus it is the same body as above denoted
by B0. To describe its dynamics one need not the dif-
ferential equations. All kinematical variables are zero–
valued vectors. Matrix of orientationT0 is an identity
one.

Note objects of base bodies play a special role to de-
scribe the motion according to a predefined law. Cor-
responding classes have no any differential equations
in their behavior. One can write down superclass of
base body in the form:

partial model BaseBody

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003303

KinematicPort OutPort;
end BaseBody;

Figure 2.3: Rattleback on Horizontal Surface

Since bodyB0 is supposed being fixed in the inertial
frame then the class–inheritor can be described as:

model Base
extends BaseBody;
VisualShape Plane(

r0= {0,0,0 },
Shape="box",
LengthDirection= {0,-1,0 },
WidthDirection= {1,0,0 },
Length=0.1,
Width=10,
Height=10,
Material= {0,0,1,0 });

WrenchPort InPortRoll;
equation

OutPort.r = {0,0,0 };
OutPort.v = {0,0,0 };
OutPort.a = {0,0,0 };
OutPort.T = [1, 0, 0;

0, 1, 0;
0, 0, 1];

OutPort.omega = {0,0,0 };
OutPort.epsilon = {0,0,0 };

end Base;

The rattlebackB1 plays a role of the “Body B”. Num-
ber of moving bodies in the MBS ism= 1. In super-
class “Body”, named in our package asRigidBody

dynamics of rigid body is described here by means
of Newton’s differential equations for the body mass
center, and by Euler’s differential equations for rota-
tional motion. The Euler equations are constructed us-
ing quaternion algebra [12] in a following way

dq
dt = 1

2q◦

0
Ω1

Ω2

Ω3

 , I dΩ

dt +[Ω, IΩ] = N.

Here first equation is kinematical one, and the second
equation is one for dynamics of rigid body. Quaternion
q = (q1,q2,q3,q4)

T ∈ H ' R4 uniquely defines rota-
tional matrixR; the quaternion algebraH is considered
as a linear spaceR4; the binary operation◦ denotes
quaternion multiplication. The matrix of inertia tensor
I , the vector of angular velocityΩ = (Ω1,Ω2,Ω3)

T ∈
R3, and vector of total torqueN are considered with
respect to central principal axes of inertia of the body.
Hence before exporting of kinematical data from the
object of classRigidBody one must perform the con-
versionω = RΩ. Similarly total torque after import-
ing and before using inside behavioral section also is
to be tranformedM 7→ N according to the formula
N = RTM .

Usually the rattleback, or wobblestone, or Celtic stone
is assumed being rigid body bounded by paraboloidal
or ellipsoidal surface. This body is assumed possess-
ing a central principal axes of inertia which are not
collinear to body’s axes of symmetry. Consider the
case of an ellipsoidal surface.

Suppose that the central principal moments of inertia
for the moving body read

Ix1x1 = 2, Iy1y1 = 3, Iz1z1 = 1.

Fix also its mass valueµ = 1. To be definite one can
suppose all physical measures based for instance on SI
units. Then the rattleback model can be represented in
the form:

model RollingBody
extends RigidBody;
outer Real[3] Gravity;
// Ellipsoid semi-diameters
outer SI.Length a1;
outer SI.Length b1;
outer SI.Length c1;
VisualShape Body(

r0=0,0,-c1,
Shape="sphere",
LengthDirection=0,0,1,
WidthDirection=1,0,0,
Length=2*c1,
Width=2*a1,
Height=2*b1,
Material=1,0,0,1);

SI.Energy E; // Full energy
SI.Energy K1;// Kinetic energy

// of translations
SI.Energy K2;// Kinetic energy

// of rotations
SI.Energy P; // Potential energy
WrenchPort InPortRoll;

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003304

equation
F = m*Gravity + InPortRoll.F;
M = InPortRoll.M +

cross (InPortRoll.P - r,
InPortRoll.F);

Body.S = T;
Body.r = r;
K1 = 0.5*m*v*v;
K2 = 0.5*omega*I*omega;
P = -m*r*Gravity;
E = K1 + K2 + P;

end RollingBody;

Now consider the building of a constraint. Since
fA(x0,y0,z0) ≡ y0 thengradfA = (0,1,0)T . A bound-
ing surface for the bodyB is assumed to be of the el-
lipsoidal shape having the following semi–diameters
a1 = 2, b1 = 1, c1 = 3. The matrix of the correspond-
ing quadratic form relative to principal axes of the el-
lipsoid reads

B1 =

a−2
1 0 0
0 a−2

2 0
0 0 a−2

3

 .

Suppose that the second principal axis directed along
the axisO1y1 of the ellipsoid of inertia is coincident
to the axis of the body surface. outer shape directed
identically. Further, let us turn the second ellipsoid
relative to the first one aboutO1y1 by an angleδ =
π/10. Then the matrix of a quadratic form for rolling
ellipsoid relative to central principal–axis system has
the form

B = RB1RT , R=

cosδ 0 sinδ
0 1 0

−sinδ 0 cosδ

 .

The equations defining the positionr0 = rP of a con-
tact pointP read

(gradfA, rP) = 0,

gradfA = λ ·(T1 ·B·T−1
1

)
(r0− rO1) .

(2.5)

According to previous considerations the system (2.5)
comprises four scalar equations and four unknown val-
ues:xP, yP, zP, λ. First equation can be easily reduced
to the simple formyP = 0. Finally, class–inheritor for
the constraint under consideration takes the form:

model Ellipsoid_on_Plane
extends Roll;
outer SI.Length a1;

outer SI.Length b1;
outer SI.Length c1;
outer SI.Angle delta;
parameter Real R[3,3]=

[cos(delta), 0, sin(delta);
0, 1, 0;
-sin(delta), 0, cos(delta)];

parameter Real B1[3, 3]=
[1/a1ˆ2, 0, 0;

0, 1/b1ˆ2, 0;
0, 0, 1/c1ˆ2];

parameter Real B[3,3]=
R*B1* transpose (R);

parameter Real n[3]=0,1,0;
parameter SI.Length d=0;
Real lambda;

equation
n*r = d;
n = lambda*

InPortB.T*B*
transpose (InPortB.T)*
(r - InPortB.r);

end Ellipsoid_on_Plane;

Now we can compose the testbench model for simula-
tion of dynamics of the rattleback as:

model Test
parameter SI.Acceleration g=9.81;
inner parameter SI.Acceleration[3]

Gravity= {0,-g,0 };
inner parameter SI.Length a1=2;
inner parameter SI.Length b1=1;
inner parameter SI.Length c1=3;
inner parameter SI.Angle delta=

Modelica.Constants.pi/10;
Base Base1;
RollingBody RollingBody1(

q(start= {1,0,0,0 }),// Initial
// quaternion

r(start= {0,1,0 }),
I=[2, 0, 0; 0, 3, 0; 0, 0, 1],
v(start= {0.05,0,0 }),
omega(start= {0,-1,-0.05 }));

Ellipsoid_on_Plane
Ellipsoid_on_Plane1;

equation
connect (Base1.InPortRoll,

Ellipsoid_on_Plane1.OutPortA);
connect (Base1.OutPort,

Ellipsoid_on_Plane1.InPortA);
connect (

Ellipsoid_on_Plane1.InPortB,
RollingBody1.OutPort);

connect (
Ellipsoid_on_Plane1.OutPortB,
RollingBody1.InPortRoll);

end Test;

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003305

Figure 2.4: General View of Simulation Results

The model described above has been developed using
Modelica language as a package. The high quality of
an approximation for the rattleback motions has been
verified through different simulations performed. For
one of the model runs general view of simulation re-
sults is shown in Figure 2.4. Initial conditions are de-
fined in a following way

rO1(0) =

0
1
0

 , v1(0) =

0.05
0
0

 ,

T1(0) =

1 0 0
0 1 0
0 0 1

 , ω1(0) =

0
−1
−0.05

 .

Integral of energy value was under monitoring see Fig-
ure 2.5. One can observe for this value an extremely
slow drift: height of the whole plot equals to0.0004
while base value is equal to11.31units of energy. Ob-
viously such a drift is caused by computational errors.

Figure 2.5: Preservation of Energy

Trajectory of a contact point in planez0x0, see Fig-
ure 2.6 was also under monitoring. The constraint is
satisfied with high accuracy permanently for all in-
stants of simulation time. Indeed, such an accuracy
can be investigated using variableyP from the equa-

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003306

Figure 2.6: Contact Point Trajectory

tions (2.5). In Figure 2.7 we see that the functionyP(t)
performs only noisy oscillations almost vanishing near
its zero value. Here height of the plot equals to10−24

of length unit.

Figure 2.7: Preservation of Constraint Accuracy

Due to high quality of a numeric model one can easily

observe the known dynamical properties of the rattle-
back. These latter cause in particular change of direc-
tion of angular velocity vector corresponding to rota-
tion about central principal axisO1y1 of Celtic stone,
see Figure 2.8. Initially axisO1y1 is directed ver-
tically downwards, and rattleback rotates clockwise.
Initial direction of the angular velocity slightly devi-
ates from the local vertical. Then when time passes
value of t = 50 units vertical component of angular
velocity passes through its zero value, and one can
observe wobbling motions of the rattleback. One in-
stant of such wobbling is fixed in Figure 2.9. Note that
the total energy is a constant because the mechanical
system under consideration is conservative one. Then
rotation becomes almost permanent but now counter-
clockwise. It easy to see (in Figure 2.8) that the an-
gular velocity projection onto inertial axisy0 is scaled
from−1 to 1 during time of simulation. But its value
undergoes slight oscillations of several frequencies.

Using visual environment of Dymola one can also
easy build 3D–animation of the rattleback rolling on

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003307

Figure 2.8: Behavior of Vertical Component of Angular Rate

a plane, see for example Figure 2.9.

Figure 2.9: Instant Shot at a Moment When Stone Is
Prepared to Change Orientation of Its Rotation

3 Directions of Further Development

Development of the Modelica code similar to one pre-
sented above opens a wide range of possibilities to

model easily complicated problems of MBS dynam-
ics. Among them: (a) dynamics of systems with slid-
ing subjected to friction of various kinds; (b) dynamics
of systems subjected to unilateral constraints with im-
pacts [13]. In both cases to realize models one can
apply Modelica’swhen clause in behavioral section.
Then different cases of sliding and friction correspond
to different cases of equations for forces and torques.
For instance in simplest cases numerical models of
tops rolling/sliding on surfaces can be investigated as
exercises. Note that modeling of dynamics with uni-
lateral constraints is also convenient for Modelica use
because of its facilities for events processing. In all
cases we deal with dynamics arranged as a piecewise
smooth motion.

It should be also interesting to construct realistic
model of dynamics for the truck rolling on a road of
different surface quality in different weather condi-
tions, and a model of dynamics for a heap consisting
of contacting bodies, etc.

Returning to the problem considered above note that

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003308

the model also simplifies qualitative dynamical anal-
ysis for long time simulations. An existence of such
structures in phase space like attractors in dynamics of
the rattleback [14] can be demonstrated.

4 Conclusion

Computations corresponding to case of Kane and
Levinson have been performed. Results of simulations
are identical in all details. Moreover, no special differ-
ential equations for dynamics of nonholonomic sys-
tems have been used! This is a real way to achieve a
unified approach to modeling of both holonomic and
nonholonomic MBS. Compiler itself incapsulates im-
plicitly the use of equations of motion for nonholo-
nomic mechanical system in its algorithm. Thus the
known problem of ODEs derivation for such systems
sometimes nontrivial and difficult seems to be over-
come in automatic mode, at least for problems with
algebraic (nontrancedental) constraints, and for cases
of so called general position.

5 Acknowledgement

The paper was prepared with partial support of Rus-
sian Foundation for Basic Research, grants 02–01–
00196, SS–2000.2003.1.

References

[1] Wittenburg, J., Dynamics of Systems of Rigid
Bodies. — Stuttgart: B. G. Teubner, 1977.

[2] von Schwerin, R., Multi Body System SIMula-
tion. Numerical Methods, Algorithms, and Soft-
ware. Lecture Notes in Computational Science
and Engineering, Vol. 7. — Berlin Heidelberg:
Springer, 1999.

[3] Sinha, R., Paredis, C. J. J., Liang, V-C., and
Khosla, P. K., Modeling and Simulation Meth-
ods for Design of Engineering Systems. // Jour-
nal of Computing and Information Science in En-
gineering, 2001, Vol. 1, Iss. 1, pp. 84–91.

[4] Mukherjee, A., Karmakar, R., Modelling and
Simulation of Engineering Systems through
Bondgraphs. — Alpha Science International
Ltd., 2000.

[5] Routh, E. J., A Treatise on the Dynamics of a
System of Rigid Bodies. — London: Vol. 1,
1897; Vol. 2, 1905.

[6] Ascher, U. M., Petzold, L. R., Computer
Methods for Ordinary Differential Equations
and Differential–Algebraic Equations. — SIAM,
1998.

[7] Modelica — A Unified Object-Oriented Lan-
guage for Physical Systems Modeling. Tuto-
rial. — Modelica Association, 2000.

[8] Dymola. Dynamic Modeling Laboratory. User’s
Manual. Version 5.0a — Lund: Dynasim AB,
Research Park Ideon, 2002.

[9] Booch, G., Object–Oriented Analysis and De-
sign with Applications. — Addison–Wesley
Longman Inc. 1994.

[10] Cellier, F. E., Elmqvist, H., Otter, M., Model-
ing from Physical Principles. // in: Levine, W.
S. (Ed.), The Control Handbook. — Boca Raton,
FL: CRC Press, 1996. — pp. 99–107.

[11] Kane, T. R., Levinson, D. A., Realistic Mathe-
matical Modeling of the Rattleback. // Interna-
tional Journal of Non–Linear Mechanics, 1982,
Vol. 17, Iss. 3, pp. 175–186.

[12] Kosenko, I. I., Integration of the Equations of
the Rotational Motion of a Rigid Body in the
Quaternion Algebra. The Euler Case. // Journal
of Applied Mathematics and Mechanics, 1998,
Vol. 62, Iss. 2, pp. 193–200.

[13] Pfeiffer, F., Unilateral Multibody Dynamics. //
Meccanica, 1999, Vol. 34, No. 6, pp. 437–451.

[14] Borisov, A. V., and Mamaev, I. S., Strange
Attractors in Rattleback Dynamics // Physics–
Uspekhi, 2003, Vol. 46, No. 4, pp. 393–403.

 Ivan I. Kossenko, Maia S. Stavrovskaia How One Can Simulate Dynamics of Rolling Bodies via Dymola…

 The Modelica Association Modelica 2003, November 3-4, 2003309

 The Modelica Association Modelica 2003, November 3-4, 2003

310

The New Modelica MultiBody Library

Martin Otter1, Hilding Elmqvist2, and Sven Erik Mattsson3
1DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.de

2Dynasim AB, Lund, Sweden, Elmqvist@dynasim.se
3Dynasim AB, Lund, Sweden, SvenErik@dynasim.se

http://www.robotic.dlr.de/Martin.Otter and http://www.dynasim.se

Abstract
A new Modelica library for the modeling and
simulation of 3-dimensional mechanical systems has
been developed. It will be freely available in the
Modelica standard library. Furthermore, the Dymola
simulation environment has been considerably
enhanced to support the needed features. The
MultiBody library is first presented from a user’s
point of view. Furthermore, all essential details of
the implementation are described. The library
includes features that are usually not available in
other multi-body software, such as analytic handling
of a large class of kinematical loops, or the arbitrary
connection feature of objects. For example, series
connection of 3D line force components is possible.

1 Introduction
The MultiBody library is a free Modelica package
providing 3-dimensional mechanical components to
conveniently model mechanical systems, such as
robots, mechanisms, or vehicles. It will be
accessible as Modelica.Mechanics.MultiBody and is
a replacement of the Modelica library
ModelicaAdditions.MultiBody which has been used
for a long time. The main design goal of the library
and of the supporting features in Dymola [7] was
that standard applications can be carried out in a
convenient way without knowledge of the Modelica
language. The MultiBody library has the following
important features:
• Components can be connected together in a

nearly arbitrary fashion. If kinematical loop
structures occur, they are automatically handled
in an efficient way by a new technique
explained in section 5. Also force components
can be connected directly together, a feature that
is usually not available in other multi-body
software.

• The non-linear equations occurring in
kinematical loops are solved analytically, i.e., in
a robust and efficient way, for a large class of
mechanisms, such as a 4 bar and slider-crank
mechanism, or a MacPherson suspension by

constructing such loops with elements from the
MultiBody.Joints.Assemblies sub package.

• Most joints and all bodies have potential states.
A Modelica translator, such as Dymola, will use
the generalized coordinates of joints as states if
possible. If this is not possible, e.g., because
bodies are moving freely in space, states are
selected from body coordinates. An advanced
user may select states manually from the
“Advanced” menu of the corresponding
components.

• Whenever a multi-body system model is
constructed, all defined components are
automatically visualized in an animation using
appropriate default sizes and colors. This allows
an easy visual check of the constructed model,
without extra work of the modeler. Both, the
complete animation as well as individual
component animation can be switched off. In
this case the equations defining animation are
removed from the generated code.

• Annotations and assert statements have been
introduced that provide in many cases warning
or error messages that are related to the library
components and not to specific equations as it is
usual in Modelica libraries.

2 A First Example
In a first example it shall be demonstrated how to
build up, simulate and animate a simple pendulum,
consisting of a body and a revolute joint with linear
damping in the joint. In Figure 1 the composition
diagram of this model is shown. It uses components
from the MultiBody library, see figure on next page.
Every model utilizing the MultiBody library must

Figure 1. Composition diagram of pendulum

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

311

have an instance of the
MultiBody.World model on top
level. The reason is that in the
world object the gravity field is
defined (no gravity, uniform
gravity or point gravity), as well as
the default sizes of animation
shapes and this information is
reported to all used components.
Joint “rev” is dragged from
Joints.ActuatedRevolute, “body”
from Parts.Body and the “damper”
as 1-dimensional force element
from “Modelica.Mechanics.Rotat-
ional.Damper”. All components are
connected together according to the

physical connection structure. After translation,
automatically the animation from Figure 2 is shown:

Figure 2. Automatic animation of pendulum

The coordinate system represents the world frame,
the green arrow pointing in negative y-axis
characterizes the direction of the gravity
acceleration, the red cylinder in the world origin is
directed along the axis of rotation of the revolute
joint, and the light blue cylinder and sphere
characterize the body (the center of the sphere is
located in the center of mass of the body).

Before translation, the parameters of the dragged
components need to be defined. Some parameters
are vectors that have to be defined with respect to a
local coordinate system of the corresponding
component. A convenient way is often a definition
of the multi-body model in a configuration where all
local frames are parallel to the world frame. This is
usually the case when all joint variables, such as the
angle of a revolute joint, are zero. Since in such a
reference configuration only one coordinate system
is essential, the definition is easier as if n frames of
n components would have to be taken into account.
The reference configuration for the simple
pendulum shall be defined in the following way:
The y-axis of the world frame is directed upwards,

i.e., the opposite direction of the gravity
acceleration. The revolute joint is placed in the
origin of the world frame. The rotation axis of the
revolute joint is directed along the z-axis of the
world frame. The body is placed on the x-axis of the
world frame (i.e., the rotation angle of the revolute
joint is zero, when the body is on the x-axis). In the
following figure, the Dymola menu to define the
revolute joint according to this definition is shown:

Figure 3. Dymola menu to define a revolute joint

The axis of rotation is defined as ”n = {0,0,1}”
meaning that it is directed into the direction of the z-
axis of the World coordinate system in the reference
configuration. Accordingly, the body component is
defined in Figure 4.

Figure 4. Dymola menu to define a body

The vector “r_CM” from the origin of the “left”
coordinate system of the body called “frame_a” to
the center of mass of the body is defined as ”r_CM
= {0.5, 0, 0}”, meaning that it is directed 0.5 m
along the x-axis of the world frame in the reference
configuration. Note, for subsystems in a hierarchical
model, e.g., a MacPherson suspension, it is also
often convenient to use a local reference
configuration for the vector definitions.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

312

3 Describing Orientation
In mechanical systems many variables have to be
described with respect to coordinate systems. The
notation used in the MultiBody library for this
purpose is discussed at hand of Figure 5.

1r12

R12

2h = resolve2(R12, 1h)
1

2

e1z e1y

e1x

e2x

e2ye2z

h

1h = resolve1(R12, 2h)
Figure 5. Notation for coordinate systems

For notational convenience the word “frame” is used
in the sequel as a synonym for “coordinate system”.
Frame 1 in Figure 5 is described by 3 unit vectors

zyx eee 111 ,,
rrr that are orthogonal to each other and

Frame 2 is described in a similar fashion by unit
vectors zyx eee 222 ,,

rrr . Frame 2 is defined relatively to

frame 1 by the position vector 121r that is directed
from the origin of frame 1 to the origin of frame 2
and is resolved in frame 1, i.e.,

},,{},,{ 111
121121121

1
12112

zyxzyx eeerrrr
rrrrr

⋅=⋅= er

Note, that 121r is a one-dimensional (Modelica)
array that holds the 3 coordinates of vector 12r

r with
respect to frame 1. In the sequel, (Modelica) arrays
with one or two dimensions are always
characterized by bold face characters if the complete
array is referenced.

The relative orientation of frame 2 with respect
to frame 1 is defined by the “orientation object” R12
(also called “rotation object”). There are different
ways to mathematically describe orientation. To
ease usage, the MultiBody library is designed such
that knowledge about the actual description form of
orientation is not necessary. This is achieved by
providing a pre-defined type

MultiBody.Frames.Orientation

and utility functions in MultiBody.Frames
operating on instances of this type. The two most
important functions are shown in Figure 5: An
arbitrary vector h

r
 might be represented by its

coordinates with respect to frame 1 (1h) or with its
coordinates with respect to frame 2 (2h),
respectively. If either of the two representations is
given, the other one can be computed in the
following way:

 import MultiBody.Frames;
 Frames.Orientation R12;
 Real h1[3] ”h resolved in frame 1”
 Real h2[3] ”h resolved in frame 2”
equation
 h2 = Frames.resolve2(R12, h1);//or
 h1 = Frames.resolve1(R12, h2);

There are about 30 of these utility functions in sub
library MultiBody.Frames. We will explain some
more of them when needed. Note, that with every
orientation object a direction is associated. E.g., the
inverse orientation R21 of R12 is computed by
”R21 = Frames.inverseRotation(R12)”.

During the development of the MultiBody
library, 3 different representation forms of the
orientation object have been implemented:
1. Transformation matrix T (2h = T12 · 1h).
2. Two rows of the transformation matrix.
3. Quaternions (see, e.g., [16]).
Benchmark tests revealed that the transformation
matrix leads usually to the most efficient code and
therefore this representation form was selected.
Since in some situations quaternions are useful, the
implemented functions operating on quaternions are
provided in the MultiBody library under
MultiBody.Frames.Quaternions. Also some quite
involved functions are present, e.g., to compute
quaternions from a transformation matrix in a
numerically robust way (Quaternions.from_T).

Dymola has the built-in rule that functions with
one statement are always “inlined” before they are
used. Most of the utility functions in
MultiBody.Frames are therefore defined just with
one statement to enforce inlining, in order (a) to not
have any function call overhead, (b) to allow
symbolic rearrangement of terms and (c) that
symbolic differentiation is possible. Other tools
using the MultiBody library should also have
support for inlining in order to get efficient code.

4 MultiBody Frame Connector
We are now in the position to present the design of
the “Frame” connector that is used to connect multi-
body components together. All variables used in this
connector are displayed in Figure 6: A coordinate
system “frame a” is rigidly fixed at an attachment
point of a mechanical part. This Frame is described
with respect to the world frame by the
• position vector 0r0a that is directed from the

origin of the world frame to the origin of frame
a and is resolved in the world frame and by the

• orientation object R0a describing the relative ori-
entation between the world frame and frame a.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

313

0r0a

R0aa

0

af

aτ

world framecut plane

frame a

Figure 6. MultiBody “Frame” connector

It is assumed that a free body diagram is
constructed, i.e. that a cut is performed between
mechanical parts that shall be connected together at
frame a. In the cut plane a resultant cut force af and
a resultant cut torque aτ act on frame a. Both vectors
are resolved in this frame.

connector Frame
 import SI = Modelica.SIunits;
 SI.Position r_0[3]"= 0r0a";
 Frames.Orientation R "= R0a";
 flow SI.Force f[3] "= af";
 flow SI.Torque t[3] "= aτ";
end Frame;

connector Frame_a = Frame;
connector Frame_b = Frame;

The four previously defined variables are used in the
connector. The additional connectors Frame_a and
Frame_b have the identical definition as connector
Frame. The only difference is that Frame_a and
Frame_b have different icons in order to be able to
distinguish Frame connectors more easily in a
composition diagram.

The cut force and cut torque are flow variables in
order that the force and torque balance at a point
where several components are connected together is
fulfilled. Note, that two connected frames (a and b)
coincide, since a.r_0 = b.r_0 and a.R = b.R due to
the connection rules of Modelica.

The orientation between two frames can be
described by 3 independent variables, see, e.g.,
[16][18]. Unfortunately, every such description
form has a singularity and therefore cannot be used
in a connector. For this reason, an orientation object
has to be described by a set of redundant variables
that are related to each other with constraint
equations. In the MultiBody library the orientation
object is described by a transformation matrix that
has 9 entries, i.e., a highly redundant description
form. This property leads to significant difficulties
and is one of the reasons why it needed so long time
to come up with a “truly” object-oriented multi-
body library (E.g. the first Dymola multi-body
library was developed in 1994 [17]).

In several components, such as a body or a sensor,
velocities or accelerations of connector variables are
needed. These derivatives can be easily obtained in
the following way:

 import SI = MultiBody.SIunits;
 import MultiBody.Interfaces;
 import MultiBody.Frames;
 Interfaces.Frame_a frame_a;
 SI.Velocity v_0[3];
 SI.Acceleration a_0[3];
 SI.AngularVelocity w_a[3];
 SI.AngularAcceleration z_a[3];
equation
 v_0 = der(frame_a.r_0);
 a_0 = der(v);
 w_a = Frames.angularVelocity2(
 frame_a.R,der(frame_a.R));
 z_a = der(w_a);

As can be seen, the velocity v_0 and the
acceleration a_0 of the origin of frame_a (resolved
in the world frame) are simply computed by
applying the derivative operator der(..). The angular
velocity of frame_a is computed with a function that
requires as input the orientation object R and its
derivative dR/dt and returns the angular velocity aωa
resolved in frame_a according to Poisson’s
equation. With RT = [ex, ey, ez], aωa is computed as:

},,{ x
T
yx

T
zy

T
z

aa eeeeeeω &&& ⋅⋅−⋅=

Applying the derivative operator der(...) on w_a
results in the angular acceleration, resolved in
frame_a, since according to Euler’s differentiation
rule (hdthddthd ikki

rrrr
×+= ω//):

dtd
dtddtd

aa

aaaaa

/
//0

ω
ωωωω

r
rrrr

=
×+=

where dthdi /
r

 is the derivative of vector h
r

 with
respect to coordinate system i and aωr is the
absolute angular velocity of frame_a.

In books about multi-body systems it is usually
recommended to compute the angular velocity by
recursive calculations and it is claimed that this is
much more efficient as using the direct application
of Poisson’s equation as it is performed with
function “angularVelocity2” above. For a “truly”
object-oriented library it is difficult or not possible
to apply a recursive calculation directly since in an
object only relations between connector variables
can be formulated. It turns out that the generated
code of the MultiBody library is nearly as efficient
as from the ModelicaAdditions.MultiBody library
where the angular velocity is computed recursively.
This is due to the particular implementation of
Poisson’s equation and Dymola’s symbolic
capabilities.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

314

5 Overdetermined DAEs
By collecting together all explicit equations in a
Modelica model and its submodels and all equations
due to “connect” statements, a Modelica model is
mapped to a DAE (= Differential Algebraic
Equation system) of the following form:

0 = f(dx/dt, x, y, t)

where x contains all variables appearing
differentiated and y contains all pure algebraic
variables. To get efficient code, this DAE has to be
symbolically processed and transformed to state
space form (at least numerically) with a subset of x
as states. This is performed by BLT partitioning [8]
to get a sequential model evaluation and to identify
algebraic loops, the Pantelides algorithm [19] to
determine equations to be differentiated and the
dummy derivative method [13] to select
independent states (this method can be interpreted
as a variant of the currently popular “projection
methods” of higher index DAEs). All these
algorithms require that dim(f) = dim(x) + dim(y),
i.e., the number of equations has to be identical to
the number of unknown variables.

Whenever the variables in a connector are not
independent from each other, connection structures
that have loops may result in a DAE where there are
more equations as unknowns, i.e., dim(f) > dim(x) +
dim(y). Usually, this overdetermined set of
equations is still consistent, so that a unique
mathematical solution exists. Since the Frame
connector has an overdetermined set of variables
due to the orientation object, also models of the
MultiBody library may result in an overdetermined
DAE.

It seems unlikely that the symbolic algorithms
from above can be generalized to directly handle
such DAEs, because it is not possible to distinguish
consistently overdetermined DAEs from erroneous
DAEs (that are a result of modeling errors), by pure
structural information. For this reason, the only
practical way seems to be to mark the
overdetermined equation subset in the model and
transform this set of equations before the standard
algorithms from above are applied. One such way of
marking and transforming an overdetermined set of
equations has been designed for the next version 2.1
of the Modelica language and has been implemented
in Dymola version 5.1. This approach is sketched in
the rest of the section.

It is assumed that overdetermined DAEs are due
to overdetermined sets of (non flow) variables v in
connectors. Such connectors will be called
“overdetermined connectors” in the sequel. When

connecting two or more overdetermined connectors
together, equality equations for corresponding
overdetermined variable sets are generated, such as
“v1 = v2”. Whenever, say, v1 is computed in one
component and then passed to the next component
via a “connect” statement, everything is fine,
because v2 is uniquely computed from v1 by “v2 :=
v1”. Difficulties arise, if both v1 = v1(x) and v2 =
v2(x) are computed from potential state variables x,
since a connection equation v1 = v2 imposes an
overdetermined (but consistent) set of constraints on
the variables x.

The basic requirement is that the developer of an
overdetermined connector provides a function called
“equalityConstraint(v1,v2)” that returns a non-
redundant set of residues that should be zero if the
equality constraint v1 = v2 is fulfilled. In a pre-
processing step of the model equations, a translator
has then to decide for every connection set whether
an equation of the form “v1 = v2” or an equation of
the form “0 = equalityConstraint(v1,v2)” has to be
added to the DAE. Let us demonstrate this by
considering the Frame connector.

Modelica is enhanced such that a type or record
declaration may optionally contain a definition of
function “equalityConstraint(...)”:

type Orientation
 extends Real[3,3];

 function equalityConstraint
 input Orientation R1;
 input Orientation R2;
 output Real residue[3];
 protected
 Orientation R_rel;
 algorithm
 R_rel = R2*transpose(R1);
 residue := {R_rel[2,3],
 R_rel[3,1],
 R_rel[1,2]};
 end equalityConstraint;
end Orientation;

An orientation object is defined by a transformation
matrix of dimension [3,3]. Two orientation objects,
i.e., transformation matrices, R1 and R2 are identical
(R1 = R2) if the relative transformation matrix
between R1 and R2, i.e., Rrel = R2 · R1

T is the unit
matrix. A transformation matrix describing a small
rotation can be approximated by (see, e.g., [18])

−
−

−
≈

1
1

1

12

13

23

ϕϕ
ϕϕ
ϕϕ

relR

where ϕ1,ϕ2,ϕ3 are a set of 3 independent variables
describing the deviation from the unit matrix. As a
result, if the outer diagonal elements [2,3], [3,1] and

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

315

[1,2] of Rrel vanish, then R1 = R2. Therefore, these 3
outer diagonal elements are returned as residues by
function equalityConstraint(...). To summarize, a
connection between two Frame connectors will
either result in 9 equations R1 = R2 to define the
equality between two orientation objects or in 3
equations by calling function equalityConstraint(...).
If appropriately selected, the result is a regular DAE
where the number of equations is identical to the
number of unknowns. A call to function
equalityConstraint(...) will usually result in a non-
linear system of equations that has only the desired
solution R1 = R2, if the initial guess values of the
iteration variables are close enough to this solution.

The remaining open question is how a tool can
decide which connection equations to use? An
informal description is given below. Details of the
algorithm are sketched in the appendix.

A new package called “Connections” is
introduced in Modelica, containing a set of built-in
operators to mark overdetermined equations. Let us
sketch these operators using the orientation object R
as an example:
• root(A.R) defines that the orientation object R

in connector A is computed in a consistent way.
The world object has such a definition because
R is defined as identity matrix.

• branch(A.R, B.R) defines that there is an
algebraic relationship between the orientation
object A.R in connector A and the orientation
object B.R in connector B. Joint objects have
such a definition, if there is an algebraic
constraint between frame_a.R and frame_b.R.

These two operators are already sufficient, since a
tool can determine whether the graph constructed
with root(...), connect(...) and branch(...) statements
contains loops. These loops have to be cut and for
every cut the equalityConstraint(...) function has to
be used to state the equality of orientation objects.

If there is a free flying body, coordinates of the
body should be used as states from which the
orientation object in the body connector can be
computed. This in turn means that a free flying body
is also a root in the graph. Formally, this situation is
defined by operators:
• potentialRoot(A.R) defines that the orientation

object R in connector A might be computed in a
consistent way, if this is necessary. Body
objects have such a definition.

• isRoot(A.R) returns true if the orientation object
A.R has been selected as a root. This means that
different equations have to be provided.

The sketched method to handle overdetermined
DAEs with symbolic transformation techniques is
not specific to multi-body systems. For example,

efficient implementations of electric power systems
use the Park transformation to define currents and
voltages in the connector relatively to the harmonic,
high-frequency signal of a power source that is
described by the angle of the rotor of the source.
This allows much faster simulations, since the basic
high frequency signal of the power source is not part
of the differential equations. On the other hand, the
source angle has to be included into the connector
leading to an overdetermined description that can be
handled with the method presented in this section.

6 Elementary Components
Using the “Frame” connector and the utility
functions in MultiBody.Frames, it is straightforward
to implement the elementary components that are
usually available in multi-body programs.

The MultiBody library has about 40 components.
The most important ones are shown in Table 1.
Contrary to approaches described in text books
about this topic, equations are only defined on
“position” level. A tool has enough information to
figure out via the Pantelides algorithm [19] which
equations have to be differentiated in order to
transform the DAE to state space form with the
dynamic dummy derivative method [13][14]. This
feature simplifies the implementation and the
understanding of the MultiBody library
considerably.

In the left column of Table 1, the icon of the
respective model is shown whereas in the right
column the essential equations are given that are
mapped directly to Modelica equations in the
library. Abbreviations which are used for variable
and function names in the right column (to save
space) are stated at the top row of Table 1. The new
built-in operators “root”, “isRoot”, “branch”,
“potentialRoot” from Table 1 are actually within a
package “Connections” (the correct name would
therefore be, e.g., Connections.root). All other used
functions are from subpackage MultiBody.Frames.
Let us discuss the components in a bit more detail,
see Table 1.

6.1 MultiBody.World
In the World model essentially the position vector of
its frame connectors is set to zero and the
orientation object of the frame is set to a null
rotation (e.g., the transformation matrix is the
identity matrix). When dragging MultiBody.World
into a model, the following declaration is generated
(this behavior is defined via an annotation):

inner MultiBody.World world;

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

316

This is necessary since nearly all components have a
corresponding “outer” declaration to access the
definitions in the world object, such as defaults for
animation and the gravity function. In components
that have a mass, the function world.gravityAcceler-
ation(r) is called to inquire the gravity acceleration
at position r. Depending on user input, different
gravity fields can be used. Currently, no gravity
field, parallel and point gravity field is supported.
This allows, e.g., to easily simulate a satellite in the
gravity field of the earth. An example is given in
Figure 7.

Figure 7. Two point masses in a point gravity field

If the World object is missing in a model, a warning
message is printed and an instance of the World
object with default settings is automatically utilized.
This feature is again defined via an annotation (this
is useful for any type of inner declaration).

6.2 MultiBody.Parts.FixedTranslation
This component defines a fixed translation of a
frame. It is, e.g., used to define frames for several
attachment points on a body. The equations state
that the position vector of frame_b is defined from
the position vector of frame_a and the relative
position vector arab from frame_a to frame_b (arab is
defined as parameter “r”). Since frames are
translated, the orientation objects in the two frames
are set equal. This in turn requires a
“Connections.branch(...)”, see section 5. Finally, a
force and torque balance of this massless part is
present in the Modelica model.

6.3 MultiBody.Joints.Revolute
This component defines a rotation along an axis
vector n = an = bn via angle ϕ. When ϕ = 0, frame_a
and frame_b coincide. As with most other joints, the
generalized coordinates (here: ϕ and ϕω &=) have
the attribute stateSelect = StateSelect.prefer in order
that they are selected as states if possible. Since the
origins of both frames are located at the same point
on the axis of rotation, the position vectors in the
two frames are identical. The relative orientation
object Rrel is computed with n and ϕ. It is used to
define the relationship between the orientation
objects from frame_a and frame_b. It is also stated

Abbreviations:
ra, Ra, fa, τa := frame_a.r_0, .R, .f, .t
rb, Rb, fb, τb := frame_b.r_0, .R, .f, .t

absRotation :=
relRotation :=

angVel2 :=
Q.angVel2 :=

Q.constraint :=
grav :=

Frames.absoluteRotation
Frames.relativeRotation
Frames.angularVelocity2
Frames.Quaternions.angularVelocity2
Frames.Quaternions.orientationConstraint
world.gravityAcceleration

World

root(frame_b.R)

nullRotation()

b

b

=
=

r 0
R

Parts.FixedTranslation

branch(frame_a.R, frame_b.R)

bababa

ba

ab

abaaab

frττ0
ff0

RR
rRrr

×++=
+=

=
+=),(1resolve

Joints.Revolute

branch(frame_a.R, frame_b.R)

),1(resolve
),1(resolve

0

),n(absRotatio
),tion(planarRota

brela

brela

bT

relab

rel

ab

τRτ0
fRf0

τn

RRR
nR

rr

+=
+=
⋅=

=
=
=
=

ϕω

ϕ

&

Joints.Spherical

0τ
0τ

fRf0
RRR

rr
no

=
=

+=
=
=

b

a

brela

barel

ab

),1(resolve
),relRotion(

)branch(... //

Parts.Body

aCMaaaa

CMaa

CMaa

a

CMaa

a

aaa

a

a

m

frIωωωIτ
rωω

rωaf
gvRa

rRrg
rv
if end

p
RRω

else
pR

ppω
p

thenif

×+×+=
××+

×+⋅=
−=

+=
=

=
=

=
=
=

&

&
&

&

&

&

))(
(

),2(resolve
)),1(resolvegrav(

()tionQ.nullRota
),(angVel2

)from_(.Frames
),(Q.angVel2
)(ntQ.constrai0
 me_a.R)isRoot(fra
R).aoot(frame_potentialR

Table 1. Elementary components of MultiBody library

that the projection of the cut-torque on n must
vanish. Finally, the force and torque balance of this
massless part is present. Besides model “Revolute”
there is also a joint “ActuatedRevolute” that has an
additional 1-dim. flange connector. Via this flange,
a drive train can be attached driving the revolute

world

x

y

r={0,0,0}

a b

a b

n={0,0,1}

m=1

a b

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

317

joint, e.g., with components from the Modelica.-
Mechanics. Rotational library (see Figure 1).

There is an additional utility function
“rooted(…)” to inquire whether there is a path in the
spanning trees of the virtual connection graphs from
a selected root to the frame under consideration.
This is used here and at some other places to give
two equation variants depending on the actual
connection structure in order to avoid small linear
algebraic equations. For example, if
rooted(frame_a.R) = true then the force and torque
at frame_a are computed from the frame_b
quantities. Otherwise, the force and torque at
frame_b are computed from the frame_a quantities.

6.4 MultiBody.Joints.Spherical
This component defines a spherical joint, i.e., the
origins of frame_a and frame_b coincide and the
two frames can freely rotate relative to each other.
No torques are transmitted via this joint. Since
frame_a.R and frame_b.R are not related together in
an algebraic equation, no “branch(...)” statement is
present. No states are defined for this joint.

6.5 MultiBody.Parts.Body
This component defines the mass and inertia
properties of a body. It has one frame_a that is
usually used as reference coordinate system of a part
which is associated with a specific geometric
position on the part. Other points on the part are
often defined via FrameTranslation components
connected to frame_a of the body component. The
mass m, the position vector rCM = araCM from the
origin of frame_a to the center of mass (resolved in
frame_a) and the inertia tensor I = aICM with respect
to the center of mass are given as parameters and
define the body properties, see also Table 1.

The body component is defined as
“potentialRoot”, i.e., it may be selected as root of a
spanning tree of the virtual connection graph.
Whether it is selected or not can be inquired via
function “isRoot(...)”. If the body frame is not
selected as root, the orientation object in the frame
is defined somewhere else. In this case the second
branch of the if clause in Table 1 is used and the
angular velocity of the body frame is determined by
frame_a.R and its derivative which for example
means that it is computed (indirectly) by the
generalized position and velocity variables of joints.

If “isRoot(...) = true”, it is required that
frame_a.R is calculated within the body object. This
is only possible if variables of the body are used as
states from which frame_a.R can be determined. By
default, quaternions p are used as potential states.
Consequently frame_a.R is computed from p and

the angular velocity is computed from p and its
derivative p& . The 4 coordinates of the quaternion
vector p have to fulfill the constraint equation
“pT·p=1”. This non-linear equation is added in the
first if-clause. Since there is a non-linear equation
relating potential states, a tool has to use the
dynamic dummy derivative method to dynamically
select 3 states out of 4 potential states during
simulation. Whenever the selection comes close to
its singularity, Dymola changes the states at a
completed step of the integrator. The 4th potential
state has to be computed by solving the non-linear
quaternion constraint equation. Dymola performs
this in an efficient and robust way, because it can
detect that the special non-linear equation of
quaternions is present and solves this equation
analytically. E.g., if p[1:3] are selected as states,
then
p[4] = sqrt(1 – p[1:3]*p[1:3])*signAtLastStep(p[4]).

Via a parameter in the “Advanced” menu of the
body object, it is possible to alternatively also use
the 3 Cardan angles as states. They are defined with
respect to a coordinate system “Fix” fixed in
frame_a. Whenever the Cardan angles come close to
their singularity, frame “Fix” is changed such that
the new Cardan angles are far away from their
singularity. The advantage of this approach is that
no dynamic dummy derivative method is needed.
The disadvantage is that every change of states
results in a state event which is less efficient as the
state change performed with the dynamic dummy
derivative method. Furthermore, several variables
are discontinuous (especially the Cardan angles)
which can lead to problems if equations are further
differentiated, e.g., for inverse models.

The non-standard feature to have potential states
both in joints and in bodies is especially useful for
inexperienced users, since they do not have to
introduce a “virtual” joint with 6 degrees of
freedom. For example, it is easy to just build up a
system as in Figure 8, where a body is connected via
a spring to the environment.

world

x

y

a
b

spring

c=40

m
=1

body

Figure 8. Free body with spring

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

318

In the left part of the figure the Modelica schematic
and in the right part the default animation is shown.
No “non-physical” joint has to be introduced to
build up such a model, as it is usually the case in
other multi-body programs.

Let us now return to the body equations in Table
1. Once the orientation object and the angular
velocity of the body frame are determined, all other
kinematical quantities are derived by differentiation
and used in the Newton/Euler equations that are
formulated with respect to frame_a of the body (and
not with respect to the center of mass).

7 Loop Structures
Due to the new handling of overdetermined DAEs,
the modeler does not have to take special actions if
loop structures occur (contrary to the
ModelicaAdditions.MultiBody library). An example
is presented in Figure 9. It is available as
MultiBody.Examples.Loops.Fourbar1. In the upper

world

x

y

a b

n={1,0,0}

j1

a b
n={1,0,0}

j2

b1

r={0,0.5,0.1}a
b

b2

r={0,0.2,0}a
b

b3

r={-1,0.3,0.1}

ab

a
b

n=
{0

,1
,0

}

re
v

a b

n={0,0,1}

rev1

a b

n={1,0,0}

j3

a b

n={0,1,0}

j4

a b

n={0,0,1}

j5

b0

r={1.2,0,0}

a b

Figure 9. Four bar mechanism with 7 joints and 1 dof

part of the figure the Modelica schematic of a four
bar mechanism is shown constructed with the
MultiBody library. It consists of 6 revolute, 1
prismatic joint and forms a kinematical loop. This
mechanism has one degree of freedom.

In the lower part of the figure the default
animation is shown. Note, that the axes of the
revolute joints are represented by the red cylinders

and that the axis of the prismatic joint is represented
by the red box on the lower right side.

Whenever loop structures occur, non-linear
algebraic equations are present on “position level”.
It is then usually not possible by structural analysis
to select states during translation (which is possible
for non-loop structures). In the example above,
Dymola detects a non-linear algebraic loop of 57
equations and reduces this to a system of 7 coupled
algebraic equations. Note, that this is performed
without using any “cut-joints” as it is usually done
in multi-body programs, but by just appropriate
symbolic equation manipulation. Via the dynamic
dummy derivative method the generalized
coordinates on position and velocity level from one
of the 7 joints are dynamically selected as states
during simulation. Whenever, these two states are
no longer appropriate, states from one of the other
joints are selected.

The efficiency of loop structures can usually be
enhanced, if states are statically fixed at translation
time. For this mechanism, the generalized
coordinates of joint j1 can always be used as states.
This can be stated by setting parameter
“enforceStates = true” in the “Advanced” menu of
the desired joint. This flag sets the attribute
stateSelect of the generalized coordinates of the
coresponding joint to “StateSelect.always”. When
setting this flag to true for joint j1 in the four bar
mechanism, Dymola detects a non-linear algebraic
loop of 40 equations and reduces this to a system of
5 coupled non-linear algebraic equations.

7.1 Planar Loops
In Figure 10 the model of a V6 engine is shown that
has a simple combustion model. It is available as
MultiBody.Examples.Loops.EngineV6. The Mode-
lica schematic of one cylinder is given in the middle
part of the figure. Connecting 6 instances of this
cylinder appropriately together results in the engine
schematic displayed at the upper part of the figure.
In the lower part the animation of the engine is
shown. Every cylinder consists essentially of 1
prismatic and 2 revolute joints that form a planar
loop, since the axes of the two revolute joints are
parallel to each other and the axis of the prismatic
joint is orthogonal to the revolute joint axes. All 6
cylinders together form a coupled set of 6 loops that
have together 1 degree of freedom.

All planar loops, and especially the engine, result
in a DAE that does not have a unique solution. The
reason is that, e.g., the cut forces in direction of the
axes of the revolute joints cannot be uniquely
computed. Any value fulfills the DAE equations.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

319

a b

n={1,0,0}
bearing

w orld

x

y

inertia

J=1

cylinder1 cylinder2 cylinder3 cylinder4 cylinder5 cylinder6

Pi
st

on

r={0,pist...a
b

R
od

r={0,ro...

b
a

a b
n={1,0,0}

B2

C
rank4

r=
{0

,-c
r..

.

b
a

Crank3

r={cran...
a b

Crank1

r={cran...
a b

C
ra

nk
2

r={0,cr...

b
a

a b
n={1,0,0}

B1Mid

r={cran...
a b

a
b

n={0,-1,0}
C

ylinder

Mounting

r={cran...
a b

Cylinder...

r={crank...
a

b

CrankA...

r={0,0,0}
a

b

CrankA...

r={0,0,0}
a

b

C
yl

in
de

...

r={0,cyl...a
b

ga
sF

...

Figure 10. V6 engine with 6 planar loops and 1 dof

This is a structural property that is determined by
the symbolic algorithms. Since they detect that the
DAE is structurally singular, a further processing is
not possible. Without additional information it is
also impossible that the symbolic algorithms could
be enhanced because if the axes of rotations of the
revolute joints are only slightly changed such that
they are no longer parallel to each other, the planar
loop can no longer move and has 0 degrees of
freedom. Algorithms based on pure structural
information cannot distinguish these two cases.

The usual remedy is to remove superfluous
constraints, e.g., along the axis of rotation of one
revolute joint. Since this is not easy for an
inexperienced modeler, the flag “planarCutJoint” is
provided in the “Advanced” menu of a revolute joint
that removes these constraints. This flag must be set
to true for one revolute joint in every planar loop.

In the engine example, this flag is set in the revolute
joint B2 in the cylinder model.

If a modeler is not aware of the problems with
planar loops and models them without special
consideration, Dymola displays an error message
and points out that a planar loop may be the reason
and suggests to use the “planarCutJoint” flag. This
error message is due to an annotation in the Frame
connector:

flow SI.Force f[3] annotation(
 unassignedMessage=”..”));

If no assignment can be found for some forces in a
connector, the “unassignedMessage” is displayed. In
most cases the reason for this is a planar loop or two
joints that constrain the same motion. Both cases are
discussed in the message.

Note that the non-linear algebraic equations
occurring in planar loops can be solved analytically
in most cases and therefore it is highly
recommended to use the techniques discussed in the
next two sections for such systems.

7.2 Analytic Loop Handling: User’s View
It is well known that the non-linear algebraic
equations of most mechanical loops in technical
devices can be solved analytically. It is, however,
difficult to perform this fully automatically and
therefore none of the commercial, general purpose
multi-body programs, such as MSC ADAMS[1],
LMS DADS[5], SIMPACK[21], have this feature.
These programs solve loop structures with pure
numerical methods. Multi-body programs that are
designed for real-time simulation of the dynamics of
specific vehicles, such as ve-DYNA[23], usually
contain manual implementations of a particular
multi-body system (the vehicle) where the occurring
loops are either analytically solved, if this is
possible, or are treated by table look-up where the
tables are constructed in a pre-processing phase.
Without these features the required real-time
capability would be difficult to achieve.

In a series of papers and dissertations, especially
[10][24][11][15], Prof. Hiller and his group in
Duisburg have developed systematic methods to
handle mechanical loops analytically. The
“characteristic pair of joints” method [10][24]
basically cuts a loop at two joints and uses
geometric invariants to reduce the number of
algebraic equations, often down to one equation that
can be solved analytically. Also several multi-body
codes have been developed that are based on this
method, e.g., MOBILE [12]. Besides the very
desired feature to solve non-linear algebraic
equations analytically, i.e., efficiently and in a
robust way, there are several drawbacks: It is

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

320

difficult to apply this method automatically. Even if
this would be possible in a good way, there is
always the problem that it cannot be guaranteed that
the statically selected states lead to no singularity
during simulation. Therefore, the “characteristic pair
of joints” method is usually manually applied which
requires know-how and experience.

In the MultiBody library the “characteristic pair
of joints” method is supported in a restricted form
such that it can be applied also by non-specialists.
The idea is to provide joint aggregations in package
MultiBody.Joints.Assemblies as one object that
either have 6 degrees of freedom or 3 degrees of
freedom (for usage in planar loops).

As an example, a variant of the four bar
mechanism from Figure 9 is given in Figure 11. In
the upper part of the figure, the mechanism is
modeled with standard joints. In the lower part, the
two spherical joints and the prismatic joint are
collected together in an assembly object called
“jointSSP” that is defined in

MultiBody.Joints.Assemblies.JointSSP.
This joint aggregation has a frame at the left side of
the left spherical joint (frame_a) and a frame at the
right side of the prismatic joint (frame_b). JointSSP,
as all other objects from the Joints.Assemblies
package, has the property, that the generalized

world

x

y

a b

n={1,0,0}

j1

a b
n={1,0,0}

j2

b1

r={0,0.5,0.1}a
b

b2

r={0,0.2,0}a
b

b0

r={1.2,0,0}

a b

a b
spherical1

rod

r={-1,0.3,0.1}

ab
ab

spherical2

world

x

y

a b

n={1,0,0}
j1

b1

r={0,0.5,0.1}a
b

b3

r={1.2,0,0}
a b

a b
jointSSP

ibim

b2

r={0,0.2,0}a
b

Figure 11. Analytic handling of four bar mechanism

coordinates, and all other frames defined in the
assembly, can be calculated given the movement
of frame_a and of frame_b. This is performed by
analytically solving non-linear systems of equations
(details are given in the next subsection). From a
structural point of view, the equations in an
assembly object are written in the form

q = f1(ra, Ra, rb, Rb)
where ra, Ra, rb, Rb are the variables defining the
position and orientation of the frame_a and frame_b
connector (see also Table 1) and q are the
generalized positional coordinates inside the
assembly, e.g., the angle of a revolute joint. Given
angle ϕ of revolute joint j1 from the four bar
mechanism, frame_a and frame_b of the assembly
object can be computed by a forward recursion

(ra, Ra, rb, Rb) = f(ϕ)
Since this is a structural property, the symbolic
algorithms can automatically select ϕ and its
derivative as states and then all positional variables
can be computed in a forwards sequence. It is now
understandable that Dymola transforms the
equations of the four bar mechanism to a recursive
sequence of statements that has neither linear nor
non-linear algebraic loops (remember, the previous
“straightforward” solution had a nonlinear system of
equations of order 5).

The aggregated joint objects consist of a
combination of either a revolute or prismatic joint
and of a rod that has either two spherical joints at its
two ends or a spherical and a universal joint,
respectively. For all combinations, analytic
solutions can be determined. For planar loops,
combinations of 1, 2 or 3 revolute joints with
parallel axes and of 2 or 1 prismatic joint with axes
that are orthogonal to the revolute joints can be
treated analytically. The currently supported
combinations are listed in Table 2. The missing
combinations (such as JointSUP or Joint RPP) will
be added in one of the next releases.

3-dimensional Loops:
JointSSR Spherical – Spherical – Revolute
JointSSP Spherical – Spherical – Prismatic
JointUSR Universal – Spherical – Revolute
JointUSP Universal – Spherical – Prismatic
JointUPS Universal – Prismatic – Spherical
Planar Loops:
JointRRR Revolute – Revolute – Revolute
JointRRP Revolute – Revolute – Prismatic

Table 2. MultiBody.Joints.Assemblies aggregations

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

321

On first view this seems to be quite restrictive.
However, mechanical devices are usually built up
with rods connected by spherical joints on each end,
and additionally with revolute and prismatic joints.
Therefore, the combinations of Table 2 occur
frequently. The universal joint is usually not present
in actual devices but is used (a) if two JointXXX
components can be connected such that a revolute
and a universal joint together form a spherical joint,
see Figure 12 and (b) if the orientation of the
connecting rod between two spherical joints is
needed, e.g., since a body shall be attached. In this
case one of the spherical joints might be replaced by
a universal joint. This approximation is fine as long
as the mass and inertia of the rod is not significant.

Figure 12. MacPherson with analytic loop handling

Let us discuss item (a) in more detail: The
MacPherson suspension in Figure 12 is from the
Modelica VehicleDynamics library [2]. It has three
frame connectors. The lower left one (frame_C) is
fixed in the vehicle chassis. The upper left one
(frame_S) is driven by the steering mechanism, i.e.,
the movement of both frames are given. The frame
connector on the right (frame_U) drives the wheel.
The three frames are connected by a mechanism
consisting essentially of two rods with spherical
joints on both ends. These are built up by a
jointUPS and a jointSSR assembly, see Figure 12.
As can be seen, the universal joint from the
jointUPS assembly is connected to the revolute joint
of the jointSSR assembly. Therefore, we have 3
revolute joints connected together at one point and if
the axes of rotations are chosen appropriately, this
describes a spherical joint. In other words, the two
connected assemblies define the desired two rods
with spherical joints on each ends.

The movement of the chassis, frame_C, is
computed somewhere else. When the generalized
coordinates of revolute joint “innerJoint” (lower left
part in figure) are used as states, then frame_a and
frame_b of the jointUPS joint can be calculated.

After the non-linear loop with jointUPS is solved,
all frames on this assembly are known, especially,
the one connected to frame_b of the jointSSR
assembly. Since frame_b of jointSSR is connected
to frame_S which is computed from the steering
mechanism, again the two required frame
movements of the jointSSR assembly are calculated,
meaning in turn that also all other frames on the
jointSSR assembly can be computed, especially, the
one connected to frame_U that drives the wheel.
From this analysis it is clear that a tool is able to
solve these coupled loops analytically.

C
rank4

r=
{0

,-c
r..

.

b
a

Crank3

r={cran...
a b

Crank1

r={cran...
a b

C
ra

nk
2

r={0,cr...

b
a

Mid

r={cran...
a b

Mounting

r={cran...
a b

Cylinder...

r={crank...
a

b

CrankA...

r={0,0,0}
a

b

CrankA...

r={0,0,0}
a

b

C
yl

in
de

...

r={0,cyl...a
b

a
b

jo
in

tR
R

P

ib
ia

n_
a=

{1
,0

,0
}

im

R
od

r={0,ro...

b
a

Pi
st

on

r={0,pist... a
bgasF...

Figure 13. Cylinder of engine with analytic loop handling

Another example is the engine model from Figure
10. It is sufficient to rewrite the basic cylinder
model by replacing the joints with a JointRRP
object that has two revolute and one prismatic joint,
see Figure 13. Since 6 cylinders are connected
together, 6 coupled loops with 6 JointRRP objects
are present. This model is available as
MultiBody.Examples.Loops.EngineV6_analytic.

From Figure 10 it can be seen that the revolute
joint of the crank shaft (left part of upper subfigure
in Figure 10) might be selected as degree of
freedom. Then the 4 connector frames of all
cylinders can be computed. As a result the
computations of the cylinders are decoupled from
each other. Within one cylinder, see Figure 13, the
position of frame_a and frame_b of the jointRRP
assembly can be computed and therefore the
generalized coordinates of the two revolute and the
prismatic joint in the jointRRP object can be
determined. From this analysis it is not surprising
that Dymola is able to transform the DAE equations

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

322

into a sequential evaluation without any linear or
non-linear loop. Compare this nice result with the
model from Figure 10 that leads to a DAE with 6
algebraic loops and 5 non-linear equations per loop.
Additionally, a linear system of equations of order
43 is present. The simulation time is about 5 times
faster with the analytic loop handling.

7.3 Analytic Loop Handling: How it works
The basic technique for the analytic loop handling is
explained at hand of the JointSSR (Spherical –
Spherical – Revolute) assembly shown in Figure 14.
It consists of two spherical joints connected by a
rigid massless rod and a revolute joint connected by
an additional massless rod to the spherical joint in
the middle (optionally, a point mass can be present
on the rod connecting the two spherical joints). At
the upper part of Figure 14 the Modelica icon of the
JointSSR object and in the lower part an animation
view with some important position vectors is shown.
The following derivation is a special case of the
“characteristic pair of joints” method and is based
on [24].

It is assumed that the positions and orientations
of frame_a and of frame_b of the JointSSR object
are calculated as a function of states. This means
that the position vectors 0rs1, 0rrev from the origin of
the world frame to the origins of frame_a and of
frame_b of the JointSSR object are known. Using
the orientation objects of frame_a and of frame_b it
is easy to compute position vector ar1 that is directed
from the origin of the revolute joint (= frame_b) to
the origin of the first spherical joint (= frame_a) and
is resolved in frame_a of the revolute joint (this
frame is identical to frame_b of the JointSSR
object). Position vector br2 is a parameter of the
JointSSR object and is directed from the origin of
the revolute joint to the origin of the second
spherical joint and is resolved in frame_b of the

Figure 14. Analytic loop handling for JointSSR

revolute joint. The two spherical joints are
connected together by a rod with a fixed length L
which is a parameter of the JointSSR object. The
length L can be also calculated by computing the
vector from spherical joint 1 to spherical joint 2
with vectors ar1,

br2 and taking its length. The square
of this length results in:

() ()1212
2)()(rTrrTr abTabL ⋅−⋅⋅−= ϕϕ

Since ar1 and br2 are resolved in different frames, ar1
has first to be transformed from frame_a to frame_b
of the revolute joint using the relative
transformation matrix T between these two frames.
This matrix is solely a function of the unknown
rotation angle ϕ. In the equation above all variables
are known (or are calculated somewhere else) with
exception of ϕ. Therefore, we have one non-linear
algebraic equation for one unknown, ϕ, and the goal
is to solve this equation analytically. Multiplying
out all terms and taking into account that

)()(ϕϕ TT ⋅T is the unit matrix, since transformation
matrices are orthogonal, we arrive at

12
2

1122)(20 rTrrrrr abaTabTb L ⋅⋅⋅−−⋅+⋅= ϕ

The relative transformation matrix T can be
mathematically described as, see, e.g., [18]:

())sin(
0

0
0

)cos(
12

13

23
ϕϕ ⋅

−
−

−
−⋅⋅−+⋅=

nn
nn

nn
TT nnEnnT

where E is the identity matrix and n is a unit vector
in direction of the axis of rotation. n has the same
coordinates with respect to frame_a and to frame_b.
Inserting this formula in the constraint equation and
rearranging terms results in

()
)()(2

2
)()(2A

with

)sin()cos(0

12
2

2211

12

1212

rnrnrrrr
rnr

rnrnrr

aTbTbTbaTa

ab

aTbTaTb

LC
B

CBA

⋅⋅⋅⋅−−⋅+⋅=
×⋅⋅=

⋅⋅⋅−⋅⋅−=

+⋅+⋅= ϕϕ

Note, that the coefficients A, B, C are computed
from known quantities. This non-linear equation has
two solutions in the range: °° ≤≤− 180180 ϕ :

1
)
,atan2(

222

222
2/1

±=
−+⋅⋅+⋅−
−+⋅⋅−⋅−=

k
CBABkCA
CBAAkCBϕ

In the JointSSR object a guess value ϕguess is defined
as a parameter. From the two solutions the one is
selected during initialization that is closest to ϕguess.
This determines the value of the constant k at initial

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

323

time. During simulation, the value of k is kept
constant. The term under the square root may
become negative so that no (real) solution exists
anymore. This is the case when the length of ar1
becomes larger as the sum of the lengths of the two
rods of the JointSSR object, see Figure 14. This case
is checked with an assert statement and if it is no
longer valid, the simulation is stopped and an
appropriate error message is given in which this
situation is explained.

Note, for the JointSSP (Spherical – Spherical –
Prismatic) assembly, a similar derivation leads to a
simple quadratic equation that has two solutions.

Once angle ϕ is determined with the above
formulas, all other desired positional quantities of
the JointSSR object can be computed in a
straightforward way. By differentiating the
equations twice also the first and second derivative
of the angle can be determined. The differentiation
is automatically performed by the tool. Finally, the
(unchanged) equations of the revolute joint and of
the other components in the JointSSR object are
used to build up the DAE system. It turns out that
this approach results in a linear system of equations
where at least the second derivative of ϕ and the as
yet unknown force in the rod connecting the two
spherical joints is contained. The dimension of this
loop is reduced or the loop is even completely
eliminated in some cases by the following approach:

In the revolute joint there is an equation that
states that the projection of the cut-torque τ of
frame_b on the axis of rotation n of the revolute
joint is zero, see Table 1: 0=⋅ τnT . By a torque
balance around the origin of frame_b of the
JointSSR object, the cut-torque τ at frame_b can be
expressed as a function of the cut-forces and cut-
torques at the other frame connectors of the
JointSSR object and the unknown force in the rod
connecting the two spherical joints (assuming this
rod is cut for the torque balance). Inserting these
relationships in the equation 0=⋅ τnT , results in one
linear equation in the unknown rod force from
which the rod force can be computed analytically as
function of the cut-forces and -torques of frame_im
and frame_ib (see Figure 14).

8 Force Elements
Force elements exert forces and torques between
two frames. The icon of the most general one
available in the MultiBody library (model Multi-
Body.Forces.ForceAndTorque) is displayed in
Figure 15

Figure 15. General force element

The 6 elements in the input signal vector are
interpreted as the 3 coordinates of a force and the 3
coordinates of a torque acting at the component to
which frame_b of the ForceAndTorque component
is connected. The force and torque defined with the
6 elements of the input are assumed to be resolved
in the frame to which connector frame_resolve is
connected. If frame_resolve is not connected, it is
assumed that the force and torque are resolved in
frame_b. Additionally the force and torque act with
“opposite sign” on frame_a (or more precisely, the
force and torque on frame_a is computed by a
force/torque balance between the two frames). Via
sensor elements, any type of kinematical or
force/torque information can be inquired. This can
be used to compute the force and torque of a force
element. Note, since the MultiBody library is purely
equation based, also accelerations (e.g., from an
acceleration sensor), and cut-forces and cut-torques
(e.g., the normal force of a Coulomb friction
element) can be utilized to compute the force and
torque of a ForceAndTorque element.

8.1 Line Force Elements With Mass
More often, line force elements are needed, that
exert a force on the line between the origins of two
frames. The two basic line force elements of the
MultiBody library are displayed in Figure 16.

Figure 16. Line force elements that may have mass

The force acting between the origins of frame_a and
of frame_b (on the line between these two points) is
defined via the two 1-dimensional flange connectors
at the top part of the icons (the two green filled and
non filled squares). Here, models of the
Modelica.Mechanics.Translational library can be
connected. An example is given in Figure 17 where
a 1-dimensional translational spring is connected
between the 1D flange connectors.

a b

LineForceWithMass

a b

LineForceWithTwoMasses

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

324

a b
Spring_3D

spring

Figure 17. Line force with 1D spring

This approach has several advantages: (1) the
distance between frame_a and frame_b is reported
in the 1D flange connectors and can therefore be
directly utilized in the force law without having to
use a sensor object to inquire kinematical
information. (2) For more complicated force laws,
e.g., a hydraulic cylinder that is driven by a
hydraulic circuit, it is advisable to first test the
whole force law separately with 1-dim. elements
and additional libraries such as a hydraulic or an
electrical library. When this works, the force object
is just connected to the 3-dimensional line force
element of Figure 16.

In multi-body programs the assumption is
usually made that force elements are massless. In
reality this is not always justified since, e.g., a
spring or a hydraulic cylinder has mass that might
be significant in some applications. For example,
the counter balance systems of large robots have
usually a mass that is 5 – 10 % of the mass of the
moving parts. By just examining the reaction force
to the ground, it is clear that it is not possible to
neglect this mass.

For these practical requirements, the line force
elements provided in the MultiBody library have
optionally one or two point masses on the line from
the origin of frame_a to the origin of frame_b. The
usage of a point mass is usually sufficient and has
the advantage that not much data is required from
the user (additionaly data: mass of the point mass
and its location) and that it can be handled very
efficiently with only a small overhead in the
computation compared to a force element without a
point mass.

In element “LineForceWithMass” the point mass
is located at a fixed relative distance between the
two frame origins. Default is “in the middle”. This
is useful, e.g., for a spring. In element
“LineForceWithTwoMasses” two point masses are
present that are located at an absolute distance with
respect to frame_a and to frame_b, respectively. For
example, point mass 1 might be located 0.5 m away
from the origin of frame_a on the line to frame_b.
This is useful, e.g., for a hydraulic cylinder.

8.2 Direct Coupling of Force Elements
Nearly all multi-body programs have the restriction
that two force elements cannot be directly connected
together. When this is desired, the user has to
introduce a body with a small mass between the
force elements leading usually leading to an
unnecessary stiff model. Since the Modelica
MultiBody library is purely equation based, there
are no such restrictions and it is possible to connect
3-dimensional force elements directly together, such
as a series connection of the “ForceAndTorque”
element from Figure 15. This usually leads to non-
linear systems of equations.

It is also possible to connect line force elements
directly together as demonstrated in Figure 18. This
example is available from MultiBody.
Examples.Elementary.ThreeSprings. In the upper
part of this figure the Modelica schematic is shown
consisting of three springs that are connected
together at one point. The other ends of the springs
are connected to the environment and to a body
moving freely in space. In the lower part of the
figure the animation of this system is shown.

Without special action difficulties would occur,
since in every “line force element” there is an
equation stating that the cut-torques at both ends of
the line force element (= frame_a.t and frame_b.t)
are zero. If three line force elements are connected
together as in Figure 18, there is additionally the
zero sum equation of flow variables stating that the
sum of the cut-torques of the connected springs is
zero. This is one equation too much, since all
torques in this equation are already set to zero in the
spring elements. On the other hand, the orientation

Figure 18. Springs connected directly together

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

325

object in the frame connector is not defined because
a line force element does not compute it, which
means that the orientation object in the connection
point of the three springs is not defined. Therefore,
the resulting DAE of Figure 18 would be
structurally singular and has both overdetermined
and underdetermined sets of equations.

It is possible to automatically fix this problem.
One line force element that is directly connected at
one point to other line force elements has to define
that the orientation object in the frame connector
defines a null rotation and on the other hand has to
remove the equation that states that the cut-torque is
zero. This is defined in the following way with
Modelica:

model LineForceWithMass
 ...
equation
 potentialRoot(frame_a.R, 100);
 potentialRoot(frame_b.R, 100);
 ...
 if isRoot(frame_a.R) then
 frame_a.R=Frames.nullRotation();
 else
 frame_a.t=zeros(3);
 end if;

 if isRoot(frame_b.R) then
 frame_b.R=Frames.nullRotation();
 else
 frame_b.t=zeros(3);
 end if;
end LineForceWithMass;

A frame connector of a line force element is a
potential root of a virtual connection graph (see
section 5). The priority of this potential root is set to
100, as opposed to potential roots of bodies that
have a priority of 0. This means that, whenever
possible, a body is selected as a root. If this is not
possible, a frame connector of a line force element
is selected as root (meaning that only line force
elements are connected together). Since exactly one
frame of a connection point is selected as root, the
corresponding line force element can provide the
necessary equations as shown in the Modelica code
fragment above.

9 Animation
The MultiBody library provides sub library
“Visualizers” that contains models to visualize
geometric parts, see Figure 19. All visualizer objects
have a frame connector to connect the object to any
other frame connector in a model. The properties of
the visualizer object are described with respect to

box

FixedShape y

xz

FixedFrame
FixedArrow

0.1

SignalArrow

Figure 19. Visualizer objects

the frame to which the object is connected. All
visualizer objects have a Boolean parameter
“animation” with default “animation = true”. If
“animation = false” is set, the animation of this
object is switched off and all equations of this object
are removed from the generated code. Additionally,
in the World object there is a global flag
“enableAnimation”. If this flag is set to false, the
animation of all objects is removed (this is
especially important for real-time simulation).

Visualizer components “FixedArrow” and
“SignalArrow” display an arrow at a frame.
“FixedFrame” displays a coordinate system with
axes labels, see Figure 2. “FixedShape” displays
either one of the geometric shapes from Figure 20 or
it displays a 3D shape from a DXF or STL file. All
models in the MultiBody library, such as a joint, a
body, a force element or a sensor, have built-in

Figure 20. Geometric shapes visualized by “FixedShape”

animation properties that are based on the visualizer
objects. Appropriate default values are available
such that, without any additional action from the
user, always an animation of the defined elements is
displayed that can be further refined to get a nicer
drawing. The main advantage of this approach is
that a defined multi-body model can be quickly
checked visually. This feature is implemented in the
following way (which might be useful also for other
applications):

 ...
protected
 outer MultiBody.World world;
 parameter Integer ndim =
 if world.enableAnimation and
 animation then 1 else 0;
 Visualizers.Advanced.Shape
 shape[ndim](
 each shapeType=shapeType,
 each color=color,
 ...
)

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

326

Via an outer declaration the world object is
accessed. The Visualizers.Advanced.Shape model is
a shape without a frame connector that may have a
fixed or dynamic shape using all the elements from
Figure 20. An instance of this model is declared as
an array with dimension “ndim”. This dimension is
either zero or one, depending whether animation is
enabled or not. A variable of array shape, such as
“color” has the same value for all array indices and
therefore it is defined as “each color = ...”.
Modelica supports zero-sized component arrays and
therefore the above definition just states that no
object “shape” is present, when the dimension of the
array is zero, i.e., when animation is disabled.

10 Summary and Outlook
It is expected that the new and free Modelica
MultiBody library will be very helpful for the
modeling of simple and complex 3-dimensional
mechanical systems, especially for non-experts in
the multi-body field, since the library is easy to use
(in contrast to the previous ModelicaAdditions.-
MultiBody library) and it is very powerful.
Especially, several features are present to get real-
time simulation performance. The MultiBody
library is designed to work closely together with
other Modelica libraries, in particular with the
libraries:
• Modelica.Mechanics.Translational for

1-dim. translational line force elements.
• Modelica.Mechanics.Rotational for

1-dim. rotational elements to define drive trains
driving, e.g., revolute joints. This library
contains sophisticated elements such as bearing
friction, torque dependent friction in gears,
clutches, brakes.

• PowerTrain [20] which is an extension of the
Rotational library dedicated to vehicle power
trains and complicated planetary gears with
losses. The Rotational, MultiBody and
PowerTrain library are extended in the next
version such that all 3D effects of 1-dim. drive
trains attached to MultiBody models are taken
into account in an efficient and user convenient
way [22]. In particular support torques of drive
train elements are calculated.

• HyLib [3][4] for the modeling of hydraulic
systems. Hydraulic cylinders of HyLib can be
directly attached to the 1D flanges of MultiBody
line force elements.

• VehicleDynamics [2] for the modeling of the
dynamics of vehicles providing a large set of
components and also complete vehicles in

different levels of model details. The free
VehicleDynamics library is currently based on
the ModelicalAdditions.MultiBody library. It
will soon be converted to the new MultiBody
library.

• Import filters from AutoDesk Mechanical
desktop [5] and from SolidWorks [9] to
Modelica are available for the Modelica-
Additions.MultiBody library. It is planned to
convert them soon to the new MultiBody
library, see http://www.mathcore.com.

We plan to further continue the development of the
MultiBody library in different directions. Since the
field of possible improvements is large, e.g.,
modeling of elastic bodies, modeling of contact,
interfaces to finite element and CAD programs,
aero-elastic couplings of wings, etc., we are
interested in cooperations. Please, feel free to
contact the authors if you plan to use the MultiBody
library as a basis for enhancements, especially if you
provide your work also in the public domain.

Acknowledgements
Developments in the EU Project RealSim "Real-
time simulation for design of multi-physics
systems", in the years 2000-2002 under contract
IST-1999-11979, have influenced the design of this
library, e.g., the close integration of animation in all
objects.

The idea to provide a general line force element
with 1D-translational connectors has been taken
from the VehicleDynamics library [2]. In the
ModelicaAdditions.MultiBody library a user had to
inherit from a “LineForce” superclass and always
implement the force law with Modelica equations.
The usage of the 1D flange connectors is more user
friendly.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

327

Appendix: Algorithm to Transform
Overdetermined DAEs
In this appendix the algorithm is sketched to
transform an overdetermined DAE to a standard
DAE where the number of equations and unknowns
are identical.

In Table 3, the set of Modelica built-in operators
introduced in section 5 are formally defined. These
operators are utilized to describe the relationships of
the overdetermined types or records in the connector
instances of a model: Every instance of an
overdetermined type or record in an overdetermined
connector is a node in a virtual connection graph
that is used to determine when the standard equation
“R1 = R2” or when the equation “0 =
equalityConstraint(R1, R2) ”has to be used for the
generation of connect(...) equations. The branches
of the virtual connection graph are implicitly
defined by “connect(...)” and explicitly by
“Connections.branch(...)” statements, see Table 1.

For example, a revolute joint has two connectors
frame_a and frame_b. In this model, there is an
algebraic relationship between the orientation
objects of these two frames: frame_b.R =
f(frame_a.R, ϕ), where ϕ is the relative rotation
angle. A definition of the form

Connections.branch
 (frame_a.R, frame_b.R);

has to be present in this joint model in order to state
that the overdetermined variables frame_a.R and
frame_b. R are algebraically coupled.

Additionally, corresponding nodes of the virtual
connection graph have to be defined as roots or as
potential roots with functions “root(...)” and
“potentialRoot(...)”, respectively, see Table 3. For
example, connector frame_a in the World model has
to be defined as “Connections.root(frame_a.R)”
because all elements of frame_a.R are explicitly
given in the World model (frame_a.R =
nullRotation()). A “potential root” is, for example,
a body object, since if the body is freely flying in
space, body coordinates may be used as states from
which the orientation object can be computed. It is a
“potential root”, because body states should for
efficiency reasons only be selected as states, if no
other possibility exists.

Note, that branch(...), root(...), potentialRoot(...)
do not generate equations. They only define nodes
and branches in the virtual connection graph for
analysis purposes to be discussed now.

Before connect(…) equations are generated, the
virtual connection graph is transformed into a set of
spanning trees by removing breakable branches
(connections) from the graph. This is performed in

connect(A,B); Defines breakable branches from the overdetermined type or record instances
in connector instance A to the corresponding overdetermined type or record
instances in connector instance B for a virtual connection graph.

branch(A.R,B.R); Defines a non-breakable branch from the overdetermined type or record
instance R in connector instance A to the corresponding overdetermined type or
record instance R in connector instance B for a virtual connection graph. This
function can be used at all places where a connect(..) statement is allowed. [This
definition shall be used, if in a model with connectors A and B the
overdetermined records A.R and B.R are algebraically coupled in the mode].

root(A.R); The overdetermined type or record instance R in connector instance A is a
(definite) root node in a virtual connection graph. [This definition shall be used
if in a model with connector A the overdetermined record A.R is (consistently)
assigned, e.g., from a parameter expressions]

potentialRoot(A.R);
potentialRoot
(A.R, priority = prior);

The overdetermined type or record instance R in connector instance A is a
potential root node in a virtual connection graph with priority “prior” (prior ≥
0). If no second argument is provided, the priority is zero. “prior” shall be a
parameter expression of type Integer. In a virtual connection subgraph without a
Connections.root definition, one of the potential roots with the lowest priority
number is selected as root [This definition is, e.g., used in a body, see
Parts.Bodys in Table 2].

b = isRoot(A.R); Returns true, if the overdetermined type or record instance R in connector
instance A is selected as a root in the virtual connection graph.

Table 3. Operators “Connections.XXX” (e.g. Connections.branch) to define the set of overdetermined equations

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

328

the following way:

1. Every root node defined via the
“Connections.root(…)” statement is a definite
root of one spanning tree.

2. The virtual connection graph may consist of sets
of subgraphs that are not connected together.
Every subgraph in this set shall have at least one
root node or one potential root node. If a graph
of this set does not contain any root node, then
one potential root node in this subgraph with
the lowest priority number is selected to be the
root of the subgraph. The selection can be
inquired in a class with function
Connections.isRoot(…), see Table 1.

3. If there are n selected roots in a subgraph, then
breakable branches have to be removed such
that the result shall be a set of n spanning trees
with the selected root nodes as roots.

After this analysis, the connect(…) equations for
overdetermined variables are generated in the
following way:

1. For every breakable branch in one of the
spanning trees, i.e., connect(A,B) statements,
the usual “equality” connect equations are
generated, “A.R = B.R”.

2. For every breakable branch not in any of the
spanning trees, the equations “0 =
R.equalityConstraint(A.R,B.R)” are generated
instead of “A.R = B.R”.

An example for a virtual connection graph is given
in Figure 21. This example contains two
independent subgraphs that are analyzed separately.
The left subgraph has two (definite) roots. Four
breakable branches, i.e., connect(...) statements have
to be removed to arrive at two spanning trees. For
every removed connect(...) statement the
equalityConstraint(...) function is used to generate
the connection equation. In the right subgraph of
Figure 21 no definite root is present. Therefore, the
potential root with the lowest priority has to be
selected as root. If there are several roots with the
same lowest priority, one of them is selected
arbitrarily. Starting from the selected root, only one
branch has to be removed to also arrive at a
spanning tree in this subgraph.

Figure 21. Example for virtual connection graph

root

root
potential root

node

nonbreakable branch (Connections.branch)
breakable branch (connect)
removed breakable branch to get tree

root

selected (potential) root

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

329

Bibliography
[1] ADAMS: MSC ADAMS at http://www.mscsoft-

ware.com/products/quick_prod.cfm
[2] Andreasson: VehicleDynamics library. Procee-

dings of the 3rd Int. Modelica Conference,
Modelica'2003. http://www.Modelica.org

[3] Beater P. (2003): HyLib version 2.1.
http://www.HyLib.com

[4] Beater P., and Otter M. (2003): Multi-Domain
Simulation: Mechanics and Hydraulics of an
Excavator. Proceedings of the 3rd Int. Modelica
Conference, Modelica'2003.
http://www.Modelica.org

[5] Bunus B., Engelson V., and Fritzson P. (2000):
Mechanical Models Translation, Simulation and
Visualization in Modelica. Proc. of Modelica 2000
workshop, Lund, 2000. http://www.modelica.org/-
workshop2000/proceedings/Bunus.pdf

[6] DADS: LMS DADS at http://www.lmsintl.com/
[7] Dynasim (2003): Dymola Users Guide, Version

5.1, http://www.dynasim.se.
[8] Elmqvist, H. (1978): A Structured Model

Language for Large Continous Systems. PhD-
Thesis, Lund Institute of Technology, Lund,
Sweden.

[9] Engelson V. (2000): Tools for Design, Interactive
Simulation, and Visualization of Object-
Oriented Models in Scientific Computing.
Linköping Studies in Science and Technology.
Dissertation No 627. Department of Computer and
Information Science, Linköping University
(chapter 5).

[10] Hiller M., and Woernle C. (1987): A Systematic
Approach for Solving the Inverse Kinematic
Problem of Robot Manipulators. Proceedings 7th
World Congress Th. Mach. Mech., Sevilla.

[11] Kecskemethy A. (1993): Objektorientierte Model-
lierung der Dynamik von Mehrkörpersystemen
mit Hilfe von Übertragungselementen.
Dissertation, VDI Fortschritt-Berichte, Reihe 20,
Nr. 88.

[12] Kecskemethy A. (1993): Mobile - An Object-
Oriented Tool-Set for the Efficient Modeling of
Mechatronic Systems. Proc. of the Second Confer-
ence on Mechatronics and Robotics, pp. 447-462,
Duisburg/Moers, Sept. 27.-29. MOBILE homepage:
http://www.mechanik.tu-graz.ac.at/mobile

[13] Mattsson S.E., and Söderlind G. (1993): Index
reduction in differential-algebraic equations
using dummy derivatives. SIAM Journal of
Scientific and Statistical Computing, Vol. 14, pp.
677-692.

[14] Mattsson S.E., Olsson H., and Elmqvist H. (2000):
Dynamic Selection of States in Dymola. Modelica
Workshop 2000 Proceedings, pp. 61-67,

http://www.modelica.org/workshop2000/-
proceedings/Mattsson.pdf

[15] Möller M. (1992): Ein Verfahren zur
automatischen Analyse der Kinematik
mehrschleifiger räumlicher Mechanismen.
Dissertation, Institut A für Mechanik der
Universität Stuttgart.

[16] Nikravesh, P.E (1988): Computer-Aided Analysis
of Mechanical Systems. Prentice Hall.

[17] Otter M., Elmqvist H., and Cellier F. (1996):
Modeling of MultiBody Systems with the Object-
Oriented Modeling Language Dymola. Nonlinear
Dynamics, Vol. 9, pp. 91-112.

[18] Roberson R.E., and Schwertassek R (1988):
Dynamics of Multibody Systems. Springer Verlag.

[19] Pantelides C. (1988): The Consistent Initialization
of Differential-Algebraic Systems. SIAM Journal
of Scientific and Statistical Computing, pp. 213-
231.

[20] PowerTrain (2002): PowerTrain Library 1.0 –
Tutorial. DLR, www.dynasim.se/www/Power-
TrainTutorial.pdf

[21] SIMPACK: http://www.simpack.de/
[22] Schweiger C., and Otter M. (2003): Modelling 3D

Mechanical Effects of 1D Powertrains. Procee-
dings of the 3rd Int. Modelica Conference,
Modelica'2003. http://www.Modelica.org

[23] TESIS ve-DYNA: http://www.tesis.de/en
[24] Woernle C. (1988): Ein systematisches Verfahren

zur Aufstellung der geometrischen Schließbe-
dingungen in kinematischen Schleifen mit
Anwendung bei der Rückwärtstransformation
für Industrieroboter. Fortschritt-Berichte VDI,
Reihe 18, Nr. 59, Düsseldorf: VDI-Verlag , ISBN 3-
18-145918-6.

 The Modelica Association Modelica 2003, November 3-4, 2003

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson The New Modelica MultiBody Library

330

Multi-Domain Simulation:
Mechanics and Hydraulics of an Excavator

Peter Beater1, and Martin Otter2
1University of Applied Sciences Soest, Germany, pb@beater.de

2DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.de

Abstract
It is demonstrated how to model and simulate an
excavator with Modelica and Dymola by using
Modelica libraries for multi-body and for hydrau-
lic systems. The hydraulic system is controlled by a
“load sensing” controller. Usually, models con-
taining 3-dimensional mechanical and hydraulic
components are difficult to simulate. At hand of the
excavator it is shown that Modelica is well suited
for such kinds of system simulations.

1. Introduction
The design of a new product requires a number of
decisions in the initial phase that severely affect
the success of the finished machine. Today, digital
simulation is therefore used in early stages to look
at different concepts. The view of this paper is that
a new excavator is to be designed and several can-
didates of hydraulic control systems have to be
evaluated.

Systems that consist of 3-dimensional me-
chanical and of hydraulic components – like exca-
vators – are difficult to simulate. Usually, two dif-
ferent simulation environments have to be coupled.
This is often inconvenient, leads to unnecessary
numerical problems and has fragile interfaces. In
this article it is demonstrated at hand of the model
of an excavator that Modelica is well suited for
these types of systems.

The 3-dimensional components of the exca-
vator are modeled with the new, free Modelica
MultiBody library (Otter et. al. 2003). This allows
especially to use an analytic solution of the kine-
matic loop at the bucket and to take the masses of
the hydraulic cylinders, i.e., the “force elements”,
directly into account. The hydraulic part is mod-
eled in a detailed way, utilizing pump, valves and
cylinders from HyLib, a hydraulics library for
Modelica. For the control part a generic “load
sensing” control system is used, modeled by a set
of simple equations. This approach gives the re-
quired results and keeps the time needed for ana-
lyzing the problem on a reasonable level.

2. Modeling Choices
There are several approaches when simulating a
system. Depending on the task it may be necessary
to build a very precise model, containing every
detail of the system and needing a lot of informa-
tion, e.g., model parameters. This kind of models is
expensive to build up but on the other hand very
useful if parameters of a well defined system have
to be modified. A typical example is the optimiza-
tion of parameters of a counterbalance valve in an
excavator (Kraft 1996).

The other kind of model is needed for a first
study of a system. In this case some properties of
the pump, cylinders and loads are specified. Re-
quired is information about the performance of that
system, e.g., the speed of the pistons or the neces-
sary input power at the pump shaft, to make a deci-
sion whether this design can be used in principle
for the task at hand. This model has therefore to be
“cheap”, i.e., it must be possible to build it in a
short time without detailed knowledge of particular
components.

The authors intended to build up a model of
the second type, run it and have first results with a
minimum amount of time spent. To achieve this
goal the modeling language Modelica (Modelica
2002), the Modelica simulation environment Dy-
mola (Dymola 2003), the new Modelica library for
3-dimensional mechanical systems “MultiBody”
(Otter et al. 2003) and the Modelica library of hy-
draulic components HyLib (Beater 2000) was
used. The model consists of the 3-dimensional me-
chanical construction of the excavator, a detailed
description of the power hydraulics and a generic
“load sensing” controller. This model will be
available as a demo in the next version of HyLib.

3. Construction of Excavators
In Figure 1 a schematic drawing of a typical exca-
vator under consideration is shown. It consists of a
chain track and the hydraulic propel drive which is
used to manoeuvre the machine but usually not
during a work cycle. On top of that is a carriage

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003331

Figure 1 Schematic drawing of excavator
where the operator is sitting. It can rotate around a
vertical axis with respect to the chain track. It also
holds the Diesel engine, the hydraulic pumps and
control system. Furthermore, there is a boom, an
arm and at the end a bucket which is attached via a
planar kinematic loop to the arm. Boom, arm and
bucket can be rotated by the appropriate cylinders.

Figure 2 shows that the required pressures in
the cylinders depend on the position. For the
“stretched” situation the pressure in the boom cyl-
inder is 60 % higher than in the retracted position.
Not only the position but also the movements have
to be taken into account. Figure 3 shows a situation
where the arm hangs down. If the carriage does not
rotate there is a pulling force required in the cylin-
der. When rotating – excavators can typically ro-
tate with up to 12 revolutions per minute – the
force in the arm cylinder changes its sign and now
a pushing force is needed. This change is very sig-
nificant because now the “active” chamber of the
cylinder switches and that must be taken into ac-
count by the control system. Both figures demon-
strate that a simulation model must take into ac-
count the couplings between the four degrees of
freedom this excavator has. A simpler model that
uses a constant load for each cylinder and the
swivel drive leads to erroneous results (Jansson et
al. 1998).

Figure 2 Different working situations

Figure 3 Effect of centrifugal forces

4. Load Sensing System
Excavators have typically one Diesel engine, two
hydraulic motors and three cylinders. There exist
different hydraulic circuits to provide the consum-
ers with the required hydraulic energy. A typical
design is a Load Sensing circuit that is energy effi-
cient and user friendly. The idea is to have a flow
rate control system for the pump such that it deliv-
ers exactly the needed flow rate. As a sensor the
pressure drop across an orifice is used. The refer-
ence value is the resistance of the orifice. A sche-
matic drawing is shown in figure 4, a good intro-
duction to that topic is given in (anon. 1992).

The pump control valve maintains a pressure
at the pump port that is typically 15 bar higher than
the pressure in the LS line (= Load Sensing line). If
the directional valve is closed the pump has there-
fore a stand-by pressure of 15 bar. If it is open the
pump delivers a flow rate that leads to a pressure
drop of 15 bar across that directional valve. Note:
The directional valve is not used to throttle the
pump flow but as a flow meter (pressure drop that
is fed back) and as a reference (resistance). The
circuit is energy efficient because the pump deliv-
ers only the needed flow rate, the throttling losses
are small compared to other circuits.

If more than one cylinder is used the circuit
becomes more complicated, see figure 5. E.g. if the
boom requires a pressure of 100 bar and the bucket
a pressure of 300 bar the pump pressure must be
above 300 bar which would cause an unwanted

Figure 4 Schematics of a simple LS system (Zähe)

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003332

movement of the boom cylinder. Therefore com-
pensators are used that throttle the oil flow and
thus achieve a pressure drop of 15 bar across the
particular directional valve. These compensators
can be installed upstream or downstream of the
directional valves. An additional valve reduces the
nominal pressure differential if the maximum
pump flow rate or the maximum pressure is
reached (see e.g. Nikolaus 1994).

Figure 5 Schematic drawing of a LS system

5. Model of Mechanical Part
In Figure 6, a Modelica schematic of the mechani-
cal part is shown. The chain track is not modeled,
i.e., it is assumed that the chain track does not
move. Components “rev1”, ..., “rev4” are the 4
revolute joints to move the parts relative to each
other. The icons with the long black line are “vir-
tual” rods that are used to mark specific points on a
part, especially the mounting points of the hydrau-
lic cylinders. The light blue spheres (b2, b3, b4,
b5) are bodies that have mass and an inertia tensor
and are used to model the corresponding properties
of the excavator parts.

The three components “cyl1f”, “cyl2f”,
and “cyl3f” are line force components that describe
a force interaction along a line between two at-
tachment points. The small green squares at these
components represent 1-dimensional translational
connectors from the Modelica.Mechanics.Trans-
lational library. They are used to define the 1-
dimensional force law acting between the two at-
tachment points. Here, the hydraulic cylinders de-
scribed in the next section are directly attached.
The small two spheres in the icons of the “cyl1f,
cyl2f, cyl3f” components indicate that optionally
two point masses are taken into account that are
attached at defined distances from the attachment

Figure 6 Modelica schematic of mechanical part of excavator

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003333

points along the connecting line. This allows to
easily model the essential mass properties (mass
and center of mass) of the hydraulic cylinders with
only a very small computational overhead.

The jointRRR component (see right part of
Figure 6) is an assembly element consisting of 3
revolute joints that form together a planar loop
when connected to the arm. A picture of this part
of an excavator, a zoom in the corresponding
Modelica schematic and the animation view is
shown in Figure 7. When moving revolute joint
“rev4” (= the large red cylinder in the lower part of
Figure 7; the small red cylinders characterize the 3
revolute joints of the jointRRR assembly compo-
nent) the position and orientation of the attachment
points of the “left” and “right” revolute joints of
the jointRRR component are known. There is a
non-linear algebraic loop in the jointRRR compo-
nent to compute the angles of its three revolute
joints given the movement of these attachment
points. This non-linear system of equations is
solved analytically in the jointRRR object, i.e., in a
robust and efficient way. For details see (Otter et.
al. 2003).

Figure7 Foto, schematic and animation of jointRRR

In a first step, the mechanical part of the excavator
is simulated without the hydraulic system to test
this part separatly. This is performed by attaching
translational springs with appropriate spring con-
stants instead of the hydraulic cylinders. After the
animation looks fine and the forces and torques in
the joints have the expected size, the springs are
replaced by the hydraulic system described in the
next sections.

All components of the new MultiBody li-
brary have “built-in” animation definitions, i.e.,
animation properties are mostly deduced by default
from the given definition of the multi-body system.
For example, a rod connecting two revolute joints
is by default visualized as cylinder where the di-
ameter d is a fraction of the cylinder length L (d =
L/40) which is in turn given by the distance of the
two revolute joints. A revolute joint is by default
visualized by a red cylinder directed along the axis
of rotation of the joint. The default animation (with
only a few minor adaptations) of the excavator is
shown if Figure 8.

Figure 8 Default animation of excavator

The light blue spheres characterize the center of
mass of bodies. The line force elements that visu-
alize the hydraulic cylinders are defined by two
cylinders (yellow and grey color) that are moving
in each other. As can be seen, the default anima-
tion is useful to get, without extra work from the
user side, a rough picture of the model that allows
to check the most important properties visually,
e.g., whether the center of masses or attachment
points are at the expected places.

For every component the default animation
can be switched off via a Boolean flag. Removing
appropriate default animations, such as the “center-
of-mass spheres”, and adding some components
that have pure visual information (all visXXX
components in the schematic of Figure 6) gives
quickly a nicer animation, as is demonstrated in
Figure 9. Also CAD data could be utilized for the
animation, but this was not available for the ex-
amination of this excavator.

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003334

Figure 9 Animation of excavator (start/end position)

6. The Hydraulics Library HyLib
The (commercial) Modelica library HyLib (Beater
2000, HyLib 2003) is used to model the pump,
metering orifice, load compensator and cylinder of
the hydraulic circuit. All these components are
standard components for hydraulic circuits and can
be obtained from many manufacturers. Models of
all of them are contained in HyLib. These mathe-
matical models include both standard textbook
models (e. g. Dransfield 1981, Merrit 1967,
Viersma 1980) and the most advanced published
models that take the behavior of real components
into account (Schulz 1979, Will 1968). An exam-
ple is the general pump model where the output
flow is reduced if pressure at the inlet port falls
below atmospheric pressure. Numerical properties
were also considered when selecting a model
(Beater 1999). One point worth mentioning is the
fact that all models can be viewed at source code
level and are documented by approx. 100 refer-
ences from easily available literature.

After opening the library, the main win-
dow is displayed (Figure 10). A double click on the
“pumps” icon opens the selection for all compo-
nents that are needed to originate or end an oil flow
(Figure 11). For the problem at hand, a hydraulic
flow source with internal leakage and externally
commanded flow rate is used. Similarly the needed
models for the valves, cylinders and other compo-
nents are chosen.

All components are modeled hierarchi-
cally. Starting with a definition of a connector – a
port were the oil enters or leaves the component –

Figure 10 Overview of hydraulics library HyLib

a template for components with two ports is writ-
ten. This can be inherited for ideal models, e.g., a
laminar resistance or a pressure relief valve. While
it usually makes sense to use textual input for these
basic models most of the main library models were
programmed graphically, i.e., composed from ba-
sic library models using the graphical user inter-
face. Figure12 gives an example of graphical pro-
gramming. All mentioned components were cho-
sen from the library and then graphically con-
nected.

Figure 11 Pump models in HyLib

7. Library Components in
Hydraulics Circuit

The composition diagram in Figure 12 shows the
graphically composed hydraulics part of the exca-
vator model. The sub models are chosen from the
appropriate libraries, connected and the parameters
input. Note that the cylinders and the motor from
HyLib can be simply connected to the also shown
components of the MultiBody library. The input
signals, i.e., the reference signals of the driver of
the excavator, are given by tables, specifying the
diameter of the metering orifice, i.e. the reference
value for the flow rate. From the mechanical part

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003335

of the excavator only the components are shown in
Figure 12 that are directly coupled with hydraulic
elements, such as line force elements to which the
hydraulic cylinders are attached.

8. Model of LS Control
For this study the following approach is chosen:
Model the mechanics of the excavator, the cylin-
ders and to a certain extent the pump and metering
valves in detail because only the parameters of the
components will be changed, the general structure
is fixed. This means that the diameter of the bucket
cylinder may be changed but there will be exactly
one cylinder working as shown in Figure 1. That is
different for the rest of the hydraulic system. In
this paper a Load Sensing system, or LS system for
short, using one pump is shown but there are other
concepts that have to be evaluated during an initial
design phase. For instance the use of two pumps,
or a separate pump for the swing.

The hydraulic control system can be set up
using meshed control loops. As there is (almost) no
 way to implement phase shifting behavior in
purely hydraulic control systems the following ge-
neric LS system uses only proportional controllers.

A detailed model based on actual compo-
nents would be much bigger and is usually not
available at the begin of an initial design phase. It

could be built with the components from the hy-
draulics library but would require a considerable
amount of time that is usually not available at the
beginning of a project.

In Tables 1 and 2, the implementation of the
LS control in form of equations is shown. Usually,
it is recommended for Modelica models to either
use graphical model decomposition or to define the
model by equations, but not to mix both descrip-
Table 1 Modelica code for definition for constants,
 parameters and variables for LS control system
// Definition of variables,
// parameters and constants
import SI = Modelica.SIunits;
SI.Pressure delta_p1;
SI.Pressure delta_p2;
SI.Pressure pump_ls;
SI.Pressure pump_ls1;
SI.Pressure pump_ls2;
SI.Pressure dp_ref(start = 15e5,

fixed = true);
Boolean pump_q_max;
Boolean pump_p_max(start = false,

fixed = true);

parameter Real k_LS = 1e-5;
parameter SI.Pressure p_max = 415e5

Figure 12 Modelica schematic of hydraulic part of excavator

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003336

Table 2 Modelica code for LS Controller, see also Fig. 4 and 5

function conductance "Determine conductance of compensators"
input SI.Pressure dp;
output Real G;

algorithm
G := min(1e-8, max(1e-13, 1e-8 - dp*5e-14));

end conductance
equation // Set of equations to model the LS controller

// define pressure differential across the metering orifices
// for load compensator and documentation purposes
delta_p1 = if ref_boom.y[1] <= 0 then pump.port_B.p

else metOri1.port_A.p - metOri1.port_B.p;
delta_p2 = if ref_swing.y[1] <= 0 then 0.0

else metOri2.port_A.p - metOri2.port_B.p;
delta_p3 = if ref_bucket.y[1] <= 0 then pump.port_B.p

else metOri3.port_A.p - metOri3.port_B.p;
delta_p4 = if ref_arm.y[1] <= 0 then pump.port_B.p

else metOri4.port_A.p - metOri4.port_B.p;

// calculate load pressure for pump controller
pump_ls1 = if ref_boom.y[1] <= 0 then pump.port_B.p

else metOri1.port_A.p - comp1.port_B.p;
pump_ls2 = if ref_swing.y[1] <= 0 then pump.port_B.p

else metOri2.port_A.p - comp2.port_B.p;
pump_ls3 = if ref_bucket.y[1] <= 0 then pump.port_B.p

else metOri3.port_A.p - comp3.port_B.p;
pump_ls4 = if ref_arm.y[1] <= 0 then pump.port_B.p

else metOri4.port_A.p - comp4.port_B.p;
pump_ls = min([pump_ls1, pump_ls2, pump_ls3, pump_ls4);

// define Boolean state for pump controller
pump_q_max = k_LS*(15e5 - pump_ls) > 8e-3;

// set Boolean state if max. pump pressure is reached (with hysteresis)
pump_p_max = pump.port_B.p > p_max or

pre(pump_p_max) and pump.port_B.p > 0.95*p_max;

// calculate command signal for pump
pump.inPort.signal[1] = if pump_p_max then

min(7.5e-3, 7.5e-3 + k_LS*1e-2*(p_max - pump.port_B.p))
else if pump_q_max then 7.5e-3 else (k_LS*(15e5 - pump_ls));

// modify reference signal if maximum pump flow rate is exceeded
dp_ref = if pump_q_max and not pump_p_max then pump_ls else 15e5;

// calculate conductances of pressure compensators
comp1.inPort.signal[1] = conductance(delta_p1 - dp_ref);
comp2.inPort.signal[1] = conductance(delta_p2 - dp_ref);
comp3.inPort.signal[1] = conductance(delta_p3 - dp_ref);
comp4.inPort.signal[1] = conductance(delta_p4 - dp_ref);

tion forms on the same model level. For the LS
system this is different because it has 17 input sig-
nals and 5 output signals. One might built one
block with 17 inputs and 5 outputs and connect
them to the hydraulic circuit. However, in this case
it seems more understandable to provide the equa-
tions directly on the same level as the hydraulic

circuit above and access the input and output sig-
nals directly. For example, ”metOri1.port_A.p”
used in table 2 is the measured pressure at port_A
of the metering orifice metOri1. The calculated
values of the LS controller, e.g., the pump flow
rate “pump.inPort.signal[1] = ...” is the signal at the

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003337

filled blue rectangle of the “pump” component, see
Figure 12).

The strong point of Modelica is that a
seamless integration of the 3-dimensional me-
chanical library, the hydraulics library and the non
standard, and therefore in no library available,
model of the control system is easily done. The
library components can be graphically connected
in the object diagram and the text based model can
access all needed variables.

9. Some Simulation Results
The complete model was built using the Modelica
modeling and simulation environment Dymola
(Dymola 2003), translated, compiled and simulated
for 5 s. The simulation time was 17 s using the
DASSL integrator with a relative tolerance of 10-6

on a 1.8 GHz notebook, i.e., about 3.4 times slower
as real-time. The animation feature in Dymola
makes it possible to view the movements in an al-
most realistic way which helps to explain the re-
sults also to non-experts, see Figure 9.

Figure 13 gives the reference signals for
the three cylinders and the swing, the pump flow
rate and pressure. From t = 1.1 s until 1.7 s and
from t = 3.6 s until 4.0 s the pump delivers the
maximum flow rate. From t = 3.1 s until 3.6 s the
maximum allowed pressure is reached.

Figure 13 Reference, pump flow rate and pressure

Figure 14 gives the position of the boom and the
bucket cylinders and the swing angle. It can be
seen that there is no significant change in the pis-
ton movement if another movement starts or ends.
The control system reduces the couplings between
the consumers which are very severe for simple
throttling control.

Figure 14 Boom and bucket piston position and swing
angle

Figure 15 shows the operation of the bucket cylin-
der. The top figure shows the reference trajectory,
i. e. the opening of the directional valve. The mid-
dle figure shows the conductance of the compen-
sators. With the exception of two spikes it is open
from t = 0 s until t = 1 s. This means that in that
interval the pump pressure is commanded by that
bucket cylinder. After t = 1 s the boom cylinder
requires a considerably higher pressure and the
bucket compensator therefore increases the resis-
tance (smaller conductance). The bottom figure
shows that the flow rate control works fine. Even
though there is a severe disturbance (high pump
pressure after t = 1 s due to the boom) the com-
manded flow rate is fed with a small error to the
bucket cylinder.

Figure 15 Operation of bucket cylinder

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003338

10. Conclusion
For the evaluation of different hydraulic circuits a
dynamic model of an excavator was built. It con-
sists of a detailed model of the 3 dimensional me-
chanics of the carriage, including boom, arm and
bucket and the standard hydraulic components like
pump or cylinder. The control system was not
modeled on a component basis but the system was
described by a set of nonlinear equations.

The system was modeled using the Mode-
lica MultiBody library, the hydraulics library Hylib
and a set of application specific equations. With
the tool Dymola the system could be build and
tested in a short time and it was possible to calcu-
late the required trajectories for evaluation of the
control system.

The animation feature in Dymola makes it
possible to view the movements in an almost real-
istic way which helps to explain the results also to
non experts.

Bibliography

anon (1992): Load Sensing Systems Principle of Opera-
tion. Eaton Corporation. Hydraulics Division. Eden
Prairie, MN, USA. (also under
http://www.hydraulics.eaton.com/products/pdfs/
03-206.pdf)

Beater, P. (1999): Entwurf hydraulischer Maschinen –
Modellbildung, Stabilitätsanalyse und Simulation hy-
drostatischer Antriebe und Steuerungen. Springer
Verlag.

Beater, P. (2000): Modeling and Digital Simulation of
Hydraulic Systems in Design and Engineering Edu-
cation using Modelica and HyLib. pp. 33 - 40.
Modelica Workshop 2000, October 23 – 24, 2000,
Lund, Sweden.

Dransfield, P. (1981): Hydraulic Control Systems - De-
sign and Analysis of Their Dynamics. Springer, Ber-
lin, Heidelberg New York.

Dymola (2003): Dymola version 5.1.
http://www.Dynasim.se

Elmqvist, H. (1978): A Structured Model Language for
Large Continous Systems. PhD-Thesis Lund Institute
of Technology, Lund, Sweden.

Jansson, A., Yahiaoui, M., and Richards, C. (1998):
Running Combined Multibody Hydraulic System
Simulations within ADAMS. International ADAMS
User Conference

HyLib (2003): HyLib version 2.1.
http://www.HyLib.com

Kraft, W. (1996): Experimentelle und analytische Un-
tersuchungen hydrostatischer Fahrantriebe am
Beispiel eines Radbaggers. PhD-Thesis RWTH
Aachen, Germany.

Merrit, H. E. (1967): Hydraulic Control Systems. New
York: John Wiley & Sons.

Modelica (2002): Modelica - A Unified Object-Oriented
Language for Physical Systems Modeling. Language
Specification. Version 2.0. http://www.Modelica.org

Nikolaus, H. W. (1994): Load Sensing - lastunabhän-
gige Dosierung von Verbraucherströmen. Ölhydrau-
lik und Pneumatik, o+p, 38, pp. 196- 201.

Otter, M., Elmqvist, H., and Mattsson, S.E. (2003): The
New Modelica MultiBody Library. Modelica’2003,
3rd International Modelica Conference, Linköping,
Nov. 2-3.

Schulz, R. (1979): Berechnung des dynamischen Ver-
haltens hydraulischer Antriebe großer Leistung für
Umformmaschinen. PhD-Thesis. RWTH Aachen.

Viersma, T. J. (1980): Analysis, Synthesis and Design of
Hydraulic Servosystems and Pipelines. Amsterdam:
Elsevier Scientific Publishing Company.

Zähe, B., Gawlikowski, R, and Linden, D (1993): Load
Sensing als Mehrgrößenregelung. o+p 37, pp. 638 -
644

 Peter Beater and Martin Otter Multi-Domain Simulation: Mechanics and Hydraulics of an Excavator

 The Modelica Association Modelica 2003, November 3-4, 2003339

 The Modelica Association Modelica 2003, November 3-4, 2003

340

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 8B
Thermodynamic Systems – III

341

 The Modelica Association Modelica 2003, November 3-4, 2003342

Modelling and Simulation of Heat Exchangers in Modelica with
Finite Element Methods

Francesco Casella and Francesco Schiavo∗

Politecnico Di Milano
Dipartimento Di Elettronica Ed Informazione (DEI)

Via Ponzio 34/5, 20133 Milano, Italy
e-mail:{casella,schiavo }@elet.polimi.it

Abstract

The complete development of a Modelica model for
1-D heat exchangers is presented. The numerical
method, termedFinite Element Method, is briefly re-
viewed and its application to heat exchangers partial
differential equations is presented. Implementation is-
sues are tackled as well, and the component developed
is validated through simulation within the framework
of ThermoPower, a recently released Modelica library
for thermal power plants modelling, simulation and
control. The component is included into such library
which is publicly available through the Web [1].

1 Introduction

The process of heat exchange between two fluids that
are at different temperatures and separated by a solid
wall occurs in many engineering applications. The
device used to implement this exchange is termed a
heat exchanger(HE), and specific applications may
be found in space heating and air-conditioning, power
generation, waste heat recovery, and chemical process-
ing [2].
In this paper it is presented a Modelica model of the
fluid side of heat exchangers, developed using a nu-
merical method known asfinite element method; com-
plete models of HEs are then obtained by suitably as-
sembling such models with metal wall and heat ex-
change models.
Such model is included in the power generation Mod-
elica libraryThermoPower[1].
The goal of this research is twofold. First, to show
how Modelica can be used effectively in the mod-
elling of physical phenomena described directly by
Partial Differential Equations(PDEs); this aim is

∗Corresponding author

achieved through the application of a specific numeri-
cal method, namely theFinite Element Method, which
can approximate a PDE with a set ofOrdinary Differ-
ential Equations(ODEs). Second, to amply the library
of models for thermal power generation plants which
has been developed here at Politecnico di Milano, of-
fering to potential users a broader choice for the com-
plexity and accuracy with which they would like to
model some specific physical phenomena; this second
aim is achieved exploiting the Modelica features for
object-oriented modelling and the standardized model
interfaces which have been defined within the library
ThermoPower[1].
The paper is organized as follows: Section 2 recalls
the basic physical laws for HEs; Section 3 is a brief in-
troduction to the numerical methods used, while Sec-
tion 4 shows how such methods can be used to develop
models for HEs; Section 5 deals with the Modelica im-
plementation of the model and Section 6 shows some
simulation results; Finally, conclusions and perspec-
tives on future work are given in Section 7.

2 First Principle Model

Consider a compressible fluid flowing through a pipe-
shaped volume (V) with rigid boundary area and ex-
changing thermal energy through such boundary (fig-
ure 1).

Figure 1: Heat Exchanger Scheme

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003343

Assume that

• the longitudinal dimension (x) is far more rele-
vant than the other two;

• the volumeV is “sufficiently” regular (that isV
is such that the fluid motion alongx is not inter-
rupted);

• there are no phase-changes along the pipe (that
is the fluid is always either single-phase or two-
phase).

• the Reynolds number (Re) is such that turbulent
fluid flow is assured along all the pipe, which in
turn guarantees almost uniform velocity and ther-
modynamic state of the fluid across the radial di-
rection;

When water or steam is assumed as the working fluid,
the last hypothesis does not hold at very low flowrates;
however, in practical system simulations, the plant
never operates in such conditions for a long time.
It is then possible to define all the thermodynamic in-
tensive variables with respect only to longitudinal ab-
scissa (x) and time (t). Within this framework, the
conservation equations for mass, dynamic momentum
(neglecting the kinetic term) and energy (neglecting
the diffusion term) can be formulated as follows:

A
∂ρ
∂t

+
∂w

∂x
= 0 (1)

∂w

∂t
+A

∂p

∂x
+ρgA

∂z

∂x
+

Cf

2ρA2 ωw|w|= 0 (2)

∂h

∂t
+w

v

A

∂h

∂x
= v

dp

dt
+v

ω
A

φext , (3)

whereA is the pipe cross-section,ρ the fluid density,
w the mass flow-rate,p the fluid pressure,g the gravity
acceleration,z the pipe height,Cf the Fanning friction
coefficient,ω the wet perimeter,h the fluid specific
enthalpy,v the fluid specific volume,φext the heat flux
entering the pipe across the lateral surface.

3 Finite Element Methods For Time-
Dependant Advection Equation

Consider the following first-order linearpartial differ-
ential equation(PDE):

∂u

∂t
+β ·∇u+σu = f in Ω× (0,T)

u = g on ∂Ωin× (0,T)
u = u0 on Ω for t = 0 ,

(4)

whereΩ denotes a bounded domain (x ∈ Ω) in ℜm

with boundary∂Ω, T > 0 is a prescribed time value
(t ∈ (0,T)), u(x, t) is the unknown (for example a
temperature field),f (x, t) is given function,β(x, t) is
a given velocity field ,σ(x, t) an adsorption coeffi-
cient,∇ is the gradient operator;u0 = u0(x) is the as-
signed initial datum andg(x, t) is the assignedDirich-
let boundary condition defined on the inflow boundary
∂Ωin = {x∈ ∂Ω|β(x, t) · −→n (x) < 0} (−→n is the unit out-
ward normal vector on∂Ω).

The equation (4) is calledtime-dependant advection
equation[3] and it can represent the energy equation
(3) for heat exchangers.

In the following, for the sake of simplicity, the equa-
tion (4) will have the form∂u

∂t +Lu = f , whereL is the
proper differential operator.

The approximated solution of the PDE (4) can be
obtained through several numerical methods; on the
other side, only methods that allow to transform a PDE
into a set of ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs) with respect
to time are suitable to use within the Modelica frame-
work. Within this paper the focus is on a numerical
method termedFinite Element Method(FEM) [3],[4].
Other interesting methods for the approximation of
PDE (4) are theFinite Difference Method(FDM) and
Finite Volume Method(FVM) [3], [5]. The advantage
of using FEM instead of FVM or FDM is that it can
provide more accurate solution or, in specific cases,
the exact nodal values for the unknown [3].

The FEM is based on the discretization of the solution
region into elementary elements. The unknown vari-
ableu is expressed in terms of assumedapproximating
or interpolation functions within each element. The
interpolation functions are local, i.e. functions defined
over smaller sub-domains, where these sub-domains
extend over a few elements, and are zero everywhere
else. The local interpolation functions are ordinarily
very simple functions, such as low-degree polynomi-
als. The interpolation functions are defined in terms
of the values of the variable at specified points called
nodes. Nodes usually lie on the element boundaries
where adjacent elements are considered to be con-
nected. In addition to boundary nodes, an element may
also have a few interior nodes. The nodal valuesui of
the variable and the interpolation functions for the el-
ements completely define the behavior of the variable
within the elements. For the finite element represen-
tation of a problem, the nodal values of the variable
become the new unknowns. Once these unknowns are
found, the interpolation functions define the variable

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003344

throughout the assemblage of elements. Clearly, the
nature of the solution and the degree of approxima-
tion depend not only on the size and number of the
elements used, but also on the interpolation functions
selected [3].

3.1 The Method of Weighted Residual

TheMethod of Weighted Residual(MWR) is a math-
ematical technique for obtaining finite element equa-
tions from linear and non-linear PDEs. Referring to
(4), the problem solved by the MWR is to find the
nodal values of an approximated solution (uh(x, t)) so
as to make an error (called residual)

Rh(x, t) =
∂uh(x, t)

∂t
+Luh(x, t)− f (x, t) (5)

small over the entire solution domainΩ, i.e.∫
Ω

RhvhdΩ ≈ 0, ∀vh ∈Vh , (6)

wherevh(x) are linearly independentweighting func-
tions (as many as the nodal points) belonging to an
appropriate finite dimensional spaceVh. The Petrov-
Galerkinmethods used in the HE model development
belong to this family.

3.2 Finite Element Basis Function and Space

Figure 2: The “triangular” basis functionsϕ j(x)

The solution domainΩ is decomposed into elements
K of mesh sizehK . The finite element space Xkh is
the finite dimension space of continuous piecewise-
polynomial functions of degreek defined within each
elementK. The basic idea of the FEM is therefore
to approximate the infinite dimensional solution, be-
longing to a infinite dimension spaceX, with a finite
dimensional one, belonging toXk

h (whose size will be

calledN). In figure 2 the piece-wise linear (k = 1) in-
terpolating functions are depicted. The space ofinter-
polating functions will be called hereafterWh and its
interpolating functionsϕi(x). Then theapproximated
solutionuh(x, t) of u is expressed as

uh(x, t) =
N

∑
i=1

ui(t)ϕi(x) for t > 0

u0,h(x) =
N

∑
i=1

u0,i ϕi(x) for t = 0

(7)

3.3 Petrov-Galerkin Methods

In the following, for the sake of simplicity, the inner
functional product notation(u,v) =

∫
Ω uvdx is used.

In addition the way boundary conditions are enforced
into the approximated equation is not included, since
it is presented separately later.
By expanding (6) and properly choosing the weighting
function space, thePetrov-Galerkin(PG) approxima-
tion of the PDE problem (4) consists in findinguh∈Wh

such that

d

dt
(uh,vh)+(Luh,vh) = (f ,vh) ∀vh ∈Vh (8)

with Wh 6= Vh but dim(Wh) = dim(Vh) = N, ∀h > 0.
Equation (8) has to be satisfied for anyvh ∈Vh, that is
it has to be satisfied for all the functions of any basis
of the spaceVh itself; the basis functions ofVh will be
denoted as{ψi |i = 1. . .N}. The functional spaceVh is
termed the space oftestor weightingfunctions. Then
being{ϕ j | j = 1. . .N} a basis for the spaceWh, and
substituting (7) into (8), it can be obtained a set ofN
ODEs for the unknown vectorU(t):

M
dU(t)

dt
+AU(t) = F(t), U(0) = U0, (9)

Where U(t) = [ui(t)], F(t) = [(f ,ψi)], U0 = [u0,i],
Ai j = (Lϕ j ,ψi), Mi j = (ϕ j ,ψi), for i, j = 1. . .N. The
matrix M andA are called themassandstiffnessma-
trix respectively.
General assumptions guarantee the existence and
uniqueness of a solution [3].
The (standard)Galerkin method is a particular case
of the PG one, where the test functions space (Vh) is
chosen to be the same as the approximating functions
space (Wh), thereforeMi j = (ϕ j ,ϕi), Ai j = (Lϕ j ,ϕi),
Fi(t) = (f ,ϕi).
The application of the standard Galerkin method to ad-
vection dominated problems (as the one considered)
could lead to solutions with oscillatory behavior due

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003345

to numerical instabilities. To overcome such a prob-
lem it is possible to use astabilized Petrov-Galerkin
method.
The basic idea of stabilization methods is to relate the
functional spaceVh to Wh through a differential opera-
tor Lh somewhat related to the differential operatorL,
that isVh = {wh + Lhwh|wh ∈Wh}. The equation (8)
thus becomes

d

dt
(uh,wh +Lhwh)+(Luh,wh +Lhwh) =

=(f ,wh +Lhwh) ∀wh ∈Wh

(10)

3.4 Treatment of Boundary Conditions

The boundary conditions (BCs) can be imposed in two
different ways:

1. Strong formulation(sf): the the boundary con-
ditions are enforced directly in the definition of
the spaceWh of the admissible solutions, while
the test functionsvanish on the boundary. The
boundary conditions are satisfied at all nodes ly-
ing on∂Ωin.

2. Weak formulation(wf): the boundary conditions
are enforced indirectly in the unknown nodal val-
ues of the approximated equation. The boundary
conditions is not imposed exactly at all nodes of
∂Ωin, but a suitable linear combination between
them and the residual of the PDE is enforced.
Therefore the problem formulation becomes: for
anyt ∈ [0,T] find uh ∈Wh such that

d

dt
(uh,vh)+(Luh,vh)−

∫
∂Ωin

β · −→n uhvhdγ

= (f ,vh)−
∫

∂Ωin
β · −→n ghvhdγ ∀vh ∈Vh

uh(0) = u0,h
(11)

It is important to note that the additional inte-
gral terms can be easily computed for the one-
dimensional case since∂Ωin is a finite set of
points (at most two:x = 0 andx = L).

The main differences of the two boundary condition
formulations are:

• In the wf the nodal values on the boundary are
unknown and therefore the number of finite ele-
ment equations to be solved is higher than that
obtained from the strong formulation.

• In the case of flow reversal (change ofβ sign in
equation 4) the inflow boundary changes. In the
wf the state variables (i.e. the nodal values) are
always the same since the nodal values on the
boundary are also problem unknowns. Instead,
in the sf, the nodal values on the boundary are
known, so that the state variables depend on the
flow direction.

In the model developed the choice has been to adopt
the wf since it can be accurate assf while providing
easier implementation in the case of flow reversal [5].

4 FEM Model for Heat Exchangers

In this section it will be shown how the numerical
methods introduced can be applied to the balance
equations so to transform them into a set of ODEs that
can be used directly in Modelica models.
The spatial domain ([0,L]) has been divided into a grid
of uniformly spaced elements with sizel = L/(N−1),
whereN (≥ 2)is the number of finite elements that are
going to be used.
The interpolating functions have been chosen to be lin-
ear (figure 2); their analytical expression is

ϕ1(x) =

 l −x

l
0 < x≤ l

0 otherwise

ϕN(x) =

 x− (N−2)l
l

(N−2)l < x≤ L

0 otherwise

ϕi(x) =

x− (i−2)l

l
(i−2)l < x≤ (i−1)l

il −x

l
(i−1)l < x≤ il

0 otherwise
(12)

In the following the notationϕ = [ϕ1 · · ·ϕN]T will be
used.
The stabilized Petrov-Galerkin MethodtermedGALS
(Galerkin/Least-Squares), which has been proven to
be the most suitable one for the advection dominated
case [6], has been used to obtain the test functions:

ψ j(x) = ϕ j(x)+α
l

2

dϕ j(x)
dx

, j = 1. . .N (13)

whereα is a stabilization coefficient (0≤ α ≤ 1); for
α = 0 the standard (i.e. non stabilized) method can be
obtained.
The following hypothesis have been taken into account
in the finite element formulation:

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003346

• h linear on each element

• T linear withh

• v linear withh

• φext linear on each element

• w uniform along the HE

• p uniform along the HE

• p, h, w are the state variables

That meansh, T, v, φext can be expressed as

h(x, t) =
N

∑
i=1

hi(t)ϕi(x) = h(t)T ϕ(x), h = [h1 · · ·hN]T

T(x, t) =
N

∑
i=1

Ti(t)ϕi(x) = T(t)T ϕ(x), T = [T1 · · ·TN]T

v(x, t) =
N

∑
i=1

vi(t)ϕi(x) = v(t)T ϕ(x), v = [v1 · · ·vN]T

φext(x, t) =
N

∑
i=1

φi(t)ϕi(x) = φ(t)T ϕ(x), φ = [φ1 · · ·φN]T

(14)

The considered hypotheses do not affect the generality
of the model, at least if there aren’t any phase changes
along the HE.
In the balance equations both the fluid density specific
volume are involved, and their relation is well known
to beρ = 1/v; sincev has been assumed to be linear
with h (which is linear on each element), it should re-
sultρ =

(
∑N

i=1viϕi
)−1

, that isρ is not linear withh. As
a matter of fact, for the sake of simplicity, it has been
assumed that alsoρ can be expressed as

ρ(x, t) =
N

∑
i=1

ρi(t)ϕi(x) = ρ(t)T ϕ(x), ρ = [ρ1 · · ·ρN]T

with ρi = (vi)−1 ∀ i = 1· · ·N
(15)

It can be shown that the error introduced by this ap-
proximation (computed as

∫ h
0 (v−1−ρ)dx) is O(h).

Among the balance equations, the mass and dynamic
momentum ones describe the fast pressure and flow
rate dynamics, while the energy one describes the
slower dynamics of heat transport with the fluid ve-
locity; the most relevant phenomenon, for power gen-
eration plant modelling, is the latter one, so that the
equation (3) has been discretized with a fine approx-
imation through FEMs, while equations (1)-(2) have
been treated with a coarser approximation.

4.1 Energy Balance Equation

Consider the energy balance equation for the HE:

∂h

∂t
+w

v

A

∂h

∂x
= v

dp

dt
+v

ω
A

φext (16)

with reference to the advection equation (4) used in
the finite element formulation, it resultsβ = w v

A and
σ = 0, while the termf is simply the right hand side
of the equation.
The application of a PG method, with weakly imposed
boundary conditions, leads to a set ofN ODEs:

∫ L

0

(
N

∑
i=1

ḣiϕi

)
ψ jdx+

∫ L

0

(
w

A

N

∑
i=1

viϕi

N

∑
i=1

hi
dϕi

dx

)

ψ jdx+
∫

∂Ωin

(
w

A

N

∑
i=1

viϕi

N

∑
i=1

hiϕi

)
ψ jdx=

∫ L

0

N

∑
i=1

viϕi

(
ṗ+

ω
A

N

∑
i=1

φiϕi

)
ψ jdx+

+
∫

∂Ωin

(
w

A

N

∑
i=1

viϕi hin

)
ψ jdx, ∀ψ j ∈Vh

(17)

wherehin is the fluid specific enthalpy at the inflow
boundary. Such set of ODEs can be easier represented
with the following differential matrix equation:

Mḣ+
w

A
B h+

w

A
C h = ṗM v+

ω
A

Y φ+
w

A
Kv , (18)

whereM, B, C, Y, K are defined as

M ji =
∫ L

0
ϕiψ jdx

B ji =
∫ L

0

(
N

∑
k=1

vk ϕk

)
dϕi

dx
ψ jdx

Cji =
∫

∂Ωin

(
N

∑
k=1

vk ϕk

)
ϕiψ jdx

Yji =
∫ L

0

(
N

∑
k=1

vk ϕk

)
ϕiψ jdx

K ji =
∫

∂Ωin
hin ϕiψ jdx

(19)

The detailed expressions for the matricesM, B andY
are reported in appendix A, while the matricesC andK
(which express the BCs) will be analyzed thoroughly
in the next section.

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003347

4.2 Mass Balance Equation

Consider the mass balance equation for the HE:

A
∂ρ
∂t

+
∂w

∂x
= 0 (20)

Since pressure (p) and specific enthalpy (h) have been
chosen as the thermodynamic state variables, it results

∂ρ
∂t

=
∂ρ
∂h

∂h

∂t
+

∂ρ
∂p

∂p

∂t
(21)

Substituting in such equation the expression reported
in (14) forh andρ, it follows

∂ρ
∂t

= ρh
(

ϕϕT) ḣ+ ṗ ρp ϕ (22)

where ρh = [∂ρ1
∂h |h1,p · · ·

∂ρN
∂h |hN,p] and ρp =

[∂ρ1
∂p |h1,p · · ·

∂ρN
∂p |hN,p]

Then, integrating the mass balance equation along the
spatial domain, it results∫ L

0

∂ρ
∂t

dx=−
1

A

∫ L

0

∂w

∂x
dx , (23)

leading to the ODE

ρh
T E ḣ+ ṗ ρp

T D =
1

A
(w0−wL) , (24)

wherew0 and wL are the fluid mass flow-rate at ab-
scissa 0 andL respectively;E andD are a matrix and
a vector (details can be found in appendix A):

E ji =
∫ L

0
ϕiϕ jdx , Di =

∫ L

0
ϕidx (25)

4.3 Dynamic Momentum Equation

Consider the dynamic momentum balance equation
for the HE:

∂w

∂t
+A

∂p

∂x
+ρgA

dz

dx
+v

Cf ω
2A2 w|w|= 0 (26)

Substituting the expression reported in (14) forρ and
v and integrating along the spatial domain, the follow-
ing expressions result (dz/dx is assumed as a constant
parameter):∫ L

0

∂w

∂t
dx+

∫ L

0
A

∂p

∂x
dx+

∫ L

0
gA

dz

dx

N

∑
i=1

ρiϕidx+

+
∫ L

0

Cf ω
2A2 w|w|

N

∑
i=1

viϕidx= 0 ,

(27)

leading to the ODE

Lẇ+A(pL− p0)+gA
dz

dx
ρTD+

+
Cf ω
2A2 w|w|vTD = 0 ,

(28)

Assuming the Reynolds number is sufficiently high,
Cf is approximately constant; for medium-range val-
ues ofRe, it can be computed with Colebrook’s equa-
tion. When dealing with water/steam flow in indus-
trial plants, the transition and laminar regimes corre-
spond to very low pressure drops, which need not be
computed with high accuracy; therefore, a minimum
value ofRe= 2100 is assumed. Last, but not least, a
small linear friction term is added to enhance numeri-
cal stability at low or zero flowrate; the parameterw0

should be much smaller than the nominal flowrate, so
that the added term is negligible during normal opera-
tion. Thus equation 28 becomes

Lẇ+A(pL− p0)+gA
dz

dx
ρTD+

+
Cf ω
2A2 w(|w|+w0)vTD = 0 .

(29)

5 Modelica Implementation

The developed model has been implemented in a com-
ponent calledFlow1Dfem (figure 3) which is part of
the libraryThermoPower[1].

Figure 3: The Modelica Model

For the present model, it has been assumed that the
fluid inside the HE is a water/steam mixture. The
medium models used for water and steam are provided
by the free “ThermoFluid” library [7].
The component is perfectly interchangeable with the
actualThermoPowercomponent for 1-D HEs, since it
has the same connectors: two flanges for water/steam
flow and a terminal for heat flux. Here the definition of
such interfaces is reported, for further details see [1]:

connector WaterFlangeA
Pressure p;

flow MassFlowRate w;
input SpecificEnthalpy hBA;

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003348

output SpecificEnthalpy hAB;
end WaterFlangeA;

connector WaterFlangeB
Pressure p;

flow MassFlowRate w;
input SpecificEnthalpy hAB;

output SpecificEnthalpy hBA;
end WaterFlangeA;

connector DHT
parameter Integer N;
Temperature T[N];
flow HeatFlux phi[N];

end DHT;

In the codehAB and hBA are the fluid specific en-
thalpies in case its direction is from an A-type flange to
a B-type one and viceversa. Such connectors support
flow reversal. In the model there is a connectorinfl
of typeWaterFlangeA (corresponding tox= 0) and
a connectoroutfl of type WaterFlangeB corre-
sponding tox = L.
The model offers many customization possibilities
through parameters: the HE geometry can be fully
specified (length, diameter, height); the dynamic mo-
mentum term∂w/∂t can be switched off to avoid fast
pressure oscillations; theCf coefficient can be either
constant or computed by the Colebrook equation; the
compressibility effect deriving from the discretization
of equation (1) can be associated to either the upstream
or downstream pressure; the numerical stabilization
coefficientα can be chosen in the interval[0,1].
It should be noted that the matricesM, B, Y, E and the
vectorD are completely defined once the parameterα
has been chosen; thus they can be computed once for
all before the simulation starts by efficient Modelica
compilers. The definition of such matrices is made
thought some loops, as showed below:

M[1, 1] = l/3 - l*alfa/4;
M[N, N] = l/3 + l*alfa/4;
M[1, 2] = l/6 - l*alfa/4;
M[N, (N - 1)] = l/6 + l*alfa/4;
if N > 2 then

for i in 2:N - 1 loop
M[i, i - 1] = l/6 + l*alfa/4;
M[i, i] = 2*l/3;
M[i, i + 1] = l/6 - l*alfa/4;
M[1, i + 1] = 0;
M[N, i - 1] = 0;
for j in 1:(i - 2) loop

M[i, j] = 0;
end for;
for j in (i + 2):N loop

M[i, j] = 0;
end for;

end for;
end if;

It can be noticed that many of the matrices entries
are zeros, so it could appear that the use of a matrix

notation for the balance equations could increase the
computational burden; nevertheless, it has been dis-
covered (by direct inspection of the generated C code)
that efficient compilers can simplify the set of ODEs
obtained expanding the differential matrix equations
in the Modelica code, removing the terms correspond-
ing to the zero entries in the matrices.

5.1 Boundary Conditions and Flow Reversal

One of the most relevant features of the model is the
capability to handle not only flow reversal in the HE,
but also the most “unusual” transients for what con-
cerns flow, that is the model is able to handle also tran-
sient where the fluid is entering or exiting from both
the extremities (which are operating conditions which
can be experienced when suddenly decreasing or in-
creasing the heat-flux).
The matricesC andK, enforcing the boundary condi-
tions into equation (18), depend on the inflow bound-
ary ∂Ωin. It can be noted that, in the 1-D case, the in-
flow boundary can be constituted at most by the points
x= 0 andx= L, depending on the fluid mass-flow rate
direction in that specific direction.
Suppose, for example, that the inflow boundary is just
x = 0 (that meansinfl.w > 0 andoutfl.w < 0).
Considering the analytical expression forC andK and
for the interpolating and weighting function, it results

Ci j =
∫

x=0

(
N

∑
k=1

vk ϕk

)
ϕiψ jdx=

=

{
(1− α

2)v1 if i = j = 1

0 otherwise

The same happens if the inflow boundary isx = L: the
only non-zero entries for the matricesC andK can be
(1,1) and(N,N). The code for such entries is obtained
through simple conditional equations:

C[1, 1] = if (infl.w >= 0) then
(1 - alfa/2)*v[1, 1] else 0;

C[N, N] = if (outfl.w >= 0) then
(1 + alfa/2)*v[N, 1] else 0;

K[1, 1] = if (infl.w >= 0) then
(1 - alfa/2)*infl.hBA else 0;

K[N, N] = if (outfl.w >= 0) then
(1 + alfa/2)*outfl.hAB else 0;

6 Simulations

The component has been tested with other models
from the library ThermoPowerusing Dymola simu-
lation environment [8]; specific configurations have

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003349

been set up in order to investigate the model behaviour
with respect to the single balance equations and to
their interactions in the most common layouts found
in power plants. Many simulations have been carried
out but, for the sake of brevity, only the most signi-
ficative ones are reported here; all the test set ups are
included in the library and are available on-line [1].
In all the reported simulations, the HE has a length of
10m and radius 1cm. All the simulations useN = 20
nodes.
The first simulation reported is aimed at testing the en-
ergy balance equation; the experimental layout is de-
picted in figure 4: the HE (hex) is connected with a
mass flow rate source, an external source of heat flow,
a valve (which accounts for head losses) and a sink
with fixed pressure.

Figure 4: First Experiment Layout

The fluid involved in the experiment is liquid water
at temperatures between 297K and 322K, the pres-
sure inside the HE during the experiment varies from
1.65 Pa to 25 Paand the mass flow rate is comprised in
the interval 0.2−0.3 Kg/s.
At the initial time instant there is a step variation from
105 J/m3 to 1.42· 105 J/m3 of the specific enthalpy
for the fluid of the flow rate source; at time 30s there
is a step variation of the energy flux entering the HE
from 0 to 1.25·104 W/m2; at time 50s there is a step
variation in the source mass flow rate from 0.3 Kg/s
to 0.2 Kg/s.
The temperature of the fluid at the end of the HE is
reported in figure 5. The exact solution (assumingρ
constant) for the underlying PDE would lead to a tem-
perature step variation at timet = 10s and ramp vari-
ations at timet = 30 s and t = 50 s; the simulation
results show good accordance with such behavior.
The second experiment is aimed at testing the mass
balance equation; the experimental layout, similar to
the first one, is depicted in figure 6.

Figure 5: HE Outlet Temperature

The fluid involved in this experiment is superheated
vapor with temperature and pressure at about 536K
and 105 Pa respectively; the mass flow rate flowing
through the HE is about 10−2 Kg/s.

Figure 6: Second Experiment Layout

At time 0.5s there is a 10% step increment of the mass
flow rate; the consequent HE pressure transient is de-
picted in figure 7.
The solution of the equations for such experimental
setup, assuming uniform gas properties and ideal gas
content, would lead to a first order transient whose
time constant is in good accordance with the simula-
tion results.
The last test reported here involves a two side HE
(hexAandhexB) in counterflow configuration (figure
8). The two fluid sides are separated by a metal wall
1 mmthick.
The operating fluid is liquid water with temperature in
the range 296K−321K and pressure about 3·105 Pa.
The experiment setup is such that the mass flow rates
for the two HE sides have the same value (0.31Kg/s)
with residence time 9.9 s.
At time 50s there is a step variation from 105 J/m3 to

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003350

Figure 8: HE Counterflow Configuration

Figure 7: HE Pressure

2·105 J/m3 of the specific enthalpy for the fluid of the
flow rate source forhexA.
In figure 9 are reported the inlet temperature forhexA
(continuous line), the outlet temperature forhexB(dot-
ted line) and the outlet temperature forhexA(dashed
line).
It should be pointed out that the last experiment has
been conceived also to test the numerical robustness
for the model: the results have shown that the coupling
of two FEM-based components (hexAandhexB) does
not affect the numerical stability, even for large val-
ues of the heat exchange coefficient. Further tests with
different stabilization coefficients, not reported for the
sake of brevity but available on-line, have confirmed
the absence of numerical instabilities.

Figure 9: HE Temperatures: hexA inlet (continuous),
hexB outlet (dotted) and hexA outlet (dashed)

7 Conclusions and Work in Progress

A Modelica FEM-based model for heat exchangers
has been presented. The model has been implemented
into a specific component (Flow1Dfem) which is in-
cluded in theThermoPowerlibrary, developed for ther-
mal power plants modelling, simulation and control.
The component, whose internal implementation is
completely shielded from the connectors, has been val-
idated through simulations for specific plants configu-
rations.
The possibility to effectively use Modelica to model
physical systems that are originally described by PDEs
has been shown in the specific case of the advection

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003351

equation.
Current work is headed essentially in two directions:

• the further improvement of the developed model
with particular emphasis on extensions to handle
also phase changes along the spatial domain;

• the development of Modelica models for other
systems described by PDEs, such as flexible
robot links.

References

[1] F. Casella and A. Leva. Modelica open library for
power plant simulation: Design and experimental
validation. InModelica Conference, Linköping,
Sweden, 2003. www.elet.polimi.it/
upload/casella/thermopower/ .

[2] F. P. Incropera and D. P. DeWitt.Fundamentals
of Heat and Mass Transfer. John Wiley & Sons,
1985.

[3] A. Quarteroni and A. Valli. Numerical Approxi-
mation of Partial Differential Equations. Springer
Verlag, 1997.

[4] C. Johnson. Numerical Solution of Partial Dif-
ferential Equations by the Finite Element Method.
Cambridge University Press, 1987.

[5] M. L. Aime. Engineering Methods And Tools For
Modeling And Simulation Of Power Generation
Plants. PhD thesis, Politecnico Di Milano, 1999.

[6] C. Baiocchi and F. Brezzi. Stabilization of un-
stable numerical methods. InProblemi Attuali
dell’Analisi e della Fisica Matematica, Taormina,
Italy, 1992.

[7] H. Tummescheit and J. Eborn. Design of
a thermo-hydraulic model library in Modelica.
In ESM (European Simulation Multiconference),
Manchester, UK, 1998.

[8] Dymola 5.1b.Dynasim AB. Lund, Sweden.

A Matrices Expression

M = l

1
3 −

α
4

1
6 −

α
4

1
6 + α

4
2
3

...
... ... 1

6 + α
4

1
6 + α

4
1
3 + α

4

B = l

B11 Bi,i+1

Bi,i−1 Bii
...

... ... Bi,i+1

Bi,i−1 BNN

B11 = v1

(
−1

3 + α
4

)
+v2

(
−1

6 + α
4

)
Bi,i+1 = vi

(
1
3 −

α
4

)
+vi+1

(
1
6 −

α
4

)
Bi,i−1 = vi

(
−1

3 −
α
4

)
+vi−1

(
−1

6 −
α
4

)
Bi,i = vi−1

(
1
6 + α

4

)
+vi

α
2 +vi+1

(
−1

6 + α
4

)
BNN = vN−1

(
1
6 + α

4

)
+vN

(
1
3 + α

4

)

Y = l

Y11 Yi,i+1

Yi,i−1 Yii
...

... ... Yi,i+1

Yi,i−1 YNN

Y11 = v1

(
1
4 −

α
6

)
+v2

(
1
12−

α
12

)
Yi,i+1 = vi

(
1
12−

α
12

)
+vi+1

(
1
12−

α
6

)
Yi,i−1 = vi

(
1
12 + α

12

)
+vi−1

(
1
12 + α

6

)
Yi,i = vi−1

(
1
12 + α

12

)
+vi

1
2 +vi+1

(
1
12−

α
12

)
YNN = vN−1

(
1
12 + α

12

)
+vN

(
1
4 + α

6

)

E = l

1
3

1
6

1
6

2
3

...
... ... 1

6
1
6

1
3

D =

[
1
2

1 · · ·1 1
2

]T

 F. Casella and F. Schiavo Modelling and Simulation of Heat Exchangers in Modelica with Finite Element Methods

 The Modelica Association Modelica 2003, November 3-4, 2003352

����������	
������������
��������������

 Magnus Holmgren

�������
�

magnus.holmgren@solvina.se

Gruvgatan 37, 421 30 V. Frölunda, Sweden
http://www.solvina.se/

�����
�����

Solvina has used Dymola/Modelica since the
company started in 1997. During that time we have
performed a large number of simulation projects
for different customers. Many of our customers are
industrial production units and this paper will
discuss some experiences of simulating for
production units compared to simulation for
development or research purposes.

As an example of such a project a steam net
simulator that Solvina delivered to Iggesund
paperboard will be described.

�� ��	
����������������

Solvina AB is a company located in Gothenburg,
Sweden. Solvina works with modelling and
simulator development. Most of our customers are
nuclear, process or power industry but Solvina also
work for other customers. Solvina has used
Dymola/Modelica since 1997 and it has become
our main modelling tool. For our customers we
have developed two Modelica libraries:

• SteamNet library
• Pulp&Paper library

The SteamNet library is an extension of the
ThermoFluid library and has been used in several
projects including the Iggesund simulation project
described here. The Pulp&Paper library contains
models for both wet end and dry end paper
simulation. It has been used to model the entire
board machine at AssiDomän - Frövi paperboard.

�� ��	
������������
������
��������

This paper describes experiences from working in
industrial projects. With an industrial project, a
project for production industry with little or none
simulation experience is meant. Simulation work

in such projects is often part of a larger installation
or redesign project. Working in such projects
makes extra demands on the simulation studies:

• Clear goal
Specify in advance exactly what studies
the simulator should be used for.

• Convince the organization
Make the customers organization believe
in and use the results from the simulations.

• Limited time.
The simulation result has to be finished in
time for factory start up.

The first point is also an advantage. It simplifies
the development of the simulator when it is known
exactly what it should be used for.

Another thing to consider is that in this type of
projects the simulations have to be directly
profitable. It has to be clear that the simulator earns
money!

�� ������������������
���
�����������

The simulation project Solvina made for Iggesund
Paperboard is an excellent example of an industrial
project. Iggesund Paperboard was installing a new
control system for their steam distribution system.

���
����������
��������������

The steam system is essential for the paperboard
production and therefore Solvina was engaged to

 Magnus Holmgren Process simulation in industrial projects

 The Modelica Association Modelica 2003, November 3-4, 2003353

assure the function of the new control system. Our
tasks was:

• Verify the control system design
• Tune the control system for several

operating conditions
• Train the operators in the new control

system functionality before start up.
(Operators were used to non-computer
based regulators)

The purpose of a steam system is to deliver steam
of the right pressure to steam consumers in the
process. To generate steam, boilers are used. In a
large steam system the boilers generate steam at a
high pressure, which is reduced to lower pressures
through turbines and thereby generating electric
power.

������

������

	����

����

�������

�	�

����

���
����������
������	��������
�

The steam net at Iggesund paperboard has four
boilers (two recovery boilers, one bark boiler and
one oil boiler). The boilers generate high-pressure
steam at 65 bar that is reduced through two
turbines to three consumer steam nets (3,8 and 12
bar), which supply steam to the process. As a
complement to the turbines, valves can reduce
steam directly between the different steam nets.

It is important to keep constant pressures in the
steam nets because varying pressure affects the
quality of the board produced since it gives varying
drying conditions in the steam dryer.

The need for steam varies with different consumers
turned on and off. An accumulator is installed in
the system and can be loaded or unloaded with
steam depending on if the need of steam exceeds
the production or not. For long term operation the
boilers steam production has to be controlled to
match the steam need. Boilers however are rather
slow to adjust their production so the accumulator
has an important role. There is also the possibility

to let out steam to the atmosphere (air blow) but
then the energy the steam contains is lost.

�� ���������	���������

Modelling usually starts from a model library. In
this case the model was built using the SteamNet
library.

Modelling requires a lot of specific data for the
process. Good sources for data are drawings and
documentation. In process industry logged
production data is also often available, which we
can use to model already running components.

However it is never possible to retrieve all data
needed, but good engineering guesses often
function well if checked particularly during
validation.

The advantages with using Modelica in this kind of
modelling projects instead of traditional flow
sheeting programs are several.

• Better dynamical solvers available.
• Models can be modified easily.

Flow sheeting programs only have
standard components.

• Control systems can be modelled
accurately.

• The models can be multi domain.

�

���
��������������
��� �	����	�����

In the Iggesund case, besides the process model, an
accurate model of the control system was made
including logic for operator control and regulator
initiation etc. It would show very important to have
an exact model of the control system since many of
the problems found in the new control system
design was when changing between different
control modes etc.

 Magnus Holmgren Process simulation in industrial projects

 The Modelica Association Modelica 2003, November 3-4, 2003354

Modelling is often a relatively little part of a
Simulation project. In the Iggesund project that
totally was about one man-year only 10-15% of the
time were modelling. Data collection was about
20% and validation about 30% of the time. The
rest of the time was used for simulations with the
model.

!� �����������������

The model in the Iggesund project was started
from the steam net library, which is based on the
ThermoFluid library.

From the ThermoFluid library the Medium model
for water and the efficient control volume are used.
Flows are pressure driven. Static flow conditions
are assumed.

The models focus on the dynamics of the process
and properties that have importance for the control
of the system are more accurately modelled. The
valves are modelled with actuators and the flow
characteristics of the valves were measured on
place.

The boilers were modelled with a transfer function
from fuel to heat. The water part of the boiler is
modelled with a drum, a convection part and a
superheater. The reason for modelling the water
part of the boiler accurately was that the
evaporation from the drum has an important effect
on the dynamics of the high-pressure steam net.

The turbines are modelled as stodola turbines. The
turbine control system with limitations for the flow
conditions through the turbine was modelled. No
account was taken to the inertia of the turbine since
the turbine control system always are the limiting
factor because it is designed not to allow any flow
conditions that can bring instability to the turbine.

"� #���������	������

The validation of a model is maybe the most
important part. To write models is often a simple
and relatively straightforward task. To prove their
accuracy and make people believe in the results is
often harder.

First the models are validated component by
component against operating data or maybe even
specially made tests. Next step is validating the
model as a system.

To be able to communicate the model with
operators and other customer personnel an operator
interface is important. This gives all personnel

something to gather around. Many interesting
discussions often take place when engineers,
operators and management are gathered around a
tool that allows them to test ideas and discuss
them.

���
����������
�����	
�����$���������

When everyone is convinced that the process
model describes the real process system in a
satisfying way the models can be used for
simulations.

%� ��	
�������

How to use the models is of course entirely up to
what your task is. In the Iggesund project the task
was to check and tune the new control system.
First the design of the control system was checked.
The control system contained about 40 PID
regulators that could operate in several modes
depending on situation. Directly a few regulators
that were misplaced during design were found.
They couldn’t function in the control configuration
due to system effects even if it appeared logical.

After the design was done the tuning of the
controllers started. First a preliminary tuning loop-
by-loop was made according to schoolbook
methods. After that the entire system was retuned
so that it performed well during all different
operating conditions. Examples of different
operating conditions are high or low production or
if one turbine is shut down. In every operating
condition the control system should handle a
number of disturbances such as board machine
shut down, turbine failure etc.

Batch simulations were used to check and tune the
control system.

 Magnus Holmgren Process simulation in industrial projects

 The Modelica Association Modelica 2003, November 3-4, 2003355

&� ���		�������	�����

A problem with modelling large Modelica models
using libraries is that the models often become
stiff. A stiff model is no problem using the good
solvers of Dymola although it can be annoying
having to wait. However if the model should be
used for operator training or in hardware in the
loop applications real time performance are
needed, preferably using a fixed step solver.

To solve this problem the states with short time
constants have to be found and removed. This can
be done by linearizing the model and calculating
the eigenvalues. The largest eigenvalue will set the
limit of the step size for which the model is stable.
The linear model is calculated at one time point
and the eigenvalues will change for another time
point. The calculations will therefore only show
the fast states in exactly that time point but can be
seen as a hint which states that make the model
stiff.

Often it is found that one or a few states have
eigenvalues much larger than the rest of the model.
It is then often possible to remove or remodel those
states. It is seldom time constants bellow a second
are interesting in process applications but shorter
time constants are often introduced by mistake. For
example by introducing a small control volume.

The Iggesund model could be trimmed to run about
10 times faster than real time with a fixed step
solver. That was about 100 times faster than the
original model just by eliminating fast states.
Results of the same magnitude have been achieved
with several other process models.

'� (���������������

Solvina has learned not only to deliver correct
results, but also to ensure that the customer uses
them. Simulator based operator training is one
excellent way to ensure that.

For example in the Iggesund Paperboard project
the operators must know what incidents the control
system is tuned to handle and when they should
interact.

Operator training with a simulator not just ensures
that the system is correctly used but also gives the
operator the ability to test and train incidents and
thereby maybe eliminate operator mistakes in the
real process. This can be worth as much as the
entire simulation project.

Another positive effect with an operator interface
is that it gives everyone access to the simulator. It
can be used for teaching new operators the system
functionality and it can be used for teaching
engineers regulator tuning etc.

���
���!�(���������������)*�������+��	��������,�

Solvina design operator interfaces with our
LabVIEW based tool. A screen dump from the real
control system is used as background and new
figures and buttons are added with drag and drop
and coupled to corresponding Dymola values and
parameters.

���
��� "� ������	��� �+� �������� ����+���� ���
-��#�./�$���������	�0�(�1����+��������2�

Some of the features incorporated in the operator
interface tools are:

• Several operator screens
• Floating dialogs for regulators etc.
• Charts with history
• Stop and save state. Restart from saved

state.

 Magnus Holmgren Process simulation in industrial projects

 The Modelica Association Modelica 2003, November 3-4, 2003356

It is important that the operator interface is
intuitive. It must also have the capabilities needed
to investigate the process, that is charts and
possibilities to stop/restart.

�3� �������4��
���

The Iggesund Paperboard project was an extremely
successful project. The direct results were:

• Perfect start up.
Everything functioned in automatic mode.

• Not one stop caused by the steam system
since.

• Air blow of steam down from 4000
tons/month to 150 tons/month saving 2.5
million liters of oil per year.

���
��� %�5������ ��� 6�����7� �������������6� ���
�
����������68����������	��$�����	
�����6�

��� 9�:����;����������$��������
�����������	�

In all of Solvinas projects so far the control system
has been modelled in Dymola. Although Dymola is
suited for this kind of modelling it would be better
to use the real control system code. Several
advantages can be identified:

• Saving the cost of modelling advanced
control systems.

• Debugging the real control system code
before start up.

• Even better operator training using the real
user interface and operator stations.

• Easier to maintain the simulator if only
one version of the control code exists.

A simulator with a steam net system controlled by
a Siemens Simatic control system has recently
been developed at Solvina. A Modelica model is
used, exactly as in previous simulators. The control
system model was replaced with an external C
function communicating the control signals with an
external application.

The external application communicates with the
Siemens control system. The control system in this
case was run in a software emulated PLC. This
makes it possible to run the entire application in
one computer and it gives the ability to simulate
the same hardware set-up as in the real process.

The reasons to have an extra application between
Dymola and the Siemens system are several:

• It can handle start and stop of simulations.
• It can handle time synchronization.
• It can answer simple signals from the

control system not simulated in Modelica
such as power OK signals etc.

• It can make simple scenarios for fault
cases not covered by the model such as fire
scenarios etc.

���
���&����	���������������	�����������������	�
�����	
�����

��� <����
������

It is both profiting and stimulating to work with
simulations in industrial projects. Working with
industrial customers make extra demands on us as
having very strict timetables but it also gives us
direct feedback from real processes and our results
are often directly measurable in money.

An important point when modelling is to have a
clear goal for what the simulator should be used
for. Far too many simulation projects become long
time-consuming projects that finally end almost
unused because no clear goal was set in the
beginning.

Finally it has to be shown that the simulations are
profitable. This however is often clear when a clear
goal for the simulations have been set together
with a fixed timetable to reach them.

/ Magnus Holmgren, Solvina AB.

 Magnus Holmgren Process simulation in industrial projects

 The Modelica Association Modelica 2003, November 3-4, 2003357

 The Modelica Association Modelica 2003, November 3-4, 2003

358

Gas Turbine Applications using ThermoFluid

Andreas Idebrant Lennart Näs

andreas.idebrant@mathcore.com
MathCore Engineering AB

Teknikringen 1B, SE-583 30 Linköping, Sweden
http://www.mathcore.com

lennart.nas@power.alstom.com
 Alstom Industrial Turbines AB
SE-612 82 Finspång, Sweden
http://www.power.alstom.com

Abstract
In a project between MathCore Engineering and
Alstom POWER Sweden in Finspång Sweden, a
Modelica model of a complete 43 MW gas turbine
has been made. The main purpose of this model is to
study transients under different working conditions.
The model can be used to optimize start-up
sequence, simulate load rejections, verify design,
test different fuels etc.
A new library called GasTurbine containing
components specialized for gas turbine modeling
has been developed based on the existing public
available ThermoFluid[1, 2] library.

1 Introduction
In this paper the modeling issues, using the
ThermoFluid library, of a large industrial gas
turbine are addressed. The gas turbine is the 43 MW
GTX 100 from Alstom POWER in Sweden. This
type of gas turbine is used for producing power to
an external or internal electrical grid. The main fuel
is natural gas or diesel oil. Testing of such big gas
turbines in a separate test rig or at each specific site
is costly and time consuming. Transient tests might
also lead to performance degradation. A detailed
dynamic model of a gas turbine could simulate and
hereby prevent possible problems before they occur
in real life.
The ThermoFluid library contains the framework for
building thermodynamic applications such as a gas
turbine in Modelica. ThermoFluid has also been
used in previous projects to build gas turbines[3, 4].
Combined with the Modelica standard library it is
possible to connect to other domains such as
electrical grid nets, an electrical motor, control
systems, etc.
Unfortunately the ThermoFluid library is complex
to use even for an experienced user, familiar with
Modelica. It does not contain the blocks needed to
build a complete gas turbine. Therefore an

application library called GasTurbine has been made
that is more easy to use and contains ready to use
components especially designed for gas turbine
applications. The current library contains about 100
components.
There were mainly two objectives with this project.
The first objective was to make an existing model of
a reference model made in a static simulation tool
called IPSEpro[5]. This tool is a suitable tool for
thermodynamic processes in general and it has in
Finspång been added a library for gas turbine
components. Complete static models of the
Finspång gas turbine fleet are frequently used and
tuned to correspond to real engine behavior. This
kind of static tool is used to e.g. predict power
output of a gas turbine at given conditions. The
input data could be fuel type, air temperature,
ambient pressure, component performance etc. The
target for the model in Modelica was to have the
steady state points identical to the result from the
static model in IPSEpro. This was done step by step
by verifying the calculation model and the gas
routines for each component in the GasTurbine
library.
The second objective was to make a simulation of a
load rejection where the outlet power to a simulated
electrical grid is disconnected instantly and a
controller makes sure that the increasing rotational
speed will be limited. The controller and the fuel gas
system implemented in the Modelica model are built
up identical as for the “real” engine.

2 The Gas Turbine
Figure 1 shows a cross-section diagram of the gas
turbine GTX100. It is a middle range machine with
maximum sustained output of 43MW. The main
parts are the compressor, combustor, and the
turbine. A simplified diagram of such a gas turbine
is shown in Figure 2.

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003359

Figure 1: A cross-section diagram of the gas turbine
GTX100 developed by Alstom POWER in Finspång
Sweden.

The cycle starts with ambient air flowing into the
compressor. The compressor increases pressure and
temperature of the air. At the next stage, pressurized
air and fuel are mixed in the combustion chamber
and burnt with constant pressure. The resulting hot
exhaust gas is expanded in the turbine stage and is
released to the environment. The produced power is
converted to electrical power in a generator
connected to the outgoing shaft.

Fuel

Exhaust gasCompressed air

Air
Compressor Turbine

Combustion
chamber

Power output

Exhaust

Figure 2: A schematic picture of a gas turbine.

The complete model of a gas turbine is of course
more advanced. The real gas turbine consists of a
quite advanced cooling system with bleed outputs
from the compressor and a detailed fuel system. A
controller adjusts the amount of fuel and controls
the guide veins in the compressor. The different sub
systems are explained in the next sections.

3 Controller
The controller used in this model is the same used in
the “real” gas turbine. It is not complete and works
only when the model is working at sustained
conditions. For start up purposes there is an
additional controller, which has not been
implemented. The controller block can be seen in
Figure 3. On the left side there are parameter inputs
for ambient conditions. On the lower side there are
inputs for power produced to the grid (P_el),
rotational frequency (f), pressure after the

compressor (p3), and temperature after the turbine
(t7). The outputs are the pilot fuel valve opening
(xgp), main fuel valve opening (xgm), and the guide
vein opening (IGV).

Figure 3: The controller block for GTX 100.

To be able to simulate load drops a simple model of
a virtual grid was implemented. The basic idea is to
use a clutch model to detach the mechanical flange
from the simulated grid at a predefined instant. A
simple PI controller attached to a variable damper is
used to gradually increase the power output of the
generator, see Figure 4.

Figure 4: Controller part for simulating a grid net and
load drop/rejection.

4 Fuel system
The real fuel system of a gas turbine is quite
complex with a lot of pipes and valves with
different physical properties. A simplified model
has been made, which will be sufficient for these
types of simulations. The structure of the simplified
fuel system can be seen in Figure 5. The pilot and
main valve is connected to the main controller in the
total model.

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003360

Figure 5: Picture of the simplified fuel system.

For combustion natural gas has been used with the
substances C2H6, C3H8, CH4, CO2, and N2. The air
that flows into the combustion chamber consists of
the following substances: Ar, CO2, H2O, N2, and O2.
During combustion of the gas mix the following
reactions occur (Ar and N2 does not react):

Ar → Ar
CH4 + 2 O2 → 2 H2O + CO2
C2H6 + 3.5 O2 → 2 CO2 + 3 H2O
C3H8 + 5 H2O → 3 CO2 + 4 H2O
N2 → N2

These reactions can be transformed to expressions
for mass flow in Modelica syntax according to
below:

m_out[Ar] = m_air[Ar];

m_out[CO2] = m_air[CO2] +
m_fuel[CO2] +
(wCO2/wCH4)*m_fuel[CH2] +
2*(wCO2/wC2H6)*m_fuel[C2H6] +
3*(wH2O/wC3H8)*m_fuel[C2H6];

m_out[H2O] = m_air[H2O] +
2*(wH2O/wCH4)*m_fuel[CH4] +
3*(wH20/wC2H6)*m_fuel[C2H6] +
4*(wH20/wC3H8)*m_fuel[C3H8];

m_out[N2] = m_air[N2] + m_fuel[N2];

m_out[O2] = m_air[O2] –
(wO2/CH4)*m_fuel[CH4] –
3.5*(wO2/wC2H6)*m_fuel[C2H6] –
5*(wO2/wC3H8)*m_fuel[C3H8];

The notations wCH4, wC2H6, wC3H8, wCO2,
wH20, and wO2 denote the molecular weights for
CH4, C2H6, C3H8, CO2, H20, and O2 respectively.
The mass flows m_out[Ar], m_out[CO2],

m_out[H2O], m_out[N2], and m_out[O2] are the
outgoing mass flows for Ar, CO2, H2O, N2, and O2
respectively. Similarly, the notation m_air and
m_fuel denote the mass flows for air and fuel.

5 Cooling system
The cooling system consists of pipes (mixers and
splitters) and volumes. Cooling increases the
efficiency of the gas turbine. Air from the
compressor and its bleed outputs is used to cool the
exhausts from the combustion chamber. There are
also some small flows directly to the ambient air.
The volumes and valves are taken from the
ThermoFluid library and have been modified to use
the correct medium model. Since the exhaust gas
and the air has the same composition in this case
(but different mass fractions) the same medium
model is used for air and exhaust gas. Figure 6
shows a typical implementation of a mixer that
mixes gases with the same composition.

Figure 6: A mixer with three inputs and one output.

The splitting fracture of gases is controlled by
adjusting the nominal mass flow rate at a given
nominal pressure drop level. The diagram picture of
a splitter is shown in Figure 7.

Figure 7: A splitter with one input and three outputs.

The complete cooling system can be seen in Figure
8.

6 The Modelica model
The complete Modelica model of the gas turbine is
shown in Figure 8. The model consists of a
controller, simulated grid, fuel system, cooling
system, and the basic gas turbine part.

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003361

Figure 8: The complete Modelica model of a GTX100 gas turbine with controller, fuel system, cooling system and
simulated grid.

For the thermodynamic parts of the model the
connector for static momentum balance from the
ThermoFluid library is used:

connector BaseFlow
 parameter Integer nspecies(min=1);
 parameter String MediumType =
"unspecified";
 SIunits.MassFraction mass_x[nspecies];
 SIunits.Pressure p;
 SIunits.SpecificEnthalpy h;
 flow SIunits.MassFlowRate
mdot_x[nspecies];
 flow SIunits.Power q_conv;
 SIunits.Density d;
 SIunits.Temp_K T;
 SIunits.RatioOfSpecificHeatCapacities
kappa;
 SIunits.SpecificEntropy s;
end BaseFlow;

This means that no dynamic momentum terms are
taken into account in this model. This choice was
initially made to reduce the computational burden.
The complete model in Figure 8 has 240 continous
time states and 2644 nontrivial equations.
Due to the detailed cooling system, the Modelica
model is hard to initialize. It is of great importance
to choose the initial starting parameters carefully to
avoid a stiff system. To get rid of the sometimes
long initialization times, the model was once
simulated past the inital stiff part. Then the
simulation was stopped and the current state was

saved to a file, e.g. dsfinal.txt. In the next run the
model states were initialized with the previously
saved file and the simulation started much faster.

7 The GasTurbine Library
The Modelica library ThermoFluid was used as a
toolbox for creating the components needed for the
project. Currently, ThermoFluid does not contain
ready made components needed for gas turbine
modeling. Therefore an application library called
GasTurbine (Figure 9) was created with specialized,
ready to use components for gas turbines and
especially for the GTX100. The current library
consists of about 100 components for gas turbine
applications.

Figure 9: Overview of the GasTurbine library.

The detail of the models varies from simple
compressors without maps to more advanced with
inlet guide veins, maps, and bleed outputs.

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003362

Figure 10: Sample components from the GasTurbine
library.

The design of the library was developed with the
end user in mind and all components can be
connected directly without the need to redeclare or
modify any part of the model.

8 Verification
A model can only be trusted if you can verify that
the results produced from the model are valid. In
this case data from a similar static model of
GTX100 in the program IPSEpro was used. This
means that only steady state values can be verified
by this comparison but similarity in steady state
points indicates that at least agreement in the
handling of physical properties and calculation
models. In the future real data from live experiments
will be used to verify also the conditions during
transients. When studying transients it is important
that the dynamic parts in the model are accurate, e.g.
the volumes and inertias. These dynamic parts do
not make any significant impact on the static results.

Figure 11: The model used for verification purposes, i.e. with IPSEpro.

The medium models used in the two models are not
entirely identical. In IPSEpro the Janaf tables are
used and in TermoFluid the NASA tables. The small
differences can however be neglected. The
comparison between the two models has been

conducted with identical air and fuel composition.
Below is an example table with results from the
combustion chamber. Note that the pressure and
mass flow are set to parameters (or input values) in
IPSEpro to get the same steady state level:

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003363

Inlet combustor

Variable ThermoFluid IPSEpro Error [%]
Pressure [bar]* 13,4 13,4 0

Temperature [°C] 439,2 435,9 -0,75
Mass flow [kg/s]* 74,11 74,11 0
Entropy [J/K] 7097 7089 -0,12
Kappa 1,360 1,360 0,046
R 289,0 289,0 -0,0015

Outlet combustor
Variable ThermoFluid IPSEpro Error [%]
Pressure [bar] 13,31 13,31 0,023
Temperature [°C] 949,3 947,7 -0,17
Mass flow [kg/s] 75,11 75,11 -0,00067
Entropy [J/K] 7824 7847 0,30
Kappa 1,308 1,309 0,069
R 291,6 291,6 -0,0013

Table 1: Verification results ThermoFluid versus
IPSEpro. *Input values (parameters) in IPSEpro.

Table 1 shows that there are minor differences
between the two tools, which is not fully
satisfactory in the work with having the two models
being a reflection of one other, but the accuracy is
considered as sufficient to rely on the Modelica
model from a dynamic point of view.

9 Load Rejection
One important thing to test for new gas turbines is
its capability to handle full load rejections/drops
without tripping. In many cases it is considered as
most vital to have the gas turbine back on the grid,
producing full power in as short time as possible.
A load drop is what happens when a power failure
occurs. It could be due to lightning strikes,
mechanical failure etc. When the gas turbine is
running at full working power, e.g. 43MW, one
want to make sure that the gas turbine does not
reach trip speed when a power output to the grid is
suddenly lost. The immediate result is that the
rotational velocity increases to a certain level that
could be close to trip level.

Figure 12: The Modelica model used for load drop/rejection simulations.

To avoid this a controller is designed to as fast as
possible detect this failure and reduce the fuel input
to the combustor and then lower the speed. The
model used for this testing is shown in Figure 12. It
is also important to have enough fuel so that the
rotational speed remains at the working speed, e.g.

6600rpm, and make sure that the combustor still
operates. The trick is to shut down the main fuel
valve and open the pilot fuel valve to ensure that the
combustor is not shut down. Figure 13 shows a
whole operating cycle in an assumed “weak” local

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003364

grid (island mode), from ignition, loading, fuel
valve switching and a full load drop at the end.

Figure 13: The rotational speed of the shaft during a load
rejection test.

The first 50 seconds the gas turbine spins up to its
working speed at 6600rpm. Then the generator starts
to produce power and a sudden drop in rotational
speed can then be seen until the controller brings the
speed back to normal. At around 190 seconds the
power has increased to about 37MW and the pilot
fuel is shut down and is replaced with more main
fuel, see Figure 14.

Figure 14: Percentage of valve opening during a load
drop simulation. Pilot valve opening is dashed.

It can here be seen as a decrease in speed due to that
the valve switching sequence is not tuned in the
model and hereby the fuel flow is not constant
during this process. When the full power has been
reached at about 350 seconds a power failure occurs,
i.e. the generator effect is decoupled, see Figure 15,
and the rotational speed increases dramatically.
Instantaneously, the controller reacts and shuts
down the main fuel and starts feeding the combustor
with pilot fuel and the rotational speed decreases to
normal 6600rpm.

Figure 15: Generated power to the grid.

The requirement for this load rejection test is that
the rotational speed must not exceed 10% of the
nominal value. In this case the rotational speed must
not exceed 6600*1.1=7260rpm. The test shows that
the maximum speed is about 6970rpm, which is
acceptable. This load drop experiment has been
conducted with real gas turbines and a value around
7000rpm has been a normal value for the GTX100.

10 Conclusions
In this article the building of a gas turbine model in
Modelica has been described. A new library called
GasTurbine has been developed to modify existing
models in ThermoFluid to gas turbine applications.
The experience is that the ThermoFluid library is
somewhat hard to work with for a non-Modelica
library developer and the GasTurbine library is more
suited for the end user.
The gas turbine model has been verified with a
static tool called IPSEpro with acceptable results
from a dynamic point of view. A load rejection test
has been performed with results similar to a real gas
turbine.
At the end Modelica has been proven to be a
suitable tool for building gas turbines in an object
oriented way. The simulations are quite fast
considering the amount of computations in the large
model. Finding suitable initial values can be hard
but new language constructs in Modelica has been
introduced to help the end user to initialize models
in a more convenient way.

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003365

11 References
[1] H.Tummescheit, J. Eborn, F.J. Wagner:

“Development of a Modelica Base Library for
Modeling of Thermo-Hydraulic Systems”.
Modelica Workshop 2000 Proceedings, pp. 41-
51.

[2] H.Tummescheit: “Design and Implementation

of Object-Oriented Model Libraries using
Modelica”. PhD thesis. Department of
Automatic Control Lund Institute of
Technology Lund, August 2002.

[3] Pérez Gómez A.A: “Modelling of a Gas

Turbine with ModelicaTM”. Master thesis.
Department of Automatic Control Lund
Institute of Technology Lund, May 2001.

[4] S.Haugwitz: “Modeling of Microturbine

Systems”. Master thesis. Department of
Automatic Control Lund Institute of
Technology Lund, May 2002.

[5] IPSEpro is developed by SimTech Simulation

Technology (http://www.simtechnology.com)

 Andreas Idebrant and Lennart Näs Gas Turbine Applications using ThermoFluid

 The Modelica Association Modelica 2003, November 3-4, 2003366

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 9A
Mechatronic Systems – III

367

 The Modelica Association Modelica 2003, November 3-4, 2003368

Multidomain Systems: Pneumatic, Electronic and
Mechanical Subsystems of a Pneumatic Drive

Modelled with Modelica

Peter Beater
Beater@fh-swf.de

Department of Mechanical Engineering – Automation
University of Applied Sciences Südwestfalen, Campus Soest

Lübecker Ring 2, D 59494 Soest, Germany

Christoph Clauß
Christoph.Clauss@eas.iis.fhg.de

Fraunhofer-Institut für Integrierte Schaltungen, Außenstelle Entwurfsautomatisierung
Zeunerstraße 38, D 01069 Dresden, Germany

Abstract
The simulation of pneumatic or electronic systems
has been state of the art for a long time. For both of
these domains there exist highly specialized simu-
lation programs which can be regarded as a kind of
industrial standards. However, often problems arise
if different domains of technology occur within
one system and very detailed models are needed.

As an example a pneumatic drive is presented that
is used for teaching mechanical engineering stu-
dents in Soest. It consists of pneumatic, mechani-
cal, and electronic components. Each component is
modelled very detailed using the Modelica lan-
guage (Modelica, 2002). Without coupling of
simulators the complete simulation model can be
investigated by one tool.

1 Introduction

The engineer of today is used to powerful simula-
tion tools. Within the last forty years these tools
mutated from simple solvers of differential equa-
tions to computer-aided design software for techni-
cal systems. Tools like HSPICE in electronics,
ADAMS in mechanics, or HOPSAN in hydraulics
are highly specified to meet the needs of the disci-
pline. These tools “know“ the domain-intern pecu-
liarities. Often the models and the simulation algo-
rithms are closely related. Therefore, these tools
are very advantageous in simulation, modelling,
and postprocessing.

However, often problems arise if technical systems
cover more than one established discipline, e. g. in
automotive systems or in microsystems engineer-
ing. The two fundamental ways out are coupling of
simulators, and compact modeling for one simula-
tor.

From the very beginning the Modelica language
has been designed for covering several technical
disciplines. Complex systems can be modelled
with one language to get one model. The further
processing within the tool, e. g. the Dymola simu-
lator, results in one mathematical model, typically
a system of differential algebraic equations, which
is solved by one simulation engine. The challenge
of the Modelica approach is to show that its effi-
ciency is not much worse than the efficiency of
domain specific tools. To offer evidence of this is
surely a long process (Clauss and Beater, 2002). In
this paper the multidomain example of an elec-
tronically controlled pneumatic drive is presented.
It demonstrates that the unified multidiscipline
simulation tool Modelica/Dymola meets the chal-
lenge quite well.

At first the physical device is presented with em-
phasising the pneumatic and electronic parts. The
Modelica model is shortly described, and simula-
tion results are discussed. It is shown that numeri-
cal problems could be solved, and the performance
can be accepted.

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003369

2 The Pneumatic Drive

Fig. 1 shows the pneumatic drive. It is a typical
construction when a part has to be moved for sev-
eral decimetres, e. g. in material handling. The re-
quired forces determine the diameter of the cylin-
der which is connected to the electrically operated
directional control valve. At the ends of the cylin-
der magnetic switches are installed that signal the
end of stroke to the electronic controller. For the
controller standard CMOS ICs are used. The “pro-
gramming” is done by connecting the logical
blocks (AND, OR, RS). The task is to begin a re-
peated extending and retracting of the piston after
the start button has been pushed and to stop in the
extended position after the stop button has been
pushed.

Figure 1 Pneumatic drive as laboratory set-up in Soest

3 The Pneumatic and Mechanic Parts

After preliminary trials using the analogue com-
puter in the fifties the digital simulation of fluid
power systems, i. e. hydraulic or pneumatic sys-
tems, became important in the eighties. Graphical
user interfaces were added in the nineties. Using
Modelica and its libraries it is easy to model
pneumatic or mechanic systems. The user doesn't
need to know all the details of component model-
ing. If nevertheless details are essential the source
code of the models is available. Using models from
the Modelica libraries the pneumatic drive ac-
cording to Fig. 1 could be modelled.

Basically, three physical laws are needed to de-
scribe the movement of the piston. The first one is
Newton’s second law that models the movement of
the mass (piston) as a function of the applied
forces. It is described in the block SlidingMass of
the Modelica library Mechanics.Translational. The
forces can be calculated from the pressures in the
cylinder chambers, which are described by:

() mTT-TA
c
1

-

A(t)xp
c
1

-mTTm

surroundAW
V

KChamber
V

•

•••

⋅⋅κ+⋅⋅α⋅

⋅⋅⋅=⋅+⋅

(1)

with: m gas mass [kg]
T temperature in the chamber [K]
cv specific heat capacity [J/(kg . K)]
pchamber cylinder pressure [Pa]
AW heat transfer area [m²]
AK piston area [m²]
κ ratio of specific heat capacities
Tsurround temp. of the environment [K]
α coefficient of heat transfer [W/(m² . K)]

These equations are modelled in the library model
PneuLib.Chamber. Two Chamber models, the
SlidingMass for the piston and a Rod for the
housing describe a simple cylinder. A complex
model of a double sided cylinder with pneumatic
stroke cushioning is shown in Fig. 2.

The mass flow rate to or from the cylinder cham-
bers depends on the pressure upstream and down-
stream of the valve, p1 and p2, and the electrical
command signal for the valve. For the opened
valve the mass flow rate can be described by the
equation of flow through a nozzle:

b
p
p

for
b-1

b-
p
p

-1
T
T

Cpm
1

2

2

1

2

1

0
01 >

⋅⋅ρ⋅⋅=
•

b
p
p

for
T
T

Cpm
1

2

1

0
o1 ≤⋅ρ⋅⋅=

•

(2)

with:
•
m mass flow rate [kg/s]
p1 upstream pressure [Pa]
C sonic conductance [m³ / s / Pa]

0ρ standard density of air [kg/m³]
T0 standard air temperature [K]
T1 air temperature upstream [K]
p2 downstream pressure [Pa]
b critical pressure ratio [1]

This equation is standardized in ISO 6358. Neces-
sary is also a state equation for air, where the ideal
gas law is used:

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003370

Figure 2 Object diagram of a double-sided two-ended cylinder with stroke cushioning
screenshot from Dymola

TRmVp ⋅⋅=⋅ (3)
with: p pressure [Pa]

V volume [m³]
m air mass [kg]
R specific gas constant [J/(kg . K])
T temperature [K]

For typical operating conditions of pneumatic
drives, maximum pressure of about 1 MPa and a
temperature around 20 ° C, the differences between
air and the modelled ideal gas are negligible. Ad-
ditional equations are needed that describe e. g. the
dynamic behaviour of the directional control valve
or the stroke cushioning of the cylinder.

To couple component models of the library Pneu-

Lib the through variable mass flow rate
•
m and the

across variable pressure is used. To have ports for
the inflow and outflow of air two connectors are
defined:

port_1

p
m_dot

port_2

p
m_dot

Figure 3 Connectors for port 1 (pressure supply) and
port 2 (work)

An example of a simple component is a nozzle that
is based on Eq. 2. While this equation is very well
suited for measurement purposes it leads to prob-
lems when used in the digital simulation of pneu-
matic systems because the „gain“, i. e. the quotient

d
•
m / d dp, goes to infinity as the pressure drop,

dp = p1 - p2, goes to zero. This effect is known
from models for incompressible hydraulic oil that
use the simple „square root“ dependency

p~q ∆ (4)

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003371

and has led to the development of more accurate
models (Beater 1999). In the pneumatics library
the nozzle model according to Eq. 2 is used be-
cause it is a generally accepted standard but ex-
tended for the region of small pressure differences
by a linear relationship between mass flow rate and
pressure differential. This is based on the fact that
then the turbulent flow becomes laminar and there-
fore a linear relationship exists between pressure
differential and flow rate. This is also an example
that simple “textbook” models are not suited for
real engineering tasks but have to be extended to
avoid numerical problems during integration. Fig-
ures 4 and 5 show the icon and the structure of the
code. Used is the superclass TwoPortComp that
defines all parts that are needed for components
with two ports but no mass storage.

NozzleNoStates

Figure 4 Icon of nozzle model

model NozzleNoStates
"Nozzle model according to ISO 6358."

extends PneuLib.Interfaces.TwoPortComp;
parameter SonicConductance C=1e-7

"sonic conductance";
parameter CriticalPressureRatio b=b_default

"critical pressure ratio";
Real pressure_ratio(start=1.0);
...
equation
pressure_ratio = port_2.p/port_1.p;
m_dot = ... ;

end NozzleNoStates;
Figure 5 Code of nozzle model

As in the hydraulics library HyLib (HyLib, 2002)
there are also components that have lumped vol-
umes directly connected at all pneumatic ports, see
e. g. the object diagram of the cylinder in Fig. 2.
This modeling concept allows pneumatic compo-
nents to be connected in an arbitrary way, e. g. in
series or in parallel, just by drawing connection
lines, no special components for splits or mergers
are required.

The advanced features of Modelica 2.1, e. g. the
initial equation section, are used to make the initili-
zation of states user friendly. In hydraulics atmos-
pheric pressure is used as reference pressure.
Therefore a system at rest has pressure states of
zero. In pneumatics the gas mass in a volume is

used which is non-zero at atmospheric pressure.
Therefore a number of calculations is needed to
compute the gas mass in all lumped volumes which
may include the calculation of the geometric vol-
umes, e. g. of cylinders, before. As engineers usu-
ally think of pressure and not gas mass in a volume
the input parameters for the initial conditions of the
library models are pressures and the gas masses
calculated by the library models.

The pneumatics library provides basic model
classes for the modeling of cylinders - both stan-
dard cylinders with constant piston area and bel-
lows which have a stroke dependent piston area -
and motors, valves and restrictions, lumped vol-
umes, lines and sensors. In total there are more
than 80 models. Among them there are three mod-
els of pneumatic lines. Two describe the resistance
by algebraic equations while the third one ap-
proximates the partial differential equations from
the physical model by a set of ordinary differential
equations. Laboratory experiments show an excel-
lent correlation between measurement and simula-
tion for the pressure drop and a good description of
the dynamic behaviour, i. e. the frequency re-
sponse.

For standard applications these classes cover all
needed components. If, however, specially de-
signed components are used these can be easily
modelled by modifying library components. All
relevant effects are available as submodels.

4 The Electronic Part

The control which is necessary for the pneumatic
and mechanical parts can be modeled using Boo-
lean algebra with the signal values 'true' and 'false'
(Figure 6). A more detailed description is possible
if multi-valued logic is used, e. g. with values for
'unknown', 'uninitialized'. Usually VHDL
(Lehmann and Wunder, 1994) or Verilog- HDL
(Palnitkar, 1996) are behavioral languages for
digital logic for which powerful simulators exist,
e. g. ModelSim (Modeltech, 2002). The VHDL
language was used to verify the control unit de-
sign.

The control unit gets the input signals ON and OFF
from outside to start and stop the machine. Further
input signals are Bl (Br) for reaching the left

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003372

(right) stop. The output signals both for moving to
the left (Xl) and to the right (Xr) are stored within
RS flipflops. If an output signal switches to false,
the inverse flipflop output allows the other output
to be switched to true. These changes are caused
by both the Bl and Br signals. To connect the con-
trol unit with the pneumatic part a suitable signal
conversion is necessary which is done by converter
models.

For the unified modeling with Modelica the control
unit is described at two levels, the Boolean level
and the electrical level. For both of the levels a
special small library 'Boole' and 'CMOS' has been
developed.

'CMOS'-Library

Basing on the Modelica Standard Library CMOS
transistors were combined to form the logic gates
on the electronic level. The 'CMOS'-library con-
tains the basic logic models Nand, Nor, Not, And,
and a flipflop model RSFF. The following Mode-
lica text shows the Nand gate model as an exam-
ple:

model Nand "NAND"
import MEA = Modelica.Electrical.Analog
MEA.Sources.RampVoltage VDD;
MEA.Semiconductors.PMOS TP1, TP2;
MEA.Semiconductors.NMOS TN1, TN2;
MEA.Basic.Capacitor C4, C7;
MEA.Basic.Ground Gnd;
MEA.Basic.Ground Gnd1, Gnd2, Gnd3;
MEA.Interfaces.Pin inp1, inp2, out;
equation
connect(inp1, TN1.G); connect(TN2.G, inp2);
connect(TP2.G, TN2.G); connect(VDD.p, TP2.D);
connect(VDD.p, TP2.B); connect(Gnd1.p, VDD.n);
connect(TP1.D, VDD.p); connect(TP1.B, VDD.p);
connect(C4.n, Gnd2.p); connect(TP1.S, C4.p);
connect(C4.p, out); connect(TN1.D, TP1.S);
connect(TN1.S, TN2.D); connect(C7.n, Gnd3.p);
connect(TN2.D, C7.p); connect(TN2.B, Gnd3.p);
connect(TN2.S, Gnd3.p); connect(TN1.B, Gnd.p);
connect(TP2.S, TP1.S); connect(TN1.G, TP1.G);
end Nand;

The MOS transistor models are used to be able to
observe the electrical behavior in a great detail.
Otherwise the number of variables becomes rather
high. In practice this accurate level is not often
necessary.

'Boole'-Libary

The basic logic gates and the flipflop as well were
modeled using the Boolean signals 'true' and 'false'
of Modelica (two-valued logic) according to (Til-
ler, 2001). Delay times are neglected. Only the

flipflop needs a very small delay to avoid loops
without delay. The following Modelica text shows
the Nand gate of the 'Boole' library:

model Nand
import D = Boole.Interfaces;
extends D.DISO_wide;
D.LogicValueType out_immed(start=false);
equation
out_immed = not (in1 and in2);
out = pre(out_immed);
end Nand;

Due to the simplicity of 'Boole' the number of vari-
ables of the control unit model is much less than of
the model based on 'CMOS'.

The 'Boole' libary is a very preliminary stage of the
digital electronic library which is under develop-
ment to become a part of the Modelica Standard
Library. The digital electronic library follows es-
sentially the IEEE 1164 standard (VHDL IEEE-
Package).

Br

Bl

Xr

Xl

ON

OFF

a

Poff

Pon

e

r

l

s_r

s_l

r_r

r_l

CTRL s unit

S
R

&

A...

&

A...
1

N...

S
R

&

A...

&

A...

&

A...

&

A...

S
R

S
R

&

A...

&

A...

1

N...

1

N...

Figure 6 Control unit scheme

5 Results

With Dymola version 5 (Dymola, 2003) the model
of the drive was composed graphically, analysed,
translated into executable code, and simulated. The
simulations started at the quiescent state (all volt-
ages are zero, the pneumatic pressures are equal to
the environment pressure) at time zero and finished
after 2 seconds. In the following figures the be-
haviour of some variables is shown.

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003373

Control s Unit
ON

O...

lef t stop

right st... movin...

movin...

Cylinder

B
2

Valve
4
A

5 3

Reservoir1

Silencer3Silencer1

Grou...

Proximity_rightProximity_left

Volta...

V

Grou...

Volta...

V

Fixed1

Trap...

Trap...

Ideal...

Ideal...

Figure 7 Object diagram of controlled drive

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

Cylinder.distance_housingA_piston

Figure 8 Piston position as function of time

To get a better feeling of the model the detailed
subsystems “Pneumatic” and “CMOS” were re-
placed by much simpler models, “Integrator” and
“Boole”. They had the same input-output signals,
e. g. an input to drive to the right, i. e. increase the
state of an integrator linearly with time. Using the
simpler models the complexity of the model and
the required CPU time can be considerably re-
duced.

0 0.2 0.4 0.6 0.8 1

0

CTRLsunit1.ON.v

0 0.2 0.4 0.6 0.8 1

0

CTRLsunit1.Xl.v

+0.2715 +1E-5 +2E-5 +3E-5

0

10 CTRLsunit1.Xr.v

Figure 9 Start signal, command to go left, command to
go right (zoomed)

Table 1 shows the simulation times and also that
the multidomain model needs more computing
time than the added times for Pneumatic/Boole and
Integrator/CMOS. The "additional burden for multi
domain" depends very much on the chosen toler-
ance for the DASSL integrator. In the best case,
TOL = 1e-5, the complete model needs less than
double the time than the model Integrator/Boole
(Table 3). This effect has also been observed with a
previous multidomain system (Clauß and Beater
2002).

Table 2 gives the eigenvalues of the complete
system which can be uniquely associated with the
pneumatic or electronic subsystem, respectively.
The pneumatic system adds 14 states but the addi-
tional eigenvalues lie almost within those of the
CMOS model.

6 Conclusion

A rather complicated multidomain example could
be modeled and simulated in an easy way without
simulator coupling. Depending on the task each of
the two main subsystems was modeled more or
less detailed. As a consequence the CPU times
varied considerably but even for the most detailed
model the "burden of multidomain" was accept-
able.

However, to get more insight in the multidomain
simulation with regard to both modeling and nu-
merical aspects much more complex examples are
desible.

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003374

Table 1 Comparison of model parameters and simulation times (Dymola 5.1, Windows 2000, 2.6 GHz)

Typ Equations States CPU time
Pneumatic-Boole 262 14 0.984 s
Pneumatic-CMOS 1027 57 78.3 s
Integrator-Boole 176 1 0.031 s
Integrator-CMOS 903 44 15.5s

Table 2 Eigenvalues of the system Table 3 CPU times as
CMOS/Pneumatics function of tolerance

CMOS Pneumatic TOL Pneumatic
CMOS

Integrator
CMOS

-3.1474e+006 1e-4 78.3 15.5
-1.0000e+005

two times
1e-5
1e-6

39.0
49.4

20.4
26.0

-4.8898e+004 1e-7 61.0 31.7
-1.3571e+004

two times
1e-8
1e-10

74.3
104

38.9
54.6

-4.3576e+002
-3.0000e+002
-2.5353e+001
-8.4914e+000

-2.9867e-001
seven times

-2.5719e-001
eight times

-1.8650e-001
-1.4450e-001

eleven times
-9.2833e-002

seven times
-7.3814e-002

eight times
-1.4388e-012
0

two times
1.2342e-013

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003375

References

Beater, P. (1999) Entwurf hydraulischer Maschinen
- Modellbildung, Stabilitätsanalyse und Simulation
hydrostatischer Antriebe und Steuerungen. Berlin,
Heidelberg, NewYork, Springer-Verlag

Clauss, C., Beater, P. (2002) Multidomain Sys-
tems: Electronic, Hydraulic, and Mechanical Sub-
systems of an Universal Testing Machine Modeled
with Modelica. Proceedings of the 2nd Interna-
tional Modelica Conference, DLR München. pp 25
- 30

Clauß, Chr., Leitner, Th.,Schneider, A., Schwarz, P.
(2000) Modelling of electronic circuits with
Modelica. Lund, Modelica Workshop 2000, pp 3-
11

Dymola. 2003. www.Dynasim.se

Herpy, M. (1976) Analoge integrierte Schaltungen.
Akadémiai Kiadó. Budapest

HyLib (2002) Library of hydraulic components.
www.HyLib.com

Johnson, B., Quarles, T., Newton, A.R., Pederson,
D.O., Sangiovanni-Vincentelli, A. (1991) SPICE3
Version 3e, User’s Manual., Univ. of California,
Berkeley, Ca., USA

Lehmann, G.; Wunder, B.; Selz, M. (1994) Schal-
tungsdesign mit VHDL. Francis Verlag.

Modelica (2002) Modelica Language Specification
2.0. www.Modelica.org

Modeltech (2002) ModelSim Reference Manual

Palnitkar, S. (1996) Verilog HDL: A Guide to
Digital Design and Synthesis. SunSoft Press,
Prentice Hall

PneuLib (2002) Library of Pneumatic Compo-
nents. www.Pneulib.com

Tietze, U., Schenk, Ch. (1980) Halbleiter-
Schaltungselektronik. Berlin, Heidelberg, New
York, Springer-Verlag

Tiller, M. (2001) Introduction to Physical Model-
ing With Modelica. Kluwer Academic
Publishers.

VHDL IEEEPackage:
http://tech-www.informatik.uni-
hamburg.de/vhdl/packages/ieee_1164

 P. Beater and C. Clauss …Pneumatic, Electronic and Mechanical Subsystems of a Pneumatic Drive…

 The Modelica Association Modelica 2003, November 3-4, 2003376

Object-Oriented Inverse Modelling of
Multi-Domain Aircraft Equipment Systems with Modelica

Johann Bals∗ Gerhard Hofer† Andreas Pfeiffer‡ Christian Schallert§

German Aerospace Center (DLR)
Institute of Robotics and Mechatronics

Oberpfaffenhofen, 82234 Wessling, Germany
http://www.robotic.dlr.de/control/

Abstract

This paper describes the use of Modelica for investi-
gating the multi-physical power behaviour of aircraft
equipment systems within the 5th European Com-
munity (EC) programme ”Power Optimised Aircraft”
(POA) [1]. It gives an overview of the object-oriented
structuring of an aircraft systems library which is cur-
rently being developed for the physical modelling of
conventional and future ”more electric” aircraft sys-
tems. An inverse modelling approach is presented,
which allows to analyse the non-propulsive power be-
haviour as a result of given load profiles for the electri-
cal, mechanical, hydraulic and pneumatic equipment
systems. In addition the paper describes the definition
of assessment criteria, to evaluate and quantify the en-
ergy consumption of the aircraft equipment systems.
The criteria, their implementation in Modelica and the
results from an example are presented.

Keywords: object-orientation, aircraft systems,
multi-domain modelling, inverse modelling, system as-
sessment, more electric aircraft

1 Introduction

Multi-physical modelling is gaining a more and more
important role within areas such as robotics, the auto-
motive or aircraft industry. Particularly with respect to
the complexity of aircraft systems, such as air condi-
tioning, electric power generation, avionics, flight con-
trols, in-flight entertainment etc., the method of multi-

∗Johann.Bals@dlr.de
†Gerhard.Hofer@dlr.de
‡Andreas.Pfeiffer@dlr.de
§Christian.Schallert@dlr.de

physical modelling allows to simulate all aircraft sys-
tems, which use different forms of power, in one in-
tegrated model. Different physical domains have to
be considered in the simulation of complex aircraft
systems. An example is presented in figure 1, which
shows a diagram of the conventional power genera-
tion, distribution and use on a civil aircraft.

Figure 1: Diagram of the conventional power distribu-
tion in a civil aircraft [2]

Fuel is being converted into power by the engines
of the aircraft. Most of this power is expended as
propulsive power in order to move the aircraft. The re-
mainder is converted into four forms of non-propulsive
power, known as electrics, mechanics, hydraulics and
pneumatics, which are necessary to operate the aircraft
systems. On a conventional aircraft, a relatively large
amount of the non-propulsive power extracted from
the engines is lost, due to inefficient power conversion,
transmission and consumption by the aircraft systems.

The European Aircraft Industry has identified the
potential for improving the competitiveness of their

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003377

products by advancing the development of more power
efficient aircraft systems. A reduction in operation
cost of the next generation – power optimised – air-
craft is projected to be achieved by a reduction of the
system power demands, leading to savings in fuel con-
sumption. To promote the development of new tech-
nology and more power efficient aircraft systems, the
EC has founded the POA project [1], involving Eu-
ropean aircraft, equipment and engine manufacturers.
Two of the goals established for the POA project are
the following: a reduction of the non-propulsive power
consumption and a reduction of the fuel consumption.

Within the POA project, the aircraft manufacturer
defines the top-level system requirements and a set
of so called ”feasible” system architectures. The en-
gine and equipment manufacturers are responsible for
developing advanced technology system components,
such as generators, air conditioning packs and flight
control actuators. Equipment hardware is being deliv-
ered to the so called Aircraft Systems Validation Rig
(ASVR). By equipment testing on the ASVR, their
performance is going to be validated while being op-
erated simultaneously and connected to an aircraft-like
electrical power supply. Whereas testing on the ASVR
can represent just a cutout of a feasible systems archi-
tecture, the so called Virtual Iron Bird (VIB) offers the
capability to analyse the entire aircraft architecture in-
cluding all systems. Also, the VIB has the flexibility
to investigate all sensible combinations of feasible sys-
tem architectures. On the VIB, the aircraft systems are
going to be represented by simulation models. The
VIB uses component models, that are being delivered
by the equipment manufacturers, to compose an inte-
grated aircraft systems model. The models delivered
to the VIB will be validated by stand-alone hardware
testing done by the equipment manufacturers and by
coupled hardware testing done on the ASVR. Using
the validated component models, the VIB simulations
can predict and compare the power consumption and
behaviour of the various ”feasible” system architec-
tures. The simulation of the systems power consump-
tion and dynamic behaviour is one of the VIB’s con-
tributions to the overall scope of the POA project. In
addition, all the different system architectures are go-
ing to be optimised in a later step.

2 Object-Oriented Modelling Envi-
ronment

The terms of reference within the current EC pro-
gramme ”POA” comprise the development of a struc-
tured simulation environment enabling to assess the
various aircraft system architectures. By means of
”Modelica”, this simulation environment is being re-
alised as a ”Modelica Library”, whose structure is pre-
sented in figure 2.

Figure 2: Diagram of the hierarchically structured li-
brary

Basically, the library consists of 5 levels, all of
which being connected in a hierarchical manner. The
sub-library, named ”Interfaces”, is the starting point of
the entire library. It comprises several model connec-
tors and is arranged according to the different domains,
known as electrics, mechanics, hydraulics and pneu-
matics. The next higher level, that builds up on the
sub-library ”Interfaces” is called ”Physical Domains”,
and enables the generation of basic domain specific
models. Within this hierarchically structured library,
the two previously mentioned levels are used to model
the components of aircraft systems, as well as to gen-
erate the aircraft systems themselves. All simulation
models showing the aircraft systems or their compo-
nents have laid down interface definitions, which for
example enable the exchange of component models
with distinctive features on a specific system level. On
the uppermost level of the entire library different ”fea-

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003378

sible architectures” can be generated and thus assessed
according to the criteria of power consumption. How-
ever, this is dependent on the number and the diver-
sity of the numerous aircraft system architectures. The
structured and object-oriented organisation of the en-
tire library enables the automatic combination of the
system models towards different architecture models.
Figure 3 shows an example of an aircraft model con-
taining an electrical power generation system (EPGS)
on system level. The EPGS has several components,
one of them is the shown electrical generator.

Figure 3: Modelica diagram of a hierarchical aircraft
model

3 Inverse Modelling Approach

For the VIB aircraft system simulations an inverse
rather than a direct modelling approach is used. An in-
verse model can be interpreted such that the meaning
of the input and output functions is exchanged. The
unknown variables of a direct model are treated as the
known input functions of the inverse model, and the
known variables of the direct model are treated as the
unknown output functions of the inverse model.

Both modelling approaches are discussed in the
following using a simple example with an electrical
power source (engine and generator) and a control
surface driven by an electromechanical actuator. For a
given control surface load profile (torque and angular
position) the basic VIB simulation task within the
framework of the EC project POA is to compute
the electrical power and the resulting change in fuel
consumption.

Figure 4: Diagram of a direct electro-mechanical ac-
tuator model

Figure 4 shows the direct model for the above exam-
ple. The generator, driven by the engine, supplies the
motor of the electro-mechanical actuator with electri-
cal DC power. The voltage level of the generator is de-
termined by means of the generator control unit, which
is not shown in the figure 4. The motor is steered by a
motor control unit and changes, via a gearbox, the po-
sition of the control surface according to the demanded
values. In this example, the motor control unit com-
mands by means of the demanded position, the neces-
sary motor current to move the control surface under
the predefined load.

For the comparison between the direct and the in-
verse modelling approach, only the part of the elec-
tromechanical actuator and the control surface model
in figure 4 is considered. The simulation model of the
electrical power source (engine and generator) is still
the same for both modelling approaches. The gen-
erator model and the engine model are used in these
two applications, to calculate the necessary electrical
power and the resulting change in the fuel consump-
tion.

Figure 5: Diagram of the inputs and outputs vari-
ables of the direct electro-mechanical actuator model,
shown as a black box

Focusing on the electromechanical actuator (motor
and gearboxes) and control surface model (figure 4),
the input variables for the direct simulation are the mo-
tor current IMotor (derived from the demanded and ac-

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003379

tual position by means of the motor controller), the
generator voltage UGenerator (impressed at the actuator
motor) and the acting load τLoad at the control surface
(see figure 5). The unknown variable in this case is
the real motion ϕ, ϕ̇, ϕ̈ of the control surface, which
will be calculated according to the given load profile.
On the basis of this direct actuator model, the neces-
sary electrical power can be computed by means of
the actual actuator motor current IMotor and its corre-
sponding actuator motor voltage UMotor. The actuator
motor voltage UMotor is an internal model variable and
therefore not shown in the diagram of the inputs and
outputs variables of the direct electro-mechanical ac-
tuator model in figure 5. By means of the two actua-
tor motor variables, the necessary electrical power on
the generator voltage level UGenerator and the change
in fuel consumption can be finally calculated with the
generator and engine models.

Figure 6: Diagram of an inverse electro-mechanical
actuator model

Figure 6 presents an inverse model in contrary to
the direct model shown in figure 4. Based on the in-
verse modelling definition, the meaning of input and
output of the direct model is exchanged. For the in-
verse electromechanical actuator and surface model,
the input variables are the predefined motion ϕ and
load τLoad found at the control surface and the genera-
tor voltage UGenerator, impressed at the actuator motor.
The output variable (unknown variable) for the inverse
model is the motor current IMotor. Comparing the di-
rect actuator model (figure 5) and the inverse actua-
tor model (figure 7), the meaning of inverse and direct
interpretation is well visible. The resulting necessary
power of the generator and engine can be calculated in
the same manner as for the direct model.

In Dymola, the DAE (differential-algebraic equa-
tion system) corresponding to the inverse model is be-
ing handled with the same methods like the DAE of
any other (direct) model. The methods applied by
Dymola are the Pantelides algorithm and the dummy
derivative method. Since the Pantelides algorithm will
differentiate equations, the known input functions may
also be differentiated, which leads to the well known
effect that the derivatives of the input functions must

Figure 7: Diagram of the inputs and outputs variables
of the inverse electro-mechanical actuator model,
shown as a black box

exist up to a certain order [3].
In the present example in figure 7, it is imperative

that the input signal ϕ is at least twice continuously
differentiable to compute the required signal deriva-
tions ϕ̇, ϕ̈ within the simulation models. To ensure that
the model input signal is differentiable, the measured
signal is treated by filter or spline-interpolation in this
case.

Due to the fact that in Modelica the models are de-
scribed in an object-oriented and physical manner, an
inverse model is almost identical to the correspond-
ing direct model. As the only significant difference,
the inverse model does not require any representation
of the controller structure that exists in the real sys-
tem or component, whereas the direct model generally
comprises the controller structure for calculation of the
motor current IMotor as a function of actual and de-
manded motor position. Due to the unavoidable con-
trol error and physical effects in the drivetrain (elastic-
ity, friction) the actual control surface position is dif-
ferent from the predefined control surface position ϕ.
This error induces errors in the resulting power con-
sumption, which depend on the controller accuracy
and the drivetrain effects.

In contrast to the direct model the inverse model
matches per definition exactly the predefined load pro-
file (τLoad , ϕ) and therefore correctly describes the
power consumption. A further advantage of the in-
verse modelling approach is the lower model complex-
ity due to the absence of possibly complicated and pro-
prietary controllers from partner companies.

For the above mentioned reasons an inverse mod-
elling approach is used as a general concept for all
of the electrical, hydraulic, mechanical and pneumatic
power consumers. For each of the consumers, prede-
fined load profiles during a typical flight profile are
available to drive a multi-domain inverse model for si-
multaneous computation of the mechanical and pneu-
matic power take-off from the engines.

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003380

4 Power criteria

Among others, the goals of the POA project are the
evaluation and optimisation of the power demands
in future aircraft architectures. To measure and as-
sess the quality of an architecture some criteria are
needed which quantify the energy consumption, the
peak power, the weight, etc. Predefined flight profiles
(movement of surfaces, landing gear, state of the air-
conditioning system) yield the power characteristics
of the different physical domains such as hydraulics,
electrics, mechanics and pneumatics from the archi-
tecture simulations. In the following the definitions of
the criteria, which are related to the dynamic simula-
tions, their implementation in Modelica and the results
from an example are presented.

To evaluate the overall energy consumption during a
flight profile, it is suitable to define the average power

PAverage :=
1

te − t0

te∫

t0

P(t)dt

with the current power P(t) at the time t, the start
time t0 and the terminal time te. PAverage describes,
which integral averaged power is required for the op-
erated manoeuvre in the timeframe [t0, te].

Beside the demand of average power there is also an
interest on peak power which is relevant to the design
of the aircraft components and systems. In a first step
it is natural to define the peak power as

max
t∈[t0,te]

P(t).

However arbitrary short peaks can unmeantly increase
the value of the peak power, because only peaks hold-
ing a certain minimum duration T are of interest for
evaluation. One approach for computing such a peak
power could be sampling in combination with an algo-
rithm for minimum power computation within a mov-
ing interval of length T . But this solution can be nu-
merically very sensitive in respect of changes of initial
values, parameters and the sampling time.

In order to achieve an appropriate solution, it can be
helpful to define the peak power

PPeak := max
t∈[t0+T,te]

PFiltered(t)

for a fixed T ∈ (0, te − t0]. PFiltered denotes a fil-
tered power characteristic determined from the orig-
inal power P. The ”continuously moving average” fil-
ter computes for every time point t the integral average

of the power P over a moving time window with the
length T :

PFiltered(t) :=
1
T

t∫

t−T

P(τ)dτ (t ∈ [t0 +T, te]).

Choosing T = te − t0 yields as a special case the av-
erage power, and the equation PAverage = PPeak holds.
In this sense the peak power can be considered as a
generalisation of the average power.

For implementation of the power criteria it is ad-
vantageous to define the energy function E(t) :=∫ t

t0 P(τ)dτ. The differential equation der(E) = P;
with the initial equation E = 0; determines the en-
ergy E in an unique way. Accordingly the criteria can
be rewritten in terms of energy as

PAverage =
E(te)
te − t0

and PFiltered(t) =
E(t)−E(t −T)

T
.

Figure 8: Modelica model for the criteria average and
peak power

In figure 8 a Modelica model for the criteria is
shown in the block ”Crit. Cal.”. The necessary time
delayed evaluation E(t−T) and its derivative P(t−T)
are realised in the block ”FixedDelaywithDerivative”.
It remains to find the maximum of PFiltered(t). The
general problem is to compute

max
t∈[t0,te]

|u(t)|

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003381

for a time depending variable u. The Modelica so-
lution with indicator functions is implemented in the
block ”Overshoot1” in figure 8.

Figure 9: Modelica model for zeroCrossing

To determine the maximum of |u| the block ”zero-
Crossing” in figure 8 creates a state event in the case
that the derivative u̇ changes its sign (see figure 9 for
the Modelica source code). The appearance of the
state events is passed on as a boolean to ”maxSam-
pler” (= ”triggeredMax” from ModelicaAdditions li-
brary). There the respective values of |u| are compared
and the greatest one is selected as umax. In addition the
values |u(t0)| and |u(te)| can be selected for possible
candidates of maximal values of |u| by setting the pa-
rameter includeInitialEvent, includeTerminalEvent in
block ”zeroCrossing” in figure 9.

Due to the fact that all the time points t with u̇(t) = 0
are defined by state events, these points and the respec-
tive values of u are computed very accurately by root
finding.

Possible problems, like described for the sampling
method, should be avoided by the introduced approach
with filtering and determining the exact maximum of
PFiltered . It is remarkable on the shown definition and
implementation of the criterion peak power, that max-
ima are computed with the help of derivatives, but no
derivative of the power P is needed.

To demonstrate the criteria the example from chap-
ter 3 is considered once again. Only the motor and the
two gears are combined to one model ”ElectricActu-
ator” (see figure 10). The evaluation of the criteria
are exemplified by the mechanical power at the en-
gine shaft. Therefore, in figure 10 the additional model
”Criteria” is inserted between ”Engine” and ”DCGen-
erator”. In this model the mechanical power is mea-

Figure 10: Model example for criteria evaluation

sured by a rotational power sensor and transferred to
the criteria calculation block (see figure 8 for details)
as an input signal.

Figure 11: Simulation results of the above example in
figure 10

For the overall simulation measured data for load
torque and moving angles from a flight profile are
loaded inside the model ”Surface”. The resulting
power characteristics at the engine shaft are shown for
50 s in figure 11 with T = 2 s. Beside the both criteria
– average power and peak power – the power P and
the filtered power PFiltered are plotted as well. Please
notice, that intermediate values of peak power do in
general not correspond to the peak power up to the in-
termediate time, but only for t = te.

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003382

5 Conclusion

Within the framework of the European project ”Power
Optimised Aircraft” (POA), the ”Virtual Iron Bird”
(VIB) serves as an analysis and simulation tool to pre-
dict the behaviour and non-propulsive power demands
caused by the systems installed on a large civil aircraft.

The VIB is set up as a hierarchically structured
Modelica library, containing five different levels. To
build up this modelling library, tailored and validated
component models are being used, which are provided
by the equipment manufacturers involved in the POA
project.

Rather than a direct modelling approach, an inverse
modelling approach is used for the aircraft system
simulations on the VIB. The selected inverse approach
has been described in this paper by an elementary
modelling example.

In order to evaluate and later on to optimise the fu-
ture aircraft architectures according to the POA project
goals, certain assessment criteria are set up in Model-
ica for the VIB. The assessment criteria allow to quan-
tify the different aircraft systems, which is discussed
in this paper by an elementary example.

References

[1] Power Optimised Aircraft, contract G4RD-CT-
2001-00601 under the European Communities 5th
framework Programme for Research – Promot-
ing Competitive and Sustainable Growth – Key
Action 4: ’New Perspectives in Aeronautics’.
http://www.poa-project.com.

[2] Faleiro, L.F.: Power Optimised Aircraft – The
Future of Aircraft Systems. AIAA/ICAS Interna-
tional Air and Space Symposium and Exposition
2003: The next 100 year

[3] M. Thümmel, M. Otter, J. Bals: Control of Robots
with Elastic Joints based on Automatic Generation
of Inverse Dynamics Models. IEEE/RSJ Confer-
ence on Intelligent Robots and Systems 2001

 J. Bals, G. Hofer, A. Pfeiffer, C. Schallert …Inverse Modelling of Multi-Domain Aircraft Equipment Systems

 The Modelica Association Modelica 2003, November 3-4, 2003383

 The Modelica Association Modelica 2003, November 3-4, 2003

384

Wheel model library for use in vehicle dynamics studies

Mats Beckman and Johan Andreasson
KTH Vehicle Dynamics, Sweden

{mb,johan}@fkt.kth.se

Abstract

The implementation of a wheel model library is dis-
cussed. The modular structure and its benefits when
configuring existing models and developing new ones
is presented. The calculation of tyre-road properties
is discussed, in particular the contact point estimation
on uneven roads and detection of when the tyre looses
contact with ground is explained. It is also shown how
the implemented Magic Formula model for tyre force
generation is validated and the influence of tyre dy-
namics on simulation time is examined.

1 Introduction

Working with vehicle dynamics modelling often re-
quires a tyre model. A predefined library limits the
effort and time needed to model a specific vehicle.
This paper presents an extended and improved wheel
library based on the library presented in [1].

The first attempt to solve a problem often uses a
simple initial model and it is then favourable if the
model can be enhanced with more complex features
as more knowledge is gained. Thus, the user should
be able to reconfigure the wheel models with a min-
imum of effort. As the complexity of the model in-
creases, it is also desirable to be able to check sub parts
separately. As a consequence, a modular structure is
favourable and this is derived by identifying the tyre
functions.

The models are intended to be used for vehicle
simulations and will be included in future versions of
theVehicleDynamics library [2].

2 Function identification

The function of a complete tyre can be divided into
sub functions, each representing a specific tyre feature.

This makes it easier to replace sub functions and reuse
code. Some sub functions that can be related to the
wheel are identified and described below.

Interface An interface handles the communication
between the vehicle and the wheel. To easily
switch tyre model, a common interface between
the vehicle and the wheel is defined. Interfaces
should be able to connect to one dimensional
(1D), 2D and 3D vehicle models.

Contact point The location where the tyre forces are
assumed to act is of substantial interest. Finding
this point, orienting it and calculating its speed
are necessary in many tyre models.

Vertical dynamics Vertical dynamics is required to
model the relation between the contact point and
the wheel carrier. This can be modelled as linear
spring-damper but it is also possible to model it
more elaborately allowing e.g. the wheel to loose
ground contact.

Tyre forces The tyre forces acts in the contact point
in the road-plane. They are commonly identified
as longitudinal force, lateral force, rolling resis-
tance, aligning torque and overturning moment.
All or some of these are normally relevant when
studying a vehicle dynamics problem.

Roads Examining a vehicle’s behaviour may include
the use of different topological maps e.g. roads.
These roads may be analytic like cross slopes,
sine waves, bumps or non analytic like a mea-
sured real road, or any analytic road with a ran-
dom noise component added. The road may also
hold more information apart from the topology,
this could include entities like friction values or
road normal.

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003385

W

C

Figure 1: TYDEX framesW andC.

Graphics The visual behaviour of a model often gives
the user valuable insights, it is therefore an aid if
the wheel simulation can be easily visualised in a
2D or 3D environment, this includes both the vi-
sual appearance of the wheel as well some graph-
ics representing the forces acting on it.

3 Definitions

Because of the tyre complexity, several reference
frames are necessary to model its behaviour. To en-
sure that the model structure allows simple addition
and reuse of components within new models, the mod-
elling is based on DIN and TYDEX standards. Ac-
cording to the DIN representation the vehicle frame
should be orientated so thatx points forward,y to the
left andz right up. The TYDEX definition of the car-
rier frame,C, and contact frame,W, is shown in fig-
ure 1. The carrier frame is fixed at the vehicle’s sus-
pension and the contact frame is located at the inter-
section of the carrier frame’sz-axis and the road plane.
For the representation of the graphics, a frameR is
used to represent the rotation of the rim.

4 Implementation

In [1], each sub function of the wheel was imple-
mented as a sub model that made it easy to reconfigure
the wheel models by drag and drop functionality. The
drawbacks were mainly that interfaces of the sub mod-
els required code repetition and that the structure made

RoadBase outer Road

CommonVariables ContactPoint

Interface

WheelGraphics

ForceGraphics

VerticalDynamics

TyreForces

ContactPatch

Wheel

Figure 2: Model structure.

it easy to combine logically incompatible models.
To deal with this problem, the wheel model struc-

ture was redesigned with a common variable set, as
well as a redesign of the drag and drop configuration
to an architecture based on multiple extension. This
definition requires more understanding of tyre to set
up a new wheel model, thus limiting the risk of im-
proper implementations. Still it is easy to reconfigure
an already existing model.

The functionality implemented in the wheel li-
brary are found in Figure 2. A brief description of
these follows below.

4.1 Common Variables

When extending multiple models, care must be taken
so variable collisions are avoided. This is achieved by
identifying the wheel common variables in one model
and then letting every other model extend this vari-
able set. Included are parameters and variables that
describes the properties of the wheel, independent of
what kind of implementation is used. Quantities like
slip are thus not included since there are several dif-
ferent definitions. Some of the included variables are:
1) Parameters like mass and inertia as well as geomet-
ric properties such as spin axis vector and a boolean
defining if the wheel is mounted towards left or right
so that the model can consider wheel asymmetries. 2)

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003386

States of the wheel such as the framesC andW as well
as wheel spin, camber angle and velocities in the tyre-
road contact.

4.2 Interfaces

The interface defines the communication between the
wheel and the vehicle with two connectors repre-
senting the states and the flow through frameC and
frameR, respectively.

The frameC connectors are available for one-,
two- and three-dimensional mechanics. The three-
dimensional connector is either from the old or
the new [3] MultiBody library. For the two-
dimensional case there is thePlanarMultiBody li-
brary [1] and the one-dimensional connector is stan-
dardTranslational . The two latter interfaces use
parameters and external inputs to define un-used di-
mensions.

The frame R connector is normally a one-
dimensional standardRotational which is sufficient
for most applications and also compatible with the
PowerTrain library. In some cases, it is relevant to
have a more detailed description of the power train
and thus, frameR is also available with the three-
dimensional connectors mentioned above.

4.3 Tyre Forces

The tyre forces are described in a separate model.
The wheels library today, contains the Magic For-
mula model [4, 5], the Rill model [6] and the brush
model [5].

4.3.1 Magic Formula model

The Magic formula was originally presented in [4], the
idea is to represent the tyre forcef (s) characteristics
with a trigonometric function

f (s) = Dsin(Carctan(Bs−E(Bs−arctanBs))) (1)

This has been improved successively and considers
now aspects such as camber, vertical load and transient
behaviour1. The level of detail is controlled by user
modes (UM), according to the specification in Table 1
The Magic Formula is a similarity approach, which
means that it is based on the use of basic character-
istics typically obtained from measurements. Through

1The magic formula version implemented is 5.0.

steady state user modes
UM0 only vertical spring
UM1 pure longitudinal slip
UM2 pure lateral slip
UM3 longitudinal and lateral slip

(not combined)
UM4 combined slip forces, steady state

transient user modes
UM11 pure longitudital slip
UM12 pure lateral slip
UM13 longitudinal and lateral slip

(not combined)
UM14 combined slip forces

Table 1: Specification of the Magic Formula user
modes.

distortion, rescaling and multiplications, new relation-
ships are obtained to describe off-nominal conditions.
This classifies the Magic Formula as an semi-empiric
model.

Magic Formula models the dynamic properties by
calculating a dynamic slip in the longitudinal and lat-
eral direction and then use the steady state force cal-
culation.

4.3.2 Rill model

The Rill model calculates the slip in steady-state and
calculates a corresponding tyre force with a curve fit
using initial inclination∂ f/∂s(s = 0), location and
magnitude of max forcefmax = f (smax) and location
and magnitude of force when the whole contact patch
is sliding fslide = f (sslide) as parameters. The nonlin-
ear dependence of vertical load is handled by an in-
terpolation between a set of the parameters for pre-
defined load cases. This classifies the Rill model as
semi-emperic.

Camber influence, roll resistance as well as over-
turning and aligning moment ar then defined based
on geometrical considerations. Unlike the Magic For-
mula model, the dynamic effects are modelled as
a spring-damper filter applied after the steady state
forces have been calculated.

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003387

4.3.3 Brush model

Unlike the Rill and Magic Formula models, which
are semi-emperic, the brush model is analytical. The
idea is to discretisise the tyre with elastic bristles that
touches the road plane and can deflect in a direction
parallel to the road surface. Their compliance repre-
sent the elasticity of the combination of carcass, belt
and actual tread elements of the real tyre. The effect
of each bristle is added to a set of forces and torques
acting on the tyre.

4.4 Contact point calculation

Using frameC and information about the road pro-
file, theContactPoint calculates location and orien-
tation of frameW, indicated in Figure 1. Additionally,
the distance between the frames and its time derivative
as well as the camber angle are calculated.

The orientation of the frames are related as de-
scribed by their unit vectors:

Wez = n
Wex = Cey×Wez

Wey = Wez×Wex

(2)

wheren is the road normal. The actual location of
frameW can be found by iteration as suggested in [6]
which was implemented in Modelica in [7]. The idea
is to start at the location of frameC, rC and define a
first approximation of the contact point,rP1 =−R0

Cez

whereR0 is the undeformed wheel radius. The(x,y)-
coordinates are then used to find the actual road alti-
tude,z, giving rP2 = (rP2[1], rP2[2],z). Due to camber,
tyre deflection, and road uneveness,rP2 is normally
not located along the line betweenrC andrP1, rP2 is
then projected onto this line givingrP3. However, if
the road is unevenrP3 is no longer located at the road
surface. ThenrP3 is used as a newrP1 and the calcula-
tions can be iterated until the accuracy is sufficient.

However, the iteration may also diverge depending
on the road surface, and the method has difficulties to
cross sharp edges. Thus this method is not suitable
when using e.g. meshed roads. Instead, the contact
point is calculated using the deformation of the tyre
from the previous time step. This allows the wheel
to travel over unevennesses without causing numerical
problems. Also a simple model that assumes a flat sur-
face can be used to speed up simulations when apro-
priate.

4.5 Contact patch filtering

In reality, the contact between the road and tyre is
spread over a patch about 1 dm2, depending on tyre
dimensions, pressure, load and cambering. The tyre
force models that are based on a contact point repre-
sentation all require that the actual patch is similar to
the test conditions when the tyre parameters were es-
timated. Different tyre pressure and load is normally
tested in a test rig and can thus be handled by the tyre
force model. However, when the road unevenes is sig-
nificant within the tyre patch range, these have to be
accounted for by some kind of filtering. In [5] a filter
is suggested that lets a set of solid ellipses travel over
the road profile and geometric calculations then give
a resulting road plane that is used for the tyre force
calculations.

This method is not implemented since it is be-
lieved to be very time consuming. Instead, a simpler
filtering is implemented based on either a rectangle or
a cross. Assuming that the contact patch can be rep-
resented by rectangle, then the resulting road plane is
calculated as:

k = ∑
i, j

ki, j

z=
1
k ∑

i, j

ki, jzi, j

∂z
∂x

=
1
k ∑

i, j

ki, j
zi, j −z

∆x

∂z
∂y

=
1
k ∑

i, j

ki, j
zi, j −z

∆y

(3)

whereki, j is a weight distribution. The number of eval-
uation arei · j−1. To speed up the calculation a cross
shape can be used instead reducing the number of eval-
uations toi + j−2.

4.6 Vertical dynamics

The vertical dynamics handles the load carrying task
of the tyre belt. Typically this is modelled as a spring-
damper with the exception that the tyre only generates
vertical force when in contact with the ground. In the
basic case, this is formulated as

contact = R < R_0;

In this case, there is contact as long as the distance be-
tween the wheel centre and the ground,R, is shorter

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003388

0 0.1 0.2

0

0.1

0.2

mass1.s mass2.s profile.s

Figure 3: The simpler model (dash-dotted red) and
the more advanced model (dashed blue) passing over
a road profile (solid green).

than the undeformed tyre radius,R 0. However this
assumes that the vertical dynamics of the tyre belt is
infinitely fast and leads to problem when the road sur-
face is uneven.

When the tyre dynamics needs to be considered
the following model is used

v = der(R);
v1 = -R1*c/d;
der(R1) = if (v < v1 and contact)

then v else v1;
contact = R1 >= R;

Here, an additional stateR1 is introduced to keep track
on the actual deformation of the tyre. This state is lim-
ited so that once the tyre is compressed, it can can-
not increase faster than the dynamics of the tyre. This
needed when travelling over a road surface with a sud-
den quick altitude decrease, i.e. a pot hole. This is il-
lustrated in Figure 3 where the two models are passing
over a road profile2. When passing the bump, the sim-
ple contact model fails to detect the loss of contact and
forces the tyre downwards in an unnatural way trace
2. The more advanced model consider the fast change
of the road plane which results in a better behaviour,
trace 1.

4.7 Road

The wheel models need information about the altitude
and the road surface condition at the tyre-road con-
tact. These should however be independent of the
wheel model and thus this road information is stored in
a separate model together with graphical information.
Since the road and the tyre exchange data, the standard

2The profile is exaggerated to make the difference appear
clearly.

way in Modelica would be to have a road component
which is connected to all wheels of a vehicle. This
would however result in a close coupling of vehicle
and road model. Instead theinner/outer Modelica
language constructs are used, that only requires that
the road model is defined at the top level of the vehicle
model.

Information about the road condition is normally
required once when generating tyre forces while
the altitude may be called several times by both
ContactPoint andContactPatch . Thus it must be
possible to call altitude and road condition separately
and to deal with this, a basic road is defined as:

partial model RoadBase
replaceable block Altitude = BaseXY;
replaceable block Condition = BaseXY;
parameter Integer nAltitudes=0;
parameter Integer nConditions=0;
Altitude altitude[nAltitudes];
Condition condition[nConditions];

end RoadBase;

Here, BaseXY is a block taking two inputsReal

x,y and returnsReal z . This can be used for both
altitude and road condition.

In the CommonVariables , a modelRoad is de-
fined as:

outer model Road = RoadBase;

A model can then be instantiated whenever needed in
the wheel model according to:

Road road(nAltitudes=n1, nConditions=n2);

giving a road containing vectorsaltitude and
condition with n1 andn2 elements, respectively. In
the top model, the desired road can be selected by set-
ting:

inner model Road = DesiredRoad;
Road road;

In this case, the actual road model in the instances
of the wheel isDesiredRoad , which easily can be
swapped to any other road extending theRoadBase

using theredeclare syntax.

4.8 Graphics

The Wheels library contains graphics that represents
the wheel as well as forces generated in the contact
point. The visualisation of the road is stored in the
road model described above.

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003389

5 Validation

The Magic Formula implementation has been vali-
dated using the magic formula tyre already imple-
mented in ADAMS/Car [8]. ADAMS/Car does not
have a convenient configuration method to let the user
decide tyre inputs like load, slip and camber, the easi-
est way to validate was to pick a full vehicle manoeu-
vre and export the slip, tyre load and camber angle for
each wheel and then use these values as input to the
Modelica model. Thus making sure that the same in-
puts generate the same output, Figure 4.

The chosen maneouvre is a break in turn, which
leads to both lateral and longitudinal slip. The braking
force was set high enough to cause lock up, in Figure 4
this happens att = 3s whenκ reaches -1.

The validation model is realised as an interface.
The variables unknown to the tested sub model are
provided by the test interface. These variables are set
as parameters or external inputs and are controlled by
the user.

6 Usage

The Wheels library allows the user to use wheel
models already implemented, to configure these and
to implement own models within the structure. All
wheel models extends an interface model, thus al-
lowing the use of thereplaceable syntax along
with choicesAllMatching , presenting all compati-
ble wheel models to the user. This makes it easier to
handle wheel model changes in a full vehicle model.
New models can be made and the structure makes
reuse of elements from models already implemented
intuitive and code effective.

The use of replaceable models makes it possible
to do most testing with two flexible models that can
be configured with drop-down boxes as illustrated in
Figure 5. In the first rig the wheel can be either free,
constrained or affected by forces or torques. Also the
test road and of course the tested wheel can also be ex-
changed in the same manner. The second rig is a mass
mounted on the wheel via a spring-damper, represent-
ing the suspension and the distributed body weight.
Since only one wheel is used, this is often referred to as
thequarter car model. Except for the vertical motion,
the rig can be controlled as previously mentioned.

Figure 6 shows an animation where a wheel is

Figure 5: Parameter with drop down-boxes showing
the available roads.

Figure 6: Animation view of tyre passing over a cleat.

used in a quarter car model. The model passes a cleat
located by the centre cone, the normal force vector
shows the tilt of the contact patch when the wheel as-
cends the cleat.

The CPU time required for different manoeuvres
and different tyre configurations is measured to give
an idea of the computational effort required. The ma-
neouvre simulated is a start from standstill with an
applied torque on the drive shaft. At timet = 4s,
when speed is gained, a ramp signal is applied turn-
ing the wheel around its vertical axis4o in 0.1s. At
time t ≈ 6.5s the wheel meets a slope that is reducing
the wheel’s speed until it stops at timet ≈ 7.2s and
starts rolling back down, reaching the flat surface at
time t ≈ 7.7s.

The CPU time required for this maneouvre at a
1.5GHz Pentium4 with 512Mb ram is measured and
presented in Figure 7. The models compared are
Magic Formula user modes 14 (MF UM14) and 4 (MF
UM4) as well as a modified user mode 14 with a sim-
pler transient slip model. The Rill model is also com-
pared to these.

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003390

0 0.5 1 1.5 2 2.5 3 [s]
-1.5

-1

-0.5

0

0.5

1

1.5
alpha [rad] kappa [-] gamma [degrees]

0 0.5 1 1.5 2 2.5 3 [s]
-1.5

-1

-0.5

0

0.5

1

1.5
alpha [rad] kappa [-] gamma [degrees]

0 0.5 1 1.5 2 2.5 3 [s]
2000

2400

2800

3200

3600
Fz [N]

0 0.5 1 1.5 2 2.5 3 [s]
2000

2400

2800

3200

3600
Fz [N]

0 0.5 1 1.5 2 2.5 3 [s]
1000

1200

1400

1600

1800

2000

2200

2400

2600
Fy_ADAMS [N] Fy [N]

0 0.5 1 1.5 2 2.5 3 [s]
1000

1200

1400

1600

1800

2000

2200

2400

2600
Fy_ADAMS [N] Fy [N]

0 0.5 1 1.5 2 2.5 3 [s]
-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500
1000

Fx_ADAMS [N] Fx [N]

0 0.5 1 1.5 2 2.5 3 [s]
-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500
1000

Fx_ADAMS [N] Fx [N]

0 0.5 1 1.5 2 2.5 3 [s]
-2E4

-1.5E4

-1E4

-5000

0

5000

1E4
Mz_ADAMS [Nm] Mz [Nm]

0 0.5 1 1.5 2 2.5 3 [s]
-2E4

-1.5E4

-1E4

-5000

0

5000

1E4
Mz_ADAMS [Nm] Mz [Nm]

Figure 4: Validation plots comparing the result from theWheels library and the ADAMS output.

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003391

0 2.5 5 7.5 10 [s]

0

1

2

3

4

5

6
MF UM14 [s] Rill (transient) [s] MF UM14 modified [s] MF UM4 [s]

Figure 7: CPU time for different tyre models.

Figure 7 shows that UM14 requires a significantly
more computational effort compared to UM4. The
extra computing effort origins from the transient slip
model implemented in UM14. The modified UM4
has a transient behavior modelled as a first order fil-
ter with coefficients only depending on wheel spin ve-
locity. This model lacks physical characteristics that
UM14 features such as relaxation length and load de-
pendance. However the modified UM14 model is ca-
pable of starting from standstill which is not possible
with a steady state model a the computional effort is
on par with the original UM4. A disturbance to the
UM14 models seems to oscillate for a longer period
of time than other models like Rill. Besselink [5] has
proposed a damping term that may address this issue.

7 Conclusions

TheWheels contain ready-to-use tyre models as well
as components that can be used to design own mod-
els. The modular structure makes it easy to reconfigure
existing models and to reuse code when adding new
functionality.

Compared to the previous version of the library,
the models are further validated and new function-
alities are implemented such as a better vertical be-
haviour and ability to handle uneven roads. Addi-
tionally, interfaces to the newMultiBody library are
added.

8 Acknowledgements

This work has been funded by KTH Vehicle Dy-
namics and the Driving Dynamics project within the
Swedish National Research Programme ”The Green
Vehicle/FCHEV”. The authors would also like to
thank Martin Otter and Hans Olsson for valuable sup-
port.

References

[1] J. Andreasson and J. Jarlmark. Modularised Tyre
Modelling in Modelica. In Peter Fritzson, edi-
tor, Proceedings of the 2nd International Model-
ica Conference, Oberpfaffenhofen, March 2002.
The Modelica Association and Deutches Zentrum
für Luft- und Raumfahrt.

[2] J. Andreasson. Vehicledynamics library. In
Peter Fritzson, editor,Proceedings of the 3rd
International Modelica Conference, Linköping,
November 2003. The Modelica Association and
Linköping University.

[3] M. Otter, H. Elmqvist, and S.E. Mattson. The new
Modelica MultiBody library. In Peter Fritzson, ed-
itor, Proceedings of the 3rd International Model-
ica Conference, Linköping, November 2003. The
Modelica Association and Link̈oping University.

[4] E. Bakker, H.B. Pacejka, and L. Lidner. A new
tire model with application in vehicle dynamics
studies. SAE transactions, paper 890087, pages
83–93, 1989.

[5] H.B. Pacejka.Tyre and vehicle dynamics. Butter-
worth Heinemann, 2002.

[6] G. Rill. Simulation von Kraftfahrzeugen. Vieweg,
1994.

[7] J. Andreasson, A. M̈oller, and M. Otter. Modeling
of a racing car with Modelicas MultiBody library.
In Peter Fritzson, editor,Proceedings of the Mod-
elica’2000 Workshop, Lund, October 2000. The
Modelica Association and Lund University.

[8] ADAMS, Mechanical Dynamics Inc.
http://www.adams.com/.

 Mats Beckman and Johan Andreasson Wheel model library for use in vehicle dynamics studies

 The Modelica Association Modelica 2003, November 3-4, 2003392

MODELICA LIBRARY FOR SIMULATING ENERGY
CONSUMPTION OF AUXILIARY UNITS IN HEAVY VEHICLES1

 Niklas Petterssona,b Karl Henrik Johanssonb

aScania CV AB
bDepartment of Signals, Sensors & System, Royal Institute of Technology

aScania CV AB, 151 87 Södertälje, Sweden
bOsquldasväg 10, 100 44 Stockholm, Sweden
niklas.pettersson@scania.se, kallej@s3.kth.se

Abstract
Models that can be used to analyse the fuel
consumption of auxiliary units in heavy vehicles are
presented. With the purpose of evaluating the
influence from various drive concepts and control
principals, a model library is developed in the
modelling language Modelica. The library contains
a mixture of models developed from physical
principles and models fitted to collected data.
Modelling of the cooling system is described in
some detail. Simulation results are compared with
measurement data from tests in a wind tunnel.

1 Introduction
This paper presents the work of developing vehicle
models that can be used to evaluate alternative
architectures for the drive of auxiliary units in heavy
vehicles. With aid of the simulation models, the
energy savings of new designs can be assessed,
(Pettersson and Johansson, 2004). Here the ideas
behind development and maintenance of a
comprehensive model library are presented. The
Modelica language is used to build models with a
modular structure. Figure 1 shows composition of
the model at the highest level. A more extensive
version of the paper can be found in (Pettersson and
Johansson, 2003).

In the simulations, the vehicle is set to drive a road
with varying topology and speed limit that have
been obtained from recordings of real roads. The
vehicle is assumed to run on cruise control and with
computer-controlled gear shifting (automated
manual transmission). Algorithms from the
production version of the control are incorporated in
the simulation model. The vehicle model has been
validated with respect to the energy consumption of

1 This work is supported by Scania CV AB and Vinnova

Fig 1. Modules of the simulation model.

the combustion engine and losses such as rolling
resistance and air drag, (Sandberg, 2001). Influences
from the, sub-systems, the cooling system, and the
electrical network, were only included as a lumped
effect on the net fuel consumption. This work
refines the description of the auxiliary units. The
paper describes the modelling of the cooling system
in some detail. Sub-models are built from physical
principles, resulting in grey-box models with
parameters identified from various tests in a
laboratory environment.

The sub-models are assembled into a model of the
complete vehicle. Measurements collected from
tests in a wind tunnel are used to tune the
performance of the total model. Validation data is
recorded from a dynamic driving cycle in the wind
tunnel.

 Niklas Pettersson, Karl Henrik Johansson ...Simulating Energy Consumption of Auxiliary Units in Heavy Vehicles

 The Modelica Association Modelica 2003, November 3-4, 2003393

mailto:niklas.pettersson@scania.se
mailto:kallej@s3.kth.se

A A

SML

Interfaces Components Modules Examples

Engine

Transmission

Axle

EngineComp

Transmission

CAN protocols

CoolingSystemCoolingCompControl

Media

A A

SML

Interfaces Components Modules Examples

Engine

Transmission

Axle

EngineComp

Transmission

CAN protocols

CoolingSystemCoolingCompControl

Media

Fig. 2. Structure of the Scania Modelica Library.

SML

Components Modules

CoolingSystemCoolingComp

Pump

ParameterSet

Radiator

ParameterSet

PumpD12Param

RadPcabParam

Parameters CoolPcabD12

Pump

PumpD12Param

Radiator

RadPcabParam

Examples

SML

Components Modules

CoolingSystemCoolingComp

Pump

ParameterSet

Radiator

ParameterSet

PumpD12Param

RadPcabParam

Parameters CoolPcabD12

Pump

PumpD12Param

Radiator

RadPcabParam

Examples

 2 Model library
Fig. 3. Parameterisation of the model exemplified

with the cooling module. The library is developed in Modelica, (Modelica
Association, 2000). Modelica is well suited to
describe behaviour of complex systems containing
parts from different engineering disciplines, e.g.,
mechanics and electronics.

interfaces that can be used to for simulations with
various purposes. In the last branch a number of
working examples is built that can be used directly
for simulations.

In contrast to the Modelica Standard Library, the
library is not organised in different engineering
disciplines. Instead it is organised after the parts of
the truck. The library, named Scania Modelica
Library, SML, consist of four main branches:

Figure 3 illustrate how the models are parameterised
to obtain modules that correspond to physical
modules. Each component contains a placeholder
for a set of parameters of a defined structure.
Parameter sets with values describing various
versions of the components are gathered in special
sub-libraries. When modules are put together,
illustrated with the cooling module, the generic
placeholders are replaced with the parameter set of
the current versions of components. With this
procedure, numerous variants of aggregated
modules can be compiled from a small number of
basic components and parameter sets.

1. Interfaces
2. Components
3. Modules
4. Examples

The principal structure of the library can be viewed
in figure 2.

The Interface branch contains classes describing
connections between model components. Although
the library relies heavily on connector classes
defined in the Modelica Standard Library, some
unique connectors are defined. One example is the
CAN connector, used to mimic the information flow
between control units in the truck. Further, under the
Interfaces sub-library Media, base classes for
thermodynamic and hydraulic models are found.
These base classes are mainly used in models of
components in the cooling system. In the
thermodynamic and hydraulic base classes many of
the modelling ideas used are adopted from Modelica
library ThermoFluid developed by Thummescheit,
et al. (2000). However, here a somewhat simpler
structure and less extensive description of media
properties are used. In the Components branch
models of all physical parts needed to build up the
complete model of a truck are gathered. Modules,
in the next branch, are a higher level of abstraction,
and contain more compound models. The idea is to
define a set of generic modules with well-defined

3 Cooling system module
The cooling system is one of the modules of the
vehicle model. Energy consumers in the cooling
system are primarily the cooling fan and the water
pump.

Re
ta

rd
er

Ra
di

at
or

Ch
ar

ge
 a

ir
co

ol
er

Pump

Fan

Fan
clutch

T

A
ir

ou
tle

t

A
ir

in
ta

ke

En
gi

ne
co

m
pa

rtm
en

t

Engine

Thermostat

coolant
air
heat

Re
ta

rd
er

Re
ta

rd
er

Ra
di

at
or

Ch
ar

ge
 a

ir
co

ol
er

Pump

Fan

Fan
clutch

T

A
ir

ou
tle

t

A
ir

in
ta

ke

En
gi

ne
co

m
pa

rtm
en

t

EngineEngine

Thermostat

coolant
air
heat

coolant
air
heat

Fig. 4. Components in the cooling system module.

 Niklas Pettersson, Karl Henrik Johansson ...Simulating Energy Consumption of Auxiliary Units in Heavy Vehicles

 The Modelica Association Modelica 2003, November 3-4, 2003394

In heavy vehicles, these units normally are
mechanically driven. The model corresponds to the
current design of a Scania truck where the water
pump is directly driven from the crankshaft while
the cooling fan is connected to the shaft via a
viscous clutch enabling a passive speed control.
However, the basic structure allows for changing the
model to describe other ways of driving and
controlling these auxiliaries.

3.1 Cooling system components

The main parts of the cooling system are modelled,
using the thermodynamic and hydraulic base
classes. In figure 4 the structure of the cooling
system is depicted. The model mainly consists of
two adjoining flows of mass and energy: the flow of
coolant fluid and the airflow.

The pump drives the flow of coolant fluid through
the engine and the retarder. The retarder is a
hydraulic brake mounted on the secondary side of
the gearbox. When used to brake the vehicle, it
produces heat that is emitted to the cooling system.
The temperature of the coolant is controlled with the
thermostat by splitting up the coolant flow into one
part passing the radiator and one part flowing in a
by-pass pipe. The air enters the cooling system in
the air intake at the front of the truck cab and exits
at the air outlet at the rear. The airflow is partly
driven by the fan and partly by the pressure build up
caused by the wind speed at the intake and outlet.
The air is used to cool down both the turbo charged
intake air to the engine, and the coolant fluid. The
charge air cooler, or intercooler, and the radiator are
connected in series so that the cooling air first
passes the charge air cooler and then the radiator.
Both charge air cooler and the radiator is cross
directional heat exchangers, i.e., the hot and cool
media streams are perpendicular to each other.

The models of the coolant and the air streams are
built up with alternating control volumes and flow
models. In the control volumes, mass and energy
balances are defined, while in the flow models,
relations between the pressure drop and the flow are
determined. The control volumes describe the
dynamic behaviour and are parameterised purely
with geometrical quantities and properties of the
contained media. The flow models describe pressure
drops, heat transfer and consumed power based on
empirical relations. No explicit identification of the
parameters of the control volumes is needed, since
they could be found in the technical specification of

the components: The parameters of the flow models,
however, typically have to be estimated from
experimental data.

3.2 Dynamics of the cooling system

For the control volumes it is possible to select which
state representation that should be used. The
transformation of state variables from the primary
mass and energy balances to the selected states is
dependent on the properties of the media inside the
volume. The modelling of the control volumes is
rather standard. Here it essentially follows the
principles used in ThermoFluid (Tummescheit et al.
2000).

For the airflow, pressure, p, and temperature, T, are
chosen as state variables. The transformed balance
equations then become

)1(
mVT

T
Vp

p
V

UT
T
ump

p
um

&&&&

&&&

=+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

ρρρ

Here and denote the net flow of energy and
mass into the control volume while m and V are the
mass trapped in the volume and the size of the
volume, respectively. Additionally, the air is
regarded as an ideal gas yielding the following
expressions for the density, ρ, and the partial
derivatives in equation (1)

U& m&

)2(

,

,0

2RT
pM

T
c

T
u

TR
M

pp
u

TR
pM

v −=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=

ρ

ρ

ρ

where M denotes the molar mass and cv the specific
heat capacity at constant volume, respectively, while
R is the molar gas constant.

Similar expressions are used for the state derivatives
of the coolant media, although only the temperature
is chosen as state variable. The pressure of the
coolant is determined purely from static hydraulic
relationships.

 Niklas Pettersson, Karl Henrik Johansson ...Simulating Energy Consumption of Auxiliary Units in Heavy Vehicles

 The Modelica Association Modelica 2003, November 3-4, 2003395

3.3 Parameters of the flow models Table 1 Summary of model components in the
cooling module.

For the airflow, pressure drops in the components
along the flow path are modelled as an exponential
friction loss

)3(|| emqcp &=∆

The frictional pressure losses in the components
coolant path is modelled with a second order
polynomial

)4(|| 12 qcqqcp +=∆

The pressure rise in the pump and the fan depend on
the flow through the components and the angular
velocity of the shaft. In the model the following
equations are used to describe the operation of the
pump and the fan, respectively

)5(||2|| 321 qqRqRRp −+=∆ ωωω

)6(||2|| 321 mqRmRRp && −+=∆ ωωωρ

In equation (3)–(6), q and denotes volume flow
rate and mass flow rate, respectively, while ω
denotes the angular velocity of the pump or the fan.

m&

The wind speed gives rise to a differential pressure
at the air intake and outlet relative the ambient
pressure. In the model, the pressure difference
depends on the wind speed, v, the air density, ρ, and
the non-dimensional coefficient CD according to

)7(
2

2vCDp ρ
=∆

In order to find the parameter values of the sub-
models, experimental data is collected from tests on
individual components in a laboratory environment.
Essentially parameters of equation (3)–(7) and other
characteristics are identified for each component
depicted in the overview of the cooling module in
figure 4. Table 1 summarises which parameters that
are identified and what data that are used.

Component Characteristic Data
source

Slack

- Pressure rise Rig test s Pump
- Power
consumption

Rig test

- Flow
resistance

Rig test

- Heat
capacitance

Data
sheet

s

- Heat emission
to coolant

Rig test

Engine

- Heat emission
from charge
air

Rig test

- Flow
resistance

Rig test

- Heat
capacitance

Data
sheet

s

Retarder

- Heat emission None
- Opening
characteristic

Rig test

- Flow
resistance

Rig test

Thermostat

- Dynamic
response

Rig test

- Flow
resistance
coolant

Rig test

- Flow
resistance air

Rig test

- Operating
characteristics

Rig test

Radiator

- Heat
capacitance

Data
sheet

Air intake - Pressure
build-up

None s

Charge air
cooler

- Flow
resistance

Rig test s

- Pressure rise Rig test Fan
- Power
consumption

Rig test

Fan clutch - Slip
characteristics

Rig test

Engine
compartment

- Flow
resistance

Rig test

Air outlet - Pressure
build-up

None s

Input from other parts of the total model is primarily
heat losses that need to be cooled away. The engine
emits heat to the cooling system both directly into
the engine block, which is heated up by the
combustion, and through the cooling of the charge
air. The amount of heat depends on the current
torque and speed of the engine.

 Niklas Pettersson, Karl Henrik Johansson ...Simulating Energy Consumption of Auxiliary Units in Heavy Vehicles

 The Modelica Association Modelica 2003, November 3-4, 2003396

4 Assembling the total model In the model this is calculated from a look-up table.
The table is obtained from measurements done in
test cells. The heat emitted to the cooling system
from the retarder is directly proportional to the
braking power. In some sub-models, the parameters
solely represent basic quantities such as mass or
volume that are found from the data sheet of the
corresponding component. The tests are performed
in the laboratory under well-controlled conditions.
As a result the obtained prediction errors are very
small as can be seen by the example in figure 5,
showing the pressure drops in the airflow path.

0 1 2 3 4 5 6 7
0

100

200

300

400

500

600

700

800

900

Mass flow [kg/s]

P
re

ss
ur

e
[P

a]

The modelling errors in the sub-models are very
small. However, when they are assembled to a full
model, effects that are not handled in the sub-
models may play an important role. It may be
effects from the installation the truck cab such as the
piping between the components. Non-linearities
may amplify small errors in the sub-models when
these are connected and new feedback paths are
closed. It can be shown, using a simplified model of
the cooling system, that the change of temperature
of the coolant in steady state due to a small
perturbation of the airflow is proportional to the
squared inverse of the airflow. Thus, the simulated
temperature will be very sensitive to modelling
errors influencing the airflow. Further, for the
pressure build-up due to the wind speed there exists
no practicable experiment on a component level.
Therefore, the result of the total model is verified
through comparison with experimental data
collected in a wind tunnel. In the wind tunnel, the
vehicle is driven on a dynamometer with a defined
load and speed of the engine. Fans are used to
simulate the wind speed. Results from nine steady-
state tests and two step-response tests are used to
tune the model parameters. A number of the
parameters in the sub-models are assigned as slack
parameters that are adjusted to fit the behaviour of
the total model to the measurements. In table 1 the
choice of slack parameters is indicated in the last
column. In figures 6 and 7 the cooling temperature
obtained with the tuned model are compared with
measurements.

0 500 1000 1500 2000
40

45

50

55

60

65

70

75

80

Time [s]

Te
m

pe
ra

tu
re

, c
oo

la
nt

 [d
eg

 C
]

Fig. 5. Pressure drop as a function of airflow for the
charge air cooler model (solid) compared with
measurements (stars). Corresponding drops
for radiator (dashed and triangles), and engine
compartment (dash-dotted and circles).
Pressure rise of the fan model (dotted) at 1400
rpm compared with measurements (squares).

1100 1200 1300 1400 1500 1600 1700
76

78

80

82

84

86

88

90

92

Engine speed [rpm]

Te
m

pe
ra

tu
re

, c
oo

la
nt

 [d
eg

 C
]

Fig. 6. Simulated temperature of the coolant in

steady state at 80 km/h with full load and
different speeds on the engine (solid)
compared with measurements (stars).
Corresponding at 60 km/h (dashed and
triangles) and at 40 km/h (dash-dotted and
circles).

Fig. 7. Simulated response of the coolant
temperature on a step in the engine load at 60
km/h with engine speed 1400 rpm (dashed),
compared with measurements (triangles).
Corresponding at 40 km/h (dash-dotted and
circles).

 Niklas Pettersson, Karl Henrik Johansson ...Simulating Energy Consumption of Auxiliary Units in Heavy Vehicles

 The Modelica Association Modelica 2003, November 3-4, 2003397

Validation of the total model is performed. Data is
recorded during a dynamic drive cycle in the wind
tunnel, where the load and speed of the
dynamometer is programmed to follow a cycle
corresponding to a specified road. In figure 8 the
simulation result is compared with measurements
where the dynamometer follows the profile of a
57 km section of the road between the cities
Koblenz and Trier in Germany. The validation
shows that the model is capable to capture the main
dynamics of the cooling system while it does not
describe the small oscillations observed in the
measurements. The oscillations around 80º C most
likely have its origin in the complex dynamics of the
thermostat. The model of the thermostat is a rather
rough approximation and do not give raise to
corresponding oscillations around the opening
temperature. Despite the observed differences, the
model should be sufficient to evaluate the energy
consumption of the auxiliary units in the cooling
system.

REFERENCES
Modelica Association, (2002). ModelicaTM - A

Unified Object-Oriented Language for Physical
Systems Modeling. Language Specification
Ver2.0. http://www.modelica.org/, 2002.

Petterson, N., Johansson K. H., (2003). Simulating

energy consumption of auxiliary units in heavy
vehicles. Proceedings of 13th IFAC Symposium
on System Identification.

Petterson, N., Johansson K. H., (2004). Optimal

control of the cooling system in heavy vehicles.
Proceedings of IFAC Symposium on Advances
in Automotive Control.

Sandberg, T., (2001). Heavy Truck Modeling for

Fuel Consumption Simulations and
Measurements. Licentiate thesis, department of
Electrical Engineering, Linköping University
Sweden.

0 500 1000 1500 2000
75

80

85

90

95

100

105

Time [s]

Te
m

pe
ra

tu
re

, c
oo

la
nt

 [d
eg

 C
]

Tummesheit, H., Eborn J. and Wagner FJ., (2000).

Development of a Modelica Base Library for
Modeling of ThermoHydraulic Systems.
Proceedings of Modelica Conference 2000.

Fig. 8. Simulated coolant temperature (solid) during
a dynamic driving cycle compared with
measurements (dotted).

 Niklas Pettersson, Karl Henrik Johansson ...Simulating Energy Consumption of Auxiliary Units in Heavy Vehicles

 The Modelica Association Modelica 2003, November 3-4, 2003398

http://www.modelica.org/

 The Modelica Association Modelica 2003, November 3-4, 2003

Session 9B
Tools - II

399

 The Modelica Association Modelica 2003, November 3-4, 2003

400

Approximation of black-box system models in Matlab with
direct application in Modelica

Wim Lammen, Jos Vankan, Robert Maas and Johan Kos

National Aerospace Laboratory NLR
P.O. Box 90502, 1006 BM Amsterdam, The Netherlands

email: lammen@nlr.nl

Abstract

Modelica provides a hierarchical and object oriented
approach for the modelling of dynamic systems. A
system can relatively easily be composed by
connecting a number of sub-system and component
models together. The resulting integrated system
model can be used in design and optimisation
studies. The physical behaviour as defined in the
sub-system and component models is a key
determinant for the system behaviour. Therefore it is
of importance that this physical behaviour is
adequately modelled. It may however occur that
some component models are, for various reasons,
represented by no more than a data set of
computational or experimental results of the
component behaviour. If the precise physical basis
for the behaviour of such components is not known
or deliberately not taken into account, their
behaviour can be considered as a "black-box" input-
output relation. In such cases a black-box modelling
approach is useful.

This paper describes a generic modelling approach
based on approximation methods and applicable for
black-box type models in Modelica. Various
approximation techniques including polynomial
methods, splines, neural networks and kriging
models, are applied from a Matlab based graphical
software tool with an automatic interface to
Modelica. The complete process of model
approximation and incorporation into Modelica
system models is described and illustrated with a
case study.

1. Introduction

Numerical simulation of physical processes and
optimisation of design objectives are commonly
used in system design. Modelica is a powerful
object oriented modelling language for hierarchical
definition of dynamic systems [1]. Modelica system

models usually consist of more than one "lower
level" system models, resulting in a hierarchically
integrated model that is suitable for system design
studies. These lower level system models are
divided into sub-system models and component
models, where a component model is assumed to
contain no lower level system models, and a sub-
system model is assumed to consist of two or more
component models or other sub-system models.

The physical behaviour of the sub-systems and
components is a key determinant for the system
behaviour. Therefore it is of importance that this
physical behaviour is adequately modelled, both
with respect to the component behaviour and with
respect to system behaviour. Sometimes the model
of the physical behaviour of a (sub-)system or
component may be too complex to be simulated
efficiently within the constraints of the integrated
system model. Within such a system model one or a
few component models of extreme complexity may
exist among several relatively simple component
models, resulting in an undesirable and unbalanced
system model.

Alternatively, in collaborative development projects
as for example the EU project POA (Power
Optimised Aircraft) [2], sub-system or component
information may be supplied from one to another
company and therefore proprietary constraints may
prevent the use of detailed models of the physical
behaviour of sub-systems or components. It may
occur that some component models are, for
example, represented by no more than a table with
measurement results of the component behaviour.

In such situations a modelling approach based on
alternative system representations is useful. Generic
representations based on approximate models can
then be applied to sub-system or component
behaviour. Different approximate modelling
approaches can be distinguished. For example an

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003401

implementation in Modelica of an approach to
system identification, where the focus is on
estimation of coefficients of the differential-
algebraic equations (DAEs) of the time dependent
sub-system or component behaviour, is described in
[3]. The approach described in the present paper
focuses on approximation based on steady-state sub-
system or component behaviour.

The steady-state sub-system or component
behaviour is assumed to be available as
representative data sets, without the detailed
mathematical models. These data sets, which
represent the underlying system behaviour, may for
example arise from series of complex system
simulations (e.g. [4]) or physical experiments. If
validation or optimisation of the integrated system is
considered and consequently large numbers of
system evaluations are typically required,
approximate representations of the behaviour of the
complex sub-systems and components can provide
good possibilities for efficient evaluation at low
computational cost and with adequate accuracy in
Modelica.

Different methodologies are available for efficient
approximate representation of system behaviour that
is given by data sets. Matlab [5] provides a number
of standard functions and toolboxes for
approximation and curve fitting, such as the Spline,
Curve Fitting and Neural Networks toolboxes, and
in addition some other more specific Matlab
programs are available, for example with an
implementation of the kriging method [11]. In this
study a number of these methods are investigated
and applied to system simulations in Modelica.

This paper describes and illustrates the development
of approximate models in Matlab and their
application in Modelica system models. It starts out
from data sets representing (sub-)system or
component behaviour, which are approximated
using a Matlab based tool called MultiFit [6]. An
approximate model that has been generated with this
tool can be automatically translated into Modelica
code. This code can then be incorporated in a
Modelica systems model. This complete process is
described and illustrated with an example
application of a standard engine model.

2. Approximation methods

A large variety of methods and tools is available for
approximating system behaviour that is given by

data sets. We limit this study to black-box type
systems with one or more inputs and outputs. The
most relevant approximation methods for such
systems are considered and implemented in a
generic Matlab based software tool. This tool,
named MultiFit and developed by NLR, has been
used in previous studies on approximate models of
aircraft systems [4][6]. The tool provides a generic
and intuitive graphical user interface (GUI) to
approximation methods based on polynomial
functions (in this case the approximation method is
commonly referred to as response surface method
[7]), splines [8], neural networks [9] and kriging
models [10]. NLR has enhanced the MultiFit tool
with the facility to automatically export approximate
models from Matlab to Modelica code, see Figure 1.

Figure 1 Process diagram of the creation and
incorporation of an approximate model into
a Modelica system model.

In the approximation tool MultiFit a set of efficient
methodologies for approximate representation of
data sets has been implemented. The tool makes use
of a number of Matlab functions and toolboxes,
such as the Neural Network toolbox [5], and other
more specific Matlab programs like the DACE
program [11] for the kriging method [10] for
approximation. The output data that have to be
approximated are identified by the variable y, are
assumed to be scalar and depend on a vector x of n
independent variables. The approximation is
performed by fitting an approximate model, based
on a specific approximation method, to a given data
set {(xi ,yi), i= 1,2,…,m }, which is referred to as
training data set. As such this training data set
consists of the discrete samples yi at input values xi

and represents the real system. Let the

approximation be defined as =fˆ(x), where x∈ n

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003402

and y, ∈ . The approximation error is expressed as
= y- and is measured in a set of x-data points,

which is also referred to as validation data set. The
quality of the approximation model depends on the
achieved accuracy, expressed in terms of the error
by for example the root mean square error (RMSE).
A brief description of the approximation methods
used in MultiFit is the following:

1. Polynomials: A polynomial function in x is
fitted to the data set using a standard least-
squares regression technique. The order of the
polynomial can be varied between 2 and 6.

2. Splines: Cubic Splines, provided in MultiFit are
piecewise smooth polynomial approximations to
the data. Both interpolating and smoothing
cubic splines as available from Matlab (csapi
and csaps) can be called from MultiFit.

3. Artificial Neural Networks (ANNs): The ANN-
type provided in MultiFit is a feed-forward
ANN with one hidden layer. The number of
hidden nodes is automatically determined within
an interval supplied by the user, such that the
approximation is optimised.

4. Kriging models: The kriging method is based on

the formula = fˆ(x)+ ê(x), where fˆ(x) is a
polynomial regression function and a model of
the deviation of the regression function ê(x),
which is stochastic with non-zero covariance
[10]. In MultiFit kriging interpolation methods
are used with a combination of a polynomial
regression function of order zero, one or two,
and an error model function based on a
Gaussian, exponential or cubic spline
correlation function, as in [11].

3. The MultiFit GUI

An example of the MultiFit GUI is given in Figure
2. As an illustration of the GUI functionality here a
very basic example of a 4th order polynomial fit to a
one-dimensional sinusoidal data set of 101 points is
represented. The GUI directly presents to the user
the data set (in a 2D or 3D plot) that is selected for
the fit and the available approximation methods for
which the user can make appropriate selections from
dynamically generated pop-up menus.

An approximation method that is the best for one
data set is not always suitable for another data set.
Therefore MultiFit provides an automatic
approximation assessment based on RMSE values
that gives information about the quality of the fit of

the different methods (Figure 3). This way it is
possible to select the optimal fit for a given data set.

Figure 2 Example of the MultiFit GUI with a 4th

order polynomial fit to a sinusoidal data set
(upper graph in the GUI) and the
approximation error (lower graph).

Figure 3 Assessment of fits on a data set using all
available approximation methods.

4. Translation to Modelica

MultiFit takes advantage of existing MATLAB
approximation functionality. Therefore the process
of fitting takes place in MATLAB. A fit result is a
function (the approximation function), which can be
represented in Modelica format. MultiFit has a
functionality that facilitates automatic translation of
the resulting approximation function to Modelica

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003403

code, which can be easily called from the MultiFit
file menu (Figure 4).

Figure 4 The MultiFit GUI offers easy automatic
transfer of approximation models to
Modelica, directly from the file menu.

The process is as follows: After an approximation
method has been satisfactorily fitted to a data set
with MultiFit, this approximation function can be
translated to Modelica with the MultiFit export
facility. The actual translation is achieved by literal
translation of the Matlab expression of the
approximation function to Modelica syntax. All the
relations between inputs and outputs are explicitly
translated with highly accurate export of all real
valued parameters.

The exact interfaces of the approximate model in the
Modelica environment are not known beforehand.
Therefore a modular representation of the
approximation code is required. The approximation
function is written in a separate Modelica source file
as a Modelica function (e.g. sin_poly4 in Figure 5)
with the approximation function expression
included as a Modelica algorithm.

Figure 5 Example of the Modelica source code of a
4th order polynomial approximation of a 1-D
sinus function as translated from Matlab to
Modelica by MultiFit.

The Modelica approximation function can be
included in a component model by inserting an
equation of the type y=<functionname>(x) (e.g.
y=sin_poly4(x)) in the Modelica code of the
component model that should be approximated. In
this way several approximation modules can be used
to fit a sinus function.

To illustrate the use of the approximated sinus
functions in Modelica, these approximate functions
are evaluated in Dymola [12] and compared to the
exact Modelica sinus function. In Figure 6 the
overall Modelica model is shown, which simulates a
sinusoidal signal as a function of time and calls four
different approximation functions (4th order
polynomial, smoothing spline, ANN and kriging
with constant regression and Gaussian correlation)
that were automatically generated from MultiFit
using the sinusoidal data set of 101 data points as
was shown in Figure 2.

Figure 6 Modelica model with multiple modules to
approximate a sinus function.

Figure 7 illustrates the fit results compared to the
Modelica sinus signal and confirms the MultiFit
information that the polynomial fit has a relatively
large approximation error, compared to the other
methods.

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003404

Figure 7 Dymosim simulation results with sinus
approximations by (from top to bottom) 4th

order polynomial, kriging (constant
regression Gauss corr.), ANN, smoothing
spline.

5. Verification of the translation to
Modelica

To illustrate the translation process and demonstrate
the validity of the result, a small verification study
of the translation from Matlab to Modelica of all the
MultiFit approximation methods is presented. In
order to investigate the validity of the translation
process not just in a theoretical case with a data set
based on some analytical function, a more realistic
case is considered where the data set is based on a
numerical experiment of the behaviour of an aircraft
air-conditioning system. This experiment is based
on samples of the local temperature in the aircraft
cabin as predicted by CFD simulations, as a
function of different settings of the air-conditioning
system in terms of inflow temperature and velocity
[4], see Figure 8. This data set consists of 121 data
points, each of which with a scalar output value
(i.e., cabin temperature value).

Figure 8 Example data set of local cabin temperature
as a function of inflow temperature and
velocity, obtained from aircraft cabin CFD
simulations

This verification intends to assess the validity and
accuracy of the translation process as follows: the
approximation methods are first fitted to the data set
with MultiFit. Then all the resulting approximation
functions are translated to Modelica with the
MultiFit export facility. The resulting Modelica
code then contains the mathematical expressions of
the approximation functions, which should be
identical to the expressions in Matlab. It should be
noted that in the translation process all real values
(of parameters etc.) are exported in %.16e format in
order to avoid any truncation errors.

The different approximation functions are stored in
different Modelica function objects and are called
from one single Modelica model object shown in
Figure 9. Then the Modelica approximation
functions are compiled in Dymola and the resulting
dymosim executable is evaluated in a test set of
input points (i.e. x-values). In this verification study
this test set consists of the training data set that was
used to create the approximation functions in
MultiFit. Then the resulting output values of the
approximation functions are transferred back to
Matlab (again in %.16e format) and compared to the
output values of the original approximation
functions in Matlab. For each approximation
function, the maximum value of the difference
between Modelica and Matlab output arrays is
considered and shown in Figure 10.

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003405

Figure 9 Example of the Modelica model that calls
all the approximation functions that have
been translated to Modelica.

Figure 10 Histogram plot of the maximum difference
values for each approximation method.

The differences shown in Figure 10 are, as expected,
not far from machine precision (~10-16) for most of
the fits. However, some of the fits, in particular the
higher order polynomial and some of the kriging
models, have much larger differences between the
Matlab and Modelica computations (up to ~10-10).
For the polynomials this effect is due to the rather
large x-values (temperatures of up to 35 oC) that
exist in the considered data set and give very large
values in the polynomial arithmetic (i.e., up to 356

~= 1.8 109 in the 6th order polynomial) that amplify
the possible difference in the exported parameter
values. It should be noted that the polynomials have

been implemented in a straightforward way, without
the re-scaling of variables.

For the kriging models the differences between the
Matlab and Modelica computationsare due to the
very large values of some of the coefficients and
arithmetic operations in the approximation functions
in these cases. In particular in the kriging models
with exponential and Gaussian correlation functions
(fits 9, 11, 12, 14, 15 and 17) coefficients of order
103 and 104 occur.

The following can be concluded from this
verification study. The accuracy of the translation is
very high, as is shown for the realistic case in this
section. Machine precision is not achieved for the
maximum values of the differences between the fits
in Matlab and Modelica but the discrepancies
between the fits can be explained, as shown in the
above example. Moreover, these differences are
negligible when compared to the errors (e.g.,
RMSE) of the approximation functions (both in
Matlab and in Modelica) in validation data points,
which are in the orders of 10-1 to 10-3.

6. Application example

As explained in the introduction of this paper, the
reasons for applying approximate models of (sub-)
system or component behaviour are various. In this
section we will consider the case where a sub-
system model is available in Matlab/Simulink and
has to be integrated into a system model in
Modelica because of the ease of multi-physical
modelling and sub-system model integration in
Modelica. However, the effort of translating the
complete model of the physical behaviour as
implemented in the Matlab/Simulink model into
Modelica code is not intended and therefore an
approximate modelling approach is applied.

Figure 11 shows a Matlab/Simulink [5]
demonstration model of a combustion engine.
Although this is a relatively simple representation of
an engine, the emphasis is on the fact that the
steady-state behaviour of this model can be
integrated into a Modelica system model without
completely translating the internal model logic by
using the approximate modelling approach.
Therefore the model will be treated as if it were a
black-box. The inputs of the model are the fuel
throttle angle and the torque load. From these values
the model calculates the crank speed of the engine in
radials per second. If constant values are inserted for

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003406

the torque load and the throttle the crank speed
quickly converges to a steady-state value, see Figure
12.

Figure 11 Simulink demo model of an engine [5].

Figure 12 Simulation results for the calculated crank
speed (converted to revolutes per minute)
with constant torque (20 Nm) and throttle
(10 degrees) values.

In order to create a data set of the behaviour of the
engine, a design study has been performed where
the throttle angle and the torque load have been
varied from 0 to 20 degrees and from 0 to 50 Nm ,
with steps of 2 deg and 5 Nm, respectively. For each
torque-throttle combination a simulation of 30
seconds has been performed. For some
combinations, i.e. a relatively large torque load
compared to the throttle angle, the crank speed
drops far below zero and the simulation becomes
unstable and the crank speed is not defined.
Therefore the model is considered inadequate for
these input combinations and these points are
excluded from the training data set. The resulting
training data set contains 94 valid points and is
plotted in Figure 13.

All fit methods offered by MultiFit have been
applied to this data set, except the spline methods,
since this data set is "gridded" and therefore not
appropriate for the applied spline implementation
[5]. To determine the best fit method a separate

validation set has been generated beside the data set.
The validation points are also plotted in Figure 13.

Figure 13 Data set generated from Simulink engine
model, with validation data points

The RMSE of the approximate model in the
validation points is used as the criterion to
determine the optimal fit method for this data set.
The results are plotted in Figure 14.

Figure 14 Absolute RMSE values based on a 18 point
validation set of the engine model.

It was found that the kriging method with constant
regression and Gauss correlation has the lowest
RMSE (Figure 14) and gives the best
approximation. Therefore, the corresponding
approximation function has been translated to
Modelica, see Figure 15.

In Modelica an engine model has been created that
calls the approximate function to define the relation
between the throttle, torque load and crank speed,
see Figure 16. Note that the case in which the
throttle-torque combination would exceed the
domain of the original Simulink model is interpreted
as an engine shut-down. In this case is the crank
speed is set to zero.

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003407

algorithm

 // scale x
 for i in 1:2 loop
 sx[i] := (x[i] - Ssc[1, i])/Ssc[2, i];
 end for;
 // make correlation vector
 for i in 1:94 loop
 corr := 0;
 for j in 1:2 loop
 corr := corr - theta[j]*(sx[j]-S[i, j])^2;
 end for;
 corr := exp(corr);
 r[i] := corr;
 end for;
 //rescale y
 sy := gamma*r;
 sy[1] := 1*beta[1] + sy[1];
 y := Ysc[1] + Ysc[2]*sy[1];

Figure 15 Kriging (constant regression, Gauss
correlation) approximation model of
Simulink engine in Modelica code

model Engine "engine model based on
approximation"
 Real w_rad;
 output Modelica.SIunits.Power
P_generated=flange.tau*w_rad
 "Power supplied to loads";
Modelica.Blocks.Interfaces.InPort Throttle
"Throttle angle"
Modelica.Mechanics.Rotational.Interfaces.Flange_
b flange

equation

 if noEvent((Throttle.signal[1] < 6 and
5*Throttle.signal[1] >= flange.tau)
 or (Throttle.signal[1] >= 6 and
2.5*Throttle.signal[1] + 15 >= flange.tau)) then
 w_rad =
engdata1_kri0G({flange.tau,Throttle.signal[1]});
 else
 w_rad = 0;
 end if;
 der(flange.phi) = w_rad;
end Engine;

Figure 16 Modelica implementation of the wrapping
engine model

The engine model has a rotational mechanical
connector (the engine shaft) on one side and a signal
input (throttle angle) on the other side. Therefore the
model can be connected to other Modelica
components like signal generators and gear-boxes.
The engine model has been integrated, together with
some of these other components, into a Modelica
system model, as shown in Figure 17.

In combination with prescribed torque load and
throttle signal the engine model has been tested,
where for the sake of simplicity a gear-box ratio
equal to one was used, see Figure 18.

Figure 17 Engine in combination with torque load

Figure 18 Dymola simulation results with a constant
torque load and a varying throttle signal

Figure 18 shows that below a certain throttle value
the engine crank speed will be zero if a constant
torque is applied. Figure 19 also shows how both the
torque and the throttle can be varied, e.g. when
simulating a strongly simplified automatic gearbox
based on the steady state engine behaviour.

Since the engine model has a mechanical interface it
can be connected to other physics models e.g. a
generator, hydraulic and pneumatic pumps etc. to
simulate integrated multi-physics systems.

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003408

Figure 19 Dymola simulation results with a step-wise
increasing torque load and a linear
increasing throttle angle

7. Conclusions

An approximate system representation in Modelica
has been presented, which is complementary to
Modelica's multi-physics modelling paradigm. This
complementary system representation is based on
input-output data sets. This system representation is
particularly useful if the physical behaviour of a
considered (sub-)system is too complex, not known,
computationally expensive, protected, or just not
available.

The approximate system representation in Modelica
can be generated with the Matlab based tool
MultiFit that was developed at NLR. This tool
provides easy and common access to several
approximation methods, since each of these
methods has its specific merits and there is no
"globally best" method available.

It can be concluded that the combination of the NLR
tool MultiFit with Modelica supports the full
process from approximation of data sets to the
integration with other multi-physics components for
system optimisation. Specifically in the cases that
models have restricted information or are
computationally complex the approximation
approach promises to be useful for integrated
system design.

8. References

[1] Modelica Association,
http://www.modelica.org.

[2] Power Optimised Aircraft, contract G4RD-CT-
2001-00601 under the European Communities
5th framework Programme for Research -
Competitive and Sustainable Growth - Key
Action, New Perspectives in Aeronautics.
http://www.poa-project.com..

[3] Sjöberg J., Fyhr F., and Grönstedt T.,
Estimating parameters in physical models using
MathModelica, 2nd International Modelica
Conference 2002.

[4] Vankan, W.J. and R. Maas: Approximate
modelling and multi objective optimisation in
aeronautic design, CMMSE 2002 Conference,
Alicante, Spain, 2002.

[5] The MathWorks: Developers of Matlab and
Simulink, http://www.mathworks.com.

[6] Vankan, W.J., J. Kos, W.F. Lammen:
Approximation Models for Multi-Disciplinary
System design - Application in a Design Study
of Power Optimised Aircraft, Eurogen 2003
Conference, Barcelona, Spain, 2003.

[7] Myers, R.H. and D.C. Montgomery: Response
surface methodology: Process and product
optimization using designed experiments,
Wiley, New York, 1995.

[8] de Boor, C.: A Practical Guide to Splines,
Springer-Verlag, 1978.

[9] Caudill, M.: Neural Networks Primer, San
Francisco, CA: Miller Freeman Publications,
1989.

[10] Simpson, T.W., T.M. Mauery, J.J. Korte
and F. Mistree: Kriging models for global
approximation in simulation based multi-
disciplinary design optimization, AIAA Journal,
39(12), 2001.

[11] Lophaven, S.N et al. DACE: A Matlab
Kriging Toolbox, Technical University of
Denmark, IMM-TR-2002-12,
http://www.imm.dtu.dk/~hbn/dace.

[12] Dynasim AB, http://www.dymola.com.

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003409

Acknowledgements: The presented work has
partially been performed within the framework of
the POA project, under contract G4RD-CT-2001-
00601. Furthermore the support of Ms. C. Shen, of
the University of Amsterdam, in the work on the
approximation modelling, and of Dr. H. van der
Ven, of NLR, and Prof. A. Veldman, of the
University of Groningen, in the work on the cabin
airflow CFD simulations, are gratefully
acknowledged.

 Wim Lammen et al. Approximation of black-box system models in Matlab with direct application in Modelica

 The Modelica Association Modelica 2003, November 3-4, 2003410

Parsing and Semantic Analysis of Modelica Code for
Non-Simulation Applications

Michael Tiller
Powertrain Research Department, Ford Motor Company

ABSTRACT

While most discussions involving Modelica focus on its technical capabilities (i.e. object-oriented
modeling, handling of DAEs, standard libraries, etc.), the benefits of having a formal specification of the
language syntax and semantics for non-simulation applications are often overlooked. Unlike many
proprietary modeling technologies, where the syntax and semantics of the models change according to the
whims of the tool vendor, the syntax and semantics of Modelica models are clearly spelled out in the
Modelica specification and considerable effort is made to maintain backward compatibility while adding new
capabilities to the language. Not only does this allow vendors to develop simulation environments that
independently support a common language, it also allows for the development of ancillary tools to support
the model development process. Recognizing some of the best practices in software development, this paper
discusses a set of utilities used to analyze existing Modelica models and provide feedback on the structure of
the models. These analyses can highlight problematic or unused code, check that code is compliant with
specific style guidelines or generate "intelligent" reports on differences between different versions of a
model.

1 Motivation
For years, Ford Motor Company has been

developing several proprietary Modelica libraries.
While we have a talented team of developers and
we meet on a regular basis to discuss the evolving
structure of our model libraries, it is still difficult
to contain the "entropy" that develops due to code
fragments that are no longer actively maintained.

After many years focusing on development, it
was necessary to take a step back and consider
how to manage the growing complexity of our
model libraries. Recognizing the common
challenges between software development and
model development, we have always tried to
leverage the best practices from software
engineering and incorporate them into our model
development. For example, we use a version
control system internally to manage releases of our
model libraries and we have a web-based issue
tracking system that we use to log bugs and feature
enhancements. However, these capabilities were
easy to leverage because of the availability of
general-purpose, out-of-the-box tools (e.g. CVS).

Unfortunately, there are many code analyses
that we would like to perform that are not
supported by general-purpose software engineering
tools because they require language specific
information. Furthermore, existing Modelica tools
focus mainly on simulation-oriented capabilities.
As a result, we decided to implement our own
utilities to assist us in maintaining our code base.

2 Syntax and Semantics

2.1 Introduction
This section will discuss the steps, tools and

ideas involved in taking Modelica code as it
appears in a file and creating a representation that
captures the underlying "meaning" (e.g. type,
baseclasses, scope) of the various structural
entities.

It should be noted that the analysis capabilities
described in this paper do not implement and/or
check all the semantics defined in the Modelica
specification. Instead, they assume that the code is
legal Modelica code generated by a tool (e.g.
Dymola) that conforms to the Modelica
specification. Ideally, we hope that our semantic
processing may eventually encompass all the
semantics discussed in the Modelica specification
but fortunately the analyses described in the paper
do not require a complete implementation, only the
capability to definitively resolve the types of
entities during instantiation.

2.2 Tools
Before presenting additional details about the

individual steps involved in processing Modelica
code, it is useful to include some discussion of
ANTLR [1], the tool used to automate the process
of parsing Modelica code. The ANTLR toolset
can generate software objects for performing

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003411

lexical analysis, grammar parsing and tree parsing
(these tasks will be discussed in detail in the
remainder of this section). ANTLR includes
several useful features including:

• Java, C++ and C# as target languages
• Portable and readable generated code
• Automatic syntax tree construction.
• Active community
• Ongoing development

A surprisingly common question people ask is

"Why was Modelica developed with its own
unique grammar? Why not simply use XML to
describe the format of Modelica files?" Indeed, the
wealth of available eXtensible Markup Language
[2] (XML) parsers and tools [3] would make the
parsing of Modelica files almost trivial. Terrence
Parr, author of ANTLR, has provides an excellent
discussion of this question in his essay "Humans
should not have to grok XML" [5]. The short
answer is that XML only addresses the issue of
syntax, not the meaning of the constructs
themselves. Furthermore, XML is best applied to
file formats that are automatically read and written
by computers not humans. It is for these reasons
that the vast majority of programming languages
(e.g. Java, C++, Haskell, C#, Python, Perl and Tcl)
choose to define their own unique syntax (that is
intuitive to human readers and writers) while only
a handful of languages like XSLT [4] employ
XML syntax. Viewed in this way, the approach
taken when developing Modelica is completely
consistent with how programming languages, in
general, are developed.
That being said, a very compelling argument can
be made for using XML to represent data
structures needed by or resulting from semantic
processing [6]. For example, one tool could be
responsible for reading the Modelica code and
generating an XML representation of the abstract
syntax tree. Such a file could then be read by other
tools and transformed into representations of
instantiated models, hybrid differential-algebraic
equations and pseudo-simulation code, etc. Such
an approach would allow a clean partitioning of
tasks and formal description of the various
intermediate representations (i.e. using Document
Type Definitions (DTDs) or XML Schemas).

2.3 Lexical Analysis
The first step in our process to uncover the

meaning in Modelica code is to break the code into
"tokens". Conceptually, tokens are the words that
exist in Modelica (i.e. strings of characters

delimited by whitespace). It is very easy to
identify the tokens in a given file, but it is also
necessary during this step to classify these tokens.
Some tokens are easily recognized as keywords
(e.g. replaceable, parameter, final).
Other categories of tokens include literals (i.e.
integers, reals, strings and Boolean values),
punctuation (i.e. semicolons, periods, parentheses,
etc.) and so on. Section 2.1 of the Modelica
specification discusses the categories of tokens
involved and the patterns used to recognize them.
Using ANTLR, our lexical specification for
Modelica required 12 non-trivial rules to identify
tokens.

2.4 Grammar Definition
Previously, lexical analysis was described as

the process by which "words" are extracted from
Modelica code. Extending this analogy,
grammatical analysis is the process of constructing
meaningful "sentences". These sentences can
describe definitions of new Modelica types,
declarations of components or variables in a class,
equations, modifications and so on.

Just as with lexical analysis, the patterns used
to describe the grammar of the Modelica language
can be found in Section 2.2 of the Modelica
specification. An important aspect of creating or
processing a grammar definition is avoiding any
potential ambiguity. When described using an
LL(k) grammar (as required by ANTLR), it is
necessary for the parser to look two tokens ahead
in order to resolve any ambiguities.

Using ANTLR, our description of the
Modelica language involved 35 tokens (and their
associated regular expressions), 70 rules and 32
fundamental node types.

2.5 Syntax Trees

2.5.1 Tree Construction
While processing lexical tokens and matching

them to grammatical rules, ANTLR includes
features to automatically generate a syntax tree to
represent the underlying structure of the file being
parsed. During tree construction, the goal is to
filter out tokens that are only of syntactic
significance (e.g. semicolons, which only exist to
explicitly terminate certain structures) and preserve
information that is necessary to fully understand
the intent of the code. ANTLR provides a
shorthand notation for tree construction that is very
convenient, but there are still a few common
operations that lack a shorthand representation.

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003412

2.5.2 Data Structures
ANTLR builds trees out of nodes and then

associating these nodes through child and sibling
relationships. By default, ANTLR assumes these
nodes are homogenous (i.e. they are all of the same
type in the target language). This approach works
well for "text-to-text transformation" applications
(where specific patterns of nodes are simply
transformed into other patterns of nodes without a
lot of semantic information). However, if the
nodes in the resulting tree are likely to have a wide
range of different types of information and/or
methods associated with them, it is possible to
instruct ANTLR to use specific node types (in the
target language) for specific structural entities in
the tree. The result is a heterogeneous tree
structure. As mentioned in Section 2.4, the
resulting trees are composed of 32 fundamental
node types.

One of the advantages of using heterogeneous
node types is the ability to "promote" entities that
would normally be tokens into member data
associated with that node. For example, Modelica
definitions must include the name of the class
being defined. One approach would be to store
this name token as a child node of the definition
node in the constructed tree. However, since this
is an element that is always present, you can save
some complexity in the tree structure (and some
lookup time during processing) by storing this
information directly as just a string in the
definition node itself (as opposed to a child node).
We use heterogeneous trees and reserved the use of
child and sibling nodes for those structures that are
variable (i.e. elements whose presence is not
known a priori).

2.5.3 Tree Walking
ANTLR includes support for creating tree

walker objects. Such "tree grammars" are typically
much simpler than the formal grammar because
they do not include strictly syntactic elements like
punctuation and keywords. While tree parsers can
be quite useful, we have chosen to use a more
programmatic approach for most of the analysis.
Rather than walking the tree, most of our analyses
involve searching the tree structure for specific
elements and then performing operations on those
elements. The one case where we currently employ
a tree parser is as a validator for our generated tree.
By constructing the tree grammar we expect as a
result of tree construction, we can apply that tree
parser to any tree available (either from directly
parsing Modelica code or resulting from

programmatic manipulation of an existing tree
structure) and identify any structures not described
in the tree grammar. This is analogous to using a
DTD or XML schema to validate an XML file.

2.6 Semantic Analysis
As mentioned previously, we assume that all

code being parsed is syntactically and semantically
legal. In this way, we can avoid implementing the
complete semantics of the Modelica specification.
Nevertheless, it is still necessary to implement
many of the semantics in order to understand what
is implied by the code. Without this knowledge, it
would be impossible to perform the analyses
described in Section 3.

The semantics in the Modelica specification
[7] cover all aspects of the language necessary to
translate a Modelica model into a system of hybrid,
differential-algeabraic equations (DAEs).
Fortunately, for non-simulation applications only a
handful of these semantics are required.
Specifically, we have implemented a set of
semantics that allows us to instantiate all the
components in a model (even those affected by
redeclarations). We have neglected all semantics
associated with equations and algorithms. As a
result, the main task required as part of this
instantiation is name lookup as described in
Section 3.1 of the Modelica specification.

2.7 Issues
While creating these tools, there were several

issues that we uncovered both in both the Modelica
specification and ANTLR that are worth
mentioning.

2.7.1 Modelica
In Modelica, comments are lexically

significant but not grammatically significant and
this can make the preservation of comments while
rewriting Modelica code a challenge. One way to
address this situation would be to make comments
grammatically significant. Given the availability
of descriptive strings for documentation purposes
in Modelica, comments are really only necessary
for "commenting out" definitions, declarations,
equations or algorithmic statements. As such, they
could be inserted as elements in the grammatical
rules for those entities. While this would constrain
the situations where comments could be used, it
would make their preservation much simpler.

In addition, there are some features described
in the Modelica specification that have never been
implemented. Examples of such features include

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003413

the within statement and the
analysisType() function. If a feature goes
unimplemented for several years, it is probably
worth revisiting that feature to see whether it is
truly necessary or desirable. Weeding rarely used
or unnecessary features out of the language helps
minimize the work associated with developing
parsing and semantic analysis tools which, in turn,
makes Modelica easier to adopt.

Finally, there are a handful of rules in the
Modelica grammar that make the task of resolving
ambiguities difficult. Specifically, the use of
"initial" as both a keyword and a function name is
problematic since the same string, 'initial',
can fall into two different token categories (and
this depends on where it appears grammatically).
Another example of this kind of problematic
"reuse" is the 'end' string which can be used to
close a long definition or appear as an element in
an expression. Once again, this ambiguity presents
a burden for the parser developer.

2.7.2 ANTLR
We chose to generate heterogeneous trees

while processing the Modelica grammar. While
ANTLR supports heterogeneous trees, using them
with C++ as the target language presented many
problems. For example, a bug in the garbage
collecting mechanism of the AST base classes
appears when using heterogeneous trees. In
addition, even though ANTLR allows node types
to be associated with specific tokens, this applies
only during creation of the nodes. When they are
referenced from within a rule, a cast is necessary.
It is worth mentioning that C++ language support
for heterogeneous node types in ANTLR are
relatively new. All things considered, these are
only minor annoyances and hopefully future
versions of ANTLR will include improved support
for heterogeneous AST construction.

3 Analyses
Most of the analyses described in this section

require that models can be instantiated according
to the instantiation process described in the
Modelica Language Specification. As a result of
this process, a syntax tree is generated to represent
the structural elements of the instantiated model. It
is then possible to conduct an analysis of the model
by "walking the tree" looking for certain patterns
and/or performing specialized calculations. This
section discusses several specific types of analyses
that are applicable to Modelica code.

3.1 Simple Metrics
The idea of "software metrics" has been

around for many years [8]. We will begin our
discussion with a few simple code metrics that can
also be found in non-modeling contexts.

3.1.1 LOC
A common metric in software engineering is

"lines of code" (LOC). While easy to measure, the
metric itself is normally not that meaningful. For
our purposes, we will count lines in each non-
package definition and tally these lines for each
package. Furthermore, we will define a "line" as
any statement that ends in a semicolon. In other
words, since line feeds and carriage returns are not
grammatically significant, we will focus on the
number of statements which is roughly equivalent
to the number of lines.

3.1.2 Restricted Class Breakdown
Another statistic that is easy to collect but not

very meaningful, is the breakdown of definitions
by restricted class (RCB). This metric mainly
serves how heavily utilized each restricted class
type is within a given package hierarchy. This
metric is similar to lines of code because it
measures the "volume" of the code but does not
accurately assess its complexity.

3.1.3 Inheritance Complexity
A more useful metric (and one that requires

implementing instantiation semantics) is
quantifying inheritance complexity. Inheritance
complexity is a reflection of how confusing the use
of inheritance would be to a user. While
inheritance is useful for promoting reuse and
avoiding the maintenance issues associated with
redundant code, it can also make it difficult for
users to understand the complete details of a
model. Ideally, inheritance should be restricted to
definitions that are:
• Used often – Definitions that developers are

likely to be familiar with them.
• Necessary – To avoid base classes that

introduce unnecessarily fine distinctions.
• Minimal – To keep the number of classes that

developers must be familiar with to a
minimum.

• Easily resolved – Modelica features such as
replaceable types, dynamic scoping and lookup
in enclosing scopes can make it hard for
developers to easily figure out or remember
what the base classes really are.

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003414

The inheritance complexity (IC) is computed
as follows1. First, it is assumed that a definition
that does not extend from another definition has an
IC value of 1. For each extends clause, various
adjustments are made to this score. If the
definition being extended is used by fewer than 10
definitions, the IC is incremented by 1. If the
definition being extended is used by fewer than 5
definitions, the IC is incremented by an additional
1. If the definition being extended contained less
than 3 declarations and less than 3 equations then
the IC is again incremented by 1. The IC value for
the definition being extended is then multiplied by
a scaling factor and added to the IC for the current
definition. If the type being extended is
replaceable and locally defined, the scale factor is
2. If the type is replaceable but defined outside the
scope of the current definition, the scale factor is 3.
Finally, if the definition being extended is declared
outer, the scale factor is 2.

3.2 Style Guidelines
Looking beyond simple metrics, another type

of analysis is to check for conformance to style
guidelines. Style guidelines are formulated to
promote reusability and consistency of code and
many of these style guidelines can be formulated in
such a way that they can be automatically verified.
Any definitions that contain non-conforming code
can be identified in automatically generated
reports.

At Ford, we have an extensive set of style
guidelines. In this section, we will preset a few of
these guidelines, discuss why these guidelines
were adopted and explain how we automatically
check for conformance.

3.2.1 Naming Conventions
According to our style guidelines, all Modelica

definitions must begin with a capital letter while
declarations must begin with a lower case letter
unless they contain only a single letter in which
case they should be capitalized. This rule was
adopted because it makes it easy to recognize
whether a fully qualified name corresponds to a
type or an instance.

To check naming conventions, we visit each
definition in memory and process the list of
enclosed definitions and declarations looking for
non-conforming names.

1 This is just an initial algorithm to demonstrate how such a metric
could be calculated. With time, a better algorithm could probably be
developed.

3.2.2 Documentation
For a model library to be generally useful, it is

important for model libraries to be well
documented. Using the tools described in this
paper, we are able to automatically review all
definitions and declarations and check for the
existence of documentation annotations.
Futhermore, this analysis can check to see if
descriptive strings have been associated with each
definition and declaration so that generated GUI
dialogs include additional useful information.

3.2.3 Mixing Equations and Components
The last guideline we will discuss is a

restriction against representing behaviour both
textually and graphically in the same model. To
accomplish this, we must classify each declaration
as either textual or graphical. For the purposes of
this analysis, connector definitions that appear
graphically are ignored. The point of this guideline
is to avoid confusion that can develop when trying
to grasp the behaviour of a model when aspects of
that behaviour span both the text layer and the
diagram layer.

As of Dymola 5.x [9], it has been possible to
quickly assess this restriction visually by
inspecting the Modelica source layer. By default,
everything that appears in the diagram layer is
filtered out. As such, if you see equations and
graphical icons in the Modelica source, the
definition you are viewing violates this rule.
Nevertheless, visual inspection for entire model
libraries is not practical and that is the motivation
behind having a tool capable of automatically and
exhaustively checking an entire library.

3.3 Coverage Analysis

3.3.1 Background
The most elaborate analysis possible with our

tools is what we call "coverage analysis". For each
of our model libraries (i.e. libraries composed of
component, subsystem or system model), we try to
maintain a companion test suite library. The goal
of the test suite library is to include tests of every
model in the model library.

These test suites are useful for several reasons.
First, they provide us with a way to assess whether
recent bug fixes and/or enhancements to our model
library have not corrupted any of the models. In
addition, we perform similar checks across tools or
tool versions. Finally, we can analyze the test suite
library identify any coverage gaps (i.e. any
components that are not tested).

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003415

3.3.2 Analysis Algorithm
The first issue that must be addressed is which

models to apply the analysis algorithm to. Stated
another way, which models are the test cases?
Some rather obvious criteria are:

• Any model in a test suite library.
• Any model that extends from certain base

classes (e.g. extends TestCase;).
• Any model that does not contain

connectors.
Of these, the last criteria is the most general

and requires the least discipline on the part of the
test suite developer. However, because of the time
required to conduct the analysis and the large
amount of potential data generated as a result, it
may be desirable to use one of the more restrictive
criteria. Regardless of the criteria chosen, the
algorithm is the same.

The first step in the process is to instantiate
each test case. Although the complete instantiation
process is described in detail in the Modelica
specification, the basic principle is to construct the
component tree for each model (factoring in
redeclarations, base classes, etc.). As a result of it,
it should be possible to identify the type of every
instantiated component. The set of instantiated
types is recorded as each test case is instantiated.

When every test case has been instantiated,
you are left with the set of all types that were
instantiated by at least one test case. You can then
iterate over the set of all type definitions in your
model library and check to see if they are in the set
of instantiated types. Any definition that was not
instantiated represents either a gap in coverage by
the test suite or a definition that should be
deprecated.

Coverage analysis is a good way to make sure
that your model library doesn't contain any unused
or unnecessary definitions. It also provides
feedback on whether a given test suite provides
accurate coverage.

4 Results

4.1 Running the Analysis
Normally, the use of our models is scattered

over a number of different packages. Obviously,
we would like to have a complete test suite that
exercises every single model we have. A more
reasonable near-term goal would be that every
model is used in one of the many packages (most
of them application specific) that we have
developed.

To support this possibility, the command line
syntax of our tool requires the first argument to be
the package being analyzed and all other
arguments are assumed to be packages that may
potentially use components in the first package. A
typical command line invocation might look
something like:

% Metrics Ford FordTestSuite AppLib1 … AppLibN

4.2 Sample Library Results
To demonstrate the results that are generated

from our tool, consider the sample package shown
in Figure 1. The details of the models are not
particularly meaningful for the purposes of
evaluating the metrics for the code. Running our
Metrics program tells us that the library includes
3 models, 1 type definition and 1 package. For a
simple package like the one shown in Figure 1, this
is obvious. These kinds of statistics are interesting
for larger packages where counting definitions
becomes impractical. While we will get to
additional metrics in subsequent sections, for now
let us focus on coverage analysis. Assume we use
the package in Figure 2 as our set of regression
tests for package in Figure 1. The results of the
analysis are shown in Table 1.

Figure 1: Sample Component Library

package CompLib "Component Library"
 model A "Simple model"
 Real x;
 annotation(
 Documentation(info="Simple model"));
 equation
 der(x) = 2.3*time;
 end A;
 model B "Typical model"
 type GrowthRate = Real(min=0);
 Real x;
 parameter GrowthRate c=2.3;
 equation
 if time<1.0 then
 der(x) = c*time/2;
 else
 der(x) = c*time;
 end if;
 end B;
 model C "Detailed model"
 Real x, y;
 parameter Real Alpha=0.1, Beta=2;
 parameter Real Gamma=4, Delta=0.4;
 equation
 der(x) = Alpha*x*y-Beta*x;
 der(y) = Gamma*y-Delta*x*y;
 end C;
end CompLib;

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003416

Figure 2: Sample Test Suite

Definition Name Times
Used

Is
Documented

CompLib.A 3 Yes
CompLib.B 0 No
CompLib.B.GrowthRate 0 Not

Applicable
CompLib.C 1 No

Table 1: Sample Coverage Analysis

4.3 Ford and Modelica Libraries
We thought it would be interesting to compare

the metrics of our proprietary Ford powertrain
library with the Modelica standard library. For the
purposes of this analysis, only the examples in the
Modelica standard library were used. The results
from this analysis are shown in Figure 3. The X-
axis in each plot lists a series of categories and the
Y-axis indicates the percentage of definitions in
each library that fall into that category.

The documentation and naming convention
metrics cannot be applied to type definitions.
That is why, for each of these metrics, two sets of
results shown. One set includes the all possibilities
while the other set only considers the cases where
the metric can be applied meaningfully. This
highlights the number of type definitions in the
Modelica library (e.g. Modelica.SIunits).

Some interesting results found in Figure 3 are:
• Nearly all the models in both libraries are

represented by either strictly textual or strictly
graphical information.

• Over 70% of the Ford library isn't covered by a
test case.

• The biggest difference between the libraries in
the documentation. About 90% of the
definitions that can be documented in the Ford
library do not include documentation while
this is true for less than 40% of the definitions
that can be documented in the Modelica
standard library.

• Naming convention compliance is surprisingly
similar for the libraries.

5 Future Applications
The analyses described in this paper are just a

few of the many non-simulation related tasks that
can be automated with an appropriate library for
parsing and processing Modelica code. Other
potential applications could include command-line
compilers, "lint" like analysis for undesirable
construct, pretty-printing tools, ETAGS generators
for Emacs, intelligent differencing tools and so on.
Although unimplemented, these tasks further
justify the utility of such capabilities. Rather than
discuss each of these detail, we will present one
example in some detail.

5.1 Obfuscation and Filtering
So far, none of the analyses that have been

discussed involved rewriting Modelica code.
However, for reasons related to protecting
intellectual property, it is quite likely that
developers of Modelica code may wish to
somehow obfuscate or remove certain sensitive
models. Note that even with tools capable of
encrypting Modelica models, there may still be a
need for obfuscation (e.g. exporting models to a
Modelica tool or environment that doesn't support
encryption).

The most extreme course of action would be to
filter models out. Another more moderate
approach would be to obfuscate models so that
they functioned properly but were hard to
understand. To filter models, it would only be
necessary to remove their definitions from an
existing tree structure before writing that tree
structure back out as Modelica code.

Obfuscation is a bit more difficult to
implement. The first step would be to identify
which definitions needed to be obfuscated (e.g.
using a special annotation) and then which
elements of that definition were impacted (e.g.
only protected elements). For the elements to be
obfuscated, several actions are possible
programmatically. First, you would almost
certainly want to strip off any descriptive strings.
Second, for real variables you would probably
change their type to Real rather than something
that hinted at their units. Finally, you could
change the names of these elements so that their
names did not hint at their meaning. This last
requirement is very tricky because it would require
changing any references to the previous name.

6 Conclusions
While the emphasis in most Modelica

applications is on modeling, as Modelica becomes

package CompTestSuite
 import CompLib.*;
 model System1
 A a1, a2;
 end System1;
 model System2
 A a;
 C c;
 end System2;
end CompTestSuite;

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003417

used for "enterprise scale" activities it will be
increasingly necessary to have tools capable of
analyzing the quality of the underlying code. This
paper highlights several practical analyses that are
currently in use and several other potential
analyses that could be facilitated by such tools.

7 Acknowledgments
Peter Aronsson and Peter Fritzson from

PELAB at Linköping University provided me with
the source code for their Open Source Modelica
project. Although I did not use the code directly, I
it was useful as a reference in developing the tools
discussed in this paper.

Adrian Pop, also from PELAB, has done
considerable work in understanding the role of
XML in processing Modelica code. His work
discusses the ideas about XML presented in
Section 2.2 in greater detail.

Finally, I would also like to thank Hans Olsson
at Dynasim AB for helping to explain, in
implementation terms, the details described in the
Modelica specification.

8 References
1. T. Parr, "ANTLR 2.7.2 Reference Manual",

http://www.antlr.org/doc/index.html
2. "Extensible Markup Language (XML) 1.0,

Second Edition", World Wide Web
Consortium, http://www.w3.org/TR/REC-xml

3. L. M. Garshol, "XML tools by name",
http://www.garshol.priv.no/download/xmltools
/name_ix.html

4. "XSL Transformations Version 1.0", World
Wide Web Consortium,
http://www.w3.org/TR/xslt

5. T. Parr, "Humans should not have to grok
XML", http://www-
106.ibm.com/developerworks/library/x-
sbxml.html

6. A. Pop, P. Fritzson, "ModelicaXML: A
Modelica XML Representation with
Applications", Modelica'2003 Conference
Proceedings.

7. "Modelica Language Specification, Version
2.0", Modelica Association, 2002,
http://www.modelica.org/documents/Modelica
Spec20.pdf

8. C. Jones, “Applied Software Measurement :
Assuring Productivity and Quality,” McGraw
Hill, 1991.

9. "Dymola User's Manual, Version 5.0a",
Dynasim AB, Sweden, 2002

Strictly Textual or Graphical

0

20

40

60

80

100

120

Yes Mostly Mixture Even Mix

P
er

ce
nt

ag
e

of
 L

ib
ra

ry
 [%

] Modelica

Ford

Coverage Analysis

0

10

20

30

40

50

60

70

80

Not Covered Covered
once

2-10 times 11-100 times >100 times

P
er

ce
nt

ag
e

of
 L

ib
ra

ry
 [%

] Modelica

Ford

Documentation

0
10
20
30
40
50
60
70
80
90

100

N/A No YesP
er

ce
nt

ag
e

of
 L

ib
ra

ry
 [%

] Modelica

Ford

Modelica (-N/A)

Ford (-N/A)

Nam ing Convention Com pliance

0

10

20

30

40

50

60

70

N/A 100% 99%-75% 74%-1% 0%

P
er

ce
nt

 o
f L

ib
ra

ry
 [%

]

Modelica

Ford

Modelica (-N /A)

Ford (-N/A)

Figure 3: Comparing Ford and Modelica
Libraries

 Michael Tiller Parsing and Semantic Analysis of Modelica Code for Non-Simulation Applications

 The Modelica Association Modelica 2003, November 3-4, 2003418

ModelicaXML: A Modelica XML Representation with
Applications

 Adrian Pop Peter Fritzson

PELAB, Programming Environment Laboratory,
Department of Computer and Information Science,

Linköping University, SE-58183, Linköping, Sweden
adrpo@ida.liu.se, http://www.ida.liu.se/~adrpo
petfr@ida.liu.se, http://www.ida.liu.se/~petfr

Abstract

This paper presents the Modelica XML representation
with some applications. ModelicaXML provides an
Extensible Markup Language (XML) alternative
representation of Modelica source code. The language
was designed as a standard format for storage, analysis
and exchange of models. ModelicaXML represents the
structure of the Modelica language as XML trees, similar
to Abstract Syntax Trees (AST) generated by a compiler
when parsing Modelica source code. The ModelicaXML
(DTD/XML-Schema) grammar that validates
ModelicaXML documents is introduced. We reflect on the
software-engineering analyses one can perform over
ModelicaXML documents using standard and general
XML tools and techniques. Furthermore we investigate
how can we use more powerful markup languages, like
the Resource Description Framework (RDF) and the Web
Ontology Language (OWL), to express some of the
Modelica language semantics.

1 Introduction

The structure of a Modelica model can be derived from
the source code representation, by using a Modelica
compiler front-end (the lexical analyzer and the parser).

The compiler front-end takes the source code
representation and transforms it to abstract syntax trees
(AST), which are easier to handle by the rest of the
compiler. As pointed out in [20], a clear disadvantage of
this procedure is the need of embedding a compiler front-
end in every tool that needs access to the structure of the
program. Writing such a front-end for an evolving and
advanced language like Modelica is not trivial, even with
the support of automated tools like Flex/Bison or ANTLR
[28].

To overcome these problems, a standard, easily used,
structured representation is needed. ModelicaXML is
such a representation that defines a structure similar to
abstract syntax trees using the XML markup language.

This representation provides more functionality than a

typical C++ class library implementing an AST
representation of Modelica:
• Declarative query languages for XML can be used to

query the XML representation.
• The XML representation can be accessed via

standard interfaces like Document Object Model
(DOM) [3] from practically any programming
language.

The usages of the ModelicaXML representation for
Modelica models, combined with the power of general
XML tools, will ease the implementation of tasks like:
• Analysis of Modelica programs (model checkers and

validators).
• Pretty printing (un-parsing).
• Translation between Modelica and other modeling

languages (interchange).
• Query and transformation of Modelica models.

Although ModelicaXML captures the structured
representation of Modelica source code, the semantics of
the Modelica language cannot be expressed without
implementing specific XML-based tools. To address this
issue we have investigated the benefits of using other
markup languages like the Resource Description
Framework (RDF) and the Web Ontology Language
(OWL). These languages, developed in the Semantic
Web Community [13], are used to express semantics of
data in order to be automatically processed by machines.
We believe that using such technology for Modelica
models would enable several applications in the future:
• Models could be automatically translated between

modeling tools.
• Models could become autonomous (active

documents) if they are packaged together with the
operational semantics from the compiler, and
therefore, they could be simulated in a normal
browser.

• Software information systems (SIS) could more
easily be constructed for Modelica, facilitating model
understanding and information finding.

• Model consistency could be checked using
Description Logic (DL) [2].

• Certain models could be translated to and from the
Unified Modeling Language (UML) [15].

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003419

mailto:adrpo@ida.liu.se
http://www.ida.liu.se/~adrpo
mailto:petfr@ida.liu.se
http://www.ida.liu.se/~petfr

The paper is structured as follows: Related work is
presented in Section 2. Modelica, XML and the
ModelicaXML Document Type Definition (DTD) are
discussed in Section 3. In Section 4 we present the
software-engineering tasks one can perform on the
ModelicaXML representation using XML tools and
technologies. Section 5 investigates the use of RDF and
OWL for representing semantics of Modelica models.
Conclusions, future research directions and summary of
the work are presented in Section 6.

2 Related Work

In the field of general programming languages, JavaML
[20] has been developed as structured representation of
Java source code. JavaML emphasizes the power of such
structured representation when leveraging XML tools.
When it comes to domain specific modeling languages,
there are several [21, 22, 27] approaches to specifying
models in XML. These approaches deal with model
transformation, exchange and management (regarding
adaptation to already existing simulation tools) or with
code generation from the intermediate XML
representation to C++. Our interest focuses more on
providing flexible and general software-engineering
tooling support for the Modelica programmer. For this
purpose the ModelicaXML is covering the full Modelica
language [8, 23], including algorithm sections and
expression operators. Furthermore, we consider more
powerful markup languages for defining some of the
Modelica static semantics and we discuss future use of
such Semantic Web technologies.

3 Modelica XML Representation

Modelica [8, 23] is an object-oriented language used for
modeling of large and heterogeneous physical systems.
For modeling with Modelica, commercial software
products such as MathModelica [7] or Dymola [4] have
been developed. However, there are also open-source
projects like the OpenModelica Project [24]. Our research
is part of the OpenModelica Project and aims at
providing a more flexible framework with the use of
XML technologies.

In sub-section 3.1 we briefly introduce the concepts of
XML and DTD and give an example of a Modelica
model with its ModelicaXML representation.

3.1 The eXtensible Markup Language
(XML)

The Extensible Markup Language (XML) [5] is a
standard recommended by the World Wide Web
Consortium (W3C). XML is a simple and flexible text
format derived from Standardized Generalized Markup
Language (SGML) [14]. The XML language is widely

used for information exchange over the Internet. The
tools one can use for parsing, querying, transforming or
validating XML documents have reached a mature state.
Such tools exist both as open-source projects and
commercial software products.

A small example of an XML document is shown
below:

<?xml version=”1.0”?>
<!DOCTYPE persons SYSTEM “persons.dtd">
<persons>

<person job="programmer">
 <name hn Doe</name> >Jo
 <email>
 grigore@none.ro
 </email>
</person>
 …
<person job="manager">
 <comment>Classified</comment>
</person>

</persons>

An XML document is simply a text in which the
information is marked up using tags. The tags are the
names enclosed in angle brackets. For easy identification
we show elements in bold face and attribute names in
italics throughout the XML example. The information
delimited by <persons> and </persons> tags is an
XML element. As we can see, it can contain other
elements called <person> that nests additional elements
within itself.

The attributes are specified after the tag as an
unordered name/value list of name=”value” items. In
our example, the attribute job with the value
“programmer”.

The first line states that this is an XML document.
The second line express that an XML parser must
validate the contents of the elements against the
Document Type Definition (DTD) [18] file, here named
“persons.dtd”. The DTD provides constraints for the
contents much like grammars used for programming
languages.

There are two criteria to be met in order for an XML
document to be valid. First, all the elements have to be
properly nested and must have a start/end tag. Second, all
the contents of all elements must obey their DTD
grammar specifications.

We will define a DTD for the above example:
<!-- the person.dtd file -->
<!ENTITY % person-job-attribute
 “job(programmer|manager)
 #REQUIRED”>
<!ELEMENT persons (person*)>
<!ELEMEN personT
 ((name+, email*) | comment+)>
<!ATTLIST person
 project CDATA #IMPLIED
 &person-job-attribute;>
<!ELEMENT name (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT comment (#PCDATA)>

The above DTD defines one entity, four elements, and

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003420

mailto:grigore@none.ro

one attribute list containing two attributes. The entities
are underlined, bold is used for elements, and attributes
are specified in italics.

The entity (ENTITY) declaration defines person-
job-attribute as a text value that can be used
anywhere inside the DTD and the XML document. The
XML parser will replace the entity with its defined text
where it is used. The principal element (ELEMENT)
declared in DTD is persons and has zero or more
elements person nested inside. The special characters
inside the element definitions are “*” meaning: zero or
more, “|” meaning: selection – either left side or right
side, “+” meaning: one or more.

The attribute (ATTLIST) list defines two attributes
for the person element: project and job.

The project attribute can contain character data
(CDATA) and is optional (#IMPLIED). The job
attribute can only have one of the two values, either
“programmer” or “manager”.

There is another XML document structure standard,
called XML-Schema [18], which is similar to DTD but is
encoded in XML. This standard reconstructs all the
capabilities of the DTD and extends them with:
namespaces, context sensitivity, the possibility to define
several root elements in the same schema, integrity
constraints, regular expressions, sub-typing, etc. Tools for
transforming XML-Schema representations from/to a
DTD representation are available. We use the DTD
variant in this example only because it is clearer than the
too verbose XML-Schema.

One can consult the World Wide Web Consortium
website [5, 18] for more information regarding XML,
DTD and XML-Schema.

3.2 ModelicaXML example

To introduce the Modelica XML representation, we give
a Modelica example and show its corresponding
representation as ModelicaXML.

Elements are in bold, attributes are in italic and
entities are using underline throughout this section,
except from Modelica keywords.

class dOrderSystem Secon
 parameter Real a=1;
 Real x(start=0); Real xdot(start=0);
equation
 x
end SecondOrderSystem;

dot=der(x); der(xdot)+a*der(x)+x=1;

For ease of presentation, a ModelicaXML document is
split into several parts, each representing a more nested
level. The ellipses from one level are detailed in the next
level:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE program SYSTEM
 "ModelicaXML.dtd">
<program within=”...”>
 <definition
 ident="SecondOrderSystem"
 restriction="class">

 ...
 definition> </
</program>

The root element is a Modelica program. The child
elements of program are a sequence of definition
elements and an optional within attribute (see Figure 1,
sub-section 3.3 for schemata).

<definition
 ident="SecondOrderSystem"
 restriction="class">
 <component>...</component>
 ...
 <equation>...</equation>
 ...
</definition>

The definition element can have import, extends,
elements, equation, or algorithm as sub-elements.
In our case we only have component (i.e., variable) and
equation sub-elements inside definition (see Figure
2, sub-section 3.3 for schemata).

<component
 ident="a" type="Real"
 variability="parameter"
 visibility ”> =”public
 <modification_equals>
 real_literal value="1"/> <
 </modification_equals>
</component>
...
<component
 ident="x"
 type="Real"
 visibility="public">
 <modification_arguments>
 <element_modification>
 <component_reference ident="start"/>
 <modification_equals>
 <real_literal value="0"/>
 </modification_equals>
 </element_modification>
 < modification_arguments> /
 </component>

The first component (i.e., variable, see Figure 3, sub-
section 3.3 for schemata) has the variability attribute
set to "parameter" as in "parameter Real a=1;".
The second component declaration (i.e., variable) in the
example represents the “Real x(start=0);” line from
our Modelica class. All components have the
visibility attribute set to “public”. The last
component is similar to the second component and is
not presented.

<equation>
 <equ_equal>
 <component_reference ident="xdot"/>
 <call>
 <component_reference ident="der"/>
 <function_arguments>
 <component_reference ident="x"/>
 function_arguments> </
 </call>
 </equ_equal>
</equation>

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003421

Equations are enclosed in the equation element (see
Figure 4, sub-section 3.3 for schemata)

The equation section of the SecondOrderSystem
model describes two equations. The first equation is quite
straightforward. Equality is represented by an
equ_equal element with two elements inside. The right-
hand side is a function call (using the call element) to a
derivative and the left hand side is a component reference
represented with the element with the same name. The
second equation below is more complex. It has function
calls represented using the call element, binary
operations (see Figure 6, sub-section 3.3 for schemata)
such as add, mul for addition (+) and multiplication
(*). The component_reference elements denote
variable references. For the function calls, the arguments
are specified using the element function_arguments
that can contain expressions, named arguments or for
indices.

<equation >
 <eq_equal>
 <add>
 <call>
 <component_reference ident="der"/>
 <function_arguments>
 <component_reference
 ident="xdot" />
 </function_arguments>
 </call>
 <add>
 <component_reference ident="x"/>
 <mul>
 <component_reference ident="a"/>
 <call>
 <component_reference
 ident="der"/>
 <function_arguments>
 <component_reference
 ident ="x" />
 < function_arguments> /
 < call> /
 </mul>
 </add>
 </add>
 <integer_literal value="1"/>
 < equ_equal> /
</equation>

ModelicaXML Schemata are explained in the next sub-
section.

3.3 ModelicaXML Schema (DTD/XML-
Schema)

When designing the ModelicaXML representation we
started from the Modelica grammar. We simplified the
common cases to compact the XML representation
without loss of information or structure. The Modelica
DTD/XML-Schema has a rather close correspondence to
the Modelica grammar with the following exceptions:
attributes are used to make the XML representation more
concise and the DTD/XML-Schema jumps over some
non-terminals from the Modelica grammar to make the

XML representation more compact.
The OpenModelica Project [29] parser for Modelica

source code, written in ANTLR [28], was changed to
output the ModelicaXML representation. There are many
components in the OpenModelica Project that use the
ANTLR Modelica parser. Using our ModelicaXML
language such tools can be decoupled from this parser.
One clear advantage of this approach is that only one
parser is maintained and future Modelica language
extensions or modifications could be easily integrated.

For presentation purposes we translated our first DTD
implementation to XML-Schema using XML Spy [19].
The purpose of this translation was to generate pictures
from the XML-Schema. Also, another reason was to have
schemata files in both formats for future use. Perhaps, the
DTD variant will be discontinued in the future because
the XML-Schema is more widely used now.

All elements from our schema have the optional
attributes from the location entity (which are sline,
scolumn, eline and ecolumn) and the info attribute,
which can be used to store additional information. These
location attributes are used to generate a mapping
between key elements in our schema and the Modelica
source code representation. In the following we present
some of the important elements from the DTD/XML-
Schema.

The content of our ModelicaXML root element,
namely program is depicted in Figure 1. Inside the root
element we can have none or several definition
elements. The optional attribute within can be used
inside a program element. The rounded corner boxes on
the line connecting two elements can be sequence (like in
Figure1) or choice (like in the bottom part of Figure 2).

Figure 1: The program (root) element of the

ModelicaXML Schema

The required attributes for definition are ident and
restriction (which can have one of the “class”,
“model”, “record”, “block”, “connector”,
“type”, “package”, or “function” values).
Optional attributes are final, partial,
encapsulated, replaceable, innerouter,
visibility (one of “public”, “private” values)
and string_comment.

The definition element is detailed in Figure 2.
Presented in the picture at the bottom are the derived
element (that handles constructs of the type “class X =
Y;”) and the enumeration element used to declare
enumeration types. The upper part of Figure 2 shows the
other allowed elements that can appear inside the
definition element. All the elements in the upper part
have the visibility attribute, taking one of the
“public” or “private” values. The visibility
attribute values are stating the “public” or “private”

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003422

part from the Modelica source code. We can see that the
definition element is recursive, which allows the
declaration of classes inside classes.

The definition element can contain import,
extends, external, equation, algorithm,
annotation and component elements. The latter can
use constrain element for handling statements like
“type X=Y extends Z;”.

Figure 2: The definition element from the

ModelicaXML Schema

Component elements, with schemata presented in Figure
3, have attributes representing the Modelica type prefix
(flow, variability and direction), and type name
(type).

The name of the component is stored in the ident
attribute. These attributes are important because one can
query the ModelicaXML representation for a specific
component having desired type and ident. How XML
query languages can be used is explained in section 4.

The type_array_subscripts element and the
array_subscripts element are expressing the fact that
Modelica array subscripts can be declared either at the
type level or at the component level.

One can use the element modification-
_arguments to further modify the component.
Comments for a component can be specified with the
comment element. The elements modification-
_equals and modification_assign are used to
modify the component; as sub-elements they can have
Modelica expressions.

Figure 3: The component element from the

ModelicaXML Schema

An equation element, presented in Figure 4, can have
initial as an attribute to state if it represents a
Modelica initial equation.

Figure 4: The equation element from the

ModelicaXML Schema

The content and the structure of the equation element
are closely following the definition from the Modelica
Language Specification [8]. The equ_connect element
takes component references as arguments here, instead of
connect references, as in the version 2.0 of the Modelica
Language Specification.

The collapsed parts from the equ_if and equ_when
elements are the Modelica expressions, detailed in Figure
6. The Modelica expressions are present in the collapsed
parts of the algorithm elements alg_if and alg_when
and alg_while.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003423

Figure 5: The algorithm element from the

ModelicaXML Schema

The algorithm element is presented in Figure 5. We
point out that the elements alg_break and alg_return
are recently added statements of the algorithm section in
the latest version (2.1) Modelica Language Specification.

Figure 6: The expressions from ModelicaXML schema

The elements that can appear in ModelicaXML
expressions can be found in Figure 6. These are binary
operations, literals, component references, array
constructions, array operators and logical operations.

The constructs from the ModelicaXML schemata not
covered here, along with the full “modelicaXML.xsd”
(the XML-Schema version) and “modelicaXML.dtd”
(the DTD version), can be found at the OpenModelica
Project website.

4 ModelicaXML and XML tools

This section introduces various XML tools and explains
their usage in conjunction with ModelicaXML. In the
following, in different sub-sections we cover: the
stylesheet language for transformation (XSLT) [6], the
query language for XML documents (XQuery) [17] and
the Document Object Model (DOM) [3].

4.1 The Stylesheet Language for
Transformation (XSLT)

XSL is a stylesheet language for XML. XSLT is the part
of XSL that deals with transformation of XML
documents.

Using XSLT one can implement pretty printers (un-
parsers) that can transform ModelicaXML back into
Modelica source code. Alternative transformations could
transform ModelicaXML into other general, modeling or
markup languages (HTML, XHTML, etc). Transformers
that translate other modeling languages (provided that
they have an XML representation) into ModelicaXML
can also be implemented with XSLT. Using XSLT and
ModelicaXML, implementation of HTML documentation
generators, similar with what the commercial software
Dymola provides, becomes trivial. We cannot provide the
HTML documentation generator here because of space
reasons, but it will be included in the OpenModelica
Project.

We illustrate the usage of XSLT with an example that
transforms Modelica code. For this example we assume
that Modelica code was already translated to
ModelicaXML. After the transformation, one can output
the Modelica code from the changed ModelicaXML
representation using our “modelica-
xml2modelica.xslt” stylesheet from the
OpenModelica Project.

Example of changing a component name, both in the
declaration of the component and in the component
references:

<xsl:stylesheet version="1.0 …>
<!-- example of component rename -->
<xsl:param name="comp_old_name"/>
<xsl:param name="comp_new_name"/>
<!-- we echo everything that is not a
component or a component reference -->
<xsl:template match="*|@*|text()">
 <xsl:copy>

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003424

 <xsl:apply-templates
 select="*|@*|text()"/>
 xsl:copy </ >
</xsl:template>
<!-- we match the old component and we
output the new name -->
<xsl:template match="component
 [@ident=$comp_old_name]">
 <component ident="{$comp_new_name}">
 <xsl:apply-templates/>
 </component>
<!-- we match the old component
reference and we output the new
component name -->
</xsl:template>
<xsl:template match="component_reference
 [@ident=$comp_old_name]">
 <component_reference
 ident="{$comp_new_name}">
 <xsl:apply-templates/>
 </component_reference>
</xsl:template>
</xsl:stylesheet>

The XSLT engine is using templates that match on the
XML tree structure. The matching is performed by the
XPath expression appearing as the value of the match
attribute. By using xsl:apply-templates element we
instruct the XSLT engine to apply the rest of the
templates on the sub-tree that we already matched. When
this stylesheet is applied on our SecondOrderSystem
example from section 3.2 with the parameters “xdot”
and “xdot_new” it will change the component name and
all the component references of xdot to xdot_new.

XSLT can distinguish between components with the
same name defined in different classes by the use of
XPath expressions. To rename such occurrences we first
match the class in which is defined and then the actual
component. This applies for both declarations and
component references.

A search-and-replace tool could perform this
transformation, but such a tool has no knowledge about
the context and it will replace even the occurrences
appearing inside comments.

4.2 The Query Language for XML
(XQuery)

XQuery is a query language similar with what SQL is for
relational databases. Using XQuery, one can easily
retrieve information from XML documents. The XQuery
and XSLT are overlapping in some features, and our
example could be implemented in XSLT also.

We give a short example of a query over our
“SecondOrderSystem.xml” example from section 3.2.
In words, “find all parameter components with type Real
and show the initialization value”:

<table border=”1”>
{
 for $b in
 (document("SecondOrderSystem.xml")/*/
 definition/component)

 where $b/@type = "Real" and
 $b/@variability="parameter"
 return <tr><td>
 { $b/@* }
 { $b/modification_equals }
 </td></tr>
}
</table>

We executed this query in the Qexo [9] implementation
of XQuery and the result in HTML is as follows:

<table border="1">
 <tr><td>
 ident="a" type="Real"
 variability="parameter"
 visibility="public"
 <modification_equals>
 <real_literal value="1" />
 </modification_equals>
 </td></tr>
</table>

As expected, the attributes and the set value of the
element corresponding to “parameter Real a=1;”
from our Modelica example was returned as the answer.

Using XQuery, any types of queries can be asked
about the Modelica model. This opens-up the possibility
of easily debugging very large models. User interfaces
can be implemented to hide the query building from the
user. Static type checking can also be implemented as a
series of queries on the model, but is not trivial, because
the class hierarchy is not explicitly defined in XML.

XQuery uses XPath as sub-language to select the part
of tree that matches the XPath expression. In our XML
representation one can match an entire component having
a specified ident attribute. The XPath language can be
used to handle scooping.

4.3 Document Object Model (DOM)

The Document Object Model (DOM) [3] is a standard
interface that allows programs to access/update the
content, structure and style of XML documents. DOM is
similar with a general tree-management library.

There are open-source implementations for DOM
APIs in Java, C, C++, Perl, Python and other
programming languages.

Any Modelica tool written in various programming
languages can use the DOM API to directly
access/modify the ModelicaXML representation.

5 Towards an Ontology for the
Modelica Language

This section investigates the possibility of using the
markup languages Resource Description Framework
(RDF) [11], RDF Vocabulary Description Language
(RDFS) [10] and OWL [16] developed in the Semantic
Web Community [13] for development of a Modelica
ontology.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003425

An ontology is a description (like a formal
specification of a program) of both the objects in a certain
domain and the relationships between them. In the
context of the Semantic Web there is a layered approach
for specifying increasingly richer semantics for the upper
layers as in Figure 7.

Figure 7: The Semantic Web Layers

At the bottom in top of Unicode and Uniform Resource
Identifiers (URI) is XML, namespaces (NS) and XML-
Schema. XML specifies a term list with no relations. On
top of XML comes RDF to define a vocabulary and some
relations. RDFS (RDF schema) defines a vocabulary for
constructing RDF vocabularies.

The Ontology layer uses languages like OWL to
define description logic relationships.

With ModelicaXML we are now at the XML level!
Using RDF we can express graphs and we can model
inheritance relationships and place queries over this
relation. This can be achieved easily with a smart parser.
Using OWL we can place restrictions over relations and
concepts and we can reason with inference using
Description Logics.

5.1 The Semantic Web Languages

This sub-section briefly introduces the Semantic Web
Languages: Resource Description Framework
(RDF/RDFS) and Web Ontology Language (OWL).

We illustrate the use of Semantic Web Languages by
taking a Modelica model and its representation in OWL.

class Body "Generic body"
 Real mass;
 S n
end ody;

tring ame;
 B

class CelestialBody "Celestial body"
 extends Body;
 constant Real g = 6.672e-11;
 parameter Real radius;
end CelestialBody;

CelestialBody moon(name = "moon",
 mass = 7.382e22, radius = 1.738e6);

Body body_instance(name = "some body",
 mass = 7.382e22);

Our Modelica model has two classes (concepts) Body and
CelestialBody the latter being a subclass of the former
(by using ”extends” statement).

The encoding in OWL is as follows:
<?xml version="1.0" ?>
<rdf:RDF

 <!-- namespaces declaration -->
 xmlns=".../inheritance.owl#"
 xmlns:modelica=".../inheritance.owl#"
 xml:base=".../inheritance.owl">
 <owl:Ontology rdf:about=
 ".../inheritance.owl" />

 <!-- define Body -->
 <owl:Class rdf:ID="Body">
 <rdfs:label>Generic Body</rdfs:label>

 </owl:Class>
 <! mass-- define -->

 <owl:DatatypeProperty rdf:ID="mass">
 <rdfs:domain rdf:resource="#Body"/>
 <rdfs:range
 rdf:resource chema#float"/> ="XMLS
 </owl:DatatypeProperty>
 <!-- define name -->
 <owl:DatatypeProperty rdf:ID="name">
 <rdfs:domain rdf:resource="#Body"/>
 <rdfs:range
 chema#string"/> rdf:resource="XMLS
 </owl:DatatypeProperty>

 <!-- define CelestialBody -->
 <owl:Class rdf:ID="CelestialBody">
 <rdfs:label>
 Celestial Body
 </rdfs:label>
 <rdfs:subClassOf
 rdf:resource="#Body" />
 <!-- cardinality restriction on the
 constant: o
 CelestialBody -->

g ne and only one in

 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty
 rdf:resource "#g"/> =
 <owl:cardinality rdf:datatype
 ="XMLSchema#nonNegativeInteger">
 1
 < owl:cardinality> /
 owl:Restriction> </
 </rdfs:subClassOf>
 </owl:Class>
 <!-- define g -->
 <owl:DatatypeProperty rdf:ID="g">
 <rdfs:domain
 rdf:resource="#CelestialBody"/>
 <rdfs:range ´
 rdf:resource Schema#float"/> =" XML
 </owl:DatatypeProperty>
 < radius !-- define -->
 <owl:DatatypeProperty
 rdf:ID="radius">
 <rdfs:domain
 rdf:resource="#CelestialBody"/>
 <rdfs:range
 rdf:resource=" XMLSchema#float"/>
 </owl:DatatypeProperty>

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003426

 <!--
 instance declaration of CelestialBody
-->
<CelestialBody rdf:ID="moon">
 <name rdf:datatype="XMLSchema#string">
 moon
 </name>
 <mass rdf:datatype="XMLSchema#float">
 7.382e22
 </mass>
 <radius rdf:datatype="XMLSchema#float">
 1.738e6
 < radius> /
 <g rdf:datatype="XMLSchema#float">
 6.672e-11
 </g>
 <g rdf:datatype="XMLSchema#float">
 intentional error
 (string is not float)
 </g>
</CelestialBody>

<!--
 instance declaration of Body
-->
<Body rdf:ID="body_instance">
 <name rdf:datatype="XMLSchema#string">
 some body
 </name>
 <mass rdf:datatype="XMLSchema#float">
 7.382e22
 </mass>
 <--
 intentional error
 (Body does not have a radius)
 -->
 <radius rdf:datatype="XMLSchema#float">
 1.738e6
 </radius>
</Body>

 </rdf:RDF>

In the OWL representation of the Modelica model we
first define Body as being an owl:Class with “Generic
body” as label. The attributes of Body, namely: mass
and name are represented as owl:DatatypeProperty.
The datatype is a binary relation having a range (type)
and a domain (in our case the Body concept). As range
we use the datatypes from XML-Schema, in our case, for
mass we use ”float” and for name we use ”string”.

The class CelestialBody is defined as
owl:subclassOf the Body class according to the
“extends” statement from our Modelica model. As an
OWL feature in the definition of CelestialBody we
show a local cardinality restriction placed on the g
relation. This means that in the instances of
CelestialBody, the g component has to appear exactly
once. The representation of g or radius components is
similar to the representation of mass or name.

The moon instance of the CelestialBody class sets
the values of the components. We intentionally added the
g component twice and with a wrong type. We also
declare an instance of the Body class that has a radius
component (which is an error).

To verify the model, our file: “inheritance.owl”
was fed into an OWL Validator [32].

The validator, as expected, reports the following
errors:
• For the g component that has a string as value:

“Range Type Mismatch. Use of this property implies
that object is of type XMLSchema#float”.

• For the radius component in the body_instance
declaration: ”Domain Type Mismatch. Use of this
property implies that subject is of type
#CelestialBody. Subject is declared type [Body]”

• For the moon instance: “Cardinality Violation.
Resource #moon violates the cardinality restriction
on class #CelestialBody for property #g. Resource
has 2 statements with this property. Maximum
cardinality is 1”.

The OWL language has more constructs than our
example has covered. One can consult the OWL website
[16] for more details.

5.2 The roadmap to a Modelica
representation using Semantic Web
Languages

In the example above we have presented a small ontology
that models our Modelica model, consisting of both
classes and instances. With a clever parser, such
ontologies could be generated from Modelica libraries
and then used for composing Modelica models.

The roadmap to a Modelica representation in OWL
has the following steps:
• Define an RDFS vocabulary for Modelica source

code constructs. Such a vocabulary should include
concepts like class, model, record, block, etc.

• Transform the Modelica libraries in their OWL
representation using the above vocabulary.

• An OWL validator can then check the correctness of
both the concepts and the instances of these
concepts.

At the end of this roadmap we would have Modelica
represented in OWL. The future benefits of such a
representation were underlined in the Introduction
section. Here, we briefly explain how they could be
achieved.

The Autonomous Models

In the OpenModelica Project [24], the Modelica compiler
is built from the formal specification (expressed in
Natural Semantics [26]) of the Modelica Language. This
specification can be compiled to executable form using
the Relational Meta-Language (RML) tool [30, 31]. The
rules from Natural Semantics could be translated to OWL
or RuleML [12] and shipped together with the model.
Using the rules from the model a normal browser could
compile and simulate the Modelica model. We assume
that the platform should have a C compiler.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003427

The Software Information System (SIS)

Having the Modelica ontologies that model the source
code one could use the approach detailed in [33] and
build the domain model of the problem. Merging them
together would result in a Software Information System.

Using such a Software Information System users can
ask queries about the Modelica source code concepts
(components, classes, etc) that are classified according to
the domain model concepts of the problem.

Model consistency could be checked using Description
Logic

Modelica models represented in OWL (Description
Logics) can be fed into a reasoning tool like FaCT [25]
for consistency checking.

Moreover, such support would be of great help to the
Modelica library designers that could formally check
relevant properties of the class hierarchies.

The checks one can do using Description Logics on
the Modelica OWL representation are the following:
• Ensure that the classes and the class hierarchy are

consistent (ensure that a class can have instances and
is not over-constrained).

• Find the explicit relations between classes, regarding
for example sub-typing or equivalence.

Translation of Models to/from Unified Modeling
Language (UML)

The UML language has its XML representation called
XMI [1]. Translation from Modelica models conforming
to a Modelica ontology to XMI could be possible using
XSLT.

6 Conclusion and future work

We have presented the ModelicaXML language and some
applications of XML technologies. We have shown that
there are some missing capabilities with such XML
representation and we addressed some of them. We have
presented a roadmap to an alternative representation of
Modelica in OWL and the use of representation together
with the Semantic Web technology.

As future work, we consider completing the
ModelicaXML with the definition of all the intermediate
steps representations from Modelica to flat Modelica and
further to the code generation. This complete
representation would allow various open-source tools to
act at these formally defined levels, independent of each
other. More information could be added in the future to
such XML representation, like: model configuration,
simulation parameters, etc.

Further insights in the direction of Semantic Web
Languages and their use to express Modelica semantics is
necessary. Compilation in both directions between OWL
and the Relational Meta-Language (RML) is worth
considering.

7 Acknowledgements

We would like to thank the anonymous reviewers for
their valuable and insightful comments or suggestions.

8 References

1. CORBA, XML and XMI Resource Page,
http://www.omg.org/xml/.

2. Description Logics Website. Description Logics,
http://dl.kr.org/.

3. World Wide Web Consortium (W3C). Document
Object Model (DOM), http://www.w3.org/DOM/.

4. Dynasim. Dymola, http://www.dynasim.se/.

5. Word Wide Web Consortium (W3C). Extensible
Markup Language (XML), http://www.w3.org/XML/.

6. Word Wide Web Consortium (W3C). The Extensible
Stylesheet Language Family (XSL/XSLT/XPath/XSL-FO),
http://www.w3.org/Style/XSL.

7. MathCore. MathModelica, http://www.mathcore.se/.

8. Modelica: A Unified Object-Oriented Language for
Physical Systems Modeling, Language Specification
version 2.1, Modelica Association, 2003.

9. Qexo - The GNU Kawa implementation of
XQuery,http://www.gnu.org/software/qexo

10. World Wide Web Consortium (W3C). RDF
Vocabulary Description Language (RDFS/RDF-Schema),
http://www.w3.org/TR/rdf-schema/.

11. Word Wide Web Consortium (W3C). Resource
Description Framework (RDF),
http://www.w3c.org/RDF.

12. The Rule Markup Initiative, http://www.dfki.uni-
kl.de/ruleml/.

13. Semantic Web Community Portal,
http://www.semanticweb.org/.

14. World Wide Web Consortium (W3C). Standard
Generalized Markup Language (SGML),
http://www.w3.org/MarkUp/SGML.

15. UML Website. Unified Modeling Language (UML),
http://www.uml.org/.

16. Word Wide Web Consortium (W3C). Web Ontology
Language (OWL), http://www.w3.org/TR/2003/CR-owl-
features-20030818/.

17. Word Wide Web Consortium (W3C). XML Query
(XQuery), http://www.w3.org/XML/Query.

18. Word Wide Web Consortium (W3C). XML Schema
(XSchema), http://www.w3.org/XML/Schema.

19. Altova. XmlSpy, http://www.xmlspy.com/.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003428

http://www.omg.org/xml/
http://dl.kr.org/
http://www.w3.org/DOM/
http://www.dynasim.se/
http://www.w3.org/XML/
http://www.w3.org/Style/XSL
http://www.mathcore.se/
http://www.gnu.org/software/qexo
http://www.w3.org/TR/rdf-schema/
http://www.w3c.org/RDF
http://www.dfki.uni-kl.de/ruleml/
http://www.dfki.uni-kl.de/ruleml/
http://www.semanticweb.org/
http://www.w3.org/MarkUp/SGML
http://www.uml.org/
http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/TR/2003/CR-owl-features-20030818/
http://www.w3.org/XML/Query
http://www.w3.org/XML/Schema
http://www.xmlspy.com/

20. Greg Badros. JavaML: A Markup Language for Java
Source Code, in Proceedings of The 9th International
World Wide Web Conference,May 15-19, 2000,
Amsterdam, Nederlands.

21. Johansson Björn, Jonas Larsson, Magnus Sethson
and Petter Krus. An XML-Based Model Representation
for model management, transformation and exchange, in
ASME International Mechanical Engineering
Congress,November 17-20, 2002, New Orleans, USA.

22. Wolfgang Freiseisen, Robert Keber, Wihelm Medetz,
Petru Pau and Dietmar Stelzmueller. Using Modelica for
testing embedded systems, in Proceedings of The 2th
International Modelica Conference,March 18-19, 2002,
Munich, Germany.

23. Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica, Wiley-IEEE
Press, 2003.

24. Peter Fritzson, Peter Aronsson, Peter Bunus, Vadim
Engelson, Levon Saldamli, Henrik Johansson and
Andreas Karstöm. The Open Source Modelica Project, in
Proceedings of The 2th International Modelica
Conference,March 18-19, 2002, Munich, Germany.

25. Ian Horrocks. The FaCT System,
http://www.cs.man.ac.uk/~horrocks/FaCT/.

26. Gilles Kahn. Natural Semantics, in Programming of
Future Generation Computers, Fuchi K. and Niva M.,
Editors, 1988, Elsevier Science Publishers: North
Holland. p. 237-258.

27. Jonas Larsson, Björn Johansson, Petter Krus and
Magnus Sethson. Modelith: A Framework Enabling Tool-
Independent Modeling and Simulation, in European
Simulation Symposium,October 23-26, 2002, Dresten,
Germany.

28. Terence Parr. ANTLR Practical Computer Language
Recognition and Translation, http://www.antlr.org/book/.

29. Peter Aronsson Peter Fritzson, Peter Bunus, Vadim
Engelson, Levon Saldamli, Henrik Johansson, Andreas
Karstöm. The Open Source Modelica Project, in
Proceedings of The 2th International Modelica
Conference,March 18-19, 2002, Munich, Germany.

30. Mikael Pettersson. Compiling Natural Semantics,
Lecture Notes in Computer Science (LNCS) 1549,
Springer-Verlag, 1999.

31. Mikael Pettersson. Compiling Natural Semantics,
Department of Computer and Information Science,
Linköping University, Linköping, Dissertation No. 413,
1995.

32. Dave Rager. OWL Validator. 2003,
http://owl.bbn.com/validator/#www.

33. Christopher Welty. An Integrated Representation for
Software Development and Discovery, 1996.

 Adrian Pop, Peter Fritzson ModelicaXML: A Modelica XML Representation with Applications

 The Modelica Association Modelica 2003, November 3-4, 2003429

http://www.cs.man.ac.uk/~horrocks/FaCT/
http://www.antlr.org/book/

 The Modelica Association Modelica 2003, November 3-4, 2003

430

Meta Programming and Function Overloading in OpenModelica

Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter Bunus and Kaj Nyström
{petar,petfr,levsa,petbu,kajny }@ida.liu.se

Programming Environments Laboratory (PELAB)
Department of Computer and Information Science Linköping University, Sweden

Abstract

The OpenModelica framework is an Open Source ef-
fort for building a complete compiler for Modelica
started at the programming environments laboratory
at Linköping university. It is written in a language
called RML [10], Relational Meta Language, based on
natural semantics. Natural semantics is a popular for-
malism for describing the semantics (i.e. themeaning
of language constructs) for compilers. By using the
RML language this formalism is combined with effi-
cient compilation into optimized C code.
The OpenModelica framework is used to experiment
with new language features and language design for
the ongoing development of the Modelica language.
The design of the Modelica language is performed in
the Modelica Design Group (by the Modelica Associ-
ation) - an open group of Modelica users, resarchers,
vendors, etc., where the the Modelica language is
evolved through intensive discussions in threedays
workshops, three or four times a year.
Recently, support for Meta-programming and function
overloading (including an external interface to LA-
PACK) have been implemented in the OpenModelica
compiler. This paper present the design and imple-
mentation of these language constructs in the Open-
Modelica framework and illustrates how to utilize this
framework for research in e.g. language design, meta-
programming and modeling and simulation methodol-
ogy.

1 Introduction

The OpenModelica[6, 9] environment consist of a
compiler that translates Modelica [3, 5] code into flat
Modelica, which basically is the set of equations, al-
gorithms and variables needed to simulate the com-
piled Modelica model. The environment also includes
a shell, i.e. an interactive command and expression in-
terpreter, similar to a Matlab prompt, where models

can be entered, computations can be performed and
functions can be called. In this environment it is also
possible to execute Modelica scripts, i.e. Modelica
functions or expressions executed interactively or a set
of algorithm statements defined in a text file.

An example of a session in the OpenModelica shell
is given below:

> ./mosh.exe
Open Modelica 1.0
Copyright 2003, PELAB,
Linkoping University
>>> loadModel(Modelica)
true
>>> model A=Modelica.Electrical
.Analog.Interfaces.OnePort;
Ok
>>> translateModel(A)
record

flatClass = "fclass A
Real v;
Real i;
Real p.v;
Real p.i;
Real n.v;
Real n.i;

equation
v = p.v - n.v;
0.0 = p.i + n.i;
i = p.i;

end A;",
exefile = ""

end record
>>>

The OpenModelica compiler has been developed at
the programming environments laboratory (PELAB)
at the department of Computer and Information sci-
ence at Link̈oping University. It is used to conduct
research on Modelica and tools for modeling and sim-
ulation. Current research activities at PELAB involve
automatic paralleization [1], support for Partial Differ-
ential equations in Modelica [11] and debugging tech-
niques for Modelica [2]. The OpenModelica frame-
work is also used as a testbench for new language

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

431

constructs, discussed at the Modelica design meetings
held by the Modelica Association [7] approximately
four times per year. Many of the ideas presented in this
paper have originated from these meetings and some
have been elaborated and refined.

The rest of the paper is organized as follows. The
next section present the design of Meta-programming
in Modelica and how it is used in the OpenModelica
compiler. This is followed by a section on operator
overloading in Modelica. The paper ends with conclu-
sions and future work.

2 Meta-programming

Meta-programming is to write programs having other
programs (so called object-programs) as data [12]. A
program can for instance take another program as in-
put data, perform computations on the program by
traversing its internal structure (the abstract syntax of
the program) and return a modified program as output
data.

Often, the object program language and the meta-
program language are the same, like for instance in
LISP or Java reflection. This is also the approach we
have taken for Modelica. A language needs some way
of representing the object-program as data. A simple
and naive approach is to use strings for this. For ex-
ample as follows:

String equationCode =
"equation v = L*der(i);"

However, with this naive approach there is no inter-
nal structure of the object. We cannot even guarantee
syntactic correctness, e.g. that the program inside the
string corresponds to a valid (from a grammatical point
of view) piece of code. This is a major disadvantage,
and therefore most Meta-programming languages do
not use this approach.

Another solution is to encode the object-program
using data types of the meta-language. This basically
means that data types for the abstract syntax are de-
fined in the language itself. This approach has the ben-
efit of ensuring correct syntax of object-programs. It
is used in for instance Java reflection where the class
java.lang.Class is thedatatypefor a Java class.
The class has methods to query a Java class for its
methods, members, iterfaces, etc.

Our current design uses built-in Modelica types to
handle Modelica code, like for instanceTypeName
for a Modelica type name orVariableName for a
Modelica variable name.

To create data values of the object program in the
meta-program aquotingmechanism is needed. This

approach is used in several different programming lan-
guages, such as Tick-C [4], LISP, MetaML [13] and
Mathematica [14]. A quote is used to distinguish the
object-program from the meta-program. For instance
LISP use the quote character as quotation mechanism.

´(plus 1 3)

Furthermore to allow insertion of values into quoted
expressions an anti-quote mechanism is needed. An
anti-quote will lift the following expression up to the
meta-program level, and it will thus beevaluatedand
replaced by a piece of object code. For example in
LISP the anti-quote is the comma character.

(let x ’(plus z 3))
‘(foo ,x 1)

will result in

‘(foo (plus z 3) 1)

2.1 Design Requirements

The requirements for meta-programming support in
Modelica are the following:

• Ease of useMeta-programming should be easy
to learn and use. This means that e.g. the syntax
should be similar to what a Modelica programmer
is used to. It should be possible to write small
pieces of code and insert them with a singe com-
mand. For instance, adding an equation to an ex-
isting model should be a short one-line command.

• Advanced At the same time, it should be ad-
vanced enough to make it possible to perform the
tasks needed by an advanced user who for in-
stance wants to use meta-programming to write
diagnosis applications, system identification, ap-
plications or other technically advanced tasks
where a high level of automation is needed.

• Backwards compatibility The design of new
language constructs and semantic behavior
should be compatible with the current Modelica
language [8]. This means that old Modelica code
will work with these new extensions.

Considering these requirements, the proposed de-
sign is given in the next section.

2.2 Design for Meta-programming

For quoting Modelica code we propose the keyword
Code together with parentheses and for anti-quoting
we propose the keywordEval also with parentheses.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

432

A reasonable limitation forEval is to only allow it in
the same context as expressions, i.e. the Eval keyword
including parenthesis can only be used where expres-
sions can be used. This simplifies the parsing, without
limiting the practical usage of the anti-quote mecha-
nism.

The use of these two keywords are given in the fol-
lowing example:

myExpr := Code(der(x) + x);

Then the code expression

Code(equation x=Eval(myExpr))

will evaluate to

Code(equation x = der(x) + x;)

We also introduce built-in types forCode expressions.
A type for any piece of Modelica code is in our pro-
posal of the typeCode. Then we have subtypes (sub-
classes) of this type for specific Modelica code pieces,
like VariableName for code representing a variable
name,TypeName for code representing a type name.
Table 1 gives the type names for the proposed kinds of
Modelica code that can be constructed using theCode
quote.

Note that some of the cases are overlapping. For
instance a variable reference (componentreference)
is also an expression. In such cases, the most spe-
cialized type will be used. For instance, in this
case the expressionCode(a.b.c) will have the type
VariableName which is a subtype ofTypeName
which is a subtype ofExpression . This can be in-
convenient in some cases when for instance we want
to create a piece of code for a type name. To partly
remedy this lack we introduce an optional extra ”ar-
gument” toCode giving the type name of theCode
piece. For example to create a type name we can write1

Code(Modelica.SIunits, TypeName)

Also, to fulfill the ease-of-use requirement to a greater
extent, and allow for easy use of type and variable
names as arguments to functions, we also propose an
automatic quotingmechanism. The rule is quite sim-
ple and solves our problem mentioned above:

• When the expected type (formal parameters and
in operator arguments) of an expression is a sub-
type of Code (i.e. any of the types presented in
Table 1), if the type of the argument expression is
not a subtype of Code, the expression is automat-
ically quoted, i.e. becomes a Code literal with the
same type as the expected type.

1This also helps in implementing a parser for Code constructs,
since ambiguities can then be resolved by inspecting the second
argument to Code.

For example, if we have a functionfoo taking a
TypeName as an argument and we call it with

foo(a.b.c)

this will be automatically translated (by the automatic
quoting mechanism) into

foo(Code(a.b.c,TypeName))

With these constructs at hand it is possible to start us-
ing Meta-programming by a set of built-in functions
for updating Modelica code such as models and func-
tions. Such functions are already partly available in
the OpenModelica research compiler and will not be
presented in further detail. Instead we will give an ex-
ample on how to use Meta-programming and scripting
functionality to achieve a parameter sweep on a Mod-
elica model. The function is presented in Figure 2 and
can be used as follows: We call theparamSweep
function in the interactive environment and store the
result in the variable r:

>> r:=paramSweep(test,R1.R,1:10);
>>

Then we call the function typeOf which returns a string rep-
resentation of the type of a variable:

>> typeOf(res)
"SimulationResult[10]"
>>

which results inSimulationResult[10] , i.e. a vec-
tor of 10 elements with the element type being a record
of information about a simulation execution.

2.3 Implementation in OpenModelica

In this section we will describe how the Meta-
programming support has been implemented in Open-
Modelica. The support for the quoting mechanism
Code andEval is added to the internal representation
(the abstract syntax tree or AST) using the following
data types (in RML code):

datatype Code =
TYPENAME of Path |
VARIABLENAME of Component_ref |
EQUATIONSECTION of bool *

EquationItem list |
ALGORITHMSECTION of bool

* AlgorithmItem list |
ELEMENT of Element |
EXPRESSION of Exp |
MODIFICATION of Modification

The datatype declarations in RML are similar to
those in the Standard ML language. The vertical bar
(pipe character) indicates alternatives, the capital let-
ter words are names of node type constructors. For
instance, a data object of type Code is:

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

433

Type Non-terminal in gram-
mar

Description

TypeName name The name of a type, e.g.Modelica.SIunits
VariableName componentreference The name of a variable, e.g.a[3].b.c
EquationSection equationclause An equation section, e.g. equation x=y;

z=1;
AlgorithmSection algorithmclause An algorithm section, e.g. algorithm

x:=sin(y);
Element element A class definition, components, import statements

and extends clauses declared in a class.
Expression expression A Modelica expression, e.g.foo(1:3,a+1)+PI .
Modification modification A modification of a component declaration, extends

clause, etc. for instance ”=1.5” or ”(R=10)”.

Figure 1: Types for Code expressions.

function paramSweep
"A function for performing a parameter sweep of a model"
input TypeName modelName;
input VariableName variable;
input Real values[:];
input Real startTime=0.;
input Real stopTime=1.;
output SimulationResult result[size(values,1)];

protected
Boolean flag;
SimulationObject simObj;

algorithm
(flag,simObj) := translateClass(modelName);
assert(flag,"Error translating class.");
for i in values loop

result[i]:=simulate(
startTime=startTime,

stopTime=stopTime,
params = SimulateParams(

{Code(Eval(variable) = Eval(values[i]))},{})
);
// If variable is R1.R and values[i] is 5.6
// then parameters is Code(R1.R=5.6)

end for;
end paramSweep;

Figure 2: A parameter sweep function using Meta-programming.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

434

TYPENAME(
QUALIFIED("A",
IDENT("B")
)

)

which represents the AST for a typenameA.B . The
new AST type Code contain several different AST
nodes, such as aPath node for representing type
names, etc. The boolean values for equation and algo-
rithm sections indicate whether the section has prefix
initial, e.g. if it is an initial equation or initial algo-
rithm. TheEval construct does not need additional
AST types since it is limited to be used as an expres-
sion and can thus be expressed as a built-in operator
(e.g. a function call in the grammar).

The semantic parts needed forCode andEval are
straightforward to implement. For instance resolving
types forCode expressions can be done immediately
by using the built-in types presented in Table 1. The
semantic rules forEval must ensure that the evalu-
ated Modelica code has the correct type for insertion
in the abstract syntax of its context, i.e. that the result
from a eval expression is indeed an expression.

3 Function Overloading

What does it mean to have overloading of operators
and functions in a language, and why do we need it?
The main reason to have this mechanism in a program-
ming language is economy of notation — overloading
allows us to reuse well-known notation and names for
more than one kind of data structure. This is conve-
nient and gives more concise and readable code. The
concept of overloading can be defined roughly as fol-
lows:

• A function or operator isoverloadedif it has sev-
eral definitions, each with a different type signa-
ture.

The concept of Modelica function type signature is the
same as the Modelica class type of the function, and
can be defined roughly as follows:

• A Modelica function type signature consists of
the set of input formal parameter and result types
together with the names of the formal parame-
ters and results, in the order they are defined. To
avoid certain lookup and type resolution difficul-
ties, overloading is defined based on the input for-
mal parameters only.

In fact, overloading already exists to a limited extent
for certain operators in the standard Modelica 2.1. For
example, the plus (+) operator for addition has several
different definitions depending on the data type:

• 1+2 – means integer addition of two integer con-
stants giving an integer result, here 3.

• 1.0+ 2.0 – means floating point number addi-
tion of two Real constants giving a floating-point
number result, here 3.0.

• ”ab”+”2” – means string concatenation of two
string constants giving a string result, here ”ab2”.

• {1,2}+{3,4} – means integer vector addition of
two integer constant vectors giving a vector re-
sult, here{4,6}.

Overloading of certain built-in functions also exists.
For example, thesize function is defined for ar-
rays of different functionality and occurs in two vari-
ants: with one (e.g.size(A)) or two arguments (e.g.
size(A,1)). Scalar functions of one or more argu-
ments are implicitly defined also for arrays. However,
the above examples are just special cases. It is very de-
sirable for the user to be able to define the standard op-
erators as overloaded for user-defined data structures
of choice, and to define different overloaded variants
of functions with the same name.

To handle function overloading a new short class
definition construct is defined, similar to the enu-
meration defintion. It introduces the new keyword
overload and has the following grammar rule
(added to the class specifier rule):

’=’ overload ’(’ name_list ’)’

wherename list is a list of type names. It can only
be used to define functions, like for instance:

function solve =
overload(denseSolve,

sparseSolve,
bandSolve);

The description of user-defined overloaded operators
and functions in Modelica presented here is based on
design proposals that have been discussed at several
Modelica design meetings by the Modelica Associa-
tion. The presentation here is roughly the outcome of
those discussions, with a few small details added. This
design has reached the stage of being approved for test
implementation, but not yet made it into the Model-
ica language specification. Thus, there might be some
changes in the final version.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

435

Operator Operator Example Function Function Example
+ a+b plus plus(a,b)
+ +a unaryPlus unaryPlus(a)
- a-b minus minus(a,b)
- -a unaryMinus unaryMinus(a)
* a*b times times(a,b)
/ a/b divide divide(a,b)
ˆ aˆ b+ power power(a,b)
= a=b equal equal(a,b)
:= a:=b assign assign(a,b)
< a<b less less(a,b)
<= a<=b lessEqual lessEqual(a,b)
== a==b equalEqual equalEqual(a,b)
>= a>=b greaterEqual greaterEqual(a,b)
> a>b greater greater(a,b)
<> a<>b notEqual notEqual(a,b)
[] a[b,c,...] index index(a,{b,c,...})
[] := a[b,c,...] := v indexedAssign indexedAssign(a,{b,c,...},v)

Figure 3: Overloaded operators together with their associated built-in function names

3.1 Operator Overloading

The mechanism for overloading operators is only de-
fined for the standard operators mentioned in Table
3. Adding arbitrary new operators is not possible.
Each operator is associated with the name of a built-
in function, as defined in Table 3. Note that equality=
and assignment:= are not expression operators since
they are allowed only in equations and in assignment
statements respectively. All binary expression opera-
tors are left associative. When an operator is applied
to some arguments, e.g.a+b , this is interpreted as
an application of the corresponding built-in function,
e.g. plus(a,b) . The usual lookup of the function
definition of plus is performed. If a user-defined
function plus with matching type signature is found,
this function is used, otherwise the standard built-in
operator/function+/plus implicitly available in the
top-level scope is found if it is defined for the argu-
ment data types in question. For example, two addi-
tion functions named plus are defined within the same
scope, where each definition can be distinguished by
the nonequivalence of the second formal parameter
types:

function plus
input Real x;
input Real[2] y;
output Real z;
...

end plus;
function plus

input Real x;
input MyRecord y;

output Real z;
...

end plus;

A user-defined record classDiagonalMatrix ,
shown in figure 4, defines the+ (plus) and the[]
(index) operators for diagonal matrices that are in-
ternally represented compactly as vectors using the
DiagonalMatrix data type.

3.1.1 Lookup Rules

Lookup of function definitions (or operators repre-
sented by their corresponding built-in functions) will
follow the usual Modelica lookup rules[8], with the
following additions:

• Both the function name and the input formal pa-
rameter types of the called function are used dur-
ing the lookup process to distinguish matching
definitions. The matching criterion for lookup
of functions is identity of function names and
equivalence of input formal parameter types. In
such a match, if the function names are identi-
cal and some argument types are not equivalent
to corresponding formal parameter types, assign-
ment conversion of argument types, e.g. from
Integer to Real , is performed when appli-
cable, and then equivalence of types is checked
once more for failure or success of the match.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

436

package DiagonalMatrices
record DiagonalMatrix "Diagonal matrix stored compactly as a vector"

Real v[:] "Compact vector representation";
end DiagonalMatrix;
function plus "Addition of diagonal matrices"

input DiagonalMatrix a;
input DiagonalMatrix b;
output DiagonalMatrix c;

algorithm
// Insert matrix size checks here

c.v := a.v + b.v; // Use builtin array assignment
end plus;
function index "Indexing of a diagonal matrix"

input DiagonalMatrix a;
input Integer b[2]; // Exactly two indices are allowed
output Real c;

algorithm
c := if (b[1] == b[2]) then v[b[1]] else 0;

end index;
end DiagonalMatrices;

Figure 4: The DiagonalMatrix example, using operator overloading for addition.

• There is an implicit ”import” of the packages con-
taining the function argument type definitions,
where the desired operator or function definition
also might be found. If there is a package scope
containing the first argument type definition, this
scope is searched first during lookup. If this fails,
the package scope containing the second argu-
ment type is searched, etc., until this procedure
has been repeated for all arguments having a user-
defined type. This is the Koening lookup rule
originally used for lookup of overloaded defini-
tions in C++.

The second rule might sound strange, but makes the
lookup more specific, and avoids the need to write
many import statements specifically for importing
function definitions. It is enough to refer to the ar-
gument type. For example:

Matrices.Symmetric.Matrix A4;
equation

solve(A4,v2) + func2(5+5,v2) = 0;

Here the first argument to solve is the variableA4. Its
type is Symmetric.Matrix defined within the pack-
ageMatrices.Symmetric . Therefore the scope of this
package is searched first during the lookup, and the function
solve is found. However,func2 is searched in the usual
way since the type ofv2 is not defined within any package
scope.

3.2 Implementation in OpenModelica

Since operator overloading already exist in Modelica to-
day, the design and implementation of operator and function
overloading can be performed at a low effort. The largest
change is to introduce Koening lookup mechanism. For this
purpose we add the fully qualified type name to a type, giv-
ing a new definition of a type as a tuple

type Type = (TType * Absyn.path option)

Thus, a type now have the fully qualified class name of its
definition, making it possible to search for function defi-
nitions from the scope where the type is defined, i.e. the
Koening C++ lookup rule.

The same class name can also be used for function types
when deoverloading.

This is the major change needed to the type system.
The rest of the implementation is concerned with adding
the rules to the lookup mechanism and the actual de-
overloading mechanism, when the overloaded names are
looked up and replaced with the correct function name, ac-
cording to the types of the input arguments of the function
call.

The deoverloading of function calls is performed by
traversing a list of function types until a match is found.
The only addition needed in this case is to add the function
type candidates through the koening lookup rule. For this
purpose we add the relation2:

2A RML relation can be seen as a function call, taking argu-
ments as input and producing outputs

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

437

relation get_koening_function_types:
(Env.Env,
Absyn.Path,
Absyn.Exp list,
Absyn.NamedArg list)

=> Types.Type list

Its arguments are

• Env.Env The environment for lookup of types,
classes,etc.

• Absyn.Path The function name, e.g.A.foo or
solve .

• Absym.Exp list A list of expressions for the po-
sitional arguments.

• Absyn.NamedArg list A list of named argu-
ments (a pair of identifiers and expressions)

The result from this relation is a list of function types, to
be added to the rest of the function type candidates for the
deoverloading process. The relation checks each expression
in order to find its type. If the type is user defined, it will
look in the types scope to find potential function types.

Below follows a short example run in OpenModelica, us-
ing Complex numbers and operator overloading. First we
present a short Complex number package:

encapsulated package ComplexNumbers
record Complex

Real re;
Real im(start=0);

end Complex;

function foo = overload(
complexFoo,realFoo);

function complexFoo
input Complex x;
input Complex y;
output Complex res(

im=x.im + y.im,
re=x.re + 2 * y.re);

end complexFoo;

function realFoo
input Real x;
input Complex y;
output Complex res(

im=y.im,
re=x + y.re);

end realFoo;

function plus
"Overloaded user-defined

complex number addition"
input Complex x;
input Complex y;
output Complex res(

re = x.re + y.re,

im = x.im + y.im);
end plus;

function times
"Overloaded user-defined

complex number multiplication"
input Complex x;
input Complex y;
output Complex res(

re = x.re * y.re
- x.im * y.im,

im = x.re * y.im
+ x.im * y.re);

end times;

function unaryMinus
"Overloaded user-defined

complex number unary minus"
input Complex x;
output Complex res(re = -x.re,

im = x.im);
end unaryMinus;

end ComplexNumbers;

The package also contain an overloaded functionfoo , for
illustration of the overload operator. Then we define a test
class that uses operator and function overloading:

model test
import ComplexNumbers.Complex;
import Vectors.Q4Position;
Complex c1,c2,c3;
Q4Position p1,p2,p3;

equation
c1=c2+c3; // ComplexNumbers.plus
c2=c1*c3; // ComplexNumbers.times
c3=-c2; // ComplexNumbers.unaryMinus
c2=foo(c1,c2);

// ComplexNumbers.complexFoo
c3=foo(1.0,c1*c3);

// ComplexNumbers.realFoo
p1=foo(p2,p3); // Vectors.foo
p1=p2+p3; // Vectors.plus

end test;

We translate the model in the OpenModelica environment:

>>> translateClass(test)
record
flatClass = "fclass test
Real c1.re;
Real c1.im;
Real c2.re;
Real c2.im;
Real c3.re;
Real c3.im;
Real p1[1];
Real p1[2];
Real p1[3];
Real p1[4];

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

438

Real p2[1];
Real p2[2];
Real p2[3];
Real p2[4];
Real p3[1];
Real p3[2];
Real p3[3];
Real p3[4];
equation

TMP0 = ComplexNumbers.plus(c2,c3);
c1.re = TMP0.re;
c1.im = TMP0.im;
TMP1 = ComplexNumbers.times(c1,c3);
c2.re = TMP1.re;
c2.im = TMP1.im;
TMP2 = ComplexNumbers.unaryMinus(c2);
c3.re = TMP2.re;
c3.im = TMP2.im;
TMP3 = ComplexNumbers.complexFoo(c1,

c2);
c2.re = TMP3.re;
c2.im = TMP3.im;
TMP4 = ComplexNumbers.realFoo(1.0,

ComplexNumbers.times(c1,c3));
c3.re = TMP4.re;
c3.im = TMP4.im;
p1 = Vectors.foo(p2,p3);
p1 = p2 + p3;

end test;
",

exefile = ""

end record

4 Conclusions

In this paper we have presented two new areas of interest
for the design of the Modelica modeling language, Meta-
programming and function overloading. A design of these
two language features have been presented and a test im-
plementation has been made in the OpenModelica environ-
ment. The effort for implementing these two features have
been low, especially for function overloading since most of
the required mechanisms were already in place.

The OpenModelica research compiler for Modelica also
has some rudimentary support for simulation of Modelica
models. This makes it at the same time an interesting tool
and/or for Modelica beginners, wanting to learn the lan-
guage or use Modelica as a computational language, a free
replacement of e.g. Matlab or Mathematica.

Function and operator overloading are two modern lan-
guage mechanisms that make it easier for a user to write
programs. Thus, these two new potential additions to the
Modelica language will strengthen the Modelica language
as a computational programming language, allowing users
to write sophisticated numerical computation code, which
also allow fast execution due to the Modelica type system.
This aspect will also be aided by the Meta-programming

mechanisms, which will allow users toprogrammodels us-
ing scripts, to be used in e.g. design optimization, system
diagnosis, and adapting models in a more flexible way for
large and complex system modeling.

Future work on the compiler includes implementing full
support for Modelica version 2.1. Also, better support for
simulation of models must be added. There is also a great
need of an updated Modelica test suite, to be able to test
modelica compilers against the specification.

References

[1] P. Aronsson. Licentiate thesis:Automatic Paralleliza-
tion of Simulation Code from Equation Based Simu-
lation Languages. Department of Computer and In-
formation Science, Link̈opings universitet, Sweden,
2002.

[2] P. Bunus. Licentiate thesis:Debugging and Structural
Analysis of Declarative Equation-Based Languages.
Department of Computer and Information Science,
Linköpings universitet, Sweden, 2002.

[3] P. Fritzson, V. Engelson. Modelica - A Unified Object-
Oriented Language for System Modeling and Simula-
tion. In Proceedings of the 12th European conference
on Object-Oriented Programming, LNCS. Springer
Verlag, 1998.

[4] Dawson R. Engler and Massimiliano Poletto. A ’c
tutorial.

[5] P. Fritzson. Principles of Object-Oriented Modeling
and Simulation. Wiley - IEEE Press, 2003. ISBN 0-
471-471631.

[6] P. Fritzson, P. Aronsson, P. Bunus, V. Engelson,
L. Saldamli, H. Johansson, and A. Karström. The
open source modelica project. InProceedings of the
2nd International Modelica Conference, Germany,
March 2002.

[7] The modelica association. http://www.modelica.org.

[8] The Modelica Association. The Modelica Lan-
guage Specification Version 2.1, June 2003.
http://www.modelica.org.

[9] P.Aronsson, P. Fritzson, L. Saldamli, and P. Bunus.
Incremental declaration handling in open source mod-
elica. InSIMS - 43rd Conference on Simulation and
Modeling on September 26-27, Oulu, Finland, 2002.

[10] Mikael Pettersson. Compiling Natural Semantics.
PhD thesis, Link̈oping Studies in Science and Tech-
nology, 1995.

[11] L. Saldamli. Licentiate thesis:PDEModelica - To-
wards a High-Level Language for Modeling with Par-
tial Differential Equations. Department of Com-
puter and Information Science, Linköpings univer-
sitet, Sweden, 2002.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

439

[12] Tim Sheard. Accomplishments and research chal-
lenges in meta-programming.Lecture Notes in Com-
puter Science, 2196:2–??, 2001.

[13] W. Taha and T. Sheard. Multi-stage programming
with explicit annotations. InPartial Evaluation and
Semantics-Based Program Manipulation, Amsterdam,
The Netherlands, June 1997, pages 203–217. New
York: ACM, 1997.

[14] S. Wolfram.The Mathematica Book, 5th Ed.Wolfram
Media, Inc, 2003.

 The Modelica Association Modelica 2003, November 3-4, 2003

Peter Aronsson et al. Meta Programming and Function Overloading in OpenModelica

440

	Binder2N.pdf
	Binder2N.pdf
	h07_skoglund.pdf
	h07_skoglund.pdf
	A
	Abstract
	1. Introduction
	2. Basic library structure
	3. Physical equations
	4. Media models
	5. Approximations and simplifications
	6. Component models
	6.1 Variations in models
	6.2 Parameter settings
	6.3 Component icons

	7. Sensor and transmitter models
	8. Interfacing other libraries
	9. Simulation example “in-line blending”
	10. Conclusions
	
	11. Acknowledgements

	h43_raberg.pdf
	Introduction
	Energy Lib
	Model structure
	Structure of the Energy library
	Selected features of the basic components

	Experience and Lessons Learned
	Short overview
	Controller Design
	Validation of the new concept
	Check of a complex pre-validated model
	Modeling of a small project (pressed for time)
	Design through simulation.

	Conclusions

	Binder4K.pdf
	h34_batteh.pdf
	h34_batteh.pdf
	Abstract
	Introduction
	Physics Overview
	Interfaces
	Thermal Architecture
	Cylinder Interface
	Engine Interface
	Medium Models
	ModelData Structure
	SignalBus Concept

	Model Templates
	Cylinder Configurations
	Engine Templates
	Experimental Templates

	Model Examples
	Engine Cranking
	Exhaust System Warmup

	Conclusions
	References

	Binder5N.pdf
	h20_mikler.pdf
	h20_mikler.pdf
	Abstract
	Introduction
	. Operation Management
	Simulation support for decision-making.
	The case study – the case specification
	Using Modelica for the case study
	Test model
	Future research
	The VISP project

	Binder8N.pdf
	h36_excavator_beater_bw.pdf
	h36_excavator_beater_bw.pdf
	Abstract
	Introduction
	Modeling Choices
	Construction of Excavators
	Load Sensing System
	Model of Mechanical Part
	The Hydraulics Library HyLib
	Library Components in 	�Hydraulics Circuit
	Model of LS Control
	Some Simulation Results
	Conclusion
	Bibliography

	Binder9N.pdf
	h16_pettersson_v2.pdf
	h16_pettersson_v2.pdf
	Introduction
	Model library
	Cooling system module
	Cooling system components
	Dynamics of the cooling system
	Parameters of the flow models

	Assembling the total model
	REFERENCES

	h39_pop.pdf
	Abstract
	Introduction
	Related Work
	Modelica XML Representation
	The eXtensible Markup Language (XML)
	ModelicaXML example
	ModelicaXML Schema (DTD/XML-Schema)

	ModelicaXML and XML tools
	The Stylesheet Language for �Transformation (XSLT)
	The Query Language for XML (XQuery)
	Document Object Model (DOM)

	Towards an Ontology for the Modelica Language
	The Semantic Web Languages
	The roadmap to a Modelica representation using Semantic Web

	Conclusion and future work
	Acknowledgements
	References

