
Getting started with VehicleDynamics.mo

Introduction
This guide will take you through some examples in order to get you started using the Chassis
library in VehicleDynamics. The guide will show you, how to build a Vehicle model and how
the model can be adjusted for your needs. Before you do this, you are recommended to have
worked through the ‘Getting started with Dymola ’. To learn more about defining own
components, check the VehicleDynamics.Chassis documentation. Before you continue,
make sure that your copy of the VehicleDynamics.mo is opened. To check this, make sure
you have a box named VehicleDynamics with in the package window.

Building a VehicleDynamics model
Start a new model by selecting File/New/Model and call it MyCar. This will now appear in the
package window at the bottom of the listing. If the model is not selected, select it by double-
clicking it.

First of all, we need a chassis model. Chose the
VehicleDynamics.Chassis.StandardChassis model and drag it to the diagram layer of the
model MyCar. Right click the model, select Parameters and change the Name to chassis. If
it appears small on the screen, select it and increase it by dragging one of the read squares
appearing at two corners of the model. You should now see an icon of a chassis with six
connectors. These correspond to the wheel axes, the steering wheel axis and a contact point at
the Body Geometric Reference point (BGR) at the body. Soon, we shall se how these can be
used to add other components but first we shall add a road to the model.

The road supplies the chassis with information about the shape and surface conditions,
without this the model will not work. The reason that this is not included in the chassis model
itself is that it should be easy to change from one road to another. Drag the
VehicleDynamics.Environments.SplitMueRoad to your model and rename it to Road. If
you swap to the Modelica Text layer, you will see:

 VehicleDynamics.Environments.SplitMueRoad Road annotation(…);

Replace the row that declares the road with

 inner block Road = VehicleDynamics.Environments.SplitMueRoadBlock;

In this case it is necessary to write exactly Road since the chassis model is looking for a road
to find the right information.

Now you have a model that can be simulated, but before we try this out we will add some
more components to the model.

To be able to control the chassis’ motion, you need a driver. Choose the
VehicleDynamics.Drivers.OpenLoopDriver. Change the name to driver and connect it to
the rotational flange at the front of your chassis model icon. If you double click the line you
should now see a dialog window connect(driver.flange_SW, chassis.flange_SW), i.e.
the driver is connected to the steering wheel of the chassis. Note that the order of how the
names within the parenthesis occur makes no difference. Additiona l information like
annotation… only concerns the visual appearance of the connecting line.

As a next step, you will add a simple power train. If you have been working with the
PowerTrain or SimpleCar libraries earlier, you can add your own models in the same way as
presented here, all libraries are compatible with another. Here we will apply a very simple
model of a step torque input at the front wheels to show how power trains and brakes can be
applied.

Add the VehicleDynamics.Utilities.SimplePowerTrain to the model and change the
name to powerTrain. Connect the right and left flanges of powerTrain to the left and right
front wheels of chassis. If you click the connections the should now say
connect(powerTrain.flange_1, chassis.flange_1) and
connect(powerTrain.flange_2, chassis.flange_2), respectively. Of course, you can
just as well add powerTrain to the rear wheel or apply another model to all wheels. Note that
there is no restriction to how many connections you can have on one wheel flange. Also
connect the driver with the powerTrain. The next step is to translate and simulate the model.

Translate and Simulate
Before the model can be translated and simulated, some settings have to be adjusted. To do
this, swap to ‘Simulation mode’ and run the TranslationSettingsChassis.mos that is
found in the Script-folder that comes along with the VehicleDynamics.mo library. The
settings within the script allow Dymola to handle the state selection in a clever way.

Now it is time to translate your model. (If you have a Visual C++ compiler, it is
recommended to use this. In many cases the GCC default compiler fails.) Swap back to the

‘Modeling mode’ and make sure that you have selected the MyCar model. Return to the
‘Simulation mode’ and start the translation by pressing the translate button or choosing
Simulation/Translate. You will now get a warning saying:

…the variable driver.position.phi has been deselected as a continuous time
state…

This is because the driver model used imposes a defined motion on the steering wheel and not
a torque that a more detailed driver model would do. Thus you can ignore this warning.

Now you can simulate the model. Set the simulation time to 7s. This takes about 20s to
simulate on a PIII-800MHz notebook with 256MB ram.

If no animation window is open, select ‘Animation/New Animation Window’ to open one.
You will now see the front of the car from the top. To get a better view of the car, set a new
iewpoint with the 3D View Control (‘Animation/3D View Control’). Also make sure to select
Follow selected object in the Animation setup dialog box (‘Animation/Setup’). Click on the
animation window to select which part you want to let the animation follow. Now, run the
animation and you’ll see you model performing a double lane change manoeuvre. The tyre
forces can be visualised as shown below by selecting ‘Animation/Setup…/Vectors’ and
setting ‘Forces’ unequal to 0, appropriate values are typically around 0.01-0.001 m/N.

If you want to see the animation with out body graphics, the easiest way is to rename/hide the
body graphics file (by default ‘2.dxf’) so that it cannot be found by Dymola. There is no need
to resimulate but it might be necessary to reopen the result file (‘Animation/Open result
file…’). It is by default named as the model simulated, in this case ‘MyCar.mat’.

Handling parameters
You might have noticed that there are no parameters that you can change in the model you
just simulated, although the models you have used contain parameters. This is because all
parameters are evaluated in order to make the model more efficient. Though, it is often
interesting to study the effects of variation of a set of parameters and you will now add
flexibility to the model by preventing some parameters from being evaluated.

Currently, the only way to do this is to propagate the interesting parameters to the top model.
In this case you will select parameters to control the initial conditions of the
VehicleDynamics, the location of the body’s centre of gravity and the steer input form the
driver. Add the following to your car model:

To complete the propagation, these parameters must be related to those within the model.
Define the following within the chassis and driver components by double-clicking them:

Additional components
An additional component shall be added to demonstrate how to use the BGR connector. In
this case you will add an additional load at the roof but you may just as well add trailers,
aerodynamic models and much more.

Add a ModelicaAdditions.MultiBody.Parts.ShapeBody to the model, rename it to
roofLoad and connect it to the BGR connector at the chassis component. Propagate the
location and the mass properties of the load like this

This set of parameters can be changed without recompilation and variation of could easily be
done with scripting.

