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Abstract

Modern object oriented modeling techniques, such as
the Modelica modeling language, are increasing the
capability to model and simulate systems of large size
and complexity. Simulation of such large and complex
systems is computationally very expensive. The use of
parallel computers for simulation of Modelica models
is one approach of handling simulation of such large
and complex systems within reasonable time limits.
This paper presents an automatic parallelization tool
that translates the sequential simulation code gener-
ated from a Modelica compiler, Dymola, into a par-
allel version that can be executed on a parallel com-
puter. The paper also presents several scheduling and
clustering techniques used by the tool to partition the
simulation code onto several processors. One of these
techniques, called FTDT-Full Task Duplication Tech-
nique, gives a measured speedup of 2.5 on an 8 pro-
cessor PC-cluster. However, future work includes de-
veloping better scheduling and clustering algorithms
to further improve the results.

1 Summary

Object oriented equation based modeling languages
such as Modelica enable simulation of large complex
systems. However, with growing complexity of mod-
eled systems, the need for parallelization becomes in-
creasingly important in order to keep simulation time
within reasonable limits.

The first step in a Modelica compilation results in
a system of differential and algebraic equations. The
Modelica compiler typically performs optimizations
on this system of equations to reduce its size. Other
optimizations on the equation system are also per-
formed to for instance reduce the index of the system

to make it easier to solve numerically, and break al-
gebraic loops to enable generation of more efficient
code. Finally, sequential C code is generated from
the optimized set of equations, containing assignment
statements with arithmetic expressions, function calls,
and subsystems of equations that are solved using a
variety of solution techniques. This simulation code is
then combined with a numerical solver to simulate the
model.

This paper presents an automatic parallelization
method and tool that builds a task graph from the opti-
mized sequential code produced by the Dymola com-
mercial Modelica compiler. Earlier work indicated
that the task graph should be built at the expression
level, resulting in a large fine grained task graph. The
reason for building the task graph at the lowest level
is to reveal all possible parallelism in the task graph.
The fine granularity of the task graph means that the
communication costs between tasks in the graph are
typically much larger than the execution costs of the
tasks. Hence, the scheduling algorithms need to take
this into consideration to be able to produce an effi-
cient parallel schedule of the task graph.

Several scheduling algorithms have been studied
and implemented for this problem, like the TDS al-
gorithm, which is a task duplication based scheduling
algorithm. We have also investigated clustering algo-
rithms which have the goal of clustering nodes for bet-
ter computation/communication tradeoff. However the
standard algorithms found in the literature gave poor
result due to the special properties of the tasks graphs
generated from the optimized equations converted to
C-code emitted by the Dymola Modelica compiler.

There are some scheduling algorithms, specially de-
signed for targeting simulation code, like for instance
the algorithm presented in [21]. However, that algo-
rithm is not suitable for our purposes since it is mainly
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designed for coarse grained task graphs and can not
handle fine grained task graphs well. The reason for
obtaining good speedup in that case is that the used
architecture had a reasonable fast communication net-
work compared to the slow processor speed. However,
this relation between communication speed and pro-
cessor speed is not valid today, and is in fact degrading
in the future, since the processor speed is increasing
much faster than the communication speed.

Yet another approach, where task duplication is al-
ways used, FTDT - Full Task Duplication Technique,
shows speedup results for some examples, including
a thermofluid pipe model which gives a speedup of
about 2.5 on 8 processors running on a PC-cluster.

Future work include designing and developing bet-
ter clustering and scheduling algorithms well suited
for the simulation code generated from optimized sys-
tems of equations.

2 Introduction

Modelica is an acausal, object-oriented, equation
based modeling language for modeling and simulation
of large and complex multi-domain systems [14, 8].
Modelica was designed by an international team of
researchers, whose joint effort has resulted in a gen-
eral language for design of models of physical multi-
domain systems. Modelica has influences from a num-
ber of earlier object oriented modeling languages, for
instance Dymola [7] and ObjectMath [9].

A Modelica compiler flattens the object oriented
structure of the model into a system of differential al-
gebraic equations (DAE) which during simulation is
solved using a standard DAE solver. This code is often
very time consuming to execute, and there is a great
need for parallel execution, especially for demanding
applications like hardware-in-the-loop simulation.

The flat set of equations produced by a Modelica
compiler is typically sparse, and there is a large oppor-
tunity for optimization. A simulation tool with sup-
port for the Modelica language would typically per-
form optimizations on the equation set to reduce the
number of equations. One such tool is Dymola [6],
another is MathModelica [13].

The problem presented in this paper is to parallelize
the calculation of the states (the state variables and
their derivatives) in each time step of the solver. The
code for this calculation consists of assignments of nu-
merical expressions, e.g. addition or multiplication op-
erations, to different variables. But it can also contain
function calls, for instance to solve an equation system

or to compute sin(x) for a value x, which are com-
putationally more heavy tasks. The Dymola simula-
tion tool produces this kind of code. Hence we can use
Dymola as a front end for our automatic parallelization
tool.

To parallelize the simulation we first build a task
graph, G = (V,E) where each task v ∈ V corresponds
to a simple binary operation, or a function call. A data
dependency edge (e ∈ E) is present between two task
nodes v1,v2 iff v2 uses the result from v1. This is repre-
sented in the task graph by the edge e= (v1,v2). Each
task is assigned an execution cost which corresponds
to a normalized execution time of the task, and each
edge is assigned a communication cost corresponding
to a normalized communication time between the tasks
if they execute on different processors. Figure 1 illus-
trates how a task graph can be represented graphically.
Each node is divided by a horizontal line. Above the
line a unique task label/number is given and below the
line is the execution cost of the task. Near each edge is
the communication cost for the edge given. The goal
of a scheduling or clustering algorithm is to minimize
the execution time of the parallel program. This of-
ten means that the communication between processors
must be kept low, since interprocessor communication
is very expensive. When two tasks execute on the same
processor, the communication cost between them is re-
duced to zero.

2 3

4 5 6

7 8

1

1 2

1 2 2

1 1

2
5

5 5

10 5

5

10

10

Figure 1: Task graph with communication and execu-
tion costs.

Scheduling and partitioning of task graphs of the
kind described above have been studied thoroughly
in the past three decades. There exist a plethora of
different scheduling and partitioning algorithms in the
literature for different kinds of task graphs, consider-
ing different aspects of the scheduling problem. The
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general problem of scheduling task graphs for a multi-
processor system has been proven to be NP com-
plete [15].

The rest of the paper is organized as follows: Sec-
tion 3 gives a short summary of related work. Section
4 presents our contribution to parallelizing simulation
code. In section 5 we give some results of our con-
tribution, followed by a discussion and future work in
section 6.

3 Related Work

A large number of scheduling and partitioning algo-
rithms have been presented in the literature. Some
of them use list scheduling techniques and heuris-
tics [3, 11, 5, 2, 10, 22]. A list scheduler keeps a list
of tasks that are ready to be scheduled, i.e. all its pre-
decessors have already been scheduled. In each step it
selects one of the tasks in the list, by some heuristic,
and assigns it to a suitable processor, and updates the
list.

Another technique is called critical path schedul-
ing [17]. The critical path of a task graph (DAG) is the
path having the largest sum of communication and ex-
ecution cost. The algorithm calculates the critical path,
extracts it from the task graph and assign it to a proces-
sor. After this operation, a new critical path is found in
the remaining task graph, which is then scheduled to
the next processor, and so on. One property of critical
path scheduling algorithms is that the number of avail-
able processors is assumed to be unbounded, because
of the nature of the algorithm.

Yet another approach to scheduling of task graphs is
to first apply a task clustering algorithm and thereafter
schedule the clusters for a fixed number of processors.
A task clustering algorithm results in a cluster partition
of the task graph. A cluster is a set of nodes designated
to execute on the same processor. Thus, the communi-
cation costs for edges between nodes belonging to the
same cluster are reduced to zero. A low complexity
task clustering algorithm is the DSC algorithm [19]. It
has a complexity of O(n · log(n)).

An alternative approach to task clustering is to ap-
ply task merging algorithms [12]. The difference be-
tween a task clustering algorithm and a task merging
algorithm is that in the task clustering case, tasks are
not merged, i.e. the communication of data is still per-
formed for each individual task in the cluster. But for
the task merging case, the tasks are merged such that
the new task resulting from the merge receives all its
data before the computational work of the task, and

sends all the resulting data to other tasks after the com-
putational work has been performed.

Due to the merging property of a task merging algo-
rithm, the resulting task graph will have a higher gran-
ularity value, i.e. the communication to computation
ratio will increase. Thus, after a task merging algo-
rithm has been applied any standard scheduling algo-
rithm that works better for coarse grained task graphs
can successfully be applied.

An orthogonal feature in scheduling algorithms is
task duplication. Task duplication scheduling algo-
rithms rely on task duplication as a mean of reducing
communication cost. However, the decision if a task
should be duplicated or not introduces additional com-
plexity to the algorithm, pushing the complexity up in
the range O(n3) to O(n4) for task graphs with n nodes.

4 Scheduling of Simulation Code

An overview of the automatic parallelization tool pre-
sented in this paper is given in Figure 2. The figure
illustrates both how the sequential executable and the
parallel executable that are built.

Model
(.mo)

sequential
C code

C compiler

Modelica
Compiler

Parallelizer

C compiler

sequential
executable

parallel
executable

Solver
lib

Parallel
C code

MPI
lib

Figure 2: An overview of the parallelization tool and
its environment.

Simulation code generated from Modelica mostly
consists of a large number of assignments of expres-
sions with arithmetic operations to variables. Some of
the variables are needed by the DAE solver to calculate
the next state, hence they must be sent to the processor
running the solver. Other variables are merely tempo-
rary variables whose value can be discarded after the
final use.

The simulation code is parsed, and a fine grained
task graph is built, see the structure of the tool in Fig-
ure 3. The generated graph, which has the properties
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of a DAG (Directed Acyclic Graph), can be very large.
A typical application (e.g. a thermo-fluid model of a
pipe, discretized to 100 pieces), with an integration
time of around 10 milli seconds, has a task graph with
30000 nodes. The size of each node can also vary a
lot. For instance, when the simulation code originates
from a DAE, certain nodes represent an equation sys-
tem that have to be solved in each iteration if they can
not be solved statically at compile time. These equa-
tion systems can be linear or non-linear. In the linear
case, any standard equation solver could be used, even
parallel solvers. In the non-linear case, fixed point iter-
ation is used. In both cases, the solving of each equa-
tion system is represented as a single node in the task
graph. Such a node can have a large execution time in
comparison to other nodes (like an addition or a mul-
tiplication of two scalar floating point values).

Parser

Task Graph
Builder

Scheduler

Code
Generator

Symbol
Table

Debug &
Statistics

Figure 3: The internal architecture of the paralleliza-
tion tool.

The task graph generated directly from the simula-
tion code is not suitable for scheduling to multipro-
cessors. There are several reasons for this, the ma-
jor reason is that the task graph is too fine grained
for applying a standard scheduling algorithm. Many
scheduling algorithms are designed for coarse grained
task graphs. The granularity of a task graph is the re-
lation between the communication cost between tasks
and the execution cost of the tasks. There are sev-
eral scheduling algorithms that can handle fine grained
task graphs as well as coarse grained task graphs. One
such category of algorithms is non-linear clustering al-
gorithms [19, 20]. These algorithms consider putting
siblings1 into the same cluster to reduce communica-
tion cost. A problem with some of these algorithms is
that the complexity is too high for the large task graphs
generated by our tool.

1A sibling s, to a task n is defined as a node where n and s has
a common predecessor.

A second problem with the task graphs generated
is that in order to keep the task graph small, the im-
plementation does not allow a task to contain several
operations. For instance, a task can not contain both a
multiplication and a function call. The simulation code
can also contain Modelica when statements, which are
equivalent to a special form of if statements without
else branch. These need to be considered as one
task, since if the condition of the when statement is
true, all statements included in the when statement
should be executed. An alternative would be to repli-
cate the guard for each statement in the when state-
ment. This is however not implemented yet, since usu-
ally the when statements are small in size and the need
of splitting them up is low.

To solve the problems above, a second task graph is
built, with references into the original task graph. The
implementation of the second task graph makes it pos-
sible to cluster tasks into larger ones, thus increasing
the granularity of the task graph. The first task graph is
kept, since it is needed later for generating code. The
two task graphs are illustrated in Figure 4.

Figure 4: The two task graphs built from the simula-
tion code.

The second level task graph can also be used to clus-
ter tasks together using a task clustering or task merg-
ing algorithm. An algorithm for merging task similar
to the algorithm found in [16] has been implemented
in our tool, except that our algorithm deals with re-
moving cycles. The algorithm constructs a cluster in-
crementally, starting with a single node n, taken from
a list l of all nodes sorted by level in descending order.

The algorithms first examine the children of the
node n. When all children have been clustered, the
algorithm continues searching for a node that has a
child (not in the cluster) with in-degree one and in-
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cludes them as well, see figure 5. The next choice of
including nodes is the set of parent nodes to the node
n. After that, siblings to n are chosen, followed by an
arbitrary node in the list of nodes.

a

Figure 5: Node a with in-degree one is included in the
cluster

To prevent the algorithm from producing cycles in
the clustered task graph, a function that detects cycles
is called, which includes all nodes forming a cycle
from a cluster. Such a cycle is illustrated in Figure
6. The figure shows that by clustering nodes a and
b together and not including c in the same task, the
resulting task graph will be cyclic, thus removing the
property of a DAG making it impossible to schedule.

When a cycle is detected several approaches can be
taken. Either the complete cycle is added to the clus-
ter, which can in the worst case make a cluster too
large. Another alternative is to remove the node from
the cluster causing the cycle, and begin a new cluster.
This on the other hand might cause some clusters to be
too small.

a

b
c

Figure 6: A cluster that forms a cycle in the resulting
task graph.

Once the coarse grained task graph is built we can
use standard scheduling algorithms found in the liter-
ature. In our implementation we have used a schedul-

ing algorithm called TDS [1], which is a critical path
scheduling algorithm with task duplication. For coarse
grained graphs it produces the optimal solution. How-
ever, the number of processors needed by the algo-
rithm is not fixed. Thus, to use the algorithm in prac-
tice a phase following the TDS algorithm has to be in-
troduced. This phase limits the number of processors
by merging task lists of different processors.

Finally, a simple method called Full Task Duplica-
tion Technique (FTDT) is implemented in the paral-
lelization tool. It collects clusters by collecting all par-
ents for each exit node (i.e. a node without any suc-
cessor) into clusters. These clusters are then merged
in a load balancing manner until the number of clus-
ters match the required number of processors. This
method is only useful if the task granularity (commu-
nication to execution time ratio) is very high, i.e. the
average cost of communication is much larger than the
average cost of execution in the task graph. However,
since it applies full duplication it represents an upper
limit on the possible speedup for task graph with very
high communication costs and can thus be useful in
some specific cases.

5 Results

The first results without the pre-clustering (or task
merging) phase implemented showed that the TDS al-
gorithm did not work well on fine grained tasks, even
with an unlimited number of processors. Most exam-
ples did not produce speedups at all. The major reason
was that the early implementation did not optimize the
sending of messages between tasks, by sending and re-
ceiving larger chunks of data. In practice, each scalar
produced its own MPI send and receive call.

But also the limitations of the TDS algorithm on fine
grained task graphs (i.e. task graphs with high commu-
nication costs) had an effect on the result. The TDS al-
gorithm is a linear critical path scheduling algorithm,
i.e. it never schedules two siblings onto the same pro-
cessor. This means that the TDS algorithm exploits all
available parallelism, even if the communication cost
is very high. Thus it does not work well on graphs with
high granularity.

When using the modified task merging algorithm
described above, the results were also not showing a
speedup > 1. The main reason for not giving good re-
sults in this case was that the task merging algorithm
did not succeed in both merging the tasks to increase
the granularity and still reveal enough parallelism in
the task graph such that speedup > 1 could be ob-
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tained. Thus, the resulting task graph contained too
many dependencies such that the only possible parti-
tion was a sequential partition for one processor.

The Full Task Duplication Technique did however
produce reasonable results. Figure 7 gives computed
speedup values from the task graphs generated from
the simulation code for a thermofluid pipe model with
three different discretization values. Figure 8 gives
the measured speedup results for the same models
when the parallelized simulation code is executed on
a parallel PC-cluster with a SCI communication net-
work [18].

Figure 9 presents computed speedup values from
the task graph for the robot example (the r3 robot)
found in the Modelica Standard Library.

6 Discussion and Future Work

It is clear that the simulation code emitted from com-
pilers of equation based simulation languages can be
highly optimized and very irregular code. Hence, this
code is not trivial to parallelize. The scheduling al-
gorithms found in the literature are not suitable for
fine grained task graphs of the magnitude produced by
our tool. Therefore, a pre-clustering phase is needed.
Also, the increasingly gap between processor speed
and communication speed will demand better cluster-
ing and task merging algorithms in order to provide
good speedup results in the future.

Due to the large task graphs, caused by the large
simulation code files, the clustering algorithm must be
of low complexity but still use for instance task dupli-
cation to reduce communication cost.

The results could be further improved by applying
task duplication to the pre-cluster algorithm. Since
each task can be very small, extensive task duplica-
tion could be used to reduce the communication in the
clustered task graph. However, the demand for a low
complexity algorithm does not allow an advanced task
duplication scheme. Future work is to investigate what
kind of task duplication could be considered in the pre-
clustering phase. Clearly, it could improve the results
significantly.

The results from the robot example did not produce
good speedup. However, when using mixed mode
and inline integration the amount of parallelism in the
task graph increased. Therefore, future work includes
a deeper investigation on larger models both using
mixed mode and inline integration and without those
optimizations. Future work also includes an investiga-
tion on the effects of different optimizations performed
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(a) Thermofluid pipe with 50 discretization points.
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(b) Thermofluid pipe with 100 discretization points.
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(c) Thermofluid pipe with 150 discretization points.

Figure 7: Computed speedup figures for different com-
munication costs c using the FTD method on the Ther-
mofluid pipe.

on the system of equations regarding the amount of
parallelism in the simulation code.

Future work on the scheduling and clustering prob-
lem for fine grained task graphs is also needed.
Perhaps a more accurate parallel machine model is
needed, like for instance the Logp parallel program-
ming model [4].This would make the model more ac-
curate, giving better estimates of the gained speedup.
However, such an extension of the computational
model would also increase the complexity of the
scheduling and clustering algorithms.
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(a) Thermofluid pipe with 50 discretization points.
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(b) Thermofluid pipe with 100 discretization points.
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(c) Thermofluid pipe with 150 discretization points.

Figure 8: Measured speedup figures when executing
on a PC-cluster with SCI network interface using the
FTD method on Thermofluid pipe.
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Figure 9: Computed speedup figures for different com-
munication costs, c, using the FTD method on the
robot example.
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