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Extending Modelica for Partial Differential Equations

Levon Saldamli∗ , Peter Fritzson∗ and Bernhard Bachmann†

Abstract

Currently, Modelica only supports models con-
taining constants, time-dependent variables, and
time-derivatives of variables, i.e. ordinary differ-
ential and algebraic equations. In this article, we
present how the Modelica language can be ex-
tended to support object-oriented modeling with
partial differential equations (PDEs), in order to
solve initial and boundary value problems. The
techniques we present have fairly general applica-
bility to 1D, 2D or 3D domains, although we focus
mostly on 2D domains in this paper. We also de-
scribe the architecture of a prototype implemen-
tation where the PDE problem is translated and
passed to an external mesh generator and a PDE
solver for solution using the finite element method.
An example of a stationary heat conduction prob-
lem is included together with execution results.

1 Introduction

The modeling language Modelica [4, 5, 7, 10] is
currently used for modeling and simulation of sys-
tems with ordinary differential equations contain-
ing time-dependent variables and derivatives of
such variables with respect to time. It is desir-
able to also specify models where variables vary
with position in space and where partial differen-
tial equations (PDEs) occur. Therefore, there is a
need to extend Modelica to support such models.

A PDE problem is solved in order to find an
unknown, spatially distributed function u, that is
implicitly defined by a partial differential equa-
tion. For a unique solution boundary conditions
at the boundary of the geometric region of the
problem is needed, and also the initial conditions
if the problem is time-dependent. There can be
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ence, Linköpings universitet, Linköping, Sweden.
{levsa,petfr}@ida.liu.se

†Fachbereich Mathematik und Technik, Fachhochschule
Bielefeld, Bielefeld, Germany. bernhard.bachmann@fh-
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different boundary conditions for different parts
of the boundary, and the conditions can be known
values of the unknown function or its derivatives.
Initial conditions can consist of values of the un-
known function or its derivatives.

Modelica is an object-oriented language, sup-
porting inheritance and component-based model-
ing. Extensions to support PDEs should be done
with these concepts in mind in order for a PDE
problem to be specified in a convenient way sim-
ilar to other models written in Modelica. Previ-
ously, some basic extensions needed in Modelica
were presented [14]. The domains were described
by defining the limits of the space variables using
constants or expressions containing other space
variables in order to allow fairly general domains.
In this paper, we support a more convenient do-
main definition, using parametric expressions for
describing the boundary of the domain. We also
describe how a problem can be specified with the
PDE, the boundary conditions, the domain and
its boundary defined as components.

This paper is organized as follows: Section 2
contains an overview of related work, Section 3
presents the problem specification and new lan-
guage syntax, Section 4 describes the implementa-
tion environments, Section 5 illustrates an exam-
ple problem and its solution, and Section 6 con-
tains some conclusions and future work.

2 Related Work

There are different categories of packages for solv-
ing PDEs. Some of them are code libraries, where
the PDE is not separately specified but a numeri-
cal solver is written using a programming language
and components from these libraries in order to
solve the specific PDE problem. PETSc [2], Diff-
pack [3] and Overture [12] are some packages in
this category. Compose [17] is a similar package,
written as a framework built upon Overture, with
an object-oriented design that separates the equa-
tion definitions and numerical solver implemen-
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tation. Equations in Compose are defined using
the C++ classes in the framework or by adding
new classes to define new equations and numeri-
cal solvers.

There are also problem solving environments,
that contain integrated tools for the different steps
of the modeling and simulation process, such as
graphical tools for defining the domain, tools for
specifying or selecting a numerical solver among
several solvers, and tools for visualization of the
simulation results. PELLPACK [9] is such a
problem solving environment that contains sev-
eral PDE solvers and has a high level language for
the PDE problem definition. FEMLAB [6] which
is a package for MATLAB, is another simulation
tool, with graphical user interface where the user
can choose a model among many predefined PDE
models, modify its parameters, graphically define
the problem domain and assign boundary condi-
tions, simulate the model and visualize the results.

An environment that is more language oriented,
analogous to Modelica, is gPROMS [11]. This en-
vironment has a high level language for specify-
ing PDE models on rectangular domains, where
complex partial differential and algebraic equa-
tions and mixed systems of integral, partial and
ordinary differential and algebraic equations can
be solved.

The approach taken in our present work to ex-
tend Modelica with PDEs, called PDE-Modelica,
combines the usage of a high level language,
object-oriented and component-based modeling,
and the possibility to use different solvers and au-
tomatic solver generation for a given PDE prob-
lem.

3 Domain and PDE definition

In this section, we describe how to define the prob-
lem domain using lines and parametric curves.
Also, a hierarchical PDE model definition using
coefficient-based PDEs similar to FEMLAB’s co-
efficient form is described.

3.1 Domain Description

The domain of the PDE problem is D ⊂ Rn.
In this paper we consider the two-dimensional
case, n = 2. In most practical cases it is suffi-
cient to define the domain by a parametric curve
{(xs, ys) | s ∈ [sstart, send]} describing the bound-

ary of the region, which is a sufficiently general
way of stating the geometry of the domain. The
curve should be closed and non self-intersecting
for the parameter range specified. In the two-
dimensional case, the XY-plane is divided into two
regions by the curve, with the intended domain
being the region at the left side of the curve.

The boundary defined in this way is used to
generate a mesh for the numerical PDE solver. An
external mesh generator is used to generate the
mesh.

From the boundary definition, an external mesh
generator is called to generate a triangular mesh
which is passed to the numerical solver.

A domain class is defined by introducing a new
kind of restricted class in Modelica called do-
main, where the independent space variables to
be used are declared using the space keyword,
and the boundary is described in a special sec-
tion called boundary. The boundary section can
contain three different constructs that define the
boundary: lines(), curve() or composite(),
described in the following sections.

3.1.1 The lines() Boundary Construct

In case of single lines or a number of connected
lines, a special construct lines() is used, for ef-
ficiency reasons. A line segment is defined as fol-
lows:

domain Line2D "A line segment"

extends Cartesian2D;

parameter Real x0=0, y0=0, x1=1, y1=1;

boundary

lines({{x0,y0},{x1,y1}});

end Line2D;

The lines() construct contains an expression
which is an array of points, defining the starting
point, the intermediate points and the end point
of the connected lines (see Figure 1).

(x0, y0)

(x1, y1) (x2, y2) (xn−1, yn−1)

(xn, yn)

Figure 1: Connected lines that is described by the
construct lines({{x0,y0},{x1,y1},...,{xn,yn}})
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3.1.2 The curve() Boundary Construct

There are several alternative ways to specify the
parametric expression that defines the boundary
as a curve. Using the where...in... construct
which already has been used to specify domains
for expressions [14], the curve can be defined as
follows:

domain Cartesian2D "For all 2D-domains"

space Real x,y;

end Cartesian2D;

domain Circle2D "Circular with r=1"

extends Cartesian2D;

boundary

curve(cos(2*PI*u),

sin(2*PI*u)) where u in (0,1);

end Circle2D;

The boundary of this domain is defined by the
curve generated by varying the value of the tempo-
rary variable u from 0 to 1. The comma-separated
list of expressions in the curve()-construct are
used to calculate the Cartesian coordinates of the
points on the curve. In order for the curve to
be closed, the resulting points in the XY-plane at
u = 0 and u = 1 should have the same coordi-
nates. Other requirements might be needed for
the curve depending on the mesh generator used
by the numerical solution stage.

3.1.3 The composite() Boundary Con-
struct

In many cases, the boundary of the problem do-
main is difficult to define as a single parametric
curve, but is rather defined by a number of con-
nected lines and curves. Also, the boundary con-
ditions for the PDE problem are often different on
different parts of the boundary. Therefore, when
the boundary curve is specified, there must be a
way to refer to different parts of the curve when
assigning boundary conditions. One solution to
these problems is to have a boundary description
that consists of several components, each of which
are curves. The boundary components can be de-
clared in the declaration part of the domain de-
scription. For example, a rectangular boundary
can be defined using four line segments right,
top, bottom, and left (see Figure 2). These parts
of the boundary can be instantiated in the decla-
ration part of the domain class Rectangle2D as
follows:

domain Rectangle2D "A 6 by 4 rectangle"

extends Cartesian2D;

parameter Real cx=0, cy=0, w=3, h=2;

Line2D right(x0=cx+w, y0=cy-h,

x1=cx+w ,y1=cy+h);

Line2D top(x0=cx+w, y0=cy+h,

x1=cx-w, y1=cy+h);

Line2D left(x0=cx-w, y0=cy+h,

x1=cx-w, y1=cy-h);

Line2D bottom(x0=cx-w, y0=cy-h,

x1=cx+w, y1=cy-h);

boundary

composite(right, top, left, bottom);

end Rectangle2D;

The domain Rectangle2D can be seen in Fig-
ure 2. The composite operator is used to combine
several curve segments into a complete boundary.
The setting of the start and end points of the line
segments and the order of the arguments to the
composite operator must be consistent, and the
direction of the resulting curve must be correct in
order that the correct region is defined. Some of
these requirements can be automatically fulfilled
if the composite operator is allowed to translate
each given curve segment so that the starting point
of that curve matches the end point of the previ-
ous curve segment.

Although both Line2D and Rectangle2D are de-
fined as domains, they represent different kinds of
objects. The Line2D domain is not intended to be
used as a domain by itself, but rather as a bound-
ary component of another domain. This difference
could be expressed in the definition by for exam-
ple using the partial keyword in the definition of
Line2D:

partial domain Line2D

"Defines a part of a boundary"

...

Another alternative is to use a different keyword
than domain for classes that represent only parts
of a boundary.

left
cx,cy

right

top

bottom

w

h

Figure 2: A rectangular domain Rectangle2D, de-
fined using line segments. Note that the direction of
the lines must be consistent.
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3.2 Hierarchical Definition of PDEs
and Boundary Conditions

In order to simplify PDE model definition, a gen-
eral PDE model can be written as a base model
in PDE-Modelica with the coefficients as param-
eters. This model can either be instantiated di-
rectly with appropriate modifications to the pa-
rameters or used as a base class to define a more
specific PDE model with some parameters set
which subsequently can be instantiated and used
when needed. Similarly, boundary conditions can
be defined using base models and inheritance. A
coefficient-based PDE base model can be defined
as follows:

model PDE2D

space Real x,y;

Real u(x,y);

end PDE2D;

model PDECoeff2D

extends PDE2D;

parameter Real da = 0;

parameter Real c = 0;

parameter Real a = 0;

parameter Real f = 0;

equation

da*der(u) - div(c*grad(u)) + a*u = f;

end PDECoeff2D;

The variable u represents the unknown variable,
a function of time and the space variables. All pa-
rameters can be constants or functions of the space
variables. However, in this example, the coeffi-
cients da, c, a and f are restricted to be constants
only, for clarity. The der operator is an operator
in Modelica and defines the first time-derivative of
a variable. The div and grad operators can be ad-
ditional operators in PDE-Modelica corresponding
to the partial differential operators divergence
and gradient that are often used in mathemat-
ical literature. The equation above written with
mathematical notation follows:

da
∂u

∂t
−∇ · (c∇u) + au = f

Using PDECoeff2D as the base model, a simple,
steady-state heat transfer model can now be writ-
ten as:

model HeatTransfer

extends PDECoeff2D(c=1);

end HeatTransfer;

A Robin boundary condition, used in a heat
problem to describe a boundary that is neither a

perfect conductor nor a perfect insulator, can be
written by first writing a general Robin boundary
condition:

model Robin "Robin boundary condition"

extends PDE2D;

parameter Real c = 1;

parameter Real q = 1;

parameter Real g = 0;

equation

nder((c*grad(u))) + q*u = g;

end Robin;

In mathematical notation, this equation is writ-
ten as follows:

∂

∂n
(c∇u) + qu = g

The operator nder() is a special operator that
represents the derivative in the outward normal
direction with respect to the associated domain
boundary.

Other types of boundary conditions, e.g. Dirich-
let and Neumann conditions, describing a perfect
heat conductor and a perfect insulator, respec-
tively, can be defined by extending the Robin class
and setting the appropriate parameters to zero, as
follows:

model Neumann

extends Robin(q=0);

end Neumann;

model Dirichlet

extends Robin(c=0);

end Dirichlet;

For heat transfer problems, a more specific ver-
sion of the Robin boundary condition can be de-
fined by inheriting the Robin class and adding ap-
plication specific parameters and mapping them
to the general parameters:

model HeatRobin "For heat transfer"

extends Robin(c=k,

q=hh,

g = qh+hh*Tinf);

parameter Real k=1;

parameter Real qh=0;

parameter Real hh=1;

parameter Real Tinf=25;

end HeatRobin;

The corresponding mathematical equation with
these parameters is as follows:

∂

∂n
(k∇u) = qh + hh(Tinf − u)

where qh is the source term, hh is the heat transfer
coefficient and Tinf is the external temperature.
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3.3 Problem definition

Once the models for the PDE and the boundary
conditions are stated and the domain is defined,
the problem can be put together by instantiat-
ing the PDE model, the boundary conditions, and
the domain and associating the boundary condi-
tions with the boundary parts. In order to asso-
ciate boundary conditions and boundary elements,
an implicit variable bc (short for boundary condi-
tion) is introduced in the restricted class domain.
For each domain instance this variable is assigned
the desired boundary condition. Similarly, a PDE
is associated with a domain by instantiating the
PDE model and assigning the instance to the vari-
able eq (short for equation), also a builtin variable
in the restricted class domain. The complete prob-
lem statement is then:

model PDEModel

Neumann h_iso;

Dirichlet h_heated(g=50);

HeatRobin h_glass(hh=30000);

HeatTransfer ht;

Rectangle2D dom;

equation

dom.eq = ht;

dom.left.bc = h_glass;

dom.right.bc = h_heated;

dom.top.bc = h_iso;

dom.bottom.bc = h_iso;

end PDEModel;

Here, a Dirichlet condition with a constant value
of 50◦ for u is used to emulate a heat source on the
right side of the domain, Robin condition is used
for a non-isolating glass layer on the left side, and
Neumann condition is used for the isolated top
and bottom sides. The PDE model HeatTrans-
fer is instantiated as ht, and used in the interior
of the domain dom, which is an instance of the
Rectangle2D class.

4 Results

The PDE extensions discussed in Section 3 were
implemented in the prototype Modelica transla-
tor generated from a Natural Semantics specifica-
tion of Modelica (see Section 4.2). A heat transfer
example is solved in the following section in or-
der to demonstrate the PDE extensions and the
prototype. In this example, a stationary prob-
lem is solved, because the PDE solver currently
used with the prototype does not handle time-
dependent problems.

4.1 Example

A stationary heat conduction problem is consid-
ered. The problem is described by Poisson’s equa-
tion:

−∇ · (c∇u) = g

where c is the heat conductivity coefficient, and g
is the source term. In this example, c is set to 1
and g is set to 0.

rightleft

top

bottom1 bottom2 bottom3

Figure 3: The problem domain with its different
boundary sections.

The equation is solved on the domain shown
in Figure 3. The left side of the domain is defined
by a 90◦ arc, using an instance of a more gen-
eral version of the domain class Circle2D defined
in Section 3.1.2. The right side is defined by a Bez-
iér curve with six control points, as the instance
right of type Bezier2D defined below. The PDE-
Modelica code for defining Beziér curves using De
Casteljau’s Algorithm follows:

function bezier

constant Integer n=6;

input Real px[n];

input Real u;

output Real res;

Real qx[n];

algorithm

for i in 1:n loop

qx[i] := px[i];

end for;

for k in 1:n-1 loop

for i in 1:(n-k) loop

qx[i] := (1-u)*qx[i] + u*qx[i+1];

end for;

end for;

res := qx[1];

end bezier;

domain Bezier2D

constant Integer n=6;

parameter Real px[n];

parameter Real py[n];

space Real u;
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BoundaryCondition bc;

boundary

curve(bezier(px,u), bezier(py,u));

end Bezier2D;

The complete description of the domain for the
heat transfer example in PDE-Modelica is:

domain HeatExampleDomain

extends Domain2D;

Circle2D left(x0=-1, y0=-2, ra=4,

a=PI/2, b=PI/2);

Bezier2D right(px={1.0, 1.3, -4.0,

-4.0, 1.3, 1.0},

py={-2.0, 0.0, -3.0,

3.0, 0.0, 2.0});

Line2D top(x0=1, y0=2, x1=-1, y1=2);

Line2D bottom1(x0=-5, y0=-2,

x1=-3, y1=-2);

Line2D bottom2(x0=-3, y0=-2,

x1=-1, y1=-2);

Line2D bottom3(x0=-1, y0=-2,

x1=1, y1=-2);

boundary

composite(right, top, left,

bottom1, bottom2, bottom3);

end HeatExampledomain;

At the right border, the Robin boundary condi-
tion is used, in order to model heat flow through
the boundary that is proportional to the temper-
ature difference. The temperature outside the do-
main is set to 20◦. The middle part of the bottom
border is used as a heat source, with a Dirichlet
boundary condition u = 50. The other parts of
the bottom border as well as the left and the top
borders are perfectly insulated, using the homoge-
neous Neumann boundary conditions.

A plot of the solution can be seen in Figure 4.
This example was solved using the finite element
solver rheolef [15], and bamg [1] was used as the
mesh generator.

4.2 Implementation

We are working with two prototype environments
where the ideas described in Section 3 are being
tested. The prototype written in Mathematica
uses MathModelica [8] as the Modelica implemen-
tation and a numerical PDE solver generator [16]
for solving the PDEs. The different modules of
this environment can be seen in Figure 5. Here,
the models are written in a Mathematica style
Modelica syntax, and the domain analyzer gen-
erates domain information that is sent to an ex-
ternal mesh generator. The PDE analyzer col-
lects the PDEs and the boundary conditions and
calls the solver generator that generates a finite

Figure 4: A stationary heat transfer example. The
middle section of the bottom border is a heat source
with u = 50◦, the curved right border is non-
insulated with outside temperature 20◦, and the
other borders are insulated.

element solver in C++. The advantages of this
environment is the access to symbolic manipula-
tion in Mathematica, and the MathModelica input
format that is easy to extend in order to test new
language syntax extensions.

Mathematica

Parser

Solver
input
generator

PDE Analyzer

Domain analyzer

Mesh
Generator

Solver
Generator

Solver

Domain
info

Mesh

Equations

Mesh
importer

PDE-Modelica

PDE-Modelica

User input

External

Solver package

Figure 5: The PDE-Modelica prototype in the Math-
Modelica environment

The other prototype environment consists of
a Modelica parser, a compiler generated by the
RML [13] system from a Natural Semantics de-
scription of Modelica, an external mesh generator
and a PDE solver. The structure of this environ-
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ment can be seen in Figure 6. The compiler gen-
erates C++ code from the PDE-Modelica descrip-
tion. The resulting code generates the discretized
boundary at runtime, calls the mesh generator to
triangulate the domain and finally calls the finite
element solver.

PDE-Modelica Parser

Solver
parameter
generator

PDE Analyzer

Domain analyzer

Mesh
Generator

PDE Solver

Solver
Generator

Generated
Solver

Domain
info

Mesh

Equation
info

Wrapper code

User input Modeq

External Solver package

Figure 6: The PDE-Modelica prototype using the
Modelica translator generated from Natural Seman-
tics specification of Modelica in RML.

The current version of the prototype ignores the
equation parts of the PDE and boundary condi-
tion models and assumes a certain structure of
the PDE. A specific solver adapted to the prob-
lem is called automatically with the parameters
extracted from the models. This can be done be-
cause the base model approach is used when writ-
ing the PDE models, i.e. the solver needs only to
be associated with the base model, and parameters
of the base model are transferred to the solver.

5 Conclusions and Future Work

We have presented a design for specifying PDE
problem domains in Modelica by expressing the
boundary of the domain using lines and paramet-
ric curves. We have also shown a simple example
of hierarchically defined PDE model and boundary
conditions and how these can be used in a problem
specification together with a domain definition.

Our future work will consist of adding support

for the equation parts of the PDE and bound-
ary condition models, instead of having predefined
equations. Also, modeling with both PDE mod-
els and the current Modelica models with DAEs
and the interaction between these different kinds
of models needs to be considered. Support for
combination of domains using set operations such
as union, intersection, etc., and composition of
domains into bigger domains using connect state-
ments with different PDE models on each partial
domain is another possible future extension.
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