
���������	���
�����
��	�
���������	
����	
��������	
���	�����
��
����
������������

���������
�
��
������

��������	����� !

���
����
�
��

�����"
��������
������������

���������
�
��
������"�# �#$���%%��
�
&���"
��'
���&���(���&����&�
�)�&���"���
	*	�+��),��-.
������
�"��
����
�����	

/������
�������"���0��1�"�������.
�
�0����

�����
������������	
��
���	����	�������������������������

��	������	��
�����
�� ������� -��
��� �
&���"
�� '
���&�� �(�� �&���� &�
�)�&���"���
	*	� +��),�� ������&�� �(�

)�.���1� &�
� �
�"������1�� � -.
������
�"��
��� �
������ +�"������� ��� �"
� �������
�������

,	

�� 2��
����3��45�������������/6���&�
��70

�	
�� �
�
�� 8���9����� �3�/6�� �
�����
��� ��� ����&�
�� ��
� ������������ 7��
��
�� ���1:����

;��5
�������70

�	

�	����	����
�����
�������-��
���/����
�<���"���1����"��������7�"0
��
���3��1��=�
��
���<�"����6����
�
&���"
��'
���&���(���&����&�
�)�&���"���
	*	�+��),��������&���(��)�.���1�&�

�
�"������1��-.
������
�"��
����
�����

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 275 Modelica 2002, March 18−19, 2002

The Modelica Flight Dynamics Library

D. Moormann and G. Looye
German Aerospace Center (DLR)

Institute of Robotics and Mechatronics
Oberpfaffenhofen, D-82234 Wessling, Germany

phone: +49 8153 28 1068 / fax: +49 8153 28 1441
E-Mail: Dieter.Moormann@dlr.de, Gertjan.Looye@dlr.de

Abstract

The Modelica Flight Dynamics Library has been de-
veloped to model 6-degrees-of-freedom, nonlinear
flight dynamics and flight systems. Using this li-
brary the multidisciplinary interaction between flight
dynamics and systems can easily be understood and
analyzed. In this contribution the main benefits of the
Flight Dynamics Library, concerning model building
and efficient code generation – in particular for non-
linear parametric simulations and trim computations –
are discussed. The library has been successfully ap-
plied to the development of aircraft models for several
flight control system design projects.

1 Introduction

The design of aircraft requires contributions from dif-
ferent disciplines that are usually represented by dif-
ferent specialized groups within the aircraft develop-
ment process. In design and evaluation of controlled
flight system dynamics this is obvious.
In particular, the basic flight dynamics model con-
sists of a description of aircraft geometry and mass to-
gether with equations of motion and of environmental
influences such as gravity, atmosphere, and wind/gust.
Basic flight dynamics are affected by aerodynamics
and propulsion, two other distinct disciplines involved.
The flight dynamics interact with the onboard sys-
tems, which can be grouped into motivators, sensors,
and controls. Note that motivators consist of control
surfaces such as elevators, and actuators which drive
them.
Optimizing the interaction between flight dynamics
and systems is an important area of investigation to
improve efficiency of operation. For example, con-
trol surfaces can be designed to be ’just-right’ in size
and dynamic performance in order to minimize mass

and drag of the aircraft, while still guaranteeing the re-
quired overall aircraft flight characteristics in case of
failures.

Traditional aircraft models are built using domain spe-
cific software packages that best solve their specific
task with respect to the different disciplines involved,
e.g., flight mechanics, propulsion, controls and hy-
draulics. As a drawback, those packages usually have
very limited capabilities with respect to other domains
and thereby it is quite cumbersome to link the different
model components together. Hence, to develop a com-
prehensive aircraft dynamics model with low engi-
neering effort, it is necessary to apply a model descrip-
tion form that is well suited for all domains involved
and meets the requirements for multidisciplinary air-
craft model integration. This description form has to
be equally expressive for flight dynamics and for sys-
tems, which includes mechanical, electrical, hydrauli-
cal, and discrete digital control elements.

For this purpose we propose an object-oriented mod-
eling approach, developed as a general tool for a wide
variety of systems described by differential and alge-
braic equations. The advantage of such an approach is
that it is easy to understand and that it can be used to
visualize the hierarchical decomposition of a complete
system. For each discipline, reusable domain specific
model libraries can be built to encapsulate pertinent
knowledge. The ability to work with submodels of
different granularity is helpful for the design of flight
control systems, where it is necessary to work with
system models and flight dynamics models concur-
rently. During the design iteration process it should
be possible to adjust both the refinement of the sys-
tem model and the complexity of the flight dynamics
model.

An important feature of object diagrams is that they
are not limited to block diagrams with signal-directed
input/output behavior. In an object diagram, for ex-

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 276 The Modelica Association

ample, the constituents of flight dynamics can be con-
nected naturally according to their physical energy
flow interaction and it is not required to transform all
objects into a mathematical block diagram form as it
has to be done for block oriented control modeling en-
vironments such as MATLAB-SIMULINK.
This paper describes how nonlinear aircraft dynamics
models can be composed using the MODELICA-Flight
Dynamics Library. Its main benefits concerning model
composition using object-oriented structuring princi-
ples are presented in section 2. Its benefits result-
ing from an efficient mathematical code generation are
discussed in section 3, where special emphasis is put
on code generation for efficient parametric simulation
and on highly accurate and efficient trim procedures.

2 Interactive multi-point model com-
position via hierarchical object-
diagrams

An aircraft consists of a variety of different systems,
which represent the interacting disciplines involved in
aircraft engineering (e.g. flight mechanics, aerody-
namics, engine dynamics).

TAP 1

TAP2

BGR

motivator dynamics

AC

MOTI

aerodynamics

engine dynamicssensor dynamics

SENS

COG

rigid body dynamics

gravity

atmosphere

wind

1... n

1... n

Figure 1: Domain specific reference points of flight
dynamics and system models

Models of aircraft dynamics should be described in a
notation close to the aircraft physics. The most natural
way of modeling physical systems is as physical ob-
jects and phenomena, which are connected according
to their physical energy flow interaction and kinematic
constraints. This is different from modeling via signal
flows or input-output block diagrams as traditionally
used for controller modeling.

The ’local’ description of each aircraft component (see
Fig. 1) with respect to its intrinsic reference points
(e.g., Center of Gravity COG, Body Geometric Ref-
erence BGR, Thrust Application Point TAP, Aerody-
namic Center AC) in its domain specific coordinate
system supports ’multi-point’ modeling. The multi-
point modeling approach allows, e.g., the proper han-
dling of center of gravity variations and sensor posi-
tioning without any additional modeling effort, which
is usually a very time-consuming and error-prone pro-
cess.
A multi-point model also becomes necessary, when,
e.g., the coupling effects between ’aircraft’ and ’air
flow’ need to be modeled with higher accuracy than
can be obtained by using a ordinary one-point model,
where all the force, moment and velocity vectors are
referred to the aircraft’s center of gravity only [2].

Figure 2: Local differential air velocity due to wing
downwash and engine flow [2]

It is obvious from Fig. 2, that the local airflow is dif-
ferent for different points at the airframe due to air-
craft rotation, changing wind fields, wing downwash
and engine flow. The complete local airspeed �Va for
each point P can be calculated from the local inertial
speed �V (P) and the local speed of the airflow �Vw(P):

�Va(P) =�V (P)−�Vw(P) .

Above equation can be expanded to identify all partial
velocity vectors to give the complete airspeed at the
point considered:

�Va(P) =�V (COG)−�Vw(COG) + ∆�V (P,�ω)

−∆�Vw(P)−∆�Vwdw (P) .

The total local airspeed is summed up by the inertial
velocity of the center of gravity �V (COG), the speed of
wind at COG �Vw(COG), the additional airspeed due to
aircraft rotation ω at P about COG ∆�V (P), the effect
of wind gradients due to its offset from COG ∆�Vw(P)

and the effect of wing downwash and engine flow at P
∆�Vwdw (P).

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 277 Modelica 2002, March 18−19, 2002

Using a 2-point-aerodynamics approach it is quite con-
venient to properly model the influence of aircraft ro-
tation, wing downwash and wind gradients. According

BGR

controls

toAWC

AWC
AWCtoATC

ATC

aeroTailplane

aeroWingBody
downWash

Figure 3: 2-point-aerodynamics object diagram with
respect to the aircraft geometric reference BGR

to the object model of Fig. 3 this is done by separately
describing the aerodynamics of wing/body (with re-
spect to the Aerodynamic Wing Center AWC) and of
the tailplane (with respect to the Aerodynamic Tail
Center ATC). Between the aircraft body geometric
reference BGR and these two aerodynamic reference
points there are geometric offsets, which are explic-
itly made visible by the instances ’toAWC’ and ’AWC-
toATC’ of a validated coordinate transformation class.
The advantage of this approach is that the influence of
aircraft rotation ∆�V (P) and the effect of wind gradients
∆�Vw(P) of above equation are automatically correctly
handled by generic transformation objects.
In the same way, using the Flight Dynamics Library,
all interactions between components of Fig. 1 can be
properly formulated. In order to make the understand-
ing of all submodels easy, each component of the li-
brary is described in its own coordinate system. Grav-
ity, wind, and atmosphere are conveniently described
in an earth related coordinate system, aerodynamics
in a wind coordinate system, and engines in a system
which is related to the body-fixed coordinate system.
Therefore, in addition to the basic aircraft components,
coordinate transformations are also detailed and han-
dled as objects in the Flight Dynamics Library (see
upper part of Fig. 4). Except for aerodynamics and
engine objects all other objects are independent of a
specific aircraft type.
The objects that constitute the rigid-body flight dy-
namics are interconnected according the object dia-
gram of the bottom part of Fig. 4. Center point of
the flight dynamics object model are the body geomet-
ric reference BGR and the center of gravity COG to-
gether with the body-object, which describes the mass
properties and equations of motion of an aircraft. The

Flight Dynamics Library
 Main library

Connect Trafo Body

Engine Aero Environ

Systems Examples

“drag & drop“

motivators

toCOG

BGR
COG

aerodynamics

engine1

engine2

sensors
body

gravity

wind

atmosphere

6-dof

Figure 4: Interactive “drag & drop”-model building,
top: flight dynamics class library, bottom: flight dy-
namics object-diagram

connections between objects represent their interac-
tion. The complete aircraft consists of a body (fuse-
lage and wing), which is powered by one or more en-
gines. The aerodynamics describes the effects of the
airflow over the aircraft. The aircraft is influenced by
gravity and the surrounding atmosphere and winds.
Additional dynamics is resulting from models of mo-
tivators and of sensors.
The connectors used to describe the interaction be-
tween flight dynamics objects, as specified by bold
solid lines in the object diagram of Fig. 4, are the
same as those used within the MODELICA-Multibody
Library1. The connector contains all variables which
specifies the orientation, position and the correspond-
ing speeds and accelerations with respect to some in-
ertia. For aircraft usually some point at the earth’s sur-
face together with a ’north-east-down’ coordinate sys-
tem is defined as inertial reference. Additional connec-
tor variables are the force and moment vector, acting

1URL: http://www.modelica.org/library/ModelicaAdditions/
docu/ModelicaAdditions MultiBody.html

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 278 The Modelica Association

at the origin of the point defined by the connector and
solved in the coordinate system of the connector.
Specific for aircraft are the models of gravity, atmo-
sphere and wind/gust. For multi-point models it is es-
sential to properly formulate these models as fields,
which usually vary with inertial position. For this pur-
pose MODELICA offers the concept of ’dynamic scop-
ing’ [8]. Using this concept gravity fields, wind/gust
fields and atmospheric data depending on the iner-
tial position of individual aircraft components can
be specified. Without any user effort the 2-point-
aerodynamics of Fig. 3 is automatically handled cor-
rectly, because e.g. the wind field (and its gradients)
are inherited position dependent to the aerodynamics
models of wing/body and of the tailplane.

Flight Dynamics Library
Sublibrary: Body

or

or

or

longitud

Quat

6-dof

Gyro

6-dof
description

longitudinal
description

Quaternion
description

Gyro
description

motivators

toCOG

BGR
COG

aerodynamics

engine1

engine2

sensors
body

gravity

wind

atmosphere

6-dof

Figure 5: Local exchange of sub-components

In the Flight Dynamics Library different representa-
tions of one specific component can be found (see
Fig. 5). There is a class with six degrees of freedom
body, and another class with three degrees of free-
dom bodyLong that can be used to generate a nonlin-
ear simulation model for the longitudinal motion only.
The ordinary formulation of the equations of motion
can be exchanged by a representation using quater-

nions. There are also wind, atmosphere and gravity
models of different complexity. Existing codes for
aerodynamics and engine models can easily be reused
by using templates.

An important aspect of object-oriented modeling is the
hierarchical structure and local encapsulation of ob-
jects. With the graphical user interface of DYMOLA,
it can be zoomed into objects to display their inter-
nal structure. Zooming into the engine-object in the
lower left part of Fig. 6 results in the engine model
as detailed in the top left of this figure. It shows that
the engine dynamics are described with respect to the
thrust application point TAP. This is the most natu-
ral point at the airframe to formulate propulsion ef-
fects. The thrust application point is connected to the
aircraft reference BGR via a transformation object to-
TAP, which details the offset in position and orienta-
tion from TAP with respect to BGR. Depending on
this offset the generic transformation object is instan-
tiated with the particular parameter values (top right
of Fig. 6). As a result, the local engine forces and
moments with respect to BGR are automatically com-
puted.

Zooming into the body-object in the lower left part of
Fig. 6 shows the equation layer of this component as
displayed in the lower right part of this figure. Ob-
jects, which form the physical model, contain declar-
ative mathematical equations, not assignments as is
common in simulation languages. This makes the un-
derstanding and engineering reuse much easier as op-
posed to simulation code put in a form mainly for com-
putational execution. A generic object with declarative
equations can fulfill different application tasks. For
example, the object toCOG which does the transfor-
mations between COG and BGR is used for trans-
forming velocities with respect to COG to velocities
with respect to BGR, as required as an interim step for
aerodynamics and thrust calculations. The same object
is used for the transformation of forces and moments
from the BGR reference to the COG-reference, as re-
quired for solving the equations of motion within the
body-object.

When connecting objects, only the relation between
them is defined, and not the order in which the ob-
ject equations are finally solved. Here the computer
is used to sort the object equations automatically by a
symbolic equation handler rather than performing this
process manually. This aspect is handled in the fol-
lowing section.

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 279 Modelica 2002, March 18−19, 2002

toTAP

// Transformation matrix between bodyfixed and geodetic axes,
// according to DIN 9300
 bTg = [cos(theta)*cos(psi),
 cos(theta)*sin(psi),
 -sin(theta);
 sin(phi)*sin(theta)*cos(psi) - cos(phi)*sin(psi),
 sin(phi)*sin(theta)*sin(psi) + cos(phi)*cos(psi),
 sin(phi)*cos(theta);
 cos(phi)*sin(theta)*cos(psi) + sin(phi)*sin(psi),
 cos(phi)*sin(theta)*sin(psi) - sin(phi)*cos(psi),
 cos(phi)*cos(theta)];

// rotational equations of motion
 Mb = I * zb + cross(wb,(I*wb));
 // rotational acceleration
 // = time derivative of rotational velocity
 zb = [der(p), der(q), der(r)];
 wb = [p , q , r];

 // Time derivative of Euler Angles

TrafoEnginetoTAP

BGRthrottle

TAP

thrust application point
thrust

motivators

toCOG

BGR
COG

aerodynamics

engine1

engine2

sensors

body

gravity

wind

atmosphere

6-dof

Figure 6: Zoom into an hierarchical structured object-diagram

3 Equation-based model building
and efficient simulation code gen-
eration

From the model, that is graphically specified by a set
of object diagrams, simulation models and documen-
tation of the flight dynamics and systems can be gen-
erated automatically.

In the modeling process the object model is composed
using different libraries and aircraft specific parameter
data (see Fig. 7). The equation handler of DYMOLA

solves the equations according to inputs and outputs of
the complete aircraft model for a particular task. Equa-
tions, that are formulated in an object, but not needed
for the specified configuration, are automatically re-
moved in the following model building process. The
result is a nonlinear symbolic state space description
with a minimum number of equations for this task.
Models for efficient parametric nonlinear simulations
(section 3.1) can be automatically generated from ob-
ject models of the Flight Dynamics Library, using the
left branch of Fig. 7.

Due to MODELICAs equation-based approach it is pos-
sible to invert the interacting flight dynamics and flight
systems model symbolically to the highest possible

extend. This allows to generate so called ’inverse
models’ which can be used for trim computations or
which become nonlinear Dynamic Inversion (DI) con-
trol code [5] within a flight computer. The inversion
according to the middle and right branch of Fig. 7 is
mainly done by exchanging the external inputs and
outputs while still using the same object model which
has already been used to generate code for the simula-
tion model. The equation handler of DYMOLA is used
to solve all equations according to one of the above
specified tasks. The derivation of an highly accurate
and very efficient trim code is discussed in section 3.2,
the DI-code generation is detailed in [5] and not pre-
sented here.

All generated models can be simulated with DYMOLA

or with SIMULINK, using DYMOLAS S-function
model generator. Additionally, automatic code gen-
eration is possible for the real-time engineering flight
simulator AVDS (section 3.3).

3.1 Efficient parameterized simulation mod-
els

Generally a simulator requires that system models are
transferred to a state space description:

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 280 The Modelica Association

simulation-

code generation

phycial system model

system parameters

trim-code operational

(automatic)

components libraries

physical modelling

 code
e.g. Simulink-
 S-funktion

(realtime)
flight simulator

e.g. AVDS

(automatic)

e.g. Simulink-
S-function e.g. C, Ada

flight control laws

(interactive)

u y
u y

u y,y,...

8 8

mathematical

 DI Code

sorted & solved
equations for

simulation

sorted & solved
equations for

trimming

sorted & solved
equations for

dynamic inversion (DI)

input da
input de
input dr

output Vcas
output V
output Vground
output p
output q...

...

input V
input gamma
input beta

output da
output de
output dr
output u
output v...

...

output da
output de
output dr

input p_dot
input q_dot
input r_dot
input u
input v...

...
.

specification
of model

model building

inputs / outputs
for a particular task

Figure 7: Equation based model building process

ẋ = f (x,us,par, t)
ys = g (x,us,par, t) .

To achieve such a standard description from an ob-
ject model it is only necessary to assign the aerody-
namic and engine controls as simulation inputs us and
the measurement and evaluation signals as simulation
outputs ys. For the generation of simulation models
the state vector x, which consists of the 12 basic flight
dynamics states and of additional states of engine dy-
namics, actuator- and sensor dynamics, is automati-
cally considered as known. Additional inputs are the
simulation time t and the parameter vector par (e.g.
mass, center of gravity position, wing area). Depend-

ing on all inputs time derivative of the state vector ẋ
and the output vector ys is computed. Fig. 8 defines a
typical set of inputs, outputs, and states of a flight dy-
namics model. A typical set of flight dynamics states
consist of the velocity (V), the angle of attack (α),
the angle of sideslip (β), the angular velocities (p, q,
r), the attitude (φ, θ, ψ) and the inertial position (x,
y, z). Simulation model inputs are the aerodynamic
control surface deflections of tailplane (dt), elevator
(de), aileron (da) and rudder (dr), the engine con-
trols (throttle1, throttle2) and, for example, additional
gust inputs (u gust,v gust,w gust). Typical simula-
tion model outputs are the measurements signals such
as height, V , α, β and the roll angle φ and the evalua-
tion signal such as the flight path angle γ and the load

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 281 Modelica 2002, March 18−19, 2002

states der(states) control inputs outputs

 V der(V) = 0 dt height

α der(α) = 0 de = const V

β der(β) = 0 da γ = 0

p der(p) = 0 dr α

q der(q) = 0 throttle1 = const nz

r der(r) = 0 throttle2 = const β

φ der(φ) = 0 u_gust = const φ

θ der(θ) v_gust = const

ψ = 0 der(ψ) w_gust = const

x = 0 der(x)

y = 0 der(y)

z der(z)

Figure 8: Inputs, outputs, and states of a flight dynam-
ics model (actuator, sensor models are omitted here)

factor nz. For a detailed definition of these variables
see, e.g. [1].
Automatic code generation, for example for
SIMULINK, is possible separately for subcompo-
nents as specified in Fig. 9 as well as for the complete
aircraft model. The latter approach has the advan-
tage that the transformation equations, which are
in particular necessary for multi-point models, can
be sorted (and eliminated) according the specified
task. Algebraic loops, which occur if, e.g., the
aerodynamic forces depend on accelerations, can be
solved automatically using tearing [3].
Before starting a simulation, the initial, stationary in-
puts and states for a desired point of the flight envelope
have to be calculated by a trim procedure. This aspect
is dealt with in the following section.

3.2 Accurate trim computation

Trim calculations of complex flight system dynamics
models are a very challenging computational task, in-
volving the numerical solution of a system of nonlin-
ear equations to calculate the stationary values of state
and control variables. The difficulties mainly arise be-
cause of the lack of differentiability in aerodynamic
and engine models due to the presence of various look-
up tables used for linear interpolations. These severe
nonlinearities as well as the presence of, e.g., control
surface deflection limiters make the numerical solution
of this high order system of equations very challeng-
ing.

Simulation environments, such as
MATALB/SIMULINK, offer trim routines for this
task that use the simulation model to perform trim
calculations, which are driven by a numerical op-
timization algorithm. For this purpose the state
derivatives ẋ and outputs of the of the simulation
model ys are set equal to their desired trim values ẋtr
and ytr:

ẋ = ẋtr
ys = ytr

The trim values of states x and simulation inputs us are
calculated using the following constraint equation:

ẋtr− f (x,us,par, t) = 0

ytr−g (x,us,par, t) = 0

The advantage of this numerical approach, using the
complete simulation model, is that consistency be-
tween simulation model and trim computation is au-
tomatically guaranteed by using the same model. The
disadvantage of this approach, which is achieved by a
very high number of model evaluation of the simula-
tion model, is its rather high calculation time and its
comparatively low accuracy (’miss-trim’). The inac-
curacy, which increases with the complexity and non-
linearity of the model, results from this procedure ne-
glecting the fact that some of the states directly de-
pend on each other. For example, actuator and sensor
states are treated as independent from the flight dy-
namics states and inputs even though they are directly
related to them.
An alternative is to trim the subcomponents of the air-
craft model (see Fig. 9) separately. First the flight dy-
namics submodel is trimmed. The trim values of this
submodel are taken to trim in three additional steps the
actuator, engine and sensor dynamics models, again
using the same numerical trim approach. The trim
computation is more accurate compared to the above
one-step-approach, but usually more time consuming.
Computation time and accuracy can be improved, if
actuator and sensor model variables are not trimmed
by an optimizer but directly set by the user. For ex-
ample, actuator states and inputs can often be directly
related to flight dynamics inputs and sensor states and
outputs to flight dynamics outputs. The disadvantage
of this approach is, that the procedure takes more engi-
neer interaction and therefore increases the likeliness
of errors, if submodels change during design.
A third option for trim computations, which is base
on model inversion, is proposed here. The symbolic

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 282 The Modelica Association

1

y_s

sensors

sensor dynamicsflightdyn

flight dynamics
(12 states)

engines

engine dynamic

actuators

actuator dynamics

m m MuMu1

u_s

dt_Cmd
de_Cmd
da_Cmd
dr_Cmd

throttle1_Cmd
throttle2_Cmd

throttle1
throttle2

dt
de
da
dr

u_gust
v_gust
w_gust

height_Meas
V_Meas

alpha_Meas
beta_Meas

phi_Meas

height
V
alpha
beta
phi

gamma
nz

Figure 9: SIMULINK-block diagram of the flight system dynamics

engine of DYMOLA allows to generate C-code for an
’inverse model’ to serve for trimming. To serve this
purpose the inputs and outputs of the simulation model
are inverted. The states derivatives ẋ become known,
also the outputs of the simulation model ys, which are
now the inputs of the trim model ut . The unknown
variables are the the inputs of the simulation model us
= yt and the states x:

yt = us = h (ut , ẋ,par, t)
x = j (ut , ẋ,par, t) .

One trim condition is specified in Fig. 8. In con-
trast to the simulation model code generation of sec-
tion 3.1, where the variables are column-wise known
or unknown, the known variables of the trim model
(trim inputs) are shaded grey, whereas the unknown
variables (trim outputs) are not. For each variable
of the simulation model changed from known to un-
known, one other variable is changed from unknown
to known. The balance of known to unknown vari-
ables is kept equal. The inputs of the trim model are
the desired trim conditions (such as velocity V and an-
gle of attack α) and the outputs are the corresponding
equilibrium values of trimmed state and aerodynamic
and engine control vectors. DYMOLA generates essen-
tially explicit equations for the inverse model by solv-
ing the high order nonlinear equation symbolically to
the highest possible extend. Even if it is not possible
to determine a symbolic solution, DYMOLA is still able
to reduce the burden of solving numerically a high or-
der system of nonlinear equations to the solution of a
small core system of nonlinear equations which ulti-
mately must be solved numerically.
The proposed trim approach based on model inversion
was compared to the traditional approach in the HIRM

benchmark flight dynamics model of the GARTEUR
Flight Mechanics Action Group on ”’New Analysis
Techniques for Clearance of Flight Control Laws”’
[4]. An optimization based clearance process for flight
control systems requires highly precise computations
of trim values, because these values are the base for the
following nonlinear or linear analysis. Even very small
inaccuracies in trim values can corrupt the optimiza-
tion progress. Here the trim computation based on
an inverse model has proven its advantage compared
to a standard optimization based trim approach. An-
other advantage of the inverse model trim approach is
its computational time efficiency. Trimming the same,
highly nonlinear flight dynamics model took, depend-
ing on the trim point, between 15 and 65 seconds using
conventional trimming, just 50 to 70 milliseconds us-
ing the inverse model. Both trim computations were
done within MATLAB/SIMULINK on a 400MHz per-
sonal computer [6].

3.3 Interactive Real-time Simulation using
the Engineering Flight Simulator AVDS

For the evaluation of critical flight conditions and for
the validation of flight control systems an aircraft an-
imation tool can help the design engineer to analyze
the aircraft performance. The Aircraft Visual Design
Simulator (AVDS [7]) is such a tool to fill the gap be-
tween batch and motion-based simulation by allowing
the flight control design engineer to quickly test and
re-test response in a real-time environment on a low-
cost PC (Fig. 10).
Fig. 11 illustrates the data flow within the interactive
mode of AVDS, which allows the design engineer to
virtually ’fly’ the aircraft. Using, e.g. the cockpit-view
together with the head-up display (HUD) of Fig. 10,

Moormann D., Looye G. The Modelica Flight Dynamics Library

The Modelica Association 283 Modelica 2002, March 18−19, 2002

������������	

��� ���

���������	
���
�����
�
��

����
������
�������
	���

�����

��	��

�����������	
�

�
	���	�
�����

����
��

�����
��

��������
�
����
���� �
���
�����

�� �
�	
�
�����

� ��
�	
�
�����

�
���
����
����
��

������

�������

������
����
��!� ������
���
���!�

�
������������ �� �
�
����������

� ��
�
����������

Figure 11: AVDS data flow in interactive simulation

Figure 10: AVDS interactive real-time flight simulation

the engineer controls the aircraft via input devices
like mouse, keyboards and other control instruments.
These commands are transferred to the flight control
system (FCS) and result in the controls of the flight
system dynamics model (FSD). For the implementa-
tion of flight dynamics models AVDS offers an inter-
face which consists of C-subroutines for controller and
flight dynamics with systems with its corresponding
set of parameters.
To avoid a manual re-implementation of these model
codes, we propose to automatically generate the
AVDS-codes and their parameter sets starting from the
same object model as used for the parametric simula-
tion (section 3.1). The big advantage using the MOD-
ELICA-AVDS interface is the complete automation of
the code generation. The trim computation (as detailed
in section 3.2) is already included in the code. This
means that neither initial states of flight dynamics or
systems have to be directly assigned by the user nor
that an external, separate trim tool has to be used to
specify flight conditions in AVDS.
The strategy of interfacing MODELICA flight dynam-
ics models to AVDS can be transferred to any other
flight simulator. The symbolic equation handler of
DYMOLA guarantees a highly efficient model code.
Different levels of detail do not have any influence on
the interface structure. The only limit is the computa-
tional power of the platform which is used to run the
flight simulator.

The Modelica Flight Dynamics Library Moormann D., Looye G.

Modelica 2002, March 18−19, 2002 284 The Modelica Association

4 Conclusion

Complex aircraft models including actuator and sen-
sor dynamics in addition to electronic flight control
systems, are aggregated from contributions of many
different disciplines involved. This paper shows that
complex models are best comprehended if each dis-
ciplinary contribution is described in its own specific
domain. For flight dynamics, the MODELICA Flight
Dynamics Library serves this purpose.
For systematic and transparent modeling, it turned out
to be important to describe all aircraft components and
physical phenomena locally with respect to their in-
trinsic reference points, which usually have an offset
in position and orientation from the aircraft’s body ge-
ometric reference BGR.
The computer aided model building technique allows
the modeling of engineering systems such as flight dy-
namics on a physical level in the form of declarative
mathematical equations specifying energy exchange
and kinematic constraints.
The equation-based modeling language of MODELICA

allows the generation of codes for an inverse model to
serve for trimming. Such a model has as inputs the
desired trim conditions and as outputs the correspond-
ing equilibrium values of trimmed state and controls
vector. The equation handler of DYMOLA generates
essentially explicit equations for the inverse model by
solving the high order nonlinear equation to the high-
est possible extend symbolically. Thus, the trimming
procedure based on such an inverse model has proven
to be very accurate and fast compared to conventional
optimization based trim procedure.
The code generation facility of DYMOLA al-
lows the use of different simulators, (e.g.,
MATALB/SIMULINK, DYMOLA’s own simula-
tion environment, the flight simulator AVDS) as a
run-time environment for model execution. Using the
Flight Dynamics Library offers the opportunity that
trim code is automatically included into the simulation
model and executed at simulation start. This means
that no separate trim tool has to be used.

References

[1] R. Brockhaus. Flugregelung. Springer Verlag,
Berlin, 1994.

[2] R. Brockhaus. A Mathematical Multi-Point
Model for Aircraft Motion in Moving Air.
Zeitschrift für Flugwissenschaften und Wel-
traumforschung, pages. 187-184, 1987.

[3] H. Elmqvist und M. Otter. Methods for Tearing
Systems of Equations in Object-Oriented Mod-
eling. In Proceedings ESM’94 European Simu-
lation Multiconference, pp. 326-332, Barcelona,
Spain, 1994.

[4] GARTEUR FM(AG11). Scope of a new GAR-
TEUR Flight Mechanics Action Group on ”’New
Analysis Techniques for Clearance of Flight
Control Laws”’. Group for Aeronautical Re-
search and Technology in Europe (GARTEUR),
Technical Report GARTEUR TP-119-1, 1999.

[5] G. Looye. Design of Autopilot Control Laws
with Nonlinear Dynamic Inversion at Automa-
tisierungstechnik, pp. 523-531, No. 12, 2001.

[6] D. Moormann. Automatisierte Modellbildung
der Flugsystemdynamik. Dissertation, RWTH
Aachen. VDI Fortschrittsberichte, Mess-,
Steuerungs- und Regelungstechnik, Reihe 8,
No. 931, 2002.

[7] S.J. Rasmussen and S.G. Breslin. AVDS: A
Flight Systems Design Tool for Visualization and
Engineer-in-the-Loop Simulation. AIAA Mod-
eling and Simulation Technologies Conference,
No. AIAA-3467-97, 1997.

[8] M. Tiller. Introduction to Physical Modeling
with Modelica. The Kluwer International Series
in Engineering and Computer Sciences. ISBN
0792373677, 2001.

