
���������	�
����
������
��������
��������	
������
�����
	��	����������
���	��
�������	�������	

������

�����
�	�����
����������
����
���������
�����������
������������
����� !"# $

�
��������������
���%������������
����
���������
�����������
��
��%� $# &
��''�

������%���(��������)��*���#�����+
���
%�����,��-�*+.
�/0����
����%����
�1���
���

	����
���������%���2��3�%����
��0����2���
��������
������������	
��
���	����	�������������������������

��	������	��
�����
�� �
����� /����
� ������%��� (������� �)�� *���#� ���� +
���
%��� ��,�� -�*+.
� ��������� �)�

+�0���3� ���� ���%
�����3
� /0����
����%����
� 1���
��� -�%
���
�� ��� �%�� �����
�
���������.�

�� 4�������5��67���
����
����	8
�*���
��2�����
�� ������ 9���:���
� �5*	8
� ���
������� ��� ���������
��� ������
����� �������
� *��3;����

���7������
��2�����

�	����	����
�����
�
�����/����
�	������<
��%���3�
��%�����
����%2�����
�5��3
�=������
�<�%
���8
��

������%���(��������)��*���#�����+
���
%�����,��-�*+.
�����������)��+�0���3����
���%
�����3
�/0����
����%����
�1���
��

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 173 Modelica 2002, March 18−19, 2002

Modelica Implementation of Field-oriented Controlled 3-phase
Induction Machine Drive

David A. Torrey Ugur S. Selamogullari
Department of Electrical, Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY 12180 USA

Email: torred@rpi.edu, selamu@rpi.edu

Abstract

This paper focuses on the modeling of a cage induc-
tion machine drive under direct-field oriented control,
also referred to as flux-vector control. The interest
is to create a behavioral model of an induction ma-
chine drive under field orientation for sytem simula-
tions since field-oriented control is now commonplace
in commerical adjustable speed drives. First, the 3-
phase induction machine model is developed. Then,
the field orientation requirements are applied to this
model and a voltage source inverter is used to emu-
late a controlled current source. Rotor field orientation
is used because of fewer limitations than other field-
orientation approaches. The inverter is assumed to
provide the desired phase currents instantenously and
ripple free at some efficiency. Finally, these three com-
ponents of the overall drive sytem, machine model,
field orientation and inverter power supply, are com-
bined together in a block using the Modelica language
and simultaneously solved using the Dymola user in-
terface.

1 Introduction

As a mature technology the induction machine en-
joys use in many established applications and is fre-
quently the first machine considered for emerging ap-
plications. The machine is comprised of a stator and
a rotor. The windings on the stator and the rotor are
assumed to be sinusoidally distributed in space to sim-
plify the analysis of the machine [5]. The windings
in the induction machine are coupled. This coupling
is described through the inductance matrix, which de-
scribes how current in any one winding contributes to
the flux linking the other windings. In a closed form,

the matrix equation can be written as

λabc = Labc(θ)iabc , (1)

where λabc and iabc are 1× 6 vectors and Labc(θ) is a
6×6 matrix dependent on rotor position.

The electrical dynamics for the induction machine can
be written very succinctly using vector notation as

vabc =
dλabc
dt

+Rabciabc . (2)

The electromagnetic torque is

τem =
1
2
iT
dL(θ)
dθ

i , (3)

and the mechanical dynamics are

H
dω
dt

= τem− τl , (4)

where the load torque τl includes windage and friction
in addition to the shaft load. The moment of inertia
(H) is assumed to include the inertia of the induction
machine and whatever is connected to the induction
machine through its shaft.

Taken together Eqs. 1 through 4 summarize the elec-
tromechanical dynamics of the induction machine.
This description, however is inconvenient for studying
dynamics and control for two reasons:

1. The order of the system is large.

2. The dependence on θ gives rise to a time-varying
model.

To obtain a much simpler induction machine model,
two power invariant transformations are used. The αβ
transformation converts a balanced three-phase ma-
chine into an equivalent balanced two-phase machine.

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 174 The Modelica Association

This is valuable because in a three-phase machine each
phase couples into the other phase. A two-phase ma-
chine, on the other hand, has phase windings that do
not couple because the axes of the magnetic fields are
orthogonal (Fig. 1). In addition, it reduces the machine
from six windings to four windings.

a

b

c

α

β

ωt ωt

abc reference
frame

αβ0 reference
frame

Figure 1: Space vectors for the abc reference frame
and the αβ0 reference frame.

If the phase a and phase α axes are coincident, N3 is
the number of turns of the three-phase winding and N2

is the number of turns for the two-phase winding, then
resolving the three mmfs of the abc frame along the
α and β axes and equating the three-phase quantities
gives

N2iα = N3ia+N3ib cos
(

2π
3

)
+N3ic cos

(
4π
3

)
, (5)

N2iβ = N3ib sin
(

2π
3

)
+N3ic sin

(
4π
3

)
. (6)

For completeness, a third variable which is indepen-
dent of iα and iβ is needed:

N2i0 = kN3ia + kN3ib+ kN3ic . (7)

These relationships can be summarized in vector form
as


 iα
iβ
i0


 =

T︷ ︸︸ ︷
N3

N2


 1 −1/2 −1/2

0
√

3/2 −√
3/2

k k k





 ia
ib
ic


 . (8)

In order to have invariance of power, T = T−T must
be satisfied, and this is satisfied if N3/N2 =

√
2/3 and

k = 1/
√

2 [7], giving

T =

√
2
3


 1 −1/2 −1/2

0
√

3/2 −√
3/2

1/
√

2 1/
√

2 1/
√

2


 . (9)

Since 0 components do not couple to either the α or β
phases and do not contribute to torque production, it is

best not to include them in the model. As a result, the
model order is reduced from six states to four states.
The T matrix becomes T23 for converting abc quanti-
ties to αβ quantities and becomes T32 for the inverse
transformation:

T23 =

√
2
3

[
1 −1/2 −1/2
0

√
3/2 −√

3/2

]
; (10)

T32 = TT23 . (11)

In a closed format, the electrical dynamics become

vαβ =
dλαβ

dt
+Rαβiαβ . (12)

The second transformation is another power-invariant
transformation that is tied to the rotating magnetic
fields in the airgap of the machine. This dq transfor-
mation eliminates the rotor position from the machine
dynamics by projecting the dynamics onto a reference
frame that moves with the airgap magnetic field. Fig. 2
shows an arbitrary vector�a decomposed into reference
frames where one frame is displaced from the other by
an angle φ. Each reference frame is denoted by a direct
axis and a quadrature axis; the direct and quadrature
axes are orthogonal. It can be shown that

[
ad2

aq2

]
=

[
cos(φ) sin(φ)
−sin(φ) cos(φ)

][
ad1

aq1

]
. (13)

φ

d1 axis ad1

aq1

d2 axis
aq2

ad2

q1 axis

q2 axis

Figure 2: The vector �a decomposed into two reference
frames, with angular displacement φ between them.

Fig. 3 shows the relationship among the three coordi-
nate systems, where superscript s and r indicate stator
and rotor frames, respectively. Accordingly, the αβ
dynamics of the stator and rotor are transformed to dq
reference frame through an angle Pφ for the stator and

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 175 Modelica 2002, March 18−19, 2002

P(φ−θ) for the rotor quantities (Fig. 3). It follows that




λsd
λsq
λrd
λrq


 =

[
ePφJ 0

0 eP(φ−θ)J

]


λsα
λsβ
λrα
λrβ


 , (14)

where

J =
[

0 1
−1 0

]
; (15)

eJφ =
[

cos(φ) sin(φ)
−sin(φ) cos(φ)

]
. (16)

(φ -θ)

φ
θ

αs

βs

αr

βr

dq

Figure 3: The relationship among the stator αβ axes,
the rotor αβ axes, and the axes of the dq reference
frame.

The machine dynamics become

vdq =
λdq
dt

+Rdqidq−
[

ωsJ 0
0 ωslJ

]
λdq , (17)

where

λdq =
[
LSI MI
MI LRI

]
idq ; (18)

LS = Ls+Lss ,

LR = Lr +Lrr ,

M = 3
2Lsr .

ωs is the synchronous angular velocity of the air-gap
magnetic field, ωsl is the slip frequency, and P is the
number of pole pairs.

The torque equation is

τm =
3PLsr

2
(isqird− isdirq)=PM(isqird− isdirq) . (19)

2 Field Orientation

Field oriented control is a technique that structures the
control of an induction-machine to be entirely paral-
lel to that of a separately excited dc machine. That
is, the field flux is oriented to be orthogonal to the
torque-producing current. There are three commonly
discussed versions of field orientation: rotor, stator and
airgap. In each, the torque is given by vector product
between flux and current. The flux involved is tied
to the type of orientation, for example rotor orienta-
tion uses rotor fluxes. In the direct method, the airgap
flux is measured directly by Hall sensors to determine
the magnitude and orientation of the rotor flux vector,
while the indirect field orientation is based on calculat-
ing the slip speed required for proper field orientation,
and imposition of this speed on the motor [1, 2, 3, 4].

In direct field orientation, the orientation of the rotor
flux is determined as follows:

1. The currents isα and isβ are calculated from the
measured stator currents.

2. The fluxes λrα and λrβ are calculated from the
measured airgap flux and the stator currents:

λrα =
LR
M

λmα − (LR−M)isα ; (20)

λrβ =
LR
M

λmβ − (LR−M)isβ . (21)

3. The magnitude and orientation of the rotor flux is
determined using the rectangular to polar coordi-
nate transformation:

|λr| =
√

λ2
rα + λ2

rβ , (22)

φ = tan−1 λrβ
λrα

. (23)

Under field-orientation, we are forcing the induction
machine to maintain orthogonality between appro-
priate flux and current through active control. The
commands for flux and torque are generated by a
higher-order controller. The block diagram of the field
oriented-control of an induction machine is given in
Fig. 4. Based on commanded flux and torque, the de-
sired values for i∗sd and i∗sq are generated. The outputs
of the flux and torque calculators are used to close the
flux and torque feedback loops. By knowing the rotor
position, the corresponding values for i∗sα and i∗sβ are
determined using the rotary transformation:[

issα
issβ

]
= e−Jφ

[
isd
isq

]
, (24)

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 176 The Modelica Association

���������
���������

�
�

�
�

��

Torque
Calculator

�
�

�
�

��

Flux
Calculator

PWM
Current

Regulator
�

�
�

�
��

��
��

��
��

��
��

�

�

� �

�

� �

�

�

�

�

�
�
�
�
�
�

�� ��

� � �
� � �

� � �� � �

� � �
�

�
�

�

�

�

��

�

∑

∑ IM

dq

αβ
αβ

abc

=
∼

−

λ∗
rd

τ∗m

i∗sd

i∗sq ψ

i∗sβ
i∗sα

i∗sa
i∗sb
i∗sc

isa
isb
isc

λmα

λmβλrd

Figure 4: A general block diagram of how field oriented control is implemented.

where φ is the electrical angle that comes out of the
flux calculator shown in Fig 4. The excitation an-
gle is determined by simulating the induction motor
in the αβ reference frame. In our model, this is an
easy task since the simulation gives us λrα and λrβ di-
rectly. Once isα and isβ are determined, they can be
converted into the desired phase currents i∗sa, i∗sb and i∗sc
using the αβ transformation. Because stator currents
are imposed on the induction motor, phase voltages
are no longer prescribed. Instead, the phase voltages
reflect the self-consistent resolution of the induction
motor model and the imposed currents. Accordingly,
the number of states within the induction motor model
is reduced by two. The rotor dynamics on the αβ axes
can be written as

dλsrα
dt

= − 1
τr

λsrα +
M
τr
issα −Pωrλsrβ , (25)

dλsrβ
dt

= − 1
τr

λsrβ +
M
τr
issβ +Pωrλsrα , (26)

where τr = LR/Rr .

The stator voltages are given by

vss,αβ = Rsis,αβ +
dλs,αβ

dt
, (27)

where

λss,αβ = σLSis,αβ +
M
LR

λr,αβ , (28)

and

σ = 1− M2

LSLR
. (29)

Stator three-phase voltages and currents can be calcu-
lated using the T23 transformation matrix:

vs,abc = T23v
s
s,αβ ; (30)

is,abc = T23i
s
s,αβ . (31)

It is common to use a voltage-source inverter to feed
the induction motor with closed-loop current control.
The inverter is assumed to be instantenous and mod-
eled as a current source. The current values are de-
termined from the feedback loops of flux and torque.
Pulse width modulation (PWM) is routinely employed
to control the inverter switches [6]. Ideally the phase
currents would be without ripple and perfectly track
the commanded phase currents, while reality is some-
what different but close enough to the ideal. Thus, the
inverter is assumed to be ideal and the current drawn
from the DC side of the inverter can be calculated us-
ing conservation of instantenous power:

idc =
iTs,abcvs,abc

ηinvvdc
, (32)

where ηinv is the inverter efficiency.

There are three sections to this model. The first cap-
tures the electromechanical dynamics of the induction

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 177 Modelica 2002, March 18−19, 2002

machine when operating under direct field orientation.
These dynamics when applied to the induction ma-
chine model prescribe the corresponding stator volt-
ages and currents. The stator voltages and currents in
turn dictate the current that must be supplied by the
inverter power supply.

As a block diagram, the developed system model is
shown in Fig. 5. The pins are provided for inverter
connections, inports are used to get the flux and torque
commands and a flange is used for the shaft of the ma-
chine. This way, the model emulates the reality. The
Modelica code for the model is given in Appendix A.
Since including the vs,αβ calculations in the simulation
code causes a DAE index problem in the translation
stage, the voltages are calculated seperately using the
derivative and gain blocks from the Modelica library.
Then, the instantenous power is calculated.

Flux Command Torque Commad

Field Oriented Motor Model

Inverter Input

V
=

80

Flux

k={0.5}

Torque

LoadTorque

tau

LoadTorque1

k={30.6}

G

Figure 5: Block diagram of the field-oriented con-
trolled 3-phase induction machine drive.

To illustrate the performance of the direct rotor flux
field orientation system, the model is simulated un-
der a commanded torque and flux profile[3]. The load
torque is taken as 30.6 Nm: the total inertia of the sys-
tem is 0.5 kg.m2. The commanded torque profile is

τm =




135.3 Nm for 0 < t ≤ 0.5 sec
30.6 Nm for 0.5 < t ≤ 1 sec

−74.1 Nm for 1 < t ≤ 1.5 sec
−135.3 Nm for 1.5 < t ≤ 2sec
−30.6 Nm for t > 2 sec.

(33)

The rotor flux is to be maintained at 0.5 Wb. The
programmed torque and flux commands are given in
Fig. 6 and Fig. 7, respectively.

Simulation results for the torque, speed and flux of the
model are shown Fig. 8 and Fig. 9. The inverter DC
side current is plotted in Fig. 10. Comparing the sim-
ulation results with the desired torque and flux com-

mands shows that the model follows the commanded
torque and flux.

0 1 2
-150

-100

-50

0

50

100

150
FOMotor1.Torque_command.signal[1]

Figure 6: The commanded torque profile.

0 1 2
0.44

0.46

0.48

0.5

0.52

0.54

0.56
FOMotor1.IndMot1.Flux_command.signal[1]

Figure 7: The commanded flux.

0 1 2
-150

-100

-50

0

50

100

150
FOMotor1.IndMot1.Wrm FOMotor1.IndMot1.Tem

Figure 8: The torque and speed response of the induc-
tion machine.

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 178 The Modelica Association

0 1 2
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
FOMotor1.IndMot1.lambda_rd FOMotor1.IndMot1.lambda_rq

Figure 9: The simulated rotor fluxes.

0 1 2
-40

-20

0

20

40

60

80

100
FOMotor1.InvCurrent1.i

Figure 10: The inverter DC side current.

3 Conclusion

The underlying motivation for this study is the con-
struction of a field-oriented controlled 3-phase induc-
tion machine drive model for system simulations. The
final block diagram (Fig. 5) is comprised of three com-
ponents: an induction machine model, field orienta-
tion requirements and an inverter power supply that
provides the desired phase currents under field orien-
tation. The inverter is assumed ideal and loaded con-
sistent with the induction machine drive sytem. Since
the physical phase currents are needed to obtain the in-
verter DC side current, the induction machine is simu-
lated in αβ reference frame under rotor direct field ori-
entation. This is required to determine the orientation
of the rotor flux. Pins, inports and a flange are used to
provide the connection points to the user. The model
is simulated under a programmed flux and torque pro-
file and results are given. The Dymola simulation tool
is used to solve the simultaneous resolution of three
sections.

References

[1] F. Blaschke, Das Ver fahren der Feldorientierung
zur Regelung der Drehfelmachine (The method
of field orientation for control of three phase
machines) Ph.D. Dissertation, TU Braunschweig,
1973.

[2] F. Blaschke, The principle of field orientation as
applied to the new transvektor closed-loop control
system rotating-field machines, Siemens Review,
Vol. 34, pp. 217-220, May 1972.

[3] A. M. Trzynadlowski, The Field Orientation Prin-
ciple in Control of Induction Motors, Kluwer,
1994.

[4] D. M. Novotny and T. A. Lipo, Vector Control and
Dynamcis of AC Drives, Oxford University Press,
1997.

[5] A. E. Fitzgerald, C. Kinglesy, Jr., and S. D.
Umans, Electric Machinery, 5th ed., McGraw-
Hill, 1990.

[6] B. K. Bose, ed., Power Electronics and Variable
Frequency Drives, IEEE Press, 1997, Chapter 4.

[7] N. N. Hancock, Matrix Analysis of Electric
Machinery,2nd ed., Pergamon Press,1974

[8] Dymola User’s Manual

[9] Modelica Web page (www.modelica.org)

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 179 Modelica 2002, March 18−19, 2002

A Modelica Code
package FieldOriented

class Tork
Real T ;
Modelica.Blocks.Interfaces.OutPort Torque ;

equation
T = if (time <= 0.5) then (135.3) else if (time <= 1 and time > 0.5) then
30.6 else if (time > 1 and time <= 1.5) then -74.1 else if (time > 1.5
and time <= 2) then -135.3 else if time > 2 then -30.6 else 0 ;
Torque.signal[1] = T ;

end Tork ;

partial class InvCurrent "Source for constant current"
extends Modelica.Electrical.Analog.Interfaces.OnePort ;

end InvCurrent ;

class IndMot
parameter Real Rs=0.294 "stator resistance(abc, dq frames)" ;
parameter Real Rr=0.156 "rotor resistance (abc, dq frames)" ;
parameter Real Lsl=0.00139 "abc frame stator leakage inductance" ;
parameter Real Lrl=0.00074 "abc frame rotor lekage inductance" ;
parameter Real Lsr=0.041 "abc frame mutual inductance" ;
parameter Real P=3 "number of pole pairs" ;
parameter Real H=0.5 "inertia of rotor" ;
parameter Real f=60 "applied source frequency" ;
Real M "dq frame mutual inductance" ;
Real LS "dq frame stator inductance" ;
Real LR "dq frame rotor inductance" ;
Real D "leakage factor" ;
Real Tem "electromechanical torque" ;
Real Wrm(start=0) "Motor mechanical speed" ;
Real theta "Rotor position angle" ;
Real Isd "d axis stator current" ;
Real Isq "q axis stator current" ;
Real Is_alpha "alpha axis stator current" ;
Real Is_beta "beta axis stator current" ;
Real Isa "stator phase a current" ;
Real Isb "stator phase b current" ;
Real Isc "stator phase a current" ;
Real lambda_ralpha(start=1e-3) "alpha axis rotor flux" ;
Real lambda_rbeta(start=1e-3) "beta axis rotor flux" ;
Real lambda_rd "d axis rotor flux" ;
Real lambda_rq "q axis rotor flux" ;
Real lambda_salpha "alpaha axis stator flux" ;
Real lambda_sbeta "beta axis stator flux" ;
Real Tem_fo "Torque under field orientation used for closed loop control" ;
Real m_flux "magnitude of the rotr flux" ;
Real p_flux "angle of the rotor flux" ;
Real Tref "Reference Torque" ;
Real Lref "Reference Flux" ;
Real Terror "Torque error" ;
Real Ferror "Flux error" ;
Real errort(start=0) "integral of torque error" ;
Real errorf(start=0) "integral of flux errror" ;
parameter Real Kif=500 "PI controller integral gain for Flux" ;
parameter Real Kpf=1000 "PI controller proportional gain for Flux" ;
parameter Real Kit=500 "PI controller integral gain for Torque" ;
parameter Real Kpt=1000 "PI controller proportional gain for Torque" ;
Modelica.Blocks.Interfaces.OutPort Lambda_salpha ;
Modelica.Blocks.Interfaces.OutPort Lambda_sbeta ;
Modelica.Blocks.Interfaces.OutPort I_salpha ;
Modelica.Blocks.Interfaces.OutPort I_sbeta "OutPorts used above are
used to calculate the Vs_alpha and Vs_beta since including them
into the code brings DAE index problem" ;
Modelica.Blocks.Interfaces.InPort Flux_command ;
Modelica.Blocks.Interfaces.InPort Torque_command ;
Modelica.Mechanics.Rotational.Interfaces.Flange_b shaft ;

equation
Lambda_salpha.signal[1] = lambda_salpha ;
Lambda_sbeta.signal[1] = lambda_sbeta ;
I_salpha.signal[1] = Is_alpha ;
I_sbeta.signal[1] = Is_beta ;

Modelica Implementation of Field−oriented Controlled 3−phase Induction ... Torrey D.A., Selamogullari U.S.

Modelica 2002, March 18−19, 2002 180 The Modelica Association

M = 3/2*Lsr ;
LS = Lsl + M ;
LR = Lrl + M ;
D = (LS*LR - (M*M)) ;

Tref = Torque_command.signal[1] ;
Lref = Flux_command.signal[1] ;

Terror = Tref - Tem_fo ;
Ferror = Lref - m_flux ;

der(errort) = Terror ;
der(errorf) = Ferror ;

Isd = Kpf*Ferror + Kif*errorf ;
Isq = Kpt*Terror + Kit*errort ;
Is_alpha = Isd*cos(p_flux) - Isq*sin(p_flux) ;
Is_beta = Isd*sin(p_flux) + Isq*cos(p_flux) ;

der(lambda_ralpha) = -Rr/LR*lambda_ralpha + M*Rr/LR*Is_alpha - P*Wrm*lambda_rbeta ;
der(lambda_rbeta) = -Rr/LR*lambda_rbeta + M*Rr/LR*Is_beta + P*Wrm*lambda_ralpha ;
lambda_rd = lambda_ralpha*cos(p_flux) + lambda_rbeta*sin(p_flux) ;
lambda_rq = -lambda_ralpha*sin(p_flux) + lambda_rbeta*cos(p_flux) ;
lambda_salpha = D/(LS*LR)*LS*Is_alpha + M/LR*lambda_ralpha ;
lambda_sbeta = D/(LS*LR)*LS*Is_beta + M/LR*lambda_rbeta ;

m_flux = sqrt((lambda_ralphaˆ2) + (lambda_rbetaˆ2)) ;
p_flux = atan2(lambda_rbeta, lambda_ralpha) ;

der(Wrm) = if Wrm >= 0 then (1/H)*(Tem - shaft.tau) else (1/H)*(Tem + shaft.tau) ;
der(theta) = Wrm ;
shaft.phi = theta ;

Tem = (P*M/LR)*(Isq*lambda_rd - Isd*lambda_rq) ;
Tem_fo = (P*M/LR)*(Isq*m_flux) ;

Isa = Is_alpha*sqrt(2/3) ;
Isb = sqrt(2/3)*(-0.5*Is_alpha + sqrt(3)/2*Is_beta) ;
Isc = sqrt(2/3)*(-0.5*Is_alpha - sqrt(3)/2*Is_beta) ;

end IndMot ;

class PowerCalculator
block P2toP3

extends Modelica.Blocks.Interfaces.BlockIcon ;
parameter Integer n=1 "Dimension of input and output vectors." ;
Modelica.Blocks.Interfaces.OutPort a(final n=n)"Connector 1 of Real input signals" ;
Modelica.Blocks.Interfaces.OutPort b(final n=n)"Connector 2 of Real input signals" ;
Modelica.Blocks.Interfaces.OutPort c(final n=n)"Connector 3 of Real input signals" ;
Modelica.Blocks.Interfaces.InPort alfa(final n=n)"Connector of Real output signals" ;
Modelica.Blocks.Interfaces.InPort beta(final n=n) ;

equation
a.signal[1] = alfa.signal[1]*sqrt(2/3) ;
b.signal[1] = sqrt(2/3)*(-0.5*alfa.signal[1] + sqrt(3)/2*beta.signal[1]) ;
c.signal[1] = sqrt(2/3)*(-0.5*alfa.signal[1] - sqrt(3)/2*beta.signal[1]) ;

end P2toP3 ;

P2toP3 P2toP3_1 ;
P2toP3 P2toP3_2 ;
Modelica.Blocks.Math.Gain Gain1 ;
Modelica.Blocks.Continuous.Derivative Derivative1 ;
Modelica.Blocks.Math.Add Add1 ;
Modelica.Blocks.Math.Add3 Power ;
Modelica.Blocks.Math.Product Product1 ;
Modelica.Blocks.Math.Gain Gain2 ;
Modelica.Blocks.Continuous.Derivative Derivative2 ;
Modelica.Blocks.Math.Add Add2 ;
Modelica.Blocks.Math.Product Product2 ;
Modelica.Blocks.Math.Product Product3 ;
Modelica.Blocks.Interfaces.InPort inPort ;
Modelica.Blocks.Interfaces.InPort inPort1 ;
Modelica.Blocks.Interfaces.InPort inPort2 ;
Modelica.Blocks.Interfaces.InPort inPort3 ;
Modelica.Blocks.Interfaces.OutPort outPort ;

Torrey D.A., Selamogullari U.S. Modelica Implementation of Field−oriented Controlled 3−phase Induction ...

The Modelica Association 181 Modelica 2002, March 18−19, 2002

equation
connect(Power.inPort1, Product1.outPort) ;
connect(Power.inPort3, Product3.outPort) ;
connect(Derivative2.inPort, inPort3) ;
connect(Gain1.inPort, inPort) ;
connect(Add2.inPort2, Derivative2.outPort) ;
connect(Add2.inPort1, Gain2.outPort) ;
connect(Add1.inPort1, Gain1.outPort) ;
connect(Derivative1.inPort, inPort1) ;
connect(Derivative1.outPort, Add1.inPort2) ;
connect(P2toP3_1.alfa, inPort) ;
connect(P2toP3_2.alfa, Add1.outPort) ;
connect(P2toP3_2.beta, Add2.outPort) ;
connect(P2toP3_1.a, Product1.inPort1) ;
connect(P2toP3_2.a, Product1.inPort2) ;
connect(P2toP3_1.b, Product2.inPort1) ;
connect(P2toP3_2.b, Product2.inPort2) ;
connect(P2toP3_1.c, Product3.inPort1) ;
connect(P2toP3_2.c, Product3.inPort2) ;
connect(Power.inPort2, Product2.outPort) ;
connect(inPort2, Gain2.inPort) ;

connect(P2toP3_1.beta, inPort2) ;
connect(Power.outPort, outPort) ;

end PowerCalculator;

class FOMotor
parameter Real Inveff=0.9 ;
IndMot IndMot1 ;
Modelica.Electrical.Analog.Interfaces.PositivePin p ;
Modelica.Electrical.Analog.Interfaces.NegativePin n ;
Modelica.Blocks.Interfaces.InPort Flux_command ;
Modelica.Blocks.Interfaces.InPort Torque_command ;
InvCurrent InvCurrent1 ;
Modelica.Mechanics.Rotational.Interfaces.Flange_b shaft ;
PowerCalculator PowerCalculator1 (Gain1.k={IndMot1.Rs}, Gain2.k={IndMot1.Rs}) ;

equation
connect(IndMot1.Flux_command, Flux_command) ;
connect(IndMot1.Torque_command, Torque_command) ;
connect(InvCurrent1.p, p) ;
connect(InvCurrent1.n, n) ;
connect(IndMot1.shaft, shaft) ;
connect(PowerCalculator1.inPort, IndMot1.I_salpha) ;
connect(PowerCalculator1.inPort1, IndMot1.Lambda_salpha) ;
InvCurrent1.i = (PowerCalculator1.Power.outPort.signal[1]/(Inveff*InvCurrent1.v)) ;
connect(PowerCalculator1.inPort2, IndMot1.I_sbeta) ;
connect(PowerCalculator1.inPort3, IndMot1.Lambda_sbeta) ;

end FOMotor;

end FieldOriented ;

