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Abstract
A significant part of the simulation design effort is spent 
on detecting deviations from the specifications and
subsequently localizing the source of errors.
Employment of debugging environments that control the 
correctness of the developed source code is an
important factor in reducing the time and cost of
software development in classical programming
languages. Currently, few or no tools are available to 
assist developers when debugging declarative equation 
based modeling languages. To begin to address this
need we have developed an efficient debugging
framework for Modelica and have adapted traditional 
debugging techniques and algorithms to it. The
developed algorithms and methods help to statically 
detect and repair a broad range of errors without
having to execute the simulation model. Several
simulation models and examples are given in this paper 
in order to illustrate the main situations when over and 
under-constraining equations can appear in the system. 
Error detection and error solving strategies for those 
cases are also given.

1 Introduction
Obviously, each simulation problem is associated with a 
corresponding mathematical model. In dynamic
continuous simulation the mathematical model is
usually represented by a mixed set of algebraic
equations and ordinary differential equations. A typical 
problem which appear in physical system modeling and 
simulation is when too many (or few) equations are 
specified in the system inevitably leading to an
inconsistent state of the simulation model. In such
situations numerical solvers fail to produce correct
solutions to the underlying system of equations.

For example, a physical system simulation model 
specified in a declarative object-oriented equation based 
modeling language may consist of several hundreds of 
classes resulting in over 100 000 flattened equations. If 
one of these equations over-constrains the overall
system it cannot be simulated.  It can be easily imagined 
that, if a subset of six over-constraining equations can 
be provided by a static debugger from where the user 
can choose one equation to eliminate, in order to form a 
structurally well posed simulation problem, it would be 

extremely useful. This could greatly reduce the amount 
of time required to get the simulation working.

Our goal is to contribute to the methodology of 
algorithmic debugging and automated debugging of
object-oriented equation based modeling languages and 
to develop programming environments to support it.
Although, what we present in this paper applies to the 
whole area of equation based debugging, our primary 
target is debugging of Modelica models and more
specifically static analysis techniques for diagnosability 
of physical system models specified with Modelica.

The simulation models presented in this paper are 
so trivial as to be almost beneath consideration, but they
serves as a straightforward vehicle for the introduction 
of several fundamental debugging concepts with the
purpose of illustrating concepts of structural analysis.
These models are extremely useful from that point of 
view because they keep the associated structural graphs 
to a minimum size and complexity, but in the meantime 
exposing interesting structural and debugging problems.

This paper is organized as follows: Section 2
provides graph theoretical preliminaries necessary to
understand the algorithms used in this paper together 
with the canonical decomposition algorithm. In Section 
3 simple over constrained simulation models are
diagnosed and debugged with the help of graph
decomposition techniques and our algorithmic
debugging approach. Details are briefly presented about
the structures used to annotate the underlying equations 
of the simulation model, in order to help the debugger to 
eliminate the heuristics when multiple choices are
available to fix an error. In Section 4 the particulars of 
debugging an under-constrained systems are given.
Implementation details of the debugger are given in
Section 5. Finally, Section 6 concludes and summarizes 
the work.

2 Preliminaries
Many practical problems are examples of a model of 
interaction between two different types of objects and 
can be phrased in terms of problems on bipartite graphs. 
The expressiveness of the bipartite graphs in concrete 
practical applications has been demonstrated many
times in the literature (Dolan and Aldous [2]), (Asratian 
et al. [1]). We will show that the bipartite graph
representations are general enough to efficiently
accommodate several numeric analysis methods in order 
to reason about the solvability and unsolvability of the 
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flattened system of equations and implicitly about the 
simulation model behavior. Another advantage of using 
the bipartite graphs is that it offers an efficient
abstraction necessary for program transformation
visualization when the equation based declarative
specifications are translated to procedural form.

The bipartite graph representation and the
associated decomposition techniques are widely used
internally by compilers when generating the procedural 
form from the declarative equation based description of 
the simulation model (Elmqvist [4]) (Maffezzoni et. al. 
[9]) but none of the existing simulation systems use 
them for debugging purposes or expose them visually 
for program understanding purposes.

Definition 1: A bipartite graph is an ordered
triple ),,( 21 EVVG =  such that 1V  and 2V  are sets,

=∩ 21 VV Ø and },};,{{ 21 VyVxyxE ∈∈⊆ . The

vertices of G are elements of 21 VV ∪ . The edges of 
G are elements of E .

Definition 2: Amatching is a set of edges from graph G
where no two edges have a common end vertex.

Definition 3: A matching M of a graph G is maximal if 
it is not properly contained in any other matching.

Definition 4: A vertex v is saturated or covered by a 
matching M if some edge of M is incident with v. An 
unsaturated vertex is called a free vertex.

Definition 5: A perfect matching P  is a matching in a 
graph G that covers all its vertices.

Definition 6: A path },,,{ 10 kvvvP L= in a graph G is 
called an alternating path of M if it contains alternating 
free and covered edges.

In Figure 1 all the possible perfect matchings of a
simple bipartite graph are presented. It should be noted 
that a maximum matching and the perfect matching of a 
given bipartite graph is not unique.

eq1

eq2

eq3

var1

var2

var3

eq1

eq2

eq3

var1

var2

var3

eq1

eq2

eq3

var1

var2

var3

Figure 1. An example bipartite graph with all the
possible perfect matchings marked by thick lines.

A structural decomposition of a bipartite graph
associated with a simulation model which relies on the 
above presented vertex coverings is due to (Dulmage 
and Mendelsohn [3]) and canonically decomposes any 
maximum matching of a bipartite graph in three distinct 
parts: over-constrained, under-constrained, and well-
constrained part.

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4  var5 var6 var7
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Figure 2. Dulmage Mendelsohn’s canonical 
decomposition of a bipartite graph. 

The canonical decomposition algorithm is given below:

Algorithm: Dulmage and Mendelsohn canonical
decomposition

Input Data: A biparpartite graph �

Result: Three subgraphs: well-constrained � � , over-

constrained � �  and under-constrained � � .
begin:

– Compute the maximum matching � � of � .

– Compute the directed graph � ’ by replacing each 

edge in � � by two arcs and orienting all other
edges from the equations to the variables.

– Let be � �  the set of all descendants of sources of the 

directed graph � ’.

– Let be U�  the set of all ancestors of sink of the 

directed graph � ’.

– Calculate � � = � -� � -� � .
end.

The over-constrained part: the number of equations in 
the system is greater than the number of variables. The 
additional equations are either redundant or
contradictory and thus yield no solution. 

The under-constrained part: the number of variables 
in the system is greater than the number of equations. A 
possible error fixing strategy would be to initialize some 
of the variables in order to obtain a well-constrained
part or add additional equations to the system.

Over and under-constrained situations can coexist
in the same model. In the case of over-constrained
model, the user would like to remove the over-
constraining equations in a manner which is consistent 
to the original source code specifications, in order to 
alleviate the model definition. 

The well-constrained part: the number of equations 
in the system is equal to the number of variables and 
therefore the mathematical system of equations is
structurally sound having a finite number of solutions. 
This part can be further decomposed into smaller
solution subsets. A failure in decomposing the well-
constrained part into smaller subsets means that this part 
cannot be decomposed and has to be solved as it is. A 
failure in numerically solving the well-constrained part 
means that no valid solution exists and there is
somewhere a numerical redundancy in the system. 
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3 Debugging of Over-
Constrained Models

A typical problem which appears in physical system
modeling and simulation is when too many equations 
are specified in the system inevitably leading to an 
inconsistent state of the simulation model. In such
situations numerical solvers fail to compute correct

solutions to the underlying system of equations. 

In Figure 3 the Modelica source code of a simple 
simulation model consisting of a resistor connected in 
parallel to a sinusoidal voltage is given. The
intermediate form is also given for explanatory
purposes. The Circuit model is represented as an 
aggregation of the Resistor, Source and Ground
model instances, R1, AC and G connected together by 
means of physical ports.

Figure 3. Modelica code of a simple electrical circuit and the associated flattened equations

During the first stage of the static analysis the
associated bipartite graph of the intermediate flattened 
form of the equations is constructed and the maximum 
cardinality matching is computed as it is shown in
Figure 4.

eq1 eq2 eq3 eq4 eq5 eq6 eq7 eq8 eq9 eq10 eq11 eq12 eq13 eq14

var1 var2 var3 var4 var5 var6 var7 var8 var9 var10 var11 var12 var13 var14

Figure 4. Associated bipartite graph and the
corresponding perfect matching (thicker lines) to the
simple electrical circuit.

It's worth noting, that in this case, the maximal
matching is also a perfect matching of the associated 
bipartite graph. In this case all the vertices are covered 

by a matching and the canonical decomposition
algorithm will yield to only one well-constrained
component without any under or over-constraining part. 
The well-constrained part can be safely sent to the
numerical solver and the simulation can be successfully 
performed if no other numerical redundancies are
present in the system of equations.. 

Let us now consider the same electrical circuit
where an additional equation (i=23) was intentionally 
introduced inside the Resistor component in order to 
obtain a generally over-constrained system. The D&M
canonical decomposition will lead to two parts: a well-
constrained part and an over-constrained part (see
Figure 5). Equation “eq11” is a non-saturated vertex of 
the equation set so it is a source for the over-constrained
part. Starting from “eq11” which is the non-saturated
vertex, the directed graph can be derived from the
undirected bipartite graph as is illustrated in Figure 6.
by exchanging all the matching edges in bi-directional
edges and orienting all other edges from equations to 
variables. An immediate solution of fixing the over-
constrained part is to eliminate “eq11” which will lead 

connector Pin
  Voltage v;
  Flow Current i;
end Pin;

model TwoPin
  Pin p, n;
  Voltage v;
  Current i;
equation

v = p.v - n.v; 0 = p.i + n.i; i = p.i
end TwoPin;

model Resistor
extends TwoPin;
parameter Real R;

equation
R*i == v;

end Resistor;

model VsourceAC
extends TwoPin;
parameter Real VA=220; parameter Real f=50;
protected constant Real PI=3.141592;

equation
v=VA*(sin(2*PI*f*time));

end VsourceAC;

model Ground
  Pin p;
equation

p.v == 0
end Ground;

model Circuit
  Resistor R1(R=10); VsourceAC AC; Ground G;
equation

connect(AC.p,R1.p); connect(R1.n,AC.n);
connect(AC.n,G.p);

end Circuit;

Flat equations
1. R1.v == -R1.n.v + R1.p.v

2. 0 == R1.n.i + R1.p.i

3. R1.i == R1.p.i

4. R1.i*R1.R == R1.v

5. AC.v == -AC.n.v + AC.p.v

5. 0 == AC.n.i + AC.p.i

7. AC.i == AC.p.i

8. AC.v == AC.VA*Sin[2*time*AC.f*AC.PI]

9. G.p.v == 0

10. AC.p.v == R1.p.v

11. AC.p.i + R1.p.i == 0

12. R1.n.v == AC.n.v

13. AC.n.v == G.p.v

14. AC.n.i + G.p.i + R1.n.i == 0

Flat Variables

1. R1.p.v 2. R1.p.i 3. R1.n.v

4. R1.n.i 5. R1.v 6. R1.i

7. AC.p.v 8. AC.p.i 9. AC.n.v

10. AC.n.i 11. AC.v 12. AC.i

13. G.p.v 14. G.p.i

Flat Parameters
R1.R -> 10
AC.VA -> 220
AC.f -> 50

Flat Constants
AC.PI -> 3.14159
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to a well-constrained part and therefore the equation
system becomes structurally sound. 

eq1

eq4

eq5

eq6

eq9

eq10

eq11

eq13

eq14

var1

var3

var5

var6

var7

var9

var11

var13

eq2

eq3

eq7

eq8

eq12

eq15

var2

var4

var8

var10

var12

var14

"eq1” R1.v == -R1.n.v + R1.p.v
"eq2" 0 == R1.n.i + R1.p.i

"eq3" R1.i == R1.p.i
"eq4" R1.i R1.R == R1.v
"eq5" R1.i == 23
"eq6" AC.v == -AC.n.v + AC.p.v
"eq7" 0 == AC.n.i + AC.p.i

"eq8" AC.i == AC.p.i
"eq9" AC.v == AC.VA*sin[2*time*AC.f*AC.PI]
"eq10" G.p.v == 0
"eq11" AC.p.v == R1.p.v
"eq12" AC.p.i + R1.p.i == 0
"eq13" R1.n.v == AC.n.v

"eq14" AC.n.v == G.p.v
"eq15" AC.n.i + G.p.i + R1.n.i == 0

"var1" R1.p.v

"var2" R1.p.i
"var3" R1.n.v
"var4" R1.n.i
"var5" R1.v
"var6" R1.i
"var7" AC.p.v

"var8" AC.p.i
"var9" AC.n.v
"var10" AC.n.i
"var11" AC.v
"var12" AC.i

"var13" G.p.v
"var14" G.p.i

over-constrained part

well-constrained part

Figure 5. Canonical decomposition of the over-
constraining system.

However, examining the equation “eq11” one can note 
that the equation is generated by a connect statement 
from the Circuit model, and the only way to remove 
the equation is to remove the connect(AC.p, R1.p)
statement. But removing the above-mentioned statement 
will remove two equations from the flattened model
which is unacceptable. 

In order to support an automatic reasoning about 
the equations the flattened equations from the
intermediate code are annotated by a structure which 
resembles the one presented in Table 1. 

Table 1. The structure of the annotated equation

Attribute Value
Equation R1.i * R1.R == R1.v

Name “eq4”
Description “Ohm’s Law for the resistor 

component”
Nr. of associated eq 1
Class Name “Resistor”
Flexibility Level 3
Connector generated no

The Class Name tells from which class the equation is 
coming. This annotation is extremely useful in exactly 
locating the associated class of the equation and
therefore providing concise error messages to the user.

The No. of associated eqs. parameter specify the 
number of equations which are specified together with 
the annotated equation. In the above example the No. of 
associated eqs. is equal to one since there are no
additional equations specified in the Resistor
component. In the case of the TwoPin component the 
number of associated equations is equal to 3. If one 

associated equation of the component need to be
eliminated the value is decremented by 1. If, for
example, during debugging, the equation R1.i *
R1.R == R1.v is diagnosed to be an over-
constraining equation and therefore need to be
eliminated, the elimination is not possible because the 
model will be invalidated in that way (the No. of
associated eqs. cannot be equal to 0) and therefore other 
solutions need to be taken into account.

The flexibility level, in a similar way as it is defined 
in (Flannery and Gonzales [5]), allows the ranking of 
the relative importance of the constraint in the overall 
flattened system of equations 

The Connector generated is a Boolean attribute
which tells whether the equation is generated or not by a 
connect statement. Usually these equations have a 
very low flexibility level. 

It is worth nothing that the annotation attributes are 
automatically initialized by the static analyzer,
incorporated in the front end of the compiler, by using 
several graph representations.

 Having the equations annotated, the next step is to 
traverse the associated directed graph, shown in Figure
6, to the over-constraining part, obtained from the D&M 
decomposition.

eq11

eq6eq1

var1 var7

var11

eq9

var3

eq13

var9

eq14

var13

eq10

G.p.v == 0

var5

eq4

var6

eq5
R1.i == 23

AC.v == AC.VA*
     sin[2*time*AC.f*AC.PI]

Figure 6. The associated directed graph of the ove-
constraining subgraph.

One important property of the over-constrained bipartite 
graph is that it only contains alternating paths because it 
is constructed from perfect matchings and a
supplementary free edge. We can easily obtain all the 
maximal matchings in the over-constrained graph by
exchanging matching edges with other edges along an 
alternating path. Therefore eliminating any of the
constitutive nodes that represent an equation we can 
easily find a corresponding matching of the sub-graph
will yield to a well-constrained subsystem. But
eliminating some of the constitutive nodes that represent 
equations will disconnect the sub-graph as it is
illustrated in Figure 7 where eq1 was eliminated. Even 
if this situation, when two disconnected graphs are
obtained, are mathematically sound they are not very 
common from the modeling point of view and therefore 
they are not further considered.
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var3
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var5
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var6

eq5
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eq11

eq6

var7

var11

eq9

Figure 7. Disconnected graph obtained by eliminating
eq1.

 In our case the set of equivalent over-constraining
equations is {“eq11”, ”eq13”, ”eq10”, ”eq5”, ”eq9”}
after eliminating those equations which disconnect the 
bipartite graph. “eq11” was already analyzed and
therefore can be eliminated from the set. “eq13” is
eliminated too for the same reasons as equation “eq11”.
Analyzing the remaining equations {”eq10”, ”eq5”,
”eq9”} one should note that they have the same
flexibility level and therefore they are candidates for 
elimination with an equal chance. But analyzing the 
value of the No. of associated eqs. parameter, equation 
“eq10” and “eq9” have that attribute equal to one, which 
means that they are singular equations defined inside the 
model. Eliminating one of these equations will
invalidate the corresponding model, which is probably 
not the intention of the modeler. 

Examining the annotations corresponding to
equation “eq5” one can see that it can be safely
eliminated because the flexibility level is high and
eliminating the equation will not invalidate the model 
since there is another equation defined inside the model. 
After choosing the right equation for elimination the 
debugger tries to identify the associated class of that 
equation based on the Class name  parameter defined in 
the annotation structure. Having the class name and the 
intermediate equation form (R1.i=23) the original 
equation can be reconstructed (i=23) indicating
exactly to the user which equation needs to be removed 
in order to make the simulation model mathematically 
sound. In that case the debugger correctly locates the 
faulty equation previously introduced by us in the
simulation model.

We now construct a simple electrical circuit model 
(Figure 8) by connecting two resistors in parallel with a 
voltage source as is shown in Figure 9. The Modelica 
definition of the Ground, VsourceAC and
Resistor component are reused from the previous
examples. The TwoPin class is modified by introducing 
an additional over-constraining equation (i=10) in the 
model definition. This extra equation will be inherited 

by all the classes which extends the TwoPin class.
Therefore each instance of the Resistor and
VsourceAC models will contribute to one extra over-
constraining equation to the final flattened system of 
equations.

R1 R2AC

G

model TwoPin
   Pin p,n;

Real v,i;
equation
   v=p.v-n.v;
   0=p.i+n.i;
   i=p.i;
   i=10;
end TwoPin

Figure 8. An electrical circuit with an over-constraining
equation in the TwoPin component.

During the model translation the corresponding
flattened set of equations from the simulation model is 
derived and the associated bipartite graph G  is
constructed. The overall flattened model corresponding 
to the simple electrical circuit contains three extra over 
constraining equations (eq9, eq18, eq7). Therefore three 
vertices from the equations sets are not covered by a 
matching, as it is illustrated in the derived directed
graph in Figure 9.

eq16

eq20

eq21

eq22

var9

var15

var19

var3

eq18 eq17

var7 var1 var13

eq6 eq1 eq11

var5 var17var11

eq10 eq5 eq15eq9

var12 var6

var8

var2 var14

var18

eq4eq8

eq13eq3

eq14

eq19

R1.i = R1.p.i

AC.i = 10

G.p.v = 0
0

R1.i = 10

R2.i = 10

R1.p.v = R2.p.v AC.p.v = R1.p.v

R1.n.v = R2.n.v

R2.n.v = AC.n.v

Figure 9. The over-constrained directed graph

While traversing the directed graph, after eliminating all 
the equations that disconnect the graph and performing 
reasoning based on the equation annotations we found 
that the equations eq9 eq14, eq15 need to be eliminated 
from the intermediate form which are generated from
the equation i=10 in the TwoPin partial component. 
The elimination of eq9, eq14 and, eq15 is safe because 
they can be made free vertices by exchanging the 
matching edges with non matching edges along the 
paths indicated with dashed lines in Figure 9.
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4 Debugging of Under-
Constrained Models

The issue of under-constrained simulation models
considered in an object-oriented declarative equation-
based frameworks, has been discussed in (Ramirez
[10]). The work presented in (Ramirez [10]) is
particularly concerned with the issues involved in the 
modeling and solutions of conditional models where the 
system of equations in the model is different for each of 
the alternatives.

Let us consider the number of equations m from a 
model and the number of variables incident in those 
equations n. For a typical under-constrained situation
the number of variables is greater than the number of 
equations (n>m).

Definition 7: We call the degree of under-constraining
the difference between the number of variables and the 
number of equations mnDu −= . In a similar way in 

(Ramirez [1]) uD is called the number of degrees of 
freedom of the problem.

In the following we are going to illustrate the
possible error fixing solutions for a typical under-
constraining situation and the reasoning involved in the 
graph transformation system. Let us consider the
following system of equations with the corresponding 
bipartite graph presented in Figure 11 and with the
degree of under-constraining 1=uD .
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Figure 10. A simple system of equations with the
associated bipartite graph.

One possible corresponding maximal matching
(represented by thicker edges) to the bipartite graph and 
the D&M canonical decomposition is presented below: 

eq1

eq2

eq3

eq4

eq5

var1

var2

var3

var4

var5

var6

under-constrained
part

well-constrained
part

Figure 11. Maximum matching and canonical
decomposition of the bipartite graph 

In performing the canonical decomposition algorithm
the associated directed graph to the bipartite graph was 
constructed by exchanging all the edges which are part 
of the maximal matching by bi-directional edges and 
orienting all other edges from equations to variables. 
The obtained directed graph is shown in Figure 12:

eq1

eq2
eq3 eq4 eq5

var1 var2

var3 var4 var5var6

Figure 12. Directed graph associated with the system of 
equations.

The variables contained in an under-constrained part
constitutes the eligibility set. In our small example the 
elibility set is {var4, var5, var6} which means that any 
of these variable can be taken away and the remaining 
associated graph will be well constrained.

Variable var6 is not covered by the maximal
matching and therefore is a free vertex. In the directed 
graph, it can be seen that these are two alternating paths 
to the free vertex var6 (indicated by the dashed arrows 
in Figure 12):

)}var,(),,{(var 6444 eqeq and )}var,(),,{(var 6555 eqeq .
Exchanging the matching edges with normal edges 

and the normal edges with matching edges along an 
alternating path a new matching can be obtained which
cover the free vertex var6 but will uncover another
vertex from the eligible set. Therefore for an error fixing 
strategy all the possible combinations should be taken 
into account. 

During the first stage of the error fixing process 
only those solutions which involve the elimination of a 
variable from the eligibility set are taken into account. 
We have the following possible solutions illustrated in 
Figure 13 . 

eq4

eq5

eq4

eq5

eq4

eq5

var4

var5

var5

var6

var4

var6

eq4

eq5

var4

var5

var6

eliminate
var6

eliminate
var4

eliminate
var5

Figure 13. Error fixing solution when one variable is 
taken away from the eligibility set.
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By removing var6 from the under-constrained sub
system the considered maximum matching becomes a 
perfect matching of the associated bipartite graph and 
therefore the associated system of equations is
structurally sound. However, by removing var6 the
bipartite graph will be disconnected and an independent 
edge (eq5,var5) appears in the system, which is not
connected to the main bipartite graph. This situation is 
extremely unusual in physical system modeling and it
means that some variables are computed locally inside a 
component without contributing to the general behavior 
of the simulated system. As an example the following 
Modelica Resistor component integrated in a circuit 
model will produce two disconnected sub-graphs.

model Resistor
extends TwoPin;
parameter Real R;
Real s;

equation
   R*i=v;

s=10;
end Resistor

The variable s and the equation s=10 are redundant in 
the system.  Therefore the situation when an extra
variable is eliminated and the remaining bipartite graph 
is disconnected needs to be further analyzed. In our 
case, for example, a solution which involves the
elimination of variable var6 and the presence of an extra 
variable var1, var2, var3 or var4 in equation eq5 might 
be acceptable. 

It should also be noted that multiple error fixing 
strategies are possible in the case of an under-
constrained subsystem. Another error fixing situation
for the under-constrained systems is to add one extra 
equation to the system and link the free variable to the
added equation instead of eliminating the free variable. 
This strategy applied for the free variable var6 is
presented in Figure 14.

eq4

eq5

eq6

var4

var5

var6

eq4

eq5

var4

var5

var6

var4

var5

var6

eq4

eq5

eq6

?

?

?

Figure 14. Error fixing strategy involving adding an 
extra equation.

This strategy involves two steps: at the first step an 
extra equation is added and linked together with the free 
variable and then at the second step is checked if other 
variables from the system might be present in the
recently added equation. This last step turns out to be 
very useful from the users point of view because is 

helps them to reconstruct missing equations from
simulation models.

Let us again analyze the simple circuit model when 
the Resistor component is changed again by
declaring an extra variable (Real s) and introducing 
this variable into the Resistor component constitutive 
equation.

model Resistor
extends TwoPin;
parameter Real R;
Real s;

equation
   R*i=v*s;
end Resistor 

The directed graph obtained from the associated
bipartite graph of the flattened underlying system of 
equations and a corresponding maximum cardinality
matching, is given below:

eq1

var1

eq10

var8

eq5

var12

eq8

var10

eq13

var14

eq9

var3

eq12

var5

eq4

var7 var6

eq3

var2

eq2

var4

eq14

var11

eq6

var9

eq11

var15

eq7

var13

Well-constrained
part

Under-constrained
part

Figure 15. Directed graph corresponding to the under-
constrained simple electrical circuit.

The uncovered variable by the considered maximum
cardinality matching is var15, the eligibility set being:

}var,var,var,var,var,var,var,{var 13911762415

with the corresponding variables:
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{G.p.i, R.n.i, R.p.i, R.i, R.s, AC.n.i, 
AC.p.i,  AC.i}

From the under-constrained subgraph we can derive the 
following alternating paths (indicated in Figure 15 by 
the dashed arrows) to the uncovered variable:

)}var,(),,(var),var,(),,(var

)var,(),,(var),var,(),,{(var

74466332

22244141415

eqeqeqeq

eqeqeqeq

)}var,(),,(var),var,(),,(var

)var,(),,(var),var,(),,{(var

11669911112

22244141415

eqeqeqeq

eqeqeqeq

)}var,(),,(var),var,(),,(var

)var,(),,(var),var,(),,{(var

13779911112

22244141415

eqeqeqeq

eqeqeqeq

By following each alternating path and eliminating the 
variables from the eligibility set it can be noticed that 
eliminating only the variables 

}var,var,var,{var 137415 will not disconnect the bipartite 
graph. Therefore only this reduced set will be further 
analyzed at this stage. Based on a similar reasoning as 
in the over-constrained situations and on variable
associated annotations, the results is that only var7 can
be safely removed from the Modelica code in order to 
obtain a well specified underlying equation system. We 
call the set of variables obtained after performing the 
reasoning based on annotations the reduced eligibility 
set

In the above presented situation the fault was 
detected during the first stage of the debugging of
under-constrained equations. But if the user is not
satisfied with the given solution or the reduced
eligibility set is empty, the debugger can enter in the 
second stage when possible connections of the adjacent 
equations to those variables that disconnect the bipartite 
graph are checked. If a possible coupling of a variable 
to those equations is found the adjacent disconnecting 
variable might be also considered for elimination. The 
possible coupling of variables with equations is
performed by a variable reachability analysis based
algorithms applied to the inheritance graph of the
underlying simulation system. The variable reachability
analysis computes the list of variables which can be 
inserted into certain equations. The description of the 
variable reacheability analysis algorithm is not the
subject of this paper.

A third stage in the debugging process of the
under-constraining equations is when extra equations
need to be added and coupled to the free equation. For 
example, in our case, adding an extra equation s=10 in 
the Resistor component is a mathematically sound 
solution even it might not reflect the modelers intent. In 
a similar way extra equations can be added to each
variable from the eligibility set. 

The user has the possibility of specifying which 
level of debugging he/she would like to perform on the 
erroneous model, in that way, filtering out some of error 
messages and performing an incremental error fixing on 
the modeling source code.

5 Prototype Implementation
A prototype debugger has been built and attached to the 
MathModelica simulation environment as a testbed for 
evaluating the usability of the above presented graph 
decomposition techniques for debugging declarative
equation based languages. MathModelica  is an
integrated problem-solving environment (PSE) for full 
system modeling and simulation (Fritzson et. al.[6])
(Jirstrand [7]) (Jirstrand et. al.[8]). The environment
integrates Modelica-based modeling and simulation
with graphic design, advanced scripting facilities,
integration of code and documentation, and symbolic 
formula manipulation provided via Mathematica
(Wolfram [11]). Import and export of Modelica code 
between internal structured and external textual
representation is supported by MathModelica . The
environment extensively supports the principles of
literate programming and integrates most activities
needed in simulation design: modeling, documentation, 
symbolic processing, and transformation and formula 
manipulation, input and output data visualization.

In order to attach the debugger it was absolutely 
necessary to have access to the intermediate form of the 
code because the presented algorithm makes use of the 
intermediate flat form of the equations. The
implemented debugger was successfully tested on
Modelica models involving several hundreds of
algebraic and differential algebraic equations.

The general architecture of the implemented
debugger is presented in Figure 16. The debugging
algorithm proceeds as follows: based on the original 
declarative source code the intermediate representation 
is generated. From the intermediate representation the 
overall system of equations is extracted and transformed 
into bipartite graph form. The associated bipartite graph
is canonically decomposed. Error-fixing strategies are 
applied if the decomposition leads to over- or under-
constrained components.  The debugger will try to solve 
the errors automatically without explicit intervention of 
the user.  If automatic error solving is not possible due 
to missing information the user will be consulted
regarding the repair strategy. 

When the user is interrogated, all valid options that 
will lead to a structurally sound underlying system of 
equations are presented. As was mentioned earlier, the 
error fixing strategies for over- and under-constrained
subcomponents might involve several stages, especially 
for under-constrained situations. Due to the equation
and variable annotations the error messages output by 
the debugger are understandable relative  to the user
perception of the simulation source code, in our case the
Modelica code.The information output by the debugger 
will of course lead to a mathematically sound system of 
equations. However, some of the solutions might not be 
acceptable from the modeling language point of view or 
from the physical system model perspective. The
debugger focuses on those errors whose identification 
would not require the solution of the underlying system 
of equations.
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..................
model Resistor

extends TwoPin;
parameter Real R;

equation
 R * i = v;
end Resistor;
..................

Modelica source
code specification

Graphical model
specification

Model flattening

..................................................
R1.v == -R1.n.v + R1.p.v
0 == R1.n.i + R1.p.i,
R1.i == R1.p.i,
R1.i R1.R == R1.v
C.v == -C.n.v + C.p.v
 0 == C.n.i + C.p.i, C.i == C.p.i,
..................................................

Flatened set of equations
(Constraints store)

Intermediate code
annotating

<R1.v == -R1.n.v + R1.p.v,“eq11”,“  “,2,“TwoPin”,1,no>
.....
<AC.p.v == R1.pv,“eq11”,“  “,2,“Circuit”,1,yes>
.....

Annotated flattened
equations

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6 var7

Corressponding
bipartite graph
representation

D&M
decomposition

Bipartite graph
generation

eq5

var4

eq1 eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 v a r 5 var6 var7

over-constraint well-constraint under-constraint
eq1 eq2 eq3

var1 var2

eq6 eq7

var5 var6 var7

Error correcting strategies
based on annotations

analysis and user-interaction

under-constrained
subsytem

over-constrained
subsytem

Static Debugging
(Structural Analysis)

eq2 eq3 eq4 eq5 eq6 eq7

var1 var2 var3 var4 var5 var6

eq2 eq3

var1 var2

eq4 eq6 eq7

var3 var5 var6

var1,var2
var3,var5,

var6

Decomposition into
irreductible parts

Dynamic Numerical
Debugging

well-constrained
general system

Figure 16. Debugger architecture.

6 Conclusions
Determining the cause of errors in models of physical 
systems is hampered by the limitations of the current 
techniques of debugging declarative equation based
languages. We have presented a new approach for
debugging such languages by employing graph
decomposition techniques and have given several usage 
examples for debugging erroneous models. It has also 
been demonstrated that it is possible to create a tool 
with an enhanced user interaction capability that can be 
used explicitly in understanding complicated simulation 
models.

The contributions of this paper are twofold: the 
proposal of integrating graph decomposition techniques 
for debugging declarative equation based languages and 
an efficient equation annotation structure which helps 
the debugger to eliminate some of the heuristics
involved in the error solving process. The annotations 
also provide an efficient way of identifying the
equations and therefore helps the debugger in providing 

error messages consistent with the user’s perception of 
the original source and simulation model. The
implemented debugger helps to statically detect a broad 
range of errors without having to execute the simulation 
model. Since the simulation system execution is
expensive the implemented debugger helps to greatly 
reduce the number of test cases needed to validate a
simulation model.

The merits of the proposed debugging technique 
are as follows:
• The user is exposed to the original source code of 

the program and is therefore not burdened with
understanding the intermediate code or the
numerical artifacts for solving the underlying
system of equations.

• The user has a greater confidence in the correctness 
of the simulation model.

• The error fixing strategies are also prioritized by 
the debugger, which benefits the user in choosing 
the right error fixing solution.
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