
��������	
	����

����	�	����������	�
��������	
��
��	�
	���������
�����
�	�
	���
��
��
������
����
��	� !!" #�

������������
����
�
���������
����
��������������������������������� $" %���&&��
'�(
������)��
�(���*��+(�
"�(���,�(�����
��	-	�.'+,/��01����������������2�����3	

4�������������
�������5���������1�����������������
������������	
��
���	����	�������������������������

��	������	��
�����
�� ���
��� 0

���� '�(
������)��
�(�� �*�� +(�
"� (��� ,�(�����
� �	-	� .'+,/�� ���
�
(
� �*�

,�1�
�5� (��� �����
����5�� 01���������������� 2�����3� .��������� ���
��� �������
�����

��/	

�� 6�������
��78��
��'3������4���+(����9�����	
�� ��
��� :��
;����� �
+4��� '����
���
� ��� ����(
��� ���� �������
���� 9�������� +��5<����

=��8����
3��9�����	

�	����	����
�����
���
���0

����4�
������������5��������
����9����������
��5��>��������������������
'�(
������)��
�(���*��+(�
"�(���,�(�����
��	-	�.'+,/�����
�
(
��*��,�1�
�5�(��
�����
����5��01����������������2�����3

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 133 Modelica 2002, March 18−19, 2002

Spark-Ignited-Engine Cycle Simulation in Modelica

Charles Newman, John Batteh, and Michael Tiller
Ford Motor Company, USA

Abstract
This paper details the use of the Modelica

modeling language for the cycle simulation of a

spark-ignited engine. After a brief overview of the

physical processes which must be modeled by a

predictive cycle simulation model, this work

emphasizes the two main challenges to the

developer of such a model in Modelica: zone

formation/destruction and calculation of realistic

thermodynamic properties of the cylinder contents.

The results illustrate that Modelica is capable of

handling the complex physical models required by

cycle simulation programs.

1 Introduction
Computer programs, which simulate the

thermodynamic cycle of an internal combustion

engine, have been developed over the last several

decades both to assist in understanding the

observed behavior of engines and to predict engine

performance and efficiency as functions of engine

design parameters (see [1], [2]). At Ford Motor

Company the internally-developed General Engine

Simulation (GESIM) program [3-6] has matured

sufficiently that it can accurately predict the effects

of intake and exhaust port design, combustion

chamber geometry, and valve timing on

combustion rate, fuel economy, and emissions for a

spark-ignited engine.

Although very useful, GESIM has some significant

limitations: it simulates only one cylinder of an

engine running at constant angular velocity and

reports the cycle averaged output torque. The

result is essentially a simulation of a dynamometer

test point for the engine. Currently, GESIM is

written in procedural languages (FORTRAN and

C), and its capabilities cannot readily be extended

to include the transient multi-cylinder behavior

required to simulate real engine operation in a

vehicle. An effort is now under way to capture

GESIM's physical models in Modelica [7, 8],

thereby retaining its current capabilities, while

removing the limitations on its applicability.

Previous work [9, 10] proved the feasibility of this

type of detailed powertrain modeling in Modelica.

This paper, after a brief overview of the physical

processes which must be modeled by a predictive

cycle simulation model, focuses on the two main

challenges to the developer of such a model in

Modelica: zone formation/destruction and

calculation of realistic thermodynamic properties

of the cylinder contents.

2 Overview of Cycle Simulation
Physics

The goal of a cycle-simulation program is to

perform a thermodynamic analysis of the engine

cylinder contents through each engine cycle, an

overview of which is shown in Figure 1:

a) The mixture is prepared during the gas

exchange period which extends from the

time the exhaust valve opens (EVO) until

the intake valve closes (IVC); during this

period the burned gases are expelled, and a

fresh mixture of fuel and air is inducted

into the chamber. The mixture is then

compressed until the piston reaches a

position near top dead center (TDC).

b) In a spark-ignited engine, combustion is

then initiated by the firing of the spark

plug.

c) The mixture is then burned, raising the in-

cylinder pressure and temperature

considerably. In contrast to the process in a

diesel engine, where combustion occurs

throughout the chamber simultaneously,

the mixture is consumed through the

propagation of a well-defined flame front

across the combustion chamber.

d) After the flame consumes all the

combustible mixture, usually some time

after TDC, the gas continues to expand,

transferring energy to the piston as it

continues its downward trajectory.

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 134 The Modelica Association

e) When EVO is again reached, the process

begins anew.

Successful modeling of the cycle requires

capturing the essential physics of all the processes

described above. In this paper, however, we

concentrate on those processes critical to the

thermodynamic analysis: combustion by a

propagating flame and the computation of realistic

thermodynamic properties of the gases comprising

the in-cylinder mixture.

3 Combustion Modeling
The traditional approach taken to model the spark-

ignition combustion process is suggested by Figure

1: we divide the cylinder contents into two (or

more) thermodynamic zones, each with its own

temperature and composition. Behind the flame is

a zone comprised of only burned gases at high

temperature (the burned zone). Ahead of the flame

is the unburned zone, containing the remnants of

the original mixture at a much lower temperature.

Each zone is regarded as a homogeneous mixture

of N species (or pseudo-species), each modeled as

an ideal gas. The zone must then satisfy the First

Law of Thermodynamics,

dt

dV
PQ

dt

dU −= � , (1)

the ideal gas law,

MRTPV = , (2)

and the conservation of mass for each species

i
i S

dt

dm
C= (3)

where

wqHQ CCC += (4)

∑=
i

imM (5)

ii MXm = (6)

MuU = (7)

∑∑ ==
i i

i

i

ii

X
RRXR

µ
 (8)

and

U is the total internal energy of the

zone

QD is the total energy flow into the zone

P is the cylinder pressure

V is the volume of the zone

H� is the total flow of enthalpy entering

the zone

wqD is the heat transferred from the

chamber walls to the zone

M is the total mass in the zone

R is the overall (mass-specific) gas

constant for the zone

T is the temperature of the zone

im is the mass of species i in the zone

iX is the mass fraction of species i in

the zone

iS� is the total flow of species i of the

mass flow entering the zone
u is the specific internal energy of the

zone

),(TPui
is the specific internal energy of

species i and is a known function of

P and T

R is the universal gas constant

),(TPiµ is the average molecular weight of

species i and is a known function of

P and T

In addition to a set of equations (1)-(8) for each

zone z, a constraint on the total volume must be

added:

∑=
z

zT VV (9)

where

TV is the total volume of the chamber

The task of the modeler is to complete the system

of equations by supplying conditions to specify the

flows appearing in equations (1)-(8) for all zones.

(a) Gas exchange (b) Just after spark (c) TDC (d) Just before EVO (e) Just after EVO

Figure 1. Modeling of cylinder contents at various points in engine cycle

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 135 Modelica 2002, March 18−19, 2002

3.1 GESIM Implementation

GESIM makes two modifications to the above

approach:

1. During mixture preparation (gas exchange

and compression), the contents are treated

as a single zone. No solution is sought for

the quantities in the burned zone.

2. After combustion is initiated and as soon

as the flame front makes contact with the

surface of the chamber, the burned zone is

further subdivided into an adiabatic core

and a thermal boundary layer between the

core and the wall.

GESIM implements the engine cycle of Figure 1 as

follows:

a) The system to be solved consists of

equations (1)-(9) for a single (unburned)

zone, supplemented by the following

relationships for the flows:

∑=
v

vivui XmS
~

DD (10)

∑=
v

vvu hmH
~

DD (11)

where

vmD is the mass flow into the zone

through valve v

vh
~ is the specific enthalpy of the mass

flow entering the zone through

valve v

viX
~ is the fraction of species i of the

mass flow entering the zone

through valve v

b) At spark, the solution is interrupted and a

kernel (diameter ~ 1 mm) of burned gases

is instantly created from the unburned

mixture. This forms the initial state for the

adiabatic zone. Equations (1)-(8) for the

adiabatic zone are added to the system, and

flows for both zones are now specified by

uibui XmS �� −= (12)

ubu hmH �� −= (13)

for the unburned zone and

})({ uibbi XBmS �� = (14)

ubb hmH �� = (15)

for the burned zone where

bm� is the burn rate as calculated

by the flame propagation

model

})({ ui XB is the fraction of species

remaining after a mixture of

composition uiX is burned.

uh is the specific enthalpy of

the unburned zone

c) When the flame contacts the wall, the

solution is interrupted and a thin boundary

layer is initialized and the system of

equations altered in a manner similar to b)

above. The details are omitted here.

d) At EVO, the solution is again interrupted.

All zones are mixed together instantly to

form a single zone, which represents the

initial state for the unburned zone for the

next cycle.

e) The set of equations is reduced to those of

a) above and the solution is resumed.

3.2 Modelica Implementation

As GESIM is an in-house product written in

FORTRAN, it has complete control over the

solution method- it can interrupt the solution at

will to expand or shrink the system of equations,

reinitialize, and resume. In Modelica, however,

where the number of equations is fixed, we adopt

two modifications to GESIM's approach:

1. The burned zone (i.e. the adiabatic zone

and boundary layer) exists throughout the

simulation. Each zone satisfies equations

(1)-(8), and equation (9) is imposed on the

volumes. During the mixture preparation

period, when the burned zone does not

exist in GESIM, we require that it have a

small mass (less than the initial spark

kernel) and have temperature and

composition equal to that of the unburned

zone. The solution for the two zones

degenerates to an equivalent single-zone

simulation during this portion of the cycle.

2. GESIM effects the transitions between 1-

zone and multi-zone behavior essentially

by simulating impulses. In the absence of a

stable and mature impulse capability in

Modelica, we choose to perform these

transitions over a finite, but short time.

Since all zones are always mathematically active,

enough conditions must be supplied to specify all

the flows. While our model includes all three

zones, in this paper we discuss only the aspects of

modeling two zones in order to illustrate the

approach. Adding the boundary layer is a relatively

straightforward extension of the technique.

During mixture preparation, the "burned" zone is

just a dummy placeholder, containing a small

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 136 The Modelica Association

amount of mass in its unburned state, which will be

the first mass to be burned in forming the initial

kernel after spark. We require that both zones have

identical temperature and composition. Since (5)

and (6) imply that ∑ =
i

iX 1, only N-1

components of the composition vector can be

independently constrained. Hence, our condition

can be expressed as

0=−=∆ bu TTT (16)

0=−=∆ biuii XXX , 11 −≤≤ Ni (17)

0=−=∆ Kb VVV (18)

where

KV is a volume small compared to that

of the initial spark kernel

Denoting the time of EVO as 0t , we achieve the

transition from combustion to the above conditions

by mixing the contents of the two zones over a

short time ss µτ 100~ ; i.e., for

sF tttt τ+=≤≤ 00 :

)(0 tTT σ∆=∆ (19)

)(
0

tXX ii σ∆=∆ , 11 −≤≤ Ni (20)

)(0 tVV σ∆=∆ (21)

where the subscript 0 denotes the value of a

quantity at EVO and

2)()(
s

Ftt
t

τ
σ −

= . (22)

Referring again to Figure 1, the Modelica

implementation of the cycle is as follows:

a) During mixture preparation, a dummy

burned zone (shown in black) exists.

Except for the transition time at EVO, its

volume is KV . Otherwise it is

indistinguishable from the main unburned

zone. To specify the flows, we first

introduce modified forms of (10)-(11):

∑=+
v

vivbiui XmSS
~

DDD (23)

∑=+
v

vvbu hmHH
~

DDD (24)

The constraints (16)-(18) or (19)-(21) are

sufficient to complete the specification for

the transition at EVO or the main portion

of mixture preparation, respectively.

Differentiating both of the above sets of

equations, we can combine them into a

single set. Between EVO and spark, then

)(0 tT
dt

Td λ∆=∆
 (25)

)(
0

tX
dt

Xd
i

i λ∆=
∆

, 11 −≤≤ Ni (26)

)(0 tV
dt

Vd λ∆=∆
 (27)

where

),0min(
2

)(
s

F

s

tt
t

ττ
λ −

= . (28)

b) The transition at spark from mixture

preparation to combustion is accomplished

in two steps.

1. Denoting the time of spark as It , we

first burn the contents of the "burned"

zone over a time sµτ 1~1 ; i.e., for

1τ+=≤≤ IMI tttt , the flows are

specified by

0=uiSD (29)

uuH 0=D (30)

]})({[
1

IiIi

bI

bi XXB
M

S −=
τ

D (31)

0=bHD (32)

where the subscript I denotes a value at

ignition.

2. At Mtt = , two-zone combustion

begins. Equations (12)-(15) are used

unchanged, just as in GESIM, with the

burn rate bmD initially set high enough

to assure that, by stt M µ1+= , a

burned zone volume will be achieved

equal to that of GESIM's initial spark

kernel. As soon as the required volume

is attained, the flame propagation

model is used to calculate the burn

rate.

c) The main phase of combustion is identical

to that of GESIM.

d) At EVO, expansion ends. The current time

is assigned to 0t , and we change over to

the mixture preparation phase.

e) The next cycle begins.

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 137 Modelica 2002, March 18−19, 2002

Figure 2 shows schematics for successive levels of

the instance hierarchy in the Modelica

implementation of a single-cylinder version of this

model. The engine itself is shown in Figure 2(a).

Its cylinder component appears in Figure 2(b);

it has been designed to facilitate construction of

multi-cylinder configurations through its

replication. The contents component of the

cylinder, shown in Figure 2(c), models the

thermodynamics of all gases residing in the

cylinder. Finally, in Figure 2(d) we see the

combustion component, the main focus here.

The combustion component controls the

creation, evolution, and destruction of the burned

zone in the manner discussed above by

coordinating the activities of a parallel

configuration of three subcomponents:

mix_zones to mix burned and unburned together

at EVO by specifying the flows according to a)

above; kernel_burn to create the initial spark

kernel as described in b) above; flameadv to

grow the burned zone according b) and c). Each of

these components supplies non-vanishing

contributions to the total flow only during the

portion of the cycle that it is meant to control.

Figures 6-9, included at the end of the paper,

contain code fragments that provide some insights

into how the models described in this section have

been implemented.

(a) single cylinder engine (b) one cylinder

(c) cylinder contents (d) combustion model

Figure 2. Schematic representations of the engine model hierarchy

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 138 The Modelica Association

4 Thermodynamic Properties

4.1 The "MediumModel" Idiom

Different engine simulation applications require

different levels of detail. One of the important

determinations to be made is what level of detail is

required in computing the thermodynamic

properties of the cylinder contents. In some cases,

we can treat the medium flowing through the

engine as simply air but in other cases we might

need to allow for changes in composition of the

gas that would require tracking several chemical

species.

At first glance, it would appear that different

component models (e.g. valves, control volumes)

would be required for each of the possible media.

But if we look carefully at the issue, we find that

the properties of the selected medium are

orthogonal to the equations of the various

thermodynamic processes. In other words, if the

models are formulated correctly, the choice of

media can be made independently of the

components used to model the engine cycle.

In practice, this is achieved by using what we refer

to as the MediumModel idiom. The basic idea

behind this idiom is to define a partial
package that describes the interfaces of the

various models, connectors, etc. that will be

required to implement all of our component

models. However, no implementation is provided

by this partial package. This is essentially a

Modelica adaptation of the "Kit" or "Abstract

Factory" pattern found in [13]. In the same way

that a "Kit" might be used as a means of

instantiating compatible GUI toolkit components

such as scrollbars, menus, etc., the

MediumModel is used to instantiate consistent

sets of property models, connectors, etc.

The complete definition of the MediumModel
package definition is too lengthy to include here,

but it consists mainly of three things. First, it

contains a partial model definition that

defines the interface for computing medium

properties. Second, it contains partial
connector definitions that include the

appropriate number of chemical species flowing

between components. Finally, it contains several

partial function definitions for computing

useful quantities (e.g. air fuel ratio) using medium

composition information.

4.2 Property Calculations

As discussed previously, the conservation of

energy for the various combustion zones in the

cylinder is at the heart of the cycle simulation tool.

In addition, a specific medium model is needed to

determine the thermodynamic properties (e.g.
specific enthalpy, h, and specific internal energy, u)

of the cylinder contents used in Eqs. (4), (7).

In simple combustion simulations the cylinder

contents can be treated as a single ideal gas.

Constructing a medium model for a single ideal

gas is relatively easy. Since the thermodynamic

properties vary as a function of temperature only,

they can be calculated from a look-up table or a

polynomial regression of tabulated data. However,

for detailed combustion systems the medium is

assumed to be a reacting mixture of ideal gases

(e.g. the fuel vapor, air, and combustion products).

Therefore, in order to compute the contribution of

each species to the mixture property we must first

determine the relative amounts of the various

species in the mixture. This calculation requires the

solution of the nonlinear system of equations that

define chemical equilibrium for the mixture.

The steps required for the property calculation are

detailed in [11] and can be summarized as follows:

1. Solve the nonlinear system of equations that

defines chemical equilibrium for the

combustion mixture to yield the mixture

composition

2. Calculate the contribution of each species to

the mixture property

3. Calculate the mixture property from the

individual species contributions and the

mixture composition

While the calculations in steps 2 and 3 above are

simple evaluations, the nonlinear solution of the

chemical equilibrium problem is certainly

nontrivial. In the GESIM property models the

combustion products are comprised of twenty-one

species; thus, obtaining the mixture composition

requires the solution of a set of twenty-two

nonlinear equations for chemical equilibrium.

Furthermore, recall that h and u are functions of P,

T, and φ (the equivalence ratio of the combustion

products). Therefore, the property calculations,

including the determination of the equilibrium

composition, must be computed for each

thermodynamic zone in the engine model

whenever there is a change in the pressure,

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 139 Modelica 2002, March 18−19, 2002

temperature, and/or composition of any of the

thermodynamic zones.

While this method for calculating the mixture

properties could be implemented directly in

Modelica, it would require the cycle simulation

tool to repeatedly compute the solution of the

chemical equilibrium problem, a formulation that

has several drawbacks. First, the repeated solution

of the nonlinear equations used to determine the

equilibrium chemistry is computationally

demanding when compared to the other behavior

equations involved, a formulation which would

result in slower simulation times. In addition, the

chemical systems introduce other issues such as

robustness of the nonlinear solution method and

scaling of the chemical concentrations. So, rather

than calculate the needed properties on-demand

during the simulations, an alternative approach is

to pre-compute the properties throughout the

expected domain of operation and simply

interpolate as needed during the simulations. The

ModelicaAdditions package contains a

Tables package that includes models for linear

interpolation in one and two dimensions,

CombiTable1D and CombiTable2D
respectively. However, the mixture properties are

functions of three variables (P, T, and φ). Even tri-

linear interpolation would not suffice as continuity

of the mixture properties and gradients could not

be insured. It can be shown [11] that this

continuity in gradients is important for fast and

accurate simulation. Furthermore, maintaining

continuous gradients allows for index reduction in

Modelica and would certainly be of benefit to the

numerical integration schemes in Dymola [12].

As a result, higher order interpolation schemes are

required to provide the desired continuity. They

involve the construction and evaluation of

polynomials to yield the interpolated values and

are more difficult to implement since more

information is needed about the function other than

simply its value at each grid point (i.e. the

derivatives of the function, additional function

values at adjoining cubes, etc.).

Though not detailed in this work, a flexible

modular scheme has been developed to

automatically formulate the chemical equilibrium

problem and solve for the equilibrium chemistry

and mixture properties over a wide range of engine

operating conditions (P, T, and φ). The remainder

of this section discusses the implementation of a

higher order interpolation scheme in Modelica with

the assumption that a file has been created that

contains all the necessary data to perform the

interpolation.

4.3 Hermite Interpolation

Based on the requirements detailed in the previous

section, the interpolation scheme must be three-

dimensional and provide continuity of the

interpolated function value and its derivative. One

scheme that satisfies those criteria is Hermite

interpolation [14]. The Hermite interpolating

function for a generic property p is defined in

standard tensor notation as follows:

() () () () lmnbwFvFuFwvup nml=,, (33)

where the following vectors define the cubic

blending functions:

()
()
()
() 23

4

23

3

23

2

23

1

2

32

132

uuuF

uuuuF

uuuF

uuuF

−=

+−=

+−=

+−=

 (34)

and similarly for Fm(v) and Fn(w). The blending

functions clearly show the cubic nature of the

interpolating polynomial and are evaluated based

on the point within the cube at which the

interpolated value is sought, denoted by the star in

Figure 3.

Figure 3. Hermite interpolation cube

The tensor blmn is comprised of externally-

provided data about the function p and its

derivatives, data that is required at the eight cube

vertices shown and labeled in Figure 3. The data

consists of eight pieces of information at each of

the eight vertices, a total of 64 pieces of

information for a single cube: the function value,

three tangent vectors, three twist vectors, and a

vector defined by the third-order mixed partial

(i,j+1,k)

(i+1,j,k+1)

(i+1,j,k)
u

v
w

(i,j,k)

(i+1,j+1,k)

(i+1,j+1,k+1)
(i,j+1,k+1)

(i,j,k+1)

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 140 The Modelica Association

derivative of the function. See [14] for a complete

description of the Hermite interpolation scheme

and data required.

Clearly a significant amount of data is required for

the interpolation of the thermodynamic properties

h and u. With some symbolic manipulation of the

property equations, it is possible to derive all the

necessary function and derivative data analytically

without resorting to numerical differentiation. This

data is available to Modelica in the form of a

Matlab .mat file. A typical 30 x 45 x 45 data file

is approximately 7.6 MB.

4.4 Modelica Implementation

Once we have decided on an appropriate

interpolation scheme and collected all the property

data required, the next step is to implement the

interpolation scheme so that it can be used from

within our Modelica models. In our

implementation, the interpolation and gradient

calculations (associated with the interpolation

function via the derivative annotation) were

written in "C". These functions are then called as

external functions by native Modelica

functions.

While the steps required are straightforward, there

are several implementation details worth

discussing. For example, in order to perform the

interpolation, the property data must be loaded and

made available to the "C" language routines.

Rather than load the data (which is quite

voluminous) into Modelica arrays and pass it as an

argument to the various functions, we chose

instead to load the data into memory and simply

refer to it using an integer identification number.

As a result, the only data passed around in the

Modelica models is the unique ID number that

identifies where the data can be found in memory.

In the future, the interpolation routines will be

upgraded to use the newly adopted

ExternalObject class in Modelica 2.0 [8] that

was introduced to provide more direct support for

these kinds of applications.

Another issue with the interpolation routines is to

improve performance by implementing some form

of caching mechanism. There are two reasons to

implement a cache mechanism. First, the

simulation tool may not entirely optimize away

redundant function calls (i.e. calls with the same

arguments and therefore the same results). In such

cases, a cache can be used to store previous results

and avoid expensive recalculations. Another

reason to implement a cache is to allow for

common calculation to be shared among the

various interpolation-related functions. For

example, calculating the gradient of the

interpolating function requires much of the same

data as the function evaluation itself. These

common quantities can also be stored in a cache

and reused across calculations.

Once we have implemented the interpolation

routines, we can move on to implementing a

medium model that utilizes these interpolation

routines. This calculation involves two different

interpolations. First, the properties of the gaseous

air-fuel mixture (which is treated as a non-reacting

mixture of ideal gases) can be computed via

interpolation in temperature. Then, the properties

of the reacting combustion products are computed

using interpolation in pressure, temperature and

equivalence ratio. These two sets of properties are

then combined to form a single set of properties for

the entire air, fuel and combustion products

mixture.

Although we implemented our own interpolation

routines for this purpose, we will work toward

incorporating similar functionality into the

Modelica Standard Library so that the routines can

be more fully optimized and so that future users

will be able to simply reuse what is in the library

rather than having to create their own.

5 Cycle Simulation Results
The single-cylinder Modelica model was run for 1

second of simulation time at 1500 rpm at slightly

lean conditions. By the end of the tenth engine

cycle, approximately 0.8 seconds, the model has

effectively converged to "steady-state"; i.e., each

cycle is a repeat of its predecessor. Some results

for the tenth cycle are shown in Figures 4-5.

Figure 4 plots the temperature of all three zones.

During mixture preparation the temperatures are

equal, as is required. At spark, they separate, with

the adiabatic temperature exceeding 2600 K, the

unburned zone peaking at around 900 K, and the

boundary layer achieving a value in between.

These temperatures agree well with those

computed in GESIM and are typical of those

encountered in spark-ignited engines. At EVO,

when the zones are remixed, all temperatures again

quickly collapse to a single value, as expected.

Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 141 Modelica 2002, March 18−19, 2002

The volumes of the three zones, along with the

total chamber volume, are plotted in Figure 5.

Since some of the zones during parts of the cycle

are artifices of our modeling approach, we cannot

use measurements or GESIM to gauge their

accuracy. However, they do behave as anticipated.

During mixture preparation, when the adiabatic

zone and the boundary layer do not appear in

GESIM, their volumes are indeed insignificant.

When combustion begins those two zones grow

rapidly at the expense of the unburned zone,

eventually reducing the size of the latter to

insignificance at the end of combustion. At EVO,

when the zones are remixed, all zones quickly

revert to their values for mixture preparation.

6 Conclusions
This paper outlines the handling of zone

formation/destruction and calculation of realistic

thermodynamic properties of the cylinder contents

in Modelica for engine cycle simulation. The

results illustrate that Dymola and Modelica are

capable of handing the complex physical models

required for predictive cycle simulation.

Furthermore, the techniques used provide

illustrative examples for the handling of similar

behavior in different applications.

Acknowledgements
The authors would like to acknowledge Dr. Anne

Marsan at Ford Research Laboratories for the

helpful discussions on geometry and interpolation.

In addition, we would also like to acknowledge the

support provided by Dynasim AB during the

development of these models.

References
1. Heywood, J.B., 1988, Internal Combustion Engine

Fundamentals. McGraw-Hill.

2. Tiller, M. M., 2001, Introduction to Physical
Modeling with Modelica. Kluwer.

3. Borgnakke, C., et al., 1980, "A Model for the

Instantaneous Heat Transfer and Turbulence in a

Spark Ignition Engine," SAE-80-0287, Society of

Automotive Engineers.

4. Newman, C.E., et al., 1989, "The Effects of Load

Control with Port Throttling at Idle---

Measurements and Analyses", SAE-89-0679,

Society of Automotive Engineers.

5. Brehob, D. D., and C. E. Newman, 1992, "Monte

Carlo Simulation of Cycle by Cycle Variability,"

SAE-92-2165, Society of Automotive Engineers.

6. Miller, R., et al., 1998, "Comparison of

Analytically and Experimentally Obtained Residual

Fractions and NOx Emissions in Spark-Ignited

Engines", SAE-98-2562, Society of Automotive

Engineers.

7. Modelica Association, 2000, "Modelica Language

Specifications (Version 1.4)", www.modelica.org.

8. Modelica Association, 2002, "Modelica Language

Specifications (Version 2.0)", www.modelica.org.

9. Tiller, M.M., et al., 2000, "Detailed Vehicle

Powertrain Modeling in Modelica", Modelica

Workshop 2000 Proceedings, pp. 169-178.

10. Bowles, P., et al., 2001, "Feasibility of Detailed

Vehicle Modeling", SAE-2001-01-0334, Society of

Automotive Engineers.

11. Olikara, C. and Borman, G. L., 1975, "A Computer

Program for Calculating Properties of Equilibrium

Combustion Products with Some Applications to

I.C. Engines", SAE-75-0468, Society of

Automotive Engineers.

12. Dymola. Dynasim AB, Lund, Sweden,

www.dynasim.se.

13. Gamma, E., 1995, Design Patterns. Addison-

Wesley.

14. Mortenson, M.E., 1985, Geometric Modeling. John

Wiley and Sons.

0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84
0

500

1000

1500

2000

2500

3000

Time [s]

T
em

pe
ra

tu
re

 [K
]

Unburned zone
Boundary layer (burned)
Adiabatic core (burned)

Figure 4. Zone temperatures (converged cycle)

0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84

0

1

2

3

4

5

6
x 10

−4

Time [s]

V
o
lu

m
e
 [

m
3
]

Chamber (total)
Unburned zone
Boundary layer (burned)
Adiabatic core (burned)

 Figure 5. Zone volumes (converged cycle)

Spark−Ignited−Engine Cycle Simulation in Modelica Newman C.E., Batteh J.J., Tiller M.

Modelica 2002, March 18−19, 2002 142 The Modelica Association

Code Fragments
This section contains code fragments to illustrate

some of the points raised during discussion of zone

formation and destruction.

constant Integer mixprep=1;
constant Integer ignstep1=2;
constant Integer ignstep2=3;
constant Integer propagating=4;
constant Integer expanding=5;
parameter Modelica.SIunits.Time tau=1e-4;
parameter Modelica.SIunits.Time ign_delta=1e-6;
Integer status;
discrete Modelica.SIunits.MassFlowRate

ignition_rate "Combustion rate during ignition";
discrete Modelica.SIunits.Time endstep(start=tau);

equation
mix_zones.mix.signal[1] = status == mixprep;
mix_zones.tfinal.signal[1] = endstep;
kernel_burn.burn.signal[1] = status == ignstep1;
kernel_burn.burn_rate.signal[1] = burn_rate;
flameadv.burn.signal[1] = status == ignstep2 or

status == propagating;
flameadv.burn_rate.signal[1] = burn_rate;

.

.

.

if status == ignstep1 or status == ignstep2 then
burn_rate = pre(ignition_rate);

elseif status == propagating then
// post_ignition_rate is computed by flame
// propagation model
burn_rate = post_ignition_rate;

else
burn_rate = 0.0;

end if;

algorithm
when status == mixprep and spark.signal[1] then

status := ignstep1;
endstep := time + ign_delta;
kernel_mass := pre(burned_mass);
ignition_rate := kernel_mass/ign_delta;

end when;

when status == ignstep1 and time > endstep then
status := ignstep2;
endstep := time + ign_delta;
ignition_rate := pre(burned_mass)*

(2.0*initial_kernel_size/pre(burnedV) -
1.0)/ign_delta;

end when;

when status == ignstep2 and
(time > endstep or
burnedV/initial_kernel_size > 1.0) then

status := propagating;
end when;

when status <> mixprep and
endofexpansion.signal[1] then

status := mixprep;
end when;

when status == mixprep then
endstep := time + tau;

end when;

Figure 6. Excerpt from the combustion model

parameter Modelica.SIunits.Volume Vbtarget
"Unburned kernel size";

constant Integer nindep=MediumModel.nspecies - 1
"Number of independent species fractions";

discrete Modelica.SIunits.Time endstep;
Modelica.SIunits.MassFraction dX[nindep];
Modelica.SIunits.Temperature dT=a.T - b.T;
Real dV=1.0 - Vbnorm;
Real Vbnorm(start=5, fixed=true);
discrete Modelica.SIunits.Temperature deltaT;
Modelica.SIunits.MassFraction deltaX[nindep];
discrete Real deltaV
discrete Real r;
Real rate_expr;

.

.

.

equation
// component a refers to the unburned zone, b to
// the burned zone
a.P = b.P;
a.q + b.q = 0.0;
a.mdot = -b.mdot;
// volume_b.signal[1] is the volume of the
// burned zone
Vbnorm = volume_b.signal[1]/Vbtarget;
rate_expr = 2.0*r^2*min(0.0, time - pre(endstep));
dX = a.X[1:nindep] - b.X[1:nindep];
if mix.signal[1] then // true at EVO

der(dV) = pre(deltaV)*rate_expr;
der(dX) = pre(deltaX)*rate_expr;
der(dT) = pre(deltaT)*rate_expr;

else
a.q = 0.0;
a.mdot = zeros(MediumModel.nspecies);

end if;

algorithm
when mix.signal[1] then

deltaX := dX;
deltaT := dT;
deltaV := dV;
endstep := tfinal.signal[1];
r := 1.0/(endstep - time);

end when;

Figure 7. Excerpt from the mix_zones model

equation
// Component medium is the burned zone
if burn.signal[1] then

// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
medium.mdot = burn_rate.signal[1]*

(Xbase - MediumModel.BurnMixture(Xbase);
else

medium.mdot = zeros(MediumModel.nspecies);
end if;
medium.q = 0.0;

algorithm
when burn.signal[1] then

Xbase := medium.X;
end when;

Figure 8. Excerpt from the kernel_burn model

equation
a.q + b.q = 0;
if burn.signal[1] then

a.q = burn_rate.signal[1]*a.h;
a.mdot = burn_rate.signal[1]*a.X;
// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
b.mdot = -burn_rate.signal[1]*

MediumModel.BurnMixture(a.X);
else

b.q = 0;
a.mdot = zeros(MediumModel.nspecies);
b.mdot = zeros(MediumModel.nspecies);

 end if;

Figure 9. Excerpt from the flameadv model

