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Spark-Ignited-Engine Cycle Simulation in Modelica

Charles Newman, John Batteh, and Michael Tiller 
Ford Motor Company, USA 

Abstract 
This paper details the use of the Modelica 

modeling language for the cycle simulation of a 

spark-ignited engine.  After a brief overview of the 

physical processes which must be modeled by a 

predictive cycle simulation model, this work 

emphasizes the two main challenges to the 

developer of such a model in Modelica: zone 

formation/destruction and calculation of realistic 

thermodynamic properties of the cylinder contents. 

The results illustrate that Modelica is capable of 

handling the complex physical models required by 

cycle simulation programs.  

1 Introduction 
Computer programs, which simulate the 

thermodynamic cycle of an internal combustion 

engine, have been developed over the last several 

decades both to assist in understanding the 

observed behavior of engines and to predict engine 

performance and efficiency as functions of engine 

design parameters (see [1], [2]). At Ford Motor 

Company the internally-developed General Engine 

Simulation (GESIM) program [3-6] has matured 

sufficiently that it can accurately predict the effects 

of intake and exhaust port design, combustion 

chamber geometry, and valve timing on 

combustion rate, fuel economy, and emissions for a 

spark-ignited engine. 

Although very useful, GESIM has some significant 

limitations: it simulates only one cylinder of an 

engine running at constant angular velocity and 

reports the cycle averaged output torque.  The 

result is essentially a simulation of a dynamometer 

test point for the engine. Currently, GESIM is 

written in procedural languages (FORTRAN and 

C), and its capabilities cannot readily be extended 

to include the transient multi-cylinder behavior 

required to simulate real engine operation in a 

vehicle. An effort is now under way to capture 

GESIM's physical models in Modelica [7, 8], 

thereby retaining its current capabilities, while 

removing the limitations on its applicability. 

Previous work [9, 10] proved the feasibility of this 

type of detailed powertrain modeling in Modelica.  

This paper, after a brief overview of the physical 

processes which must be modeled by a predictive 

cycle simulation model, focuses on the two main 

challenges to the developer of such a model in 

Modelica: zone formation/destruction and 

calculation of realistic thermodynamic properties 

of the cylinder contents. 

2 Overview of Cycle Simulation 
Physics 

The goal of a cycle-simulation program is to 

perform a thermodynamic analysis of the engine 

cylinder contents through each engine cycle, an 

overview of which is shown in Figure 1:

a) The mixture is prepared during the gas 

exchange period which extends from the 

time the exhaust valve opens (EVO) until 

the intake valve closes (IVC); during this 

period the burned gases are expelled, and a 

fresh mixture of fuel and air is inducted 

into the chamber. The mixture is then 

compressed until the piston reaches a 

position near top dead center (TDC).  

b) In a spark-ignited engine, combustion is 

then initiated by the firing of the spark 

plug.  

c) The mixture is then burned, raising the in-

cylinder pressure and temperature 

considerably. In contrast to the process in a 

diesel engine, where combustion occurs 

throughout the chamber simultaneously, 

the mixture is consumed through the 

propagation of a well-defined flame front 

across the combustion chamber. 

d) After the flame consumes all the 

combustible mixture, usually some time 

after TDC, the gas continues to expand, 

transferring energy to the piston as it 

continues its downward trajectory.  
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e) When EVO is again reached, the process 

begins anew. 

Successful modeling of the cycle requires 

capturing the essential physics of all the processes 

described above. In this paper, however, we 

concentrate on those processes critical to the 

thermodynamic analysis: combustion by a 

propagating flame and the computation of realistic 

thermodynamic properties of the gases comprising 

the in-cylinder mixture. 

3 Combustion Modeling 
The traditional approach taken to model the spark-

ignition combustion process is suggested by Figure

1: we divide the cylinder contents into two (or 

more) thermodynamic zones, each with its own 

temperature and composition. Behind the flame is 

a zone comprised of only burned gases at high 

temperature (the burned zone). Ahead of the flame 

is the unburned zone, containing the remnants of 

the original mixture at a much lower temperature.  

Each zone is regarded as a homogeneous mixture 

of N species (or pseudo-species), each modeled as 

an ideal gas. The zone must then satisfy the First 

Law of Thermodynamics,   

dt

dV
PQ

dt

dU −= � , (1) 

the ideal gas law, 

MRTPV = , (2) 

and the conservation of mass for each species 

i
i S

dt

dm
C=  (3) 

where 

wqHQ CCC +=  (4) 

∑=
i

imM  (5) 

ii MXm =  (6) 

MuU =   (7) 

∑∑ ==
i i

i

i

ii

X
RRXR

µ
 (8) 

and

U is the total internal energy of the 

zone 

QD is the total energy flow into the zone 

P is the cylinder pressure 

V is the volume of the zone 

H� is the total flow of enthalpy entering 

the zone 

wqD is the heat transferred from the 

chamber walls to the zone 

M is the total mass in the zone 

R is the overall (mass-specific) gas 

constant for the zone 

T is the temperature of the zone 

im is the mass of species i in the zone 

iX is the mass fraction of species i in 

the zone 

iS� is the total flow of species i of the 

mass flow entering the zone 
u is the specific internal energy of the 

zone 

),( TPui
is the specific internal energy of 

species i and is a known function of 

P and T

R is the universal gas constant 

),( TPiµ is the average molecular weight of 

species i and is a known function of 

P and T

In addition to a set of equations (1)-(8) for each 

zone z, a constraint on the total volume must be 

added: 

∑=
z

zT VV  (9) 

where 

TV is the total volume of the chamber 

The task of the modeler is to complete the system 

of equations by supplying conditions to specify the 

flows appearing in equations (1)-(8) for all zones. 

(a) Gas exchange (b) Just after spark (c) TDC (d) Just before EVO (e) Just after EVO 

Figure 1. Modeling of cylinder contents at various points in engine cycle 
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3.1 GESIM Implementation 

GESIM makes two modifications to the above 

approach: 

1. During mixture preparation (gas exchange 

and compression), the contents are treated 

as a single zone. No solution is sought for 

the quantities in the burned zone. 

2. After combustion is initiated and as soon 

as the flame front makes contact with the 

surface of the chamber, the burned zone is 

further subdivided into an adiabatic core 

and a thermal boundary layer between the 

core and the wall. 

GESIM implements the engine cycle of Figure 1 as 

follows: 

a) The system to be solved consists of 

equations (1)-(9) for a single (unburned) 

zone, supplemented by the following 

relationships for the flows: 

∑=
v

vivui XmS
~

DD  (10) 

∑=
v

vvu hmH
~

DD  (11) 

where 

vmD is the mass flow into the zone 

through valve v

vh
~ is the specific enthalpy of the mass 

flow entering the zone through 

valve v

viX
~ is the fraction of species i of the 

mass flow entering the zone 

through valve v

b) At spark, the solution is interrupted and a 

kernel (diameter ~ 1 mm) of burned gases 

is instantly created from the unburned 

mixture. This forms the initial state for the 

adiabatic zone. Equations (1)-(8) for the 

adiabatic zone are added to the system, and 

flows for both zones are now specified by  

uibui XmS �� −=  (12) 

ubu hmH �� −=  (13) 

for the unburned zone and 

})({ uibbi XBmS �� =  (14) 

ubb hmH �� =  (15) 

for the burned zone where 

bm� is the burn rate as calculated 

by the flame propagation 

model 

})({ ui XB is the fraction of species 

remaining after a mixture of 

composition uiX is burned. 

uh is the specific enthalpy of 

the unburned zone 

c) When the flame contacts the wall, the 

solution is interrupted and a thin boundary 

layer is initialized and the system of 

equations altered in a manner similar to b) 

above. The details are omitted here. 

d) At EVO, the solution is again interrupted. 

All zones are mixed together instantly to 

form a single zone, which represents the 

initial state for the unburned zone for the 

next cycle. 

e) The set of equations is reduced to those of 

a) above and the solution is resumed. 

3.2 Modelica Implementation 

As GESIM is an in-house product written in 

FORTRAN, it has complete control over the 

solution method- it can interrupt the solution at 

will to expand or shrink the system of equations, 

reinitialize, and resume. In Modelica, however, 

where the number of equations is fixed, we adopt 

two modifications to GESIM's approach: 

1. The burned zone (i.e. the adiabatic zone 

and boundary layer) exists throughout the 

simulation. Each zone satisfies equations 

(1)-(8), and equation (9) is imposed on the 

volumes. During the mixture preparation 

period, when the burned zone does not 

exist in GESIM, we require that it have a 

small mass (less than the initial spark 

kernel) and have temperature and 

composition equal to that of the unburned 

zone. The solution for the two zones 

degenerates to an equivalent single-zone 

simulation during this portion of the cycle. 

2. GESIM effects the transitions between 1-

zone and multi-zone behavior essentially 

by simulating impulses. In the absence of a 

stable and mature impulse capability in 

Modelica, we choose to perform these 

transitions over a finite, but short time. 

Since all zones are always mathematically active, 

enough conditions must be supplied to specify all 

the flows. While our model includes all three 

zones, in this paper we discuss only the aspects of 

modeling two zones in order to illustrate the 

approach. Adding the boundary layer is a relatively 

straightforward extension of the technique.  

During mixture preparation, the "burned" zone is 

just a dummy placeholder, containing a small 
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amount of mass in its unburned state, which will be 

the first mass to be burned in forming the initial 

kernel after spark. We require that both zones have 

identical temperature and composition. Since (5) 

and (6) imply that ∑ =
i

iX 1, only N-1 

components of the composition vector can be 

independently constrained. Hence, our condition 

can be expressed as 

0=−=∆ bu TTT  (16) 

0=−=∆ biuii XXX , 11 −≤≤ Ni  (17) 

0=−=∆ Kb VVV  (18) 

where 

KV is a volume small compared to that 

of the initial spark kernel 

Denoting the time of EVO as 0t , we achieve the 

transition from combustion to the above conditions 

by mixing the contents of the two zones over a 

short time ss µτ 100~ ; i.e., for 

sF tttt τ+=≤≤ 00 :

)(0 tTT σ∆=∆  (19) 

)(
0

tXX ii σ∆=∆ , 11 −≤≤ Ni  (20) 

)(0 tVV σ∆=∆  (21) 

where the subscript 0 denotes the value of a 

quantity at EVO and 

2)()(
s

Ftt
t

τ
σ −

= . (22) 

Referring again to Figure 1, the Modelica 

implementation of the cycle is as follows: 

a) During mixture preparation, a dummy 

burned zone (shown in black) exists. 

Except for the transition time at EVO, its 

volume is KV . Otherwise it is 

indistinguishable from the main unburned 

zone. To specify the flows, we first 

introduce modified forms of (10)-(11):  

∑=+
v

vivbiui XmSS
~

DDD  (23) 

∑=+
v

vvbu hmHH
~

DDD  (24) 

The constraints (16)-(18) or (19)-(21) are 

sufficient to complete the specification for 

the transition at EVO or the main portion 

of mixture preparation, respectively. 

Differentiating both of the above sets of 

equations, we can combine them into a 

single set. Between EVO and spark, then 

)(0 tT
dt

Td λ∆=∆
 (25) 

)(
0

tX
dt

Xd
i

i λ∆=
∆

, 11 −≤≤ Ni  (26) 

)(0 tV
dt

Vd λ∆=∆
 (27) 

where  

),0min(
2

)(
s

F

s

tt
t

ττ
λ −

= . (28) 

b) The transition at spark from mixture 

preparation to combustion is accomplished 

in two steps.   

1. Denoting the time of spark as It , we 

first burn the contents of the "burned" 

zone over a time sµτ 1~1 ; i.e., for 

1τ+=≤≤ IMI tttt , the flows are 

specified by  

0=uiSD  (29) 

uuH 0=D  (30) 

]})({[
1

IiIi

bI

bi XXB
M

S −=
τ

D  (31) 

0=bHD  (32) 

where the subscript I denotes a value at 

ignition. 

2. At Mtt = , two-zone combustion 

begins. Equations (12)-(15) are used 

unchanged, just as in GESIM, with the 

burn rate bmD  initially set high enough 

to assure that, by stt M µ1+= , a 

burned zone volume will be achieved 

equal to that of GESIM's initial spark 

kernel. As soon as the required volume 

is attained, the flame propagation 

model is used to calculate the burn 

rate. 

c) The main phase of combustion is identical 

to that of GESIM. 

d) At EVO, expansion ends. The current time 

is assigned to 0t , and we change over to 

the mixture preparation phase. 

e) The next cycle begins. 



Newman C.E., Batteh J.J., Tiller M. Spark−Ignited−Engine Cycle Simulation in Modelica

The Modelica Association 137 Modelica 2002, March 18−19, 2002

Figure 2 shows schematics for successive levels of 

the instance hierarchy in the Modelica 

implementation of a single-cylinder version of this 

model. The engine itself is shown in Figure 2(a).

Its cylinder component appears in Figure 2(b);

it has been designed to facilitate construction of 

multi-cylinder configurations through its 

replication. The contents component of the 

cylinder, shown in Figure 2(c), models the 

thermodynamics of all gases residing in the 

cylinder. Finally, in Figure 2(d) we see the 

combustion component, the main focus here. 

The combustion component controls the 

creation, evolution, and destruction of the burned 

zone in the manner discussed above by 

coordinating the activities of a parallel 

configuration of three subcomponents: 

mix_zones to mix burned and unburned together 

at EVO by specifying the flows according to a) 

above; kernel_burn to create the initial spark 

kernel as described in b) above; flameadv to 

grow the burned zone according b) and c).  Each of 

these components supplies non-vanishing 

contributions to the total flow only during the 

portion of the cycle that it is meant to control.   

Figures 6-9, included at the end of the paper, 

contain code fragments that provide some insights 

into how the models described in this section have 

been implemented.

(a) single cylinder engine  (b) one cylinder 

(c) cylinder contents  (d) combustion model 

Figure 2.  Schematic representations of the engine model hierarchy 
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4 Thermodynamic Properties 

4.1 The "MediumModel" Idiom 

Different engine simulation applications require 

different levels of detail.  One of the important 

determinations to be made is what level of detail is 

required in computing the thermodynamic 

properties of the cylinder contents.  In some cases, 

we can treat the medium flowing through the 

engine as simply air but in other cases we might 

need to allow for changes in composition of the 

gas that would require tracking several chemical 

species. 

At first glance, it would appear that different 

component models (e.g. valves, control volumes) 

would be required for each of the possible media.  

But if we look carefully at the issue, we find that 

the properties of the selected medium are 

orthogonal to the equations of the various 

thermodynamic processes.  In other words, if the 

models are formulated correctly, the choice of 

media can be made independently of the 

components used to model the engine cycle. 

In practice, this is achieved by using what we refer 

to as the MediumModel idiom.  The basic idea 

behind this idiom is to define a partial
package that describes the interfaces of the 

various models, connectors, etc. that will be 

required to implement all of our component 

models.  However, no implementation is provided 

by this partial package.  This is essentially a 

Modelica adaptation of the "Kit" or "Abstract 

Factory" pattern found in [13].  In the same way 

that a "Kit" might be used as a means of 

instantiating compatible GUI toolkit components 

such as scrollbars, menus, etc., the 

MediumModel is used to instantiate consistent 

sets of property models, connectors, etc.

The complete definition of the MediumModel
package definition is too lengthy to include here, 

but it consists mainly of three things.  First, it 

contains a partial model definition that 

defines the interface for computing medium 

properties.  Second, it contains partial
connector definitions that include the 

appropriate number of chemical species flowing 

between components.  Finally, it contains several 

partial function definitions for computing 

useful quantities (e.g. air fuel ratio) using medium 

composition information. 

4.2 Property Calculations 

As discussed previously, the conservation of 

energy for the various combustion zones in the 

cylinder is at the heart of the cycle simulation tool.  

In addition, a specific medium model is needed to 

determine the thermodynamic properties (e.g.
specific enthalpy, h, and specific internal energy, u) 

of the cylinder contents used in Eqs. (4), (7).   

In simple combustion simulations the cylinder 

contents can be treated as a single ideal gas.  

Constructing a medium model for a single ideal 

gas is relatively easy.  Since the thermodynamic 

properties vary as a function of temperature only, 

they can be calculated from a look-up table or a 

polynomial regression of tabulated data.  However, 

for detailed combustion systems the medium is 

assumed to be a reacting mixture of ideal gases 

(e.g. the fuel vapor, air, and combustion products). 

Therefore, in order to compute the contribution of 

each species to the mixture property we must first 

determine the relative amounts of the various 

species in the mixture. This calculation requires the 

solution of the nonlinear system of equations that 

define chemical equilibrium for the mixture.   

The steps required for the property calculation are 

detailed in [11] and can be summarized as follows: 

1. Solve the nonlinear system of equations that 

defines chemical equilibrium for the 

combustion mixture to yield the mixture 

composition 

2. Calculate the contribution of each species to 

the mixture property 

3. Calculate the mixture property from the 

individual species contributions and the 

mixture composition 

While the calculations in steps 2 and 3 above are 

simple evaluations, the nonlinear solution of the 

chemical equilibrium problem is certainly 

nontrivial.  In the GESIM property models the 

combustion products are comprised of twenty-one 

species; thus, obtaining the mixture composition 

requires the solution of a set of twenty-two 

nonlinear equations for chemical equilibrium.  

Furthermore, recall that h and u are functions of P, 

T, and φ (the equivalence ratio of the combustion 

products).    Therefore, the property calculations, 

including the determination of the equilibrium 

composition, must be computed for each 

thermodynamic zone in the engine model 

whenever there is a change in the pressure, 
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temperature, and/or composition of any of the 

thermodynamic zones. 

While this method for calculating the mixture 

properties could be implemented directly in 

Modelica, it would require the cycle simulation 

tool to repeatedly compute the solution of the 

chemical equilibrium problem, a formulation that 

has several drawbacks.  First, the repeated solution 

of the nonlinear equations used to determine the 

equilibrium chemistry is computationally 

demanding when compared to the other behavior 

equations involved, a formulation which would 

result in slower simulation times.  In addition, the 

chemical systems introduce other issues such as 

robustness of the nonlinear solution method and 

scaling of the chemical concentrations.  So, rather 

than calculate the needed properties on-demand 

during the simulations, an alternative approach is 

to pre-compute the properties throughout the 

expected domain of operation and simply 

interpolate as needed during the simulations.  The 

ModelicaAdditions package contains a 

Tables package that includes models for linear 

interpolation in one and two dimensions, 

CombiTable1D and CombiTable2D
respectively.  However, the mixture properties are 

functions of three variables (P, T, and φ).  Even tri-

linear interpolation would not suffice as continuity 

of the mixture properties and gradients could not 

be insured.  It can be shown [11] that this 

continuity in gradients is important for fast and 

accurate simulation.  Furthermore, maintaining 

continuous gradients allows for index reduction in 

Modelica and would certainly be of benefit to the 

numerical integration schemes in Dymola [12].   

As a result, higher order interpolation schemes are 

required to provide the desired continuity.  They 

involve the construction and evaluation of 

polynomials to yield the interpolated values and 

are more difficult to implement since more 

information is needed about the function other than 

simply its value at each grid point (i.e. the 

derivatives of the function, additional function 

values at adjoining cubes, etc.).   

Though not detailed in this work, a flexible 

modular scheme has been developed to 

automatically formulate the chemical equilibrium 

problem and solve for the equilibrium chemistry 

and mixture properties over a wide range of engine 

operating conditions (P, T, and φ).  The remainder 

of this section discusses the implementation of a 

higher order interpolation scheme in Modelica with 

the assumption that a file has been created that 

contains all the necessary data to perform the 

interpolation. 

4.3 Hermite Interpolation 

Based on the requirements detailed in the previous 

section, the interpolation scheme must be three-

dimensional and provide continuity of the 

interpolated function value and its derivative.  One 

scheme that satisfies those criteria is Hermite 

interpolation [14].  The Hermite interpolating 

function for a generic property p is defined in 

standard tensor notation as follows: 

( ) ( ) ( ) ( ) lmnbwFvFuFwvup nml=,,  (33) 

where the following vectors define the cubic 

blending functions: 

( )
( )
( )
( ) 23

4

23

3

23

2

23

1

2

32

132

uuuF

uuuuF

uuuF

uuuF

−=

+−=

+−=

+−=

 (34) 

and similarly for Fm(v) and Fn(w).  The blending 

functions clearly show the cubic nature of the 

interpolating polynomial and are evaluated based 

on the point within the cube at which the 

interpolated value is sought, denoted by the star in  

Figure 3. 

Figure 3.  Hermite interpolation cube 

The tensor blmn is comprised of externally-

provided data about the function p and its 

derivatives, data that is required at the eight cube 

vertices shown and labeled in Figure 3. The data 

consists of eight pieces of information at each of 

the eight vertices, a total of 64 pieces of 

information for a single cube:  the function value, 

three tangent vectors, three twist vectors, and a 

vector defined by the third-order mixed partial 

(i,j+1,k)

(i+1,j,k+1) 

(i+1,j,k)
u

v
w

(i,j,k)

(i+1,j+1,k)

(i+1,j+1,k+1) 
(i,j+1,k+1)

(i,j,k+1)
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derivative of the function. See [14] for a complete 

description of the Hermite interpolation scheme 

and data required.   

Clearly a significant amount of data is required for 

the interpolation of the thermodynamic properties 

h and u.  With some symbolic manipulation of the 

property equations, it is possible to derive all the 

necessary function and derivative data analytically 

without resorting to numerical differentiation.  This 

data is available to Modelica in the form of a 

Matlab .mat file.    A typical 30 x 45 x 45 data file 

is approximately 7.6 MB. 

4.4 Modelica Implementation 

Once we have decided on an appropriate 

interpolation scheme and collected all the property 

data required, the next step is to implement the 

interpolation scheme so that it can be used from 

within our Modelica models.  In our 

implementation, the interpolation and gradient 

calculations (associated with the interpolation 

function via the derivative annotation) were 

written in "C".  These functions are then called as 

external functions by native Modelica 

functions. 

While the steps required are straightforward, there 

are several implementation details worth 

discussing.  For example, in order to perform the 

interpolation, the property data must be loaded and 

made available to the "C" language routines.  

Rather than load the data (which is quite 

voluminous) into Modelica arrays and pass it as an 

argument to the various functions, we chose 

instead to load the data into memory and simply 

refer to it using an integer identification number.  

As a result, the only data passed around in the 

Modelica models is the unique ID number that 

identifies where the data can be found in memory.  

In the future, the interpolation routines will be 

upgraded to use the newly adopted 

ExternalObject class in Modelica 2.0 [8] that 

was introduced to provide more direct support for 

these kinds of applications. 

Another issue with the interpolation routines is to 

improve performance by implementing some form 

of caching mechanism.  There are two reasons to 

implement a cache mechanism.  First, the 

simulation tool may not entirely optimize away 

redundant function calls (i.e. calls with the same 

arguments and therefore the same results).  In such 

cases, a cache can be used to store previous results 

and avoid expensive recalculations.  Another 

reason to implement a cache is to allow for 

common calculation to be shared among the 

various interpolation-related functions.  For 

example, calculating the gradient of the 

interpolating function requires much of the same 

data as the function evaluation itself.  These 

common quantities can also be stored in a cache 

and reused across calculations. 

Once we have implemented the interpolation 

routines, we can move on to implementing a 

medium model that utilizes these interpolation 

routines.  This calculation involves two different 

interpolations.  First, the properties of the gaseous 

air-fuel mixture (which is treated as a non-reacting 

mixture of ideal gases) can be computed via 

interpolation in temperature.  Then, the properties 

of the reacting combustion products are computed 

using interpolation in pressure, temperature and 

equivalence ratio.  These two sets of properties are 

then combined to form a single set of properties for 

the entire air, fuel and combustion products 

mixture. 

Although we implemented our own interpolation 

routines for this purpose, we will work toward 

incorporating similar functionality into the 

Modelica Standard Library so that the routines can 

be more fully optimized and so that future users 

will be able to simply reuse what is in the library 

rather than having to create their own. 

5 Cycle Simulation Results 
The single-cylinder Modelica model was run for 1 

second of simulation time at 1500 rpm at slightly 

lean conditions. By the end of the tenth engine 

cycle, approximately 0.8 seconds, the model has 

effectively converged to "steady-state"; i.e., each 

cycle is a repeat of its predecessor. Some results 

for the tenth cycle are shown in Figures 4-5. 

Figure 4 plots the temperature of all three zones. 

During mixture preparation the temperatures are 

equal, as is required. At spark, they separate, with 

the adiabatic temperature exceeding 2600 K, the 

unburned zone peaking at around 900 K, and the 

boundary layer achieving a value in between. 

These temperatures agree well with those 

computed in GESIM and are typical of those 

encountered in spark-ignited engines. At EVO, 

when the zones are remixed, all temperatures again 

quickly collapse to a single value, as expected. 
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The volumes of the three zones, along with the 

total chamber volume, are plotted in Figure 5. 

Since some of the zones during parts of the cycle 

are artifices of our modeling approach, we cannot 

use measurements or GESIM to gauge their 

accuracy. However, they do behave as anticipated. 

During mixture preparation, when the adiabatic 

zone and the boundary layer do not appear in 

GESIM, their volumes are indeed insignificant. 

When combustion begins those two zones grow 

rapidly at the expense of the unburned zone, 

eventually reducing the size of the latter to 

insignificance at the end of combustion. At EVO, 

when the zones are remixed, all zones quickly 

revert to their values for mixture preparation.  

6 Conclusions 
This paper outlines the handling of zone 

formation/destruction and calculation of realistic 

thermodynamic properties of the cylinder contents 

in Modelica for engine cycle simulation.  The 

results illustrate that Dymola and Modelica are 

capable of handing the complex physical models 

required for predictive cycle simulation.  

Furthermore, the techniques used provide 

illustrative examples for the handling of similar 

behavior in different applications. 
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Code Fragments 
This section contains code fragments to illustrate 

some of the points raised during discussion of zone 

formation and destruction. 

constant Integer mixprep=1;
constant Integer ignstep1=2;
constant Integer ignstep2=3;
constant Integer propagating=4;
constant Integer expanding=5;
parameter Modelica.SIunits.Time tau=1e-4;
parameter Modelica.SIunits.Time ign_delta=1e-6;
Integer status;
discrete Modelica.SIunits.MassFlowRate

ignition_rate "Combustion rate during ignition";
discrete Modelica.SIunits.Time endstep(start=tau);

equation
mix_zones.mix.signal[1] = status == mixprep;
mix_zones.tfinal.signal[1] = endstep;
kernel_burn.burn.signal[1] = status == ignstep1;
kernel_burn.burn_rate.signal[1] = burn_rate;
flameadv.burn.signal[1] = status == ignstep2 or

status == propagating;
flameadv.burn_rate.signal[1] = burn_rate;

.

.

.

if status == ignstep1 or status == ignstep2 then
burn_rate = pre(ignition_rate);

elseif status == propagating then
// post_ignition_rate is computed by flame
// propagation model
burn_rate = post_ignition_rate;

else
burn_rate = 0.0;

end if;

algorithm
when status == mixprep and spark.signal[1] then

status := ignstep1;
endstep := time + ign_delta;
kernel_mass := pre(burned_mass);
ignition_rate := kernel_mass/ign_delta;

end when;

when status == ignstep1 and time > endstep then
status := ignstep2;
endstep := time + ign_delta;
ignition_rate := pre(burned_mass)*

(2.0*initial_kernel_size/pre(burnedV) -
1.0)/ign_delta;

end when;

when status == ignstep2 and
(time > endstep or
burnedV/initial_kernel_size > 1.0) then

status := propagating;
end when;

when status <> mixprep and
endofexpansion.signal[1] then

status := mixprep;
end when;

when status == mixprep then
endstep := time + tau;

end when;

Figure 6. Excerpt from the combustion model 

parameter Modelica.SIunits.Volume Vbtarget
"Unburned kernel size";

constant Integer nindep=MediumModel.nspecies - 1
"Number of independent species fractions";

discrete Modelica.SIunits.Time endstep;
Modelica.SIunits.MassFraction dX[nindep];
Modelica.SIunits.Temperature dT=a.T - b.T;
Real dV=1.0 - Vbnorm;
Real Vbnorm(start=5, fixed=true);
discrete Modelica.SIunits.Temperature deltaT;
Modelica.SIunits.MassFraction deltaX[nindep];
discrete Real deltaV
discrete Real r;
Real rate_expr;

.

.

.

equation
// component a refers to the unburned zone, b to
// the burned zone
a.P = b.P;
a.q + b.q = 0.0;
a.mdot = -b.mdot;
// volume_b.signal[1] is the volume of the
// burned zone
Vbnorm = volume_b.signal[1]/Vbtarget;
rate_expr = 2.0*r^2*min(0.0, time - pre(endstep));
dX = a.X[1:nindep] - b.X[1:nindep];
if mix.signal[1] then // true at EVO

der(dV) = pre(deltaV)*rate_expr;
der(dX) = pre(deltaX)*rate_expr;
der(dT) = pre(deltaT)*rate_expr;

else
a.q = 0.0;
a.mdot = zeros(MediumModel.nspecies);

end if;

algorithm
when mix.signal[1] then

deltaX := dX;
deltaT := dT;
deltaV := dV;
endstep := tfinal.signal[1];
r := 1.0/(endstep - time);

end when;

Figure 7. Excerpt from the mix_zones model 

equation
// Component medium is the burned zone
if burn.signal[1] then

// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
medium.mdot = burn_rate.signal[1]*

(Xbase - MediumModel.BurnMixture(Xbase);
else

medium.mdot = zeros(MediumModel.nspecies);
end if;
medium.q = 0.0;

algorithm
when burn.signal[1] then

Xbase := medium.X;
end when;

Figure 8. Excerpt from the kernel_burn model 

equation
a.q + b.q = 0;
if burn.signal[1] then

a.q = burn_rate.signal[1]*a.h;
a.mdot = burn_rate.signal[1]*a.X;
// MediumModel.BurnMixture computes the
// composition after a given mixture is burned
b.mdot = -burn_rate.signal[1]*

MediumModel.BurnMixture(a.X);
else

b.q = 0;
a.mdot = zeros(MediumModel.nspecies);
b.mdot = zeros(MediumModel.nspecies);

     end if;

Figure 9. Excerpt from the flameadv model 




