
���������	
������
���������	�����
�����������	
�������������
���������
���	���	��������	�����	������
�����
	�������������������������
����
	��������
������
����
��� !"!

������������
����
�
#��������
����
�������������������������������#�$ "$!���%%��
&�	
��#���'��
�	���(��)	�
"�	���*�	���#�
��+�,&)*-��.����������#������/�����0

1�������������
#���2��3�#������������2������������
������������	
�����	����	�������������������������

��	������	�������
�� ���
��� .

���� &�	
��#��� '��
�	�� �(��)	�
"� 	��� *�	���#�
� �+� ,&)*-�� ���
�
	
� �(�

*���
�3� 	��� ���#�
����3�� .����������#������ /�����0� ,�#������� ���
#�� �������
�����

��-

�� ��������4��56��
��&0������17��)	����82����
�� ��
��� 9��
:����� �4)17�� &����
���
� ��� ����	
��� ���� �������
���� 8��������)��3;����

<��6����
0��82����

�	����	���������
���
���.

����1�
����=���#���3����#���
����8�#2�������4��3��>��������=�#����7����
&�	
��#���'��
�	���(��)	�
"�	���*�	���#�
��+�,&)*-�����
�
	
��(��*���
�3�	��
���#�
����3��.����������#������/�����0

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 89 Modelica 2002, March 18−19, 2002

An Incorporated Use of Genetic Algorithm and a Modelica
Library for Simultaneous Tuning of Power System Stabilizers

Komsan Hongesombut, Yasunori Mitani, and Kiichiro Tsuji

Osaka University, Graduate school of engineering
2-1 Yamada-oka, Suita, Osaka 565-0871, JAPAN

Abstract

ObtectStab package that has been successfully ap-
plied to power system studies is a general-purpose
simulation tool developed by the Modelica language.
It takes advantages from the capability of physical
modeling of Modelica language that make ones read-
ily develop new models and use them for complex
and large cases of power system studies based on
object-oriented programming. However, in the situa-
tion that control of complex power systems is not easy
to be realized by traditional methods, genetic algo-
rithm (GA) becomes an alternative powerful method
that can be used to solve several difficult problems
without any prior or little knowledge of the systems
being solved. Proposed in this paper is an incorporat-
ing the use of GA to an ObjectStab library to enhance
the use of this library into optimization environment.
The idea has been applied to one challenging problem
of simultaneous tuning power system stabilizers in a
multimachine power system. The simulation results
show that the resulting controller obtained by a GA
can achieve good performance.

Index Terms – ObjectStab, genetic algorithms, Simu-
link interface, simultaneous tuning, power system
stabilization.

1. Introduction

 Until recently, there has been widespread interest
using genetic algorithms (GA’s) to search and opti-
mize in several difficult problems. Compared to tradi-
tional search and optimization procedures, such as
calculus-based approach, GA’s are robust, conceptu-
ally simple to apply in problems where little or no
prior knowledge is available for the problem being
solved. Problems on modern power systems are more
and more difficult to be solved by using only conven-
tional techniques due to large complex networks and
nonlinear characteristic of power systems. The need
of using other alternative tools such as genetic algo-
rithms to solve such difficult problems become evi-

dent in case many conventional techniques get into
difficulties. Incorporating the use of GA and power
system simulation tools, among them such as
PSCAD/EMTDC, EMTP, EuroStag, etc, ObjectStab
[1] in Dymola [2] which is a library developed by
Modelica language [3] for power system studies is
more flexible than those in the view point of its easi-
ness to realize the phisical models and its powerful
interface with MATLAB and Simulink that can allow
ObjectStab be used with optimization methods such
as GA. This paper describes a method of how a GA
can be applied to a Modelica library named Object-
Stab. An example of simultaneous tuning of power
system stabilizers in a multimachine power system is
used to validate the effectiveness of the incorporated
use of these two features. It opens up a new idea of
the use GA and Modelica library together allowing
designers to design more sophisticated controllers.
The idea does not limit only the applications to power
systems, but also other Modelica users can adapt this
idea to their own works. The simulation tools used in
this paper are the Dymola, ObjectStab library,
MATLAB [4] and Simulink [5] and Genetic and Evo-
lutionary Algorithm Toolbox (GEATbx) [6].

2.Genetic Algorithms

 A Genetic algorithm (GA) is a biologically inspired
search algorithm pioneered by Holland [7]. The ap-
proach is based on Darwin’s survival of the fitness
hypothesis. In GA’s, candidate solutions to a problem
are analogous to individuals in a population. A popu-
lation of individuals is maintained within search space
for a GA, each representing a possible solution to a
given problem. The initial population can be a random
collection of bizarre individuals. The individuals will
interact and breed to form future generations (off-
spring). The stronger individuals will reproduce more
often than weaker individuals. Presumably, the popu-
lation will get collectively stronger as generations
pass and weaker individuals die out. Unlike other
optimization methods, GA’s do not limit by con-
straints on the form of fitness function. The fitness

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 90 The Modelica Association

function does not need to be differentiable or con-
tinuous. This flexibility in which GA’s use a fitness
function to search for the solution makes GA’s be-
come a power tool for optimization in many difficult
problems in many fields.
 GA’s work with coding of the parameters them-
selves (called string) and then use the genetic opera-
tors to evolve the solution with minimum computa-
tion. An optimal solution can be found and repre-
sented by the final winner in the competitive envi-
ronment. GA’s consist of simple three operators; se-
lection, crossover and mutation. Selection is the op-
eration in which the fittest individual of the popula-
tion in the current generation forms part of the popu-
lation to the new generation. Crossover is responsible
for providing new offspring by selecting two indi-
viduals and exchanging some parts of their structures.
Mutation is an operator which is applied for altering
the value of a random position in a string. A simple
algorithm flowchart is shown in Fig.1.

3.Combination of Modelica library and
Genetic Algorithms

 In this section, we will generally describe how a
Modelica library combines with a GA. One of the
most powerful features of MEX files, including C
format S-functions is it allows ones to incorporate
existing code into a Simulink model. The key idea of
combination a Modelica library and GA is using this
feature by converting a Modelica model to a compiled
MEX-file used in Simulink as an S-function block.
Then a GA that exists in MATLAB environment will
adjust some parameters of a Modelica model accord-
ing to the fitness values. Briefly, incorporating a
Modelica library and GA can be achieved by these
following steps:
1. Build a Modelica model. The model is build up in
Dymola environment.
2. Build a Simulink model named model 1 by using a
DymolaBlock which is a new interface to Simulink
that can be found in Simulink’s library browser. This
block is shielded around an S-function MEX block
that interfaces to the C code generated by Dymola for
the Modelica model. Model 1 is constructed for serv-
ing as an interfacing block for editing and compiling
for two environments by switching the current active
window between Dymola and Simulink environment.
3. Compile to Simulink dll file. It is possible to con-
verted a Modelica model to a compiled MEX-file

SimStr.dll to be used as one block in Simulink envi-
ronment. By doing this, command dymcomp is used.
4. Build a Simulink model named model 2. This
model is served as a main system for connecting with
a GA. It contains an S-function block representing a
model as in Dymola and Simulink model for calculat-
ing fitness values used in a GA. Parameters and initial
conditions are be defined or changed by passing these
variables as inputs to S-function block.
5. Build a main m-file and a function used in a GA.
 Details of above procedures are summarized and
given in Fig.2. After this short summary of how a
Modelica model combines with a GA, we will con-
tinue by real building a model for simultaneous tuning
PSSs in a multimachine power system. We will show
the flexibility of using GA by using two objective
functions with the same Modelica model.

4. Problem Formulation

 The objective of this problem is to tune an appro-
priate set of PSSs to damp local and inter-area modes.
This problem is not easy by using traditional analyti-
cal methods to simultaneously tune all PSSs. The
fixed structure of ith PSS as shown in equation 1 is
used for all 4 generators. It consists of a two-stage
lead lag compensation with time constants T1i - T4i ,
and a gain Ki. We set the wash out time constant Twi

with large enough value so that it can be considered
as a constant.

1 3

2 4

1 1
()

1 1 1
wi i i

i i
wi i i

sT sT sT
PSS s K

sT sT sT

 + += + + +
(1)

Selection

Population of
individuals

Fitness
evaluation

Crossover
and

Mutation

Initial
population

parents

decode
New

generation

Objective
function

Mates

gene

1101 0011 1101 1111

chromosome

Fig.1 Simple algorithm flowchart of GA

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 91 Modelica 2002, March 18−19, 2002

where

1 3
i

i i
i

T T
γ

δ
= = and 2 4

1
i i

i i

T T
δ γ

= = (2)

We present two methods to satisfy the objective of
tuning PSS as follows,

4.1 Method 1: time domain-based performance
index

 Typically, the performance of the design controller
is measured directly from the output responses vary-
ing with time. This is a straightforward approach that
can guarantee the performance of controllers under
scenarios which are predefined by the designer. Equa-
tion 3 shows the objective function used in a GA
meaning that we are trying to minimize the deviation
of generator speed for local and inter-area modes by
applying the suitable set of PSS control parameters.

Simulink

Dymola

MATLAB

GA Cycle
(GEATbx)

Dymcomp,
loaddsin

Edit

Parameters (p) and
initial conditions (xo)

Fitness value

Create dll fileCompile

model 1 model 2
model 3

(subsystem)

End

Start

1

2

3

4

5

Fig. 2 Summary of how to combine a Modelica library with a GA

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 92 The Modelica Association

()10
2 2 2

12 13 1
0

min ... n
t

F t dtω ω ω
=

= ∆ + ∆ + ∆ ⋅∫ (3)

where n is the number of generators by assuming that
generator 1 is a reference.

4.2 Method 2: eigenvalue-based performance
index

 For every operating conditions under consideration,
here, it is supposed that a linearized model of power
system is obtained first. The problem of selecting the
parameters for power system stabilizers that can as-
sure minimum damping performance over the consid-
ered set of operating point is converted to a simple
optimization problem and then is solved by a GA with
an eigenvalue-based performance index. The GA ob-
jective function is derived in this following way:
 A linear model of power system is extracted around
a certain operating condition. The system can be ex-
pressed in the linear state-space form as shown in the
following equations

x Ax Bu= +� (4)

y Cx Du= + (5)

 The equation expressed for the controllers is shown
in (6) where in this study, the controller K(s) is a lead-
lag type that is the same as described by the transfer
function in (1). y(s) is the measuring signal and V(s) is
the output signal from the controller which provides
additional damping by shifting under damped or un-
stable oscillation modes to the left hand side of the s-
plane.

() () ()V s K s y s= (6)

 Combining equation 4 through 6, a closed-loop
eigenvalues of the system can be obtained. Here, let

i i ijλ α β= ± be the ith mode of the closed-loop sys-

tem. Damping coefficient iδ of the ith mode is calcu-

lated by

2 2

i
i

i i

αδ
α β

= −
+

 (7)

 If p is a number of operating conditions where each
condition contains the matrix of damping coefficient

iδ , i = 1, …, n where n is the number of oscillation

modes of the closed-loop system. The optimization

problem to be solved by a GA can be written in the
following form:

max min(min())i pF δ= (8)

 For simplicity, we will choose only one operating
condition for considering in this paper.

5. Test Power System and Scenarios

 Fig.3 shows a single line diagram of a test power
system constructed by using a graphical editor of
Dymola and ObjectStab. The data of this power sys-
tem network is given in [8]. The disturbance consid-
ered in this study is a three-phase to ground fault near
Bus 7 by the following situations:
 t = 1 s : fault is applied,
 t = 1.1 s : fault is cleared by tripping one of two
parallel lines.
 t = 2.5 s : line is reclosed.

Fig.3 Power system model

6. Demonstration Example

 In this section, we will describe the implementation
of a GA to a Modelica library called ObjectStab by
using 2 different objective functions as described in
section 4. Considering the procedure chart in Fig.2,
we need to follow 5 steps. It should be noted that only
step 5 is different when changing the objective func-
tion of a GA. This is due to the manner in which a GA
uses the fitness function to evaluate the goodness of
solutions that provides greater flexibility of using GA
to realize many difficult problems.

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 93 Modelica 2002, March 18−19, 2002

 In order to follow the procedure in Fig.2, first task
is to build a power system model in Dymola. By using
the objective function in method 1, we need 3 output
variables which are the speed difference of generator
1 and 2, the speed difference of generator 1 and 3, and
the speed difference of generator 1 and 4. It should be
noted that this is because generator 1 is taken as a
reference, hence, the speed difference of generators
within the same area is represented as the local mode
and the speed difference of generator with different
area is represented as the inter-area mode.
 Next, we build 3 models in Simulink. Model 1 as
shown in Fig.4 can be constructed by drag and drop a
DymolaBlock which can be found in Simulink’s li-
brary browser to a Simulink model. Model name and
its path of the Modelica model must be specified in
the DymolaBlock in order to point the location of a
created Modelica model. It is possible that users can
modify a Modelica model directly by using the editing
command in the DymolaBlock or compiling a Mode-
lica model by using compiling command. In order to
make a Modelica model useful in Simulink and a GA,
we will declare external outputs of a Modelica model.
These outputs are used for evaluating the fitness value
in a GA. The following script is an example of exter-
nal output declaration in a Modelica model.

class TestPSSga
 extends ObjectStab.Examples.Kundur126.linefault;
 Real w1, w2, w3, w4;
 output Real w12;
 output Real w13;
 output Real w14;
equation
 w1 = G1.w;
 w2 = G2.w;
 w3 = G3.w;
 w4 = G4.w;
 w12 = w1 - w2;
 w13 = w1 - w3;
 w14 = w1 - w4;
end TestPSSga

 After compiling the model, the declared outputs
will appear in the DymolaBlock. These outputs can be
connected with other Simulink blocks. Now, we can
covert a Modelica model to a compiled MEX S-
function file by using the following MATLAB com-
mands

dymcomp;
[p, x0, pnames, x0names, inputnames, outputnames] = loaddsin;

 The first command line is used to generate a com-
piled MEX S-function file (dll file). The second
command line is used to load values such as parame-
ters, initial conditions and their names from dsin.txt

which are necessary for input parameters to S-
function block. GA will change parameters p every
iterations according to the decoded chromosome.

Fig.4 Model 1 in Simulink

Fig.5 Model 2 in Simulink

Fig.6 Model 3 in Simulink

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 94 The Modelica Association

 After we get a compiled MEX S-function file
which has a default name SimStr.dll, as stated earlier,
we need to calculate ∫∆ω2t⋅dt for each generator

speed deviation. Model 2 shown in Fig.5 is served for
this function where model 3 shown in Fig.6 is a sub-
system for calculation ∫∆ω2t⋅dt of each speed sig-

(a) Objective function by method 1 (b) Objective function by method 2

Fig.7 Comparison of two objective function used by a GA

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 95 Modelica 2002, March 18−19, 2002

nal. The summation of 3 speed signals become the
objective function of a GA by using the method 1.
Particularly useful in conjunction with a GA is the
way to write the objective function. It is worthwhile
to discuss the construction of the objective function.
In Fig.7, it shows the comparison of two objective
functions used in this study. The meaning behind each
style is

Method 1:
1. Decode the chromosome of a GA.
2. Find the index of parameters which correspond to
the tuning parameters in a Modelica model. The syn-
tax of this command is

pindex = tnindex(pnames, ‘parameter name’)

where pnames is obtained from loaddsin command

3. Replace current parameters with new parameters
obtained by a GA.
4. Run the Simulink model with sim command. Simu-
link will run the model 2 and save the index calcula-
tion of each signal when the simulation is complete.
5. Calculate the fitness value by summing 3 signals
which each signal is calculated by subsystem model 3.

Method 2:
1. Decode the chromosome of a GA.
2. Find the index of parameters which correspond to
the tuning parameters in a Modelica model.
3. Replace current parameters with new parameters
obtained by a GA.
4. Run the Simulink with sim command in order to
find good initial condition x0.
5. When the initial values are obtained, we can then
proceed to use the MATLAB linmod function to de-
termine the [A, B, C, D] matrices of the small-signal
model of the nonlinear system about the chosen
steady-state operating point. The syntax of the lineari-
zation command is as follows:

[A, B, C, D] = linmod(‘model name’, x0)

It should be noted that when calculating the eigenval-
ues, it is not necessary to have an input, but there
should be at least one output of a Modelica model.
6. Calculate the fitness value by (8).

7. Simulation Results

 A GA is applied to solve the problem of simultane-
ous tuning by using 2 different objective functions. In
this study, routines from GEATbx were used with

bounds for PSS parameters shown in Table 1. The
implementation of a GA in this work used real encod-
ing chromosome, a population size 30, maximum
generation 50, a uniform crossover rate of 0.9 and a
uniform mutation rate of 0.01. The approach also
adopted an elitist strategy that copied the best string
found in the current generation to the next generation.
Selection was performed by using the tournament
selection with tournament size of 2. After executing a
GA, the final result as shown in Table 2 were ob-
tained. Fig.8 and 9 show the screen outputs of a GA
by using the objective function by method 1 and
method 2 respectively.

Table 1 Bounds for PSS parameters

PSS parameter value
Kmin 0
Kmax 20
γmin 0.1
γmax 10
δmin 1
δmax 10

Table 2 Final result obtained by a GA

Method 1 K T1 = T3 T2 = T4

PSS1 20.000 0.331 0.139
PSS2 20.000 0.107 0.291
PSS3 17.791 0.127 0.153
PSS4 18.319 0.201 0.055

Method 2 K T1 = T3 T2 = T4

PSS1 19.175 1.583 0.632
PSS2 20.000 0.161 0.184
PSS3 14.209 0.198 0.239
PSS4 7.513 0.051 0.218

 To demonstrate the effectiveness of the resulting
controller obtained by using 2 objective functions,
nonlinear simulation and plot of close-loop ei-
genvlaues were performed. In nonlinear simulations
of Fig.10 to 12, the responses of generator speed de-
viation for local and inter-area modes confirm the
effectiveness of the results obtained by a GA. It
should be noted that the method 1 gives better result
than the method 2 when using time domain-based
performance index. The system is well damped and is
stabilized in less than 5 seconds.
 Fig. 13 to 14 show the plot of dominant eigenval-
ues of the closed-loop system. It can be observed that
using PSS parameters obtained by both methods, the
system is sufficiently damped with all modes of the

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 96 The Modelica Association

system having the minimum damping greater 5%
which is a typical requirement in PSS tuning. It is also
found that the method 2 gives better result than the
method 1 in case of using eigenvalue-based perform-
ance index.

 It is become clear that using different GA objective
function, the final result may be quite different. In
addition, GA is a time consuming search procedure.
Thus, GA is not generally used for problems easily
optimized.

Fig.8 Screen output from a GA by using the objective function in method 1

Fig.9 Screen output from a GA by using the objective function in method 2

Hongesombut K., Mitani Y., Tsuji K. An Incorporated Use of Genetic Algorithm and a Modelica Library ...

The Modelica Association 97 Modelica 2002, March 18−19, 2002

0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time (s)

sp
ee

d
de

vi
at

io
n

be
tw

ee
n

ge
ne

ra
to

r
1

an
d

2
(p

u)

without PSS
method 1
method 2

Fig.10 Speed deviation of generator 1 and 2

0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time (s)

sp
ee

d
de

vi
at

io
n

be
tw

ee
n

ge
ne

ra
to

r
1

an
d

3
(p

u)

without PSS
method 1
method 2

Fig.11 Speed deviation of generator 1 and 3

0 1 2 3 4 5 6 7 8 9 10
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

time (s)

sp
ee

d
de

vi
at

io
n

be
tw

ee
n

ge
ne

ra
to

r
1

an
d

4
(p

u)

without PSS
method 1
method 2

Fig.12 Speed deviation of generator 1 and 4

-15 -10 -5 0
0

2

4

6

8

10

12

14

16

real

im
ag

in
ar

y

10% 5% 15% 20% 25% 30%

δ
min

 = 8.956%

Fig.13 Closed-loop eigenvalues obtained by
method 1

-15 -10 -5 0
0

2

4

6

8

10

12

14

16

real

im
ag

in
ar

y

5% 10% 15%20% 25% 30%

δ
min

 = 33.058%

Fig.14 Closed-loop eigenvalues obtained by
method 2

8. Conclusions

 This paper deals with the incorporated use of a
Modelica library called ObjectStab and a GA and
application of a GA for simultaneous tuning of power
system stabilizers in a multimahcine power system.
The power system modeling can be realized by using
ObjectStab where the behavior of dynamic systems
can be expressed by using advance features of Mode-
lica language for detailed physical modeling. We also
showed how to link a GA and a Modelica model by
using the Simulink interface of the Dymola. We
showed the flexibility of optimization by a GA with
two different objective functions without modifying
the original Modelica model. Given a suitable objec-
tive function, the final solution will satisfy the re-
quired controller performance. It is important to point
that the idea does not limit only the applications to
power systems as shown in an example of this paper,
but also other Modelica users can adapt this idea to
their own works.

9. Acknowledgement

We gratefully acknowledge helpful discussions
with Dr. Mats Larsson from ABB Corporate Research
Ltd., Switzerland.

10. References

[1] M. Larsson, “ObjectStab - a Modelica library for
power system stability studies”, Proc. of the 2000
Modelica Workshop.

[2] Dymola, Dynamic Modeling Laboratory, Dyna-
sim 2001.

[3] M. M. Tiller, Introduction to Physical Modeling
with Modelica, Kluwer Academic Publishers,
Massachusetts 2001.

An Incorporated Use of Genetic Algorithm and a Modelica Library ... Hongesombut K., Mitani Y., Tsuji K.

Modelica 2002, March 18−19, 2002 98 The Modelica Association

[4] D. Hanselman and B. Littlefield, Mastering Mat-
lab 6, Prentice Hall, New Jersey 2001.

[5] J. B. Dabney and T. L. Harman, Mastering Simu-
link 4, Prentice Hall, New Jersey 2001.

[6] H. Pohlheim, Genetic and Evolutionary Algo-
rithm Toolbox for use with MATLAB, Publication
on internet web at http://www.geatbx.com.

[7] D. E. Goldberg, Genetic Algorithms in Search,
Optimization and Machine Learning, Addison
Wesley, New York, 1989.

[8] P. Kundur, Power system stability and control
McGrawHill, New York 1993.

Komsan Hongesombut received his B.Eng.(first
class honors) and M.Eng. degrees from the Depart-
ment of Electrical Engineering, King Mongkut’s Insti-
tute of Technology Ladkrabang, Thailand in 1997 and
1999 respectively. He is currently a Ph.D student at
Osaka University, Japan. His research interests in-
clude the applications of intelligent techniques to
power systems. He is a student member of the Insti-
tute of Electrical Engineers of Japan, IEE, and IEEE.

Yasunori Mitani received his B.Sc., M.Sc., and Dr.
of Engineering degrees in electrical engineering from
Osaka University, Japan in 1981, 1983, and 1986
respectively. He joined the Department of Electrical
Engineering of the same university in 1990. He is
currently Associate Professor. His research interests
are in the areas of analysis and control of power sys-
tems. He is a member of the Institute of Electrical
Engineers of Japan, the Institute of Systems, Control
and Information Engineers of Japan, and the IEEE.

Kiichiro Tsuji received his B.Sc and M.Sc. degrees
in electrical engineering from Osaka University, Ja-
pan, in 1966 and 1968, respectively, and his Ph.D in
systems engineering from Case Western Reserve Uni-
versity, Cleveland, Ohio in 1973. In 1973 he jointed
the Department of Electrical Engineering, Osaka Uni-
versity, and is currently Professor. His research inter-
ests are in the areas of analysis, planning, and evalua-
tion of energy systems, including electrical power
systems. He is a member of the Institute of Electrical
Engineers of Japan, the Japan Society of Energy and
Resources, the Society of Instrument and Control
Engineers, the Institute of Systems, Control and In-
formation Engineers, and the IEEE.

