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Modelica Tutorial and Rationale

1. Introduction

There definitely is an interoperability problem amongst the large variety of modeling and
simulation environments available today, and it gets more pressing every year with the trend
towards ever more complex and heterogeneous systems to be simulated. The main cause of this
problem is the absence of a state-of-the-art, standardized external model representation.
Modeling languages, where employed, often do not adequately support the structuring of large,
complex models and the process of model evolution in general. This support is usually provided
by sophisticated graphical user interfaces - an approach which is capable of greatly improving
the user’s productivity, but at the price of specialization to a certain modeling formalism or
application domain, or even uniqueness to a specific software package. It therefore is of no help
with regard to the interoperability problem.

Among the recent research results in modeling and simulation, two concepts have strong
relevance to this problem:

* Object oriented modeling languagalseady demonstrated how object oriented concepts
can be successfully employed to support hierarchical structuring, reuse and evolution of
large and complex models independent from the application domain and specialized
graphical formalisms.

* Non-causal modelindemonstrated that the traditional simulation abstraction - the
input/output block - can be generalized by relaxing the causality constraints, i.e., by not
committing ports to an 'input’ or 'output’ role early, and that this generalization enables
both more simple models and more efficient simulation while retaining the capability to
include submodels with fixed input/output roles.

Examples of object-oriented and/or non-causal modeling languages include: ASCEND, Dymola,
gPROMS, NMF, ObjectMath, Omola, SIDOPS+, Smile, U.L.M., ALLAN, and VHDL-AMS.

The combined power of these concepts together with proven technology from existing modeling
languages justifies a new attempt at introducing interoperability and openness to the world of
modeling and simulation systems.

Having started as an action within ESPRIT project "Simulation in Europe Basic Research
Working Group (SIE-WG)" and currently operating as Technical Committee 1 within Eurosim
and Technical Chapter on Modelica within Society for Computer Simulation International, a
working group made up of simulation tool builders, users from different application domains,
and computer scientists has made an attempt to unify the concepts and introduce a common
modeling language. This language, caléadelica is intended for modeling within many
application domains (for example: electrical circuits, multi-body systems, drive trains,
hydraulics, thermodynamical systems and chemical systems) and possibly using several
formalisms (for example: ODE, DAE, bond graphs, finite state automata and Petri nets). Tools
which might be general purpose or specialized to certain formalism and/or domain will store the
models in the Modelica format in order to allow exchange of models between tools and between
users. Much of the Modelica syntax will be hidden from the end-user because, in most cases, a
graphical user interface will be used to build models by selecting icons for model components,
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using dialogue boxes for parameter entry and connecting components graphically.

The work started in the continuous time domain since there is a common mathematical
framework in the form of differential-algebraic equations (DAE) and there are several existing
modeling languages based on similar ideas. There is also significant experience of using these
languages in various applications. It thus seems to be appropriate to collect all knowledge and
experience and design a new unified modeling language or neutral format for model
representation. The short range goal was to design a modeling language for differential-algebraic
equation systems with some discrete event features to handle discontinuities and sampled
systems. The design should be extendible in order that the goal can be expanded to design a
multi-formalism, multi-domain, general-purpose modeling language. This is a report of the

design state as of December 1998, Modelica version 1.1.

The object-oriented, non-causal modeling methodology and the corresponding standard model
representation, Modelica, should be compared with at least four alternatives. Firstly, established
commercialgeneral purpose simulation tooksuch as ACSL, EASY5, SIMULINK, System

Build and others, are continually developed and Modelica will have to offer significant practical
advantages with respect to these. Secosgigcial purpose simulation prograrfts electronics
(Spice, Saber, etc), multibody systems (ADAMS, DADS, SIMPACK, etc), chemical processes
(ASPEN Plus, SpeedUp, etc) have specialized GUI and strong model libraries. However, they
lack the multi-domain capabilities. Thirdly, many industrial simulation studies are still done
without the use of any general purpose simulation tool, but rather relyimgnoerical

subroutine libraries and traditional programming languagBased on experience with present
tools, many users in this category frequently doubt that any general purpose method is capable of
offering sufficient efficiency and robustness for their application. Forthly, an IEEE supported
alternative language standardization eff@tunderway: VHDL-AMS.

Most engineers and scientists recognize the advantages of an expressive and standardized
modeling language. Unlike a few years ago, they are today ready to sacrifice reasonable amounts
of short-term advantages for the benefit of abstract things like potential abundance of compatible
tools, sound model architecture, and future availability of ready-made model libraries. In this
respect, the time is ripe for a new standardization proposal. Another significant argument in
favor of a new modeling language lies in recent achievements by present languagesasing a
causalmodeling paradigm. In the last few years, it has in several cases been proved that non-
causal simulation techniques not only compare to, but outperform special purpose tools on
applications that are far beyond the capability of established block oriented simulation tools.
Examples exist in multi-body and mechatronics simulation, building simulation, and in chemical
process plant simulation. A combination of modern numerical techniques and computer algebra
methods give rise to this advantage. However, these non-causal modeling and simulation
packages are not general enough, and exchange of models between different packages is not
possible, i.e. a new unified language is needed. Furthermore, text books promoting the object-
oriented, non-causal methodology are now available, such as Cellier (1991), and university
courses are given in many countries.

The next section will give an introduction to the basic concepts of Modelica by means of a small
example. Requirements for this type of language are then discussed. Section 4 is the main section
and it gradually introduces the constructs of Modelica and discusses the rationale behind them. It
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is followed by an overview of present object-oriented equation based modeling languages that
have been used as a basis for the Modelica language design. The design rationale from a
computer science point of view is given in section 6. Syntax and detailed semantics as well as the
Modelica standard library are presented in the appendices of the Language Specification.

2. Modelica at a Glance

To give an introduction to Modelica we will consider modeling of a simple electrical circuit as
shown below.
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The system can be broken up into a set of connected electrical standard components. We have a
voltage source, two resistors, an inductor, a capacitor and a ground point. Models of these
components are typically available in model libraries and by using a graphical model editor we
can define a model by drawing an object diagram very similar to the circuit diagram shown

above by positioning icons that represent the models of the components and drawing
connections.

A Modelica description of the complete circuit looks like

model circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC,;
Ground G;

equation
connect (AC.p, R1.p); // Capacitor circuit
connect (R1.n, C.p);
connect (C.n, AC.n);
connect (R1.p, R2.p); // Inductor circuit
connect (R2.n, L.p);
connect (L.n, C.n);
connect (AC.n, G.p); // Ground
end circuit;

For clarity, the definition of the graphical layout of the composition diagram (here: electric
circuit diagram) is not shown, although it is usually contained in a Modelica model as
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annotations (which are not processed by a Modelica translator and only used by tools). A
composite model of this type specifies the topology of the system to be modeled. It specifies the
components and the connections between the components. The statement

Resistor R1(R=10);

declares a componeRt to be of clasKesistor and sets the default value of the resistarce,

to 10. The connections specify the interactions between the components. In other modeling
languages connectors are referred as cuts, ports or terminals. The languageceleneetis a
special operator that generates equations taking into account what kind of quantities that are
involved as explained below.

The next step in introducing Modelica is to explain how library model classes are defined.

A connector must contain all quantities needed to describe the interaction. For electrical
components we need the quantities voltage and current to define interaction via a wire. The types
to represent them are declared as

type Voltage = Real(unit="V");

type Current = Real(unit="A");
whereReal is the name of a predefined variable type. A real variable has a set of attributes such
as unit of measure, initial value, minimum and maximum value. Here, the units of measure are
set to be the Sl units.

In Modelica, the basic structuring element dass There are sevaestrictedclasses with
specific names, such asodel, type (a class which is an extension of built-in classes, such as
Real, or of other defined typesjpnnector (a class which does not have equations and can be
used in connections). For a valid model it is fully equivalent to replacadiel, type, and
connectorkeywords by the keywordass because the restrictions imposed by such a
specialized class are fulfilled by a valid model.

The concept of restricted classes is advantageous because the modeller does not have to learn
several different concepts, but just one: the class concept. All properties of a class, such as
syntax and semantic of definition, instantiation, inheritance, genericity are identical to all kinds
of restricted classes. Furthermore, the construction of Modelica translators is simplified
considerably because only the syntax and semanticlatshas to be implemented along with

some additional checks on restricted classes. The basic types, ®eah asinteger are built-

in type classes, i.e., they have all the properties of a class and the attributes of these basic types
are just parameters of the class.

There are two possibilities to define a class: The standard way is shown above for the definition

of the electric circuitriodel circuit). A short hand notation is possible, if a new class is identical

to an existing one and only the default values of attributes are changed. The types above, such as
Voltage are declared in this way.

A connector class is defined as
connector Pin

Voltage v;
flow Currenti;
end Pin;
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A connectionrconnect(Pini, Pin2)  , with Pin1 andpPin2 of connector clasBin , connects the

two pins such that they form one node. This implies two equations, namel= Pin2.v

andPinl.i + Pin2.i=0 . The first equation indicates that the voltages on both branches
connected together are the same, and the second corresponds to Kirchhoff's current law saying
that the currents sum to zero at a node (assuming positive value while flowing into the
component). The sum-to-zero equations are generated when thdlprefix used. Similar laws
apply to flow rates in a piping network and to forces and torques in mechanical systems.

When developing models and model libraries for a new application domain, it is good to start by
defining a set of connector classes. A common set of connector classes used in all components in
the library supports compatibility of the component models.

A common property of many electrical components is that they have two pins. This means that it
is useful to define an "interface" model class,
partial model TwoPin "Superclass of elements with two electrical pins"
Pin p, n;
Voltage v;
Current i;
equation
V=p.v-nyv,
0 =p.i+n.i;
i =p.i
end TwoPin;
that has two ping andn, a quantityy, that defines the voltage drop across the component and a
guantity,i , that defines the current into the pinthrough the component and out from therpin
The equations define generic relations between quantities of a simple electrical component. In
order to be useful a constitutive equation must be added. The kepamtaid indicates that
this model class is incomplete. The key word is optional. It is meant as an indication to a user
that it is not possible to use the class as it is to instantiate components. Between the name of a
class and its body it is allowed to have a string. It is treated as a comment attribute and is meant
to be a documentation that tools may display in special ways.

To define a model for a resistor we expiibPin and add a definition of parameter for the
resistance and Ohm's law to define the behavior:
model Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real R(unit="Ohm") "Resistance";
equation
R*i=v;
end Resistor;
The keywordparameter specifies that the quantity is constant during a simulation run, but can
change values between runs. A parameter is a quantity which makes it simple for a user to
modify the behavior of a model.

A model for an electrical capacitor can also reuse the TwoPin as follows:

model Capacitor "Ideal electrical capacitor"
extends TwoPin;
parameter Real C(unit="F") "Capacitance";
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equation
C* der (v) =i
end Capacitor;

whereder (v) means the time derivative of A model for the voltage source can be defined as

model VsourceAC "Sin-wave voltage source"
extends TwoPin;
parameter  Voltage VA = 220 "Amplitude”;
parameter Real f(unit="Hz") = 50 "Frequency";
constant Real PI=3.141592653589793;
equation
v = VA*sin(2*PI*f* time );
end VsourceAC;
In order to provide not too much information at this stage, the comstaexplicitly declared,
although it is usually imported from the Modelica standard library (see appendix of the Language
Specification). Finally, we must not forget the ground point.
model Ground "Ground"
Pin p;
equation
p.v=0;
end Ground,;
The purpose of the ground model is twofold. First, it defines a reference value for the voltage
levels. Secondly, the connections will generate one Kirchhoff's current law too many. The
ground model handles this by introducing an extra current quantityvhich implicitly by the
equations will be calculated to zero.

Comparison with block oriented modeling

If the above model would be represented as a block diagram, the physical structure will not be
retained as shown below. The block diagram is equivalent to a set of assignment statements
calculating the state derivatives. In fact, Ohm's law is used in two different ways in this circuit,
once solving for i and once solving for u.

Fes2 U3 Ired 12
’h — - : 1
+1 E E ]
UM
L—w +1
o +1 E i
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:

This example clearly shows the benefits of physically oriemeascausal modelingompared
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to block oriented, causal modeling.

3. Requirements for Multi-domain Modeling

In this section, the most important requirements used for the Modelica language design are
collected together.

The Modelica language should support both ODE and DAE (differential-algebraic equations)
formulations of models. The mixture of DAE and discrete events should be possible and be
defined in such a way that efficient simulation can be performed. Other data types than real, such
as integer, Boolean and string should be supported. External functions written in common
programming languages need to be supported in addition to a data type corresponding to external
object references. It should be possible to express information about units used and minimum
and maximum allowed values for a variable in order that a modeling tool might do consistency
checking. It should be possible to parameterize models with both values of certain quantities and
also with respect to model representation, i.e., allowing, for example, to select different levels of
detail for a model. Component arrays and the connection of elements of such arrays should be
supported. In order to allow exchange of models between different tools, also a certain
standardization of graphical attributes for icon definitions and object diagrams should be done
within the Modelica definition.

Certain modeling features will be added in later stages of the Modelica design. One example is to
allow partial differential equations. More advanced discrete event modeling facilities will also be
considered then, for example to allow queue handling and dynamical creation of model
instances, see (EImqvist, et.al. 1998).

Besides requirements for modeling in general, every discipline has its specific peculiarities and
difficulties which often require special consideration. In the following sections, such
requirements from multiple domains are presented.

Block Diagrams

Block diagrams consist of input/output blocks. For the definition of linear state space systems
and transfer functionsatricesandmatrix equationsre needed. This is most conveniently done
with a MATLAB and/or Mathematica-like notation.

It is also important to support fixed and variatihee delaysThis could be done by calling an
external function which interpolates in past values. However, if a delay is defined via a specific
language construct, it is in principle possible to use a specific integrator to take care of the delay
which can be done in a better numerical way than in the first case. Therefore, a delay operator
should be defined in the language which leaves the actual implementation to the Modelica
translator. Furthermore, interpolation in 1-, 2-, n-dimensitatdéswith fixed and variable grids

has to be supported, because technical models often contain tables of measured data.
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If it is known that a component is an input/output bldokal analysisof the equations is

possible which improves the error diagnostics considerably. For example, it can be detected
whether the number of unknown variables of the block matches the number of equations in the
block. Therefore, it should be possible to state explicitly that a model component is an
input/output block.

Multi-Body Systems

Multi-body systems are used to model 3-dimensional mechanical systems, such as robots,
satellites and vehicles. Nearly all variables in multi-body system modeling are vectors or

matrices and the equations are most naturally formulated as matrix equations. Therefore, support
of matrices is essential. This should includediussoperator for the vector cross-product

because this operation often occurs in mechanical equations. It is convenient to have multi-body
objects with several interfaces, but without requiring that every interface has to be connected for
a model. For example, revolute and prismatic joints should have an additional interface to attach
a drive train to drive the joint.

Usually, multi-body algorithms are written in such a way that components cannot be connected
together in an arbitrary way. To ensure that an erroneous connection cannot be created, it should
be possible to defineilesabout the connection structure. Rules help to provide a meaningful

error message as early as possible.

In order that Modelica will be attractive to use for modeling of multi-body systffitgencyis

crucial. It must be possible that Modelica generated code is as efficient as that of special purpose
multi-body programs. For that, operators lggenmetric andorthogonal are necessary in order

to be able to state that a matrix is symmetric or orthogonal, respectively.

Electrical and Electronic Circuits

Models of different complexity to describe electrical components are often needed. Therefore, it
should be easy teplacea specific model description of a component by another one in the
model of an electrical circuit.

It might be advantageous to implement complicated elements, such as detailed transistor models,
by procedural code. This may be either an external C or C++ function or a Modelica function. In
any case, the model equations are already sorted and are not expanded, i.e., every instance uses
the same "function call". This is especially important, if a large number of instances are present.

It is essential that SPICE net list descriptions of electrical circuits can be used within Modelica,
because vendor models of electric hardware components are described in this format. It seems
sufficient to provide the SPICE component models as classes in a Modelica library and to rely on
an external tool which transforms a SPICE net list description into a composite Modelica model.

Besides non-linear simulatiosmall signal analysigs often needed for electrical circuits. This
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implies linearization and frequency response calculation. Numerical linearization introduces
unnecessary errors. For electrical circuits it is almost always possible to symbolically
differentiate the components. Special language constructs are probably not needed because in
principle Modelica translators can be realized which derive the (symbolically) linearized
components automatically. Modern electric circuit programs use symbolic Jacobians to enhance
the efficiency. Similar to linearization, it should be possible to compute the symbolic Jacobian
from a Modelica model by symbolic differentiation. If a component is provided as external
function, it should be possible to provide an external function for the corresponding Jacobian of
the component as well.

Chemical and Thermodynamic Systems

Processing systems for chemical or energy production are often composed of complex structures.
The modeling of these systems needs encapsulation of detailed descriptions and abstraction into
hierarchies in order to handle the complexity. To increase the reuse of submodels in complex
structures there is a need for an advanced concept of parameterization of submodels. Especially,
component arrays and class parameters are needed. An example is a structure parameter for the
change of the number of trays in a distillation plant.

In order to achieve a high degree of model reuse, all medium specific data and calculation should
be encapsulated in a medium properties submodel. In most cases the thermodynamic properties
of the medium will be calculated externally by one of the many available specialized software
packages. Thus it is necessary to provide a calling interface to external functions in ordinary
programming languages. Keeping in mind both efficient simulation and model reuse, there
should be a uniform way how thermodynamic properties of different external packages can be
accessed from Modelica models.

Many applications in process engineering and power plant simulation can only be captured
adequately with distributed parameter models. A method of lines (MOL) grid discretisation

(either finite difference, finite volume or finite element methods) is the state of the art of all but a
few very specialized simulation packages for modeling partial differential equations (PDES).
Modelica is envisaged as a language that is both open to future advances in numerical techniques
and as an exchange format for many existing software environments. Existing simulation
environments should be able to simulate Modelica code after preprocessing to DAE form.

Support for PDE is planned for future versions of Modelica.

Energy domain systems

Simulation in the energy domain sector is mainly used for improving or designing technical
systems: boilers, kilns, HVAC systems, pressure governors, etc. The first characteristic of these
systems is that they are complex and multi-domain. For example the building energy domain
deals with all types of heat exchanges, with fluid flows, with combustion, with particle pollution,
with system controls, automatons etc. Modelica needs to address all these issues. It stresses the
need for non-causal hierarchical modeling. To a certain extent temperature distribution and PDE
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are relevant for improvement studies. Matrices and PDE features are useful. Combustion models
need to address thermodynamic tables by means of a suitable feature. But, the main requirements
of this domain are linked with user-friendliness, reuse, documentation, capitalization for study
efficiency and reproducibility. This means that it is necessary to isolate models, isolate numerical
data, isolate validation runs, integrate validity checks (domains, constraints, units, etc.) and in
order to produce automatic documentation include documentation features.

Bond graphs

Bond graphs (Karnopp and Rosenberg, 1968; Breedveld, 1985) are designed to ned=ighe

flow of physical systems using a small set of unified modeling primitives, such as storage,
transformation and dissipation of (free) energy. Bond graphs are in principle labeled and directed
graphs, in which the vertices represent submodels and the edges represent an ideal energy
connection between power ports. This connection is a point-to-point connection, i.e. only one
bond can be connected to a power port. When preparing for simulation, the bonds are embodied
as two-signal connections with opposite directions. This signal direction depends on both the
internal description of the submodel and the structure of the bond graph where the submodel is
used; it is an algorithmic process. Consequently, the model equations are non-causal. Within
some submodel equations, the power directions of the connected bonds are used in generating
the proper equations. As a consequence, it must be possible tordefgebout the connection
structure, especially that onbyne-to-oneconnections are possible. Furthermore, it must be

possible to inquire thdirectionof a connection in a component, in order thafbstiveenergy

flow direction can be deduced. Since bond graphs can be mixed with block-diagram parts, bond-
graph submodels can have power ports, signal inputs and signal outputs as their interfacing
elements. Furthermore, aspects like the physical domain of a bond (energy flow) can be used to
support the modeling process, and should therefore be incorporated in Modelica. Note that the
power bonds can baulti dimensionali.e., are composed of a matrix of single power bonds.

This multi-bondfeature is used to describe, e.g., 3D mechanical systems in an elegant and
compact way.

Finite Automata and Extensions

Finite automata are used to model discrete systems, such as discrete control devices as well as
switching structure of clutches or idealized thyristors. Several extensions are popular, e.g., Petri
nets, grafcet and state charts. It seems more flexible and powerful to build component libraries of
e.g., Petri nets and state charts, using basic Modelica language constructs instead of having direct
built-in language elements.

4. Modelica Language Rationale and Overview

Modeling the dynamic behavior of physical systems implies that one is interested in specific
properties of a limited class of systems. These restrictions give a means to be more specific then
Is possible when focusing on systems in general. Therefore, the physical background of the
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models should be reflected in Modelica.

Nowadays, physical systems are often complex and span multiple physical domains, whereas
mostly these systems are computer controlled. Therefore, hierarchical models (i.e., models
described as connected submodels) using properties of the physical domains involved should
easily be described in Modelica. To properly support the modeler (i.e. to be able to perform
automated modeling), these physical properties should be incorporated in Modelica in such a
way, that checking consistency, like checking against basic laws of physics, can be programmed
easily in the Modelica translators. Examples of physical properties are the physical quantity and
the physical domain of a variable. This implies that a suitable representation for physical systems
modeling is more than a set of pure mathematical differential equations.

4.1 Basic Language Elements

The language constructs will be developed gradually starting with small examples, and then
extended by considering practical issues when modeling large systems.

Handling large models means careful structuring in order to reuse model knowledge. A model is
built-up from

* basic components such as Real, Integer, Boolean and String

» structured components, to enable hierarchical structuring

e component arrays, to handle real matrices, arrays of submodels, etc
* equations and/or algorithms (= assignment statements)

* connections

» functions

Some means of declaring variable properties is needed, since there are different kinds of
variables, Parameters should be given values and there should be a possibility to give initial
conditions.

Basic declarations of variables can be made as follows:

Real u, y(start=1);
parameter Real T=1;

Real is the name of a predefined class or type. A Real variable has an attribute=called

give its initial value. A component declaration can be precededspgdafierlike constantor

parameter indicating that the component is constant, i.e., its derivative is zero. The specifier
parameter indicates that the value of the quantity is constant during simulation runs. It can be
modified when a component is reused and between simulation runs. The component name can be
followed by amodificationto change the value of the component or its attributes.

Equations are composed of expressions both on the left hand side and the right hand side like in
the following filter equation.

13
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equation
T*der (y) +y=u;

Time derivative is denoted lger( ).

4.2 Classes for Reuse of Modeling Knowledge

Assume we would like to connect two filters in series. Instead of repeating the filter equation, it
IS more convenient to make a definition of a filter once and create two instances. This is done by
declaring aclass A class declaration contains a list of component declarations and a list of
equations preceded by the keywerguation. An example of a low pass filter class is shown
below.

class LowPassFilter

parameter Real T=1;
Real u, y(start=1);

equation
T der(y)+y=u
end LowPassFilter;
The model class can be used to create two instances of the filter with different time constants and
"connecting" them together as follows

class FiltersinSeries
LowPassFilter F1(T=2), F2(T=3);

equation
F1.u =sin( time );
F2.u = Fl.y;

end FiltersinSeries;

In this case we have usednadificationto modify the time constant of the filters to T=2 and

T=3 respectively from the default value T=1 given in the low-pass filter class. Dot notation is

used to reference components, like u, within structured components, like F1. For the moment it
can be assumed that all components can be reached by dot-notation. Restrictions of accessibility
will be introduced later. The independent variable is referenceches

If the FiltersInSeries model is used to declare components at a higher hierarchical level, it is still
possible to modify the time constants by using a hierarchiodification:
model ModifiedFiltersinSeries

FiltersinSeries F12(F1(T=6), F2(T=11));
end ModifiedFiltersinSeries;

The class concept is similar as in programming languages. It is used for many purposes in
Modelica, such as model components, connection mechanisms, parameter sets, input-output
blocks and functions. In order to make Modelica classes easier to read and to maintain, special
keywords have been introduced for such special usasel, connector, record, block, type
andpackage It should be noted though that the use of these keywords only apply certain
restrictions, like records are not allowed to contain equations. However, for a valid model, the
replacement of these keywordsdigisswould give exactly the same model behavior. In the
following description we will use the specialized keywords in order to convey their meaning.

14
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Records

It is possible to introduce parameter setee@srds which is a restricted form of class which may
not have any equations:
record FilterData

Real T;
end FilterData;

record TwoFilterData
FilterData F1, F2;
end TwoFilterData;

model ModifiedFiltersinSeries2
TwoFilterData TwoFilterDatal(F1(T=6), F2(T=11));

FiltersinSeries F12=TwoFilterDatal;
end ModifiedFiltersinSeries2;

The modificatiorF12=TwoFilterDatal IS possible since all the components of
TwoFilterDatal (F1, F2, T) are present irFiltersinSeries . More about type
compatibility can be found in section 4.4.

Packages

Class declarations may be nested. One use of that is maintenance of the name space for classes,
l.e., to avoid name clashes, by storing a set of related classes within an enclosing class. There is a
special kind of class for that, callpdckage A package may only contain declarations of

constants and classes. Dot-notation is used to refer to the inner class. Examples of packages are
given in the appendix of the Language Specification, where the Modelica standard package is
described which is always available for a Modelica translator.

Information Hiding

So far we have assumed all components to be accessible from the outside by dot-notation. To
develop libraries in such a way is a bad principle. Information hiding is essential from a
maintenance point of view.

Considering the FiltersinSeries example, it might be a good idea to just declare two parameters
for the time constants, T1 and T2, the input, u and the output y as accessible from the outside.
The realization of the model, using two instances of model LowPassFilter, is a protected detail.
Modelica allows such information hiding by using the heagimagected.
model FiltersinSeries2
parameter Real T1=2, T2=3;

input Real u;
output Realy;

protected
LowPassFilter F1(T=T1), F2(T=T2);

equation
Flu=uy;
F2.u =F1l.y;
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y =F2.y;
end FiltersinSeries2;
Information hiding does not control interactive environments though. It is possible to inspect and
plot protected variables. Note, that variables pfaiected section of a class A can be accessed
by a class whiclextendsclass A. In order to keep Modelica simple, additional visibility rules
present in other object-oriented languages, sughiaate (no access by subtypes), are not used.

4.3 Connections

We have seen how classes can be used to build-up hierarchical models. It will now be shown
how to define physical connections by means of a restricted classamiiegictor.

We will study modeling of a simple electrical circuit. The first issue is then how to represent pins
and connections. Each pin is characterized by two variables, voltage and current. A first attempt
would be to use a connector as follows.

connector  Pin

Real v, i;
end Pin;

and build a resistor with two pins p and n like
model Resistor
Pin p, n; /I "Positive" and "negative" pins.
parameter Real R "Resistance";

equation
R*p.i = p.v-n.v;
n.i=p.i; // Assume both n.i and p.i to be positive
/I when current flows from p to n.
end Resistor;

A descriptive text string enclosed in " " can be associated with a component like R. A comment

which is completely ignored can be entered after //. Everything until the end of the line is then
ignored. Larger comments can be enclosed in /* */.

A simple circuit with series connections of two resistors would then be described as:

model FirstCircuit
Resistor R1(R=100), R2(R=200);

equation
R1.n = R2.p;

end FirstCircuit;
The equation R1.n = R2.p represents the connection of pin n of R1 to pin p of R2. The semantics
of this equation on structured components is the same as

R1l.n.v=R2.p.v

R1.n.i=R2.p.i
This describes the series connection correctly because only two components were connected.
Some mechanism is needed to handle Kirchhoff's current law, i.e. that the currents of all wires
connected at a node are summed to zero. Similar laws apply to flows in a piping network and to
forces and torques in mechanical systems. The default rule is that connected variables are set
equal. Such variables are calkctossvariables. Real variables that should be summed to zero
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are declared with prefifftow. Such variables are also calkbdoughvariables. In Modelica we
assume that such variables are positive when the flow (or corresponding vector) is into the
component.
connector  Pin
Real v;

flow Reali;
end Pin;

It is useful to introducenitsin order to enhance the possibility to generate diagnostics based on
redundant information. Modelica allows deriving new classes with certain modified attributes.
The keywordype is used to define a new class, which is derived from the built-in data types or
defined records. Defining Voltage and Current as modifications of Real with other attributes and
a corresponding Pin can thus be made as follows:

type Voltage = Real(unit="V");
type Current = Real(unit="A");

connector  Pin
Voltage v;

flow Currenti;
end Pin;

model Resistor
Pin p, n; //"Positive" and "negative" pins.
parameter Real R(unit="Ohm") "Resistance”;

equation

R*p.i=p.v-n.;

p.i+n.i=0; // Positive currents into component.
end Resistor;

We are now able to correctly connect three components at one node.

model SimpleCircuit
Resistor R1(R=100), R2(R=200), R3(R=300);

equation
connect (R1.p, R2.p);
connect (R1.p, R3.p);
end SimpleCircuit;

connectis a special operator that generates equations taking into account what kind of variables
that are involved. The equations are in this case equivalent to

R1l.p.v=R2.p.v;

R1.p.v = R3.p.v;

R1.p.i + R2.p.i + R3.p.i =0;
In certain cases, a model library might be built on the assumption that only one connection can
be made to each connector. There is a built-in funetiatnality  (c) that returns the number
of connections that has been made to a connector c. It is also possible to get information about
the direction of a connection by using the built-in functibection  (c) (provided cardinality(c)
== 1). For a connection, connect(cl, c2), direction(cl) returns -1 and direction(c2) returns 1. An
example of the use of cardinality and direction is the bond graph components in the standard
Modelica library.
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4.4 Partial Models and Inheritance

A very important feature in order to build reusable descriptions is to define angeetiak
models Since there are other electrical components with two pins like capacitor and inductor we
can define a TwoPin as a base for all of these models.
partial model TwoPin
Pin p, n;
Voltage v "Voltage drop”;

equation
V=pV-ny;
p.i+n.i=0;

end TwoPin;

Such a partial model can be extended or reused to build a complete model like an inductor.

model Inductor "Ideal electrical inductance"
extends TwoPin;
parameter  Real L(unit="H") "Inductance";
equation
L* der (i) =v;
end Inductor;
The facility is similar to inheritance in other languages. Multiple inheritance, i.e., several
extendsstatements, is supported.

The type system of Modelica is greatly influenced by type theory (Abadi and Cardelli 1996), in
particular their notion of subtyping. Abadi and Cardelli separate the notion of subclassing (the
mechanism for inheritance) from the notion of subtyping (the structural relationship that
determines type compatibility). The main benefit is added flexibility in the composition of types,
while still maintaining a rigorous type system.

Inheritance is not used for classification and type checking in Modelicax#ndsclause can

be used for creating a subtype relationship by inheriting all components of the base class, but it is
not the only means to create it. Instead, a class A is defined tsulyaeof class B, if class A
contains all the public components of B. In other words, B contanbsebf the components

declared in A. This subtype relationship is especially used for class parameterization as
explained in the next section.

Assume, for example, that a more detailed resistor model is needed, describing the temperature
dependency of the resistance:

model TempResistor "Temperature dependent electrical resistor"
extends TwoPin;

parameter Real R(unit="Ohm") "Resistance for ref. Temp."; |
parameter Real RT(unit="Ohm/degC") =0 "Temp. dep. Resistance.";
parameter Real Tref(unit="degC") =20 "Reference temperature.";
Real Temp=20 "Actual temperature";
equation
V= p. i*(R+ RT*T  emp-Tref)); |

end TempResistor;

It is not possible to extend this model from the ideal resistor nRedistor  discussed in
Chapter 2, because the equation ofRbseistor  class needs to be replaced by a new equation.
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Still, the TempResistor  is a subtype oResistor  because it contains all the public components
of Resistor

4.5 Class Parameterization

We will now discuss a more powerful parameterization, not only involving values like time
constants and matrices but also classes. (This section might be skipped during the first reading.)
Assume that we have the description (of an incomplete circuit) as above.

model SimpleCircuit
Resistor R1(R=100), R2(R=200), R3(R=300);

equation
connect (R1.p, R2.p);
connect (R1.p, R3.p);
end SimpleCircuit;

Assume we would like to utilize the parameter values given for R1.R and R2.R and the circuit
topology, but exchange Resistor with the temperature dependent resistor model, TempResistor,
discussed above. This can be accomplished by redeclaring R1 and R2 as follows.

model RefinedSimpleCircuit
Real Temp,
extends SimpleCircuit(
redeclare TempResistor R1(RT=0.1, Temp=Temp),
redeclare TempResistor R2);

end RefinedSimpleCircuit;

Since TempResistor issaubtypeof Resistor, it is possible to replace the ideal resistor model.
Values of the additional parameters of TempRes#stdrdefinition of the actual temperat@an
be added in the redeclaration:

redeclare ~ TempResistor R1(RT=0.1, T emp=Temp; |

This is a very strong modification of the circuit model and there is the issue of possible
invalidation of the model. We thus think such modifications should be clearly marked by the
keywordredeclare Furthermore, we think the modeller of the SimpleCircuit should be able to
state that such modifications are not allowed by declaring a comporferdlas

final Resistor R3(R=300);

It should also be possible to state that a parameter is frozen to a certain value, i.e., is not a
parameter anymore:

Resistor R3(  final R=300);

To use another resistor model in the model SimpleCircuit, we needed to know that there were

two replaceable resistors and we needed to know their names. To avoid this problem and prepare
for replacement of a set of models, one can defieplaceable classResistorModel. The actual

class that will later be used for R1 and R2 must have Pins p and n and a parameter R in order to
be compatible with how R1 and R2 are used within SimpleCircuit2. The replaceable model
ResistorModel is declared to be a Resistor model. This means that it will be enforced that the
actual class will be a subtype of Resistor, i.e., have compatible connectors and parameters.
Default for ResistorModel, i.e., when no actual redeclaration is made, is in this case Resistor.
Note, that R1 and R2 are in this case of class ResistorModel.
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model SimpleCircuit2
replaceable model ResistorModel = Resistor;

protected
ResistorModel R1(R=100), R2(R=200);
final Resistor R3(  final R=300);

equation
connect (R1.p, R2.p);
connect (R1.p, R3.p);
end SimpleCircuit2;

Binding an actual model TempResistor to the replaceable model ResistorModel is done as
follows.

model RefinedSimpleCircuit2 =
SimpleCircuit2( redeclare model ResistorModel = TempResistor);

Another case where redeclarations are needed is extensions of interfaces. Assume we have a
definition for a Tank in a model library:

connector  Stream

Real pressure;

flow Real volumeFlowRate;
end Stream;

model Tank
parameter Real Area=1,;
replaceable connector TankStream = Stream;
TankStream Inlet, Outlet;
Real level;

equation
/I Mass balance.
Area* der (level) = Inlet.volumeFlowRate + Outlet.volumeFlowRate;

Outlet.pressure = Inlet.pressure;
end Tank;

We would like to extend the Tank to model the temperature of the stream. This involves both
extension to interfaces and to model equations.

connector HeatStream
extends Stream;
Real temp;

end HeatStream;

model HeatTank
extends Tank( redeclare connector TankStream = HeatStream);

Real temp;

equation
/l Energy balance.
Area*Level* der (temp) = Inlet.volumeFlowRate*Inlet.temp +
Outlet.volumeFlowRate*Outlet.temp;
Outlet.temp = temp; // Perfect mixing assumed.
end HeatTank;

The definition of HeatTank above is equivalent to the following definition (which has been
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automatically produced by a Modelica translator).

model HeatTankT
parameter Real Area=1,;

connector  TankStream
Real pressure;

flow Real volumeFlowRate;
Real temp;
end TankStream;

TankStream Inlet, Outlet;
Real level;
Real temp;
equation
Area* der (level) = Inlet.volumeFlowRate + Outlet.volumeFlowRate;

Outlet.pressure = Inlet.pressure;
Area*level*  der (temp) = Inlet.volumeFlowRate*Inlet.temp +
Outlet.volumeFlowRate*Outlet.temp;
Outlet.temp = temp;
end HeatTankT;

Replaceable classes are also very convenient to separate fluid properties from the actual device
where the fluid is flowing, such as a pump.

4.6 Matrices

An array variable can be declared by appending dimensions after the class name or after a
component name.

Real[3] position, velocity, acceleration;
Real[3,3] transformation;

or
Real position[3], velocity[3], acceleration[3], transformation[3, 3];

It is also possible to make a matrix type
type Transformation = Real[3, 3];
Transformation transformation;
The following definitions are appropriate for modeling 3D motion of mechanical systems.
type Position = Real(unit="m");
type Position3 = Position[3];

type Force = Real(unit="N");
type Force3 = Force[3];

type Torque = Real(unit="N.m");
type Torque3 = Torque[3];

It is now possible to introduce the variables that are interacting between rigidly connected bodies
in a free-body diagram.

connector  MbsCut
Transformation S "Rotation matrix describing frame A"
" with respect to the inertial frame";
Position3  r0 "Vector from the origin of the inertial”
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" frame to the origin of frame A",
flow Force3 f "Resultant cut-force acting at the origin”
" of frame A",
flow Torque3 t "Resultant cut-torque with respect to the"
" origin of frame A";
end MbsCut;

Such a definition can be used to model a rigid bar as follows.

model Bar "Massless bar with two mechanical cuts.”
MbsCut a b;
parameter
Position3 r ={0, 0, 0}
"Position vector from the origin of cut-frame A"
" to the origin of cut-frame B";

equation
/I Kinematic relationships of cut-frame A and B
b.S =a.;
b.r0 =a.r0 + a.S*r;

I/l Relations between the forces and torques acting at
/I cut-frame A and B
zeros(3) = a.f + b.f;
zeros(3) = a.t + b.t - cross(r, a.f);
/I The function cross defines the cross product
/I of two vectors
end Bar;

Vector and matrix expressions are formed in a similar way as in Mathematica and MATLAB.
The operators +, -, * and / can operate on either scalars, vectors or two-dimensional matrices of
type real and integer. Division is only possible with a scalar. An array expression is constructed
as {expt, expe, ... expg}. A matrix (two dimensional array) can be formed as

[expr 11, expr 1o, ... expr 1n;
expr 21, expr 2o, ... €xpr on,
expr ms €XPr ma ... €XPr mnl

I.e. with commas as separators between columns and semicolon as separator between rows.
Indexing is written as A[i] with the index starting at 1. Submatrices can be formed by utilizing :
notation for index ranges, A[il:i2, j1:j2]. The then and else branches of if-then-else expressions
may contain matrix expressions provided the dimensions are the same. There are several built-in
matrix functions like zeros, ones, identity, transpose, skew (skew operator for 3 x 3 matrices) and
cross (cross product for 3-dimensional vectors. For details about matrix expressions and
available functions, see the Language Specification.

Matrix sizes and indices in equations must be constant during simulation. If they depend on
parameters, it is a matter of "quality of implementation" of the translator whether such
parameters can be changed at simulation time or only at compilation time.

Block Diagrams

We will now illustrate how the class concept can be used to model block diagrams as a special
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case. It is possible to postulate the data flow directions by using the prefisesindoutput in
declarations. This also allows checking that only one connection is made to an input, that outputs
are not connected to outputs and that inputs are not connected to inputs on the same hierarchical
level.

A matrix can be declared without specific dimensions by replacing the dimension with a colon:
A[:, :]. The actual dimensions can be retrieved by the standard fustz®®\ general state

space model is an input-outpgalock (restricted class, only inputs and outputs) and can be
described as

block StateSpace
parameter Real A[;, 1],

B[ size (A, 1), 1],
C[:, size (A, 2)],
D[ size (C, 1), size (B, 2)]= zeros( size (C, 1), size (B, 2)) ;
input Real u[ size (B, 2)];
output Real y[ size (C, 1)];
protected
Real x| size (A, 2)];
equation
assert(size (A1) == size (A, 2), "Matrix A must be square.");

der (x) = A*x + B*u;
y =C*+D*u
end StateSpace;
Assert is a predefined function for giving error messages taking a Boolean condition and a string
as arguments. The actual dimensions of A, B and C are implicitly given by the actual matrix
parameters. D defaults to a zero matrix:

block TestStateSpace
StateSpace S(A=[0.12,2; 3,1.5],B=1[2,7; 3,1],C=[0.1, 2]);

equation
Su=  {time , sin( time )}; |
end TestStateSpace;
Theblock class is introduced to allow better diagnostics for pure input/output model
components. In such a case the correctness of the component can be analyzed locally which is
not possible for components where the causality of the public variables is unknown.

4.7 Repetition, Algorithms and Functions
Regular Equation Structures

Matrix equations are in many cases convenient and compact notations. There are, however, cases
when indexed expressions are easier to understand. A loop corfstuet)ich allow indexed
expressions will be introduced below.

Consider evaluation of a polynomial function
n
y=sumc ; X
i=0
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with a given set of coefficients in a vector a[n+1] with a[i] =ig. Such a sum can be expressed
in matrix form as a scalar product of the form

a*{1, x,x"2, ... x"n}
if we could form the vector of increasing powers of x. A recursive formulation is possible.
xpowers[1] = 1;
xpowers[2:n+1] = xpowers[1:n]*x;
y = a* xpowers;
The recursive formulation would be expanded to

xpowers[1] = 1;
xpowers[2] = xpowers[1]*x;
xpowers[3] = xpowers[2]*x;

xpowers[n+1] = xpowers[n]*x;
y = a * xpowers;

The recursive formulation above is not so understandable though. One possibility would be to
introduce a special matrix operator for element exponentiation as in MATLAB (). The
readability does not increase much though.

Matrix equations like
xpowers[2:n+1] = xpowers[1:n]*x;

can be expressed in a form that is more familiar to programmers by using a for loop:

for i in 1:n loop
xpowers[i+1] = xpowers[i]*x;
end for ;

This for-loop is equivalent to n equations. It is also possible to use a block for the polynomial
evaluation:

block PolynomialEvaluator
parameter Real a[:];
input Real x;

output Realy;

protected
constant Integer n= size (a, 1)-1;
Real xpowers[n+1];

equation
xpowers[1] = 1;
for i in 1:n loop
xpowers[i+1] = xpowers[i]*x;
end for ;
y = a* xpowers;
end PolynomialEvaluator;

The block can be used as follows:

PolynomialEvaluator polyeval(a={1, 2, 3, 4});
Real p;
equation
polyeval.x = time ;
p = polyeval.y;
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It is also possible to bind the inputs and outputs in the parameter list of the invocation.
PolynomialEvaluator polyeval(a={1, 2, 3, 4}, x= time , y=p);

Regular Model Structures

Thefor construct is also essential in order to make regular connection structures for component
arrays, for example:

Component components[n];

equation
for i in 1:n-1 loop
connect (components][i].Outlet, components[i+1].Inlet);
end for ;
Algorithms

The basic describing mechanism of Modelicaeayeationsand not assignment statements. This
gives the needed flexibility, e.g., that a component description can be used with different
causalities depending on how the component is connected. Still, in some situations it is more
convenient to use assignment statements. For example, it might be more natural to define a
digital controller with ordered assignment statements since the actual controller will be
implemented in such a way.

It is possible to call external functions written in other programming languages from Modelica
and to use all the power of these programming languages. This can be quite dangerous because
many difficult-to-detect errors are possible which may lead to simulation failures. Therefore, this
should only be done by the simulation specialist if tested legacy code is used or if a Modelica
implementation is not feasible. In most cases, it is better to use a Maagbcighm which is

designed to be much more secure than calling external functions.

The vectovec in the polynomial evaluator above had to be introduced in order that the number
of unknowns are the same as the number of equations. Such a recursive calculation scheme is
often more convenient to express as an algorithm, i.e., a sequence of assignment statements, if-
statements and loops, which allows multiple assignments:

algorithm

y:=0;

Xpower ;= 1,

for i in 1:n+l loop

y =y + afij*xpower;
Xpower := xpower*x;
end for ;

A Modelica algorithm is a function in thmathematical sensee. without internal memory and
side-effects. That is, whenever such an algorithm is used with the same inputs, the result will be
exactly the same. If a function is called duramptinuousntegration this is an absolute
prerequisite. Otherwise the mathematical assumptions on which the integration algorithms are
based on, would be violated. An internal memory in an algorithm would lead to a model giving
different results when using different integrators. With this restriction it is also possible to
symbolically form the Jacobian by means of automatic differentiation. This requirement is also
present for functions called only @tentinstants (see below). Otherwise, it would not be
possible to restart a simulation at any desired time instant, because the simulation environment
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does not know the actual value of the internal algorithm memory.

In thealgorithm section, ordered assignment statements are present. To distinguish from
equations in thequation sections, a special operator, :=, is used in assignments (i.e. given
causality) in thalgorithm section. Several assignments to the same variable can be performed
in one algorithm section. Besides assignment statements, an algorithm may contain if-then-else
expressions, if-then-else constru@@se below) and loops using the same syntax as in an
equation-section.

Outputs, i.e., variables that appear on the left hand side of the equal sign, which are conditionally
assigned, armitialized to their start valugvhenever the algorithm is invokddue to this feature

it is impossible for a function to have a memory. Furthermore, it is guaranteed that the output
variables always have a well-defined value.

Within an equation section of a class, algorithms are treated as expressions (one output) or as
equations (several outputs). Especially, algorithms are sorted together with all other equations.
For the sorting process, the calling of a function withutput arguments is treatedrasnplicit
equations, wherevery equation depends on all output and on all input arguments. This ensures
that the implicit equations remain together during sorting (and can be replaced by the algorithm
invocation afterwards), because the implicit equations of the function form one algebraic loop.

In addition to the for loop, there is a while loop which can be used within algorithms:
while  condition loop
{ algorithm }
end while ;

Functions

The polynomial evaluator above is a special input-output block since it does not have any states.
Since it does not have any memory, it would be possible to invoke the polynomial function as a
function, i.e. memory for variables are allocated temporarily while the algorithm of the function

IS executing. Modelica allows a specialization of a class chlleztionwhich has only public

iInputs and outputs, one algorithm and no equations.

The polynomial evaluation can thus be described as:

function PolynomialEvaluator2
input Real a[];
input Real x;
output Realy;

protected
Real xpower;

algorithm

y:=0;

xpower ;= 1,

for i in 1:size (a, 1) loop

y =y + afil*xpower;
XpOwer := xpower*x;
end for ;
end PolynomialEvaluator2;
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A function declaration is similar to a class declaration but starts witluticion keyword. The
input arguments are marked with the keywiniglit (since the causality is input). The result
argument of the function is marked with the keywoutput.

No internal states are allowed, i.e., the der- and pre- operators are not allowed. Any class can be
used as an input and output argument. All public, non-constant variables of a class in the output
argument are the outputs of a function.

Instead of creating a polyeval object as was needed for the block PolynomialEvaluator:
PolynomialEvaluator polyeval(a={1, 2, 3, 4}, x= time , y=p);

it is possible to invoke the function as usual in an expression.
p = PolynomialEvaluator2(a={1, 2, 3, 4}, x= time );

It is also possible to invoke the function with positional association of the actual arguments:
p = PolynomialEvaluator2({1, 2, 3, 4}, time );

Similar to Java, Modelica functions can have ag output argument. This is not a severe
restriction, because a record can be returned in which the desired output arguments are collected
together. Since the appropriate style of a Modelica function call with multiple arguments is not
yet fully clear - use a functional style as Matlab or Mathematica do it, or use a procedural style,
as C, C++ and Fortran do it - it is not supported in the current version of Modelica.

External functions

It is possible to call functions defined outside of the Modelica language. The body of an external
function is marked with the keywoegternal
function log
input Real x;
output Realy;

external
end log;

There is a "natural” mapping from Modelica to the target language and its standard libraries. The
C language is used as the least common denominator.

The arguments of the external function are taken from the Modelica declaration. If there is a
scalar output, it is used as the return type of the external function; otherwise the results are
returned through extra function parameters. Arrays of simple types are mapped to an argument of
the simple type, followed by the array dimensions. Storage for arrays as return values is allocated
by the calling routine, so the dimensions of the returned array is fixed. More details are discussed
in the appendix of the Language Specification.

4.8 Hybrid Models

Modelica can be used for mixed continuous and discrete models. For the discrete parts, the
synchronous data flow principle with the single assignment rule is used. This fits well with the
continuous DAE with equal number of equations as variables. Certain inspiration for the design
has been obtained from the languages Signal (Gautier, et.al., 1994) and Lustre (Halbwachs, et.al.
1991).
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Discontinuous Models

If-then-else expressiordlow modeling of a phenomena with different expressions in different
operating regions. A limiter can thus be written as
y= |if u > HighLimit then HighLimit
else if u < LowLimit then LowLimit else u;
This construct might introduce discontinuities. If this is the case, appropriate information about

the crossing points should be provided to the integrator. The use of crossing functions is
described later.

More drastic changes to the model might require replacing one set of equations with another
depending on some condition. It can be described as follows using vector expressions:
zeros(3) = if cond_A then
{ expression_All - expression_Alr,
expression_A2I - expression_A2r }
else if cond_B then
{ expression_Bl1I - expression_B1r,
expression_B2I - expression_B2r }
else
{ expression_C1I - expression_C1r,
expression_C2I - expression_C2r };

The size of the vectors must be the same in all branches, i.e., there mgsabeumber of
expressions (equation®r all conditions.

It should be noted that the order of the equations in the different branches is important. In certain
cases systems of simultaneous equations will be obtained which might not be present if the
ordering of the equations in one branch of the if-construct is changed. In any case, the model
remains valid. Only the efficiency might be unnecessarily reduced.

Conditional Models

It is useful to be able to have models of different complexities. For complex moutaditjonal
componentgare needed as shown in the next example where the two controllers are modeled
itself as subcomponents:

block Controller

input Boolean simple=true;

input Real e;

output Realy;
protected
Controllerl c1l(u=e, enable=simple);
Controller2 c2(u=e, enable=not simple);
equation
y= if simple then cly else c2.y;
end Controller;

Attribute enable is built-in Boolean input of every block with default equation "enable=true". It
allows enabling or disabling a component. The enable-condition may be time and state
dependent. If enable=false for an instance, its equations are not evaluated, all declared variables
are held constant and all subcomponents are disabled. Special consideration is needed when
enabling a subcomponent. The reset attribute makes it possible to reset all variables to their Start-
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values before enabling. The reset attribute is propagated to all subcomponents. The previous
controller example could then be generalized as follows, taking into account that the Boolean
variable simple could vary during a simulation.
block Controller
input Boolean simple=true;
input Real e
output Realy
protected
Controllerl cl(u=e, enable=simple, reset=true);
Controller2 c2(u=e, enable=not simple, reset=true);
equation
y= if simple then cly else c2.y;
end Controller;

Discrete Event and Discrete Time Models

The actions to be performed at events are specified by a when-statement.

when conditionthen
equations
end when

The equations are active instantaneously when the contgmmesrue. It is possible to use a
vector of conditions. In such a case the equations are active whangweéthe conditions
becomes true.

Special actions can be performed when the simulation starts and when it finishes by testing the
built-in predicatesnitial () andterminal (). A special operataeinit (state, value) can be used to
assign new values to the continuous states of a model at an event.

Let's consider discrete time systems or sampled data systems. They are characterized by the
ability to periodically sample continuous input variables, calculate new outputs influencing the
continuous parts of the model and update discrete state variables. The output variables keep their
values between the samplings. We need to be able to activate equations once every sampling.
There is a built-in functiosamplgStart, Interval) that is true wheime=Start + n*Interval,

n>=0. A discrete first order state space model could then be written as

block DiscreteStateSpace
parameter Real a, b, c, d;
parameter Real Period=1;
input Real u;
discrete output Realy;
protected
discrete  Real Xx;

equation
when sample (0, Period) then
X = a*pre(x) + b*u;
y = c*pre(x) + d*u;
end when ;
end DiscreteStateSpace;

Note, that the special notatiqare(x), is used to denote the value of tliscrete state variable x
before the sampling.
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In this case, the first sampling is performed when simulation starts. With Start > 0, there would
not have been any equation defining x and y initially. All variables being defined by when-
statements hold their values between the activation of the equations and have the value of their
start-attribute before the first sampling, i.e., they are discrete state variables and must have the
variable prefixdiscrete

For non-periodic sampling a somewhat more complex method for specifying the samplings
would be used. The sequence of sampling instants could be calculated by the model itself and
kept in a discrete state variable, say NextSampling. We would then like to activate a set of
equations once’henthe conditiortime>= NextSamplindpoecomesrue. An alternative
formulation of the above discrete system would thus be.
block DiscreteStateSpace2

parameter Real a, b, c, d;

parameter Real Period=1;

input Real u;

discrete output Realy;

protected
discrete  Real x, NextSampling(start=0);

equation
when time > = pre(NextSampling) then
X = a*pre(x) + b*u;
y = c*pre(x) + d*u;
NextSampling = time + Period;
end when ;
end DiscreteStateSpace2;

Indicator functions for efficient simulation

If the conditions used in if-the-else expressions contain relations with dynamic variables, the
corresponding derivative function f might not be continuous and have as many continuous partial
derivatives as required by the integration routine in order for efficient simulation. Modern
integrators have indicator functions for such discontinuous events. For a relation like vl > v2, a
proper indicator function is v1 - v2.

If the resulting if-then-else expression is smooth, the modeller should have the possibility to give
this extra information to the integrator in order to avoid event handling and thus enhance
efficiency. This can be done by embedding the corresponding relation in a fundiioenhas
follows.

y= if  noEvent (u > HighLimit) then HighLimit

else if noEvent (u < LowLimit) then LowLimit else u;

lin some cases the event does not need to be triggered exactly when the condition becomes true.
It might be sufficient to wait until the next step of the integration has been completed. Such
events are sometimes called step events. An appropriate translator pragma for that would be to
use a functioswitch(relation).

Synchronization and event propagation

Propagation of events can be done by the use of Boolean variables. A Boolean equation like
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Out.Overflowing = Height > MaxLevel;

in a level sensor might define a Boolean variable, Overflowing, in an interface. Other
components, like a pump controller might react on this by testing Overflowing in their
corresponding interfaces

Pumping = In.Overflowing or StartPumping;
DeltaPressure = if Pumping then DP else O;

A connection like
connect (LevelSensor.Out, PumpController.in);

would generate an equation for the Boolean component StartPump
LevelSensor.Out.StartPump = PumpController.In.StartPump;

For simulation, this equations needs to be solved for PumpController.In.StartPump. Boolean
equations always needs to have a variable in either the left hand part or the right hand part or in
both in order to be solvable.

An event (a relation becoming true or false) might involve the change of continuous variables.
Such continuous variables might be used in some other relation, etc. Propagation of events thus
might require evaluation of both continuous equations and conditional equations.

Ideal switching devices

Consider the rectifier circuit of Figure 3. We will show an appropriate way of modeling an ideal
diode.
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Figure 3. Rectifier circuit

The characteristics of the ideal diode is shown in Figure 4.
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Figure 4. Characteristics of ideal diode

31



Modelica Tutorial and Rationale

It is not possible to write i as a function of v or vice versa because the ideal characteristics.
However, for such planar curves a parametric form can be used

x = f(s)
y =d(s)

where s is a scalar curve parameter. The ideal diode can then be described as

i= if s<0 then s else O;
v= if s<0 then 0 else s;

The complete model of the ideal diode is then

model IdealDiode "Ideal electrical diode"
extends TwoPin;
protected
Real s;
equation
i= if s<0O then s else O;
v= if s<0 then 0 else s;
end IdealDiode;

This technique is also appropriate to model ideal thyristors, hysteresis and ideal friction.
Conditional Equations with Causality Changes

The following example models a breaking pendulum - a simple variable structure model. The
number of degrees-of-freedom increases from one to two when the pendulum breaks. The
example shows the needs to transfer information from one set of state variables (phi, phid) to
another (pos, vel) at an event. Consider the following description \piinsaneterBroken.

model BreakingPendulum
parameter Real m=1, g=9.81, L=0.5;

parameter  Boolean Broken;

input Real u;
Real pos|[2], vel[2];

constant  Real PI=3.141592653589793;
Real phi(start=P1/4), phid;

equation
vel = der (pos);

if not Broken then
/I Equations of pendulum
pos = {L*sin(phi), -L*cos(phi)};
phid = der (phi);
m*L*L*  der (phid) + m*g*L*sin(phi) = u;

else ;
/I Equations of free flying mass
m* der (vel) = m*{0, -g};
endif ;

end BreakingPendulum;

This problem is non-trivial to simulate if Broken would be a dynamic variable because the
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defining equations of the absolute position "pos" and of the absolute velocity "vel" of the mass
change causality when the pendulum breaks. When "Broken=false", the position and the velocity
are calculated from the Pendulum angle "phi" and Pendulum angular velocity "phid". After the
Pendulum is broken, the position and velocity are state variables and therefore known quantities
in the model.

As already mentioned, conditional equations with dynamic conditions are presently not
supported because it is not yet clear in which way a translator can handle such a system
automatically. It might be that a translator pragma is needed to guide the translation process. It is
possible to simulate variable causality systems, such as the breaking pendulum, by reformulating
the problem into a form where no causality change takes place using conditional block models:

record PendulumData
parameter Realm, g, L;
end PendulumData,;

partial model BasePendulum
PendulumData p;

input  Real u;

output  Real pos[2], vel[2];
end BasePendulum;

block Pendulum
extends BasePendulum;
constant Real P1=3.141592653589793;
output  Real phi(start=PI/4), phid;

equation
phid = der (phi);
p.m*p.L*p.L* der (phid) + p.m*p.g*p.L*sin(phi) = u;

pos = {p.L*sin(phi), -p.L*cos(phi)};
vel = der (pos);
end Pendulum;

block BrokenPendulum

extends BasePendulum;
equation
vel = der (pos);
p.m* der (vel) = p.m*{0, -p.g};
end BrokenPendulum;

model BreakingPendulum2
extends BasePendulum(p(m=1, g=9.81, L=0.5));
input  Boolean Broken;

protected
Pendulum pend (p=p, u=u, enable= not Broken);
BrokenPendulum bpend(p=p, u=u, enable=Broken);
equation
when Broken then
reinit(bpend.pos, pend.pos ); |
reinit(bpend.vel, pend.vel ) |
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end when;
pos = if not Broken then pend.pos else bpend.pos;
vel = if not Broken then pend.vel else bpend.vel;

end BreakingPendulumz2;

This rewriting scheme is always possible and results in a larger model. It has the drawback that
the same physical variable is represented by several model variables. In some cases, such as for
the breaking pendulum, it is possible to avoid this drawback:

model BreakingPendulum3
parameter Real m=1, g=9.81;

input  Boolean Broken;

input Real u;
Real pos|[2], vel[2];

constant  Real PI=3.141592653589793;
Real phi(start=P1/4), phid;
RealL (start =0.5), Ldot;

equation
pos = {L*sin(phi), -L*cos(phi)};
vel = der (pos);
phid = der (phi);
Ldot = der (L);
zeros(2) = if not Broken then {

/I Equations of pendulum
m* der (phid) + m*g*L*sin(phi) — u,
der (Ldot)}
else
/I Equations of free flying mass
m*  der (vel) - m*{0, -g} ; |
end BreakingPendulum3;

The trick was to use complete polar coordinates including the length, L and to give a differential
equation for L in the non Broken mode. If the derivatives of some variables are not calculated
during the "not Broken"-phase, the variables "pos" and "vel" can be considered as algebraic
variables. A simulator thus has the possibility to remove them from the set of active state
variables.

4.9 Units and Quantities

The built-in "Real” type of Modelica has additional attributes to defmgproperties of
variables:

type Real
parameter  StringType  quantity ="
parameter  StringType unit ="' "unit in equations”;

parameter  StringType displayUnit =" "default display unit";
ei’id Real;

/I define quantity types

type Force = Real( final  quantity="Force", final  unit="N");

type Angle = Real( final  quantity="Angle", final  unit="rad",
displayUnit="deg");
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/I use the quantity types

Force f1 , f2 (displayUnit="kp");

Angle alpha, beta(displayUnit="rad");
Thequantityattribute defines the category of the variable, like Length, Mass, PressutaiThe
attribute defines the unit of a variable as utilized in the equations. That is, all equations in which
the corresponding variable is used are only correct, provided the numeric value of the variable is
given with respect to the defined unit. FinatlisplayUnitgives the default unit to be used in
tools based on Modelica for interactive input and output. If, for example, a parameter value is
input via a menu, the user can select the desired unit from a list of units, using the "displayUnit"
value as default. When generating Modelica code, the tool makes the conversion to the defined
"unit” and stores the used unit in the "displayUnit" field. Similarly, a simulator may convert
simulation results from the "unit” into the "displayUnit" unit before storing the results on file. All
of these actions are optional. If tools do not support units, or a specific unit cannot be found in
the unit database, the value of the "unit" attribute could be displayed in menus, plots etc.

Thequantityattribute is used as grouping mechanism in an interactive environment: Based on
the quantity name, a list of units is displayed which can be ustidpayUnitfor the underlying
physical quantity. The quantity name is needed because it is in general not possible to determine
just by theunit whether two different units belong to the same physical quantity. For example,

type Torque = Real( final  quantity="MomentOfForce", final  unit="N.m");
type Energy = Real( final quantity="Energy" : final  unit="J3");

the units of type Torque and type Energy can be both transformed to thbasemenitsnamely
"kg.m2/s2". Still, the two types characterize different physical quantities and when displaying
the possible displayUnits for torque types, unit "J" should not be in such a list. If only a unit
name is given and no quantity name, it is not possible to get a list of displayUnits in a simulation
environment.

Together with Modelica atandard packagef predefinedquantity and connector types is

provided in the form as shown in the example above. This will give some help in standardization
of the interfaces of models. Note, that the préfial defines that the quantity and unit values of

the predefined types cannot be modified.

Conversion between units isot supported within the Modelica language. This simplifies a

Modelica translator considerably, especially because a unit-database with its always incomplete
collection of units is not needed, see e.g. (Cardarelli 1997). As a consequence, the semantics of a
correct Modelica model is independent of the unit attributes and the Modelica translator can
ignore them during code generation. Especially, the unit attributesoeleel checked for a

connection, i.e., connected variables may have different quantities and units.

Much more support on units and quantities will be given by tools based on Modelica. This will
be considered as "quality of implementation". An object-diagram editor may, for example,
support automatic unit conversion when two interfaces are connected. As a general rule it will
always be allowed to connect any variable to a variable which has no quantity and unit
associated with it. Furthermore, a Modelica translator may optionally check equations on correct
dimensionality (this will produce only warning messages, i.e., code will be produced anyway).
The equation "f=m*a" would, for example, produce a warning, if "f" is given in "N.m" because
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then the units are not compatible to each other. The variables in the equations may have non-Si
units. Therefore, for example, the compiler will not detect that "f=m*a" is an error, if the units

"N" for "f", "g" for "m" and "m/s"2" for "a" are used. Dimension checking is done by

transforming the "quantity" information into one of the seven base "quantities” (like "Mass",
"Length").

Usually, units are associated with types. There are however elements where instances may have a
different unit by redefinition of the quantity type. Example:

type Voltage = Real( final quantity="Voltage", final  unit="V");
model SineSignal

parameter Real freq (unit="Hz");
parameter Angle phi;

replaceable type SineType = Real,
parameter SineType Amplitude;

output SineTypey;
constant Real P1=3.141592653589793;
equation
y = Amplitude*sin(2*PI*freq* time + phi);

end SineSignal;

model Circuit
SineSignal  sig( redeclare SineType = Voltage);
VoltageSource Vsource;

equation
connect (sig.y, Vsource.in);
end Circuit;

In a block diagram library there is a general sine signal generator. When it is used to generate a
voltage sine for a voltage source, the output of the signal generator should have a unit of "V".
This can be accomplished by having the type of the amplitude and of the output as a replaceable
type which can be changed appropriately when this signal generator is instantiated.

4.10 Annotations for Graphics and Documentation

In addition to the mathematical model with variables and equations, additional information is
needed for example to represent icons, graphical layout, connections and extended
documentation. Graphically representing models as interconnected submodels displayed as
icons, supports their quick understanding. As most contemporary tools provide facilities to build
models graphically, Modelica has language constructs to represent icons, graphical layout and
the connections between submodels.

Modelica supports property lists for the various components. Such lists can be used to store
graphical, documentation and tool related annotations. Each component can have a list
designated by the keywoeshnotation. The value of such annotations can be according to any
class, i.e., it can be created using a class modification. The strong type checking is abandoned in
this case because of the need for various modeling tools to use different kinds of annotations.
Since such annotation values are normally generated and read by tools, i.e., not directly edited by
humans, there is a reduced need for having redundant type information. However, in order that
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graphical and documentation information can be exchanged between tools, a minimum set of
annotation components are specified.

Graphical representation of models

Graphical annotation information is given in three separate contexts:

* Annotations associated with a component, typically to specify position and size of the
component.

* Annotations of a class to specify the graphical representation of its icon (see above),
diagram, and common properties such as the local coordinate system.

* Annotations associated with connections, i.e., route, color of connection line, etc.

The example below shows the use of such graphical attributes to define a resistor.

model Resistor
Pin p annotation  (extent=[-110, -10; -90, 10]);
Pinn annotation  (extent=[ 110, -10; 90, 10]);

parameter R "Resistance in [Ohm]";

equation
R*p.i=p.v-n.y;
n.i=p.i

public
annotation  (lcon(
Rectangle(extent=[-70, -30; 70, 30], style(fillPattern=1)),
Text(extent=[-100, 55; 100, 110], string="%name=%R"),
Line(points=[-90, 0; -70, 0]),
Line(points=[70, 0; 90, 0])
)
end Resistor;
The resistor has two pins, and we specify two opposite corners of the extent of their graphical
representation. An icon of the Resistor is defined by a rectangle, a text string and two lines. For

the rectangle we specify additional style attributes for fill pattern.

The extent specified for a component is used to scale the icon image. The icon is drawn in the
master coordinate system specified in the component's class. The icon is scaled and translated so
the coordinate system is mapped to the region defined in the component declaration.

The attribute set to represent component positions, connections and various graphical primitives
for building icons is shown below. The attribute structures are described through Modelica
classes. Points and extents (two opposite points) are described in matrix notation.

type Point=Real[2]; //{x, y}
type Extent = Real[2,2]; //[x1,yl; X2, y2]

record CoordinateSystem // Attribute to class
Extent extent;
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Point grid;
Point size;
end CoordinateSystem;

record Placement /I Attribute for component
Extent extent;
Real rotation;

end Placement;

record Style

Integer color[3], fillColor[3]; // RGB

Integer pattern, fillPattern, thickness, gradient,
smooth, arrow, textStyle;

String font;
end Style;

record Route /I Attribute for connect
Point points[:];
Style style;
String label;

end Route;

/I Definitions for graphical elements
record Line = Route;

record Polygon = Route;

record Graphicltem
Extent extent;
Style style;

end Graphicltem;

record Rectangle = Graphicltem;
record Ellipse = Graphicltem;

record Text

extends Graphicltem;
String string;
end Text;

record BitMap
extends Graphicltem;
String URL; /I Name of bitmap file
end BitMap;

Documentation of models

Modelica Tutorial and Rationale

The graphical unit of the master coordinate system used when drawing lines, rectangles, text etc.
is the baseline spacing of the default font used by the graphical tool, typically 12 points for a 10
point font (note: baseline spacing = space between text lines).

In practical modeling studies, documenting the model is an important issue. It is not only for
writing a report on the modeling work, but also to record additional information which can be
consulted when the model is reused. This information need not necessarily be completely
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structured and standardized in the sense that Modelica language constructs are available for all
aspects. The following aspects should typically be recognized:

History information

Major milestones, like creation, important changes, release into public accessibility should be
recorded. Information to store are the author, date and a brief description. This functionality
Is comparable with version control of software, using tools such as SCCS or RCS. If a
specific modeling procedure is used, the mile stones of such a procedure can be recorded in
this part.

References to literature

References to external documents and/or scientific literature for understanding the model, its
context and/or underlying theory should be mentioned here. The format can be like a
literature reference list in an scientific article.

Validation information

This concerns the reference (model or measurement data) to which the model is validated and
criteria for validation. Also the simulation experiments used for the validation should be
mentioned.

Explanation and sketches

A brief text describing the model or device, a kind of ‘manual page' of the model. Schematic
drawings or sketches can be incorporated for better understanding.

User advice

This extension of the explanation part, concerns additional remarks giving hints for reuse of
the model.

Basic documentation functionality is available in Modelica. This consists of an annotation
attributeDocumentation ~ which is further structured into key/text pairs.
annotation (Documentation(

keyl = "Text string",
key2 = "Text string"

)
Currently, no further detail on structuring information is given. The information is given as plain
text in the appropriate category. It is likely that companies have their own way of documenting
their models and experiments, so that different ways of filling in the documentation information
are needed.

5. Overview of Present Languages

In this chapter an overview is given on the languages which have been used as starting point for
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the Modelica design, i.e., Modelica builds upon the experience gained with these languages.

Since the definition of CSSL in 1967 (Strauss, 1967), most modeling languages are essentially
block oriented with inputs and outputs and the mathematical models are defined as assignment
statements for auxiliary variables and derivatives. Physical equations thus need to be transformed
to a form suitable for calculations. The only aid in transforming the equations to an algorithm for
calculating derivatives is automatic sorting of the equations.

The languages that form the base of Modelica, all have general equations, i.e. expression =
expression, as the basic element. Hierarchical decomposition and reuse are typically supported
by some kind of model class. Typically, the languages have provisions to describe physical
connection mechanisms, i.e. to associate a set of variables with some kind of port. Such ports can
be used at higher hierarchical levels when connecting submodels without having to deal with
individual variables.

ASCEND

ASCEND (Advanced System for Computation in ENgineering Design)
(http://www.cs.cmu.edu/~ascend/Home.html) was developed at Carnegie Mellon University, PA,
USA to be a rapid model building environment for complex models comprising large sets of
nonlinear algebraic equations (Piela 1989, Piela et.al. 1991). The language is textual. It supports
guantity equations, single inheritance and hierarchical decomposition, but it does not have well
defined submodel interfaces. The application domain is chemical process modeling. Later
versions support dynamic continuous time modeling.

Dymola

Dymola (Dynamic Modeling Language) (http://www.dynasim.se/), as introduced already in 1978
(EImqvist, 1978), is based on equations for non-causal modeling, model types for reuse and
submodel invocation for hierarchical modeling. The Dymola translator utilizes graph theoretical
methods for causality assignment, for sorting and for finding minimal systems of simultaneous
equations. Computer algebra is used for solving for the unknowns and to make simplifications of
the equations. Constructs for hybrid modeling, including instantaneous equations, was
introduced in 1993 (Elmqvist et.al. 1993). Crossing functions for efficient handling of state
events are automatically generated. A graphical editor is used to build icons and to make model
compositions (EImqvist et.al. 1996). Major application areas include multi-body systems, drive-
trains, power electronics and thermal systems.

gPROMS

gPROMS fittp://www.ps.ic.ac.uk/gPROMSBarton and Pantelides 1994, Oh and Pantelides
1996) is a general process modeling system. The language is a further development of
SPEEDUP. Continuous parts of the process are modelled by DAE's. A task concept handles the
discrete events. Continuous models and tasks are combined into a single entity called process.
The gPROMS language has constructs for certain kinds for partial differential equations. The
major application domain is chemical process modeling.
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MOSES

MOSES (Modular Object-oriented Software Environment for Simulation)
(http://www.elet.polimi.it/section/automeng/controljas a prototype system for object-oriented
modeling based on the experience with Omola. It consists of a "Model Definition Language”
(MDL), a "Data Model" (DM) yielding minimum mismatch with MDL, and an object-oriented

data base system based on GemStone to meet the hard data management problems involved in
complex system modeling. Combined continuous and discrete-time (hybrid) systems are
supported. The main application area is robotics.

NMFE

The Neutral Model Format (NMFhttp://urd.ce.kth.seSahlin et.al. 1996) is a language in the
Dymola and Omola tradition and was first proposed as a standard to the building and energy
systems simulation community in 1989. The language is formally controlled by a committee
within ASHRAE (Am. Soc. for Heating, Refrigerating and Air-Conditioning Engineers). Several
independently developed NMF tools and model libraries exist, and valuable lessons on language
standardization and development of reusable model libraries have been learned. Salient features
of NMF are: (1) good support for model documentation, (2) dynamical vector and parameter
dimensions (a model can, e.g., calculate required spatial resolution for PDE), (3) full support for
calls to foreign models (e.g. legacy or binary Fortran or C models) including foreign model event
signals.

ObjectMath

ObjectMath (Object Oriented Mathematical Modeling Language),
(http://www.ida.liu.se/labs/pelab/omatifritzson et.al. 1995) is a high-level programming
environment and modeling language designed as an extension to Mathematica. The language
integrates object-oriented constructs such as classes, and single and multiple inheritance with
computer algebra features from Mathematica. Both equations and assignment statements are
included, as well as functions, control structures, and symbolic operations from standard
Mathematica. Other features are parameterized classes, hierarchical composition and dynamic
array dimension sizes for multi-dimensional arrays. The environment provides a class browser
for the combined inheritance and composition graph and supports generation of efficient code in
C++ or Fortran90. The user can influence the symbolic transformation of equations or
expressions by manually specifying symbolic transformation rules, which also gives an
opportunity to control the quality of generated code. The main application area so far has been in
mechanical systems modeling and analysis.

Omola

Omola fttp://www.control.lth.se/~cace/omsim.htrndersson 1984, Mattsson et.al. 1993) is

an object-oriented and equation based modeling language. Models can be decomposed
hierarchically with well-defined interfaces that describe interaction. All model components are
represented as classes. Inheritance and specialization support easy modification. Omola supports
behavioral descriptions in terms of differential-algebraic equations (DAE), ordinary differential
equations (ODE) and difference equations. The primitives for describing discrete events allow
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implementation of high level descriptions as Petri nets and Grafcet. An interactive environment
called OmSim supports modeling and simulation: graphical model editor, consistency analysis,
symbolic analysis and manipulation to simplify the problem before numerical simulation, ODE
and DAE solvers and interactive plotting. Applications of Omola and OmSim include chemical
process systems, power generations and power networks.

SIDOPS+

SIDOPS+ (http://www.rt.el.utwente.nl/proj/modsim/modsim.htm) supports nonlinear
multidimensional bond-graph and block-diagram models, which can contain continuous-time
parts and discrete-time parts(Breunese and Broenink, 1997). The language has facilities for
automated modeling support like polymorphic modeling (separation of the interface and the
internal description), multiple representations (component graphs, physical concepts like bond
graphs or ideal physical models and (acausal) equations or assignment statements), and support
for reusability (e.g. documentation fields, physical types). Currently, SIDOPS+ is mainly used in
the field of mechatronics and (neural) control. It is the model description language of the

package 20-SIMBroenink, 1997). SIDOPS+ is the third generation of SIDOPS which started as

a model description language for single-dimensional bond-graph and block-diagram models.

Smile

Smile (http://www.first.gmd.de/smile/smile0.html) is an object-oriented and equation-based
modeling and simulation environment. The object-oriented and imperative features of Smile's
modeldescription languagare very similar to Objective-C. Equations may either be specified
symbolically or as procedures; external modules can be integrated. Smile also has a dedicated
experiment description languagéhe system consists of translators for the above-mentioned
languages, a simulation engine offering several numeric solvers, and components for interactive
experimenting, visualization, and optimization. Smile's main application domain traditionally has
been the simulation of solar energy equipment and power plants (Tummescheit and Pitz-Paal,
1997), but thanks to its object-oriented modeling features it is applicable to other classes of
complex systems as well. An extension of Smile to support Modelica is planned (Ernst, et.al.,
1997).

U.L.M. - Allan

The goal of ALLAN (Pottier, 1983; Jeandel 1997) is to free engineers from computer science

and numerical aspects, and to work towards capitalization and reuse of models. This means non-
causal and hierarchical modeling. A graphical representation of the model is associated to the
textual representation and can be enhanced by a graphical editor. A graphical interface is used
for hierarchical model assembly. The discrete actions at the interrupts in continuous behavior are
managed by events. Automatons (synchronous or asynchronous) are available on events.
FORTRAN or C code can be incorporated in the models. Two translators toward the

NEPTUNIX and ADASSL (modified DASSLRT) solvers are available. Main application

domains are energy systems, car electrical circuits, geology and naval design.

The language U.L.M. has been designed in 1993 with the same features as the ALLAN language
in a somewhat different implementation (Jeandel, 1996). It is a model exchange language linked
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to ALLAN. All aspects of modeling are covered by the textual language. There is an emphasis
on the separation of the model structure and the model numerical data for reuse purposes. It also
has an interesting feature on model validation capitalization.

VHDL-AMS

VHDL-AMS (http://www.vhdl.org/analoglEEE, 1997) is an extension to the discrete circuit
modeling language VHDL for combined continuous and discrete models. Structuring is done by
means of entities and architectures. An entity defines the external view of a component including
its parameters (generics), its discrete signal interface and its continuous interface (ports). The
architecture associated with an entity describes the implementation which may contain equations
(DAE's). VHDL-AMS is a large and rich modeling language targeted mainly at the application
domain of electronics hardware. Several extensions of VHDL towards full object orientation

have been proposed (see e.g. Benzakki, et.al., 1997), but the continous modeling extensions of
VHDL-AMS were not yet taken into account in this work.

6. Design Rationale

As already pointed out in the beginning of this chapter, Modelica is an object oriented, equation-
based, declarative data-oriented modeling language for non-causal modeling of physical systems.
In this section we give a short rationale of the language from a computer science point of view

by explaining some of the design principles and decisions behind the language in its current

form.

The following are a set of general principles and design goals that have been applied more or less
consistently during the design of the Modelica language. We give several examples how these
goals have influenced the current design.

» Engineering tool

The Modelica language is designed to be an engineering tool for modeling of realistic
physical systems, usually with the aim of simulating, optimizing or controlling such
systems. Thus, the language has to fulfill the requirements of engineering, such as
allowing efficient implementation, coping with large physical systems composed of
different kinds of subsystems.

* Reliability and correctness

The language as an engineering tool should support the construction of reliable and
correct software. This goal is rather fundamental to the overall design of Modelica. For
example, readability of system models is important since this contributes to reliability in
engineering, even at the cost of more verbose code. This is the main reason for having
named parameter passing in Modelica, also present in Ada. The strong typing in
Modelica has been introduced to provide partial verification of internal consistency. The
declarative and functional style of Modelica helps avoid certain errors and enhances code
reuse.
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Coping with system evolution

Large software systems are always evolving, e.g. by adding new functionality, adapting

to new hardware, enhancing performance, etc. Most large software systems are always in
a transitional situation where most things work and a few things do not work. We say that
an evolving system is reliable if it does not break too often or too extensively in spite of
change. The strong type system of Modelica is one way of controlling system evolution,
by partially verifying system models at each stage. The Modelica class and package
concepts, integrated with the type system, provide a module mechanism to control system
complexity.

Generality, uniformity

The design of Modelica emphasizes generality and uniformity. This makes the language
easier to learn, yet powerful. Therefore the concepts of model, type, connector, block,
package and function in Modelica have been designed to be just restricted versions of the
general class concept. A general static and strong type system designed by Luca Cardelli
(Cardelli 1988, Cardelli 1991), has been adopted for Modelica. This type system
integrates object orientation with multiple inheritance, subtyping, and parametric
polymorphism - the latter also known as generics in Ada and templates in C++. Another
example of uniformity and generality is that named and positional parameter passing is
available for both class specialization and function calls in Modelica.

Declarativity and referential transparency

Most high level specification languages are declarative, including Modelica, since this
allows expressing properties of systems without specifying in detail how, or in what

order, such properties should be realized. For example, Modelica views object orientation
as a declarative structuring concept for mathematical modeling in contrast to the non-
declarative view of languages like SmallTalk, which regard object orientation as message
passing between (dynamically) created objects. Modelica functions are declarative and
encourages a functional programming style. They are essentially side effect free
mathematical functions. The body of a function is called an algorithm section. From the
equation point of view, such an algorithm section can be regarded as a strongly connected
set of equations.

Adherence to common de facto language standards

Modelica tries to be somewhat compatible with several existing common programming
languages, since this makes Modelica easier to learn and to use for engineers. For
example, Modelica has adopted some of the Java syntax and the UniCode character
standard, and uses the Matlab notation for matrix operations.

High level of abstraction

Since Modelica is a specification language, it is designed to allow abstraction from
unnecessary detail. The language obtains its strong abstraction power by being based on
equations integrated with object oriented structuring concepts and object connection
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mechanisms.
« Code reuse

Code reuse is a desirable but hard-to-reach goal for software development. Modelica
contributes to this goal in several ways. Its non-causal equation-based modeling style
permits model components to be reused in different contexts, automatically adapting to
the data flow order in specific simulation applications, i.e. the Modelica compiler
automatically arranges equations for solution with particular inputs or outputs. Object
orientation and polymorphism significantly enhances the potential for reuse of Modelica
model components.

« Mathematical foundation

The Modelica language has a strong mathematical foundation in the sense that a
Modelica model is expanded (from a semantic point of view) into a set of differential-
algebraic equations. Thus, Modelica is primarily equation-based. Equations can be
conditional, to represent discrete-event features and enable hybrid modeling.

7. Examples

Modelica has been used to model various kinds of systems. Otter et.al., 1997 describes modeling
of automatic gearboxes for the purpose of real-time simulation. Such models are non-trivial
because of the varying structure during gear shift utilizing clutches, free wheels and brakes.
Mattsson, 1997 discusses modeling of heat exchangers. Class parameters of Modelica are used
for medium parameterization and regular component structures are used for discretization in
space of the heat exchanger. Tummescheit et.al., 1997 discusses thermodynamical and flow
oriented models. Broenink, 1997 describes a Modelica library with bond graph models for
supporting the bond graph modeling methodology. Franke, 1998 models a central solar heating
plant using Modelica. Mosterman et.al., 1998 describes a Petri-Net library written in Modelica.

8. Conclusions

The Modelica effort has been described and a definition of Modelica has been given. Version 1.0
was finished in September 1997. For Modelica 1.1, as defined in this report (together with the
Language Specification) from December 1998, the semantic specification was considerably
enhanced, especially for redeclarations, array language elements, hybrid features, lexical scoping
and library support. Furthermore, a partial formal specification of the language semantics was
developed (Kagedal, 1998). More than 20 papers have been written about various aspects of
Modelica. See the URL below.

The design of standard function and model libraries is in progress. There is ongoing work to
write books on the Modelica language and on Modelica model libraries. Several Modelica tools
are also under development. There are discussions to extend the Modelica design into, for
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example, handling partial differential equations and discrete event models, see EImquvist et.al.
1998.

More information and the most actual status of the Modelica effort can be found at
URL: http://www.Modelica.org
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