

Modelica® - A Unified Object-Oriented
Language for Physical Systems Modeling

Language Specification

Version 3.2 Revision 2

 July 30, 2013

Abstract
This document defines the Modelica1 language, version 3.2, which is developed by the Modelica
Association, a non-profit organization with seat in Linköping, Sweden. Modelica is a freely
available, object-oriented language for modeling of large, complex, and heterogeneous physical
systems. It is suited for multi-domain modeling, for example, mechatronic models in robotics,
automotive and aerospace applications involving mechanical, electrical, hydraulic and control
subsystems, process oriented applications and generation and distribution of electric power. Models
in Modelica are mathematically described by differential, algebraic and discrete equations. No
particular variable needs to be solved for manually. A Modelica tool will have enough information
to decide that automatically. Modelica is designed such that available, specialized algorithms can be
utilized to enable efficient handling of large models having more than one hundred thousand
equations. Modelica is suited and used for hardware-in-the-loop simulations and for embedded
control systems. More information is available at http://www.Modelica.org/

Version 3.2 Revision 2 clarifies and fixes issues of the specification text. Furthermore, it adds a few
new features to Version 3.2 Revision 1, in order that the Modelica Standard Library version 3.2.1 is
fully compliant to the Modelica Language Version 3.2 Revision 2.

Version 3.2 Revision 1 defines exactly the same language as Version 3.2. It just clarifies and fixes
several issues of the specification text.

1 Modelica is a registered trademark of the Modelica Association

http://www.modelica.org/

Copyright © 1998-2013, Modelica Association (https://www.Modelica.org)
All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e., this document can be
freely distributed especially electronically, provided the copyright notice and these conditions are retained. No
patent liability is assumed with respect to the use of information contained herein. While every precaution has
been taken in the preparation of this document no responsibility for errors or omissions is assumed.

The contributors to this and to previous versions of this document are listed in Appendix E. All contributors
worked voluntarily and without compensation.

https://www.modelica.org/

Table of Contents
Preface ... 7

Chapter 1 Introduction .. 8
1.1 Overview of Modelica.. 8
1.2 Scope of the Specification .. 8
1.3 Some Definitions .. 9
1.4 Notation and Grammar ... 9

Chapter 2 Lexical Structure .. 10
2.1 Character Set .. 10
2.2 Comments .. 10
2.3 Identifiers, Names, and Keywords ... 11
2.4 Literal Constants .. 12
2.5 Operator Symbols .. 13

Chapter 3 Operators and Expressions ... 14
3.1 Expressions .. 14
3.2 Operator Precedence and Associativity.. 14
3.3 Evaluation Order .. 15
3.4 Arithmetic Operators .. 16
3.5 Equality, Relational, and Logical Operators .. 16
3.6 Miscellaneous Operators and Variables ... 17
3.7 Built-in Intrinsic Operators with Function Syntax ... 18
3.8 Variability of Expressions .. 27

Chapter 4 Classes, Predefined Types, and Declarations .. 31
4.1 Access Control – Public and Protected Elements .. 31
4.2 Double Declaration not Allowed ... 32
4.3 Declaration Order and Usage before Declaration .. 32
4.4 Component Declarations .. 32
4.5 Class Declarations .. 37
4.6 Specialized Classes .. 40
4.7 Balanced Models .. 41
4.8 Predefined Types .. 47

Chapter 5 Scoping, Name Lookup, and Flattening ... 52
5.1 Flattening Context .. 52
5.2 Enclosing Classes ... 52
5.3 Static Name Lookup ... 52
5.4 Instance Hierarchy Name Lookup of Inner Declarations ... 54
5.5 Simultaneous Inner/Outer Declarations ... 56
5.6 Flattening Process .. 56

Chapter 6 Interface or Type Relationships.. 58
6.1 The Concepts of Type, Interface and Subtype ... 59
6.2 Interface or Type .. 60

6.3 Interface Compatibility or Subtyping ... 61
6.4 Plug-Compatibility or Restricted Subtyping .. 63
6.5 Function-Compatibility or Function-Subtyping for Functions .. 64
6.6 Type Compatible Expressions .. 65

Chapter 7 Inheritance, Modification, and Redeclaration .. 66
7.1 Inheritance—Extends Clause ... 66
7.2 Modifications ... 69
7.3 Redeclaration ... 72

Chapter 8 Equations .. 79
8.1 Equation Categories ... 79
8.2 Flattening and Lookup in Equations .. 79
8.3 Equations in Equation Sections .. 79
8.4 Synchronous Data-flow Principle and Single Assignment Rule .. 86
8.5 Events and Synchronization ... 86
8.6 Initialization, initial equation, and initial algorithm ... 88

Chapter 9 Connectors and Connections... 91
9.1 Connect-Equations and Connectors ... 91
9.2 Generation of Connection Equations ... 96
9.3 Restrictions of Connections and Connectors ... 99
9.4 Equation Operators for Overconstrained Connection-Based Equation Systems 101

Chapter 10 Arrays .. 107
10.1 Array Declarations ... 107
10.2 Flexible Array Sizes ... 109
10.3 Built-in Array Functions .. 109
10.4 Vector, Matrix and Array Constructors.. 113
10.5 Array Indexing ... 116
10.6 Scalar, Vector, Matrix, and Array Operator Functions .. 117
10.7 Empty Arrays ... 121

Chapter 11 Statements and Algorithm Sections.. 123
11.1 Algorithm Sections .. 123
11.2 Statements .. 124

Chapter 12 Functions ... 131
12.1 Function Declaration .. 131
12.2 Function as a Specialized Class ... 132
12.3 Pure Modelica Functions.. 133
12.4 Function Call .. 134
12.5 Built-in Functions .. 140
12.6 Record Constructor Functions .. 140
12.7 Declaring Derivatives of Functions ... 143
12.8 Declaring Inverses of Functions ... 146
12.9 External Function Interface .. 147

Chapter 13 Packages .. 159

13.1 Package as Specialized Class ... 159
13.2 Motivation and Usage of Packages .. 159

Chapter 14 Overloaded Operators ... 165
14.1 Matching Function ... 165
14.2 Overloaded Constructors .. 166
14.3 Overloaded String Conversions ... 167
14.4 Overloaded Binary Operations ... 167
14.5 Overloaded Unary Operations .. 168
14.6 Example of Overloading for Complex Numbers ... 168

Chapter 15 Stream Connectors ... 173
15.1 Definition of Stream Connectors ... 173
15.2 Stream Operator inStream and Connection Equations ... 174
15.3 Stream Operator actualStream ... 177

Chapter 16 Mapping of Models to Execution Environments ... 179

Chapter 17 Annotations ... 180
17.1 Vendor-Specific Annotations ... 180
17.2 Annotations for Documentation ... 180
17.3 Annotations for Code Generation .. 181
17.4 Annotations for Simulation Experiments ... 183
17.5 Annotations for Graphical Objects ... 183
17.6 Annotations for the Graphical User Interface .. 191
17.7 Annotations for Version Handling ... 196
17.8 Annotations for Access Control to Protect Intellectual Property ... 198
17.9 Annotations for Functions .. 202
17.10 Annotation Choices for Modifications and Redeclarations ... 202
17.11 Annotation for External Libraries and Include Files .. 202

Chapter 18 Unit Expressions ... 205
18.1 The Syntax of Unit Expressions ... 205
18.2 Examples .. 206

Chapter 19 The Modelica Standard Library ... 207

Appendix A Glossary... 213

Appendix B Modelica Concrete Syntax ... 217

Appendix C Modelica DAE Representation ... 224

Appendix D Derivation of Stream Equations ... 226

Appendix E Modelica Revision History .. 233

Index .. 252

7

Preface
Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object diagrams.
Examples are shown in the next figure:

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has
“connectors” (often also called “ports”) that describe the interaction possibilities, e.g., an electrical pin, a
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system or block
diagram model is constructed. Internally a component is defined by another schematic or on “bottom” level, by an
equation based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model) and to
perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic and
discrete equations. There are no language elements to describe directly partial differential equations, although
some types of discretized partial differential equations can be reasonably defined, e.g., based on the finite volume
method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Modelica language
with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Modelica
translator and by modelers who want to understand the exact details of a particular language element.

The Modelica language has been developed since 1996. This document describes revision 2 of version 3.2 of
the Modelica language. With respect to version 3.1 new features are introduced, such as function arguments to
functions, improved initialization with the new homotopy operator, Unicode encoding in description and
annotation strings, as well as in comments, better support for object libraries, and access control to protect
intellectual property. A complete summary is available in Appendix E.3.1.

March 24, 2010, The Modelica Association (revised on June 18, 2013)

electrical circuits electrical machines
drive trains, e.g. planetary gears

hydraulic circuits
thermo-fluid pipe flow, e.g.

power plants, air conditioning systems

block diagrams state machines 3-dim. mechanical systems

http://www.modelica.org/tools
http://www.modelica.org/publications

8 Modelica Language Specification 3.2 Revision 2

Chapter 1

Introduction

1.1 Overview of Modelica
Modelica is a language for modeling of physical systems, designed to support effective library development and
model exchange. It is a modern language built on acausal modeling with mathematical equations and object-
oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification
The semantics of the Modelica language is specified by means of a set of rules for translating any class described
in the Modelica language to a flat Modelica structure. A class must have additional properties in order that its flat
Modelica structure can be further transformed into a set of differential, algebraic and discrete equations (= flat
hybrid DAE). Such classes are called simulation models.

The flat Modelica structure is also defined for other cases than simulation models; including functions (can
be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial models (used as
base-models). This allows correctness to be verified before building the simulation model.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica structure. Many
Modelica models, especially in the associated Modelica Standard Library, are higher index systems, and can only
be reasonably simulated if symbolic index reduction is performed, i.e., equations are differentiated and
appropriate variables are selected as states, so that the resulting system of equations can be transformed to state
space form (at least locally numerically), i.e., a hybrid DAE of index zero. The Modelica specification does not
define how to simulate a model. However, it defines a set of equations that the simulation result should satisfy as
well as possible.

The key issues of the translation (or flattening) are:

• Expansion of inherited base classes
• Parameterization of base classes, local classes and components
• Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:

• Declarations of variables with the appropriate basic types, prefixes and attributes, such as "parameter
Real v=5".

• Equations from equation sections.
• Function invocations where an invocation is treated as a set of equations which involves all input and all

result variables (number of equations = number of basic result variables).
• Algorithm sections where every section is treated as a set of equations which involves the variables

occurring in the algorithm section (number of equations = number of different assigned variables).

 9

• When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also called
instantaneous equations, which are functions of the variables occurring in the clause (number of equations =
number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only conditionally
evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition becomes true).
Initial setup of the model is specified using start-values and instantaneous equations that hold at the initial time
only.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical representations
of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions
The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in []; comments are set in italics. Additional terms are explained in the
glossary in Appendix A. Some important terms are:

Term Definition
Component An element defined by the production component_clause in the Modelica grammar

(basically a variable or an instance of a class)
Element Class definitions, extends-clauses and component-clauses declared in a class

(basically a class reference or a component in a declaration).
Flattening The translation of a model described in Modelica to the corresponding model described as a

hybrid DAE, involving expansion of inherited base classes, parameterization of base
classes, local classes and components, and generation of connection equations from
connect-equations (basically, mapping the hierarchical structure of a model into a set of
differential, algebraic and discrete equations together with the corresponding variable
declarations and function definitions from the model).

1.4 Notation and Grammar
The following syntactic meta symbols are used (extended BNF):
[] optional
{ } repeat zero or more times

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used as
identifiers, with the exception of initial which is a keyword in section headings, and der which is a keyword
for declaration functions, but it is also possible to call the functions initial()and der(…).

See Appendix B for a full lexical specification and grammar.

10 Modelica Language Specification 3.2 Revision 2

Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical units
including identifiers and literals. Without question, the smallest building blocks in Modelica are single characters
belonging to a character set. Characters are combined to form lexical units, also called tokens. These tokens are
detected by the lexical analysis part of the Modelica translator. Examples of tokens are literal constants,
identifiers, and operators. Comments are not really lexical units since they are eventually discarded. On the other
hand, comments are detected by the lexical analyzer before being thrown away.

The information presented here is derived from the more formal specification in Appendix B.

2.1 Character Set
The character set of the Modelica language is Unicode, but restricted to the Unicode characters corresponding to
7-bit ASCII characters in several places; for details see Appendix B.1.

2.2 Comments
There are two kinds of comments in Modelica which are not lexical units in the language and therefore are treated
as whitespace by a Modelica translator. The whitespace characters are space, tabulator, and line separators
(carriage return and line feed); and whitespace cannot occur inside tokens, e.g., <= must be written as two
characters without space or comments between them. [The comment syntax is identical to that of C++]. The
following comment variants are available:

// comment Characters from // to the end of the line are ignored.
/* comment */ Characters between /* and */ are ignored, including line terminators.

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid:
/* Commented out - erroneous comment, invalid nesting of comments!
 /* This is a interesting model */
 model interesting
 ...
 end interesting;
*/

There is also a kind of “documentation comment,” really a documentation string that is part of the Modelica
language and therefore not ignored by the Modelica translator. Such “comments” may occur at the ends of
declarations, equations, or statements or at the beginning of class definitions. For example:
model TempResistor "Temperature dependent resistor"
 ...
 parameter Real R "Resistance for reference temp.";
 ...

 11

end TempResistor;

2.3 Identifiers, Names, and Keywords
Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for naming
various items in the language. Certain combinations of letters are keywords represented as reserved words in the
Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms. The first
form always start with a letter or underscore (_), followed by any number of letters, digits, or underscores. Case is
significant, i.e., the names Inductor and inductor are different. The second form (Q-IDENT) starts with a
single quote, followed by a sequence of any printable ASCII character, where single-quote must be preceded by
backslash, and terminated by a single quote, e.g. '12H', '13\'H', '+foo'. Control characters in quoted
identifiers have to use string escapes. The single quotes are part of the identifier, i.e., 'x' and x are distinct
identifiers. The following BNF-like rules define Modelica identifiers, where curly brackets {} indicate repetition
zero or more times, and vertical bar | indicates alternatives. A full BNF definition of the Modelica syntax and
lexical units is available in Appendix B.
IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT
Q-IDENT = "’" { Q-CHAR | S-ESCAPE } "’"
NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z"
DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Q-CHAR = NONDIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" | "+" | "," |
 "-" | "." | "/" | ":" | ";" | "<" | ">" | "=" | "?" | "@" | "[" | "]" | "^" |
 "{" | "}" | "|" | "~" | " "_
S-ESCAPE = "\’" | "\"" | "\?" | "\\" |
 "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote an Integer
variable, a Real variable, a function, a type, etc. A name may have different meanings in different parts of the
code, i.e., different scopes. The interpretation of identifiers as names is described in more detail in Chapter 5. The
meaning of package names is described in more detail in Chapter 13.

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and may not be used as identifiers, except as listed in
Appendix B.1:

algorithm discrete false model redeclare
and each final not replaceable
annotation else flow operator return
 elseif for or stream
block elsewhen function outer then
break encapsulated if output true
class end import package type
connect enumeration in parameter when
connector equation initial partial while
constant expandable inner protected within
constrainedby extends input public
der external loop record

12 Modelica Language Specification 3.2 Revision 2

2.4 Literal Constants
Literal constants are unnamed constants that have different forms depending on their type. Each of the predefined
types in Modelica has a way of expressing unnamed constants of the corresponding type, which is presented in the
ensuing subsections. Additionally, array literals and record literals can be expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits optionally
followed by a decimal point, optionally followed by an exponent. At least one digit must be present. The exponent
is indicated by an E or e, followed by an optional sign (+ or −) and one or more decimal digits. The minimal
recommended range is that of IEEE double precision floating point numbers, for which the largest representable
positive number is 1.7976931348623157E+308 and the smallest positive number is 2.2250738585072014E−308.
For example, the following are floating point number literal constants:
22.5, 3.141592653589793, 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following literals
denote the same number:
13., 13E0, 1.3e1, 0.13E2

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100, 30030044.
[Negative numbers are formed by unary minus followed by an integer literal]. The minimal recommended number
range is from −2147483648 to +2147483647 for a two’s-complement 32-bit integer implementation.

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language character
set (see appendix B.1 for allowed characters) apart from double quote (") and backslash (\), including new-line,
can be directly included in a string without using an escape code. Certain characters in string literals can be
represented using escape codes, i.e., the character is preceded by a backslash (\) within the string. Those
characters are:

\' single quotemay also appear without backslash in string constants.
\" double quote
\? question-markmay also appear without backslash in string constants.
\\ backslash itself
\a alert (bell, code 7, ctrl-G)
\b backspace (code 8, ctrl-H)
\f form feed (code 12, ctrl-L)
\n new-line (code 10, ctrl-J)
\r return (code 13, ctrl-M)
\t horizontal tab (code 9, ctrl-I)

 13

\v vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word: between,
double quote, space, the word: us, and new-line, would appear as follows:
"\tThis is\" between\" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the + operator in
Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals that need to be written
on several lines.

[Note, if the contents of a file is read into a Modelica string, it is assumed that the reading function is responsible
to handle the different line ending symbols on file (e.g. on Linux systems to have a “newline” character at the end
of a line and on Windows systems to have a “newline” and a “carriage return” character. As usual in
programming languages, the content of a file in a Modelica string only contains the “newline” character.

For long string comments, e.g., the “info” annotation to store the documentation of a model, it would be very
inconvenient, if the string concatenation operator would have to be used for every line of documentation. It is
assumed that a Modelica tool supports the non-printable “newline” character when browsing or editing a string
literal. For example, the following statement defines one string that contains (non-printable) newline characters:
 assert(noEvent(length > s_small), "
The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number, defined in the \"Advanced\" menu). The distance is
set to s_small, although it is smaller, to avoid a division by zero
when computing the direction of the line force.",
level = AssertionLevel.warning);

]

2.5 Operator Symbols
The predefined operator symbols are formally defined on page 217 and summarized in the table of operators in
Section 3.2.

14 Modelica Language Specification 3.2 Revision 2

Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the rules
given by the expression part of the Modelica grammar in Appendix B.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The predefined
built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types which are presented in
more detail in Section 4.8. [The abbreviated predefined type information below is given as background
information for the rest of the presentation.]

3.1 Expressions
Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, ^, etc. with normal precedence as defined in the Table in
Section 3.2 and the grammar in Appendix B. The semantics of the operations is defined for both scalar and array
arguments in Section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in Section 12.4.1 and for vectorized calls in Section 12.4.4. The
built-in array functions are given in Section 10.1.1 and other built-in operators in Section 3.7.

3.2 Operator Precedence and Associativity
Operator precedence determines the order of evaluation of operators in an expression. An operator with higher
precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence from highest to lowest, as
derived from the Modelica grammar in Appendix B. All operators are binary except the postfix operators and
those shown as unary together with expr, the conditional operator, the array construction operator {} and
concatenation operator [], and the array range constructor which is either binary or ternary. Operators with the
same precedence occur at the same line of the table:

Table 3-1. Operators.

Operator Group Operator Syntax Examples
postfix array index operator [] arr[index]
postfix access operator . a.b
postfix function call funcName(function-arguments) sin(4.36)
array construct/concat {expressions} [expressions]

[expressions; expressions...]
{2,3} [5,6]
[2,3; 7,8]

exponentiation ^ 2^3

 15

multiplicative and array
elementwise multiplicative

* / .* ./ 2*3 2/3
[1,2;3,4].*[2,3;5,6]

additive and array
elementwise additive

+ - +expr -expr
.+ .-

a+b, a-b, +a, -a
[1,2;3,4].+[2,3;5,6]

relational < <= > >= == <> a<b, a<=b, a>b, ...
unary negation not expr not b1
logical and and b1 and b2
logical or or b1 or b2
array range expr : expr

expr : expr : expr
1:5
start:step:stop

conditional if expr then expr else expr if b then 3 else x
named argument ident = expr x = 2.26

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associative. The array range operator
is non-associative.

[The unary minus and plus in Modelica is slightly different than in Mathematica and in MATLAB2, since the
following expressions are illegal (whereas in Mathematica3 and in MATLAB these are valid expressions):
2*-2 // = -4 in Mathematica/MATLAB; is illegal in Modelica
--2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
++2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
2--2 // = 4 in Mathematica/MATLAB; is illegal in Modelica

Non-associative exponentation and array range operator:
 x^y^z // Not legal, use parenthesis to make it clear
 a:b:c:d:e:f:g // Not legal, and scalar arguments gives no legal interpretation.

]

3.3 Evaluation Order
A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values do not
influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and if-expressions
guarantee that their clauses are only evaluated if the appropriate condition is true, but relational operators
generating state or time events will during continuous integration have the value from the most recent event.

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

 [Example. If one wants to guard an expression against incorrect evaluation, it should be guarded by an if:
 Boolean v[n];
 Boolean b;
 Integer I;
equation
 x=v[I] and (I>=1 and I<=n); // Invalid
 x=if (I>=1 and I<=n) then v[I] else false; // Correct

To guard square against square root of negative number use noEvent:
 der(h)=if h>0 then –c*sqrt(h) else 0; // Incorrect
 der(h)=if noEvent(h>0) then –c*sqrt(h) else 0; // Correct

2 MATLAB is a registered trademark of MathWorks Inc.
3 Mathematica is a registered trademark of Wolfram Research Inc.

16 Modelica Language Specification 3.2 Revision 2

]

3.4 Arithmetic Operators
Modelica supports five binary arithmetic operators that operate on any numerical type:

^ Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

Some of these operators can also be applied to a combination of a scalar type and an array type, see Section 10.6.
The syntax of these operators is defined by the following rules from the Modelica grammar:

arithmetic_expression :
 [add_op] term { add_op term }

add_op :
 "+" | "-"

term :
 factor { mul_op factor }

mul_op :
 "*" | "/"

factor :
 primary ["^" primary]

3.5 Equality, Relational, and Logical Operators
Modelica supports the standard set of relational and logical operators, all of which produce the standard boolean
values true or false.

> greater than
>= greater than or equal
< less than
<= less than or equal to
== equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (Chapter 8, Section 10.6.1) and in
function calls using named parameter passing (Section 12.4.1).

The following logical operators are defined:

not negation, unary operator
and logical and
or logical or

The grammar rules define the syntax of the relational and logical operators.
logical_expression :
 logical_term { or logical_term }

logical_term :
 logical_factor { and logical_factor }

 17

logical_factor :
 [not] relation

relation :
 arithmetic_expression [rel_op arithmetic_expression]

rel_op :
 "<" | "<=" | ">" | ">=" | "==" | "<>"

The following holds for relational operators:

• Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types. The result is
Boolean and is true or false if the relation is fulfilled or not, respectively.

• For operands of type String, str1 op str2 is for each relational operator, op, defined in terms of the C-
function strcmp as strcmp(str1,str2) op 0.

• For operands of type Boolean, false<true.
• For operands of enumeration types, the order is given by the order of declaration of the enumeration literals.
• In relations of the form v1 == v2 or v1 <> v2, v1 or v2 shall, unless used in a function, not be a subtype of

Real. [The reason for this rule is that relations with Real arguments are transformed to state events (see
Events, Section 8.5) and this transformation becomes unnecessarily complicated for the == and <>
relational operators (e.g. two crossing functions instead of one crossing function needed, epsilon strategy
needed even at event instants). Furthermore, testing on equality of Real variables is questionable on
machines where the number length in registers is different to number length in main memory].

• Relations of the form “v1 rel_op v2”, with v1 and v2 variables and rel_op a relational operator are
called elementary relations. If either v1 or v2 or both variables are a subtype of Real, the relation is called a
Real elementary relation.

3.6 Miscellaneous Operators and Variables
Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical operators.
These are described below, including time, which is a built-in variable, not an operator.

3.6.1 String Concatenation

Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica [e.g. "a" + "b"
becomes "ab"].

3.6.2 Array Constructor Operator

The array constructor operator { ... } is described in Section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [...] is described in Section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in Section 10.4.3.

3.6.5 If-Expressions

An expression

18 Modelica Language Specification 3.2 Revision 2

if expression1 then expression2 else expression3

is one example of if-expression. First expression1, which must be boolean expression, is evaluated. If
expression1 is true expression2 is evaluated and is the value of the if-expression, else expression3 is
evaluated and is the value of the if-expression. The two expressions, expression2 and expression3, must be
type compatible expressions (Section 6.6) giving the type of the if-expression. If-expressions with elseif are
defined by replacing elseif by else if. [Note: elseif has been added for symmetry with if-clauses.] For
short-circuit evaluation see Section 3.3.

[Example:
Integer i;
Integer sign_of_i1=if i<0 then -1 elseif i==0 then 0 else 1;
Integer sign_of_i2=if i<0 then -1 else if i==0 then 0 else 1;

]

3.6.6 Member Access Operator

It is possible to access members of a class instance using dot notation, i.e., the . operator.

[Example: R1.R for accessing the resistance component R of resistor R1. Another use of dot notation: local
classes which are members of a class can of course also be accessed using dot notation on the name of the class,
not on instances of the class.]

3.6.7 Built-in Variable time

All declared variables are functions of the independent variable time. The variable time is a built-in variable
available in all models and blocks, which is treated as an input variable. It is implicitly defined as:
input Real time (final quantity = "Time",
 final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Example:
encapsulated model SineSource
 import Modelica.Math.sin;
 connector OutPort=output Real;
 OutPort y=sin(time); // Uses the built-in variable time.
end SineSource;

]

3.7 Built-in Intrinsic Operators with Function Syntax
Certain built-in operators of Modelica have the same syntax as a function call. However, they do not behave as a
mathematical function, because the result depends not only on the input arguments but also on the status of the
simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events in
addition to returning a value. Intrinsic means that they are defined at the Modelica language level, not in the
Modelica library. The following built-in intrinsic operators/functions are available:

• Mathematical functions and conversion functions, see Section 3.7.1 below.
• Derivative and special purpose operators with function syntax, see Section 3.7.2 below.
• Event-related operators with function syntax, see Section 3.7.3 below.
• Array operators/functions, see Section 10.1.1.

 19

With exception of built-in operator String(..), all operators in this section can only be called with positional
arguments.

3.7.1 Numeric Functions and Conversion Functions

The following mathematical operators and functions, also including some conversion functions, are predefined in
Modelica, and are vectorizable according to Section 12.4.6, except for the String function. The functions which
do not trigger events are described in the table below, whereas the event-triggering mathematical functions are
described in Section 3.7.1.1.

abs(v) Is expanded into “noEvent(if v >= 0 then v else –v)”.
Argument v needs to be an Integer or Real expression.

sign(v) Is expanded into “noEvent(if v>0 then 1 else if v<0
then –1 else 0)”. Argument v needs to be an Integer or Real
expression.

sqrt(v) Returns the square root of v if v>=0, otherwise an error occurs.
Argument v needs to be an Integer or Real expression.

Integer(e) Returns the ordinal number of the expression e of enumeration
type that evaluates to the enumeration value E.enumvalue,
where Integer(E.e1)=1, Integer(E.en)= size(E), for an
enumeration type E=enumeration(e1, ..., en). See also
Section 4.8.5.2.

String(b, <options>)
String(i, <options>)
String(r,
 significantDigits=d,
 <options>)
String(r, format=s)
String(e, <options>)

Convert a scalar non-String expression to a String representation.
The first argument may be a Boolean b, an Integer i, a
Real r or an Enumeration e (Section 4.8.5.2). The optional
<options> are:

Integer minimumLength=0: minimum length of the
resulting string. If necessary, the blank character is used to fill up
unused space.
Boolean leftJustified = true: if true, the converted
result is left justified in the string; if false it is right justified in
the string.

For Real expressions the output shall be according to the
Modelica grammar. Integer significantDigits=6: defines
the number of significant digits in the result string. [Examples:
"12.3456", "0.0123456", "12345600", "1.23456E-10"].
The format string corresponding to options is:

• for Reals: (if leftJustified then "-" else
"")+String(minimumLength)+"."+
String(signficantDigits)+"g",

• for Integers: (if leftJustified then "-" else
"")+String(minimumLength)+"d".

Format string: According to ANSI-C the format string specifies
one conversion specifier (excluding the leading %), may not
contain length modifiers, and may not use "*" for width and/or
precision. For all numeric values the format specifiers f, e, E,
g, G are allowed. For integral values it is also allowed to use
the d, i, o, x, X, u, and c-format specifiers (for non-integral
values a tool may round, truncate or use a different format if the
integer conversion characters are used).

20 Modelica Language Specification 3.2 Revision 2

The x,X-formats (hexa-decimal) and c (character) for Integers
does not lead to input that agrees with the Modelica-grammar.

3.7.1.1 Event Triggering Mathematical Functions

The built-in operators in this section trigger state events if used outside of a when-clause.[If this is not desired,
the noEvent function can be applied to them. E.g. noEvent(integer(v))]

div(x,y) Returns the algebraic quotient x/y with any fractional part discarded (also known as

truncation toward zero). [Note: this is defined for / in C99; in C89 the result for
negative numbers is implementation-defined, so the standard function div() must
be used.]. Result and arguments shall have type Real or Integer. If either of the
arguments is Real the result is Real otherwise Integer.

mod(x,y) Returns the integer modulus of x/y, i.e. mod(x,y)=x-floor(x/y)*y. Result and
arguments shall have type Real or Integer. If either of the arguments is Real the
result is Real otherwise Integer. [Note, outside of a when-clause state events are
triggered when the return value changes discontinuously. Examples
mod(3,1.4)=0.2, mod(-3,1.4)=1.2, mod(3,-1.4)=-1.2]

rem(x,y) Returns the integer remainder of x/y, such that div(x,y)*y + rem(x, y) =
x. Result and arguments shall have type Real or Integer. If either of the arguments is
Real the result is Real otherwise Integer. [Note, outside of a when-clause state events
are triggered when the return value changes discontinuously. Examples
rem(3,1.4)=0.2, rem(-3,1.4)=-0.2]

ceil(x) Returns the smallest integer not less than x. Result and argument shall have type
Real. [Note, outside of a when-clause state events are triggered when the return
value changes discontinuously.]

floor(x) Returns the largest integer not greater than x. Result and argument shall have type
Real. [Note, outside of a when-clause state events are triggered when the return
value changes discontinuously.].

integer(x) Returns the largest integer not greater than x. The argument shall have type Real.
The result has type Integer.
[Note, outside of a when-clause state events are triggered when the return value
changes discontinuously.].

3.7.1.2 Built-in Mathematical Functions and External Built-in Functions

The following built-in mathematical functions are available in Modelica and can be called directly without any
package prefix added to the function name. They are also available as external built-in functions in the
Modelica.Math library.

sin(x) sine
cos(x) cosine
tan(x) tangent (x shall not be: ..., -π/2, π/2, 3π/2, ...)
asin(x) inverse sine (-1 ≤ x ≤ 1)
acos(x) inverse cosine (-1 ≤ x ≤ 1)
atan(x) inverse tangent
atan2(y, x) the atan2(y, x) function calculates the principal

 21

value of the arc tangent of y/x, using the signs
of the
two arguments to determine the quadrant of
the result

sinh(x) hyperbolic sine
cosh(x) hyperbolic cosine
tanh(x) hyperbolic tangent
exp(x) exponential, base e
log(x) natural (base e) logarithm (x > 0)
log10(x) base 10 logarithm (x > 0)

3.7.2 Derivative and Special Purpose Operators with Function Syntax

The following derivative operator and special purpose operators with function syntax are predefined:

der(expr) The time derivative of expr. If the expression expr is a scalar it needs to

be a subtype of Real. The expression and all its subexpressions must be
differentiable. If expr is an array, the operator is applied to all elements of
the array. For non-scalar arguments the function is vectorized according to
Section 10.6.12. [For Real parameters and constants the result is a zero
scalar or array of the same size as the variable.]

delay(expr,delayTime,
 delayMax)

delay(expr,delayTime)

Returns: expr(time–delayTime) for time>time.start +
delayTime and expr(time.start) for time <= time.start +
delayTime. The arguments, i.e., expr, delayTime and delayMax, need
to be subtypes of Real. DelayMax needs to be additionally a parameter
expression. The following relation shall hold: 0 <= delayTime <=
delayMax, otherwise an error occurs. If delayMax is not supplied in the
argument list, delayTime need to be a parameter expression. See also
Section 3.7.2.1. For non-scalar arguments the function is vectorized
according to Section 10.6.12.

cardinality(c)

[This is a deprecated operator. It should no longer be used, since it will be
removed in one of the next Modelica releases.]
Returns the number of (inside and outside) occurrences of connector
instance c in a connect-equation as an Integer number. See also Section
3.7.2.2.

homotopy(actual=actual,
 simplified=simplified)

The scalar expressions “actual” and “simplified” are subtypes of Real. A
Modelica translator should map this operator into either of the two forms:

1. Returns “actual” [a trivial implementation].

2. In order to solve algebraic systems of equations, the operator might
during the solution process return a combination of the two arguments,
ending at actual, [e.g.,
 actual*lambda + simplified*(1-lambda),
where lambda is a homotopy parameter going from 0 to 1].
The solution must fulfill the equations for homotopy returning

22 Modelica Language Specification 3.2 Revision 2

“actual”.

See also Section 3.7.2.3. For non-scalar arguments the function is
vectorized according to Section 10.6.1212.4.6.

semiLinear(x,
 positiveSlope,
 negativeSlope)

Returns: if x>=0 then positiveSlope*x else
negativeSlope*x.
The result is of type Real. See Section 3.7.2.4 [especially in the case when
x = 0]. For non-scalar arguments the function is vectorized according to
Section 10.6.12.

inStream(v) The operator inStream(v) is only allowed on stream variables v defined
in stream connectors, and is the value of the stream variable v close to the
connection point assuming that the flow is from the connection point into
the component. This value is computed from the stream connection
equations of the flow variables and of the stream variables. The operator is
vectorizable. For more details see Section 15.2.

actualStream(v) The actualStream(v) operator returns the actual value of the stream
variable v for any flow direction. The operator is vectorizable. For more
details, see Section 15.3.

A few of these operators are described in more detail in the following.

3.7.2.1 delay

[The delay() operator allows a numerical sound implementation by interpolating in the (internal) integrator
polynomials, as well as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr. Without further information, the complete time history of the delayed signals needs to be stored,
because the delay time may change during simulation. To avoid excessive storage requirements and to enhance
efficiency, the maximum allowed delay time has to be given via delayMax.

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time
simulation where fixed step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer size is
dynamic during integration. In principle, a delay operator could break algebraic loops. For simplicity, this is
not supported because the minimum delay time has to be give as additional argument to be fixed at compile time.
Furthermore, the maximum step size of the integrator is limited by this minimum delay time in order to avoid
extrapolation in the delay buffer.]

3.7.2.2 cardinality (deprecated)

[The cardinality operator is deprecated for the following reasons and will be removed in a future release:

• Reflective operator may make early type checking more difficult.
• Almost always abused in strange ways
• Not used for Bond graphs even though it was originally introduced for that purpose.

]

 [The cardinality() operator allows the definition of connection dependent equations in a model, for example:
connector Pin
 Real v;
 flow Real i;
end Pin;

model Resistor
 Pin p, n;
equation

 23

 assert(cardinality(p) > 0 and cardinality(n) > 0,
 "Connectors p and n of Resistor must be connected");
 // Equations of resistor
 ...
end Resistor;

]

3.7.2.3 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear systems of
equations must be solved by means of an iterative solver. The convergence of such solvers critically depends on
the choice of initial guesses for the unknown variables. The process can be made more robust by providing an
alternative, simplified version of the model, such that convergence is possible even without accurate initial guess
values, and then by continuously transforming the simplified model into the actual model. This transformation can
be formulated using expressions of this kind:

 lambda*actual + (1-lambda)*simplified

in the formulation of the system equations, and is usually called a homotopy transformation. If the simplified
expression is chosen carefully, the solution of the problem changes continuously with lambda, so by taking small
enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be called with ordered arguments or preferably with named arguments for improved
readability.

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not several
homotopy iterations over the respective non-linear algebraic equation systems. The reason is that the following
structure can be present:

w = f1(x) // has homotopy operator
0 = f2(der(x), x, z, w)

Here, a non-linear equation system f2 is present. The homotopy operator is, however used on a variable that is an
“input” to the non-linear algebraic equation system, and modifies the characteristics of the non-linear algebraic
equation system. The only useful way is to perform the homotopy iteration over f1 and f2 together.

The suggested approach is “conceptual”, because more efficient implementations are possible, e.g. by
determining the smallest iteration loop, that contains the equations of the first BLT block in which a homotopy
operator is present and all equations up to the last BLT block that describes a non-linear algebraic equation
system.

A trivial implementation of the homotopy operator is obtained by defining the following function in the global
scope:

function homotopy
 input Real actual;
 input Real simplified;
 output Real y;
algorithm
 y := actual;
 annotation(Inline = true);
end homotopy;

Example 1:

In electrical systems it is often difficult to solve non-linear algebraic equations if switches are part of the
algebraic loop. An idealized diode model might be implemented in the following way, by starting with a “flat”
diode characteristic and then move with the homotopy operator to the desired “steep” characteristic:

model IdealDiode
 ...

24 Modelica Language Specification 3.2 Revision 2

 parameter Real Goff = 1e-5;
protected
 Real Goff_flat = max(0.01, Goff);
 Real Goff2;
equation
 off = s < 0;
 Goff2 = homotopy(actual=Goff, simplified=Goff_flat);
 u = s*(if off then 1 else Ron2) + Vknee;
 i = s*(if off then Goff2 else 1) + Goff2*Vknee;
 ...
end IdealDiode;

Example 2:

In electrical systems it is often useful that all voltage sources start with zero voltage and all current sources with
zero current, since steady state initialization with zero sources can be easily obtained. A typical voltage source
would then be defined as:
model ConstantVoltageSource
 extends Modelica.Electrical.Analog.Interfaces.OnePort;
 parameter Modelica.SIunits.Voltage V;
equation
 v = homotopy(actual=V, simplified=0.0);
end ConstantVoltageSource;

Example 3:

In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to the quadratic terms and
due to the dependency on fluid properties. A simplified linear model, tuned on the nominal operating point, can be
used to make the overall model less nonlinear and thus easier to solve without accurate start values. Named
arguments are used here in order to further improve the readability.

model PressureLoss
 import SI = Modelica.SIunits;
 ...
 parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";
 parameter SI.Pressure dp_nominal "Nominal pressure drop";
 SI.Density rho "Upstream density";
 SI.DynamicViscosity lambda "Upstream viscosity";
equation
 ...
 m_flow = homotopy(actual = turbulentFlow_dp(dp, rho, lambda),
 simplified = dp/dp_nominal*m_flow_nominal);
 ...
end PressureLoss;

Example 4:

Note that the homotopy operator shall not be used to combine unrelated expressions, since this can generate
singular systems from combining two well-defined systems.

model DoNotUse
 Real x;
 parameter Real x0 = 0;
equation
 der(x) = 1-x;
initial equation
 0 = homotopy(der(x), x - x0);
end DoNotUse;

The initial equation is expanded into

 25

0 = lambda*der(x) + (1-lambda)*(x-x0)

and you can solve the two equations to give

x = (lambda+(lambda-1)*x0)/(2*lambda - 1)

which has the correct value of x0 at lambda = 0 and of 1 at lambda = 1, but unfortunately has a singularity at
lambda = 0.5.

]

3.7.2.4 semiLinear

 (See definition of semiLinear in Section 3.7.2). In some situations, equations with the semiLinear() function
become underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number of solutions. It is
recommended that the following rules are used to transform the equations during the translation phase in order to
select one meaningful solution in such cases:

Rule 1: The equations
y = semiLinear(x, sa, s1);
y = semiLinear(x, s1, s2);
y = semiLinear(x, s2, s3);
 ...
y = semiLinear(x, sN, sb);
 ...

may be replaced by
s1 = if x >= 0 then sa else sb
s2 = s1;
s3 = s2;
 ...
sN = sN-1;
y = semiLinear(x, sa, sb);

Rule 2: The equations
x = 0;
y = 0;
y = semiLinear(x, sa, sb);

may be replaced by
x = 0
y = 0;
sa = sb;

 [For symbolic transformations, the following property is useful (this follows from the definition):
semiLinear(m_flow, port_h, h);

is identical to :
-semiLinear(-m_flow, h, port_h);

The semiLinear function is designed to handle reversing flow in fluid systems, such as
H_flow =semiLinear(m_flow, port.h, h);

i.e., the enthalpy flow rate H_flow is computed from the mass flow rate m_flow and the upstream specific
enthalpy depending on the flow direction.
]

26 Modelica Language Specification 3.2 Revision 2

3.7.3 Event-Related Operators with Function Syntax

The following event-related operators with function syntax are supported. The operators noEvent, pre, edge,
and change, are vectorizable according to Section 12.4.6

initial() Returns true during the initialization phase and false otherwise [thereby
triggering a time event at the beginning of a simulation].

terminal() Returns true at the end of a successful analysis [thereby ensuring an event
at the end of successful simulation].

noEvent(expr) Real elementary relations within expr are taken literally, i.e., no state or
time event is triggered. See also Section 3.7.3.2 and Section 8.5.

smooth(p, expr)

If p>=0 smooth(p,expr) returns expr and states that expr is p times
continuously differentiable, i.e.: expr is continuous in all real variables
appearing in the expression and all partial derivatives with respect to all
appearing real variables exist and are continuous up to order p.
The argument p should be a scalar integer parameter expression. The only
allowed types for expr in smooth are: real expressions, arrays of allowed
expressions, and records containing only components of allowed
expressions. See also Section 3.7.3.2.

sample(start,interval)

Returns true and triggers time events at time instants start +
i*interval (i=0,1,...). During continuous integration the operator
returns always false. The starting time start and the sample interval
interval need to be parameter expressions and need to be a subtype of
Real or Integer.

pre(y)

Returns the “left limit” y(tpre) of variable y(t) at a time instant t. At an event
instant, y(tpre) is the value of y after the last event iteration at time instant t
(see comment below). The pre() operator can be applied if the following
three conditions are fulfilled simultaneously: (a) variable y is either a
subtype of a simple type or is a record component, (b) y is a discrete-time
expression (c) the operator is not applied in a function class. [Note: This
can be applied to continuous-time variables in when-clauses, see Section
3.8.3 for the definition of discrete-time expression.] The first value of
pre(y) is determined in the initialization phase. See also Section 3.7.3.1.

edge(b)
Is expanded into “(b and not pre(b))” for Boolean variable b. The
same restrictions as for the pre() operator apply (e.g. not to be used in
function classes).

change(v) Is expanded into “(v<>pre(v))”. The same restrictions as for the pre()
operator apply.

reinit(x, expr)

In the body of a when clause, reinitializes x with expr at an event instant.
x is a Real variable (or an array of Real variables) that is implicitly defined
to have StateSelect.always [so must be selected as a state, and it is an
error, if this is not possible]. expr needs to be type-compatible with x. The
reinit operator can only be applied once for the same variable - either as an
individual variable or as part of an array of variables. It can only be applied
in the body of a when clause in an equation section. See also Section 8.3.6 .

A few of these operators are described in more detail in the following.

 27

3.7.3.1 pre

A new event is triggered if at least for one variable v “pre(v) <> v” after the active model equations are
evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence is called
“event iteration”. The integration is restarted, if for all v used in pre-operators the following condition holds:
“pre(v) == v”.

[If v and pre(v) are only used in when-clauses, the translator might mask event iteration for variable v since v
cannot change during event iteration. It is a “quality of implementation” to find the minimal loops for event
iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraic systems of equations where the unknown variables are of type Real,
Integer, Boolean, or an enumeration. These systems of equations can be solved by a global fix point iteration
scheme, similarly to the event iteration, by fixing the Boolean, Integer, and/or enumeration unknowns during one
iteration. Again, it is a quality of implementation to solve these systems more efficiently, e.g., by applying the fix
point iteration scheme to a subset of the model equations.]

3.7.3.2 noEvent and smooth

The noEvent operator implies that real elementary expressions are taken literally instead of generating crossing
functions, Section 8.5. The smooth operator should be used instead of noEvent, in order to avoid events for
efficiency reasons. A tool is free to not generate events for expressions inside smooth. However, smooth does
not guarantee that no events will be generated, and thus it can be necessary to use noEvent inside smooth. [Note
that smooth does not guarantee a smooth output if any of the occurring variables change discontinuously.]

[Example:
 Real x,y,z;
 parameter Real p;
equation
 x = if time<1 then 2 else time-2;
 z = smooth(0, if time<0 then 0 else time);
 y = smooth(1, noEvent(if x<0 then 0 else sqrt(x)*x));
 // noEvent is necessary.

]

3.8 Variability of Expressions
The concept of variability of an expression indicates to what extent the expression can vary over time. See also
Section 4.4.4 regarding the concept of variability. There are four levels of variability of expressions, starting from
the least variable:

• constant variability
• parameter variability
• discrete-time variability
• continuous-time variability

For an assignment v:=expr or binding equation v=expr, v must be declared to be at least as variable as expr.
• The binding equation of a parameter component and of the base type attributes [such as start] needs to be

a parameter or constant expression.
• If v is a discrete-time component then expr needs to be a discrete-time expression.

3.8.1 Constant Expressions

Constant expressions are:
• Real, Integer, Boolean, String, and enumeration literals.
• Variables declared as constant.

28 Modelica Language Specification 3.2 Revision 2

• Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre, a
function or operator with constant subexpressions as argument (and no parameters defined in the function)
is a constant expression.

Components declared as constant shall have an associated declaration equation with a constant expression, if the
constant is used in the model. The value of a constant can be modified after it has been given a value, unless the
constant is declared final or modified with a final modifier. A constant without an associated declaration equation
can be given one by using a modifier.

3.8.2 Parameter Expressions

Parameter expressions are:
• Constant expressions.
• Variables declared as parameter.
• Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre, a

function or operator with parameter subexpressions is a parameter expression.

3.8.3 Discrete-Time Expressions

Discrete-time expressions are:
• Parameter expressions.
• Discrete-time variables, i.e., Integer, Boolean, String variables and enumeration variables, as well

as Real variables assigned in when-clauses
• Function calls where all input arguments of the function are discrete-time expressions.
• Expressions where all the subexpressions are discrete-time expressions.
• Expressions in the body of a when-clause, initial equation, or initial algorithm.
• Unless inside noEvent: Ordered relations (>,<,>=,<=) if at least one operand is a subtype of Real (i.e. Real

elementary relations, see Section 3.5) and the functions ceil, floor, div, mod, rem. These will generate
events if at least one subexpression is not a discrete-time expression. [In other words, relations inside
noEvent(), such as noEvent(x>1), are not discrete-time expressions].

• The functions pre, edge, and change result in discrete-time expressions.
• Expressions in functions behave as though they were discrete-time expressions.

For an equation expr1 = expr2 where neither expression is of base type Real, both expressions must be
discrete-time expressions. For record equations the equation is split into basic types before applying this test. [This
restriction guarantees that the noEvent() operator cannot be applied to Boolean, Integer, String, or
enumeration equations outside of a when-clause, because then one of the two expressions is not discrete-time]

Inside an if-expression, if-clause or for-clause, that is controlled by a non-discrete time switching expression
and not in the body of a when-clause, it is not legal to have assignments to discrete variables, equations between
discrete-time expressions, or real elementary relations/functions that should generate events. [This restriction is
necessary in order to guarantee that there all equations for discrete variable are discrete-time expressions, and to
ensure that crossing functions do not become active between events.]

[Example:
model Constants
 parameter Real p1 = 1;
 constant Real c1 = p1 + 2; // error, no constant expression
 parameter Real p2 = p1 + 2; // fine
end Constants;

model Test
 Constants c1(p1=3); // fine
 Constants c2(p2=7); // fine, declaration equation can be modified

 29

 Boolean b;
 Real x;
equation
 b = noEvent(x > 1) // error, since b is a discrete-time expr. and
 // noEvent(x > 1) is not a discrete-time expr.
end Test;

]

3.8.4 Continuous-Time Expressions

All expressions are continuous-time expressions including constant, parameter and discrete expressions. The term
“non-discrete-time expression” refers to expressions that are not constant, parameter or discrete expressions.

30 Modelica Language Specification 3.2 Revision 2

31

Chapter 4

Classes, Predefined Types, and Declarations

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure for objects,
also known as instances. Classes can contain equations which provide the basis for the executable code that is
used for computation in Modelica. Conventional algorithmic code can also be part of classes. All data objects in
Modelica are instantiated from classes, including the basic data types—Real, Integer, String, Boolean—and
enumeration types, which are built-in classes or class schemata.

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components).

4.1 Access Control – Public and Protected Elements
Members of a Modelica class can have two levels of visibility: public or protected. The default is public if
nothing else is specified

A protected element, P, in classes and components may not be accessed via dot-notation (e.g., A.P, a.P, a[1].P,
a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They may not be modified or
redeclared except for modifiers applied to protected elements in a base-class (not inside any component or class)
and the modifier on the declaration of the protected element.

[Example
package A
 model B
 protected
 parameter Real x;
 end B;
 protected

model C end C;
 public

model D
 C c; // Legal use of protected class C from enclosing scope

 extends A.B(x=2); // Legal modifier for x in derived class
 // also x.start=2 and x(start=2) are legal.
 Real y=x; // Legal use of x in derived class

end D;

model E

 A.B a(x=2); // Illegal modifier, also x.start=2 and x(start=2) are illegal
 A.C c; // Illegal use of protected class C
 model F=A.C; // Illegal use of protected class C

end E;
end A;
]

All elements defined under the heading protected are regarded as protected. All other elements [i.e., defined
under the heading public, without headings or in a separate file] are public [i.e. not protected]. Regarding
inheritance of protected and public elements, see Section 7.1.2.

32 Modelica Language Specification 3.2 Revision 2

4.2 Double Declaration not Allowed
The name of a declared element shall not have the same name as any other element in its partially flattened
enclosing class. A component shall not have the same name as its type specifier. However, the internal flattening
of a class can in some cases be interpreted as having two elements with the same name; these cases are described
in Section 5.5, and Section 7.3.

[Example:

record R
 Real x;
end R;

model M // wrong Modelica model
 R R; // not correct, since component name and type specifier are identical
equation
 R.x = 0;
end M;

]

4.3 Declaration Order and Usage before Declaration
Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:

• Functions with more than one input variable called with positional arguments, Section 12.4.1.
• Functions with more than one output variable, Section 12.4.3.
• Records that are used as arguments to external functions, Section 12.9.1.3
• Enumeration literal order within enumeration types, Section 4.8.5.

]

4.4 Component Declarations
Component declarations are described in this section.

4.4.1 Syntax and Examples of Component Declarations

The formal syntax of a component declaration clause is given by the following syntactic rules:
component_clause:
 type_prefix type_specifier [array_subscripts] component_list

type_prefix :
 [flow | stream]
 [discrete | parameter | constant] [input | output]

type_specifier :
 name

component_list :
 component_declaration { "," component_declaration }

component_declaration :
 declaration [condition_attribute] comment

condition_attribute:
 if expression

 33

declaration :
 IDENT [array_subscripts] [modification]

[The declaration of a component states the type, access, variability, data flow, and other properties of the
component. A component_clause i.e., the whole declaration, contains type prefixes followed by a
type_specifier with optional array_subscripts followed by a component_list.

There is no semantic difference between variables declared in a single declaration or in multiple declarations.
For example, regard the following single declaration (component_clause) of two matrix variables:
Real[2,2] A, B;

That declaration has the same meaning as the following two declarations together:
Real[2,2] A;
Real[2,2] B;

The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previous example:
Real A[2,2];
Real B[2,2];

The following declaration is different, meaning that the variable a is a scalar but B is a matrix as above:
Real a, B[2,2];

]

4.4.2 Component Declaration Static Semantics

If the type_specifier of the component declaration denotes a built-in type (RealType, IntegerType, etc.),
the flattened or instantiated component has the same type.

If the type_specifier of the component does not denote a built-in type, the name of the type is looked up
(Section 5.3). The found type is flattened with a new environment and the partially flattened enclosing class of the
component. It is an error if the type is partial in a simulation model, or if a simulation model itself is partial. The
new environment is the result of merging

• the modification of enclosing class element-modification with the same name as the component
• the modification of the component declaration

in that order.

Array dimensions shall be non-negative parameter expressions, or the colon operator denoting that the array
dimension is left unspecified.

The rules for components in functions are described in Section 12.2.
Conditional declarations of components are described in Section 4.4.5.

4.4.2.1 Declaration Equations

An environment that defines the value of a component of built-in type is said to define a declaration equation
associated with the declared component. For declarations of vectors and matrices, declaration equations are
associated with each element. [This makes it possible to override the declaration equation for a single element in
an enclosing class modification, which would not be possible if the declaration equation is regarded as a single
matrix equation.]

4.4.2.2 Prefix Rules

Variables declared with the flow or the stream type prefix shall be a subtype of Real.
Type prefixes (that is, flow, stream, discrete, parameter, constant, input, output) shall only be

applied for type, record and connector components – see also record specialized class, Section 4.6. An
exception is input for components whose type is of the special class function type (these can only be used for

34 Modelica Language Specification 3.2 Revision 2

function formal parameters and has special semantics, see Section 12.4.2), and the input prefix is not applied to
the elements of the component and is allowed even if the elementshave input or output prefix.

The type prefixes flow, stream, input and output of a structured component are also applied to the
elements of the component. The type prefixes flow, stream, input and output shall only be applied for a
structured component, if no element of the component has a corresponding type prefix of the same category. [For
example, input can only be used, if none of the elements has an input or output type prefix]. The
corresponding rules for the type prefixes discrete, parameter and constant are described in Section 4.4.4.1
for structured components.

The prefixes input and output have a slightly different semantic meaning depending on the context where
they are used:

• In functions, these prefixes define the computational causality of the function body, i.e., given the variables
declared as input, the variables declared as output are computed in the function body, see Section 12.4.

• In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated), these
prefixes define the interaction with the environment where the simulation model or block is used.
Especially, the input prefix defines that values for such a variable have to be provided from the simulation
environment and the output prefix defines that the values of the corresponding variable can be directly
utilized in the simulation environment, see the notion of Globally balanced in Section 4.7.

• In component models and blocks, the input prefix defines that a binding equation has to be provided for
the corresponding variable when the component is utilized in order to guarantee a locally balanced model
(i.e., the number of local equations is identical to the local number of unknowns), see Section 4.7. Example:

block FirstOrder
 input Real u;
 ...
end FirstOrder;

model UseFirstOrder
 FirstOrder firstOrder(u=time); // binding equation for u
 ...
end UseFirstOrder;

The output prefix does not have a particular effect in a model or block component and is ignored.
• In connectors, prefixes input and output define that the corresponding connectors can only be connected

according to block diagram semantics, see Section 9.1 (e.g., a connector with an output variable can only
be connected to a connector where the corresponding variable is declared as input). There is the restriction
that connectors which have at least one variable declared as input must be externally connected, see
Section 4.7 (in order to get a locally balanced model, where the number of local unknowns is identical to
the number of unknown equations). Together with the block diagram semantics rule this means, that such
connectors must be connected exactly once externally.

• In records, prefixes input and output are not allowed, since otherwise a record could not be, e.g., passed
as input argument to a function.

4.4.3 Acyclic Bindings of Constants and Parameters

The binding equations for parameters and constants in the translated model must be acyclic after flattening. Thus
it is not possible to introduce equations for parameters by cyclic dependencies.

[Example:
constant Real p=2*q;
constant Real q=sin(p); // Illegal since p=2*q, q=sin(p) are cyclical

model ABCD
 parameter Real A[n,n];
 parameter Integer n=size(A,1);
end ABCD;

final ABCD a;

 35

// Illegal since cyclic dependencies between size(a.A,1) and a.n

ABCD b(redeclare Real A[2,2]=[1,2;3,4]);
// Legal since size of A is no longer dependent on n.

ABCD c(n=2); // Legal since n is no longer dependent on the size of A.

parameter Real r = 2*sin(r); // Illegal, since r = 2*sin(r) is cyclic

]

4.4.4 Component Variability Prefixes discrete, parameter, constant

The prefixes discrete, parameter, constant of a component declaration are called variability prefixes and
define in which situation the variable values of a component are initialized (see Section 8.5 and Section 8.6) and
when they are changed in transient analysis (= solution of initial value problem of the hybrid DAE):

• A variable vc declared with the parameter or constant prefixes remains constant during transient analysis.
• A discrete-time variable vd has a vanishing time derivative (informally der(vd)=0, but it is not legal to

apply the der() operator to discrete-time variables) and can change its values only at event instants during
transient analysis (see Section 8.5).

• A continuous-time variable vn may have a non-vanishing time derivative (der(vn)<>0 possible) and may
also change its value discontinuously at any time during transient analysis (see Section 8.5). If there are any
discontinuities the variable is not differentiable.

If a Real variable is declared with the prefix discrete it must in a simulation model be assigned in a when-clause,
either by an assignment or an equation. The variable assigned in a when-clause may not be defined in a sub-
component of model or block specialized class. [This is to keep the property of balanced models]

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared with the
prefix discrete. A Real variable not assigned in any when-clause and without any type prefix is a continuous-
time variable.

The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and it is
not possible to declare continuous-time Integer, String, Boolean, or enumeration variables. [A Modelica
translator is able to guarantee this property due to restrictions imposed on discrete expressions, see Section 3.8]

The variability of expressions and restrictions on variability for definition equations is given in Section 3.8.

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants during
simulation. Such types of variables are needed in order that special algorithms, such as the algorithm of
Pantelides for index reduction, can be applied (it must be known that the time derivative of these variables is
identical to zero). Furthermore, memory requirements can be reduced in the simulation environment, if it is
known that a component can only change at event instants.

A parameter variable is constant during simulation. This prefix gives the library designer the possibility to
express that the physical equations in a library are only valid if some of the used components are constant during
simulation. The same also holds for discrete-time and constant variables. Additionally, the parameter prefix
allows a convenient graphical user interface in an experiment environment, to support quick changes of the most
important constants of a compiled model. In combination with an if-clause, a parameter prefix allows to remove
parts of a model before the symbolic processing of a model takes place in order to avoid variable causalities in
the model (similar to #ifdef in C). Class parameters can be sometimes used as an alternative. Example:
model Inertia
 parameter Boolean state = true;
 ...
equation
 J*a = t1 – t2;
 if state then // code which is removed during symbolic
 der(v) = a; // processing, if state=false
 der(r) = v;
 end if;
end Inertia;

36 Modelica Language Specification 3.2 Revision 2

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and usually not changed after they have been given a value. It can be used to represent mathematical
constants, e.g.
final constant Real PI=4*atan(1);

There are no continuous-time Boolean, Integer or String variables. In the rare cases they are needed they
can be faked by using Real variables, e.g.:
 Boolean off1, off1a;
 Real off2;
equation
 off1 = s1 < 0;
 off1a = noEvent(s1 < 0); // error, since off1a is discrete
 off2 = if noEvent(s2 < 0) then 1 else 0; // possible
 u1 = if off1 then s1 else 0; // state events
 u2 = if noEvent(off2 > 0.5) then s2 else 0; // no state events

Since off1 is a discrete-time variable, state events are generated such that off1 is only changed at event
instants. Variable off2 may change its value during continuous integration. Therefore, u1 is guaranteed to be
continuous during continuous integration whereas no such guarantee exists for u2.
]

4.4.4.1 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix and the
variability of the component wins (using the default variability for the component if there is no variability prefix
on the component).

[Example:
record A
 constant Real pi=3.14;
 Real y;
 Integer i;
end A;
parameter A a;
 // a.pi is a constant
 // a.y and a.i are parameters
 A b;
 // b.pi is a constant
 // b.y is a continuous-time variable
 // b.i is a discrete-time variable

]

4.4.5 Conditional Component Declaration

A component declaration can have a condition_attribute: "if" expression.

[Example:
 parameter Integer level=1;
 Motor motor;
 Level1 component1(J=J) if level==1 "Conditional component";
 Level2 component2 if level==2 "Conditional component";
 Level3 component3 if level==3 "Conditional component";
equation
 connect(component1.n, motor.n) "Connection to conditional component 1";
 connect(component2.n, motor.n) "Connection to conditional component 2";
 connect(component3.n, motor.n) "Connection to conditional component 3";
 component1.u=0; // Illegal

]

The expression must be a Boolean scalar expression, and must be a parameter-expression [that can be evaluated
at compile time].

 37

A redeclaration of a component may not include a condition attribute; and the condition attribute is kept from
the original declaration (see Section 6.3).

If the Boolean expression is false the component is not present in the flattened DAE [its modifier is ignored], and
connections to/from the component are removed. A component declared with a condition_attribute can only be
modified and/or used in connections. If the condition is false, the component, its modifiers, and any connect-
equations involving the component, are removed. [If a connect statement defines the connection of a non-
conditional component c1 with a conditional component c2 and c2 is de-activated, then c1 must still be a declared
element.]

4.5 Class Declarations
Essentially everything in Modelica is a class, from the predefined classes Integer and Real, to large packages
such as the Modelica standard library.

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing a
number of declarations followed by a number of equations in an equation section.

class ClassName
 Declaration1
 Declaration2
 ...
equation
 equation1
 equation2
 ...
end ClassName;

]

The following is the formal syntax of class definitions, including the special variants described in later sections.
class_definition :
 [encapsulated]
 [partial]
 (class | model | record | block | [expandable] connector | type |
 package | function)
 class_specifier

class_specifier :
 long_class_specifier | short_class_specifier | der_class_specifier

long_class_specifier :
 IDENT string_comment composition end IDENT
 | extends IDENT [class_modification] string_comment composition
 end IDENT

short_class_specifier :
 IDENT "=" base_prefix name [array_subscripts]
 [class_modification] comment
 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment

der_class_specifier:
 IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

base_prefix :
 type_prefix

enum_list : enumeration_literal { "," enumeration_literal}

enumeration_literal : IDENT comment

composition :

38 Modelica Language Specification 3.2 Revision 2

 element_list
 { public element_list |
 protected element_list |
 equation_section |
 algorithm_section
 }
 [external [language_specification]
 [external_function_call] [annotation] ";"
 [annotation ";"]]

4.5.1 Short Class Definitions

A class definition of the form
class IDENT1 = IDENT2 class_modification;

is identical, except for the lexical scope of modifiers, where the short class definition does not introduce an
additional lexical scope for modifiers, to the longer form
class IDENT1
 extends IDENT2 class_modification;
end IDENT1;

[Example: demonstrating the difference in scopes:
model Resistor
 parameter Real R;
 ...
end Resistor;

model A
 parameter Real R;
 replaceable model Load=Resistor(R=R) constrainedby TwoPin;
 // Correct, sets the R in Resistor to R from model A.

 replaceable model LoadError
 extends Resistor(R=R);
 // Gives the singular equation R=R, since the right-hand side R
 // is searched for in LoadError and found in its base-class Resistor.
 end LoadError constrainedby TwoPin;
 Load a,b,c;
 ConstantSource ...;
 ...
end A;

]

A short class definition of the form
type TN = T[N] (optional modifier);

where N represents arbitrary array dimensions, conceptually yields an array class
’array’ TN
 T[n] _ (optional modifiers);
’end’ TN;

Such an array class has exactly one anonymous component (_); see also section 4.5.2. When a component of such
an array class type is flattened, the resulting flattened component type is an array type with the same dimensions
as _ and with the optional modifier applied.

[Example:
type Force = Real[3](unit={"Nm","Nm","Nm"});
Force f1;
Real f2[3](unit={"Nm","Nm","Nm"});

the types of f1 and f2 are identical.]

 39

If a short class definition inherits from a partial class the new class definition will be partial, regardless of whether
it is declared with the keyword partial or not.

[Example:
replaceable model Load=TwoPin;
Load R; // Error unless Load is redeclared since TwoPin is a partial class.

]

If a short class definition does not specify any specialized class the new class definition will inherit the specialized
class (this rule applies iteratively and also for redeclare).

A base-prefix applied in the short-class definition does not influence its type, but is applied to components
declared of this type or types derived from it; see also section 4.5.2.

[Example:
type InArgument = input Real;
type OutArgument = output Real[3];

function foo
 InArgument u; // Same as: input Real u
 OutArgument y; // Same as: output Real[3] y
algorithm
 y:=fill(u,3);
end foo;

Real x[:]=foo(time);

]

4.5.2 Restriction on combining base-classes and other elements

It is not legal to combine other components or base-classes with an extends from an array class, a class with non-
empty base-prefix, a simple type (Real, Boolean, Integer, String and enumeration types), or any class transitively
extending from an array class, a class with non-empty base-prefix, or a simple type (Real, Boolean, Integer, String
and enumeration types).

[Example:
model Integrator
 input Real u;
 output Real y=x;

 Real x;
 equation
 der(x)=u;
 end Integrator;

model Integrators = Integrator[3]; // Legal

model IllegalModel
 extends Integrators;
 Real x; // Illegal combination of component and array class
end IllegalModel;

connector IllegalConnector
 extends Real;
 Real y; // Illegal combination of component and simple type
end IllegalConnector;

]

40 Modelica Language Specification 3.2 Revision 2

4.5.3 Local Class Definitions – Nested Classes

The local class should be statically flattenable with the partially flattened enclosing class of the local class apart
from local class components that are partial or outer. The environment is the modification of any enclosing class
element modification with the same name as the local class, or an empty environment.

The unflattened local class together with its environment becomes an element of the flattened enclosing class.

[The following example demonstrates parameterization of a local class:
class C1
 class Voltage = Real(nominal=1);
 Voltage v1, v2;
end C1;

class C2
 extends C1(Voltage(nominal=1000));
end C2;

Flattening of class C2 yields a local class Voltage with nominal-modifier 1000. The variables v1 and v2 are
instances of this local class and thus have a nominal value of 1000.
]

4.6 Specialized Classes
Specialized kinds of classes [Earlier known as restricted classes] record, type, model, block,
package, function, connector have the properties of a general class, apart from restrictions. Moreover,
they have additional properties called enhancements. The following table summarizes the definition of the
specialized classes:

record Only public sections are allowed in the definition or in any of its components

(i.e., equation, algorithm, initial equation, initial algorithm and protected
sections are not allowed). May not be used in connections. The elements of a
record may not have prefixes input, output, inner, outer, stream, or
flow. Enhanced with implicitly available record constructor function, see
Section 12.6. Additionally, record components can be used as component
references in expressions and in the left hand side of assignments, subject to
normal type compatibility rules.

type May only be predefined types, enumerations, array of type, or classes extending
from type. Enhanced to extend from predefined types. [No other specialized
class has this property]

model Identical to class, the basic class concept, i.e., no restrictions and no
enhancements.

block Same as model with the restriction that each connector component of a block
must have prefixes input and/or output for all connector variables. [The
purpose is to model input/output blocks of block diagrams. Due to the
restrictions on input and output prefixes, connections between blocks are only
possible according to block diagram semantic]

function See Section 12.2 for restrictions and enhancements of functions.

connector Only public sections are allowed in the definition or in any of its components
(i.e., equation, algorithm, initial equation, initial algorithm and protected
sections are not allowed).
Enhanced to allow connect(..) to components of connector classes. The
elements of a connector may not have prefixes inner, or outer.

package May only contain declarations of classes and constants. Enhanced to allow

 41

import of elements of packages. (See also Chapter 13 on packages.)

operator record Similar to record; but operator overloading is possible, and due to this the typing
rules are different – see Chapter 6. It is not legal to extend from an operator
record, except if the new class is an operator record that is declared as a short
class definition modifying the default attributes for the component elements
directly inside the operator record. An operator record can only extend from an
operator record [as short class definition, and not from another specialized
class].It is not legal to extend from any of its enclosing scopes. (See Chapter
14).

operator Similar to package; but may only contain declarations of functions. May only be
placed in an operator record or in a package inside an operator record and it is
not legal to extend from any of its enclosing scopes. (See also Section Chapter
14).

operator function Shorthand for an operator with exactly one function; same restriction as function
class and in addition may only be placed in an operator record or in a package
inside an operator record and it is not legal to extend from any of its enclosing
scopes.
[“operator function foo … end foo;” is conceptually treated as
“operator foo function foo1 … end foo1;end foo;”]

[Example for ”operator”:
operator record Complex
 Real re;
 Real im;
 ...
 encapsulated operator function ′*′
 import Complex;
 input Complex c1;
 input Complex c2;
 output Complex result
 algorithm
 result = Complex(re=c1.re*c2.re – c1.im*c2.im,
 im=c1.re*c2.im + c1.im*c2.re);
 end ′*′;
end Complex;

record MyComplex
 extends Complex; // not allowed, since extending from enclosing scope
 Real k;
end MyComplex;

operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V")); // allowed

]

4.7 Balanced Models
[In this section restrictions for model and block classes are present, in order that missing or too many equations
can be detected and localized by a Modelica translator before using the respective model or block class. A non-
trivial case is demonstrated in the following example:

partial model BaseCorrelation
 input Real x;
 Real y;
end BaseCorrelation;

model SpecialCorrelation // correct in Modelica 2.2 and 3.0
 extends BaseCorrelation(x=2);

42 Modelica Language Specification 3.2 Revision 2

equation
 y=2/x;
end SpecialCorrelation;

model UseCorrelation // correct according to Modelica 2.2
 // not valid according to Modelica 3.0
 replaceable model Correlation=BaseCorrelation;
 Correlation correlation;
equation
 correlation.y=time;
end UseCorrelation;

model Broken // after redeclaration, there is 1 equation too much in Modelica 2.2
 UseCorrelation example(redeclare Correlation=SpecialCorrelation);
end Broken;

In this case one can argue that both UseCorrelation (adding an acausal equation) and
SpecialCorrelation (adding a default to an input) are correct, but still when combined they lead to a model
with too many equations – and it is not possible to determine which model is incorrect without strict rules, as the
ones defined here.

In Modelica 2.2, model Broken will work with some models. However, by just redeclaring it to model
SpecialCorrelation, an error will occur and it will be very difficult in a larger model to figure out the source
of this error.

In Modelica 3.0, model UseCorrelation is no longer allowed and the translator will give an error. In fact, it
is guaranteed that a redeclaration cannot lead to an unbalanced model any more.

].

The restrictions below apply after flattening – i.e. inherited components are included – possibly modified. The
corresponding restrictions on connectors and connections are in Section 9.3.

Definition 1: Local Number of Unknowns

The local number of unknowns of a model or block class is the sum based on the components:
• For each declared component of specialized class type (Real, Integer, String, Boolean, enumeration and

arrays of those, etc) or record, not declared as outer, it is the “number of unknown variables” inside it
(i.e., excluding parameters and constants and counting the elements after expanding all records and arrays
to a set of scalars of primitive types).

• Each declared component of specialized class type or record declared as outer is ignored [i.e., all
variables inside the component are treated as known].

• For each declared component of specialized class connector component, it is the “number of unknown
variables” inside it (i.e., excluding parameters and constants and counting the elements after expanding all
records and arrays to a set of scalars of primitive types).

• For each declared component of specialized class block or model, it is the “sum of the number of inputs
and flow variables” in the (top level) public connector components of these components (and counting the
elements after expanding all records and arrays to a set of scalars of primitive types).

Definition 2: Local Equation Size

The local equation size of a model or block class is the sum of the following numbers:
• The number of equations defined locally (i.e. not in any model or block component), including binding

equations, and equations generated from connect-equations. This includes the proper count for when-
clauses (see Section 8.3.5), and algorithms (see Section 11.1), and is also used for the flat Hybrid DAE
formulation (see Appendix C).

• The number of input and flow-variables present in each (top-level) public connector component. [This
represents the number of connection equations that will be provided when the class is used.]

• The number of (top level) public input variables that neither are connectors nor have binding equations
[i.e., top-level inputs are treated as known variables. This represents the number of binding equations that
will be provided when the class is used.].

 43

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier on ‘u’ giving the value):

model M
 input Real u;
 input Real u2=2;
end M;

Here ‘u’ and ‘u2’ are top-level inputs and not connectors. The variable u2 has a binding equation, but u
does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied
when using the model.

]

Definition 3: Locally Balanced

A model or block class is “locally balanced” if the “local number of unknowns” is identical to the “local
equation size” for all legal values of constants and parameters [respecting final bindings and min/max-
restrictions. A tool shall verify the “locally balanced” property for the actual values of parameters and
constants in the simulation model. It is a quality of implementation for a tool to verify this property in general,
due to arrays of (locally) undefined sizes, conditional declarations, for loops etc].

Definition 4: Globally Balanced

Similarly as locally balanced, but including all unknowns and equations from all components. The global
number of unknowns is computed by expanding all unknowns (i.e. excluding parameters and constants) into a
set of scalars of primitive types. This should match the global equation size defined as:

• The number of equations defined (included in any model or block component), including equations

generated from connect-equations.
• The number of input and flow-variables present in each (top-level) public connector component.
• The number of (top level) public input variables that neither are connectors nor have binding equations

[i.e., top-level inputs are treated as known variables].

The following restrictions hold:
• In a non-partial model or block, all non-connector inputs of model or block components must have binding

equations. [E.g. if the model contains a component, firstOrder (of specialized class model) and
firstOrder has ‘input Real u’ then there must be a binding equation for firstOrder.u.]

• A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

• In a declaration of a component of a record, connector, or simple type, modifiers can be applied to any
element – and these are also considered for the equation count.
[Example:
 Flange support(phi=phi, tau=torque1+torque2) if use_support;
If use_support=true, there are two additional equations for support.phi and support.tau via the modifier]

• In other cases (declaration of a component of a model or block type, modifiers on extends, and modifier on
short-class-definitions): modifiers for components shall only contain redeclarations of replaceable
elements and binding equations. The binding equations in modifiers for components may in these cases
only be for parameters, constants, inputs, and variables having a default binding equation.

• All non-partial model and block classes must be locally balanced [this means that the local number of
unknowns equals the local equation size].

Based on these restrictions, the following strong guarantee can be given for simulation models and blocks:

Proposition 1:

44 Modelica Language Specification 3.2 Revision 2

All simulation models and blocks are globally balanced.
[Therefore the number of unknowns equal to the number of equations of a simulation model or block, provided
that every used non-partial model or block class is locally balanced.]

[Example 1:
connector Pin
 Real v;
 flow Real i;
end Pin;

model Capacitor
 parameter Real C;
 Pin p, n;
 Real u;
equation
 0 = p.i + n.i;
 u = p.v – n.v;
 C*der(u) = p.i;
end Capacitor;

Model Capacitor is a locally balanced model according to the following analysis:
Locally unknown variables: p.i, p.v, n.i, n.v, u
Local equations: 0 = p.i + n.i;
 u = p.v – n.v;
 C*der(u) = p.i;
 and 2 equations corresponding to the 2 flow-variables p.i and n.i.

These are 5 equations in 5 unknowns (locally balanced model). A more detailed analysis would reveal that this is
structurally non-singular, i.e. that the hybrid DAE will not contain a singularity independent of actual values.

If the equation “u = p.v – n.v” would be missing in the Capacitor model, there would be 4 equations in 5
unknowns and the model would be locally unbalanced and thus simulation models in which this model is used
would be usually structurally singular and thus not solvable.

If the equation “u = p.v – n.v” would be replaced by the equation “u = 0” and the equation C*der(u)
= p.i would be replaced by the equation “C*der(u) = 0”, there would be 5 equations in 5 unknowns (locally
balanced), but the equations would be singular, regardless of how the equations corresponding to the flow-
variables are constructed because the information that “u” is constant is given twice in a slightly different form.

Example 2:
connector Pin
 Real v;
 flow Real i;
end Pin;

partial model TwoPin
 Pin p,n;
end TwoPin;

model Capacitor
 parameter Real C;
 extends TwoPin;
 Real u;
equation
 0 = p.i + n.i;
 u = p.v – n.v;
 C*der(u) = p.i;
end Capacitor;

model Circuit
 extends TwoPin;
 replaceable TwoPin t;
 Capacitor c(C=12);

 45

equation
 connect(p, t.p);
 connect(t.n, c.p);
 connect(c.n, n);
end Circuit;

Since t is partial we cannot check whether this is a globally balanced model, but we can check that Circuit is
locally balanced.

Counting on model Circuit results in the following balance sheet:
Locally unknown variables (8): p.i, p.v, n.i, n.v, and 2 flow variables for t (t.p.i, t.n.i)
 and 2 flow variable for c (c.p.i, c.n.i).
Local equations: p.v = t.p.v;
 0 = p.i-t.p.i;
 c.p.v = load.n.v;
 0 = c.p.i+load.n.i;
 n.v = c.n.v;
 0 = n.i-c.n.i;
 and 2 equation corresponding to the flow variables p.i, n.i

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this feature holds
for any models used for the replaceable component “t”).

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular. However,
this does not provide any guarantees for the global set of equations, and specific combinations of models that are
“locally non-singular” may lead to a globally non-singular model.]

Example 3:
import SI = Modelica.SIunits;

partial model BaseProperties
 "Interface of medium model for all type of media"
 parameter Boolean preferredMediumStates=false;
 constant Integer nXi "Number of independent mass fractions";
 InputAbsolutePressure p;
 InputSpecificEnthalpy h;
 InputMassFraction Xi[nXi];
 SI.Temperature T;
 SI.Density d;
 SI.SpecificInternalEnergy u;

 connector InputAbsolutePressure = input SI.AbsolutePressure;
 connector InputSpecificEnthalpy = input SI.SpecificEnthalpy;
 connector InputMassFraction = input SI.MassFraction;
end BaseProperties;

The use of connector here is a special design pattern. The variables p, h, Xi are marked as input to get correct
equation count. Since they are connectors they should neither be given binding equations in derived classes nor
when using the model. The design pattern is to give textual equations for them (as below); using connect-
equations for these connectors would be possible (and would work) but is not part of the design.

This partial model defines that T,d,u can be computed from the medium model, provided p,h,Xi are given.
Every medium with one or multiple substances and one or multiple phases, including incompressible media, has
the property that T,d,u can be computed from p,h,Xi. A particular medium may have different “independent
variables” from which all other intrinsic thermodynamic variables can be recursively computed. For example, a
simple air model could be defined as:
model SimpleAir "Medium model of simple air. Independent variables: p,T"
 extends BaseProperties(nXi = 0,
 p(stateSelect = if preferredMediumStates then StateSelect.prefer
 else StateSelect.default),
 T(stateSelect = if preferredMediumStates then StateSelect.prefer
 else StateSelect.default));

46 Modelica Language Specification 3.2 Revision 2

 constant SI.SpecificHeatCapacity R = 287;
 constant SI.SpecificHeatCapacity cp = 1005.45;
 constant SI.Temperature T0 = 298.15
equation
 d = p/(R*T);
 h = cp*(T-T0);
 u = h – p/d;
end SimpleAir;

The local number of unknowns in model SimpleAir (after flattening) is:
• 3 (T, d, u: variables defined in BaseProperties and inherited in SimpleAir), plus
• 2+nXi (p, h, Xi: variables inside connectors defined in BaseProperties and inherited in

SimpleAir)
resulting in 5+nXi unknowns. The local equation size is:
• 3 (equations defined in SimpleAir), plus
• 2+nXi (input variables in the connectors inherited from BaseProperties)

Therefore, the model is locally balanced.

The generic medium model BaseProperties is used as a replaceable model in different components, like a
dynamic volume or a fixed boundary condition:

import SI = Modelica.SIunits

connector FluidPort
 replaceable model Medium = BaseProperties;

 SI.AbsolutePressure p;
 flow SI.MassFlowRate m_flow;

 SI.SpecificEnthalpy h;
 flow SI.EnthalpyFlowRate H_flow;

 SI.MassFraction Xi [Medium.nXi] "Independent mixture mass fractions";
 flow SI.MassFlowRate mXi_flow[Medium.nXi] "Independent subst. mass flow rates";
end FluidPort;

model DynamicVolume
 parameter SI.Volume V;
 replaceable model Medium = BaseProperties;
 FluidPort port(redeclare model Medium = Medium);
 Medium medium(preferredMediumStates=true); // No modifier for p,h,Xi
 SI.InternalEnergy U;
 SI.Mass M;
 SI.Mass MXi[medium.nXi];
equation
 U = medium.u*M;
 M = medium.d*V;
 MXi = medium.Xi*M;
 der(U) = port.H_flow; // Energy balance
 der(M) = port.m_flow; // Mass balance
 der(MXi) = port.mXi_flow; // Substance mass balance

// Equations binding to medium (inputs)
 medium.p = port.p;
 medium.h = port.h;
 medium.Xi = port.Xi;
end DynamicVolume;

The local number of unknowns of DynamicVolume is:
• 4+2*nXi (inside the port connector), plus
• 2+nXi (variables U, M and MXi), plus
• 2+nXi (the input variables in the connectors of the medium model)

resulting in 8+4*nXi unknowns; the local equation size is
• 6+3*nXi from the equation section, plus

 47

• 2+nXi flow variables in the port connector.

Therefore, DynamicVolume is a locally balanced model.

Note, when the DynamicVolume is used and the Medium model is redeclared to “SimpleAir”, then a tool will
try to select p,T as states, since these variables have StateSelect.prefer in the SimpleAir model (this
means that the default states U,M are derived quantities). If this state selection is performed, all intrinsic medium
variables are computed from medium.p and medium.T, although p and h are the input arguments to the medium
model. This demonstrates that in Modelica input/output does not define the computational causality. Instead, it
defines that equations have to be provided here for p,h,Xi, in order that the equation count is correct. The
actual computational causality can be different as it is demonstrated with the SimpleAir model.
model FixedBoundary_pTX
 parameter SI.AbsolutePressure p "Predefined boundary pressure";
 parameter SI.Temperature T "Predefined boundary temperature";
 parameter SI.MassFraction Xi[medium.nXi]
 "Predefined boundary mass fraction";
 replaceable model Medium = BaseProperties;
 FluidPort port(redeclare model Medium = Medium);
 Medium medium;
equation
 port.p = p;
 port.H_flow = semiLinear(port.m_flow, port.h , medium.h);
 port.MXi_flow = semiLinear(port.m_flow, port.Xi, medium.Xi);

// Equations binding to medium (note: T is not an input).
 medium.p = p;
 medium.T = T;
 medium.Xi = Xi;
end FixedBoundary_pTX;

The number of local variables in FixedBoundary_pTX is:
• 4+2*nXi (inside the port connector), plus
• 2+nXi (the input variables in the connectors of the medium model)

resulting in 6+3*nXi unknowns, while the local equation size is
• 4+2*nXi from the equation section, plus
• 2+nXi flow variables in the port connector.

Therefore, FixedBoundary_pTX is a locally balanced model. The predefined boundary variables p and Xi are
provided via equations to the input arguments medium.p and medium.Xi, in addition there is an equation for T
in the same way – even though T is not an input. Depending on the flow direction, either the specific enthalpy in
the port (port.h) or h is used to compute the enthalpy flow rate H_flow. “h” is provided as binding equation to
the medium. With the equation “medium.T = T”, the specific enthalpy “h” of the reservoir is indirectly
computed via the medium equations. Again, this demonstrates, that an “input” just defines the number of
equations have to be provided, but that it not necessarily defines the computational causality.
]

4.8 Predefined Types
The attributes of the predefined variable types and enumeration types are described below with Modelica syntax
although they are predefined. Redeclaration of any of these types is an error, and the names are reserved such that
it is illegal to declare an element with these names. It is furthermore not possible to combine extends from the
predefined types with other components. The definitions use RealType, IntegerType, BooleanType,
StringType, EnumType as mnemonics corresponding to machine representations. [Hence the only way to
declare a subtype of e.g. Real is to use the extends mechanism.]

48 Modelica Language Specification 3.2 Revision 2

4.8.1 Real Type

The following is the predefined Real type:
type Real // Note: Defined with Modelica syntax although predefined
 RealType value; // Accessed without dot-notation
 parameter StringType quantity = "";
 parameter StringType unit = "" "Unit used in equations";
 parameter StringType displayUnit = "" "Default display unit";
 parameter RealType min=-Inf, max=+Inf; // Inf denotes a large value
 parameter RealType start = 0; // Initial value
 parameter BooleanType fixed = true, // default for parameter/constant;
 = false; // default for other variables
 parameter RealType nominal; // Nominal value
 parameter StateSelect stateSelect = StateSelect.default;
equation
 assert(value >= min and value <= max, "Variable value out of limit");
 assert(nominal >= min and nominal <= max, "Nominal value out of limit");
end Real;

4.8.2 Integer Type

The following is the predefined Integer type:
type Integer // Note: Defined with Modelica syntax although predefined
 IntegerType value; // Accessed without dot-notation
 parameter StringType quantity = "";
 parameter IntegerType min=-Inf, max=+Inf;
 parameter IntegerType start = 0; // Initial value
 parameter BooleanType fixed = true, // default for parameter/constant;
 = false; // default for other variables
equation
 assert(value >= min and value <= max, "Variable value out of limit");
end Integer;

4.8.3 Boolean Type

The following is the predefined Boolean type:
type Boolean // Note: Defined with Modelica syntax although predefined
 BooleanType value; // Accessed without dot-notation
 parameter StringType quantity = "";
 parameter BooleanType start = false; // Initial value
 parameter BooleanType fixed = true, // default for parameter/constant;
 = false, // default for other variables
end Boolean;

4.8.4 String Type

The following is the predefined String type:
type String // Note: Defined with Modelica syntax although predefined
 StringType value; // Accessed without dot-notation
 parameter StringType quantity = "";
 parameter StringType start = ""; // Initial value
end String;

4.8.5 Enumeration Types

A declaration of the form
 type E = enumeration([enum_list]);

 49

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration literals
shall be distinct within the enumeration type. The names of the enumeration literals are defined inside the scope of
E. Each enumeration literal in the enum_list has type E.

[Example:
type Size = enumeration(small, medium, large, xlarge);

 Size t_shirt_size = Size.medium;

].

An optional comment string can be specified with each enumeration literal:

[Example:
type Size2 = enumeration(small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in Section 4.8.5.1. The Boolean type name or
an enumeration type name can be used to specify the dimension range for a dimension in an array declaration and
to specify the range in a for loop range expression; see Section 11.2.2.2. An element of an enumeration type can
be accessed in an expression [e.g. an array index value].

[Example:
type DigitalCurrentChoices = enumeration(zero, one);
// Similar to Real, Integer

Setting attributes:
type DigitalCurrent = DigitalCurrentChoices(quantity="Current",
 start = DigitalCurrentChoices.one, fixed = true);
DigitalCurrent c(start = DigitalCurrent.one, fixed = true);
DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);

]

Accessing attribute values in expressions:
Real x[DigitalCurrentChoices];

// Example using the type name to represent the range

for e in DigitalCurrentChoices loop
 x[e] := 0.;
end loop;

for e loop // Equivalent example using short form
 x[e] := 0.;
end loop;

// Equivalent example using the colon range constructor

for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
 x[e] := 0.;
end loop;

model Mixing1 "Mixing of multi-substance flows, alternative 1"
 replaceable type E=enumeration(:)"Substances in Fluid";
 input Real c1[E], c2[E], mdot1, mdot2;
 output Real c3[E], mdot3;
equation
 0 = mdot1 + mdot2 + mdot3;
 for e in E loop
 0 = mdot1*c1[e] + mdot2*c2[e]+ mdot3*c3[e];
 end for;
 /* Array operations on enumerations are NOT (yet) possible:
 zeros(n) = mdot1*c1 + mdot2*c2 + mdot3*c3 // error
 */
end Mixing1;

50 Modelica Language Specification 3.2 Revision 2

model Mixing2 "Mixing of multi-substance flows, alternative 2"
 replaceable type E=enumeration(:)"Substances in Fluid";
 input Real c1[E], c2[E], mdot1, mdot2;
 output Real c3[E], mdot3;
protected
 // No efficiency loss, since cc1, cc2, cc3
 // may be removed during translation
 Real cc1[:]=c1, cc2[:]=c2, cc3[:]=c3;
 final parameter Integer n = size(cc1,1);
equation
 0 = mdot1 + mdot2 + mdot3;
 zeros(n) = mdot1*cc1 + mdot2*cc2 + mdot3*cc3
end Mixing2;

]

4.8.5.1 Attributes of Enumeration Types

For each enumeration:
type E=enumeration(e1, e2, ..., en);

a new simple type is conceptually defined as

type E // Note: Defined with Modelica syntax although predefined
 EnumType value; // Accessed without dot-notation
 parameter StringType quantity = "";
 parameter EnumType min=e1, max=en;
 parameter EnumType start = e1; // Initial value
 parameter BooleanType fixed = true, // default for parameter/constant;
 = false; // default for other variables
 constant EnumType e1=...;
 ...
 constant EnumType en=...;
equation
 assert(value >= min and value <= max, "Variable value out of limit");
end E;

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumeration
attribute names (quantity, min, max, start, fixed) as enumeration literals]

4.8.5.2 Type Conversion of Enumeration Values to String or Integer

The type conversion function Integer(<expression of enumeration type>) returns the ordinal number
of the enumeration value E.enumvalue, to which the expression is evaluated, where Integer(E.e1) =1,
Integer(E.en) =size(E), for an enumeration type E=enumeration(e1, …, en).

String(E.enumvalue) gives the string representation of the enumeration value. [Example: String(E.Small)
gives "Small".]

See also Section 3.7.1.

4.8.5.3 Unspecified enumeration

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable enumeration
type that can be freely redeclared to any enumeration type. There can be no enumeration variables declared using
enumeration(:) in a simulation model.

4.8.6 Attributes start, fixed, and nominal

The attributes start and fixed define the initial conditions for a variable. “fixed=false” means an initial
guess, i.e., value may be changed by static analyzer. “fixed=true” means a required value. The resulting
consistent set of values for ALL model variables is used as initial values for the analysis to be performed.

 51

The attribute nominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. [The nominal value can be used by an analysis tool to determine
appropriate tolerances or epsilons, or may be used for scaling. For example, the absolute tolerance for an
integrator could be computed as “absTol=abs(nominal)*relTol/100”. A default value is not provided in
order that in cases such as “a=b”, where “b” has a nominal value but not “a”, the nominal value can be
propagated to the other variable).] [For external functions in C89, RealType by default maps to double and
IntegerType by default maps to int. In the mapping proposed in Annex F of the C99 standard,
RealType/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format. Typically
IntegerType represents a 32-bit 2-complement signed integer.]

4.8.7 Other Predefined Types

4.8.7.1 StateSelect

The predefined StateSelect enumeration type is the type of the stateSelect attribute of the Real type. It is
used to explicitly control state selection.
type StateSelect = enumeration(
 never "Do not use as state at all.",
 avoid "Use as state, if it cannot be avoided (but only if variable appears
 differentiated and no other potential state with attribute
 default, prefer, or always can be selected).",
 default "Use as state if appropriate, but only if variable appears
 differentiated.",
 prefer "Prefer it as state over those having the default value
 (also variables can be selected, which do not appear
 differentiated). ",
 always "Do use it as a state."
);

4.8.7.2 ExternalObject

See Section 12.9.7 for information about the predefined type ExternalObject.

4.8.7.3 Graphical Annotation Types

A number of “predefined” record types and enumeration types for graphical annotations are described in Chapter
17. These types are not predefined in the usual sense since they cannot be referenced in ordinary Modelica code,
only within annotations.

52 Modelica Language Specification 3.2 Revision 2

Chapter 5

Scoping, Name Lookup, and Flattening

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica.

5.1 Flattening Context
Flattening is made in a context which consists of a modification environment (Section 7.2.2) and an ordered set of
enclosing classes.

5.2 Enclosing Classes
The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside another
class definition (the enclosing class) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions, and
not-yet read classes defined externally as described in Section 13.2.2. The order of top-level class definitions in
the unnamed enclosing class is undefined.

During flattening, the enclosing class of an element being flattened is a partially flattened class. [For example,
this means that a declaration can refer to a name inherited through an extends-clause.]

 [Example:
class C1 ... end C1;
class C2 ... end C2;
class C3
 Real x=3;
 C1 y;
 class C4
 Real z;
 end C4;
end C3;

The unnamed enclosing class of class definition C3 contains C1, C2, and C3 in arbitrary order. When flattening
class definition C3, the set of enclosing classes of the declaration of x is the partially flattened class C3 followed
by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of z is C4, C3 and the unnamed
enclosing class in that order.]

5.3 Static Name Lookup
Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly defined
names of record constructor functions are ignored during type name lookup [since a record and the implicitly
created record constructor function, see Section 12.6, have the same name]. Names of record classes are ignored
during function name lookup.

 53

5.3.1 Simple Name Lookup

For a simple name [not composed using dot-notation] lookup is performed as follows:

• First look for implicitly declared iteration variables if inside the body of a for-loop, Section 8.3.2 and
Section 11.2.2, or if inside the body of a reduction expression, Section 10.3.4.

• When an element, equation, or section is flattened, any name is looked up sequentially in each member of
the ordered set of enclosing classes until a match is found or an enclosing class is encapsulated. In the latter
case the lookup stops except for the predefined types, functions and operators defined in this specification.
For these cases the lookup continues in the global scope, where they are defined. [E.g. abs is searched
upwards in the hierarchy as usual. If an encapsulated boundary is reached, abs is searched in the global
scope instead. The operator abs cannot be redefined in the global scope, because an existing class cannot
be redefined at the same level.]

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved in the scope of which the modifier appears; if the use is in a
modifier on a short class definition, see Section 4.5.1.

[Example:
package A
 constant Real x=2;
 model B
 Real x;
 function foo
 output Real y;
 algorithm y := x; // Illegal since reference to non-constant x in B.

]

This lookup in each scope is performed as follows

• Among declared named elements (class_definition and component_declaration) of the class
(including elements inherited from base-classes).

• Among the import names of qualified import statements in the lexical scope. The import name of import
A.B.C; is C and the import name of import D=A.B.C; is D.

• Among the public members of packages imported via unqualified import-statements in the lexical scope. It
is an error if this step produces matches from several unqualified imports.

[Note, that import statements defined in inherited classes are ignored for the lookup, i.e. import statements are not
inherited.]

5.3.2 Composite Name Lookup

For a composite name of the form A.B or A.B.C, etc. lookup is performed as follows:

• The first identifier (A) is looked up as defined above.
• If the first identifier denotes a component, the rest of the name (e.g., B or B.C) is looked up among the

declared named component elements of the component.
• If not found, and if the first identifier denotes a scalar component; and if the composite name is used as a

function call, the lookup is also performed among the declared named class elements of the scalar
component, and must find a non-operator function. All identifiers of the rest of the name (e.g., B and B.C)
must be classes.

• If the identifier denotes a class, that class is temporarily flattened with an empty environment (i.e. no
modifiers, see Section 7.2.2) and using the enclosing classes of the denoted class. The rest of the name (e.g.,
B or B.C) is looked up among the declared named elements of the temporary flattened class. If the class
does not satisfy the requirements for a package, the lookup is restricted to encapsulated elements only. The
class we look inside may not be partial in a simulation model.

54 Modelica Language Specification 3.2 Revision 2

[The temporary class flattening performed for composite names follow the same rules as class flattening of the
base class in an extends-clause, local classes and the type in a component clause, except that the environment is
empty. See also MoistAir2 example in Section 7.3 for further explanations regarding looking inside partial
packages.]

5.3.3 Global Name Lookup

For a name starting with dot, e.g.: .A [or .A.B, .A.B.C etc.] lookup is performed as follows:
• The first identifier [A] is looked up in the global scope. This is possible even if the class is encapsulated and

import statements are not used for this. If there does not exist a class A in global scope this is an error.
• If the name is simple then the class A is the result of lookup.
• If the name is a composite name then the class A is temporarily flattened with an empty environment (i.e.

no modifiers, see Section 7.2.2) and using the enclosing classes of the denoted class. The rest of the name
[e.g., B or B.C] is looked up among the declared named elements of the temporary flattened class. If the
class does not satisfy the requirements for a package, the lookup is restricted to encapsulated elements only.
The class we look inside may not be partial.

[The package-restriction ensure that global name lookup of component references can only find global constants.]

5.3.4 Lookup of Imported Names

See Section 13.2.1.1.

5.4 Instance Hierarchy Name Lookup of Inner Declarations
An element declared with the prefix outer references an element instance with the same name but using the
prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

There shall exist at least one corresponding inner element declaration for an outer element reference in a
simulation model. An outer element component may be of a partial class [but the referenced inner component
must be of a non-partial class]. [inner/outer components may be used to model simple fields, where some
physical quantities, such as gravity vector, environment temperature or environment pressure, are accessible from
all components in a specific model hierarchy. Inner components are accessible throughout the model, if they are
not “shadowed” by a corresponding inner declaration in a more deeply nested level of the model hierarchy.]

 [Simple Example:
class A
 outer Real T0;
 ...
end A;

class B
 inner Real T0;
 A a1, a2; // B.T0, B.a1.T0 and B.a2.T0 is the same variable
 ...
end B;

More complicated example:
class A
 outer Real TI;
 class B
 Real TI;
 class C
 Real TI;
 class D
 outer Real TI; //

 55

 end D;
 D d;
 end C;
 C c;
 end B;
 B b;
end A;

class E
 inner Real TI;
 class F
 inner Real TI;
 class G
 Real TI;
 class H
 A a;
 end H;
 H h;
 end G;
 G g;
 end F;
 F f;
end E;

class I
 inner Real TI;
 E e;
// e.f.g.h.a.TI, e.f.g.h.a.b.c.d.TI, and e.f.TI is the same variable
// But e.f.TI, e.TI and TI are different variables
 A a; // a.TI, a.b.c.d.TI, and TI is the same variable
end I;

]

The inner component shall be a subtype of the corresponding outer component. [If the two types are not
identical, the type of the inner component defines the instance and the outer component references just part of
the inner component].

 [Example:
class A
 inner Real TI;
 class B
 outer Integer TI; // error, since A.TI is no subtype of A.B.TI
 end B;
end A;

]

5.4.1 Example of Field Functions using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:
partial function A
 input Real u;
 output Real y;
end A;

function B // B is a subtype of A
 extends A;
algorithm
 ...
end B;

class D
 outer function fc = A;
 ...
 equation

56 Modelica Language Specification 3.2 Revision 2

 y = fc(u);
 end D;

class C
 inner function fc = B; // define function to be actually used
 D d; // The equation is now treated as y = B(u)
end C;

]

5.5 Simultaneous Inner/Outer Declarations
An element declared with both the prefixes inner and outer conceptually introduces two declarations with the
same name: one that follows the above rules for inner and another that follows the rules for outer. [Local
references for elements with both the prefix inner and outer references the outer element. That in turn
references the corresponding element in an enclosing scope with the prefix inner.]

Outer component declarations may only have modifications [including declaration equations] if they also have
the inner prefix. Outer class declarations should be defined using short-class definitions which only may have
modifications if they also have the inner prefix. For both cases those modifications are only applied to the
inner declaration.

[Example:
class A
 outer parameter Real p=2; // error, since modification
end A;

Intent of the following example: Propagate enabled through the hierarchy, and also be able to disable
subsystems locally.
model ConditionalIntegrator "Simple differential equation if isEnabled"
 outer Boolean isEnabled;
 Real x(start=1);
equation
 der(x)=if isEnabled then –x else 0;
end ConditionalIntegrator;

model SubSystem "subsystem that 'enable' its conditional integrators"
 Boolean enableMe = time<=1;
 // Set inner isEnabled to outer isEnabled and enableMe
 inner outer Boolean isEnabled = isEnabled and enableMe;
 ConditionalIntegrator conditionalIntegrator;
 ConditionalIntegrator conditionalIntegrator2;
end SubSystem;

model System
 SubSystem subSystem;
 inner Boolean isEnabled = time>=0.5;
 // subSystem.conditionalIntegrator.isEnabled will be
 // 'isEnabled and subSystem.enableMe'
end System;

]

5.6 Flattening Process
In order to guarantee that elements can be used before they are declared and that elements do not depend on the
order of their declaration (Section 4.3) in the enclosing class, the flattening proceeds in the following three steps,
described in Section 5.6.1, Section 5.6.2, and Section 5.6.3, respectively.

 57

5.6.1 Partial Flattening

First the names of declared local classes and components are found. Here modifiers are merged to the local
elements and redeclarations take effect (including redeclared elements, see Section 7.3). Then base-classes are
looked up, flattened and inserted into the class. The lookup of the base-classes should be independent of the order
in which they are handled, and a name used for a base-class may not be inherited from any base-class.

[The lookup of the names of extended classes should give the same result before and after flattening the extends-
clauses. One should not find any element used during this flattening by lookup through the extends-clauses. It
should be possible to flatten all extends-clauses in a class before inserting the result of flattening. Local classes
used for extends should be possible to flatten before inserting the result of flattening the extends-clauses.]

5.6.2 Flattening

Partially flatten the class, apply the modifiers (Section 7.2) and flatten all local elements.

5.6.3 Check of Flattening

Check that duplicate elements [due to multiple inheritance] are identical after flattening.

58 Modelica Language Specification 3.2 Revision 2

Chapter 6

Interface or Type Relationships

A class or component, e.g. denoted A, can in some cases be used at a location designed for another class or
component, e.g. denoted B. In Modelica this is the case for replaceable classes (see Section 7.3) and for
inner/outer elements (see Section 5.4). Replaceable classes are the primary mechanism to create very flexible
models. In this chapter, the precise rules are defined when A can be used at a location designed for B. The
restrictions are defined in terms of compatibility rules (Sections 6.3 and 6.4) between ”interfaces” (Section 6.1);
this can also be viewed as sub-typing (Section 6.1).

In this chapter, two kinds of terminology is used for identical concepts to get better understanding [e.g. by both
engineers and computer scientists]. A short summary of the terms is given in the following table. The details are
defined in the rest of this chapter.

term description
type or
interface

The “essential” part of the public declaration sections of a class that is
needed to decide whether A can be used instead of B [E.g. a declaration
“Real x” is part of the type, also called interface, but “import A” is
not].

class type or
inheritance interface

The “essential” part of the public and protected declaration sections of a
class that is needed to decide whether A can be used instead of B. The
class type , also called inheritance interface, is needed when inheritance
takes place, since then the protected declarations have to be taken into
account.

subtype or
compatible interface

A is a subtype of B, or equivalently, the interface of A is compatible to
the interface of B, if the “essential” part of the public declaration
sections of B is also available in A [E.g., if B has a declaration “Real
x”, this declaration must also be present in A. If A has a declaration
“Real y”, this declaration must not be present in B].

restricted subtype or
plug compatible interface

A is a restricted subtype of B, or equivalently, the interface of A is plug
compatible to the interface of B, if A is a subtype of B and if connector
components in A that are not in B, are default connectable. [E.g. it is not
allowed that these connectors have variables with the “input” prefix,
because then they must be connected.] A model or block A cannot be
used instead of B, if the particular situation does not allow to make a
connection to these additional connectors. In such a case the stricter
“plug compatible” is required for a redeclaration.

function subtype or
function compatible
interface

A is a function subtype of B, or equivalently, the interface of A is
function compatible to the interface of B, if A is a subtype of B and if
the additional arguments of function A that are not in function B are
defined in such a way, that A can be called at places where B is called.
[E.g. an additional argument must have a default value.]

 59

6.1 The Concepts of Type, Interface and Subtype
A type can conceptually be viewed as a set of values. When we say that the variable x has the type Real, we mean
that the value of x belongs to the set of values represented by the type Real i.e., roughly the set of floating point
numbers representable by Real, for the moment ignoring the fact that Real is also viewed as a class with certain
attributes. Analogously, the variable b having Boolean type means that the value of b belongs to the set of values
{false, true}. The built-in types Real, Integer, String, Boolean are considered to be distinct types.

The subtype relation between types is analogous to the subset relation between sets. A type A1 being a subtype
of type A means that the set of values corresponding to type A1 is a subset of the set of values corresponding to
type A.

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values is a
subset of the primitive real values since there are some attributes of Real that are not part of Integer (Section
4.8).

The concept of interface as defined in Section 6.2 and used in this document is equivalent to the notion of type
based on sets in the following sense:

An element is characterized by its interface defined by some attributes (Section 6.2). The type of the element is
the set of values having the same interface, i.e. the same attributes.

A subtype A1 in relation to another type A, means that the elements of the set corresponding to A1 is a subset
of the set corresponding to A, characterized by the elements of that subset having additional properties.

[Example:
A record R: record R Boolean b; Real x; end R;
Another record called R2: R2 Boolean b; Real x; Real y; end R2;
An instance r: R r;
An instance r2: R2 r2;
The type R of r can be viewed as the set of all record values having the attributes defined by the interface of

R, e.g. the infinite set {R(b=false,x=1.2), R(b=false, x=3.4), R(b=true, x=1.2), R(b=true, x=1.2,
y=2), R(b=true, x=1.2, a=2),...). The statement that r has the type (or interface) R means that the value
of r belongs to this infinite set.

The type R2 is a subtype of R since its instances fulfill the additional property of having the component Real
y; in all its values.]

Type R: Records with at least
components named x and b

R2: Records with at least
components x, b, y

instance r

instance r2

Figure 6-1. The type R can be defined as the set of record values containing x and b. The subtype R2 is the subset
of values that all contain x, b, and y.

]

60 Modelica Language Specification 3.2 Revision 2

6.2 Interface or Type
Based on a flattened class or component we can construct an interface for that flattened class or component. The
interface or type [the terms interface and type are equivalent and can be used interchangeably] is defined as the
following information about the flattened element itself:

• Whether it is replaceable or not.
• Whether the class itself or the class of the component is transitively non-replaceable (Section 6.2.1), and if

not, the reference to the replaceable class it refers to.
• Whether it is a component or a class.
• Additional information about the element:

o The flow- or stream-prefix.
o Declared variability (constant, parameter, discrete).
o The prefixes input and output.
o The prefixes inner and/or outer.
o Whether the declaration is final, and in that case its semantics contents.
o Array sizes (if any).
o Condition of conditional components (if any).
o Which kind of specialized class.
o For an enumeration type or component of enumeration type the names of the enumeration

literals in order.
o Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or

BooleanType).
• Only for an operator record class: the full name of the operator record base-class (i.e. the one

containing the operations). See Chapter 14.
The following item does not apply for an operator record class, since the type is already uniquely
defined by the full name of the operator record.

• For each named public element of the class or component (including both local and inherited named
elements) a tuple comprised of:

o Name of the element.
o Interface or type of the element. This might have been modified by modifiers and is thus not

necessarily identical to the interface of the original declaration.
The corresponding constraining interface is constructed based on the constraining type (Section 7.3.2) of the

declaration (if replaceable – otherwise same as actual type) and with the constraining interface for the named
elements.

In a class all references to elements of that class should be limited to their constraining interface (i.e. only
public elements and if the declaration is replaceable limited to the constraining interface).

[The public interface does not contain all of the information about the class or component. When using a class
as a base-class we also need protected elements, and for internal type-checking we need e.g. import-elements.
However, the information is sufficient for checking compatibility and for using the class to flatten components.]

6.2.1 Transitively non-Replaceable

[In several cases it is important that no new elements can be added to the interface of a class, especially
considering short class definitions. Such classes are defined as transitively non-replaceable.]

A class reference is transitively non-replaceable iff (i.e. “if and only if”) all parts of the name satisfy the
following:

• If the class definition is long it is transitively non-replaceable if not declared replaceable.

• If the class definition is short (i.e. ‘class A=P.B’) it is transitively non-replaceable if it is non-
replaceable and equal to class reference (“P.B”) that is transitively non-replaceable.

 61

[According to section 7.1.4, for a hierarchical name all parts of the name must be transitively non-replaceable,
i.e. in “extends A.B.C” this implies that A.B.C must be transitively non-replaceable, as well as A and A.B,
with the exception of the “class extends redeclaration mechanism” see section 7.3.1]

6.2.2 Inheritance Interface or Class Type

For inheritance the interface also must include protected elements; this is the only change compared to above.

Based on a flattened class we can construct an inheritance interface or class type for that flattened class. The
inheritance interface or class type is defined as the following information about the flattened element itself:

• Whether it is replaceable or not.
• Whether the class itself or the class of the component is transitively non-replaceable (Section 6.2.1), and if

not the reference to replaceable class it refers to.
• For each named element of the class (including both local and inherited named elements) a tuple comprised

of:
o Name of the element.
o Whether the element is component or a class.
o For elements that are classes: Inheritance interface or class type of the element. This might have

been modified by modifiers and is thus not necessarily identical to the interface of the original
declaration.

o For elements that are components: interface or type of the element. This might have been
modified by modifiers and is thus not necessarily identical to the interface of the original
declaration.

• Additional information about the element:
o The flow- or stream-prefix.
o Declared variability (constant, parameter, discrete).
o The prefixes input and output.
o The prefixes inner and/or outer.
o Whether the declaration is final, and in that case its semantics contents.
o Array sizes (if any).
o Condition of conditional components (if any).
o Which kind of specialized class.
o For an enumeration type or component of enumeration type the names of the enumeration literals

in order.
o Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or

BooleanType).
o Visibility (public or protected).

6.3 Interface Compatibility or Subtyping
An interface of a class or component A is compatible with an interface of a class or component B (or the
constraining interface of B), or equivalently that the type of A is a subtype of the type of B, iff [intuitively all
important elements of B must be present in A]:

• A is a class if and only if B is a class (and thus: A is a component if and only if B is a component).
• If A has an operator record base-class then B must also have one and it must be the same. If A does not

have an operator record base-class then B may not have one. See Chapter 14.
• If B is not replaceable then A may not be replaceable.
• If B is transitively non-replaceable then A must be transitively non-replaceable (Section 6.2.1). For all

elements of the inheritance interface of B there must exist a compatible element with the same name and
visibility in the inheritance interface of A. The interface of A may not contain any other elements. [We

62 Modelica Language Specification 3.2 Revision 2

might even extend this to say that A and B should have the same contents, as in the additional restrictions
below.]

• If B is replaceable then for all elements of the component interface of B there must exist a plug-compatible
element with the same name in the component interface of A.

• If B is neither transitively non-replaceable nor replaceable then A must be linked to the same class, and for
all elements of the component interface of B there must thus exist a plug-compatible element with the same
name in the component interface of A.

• Additional restrictions on the additional information. These elements should either match or have a natural
total order:

o If B is a non-replaceable long class definition A must also be a long class definition.
o The flow-or stream-prefix should be matched for compatibility.
o Variability is ordered constant< parameter< discrete< (no prefix: continuous-time for Real), and

A is only compatible with B if the declared variability in A is less than or equal the variability in
B. For a redeclaration of an element the variability prefix is as default inherited by the
redeclaration (i.e. no need to repeat ‘parameter’ when redeclaring a parameter).

o The input and output prefixes must be matched. This ensures that the rules regarding
inputs/outputs for matching connectors and (non-connector inputs) are preserved, as well as the
restriction on blocks. For a redeclaration of an element the input or output prefix is inherited
from the original declaration.

o The inner and/or outer prefixes should be matched. For a redeclaration of an element the
inner and/or outer prefixes are inherited from the original declaration (since it is not possible
to have inner and/or outer as part of a redeclare).

o If B is final A must also be final and have the same semantic contents.
o The number of array dimensions in A and B must be matched. Furthermore the following must

be valid for each array dimension: either the array size in B is unspecified (“:”) or the content of
the array dimension in A is identical to the one in B.

o Conditional components are only compatible with conditional components. The conditions must
have equivalent contents (similar as array sizes – except there is no “:” for conditional
components). For a redeclaration of an element the conditional part is inherited from the
original.

o A function class is only compatible with a function class, a package class only compatible with a
package class, a connector class only with a connector class, a model or block class only
compatible with a model or block class, and a type or record class only compatible with a type or
record class.

o If B is an enumeration type A must also be an enumeration type and vice versa. If B is an
enumeration type not defined as (:) then A must have the same enumeration literals in the same
order; if B is an enumeration type defined as (:) then there is no restriction on the enumeration
type A.

o If B is a built-in type then A must also be of the same built-in type and vice versa.

Plug-compatibility is a further restriction of compatibility (subtyping) defined in Section 6.4, and further restricted
for functions, see Section 6.5. For a replaceable declaration or modifier the default class must be compatible with
the constraining class.

For a modifier the following must apply:

• The modified element should exist in the element being modified.
• The modifier should be compatible with the element being modified, and in most cases also plug-

compatible, Section 6.4.

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of
class/component), and modifiers legal as above – then the resulting flat class will be legal (no references to
unknown elements and no illegal use of class/component and compatible with original constraining class) and
references refer to similar entities.]

 63

6.4 Plug-Compatibility or Restricted Subtyping
[If a sub-component is redeclared, see Section 7.3, it is impossible to connect to any new connector. A connector
with input prefix must be connected to, and since one cannot connect across hierarchies, one should not be
allowed to introduce such a connector at a level where a connection is not possible. Therefore all public
components present in the interface A that are not present in B must be connected by default.]

Definition 5: Plug-compatibility (= restricted subtyping)

An interface A is plug-compatible with (a restricted subtype of) an interface B (or the constraining interface of
B) iff:
• A is compatible with (subtype of) B.
• All public components present in A but not in B must be default-connectable (as defined below).

Definition 6: Default connectable

A component of an interface is default-connectable iff:
• All of its components are default connectable.
• A connector component must not be an input. [Otherwise a connection to the input will be missing.]
• A connector component must not be of an expandable connector class. [The expandable connector does

potentially have inputs.]
• A parameter, constant, or non-connector input must either have a binding equation or all of its sub-

components must have binding equations.

Based on the above definitions, there are the following restrictions:
• A redeclaration of an inherited top-level component must be compatible with (subtype of) the constraining

interface of the element being redeclared.
• In all other cases redeclarations must be plug-compatible with the constraining interface of the element

being redeclared.

[The reason for the difference is that for an inherited top-level component it is possible to connect to the
additional connectors, either in this class or in a derived class.

Example:
partial model TwoFlanges
 Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;
 Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;
end TwoFlanges;

partial model FrictionElement
 extends TwoFlanges;
...
end FrictionElement;

model Clutch "compatible – but not plug-compatible with FrictionElement"
 Modelica.Blocks.Interfaces.RealInput pressure;
 extends FrictionElement;
...
end Clutch;

model DriveLineBase
 extends TwoFlanges;
 Inertia J1;
 replaceable FrictionElement friction;
equation
 connect(flange_a, J1.flange_a);
 connect(J1.flange_b, friction.flange_a);
 connect(friction.flange_b, flange_b);
end DriveLineBase;

64 Modelica Language Specification 3.2 Revision 2

model DriveLine
 extends DriveLineBase(redeclare Clutch friction);
 Constant const;
equation
 connect(const.y, frition.pressure);
 // Legal connection to new input connector.
end DriveLine;

model UseDriveLine "illegal model"
 DriveLineBase base(redeclare Clutch friction);
 // Cannot connect to friction.pressure
end UseDriveLine;

If a subcomponent is redeclared, it is impossible to connect to any new connector. Thus any new connectors must
work without being connected, i.e., the default connection of flow-variables. That fails for inputs (and expandable
connectors may contain inputs). For parameters and non-connector inputs it would be possible to provide
bindings in a derived class, but that would require hierarchical modifiers and it would be bad modeling practice
that a hierarchical modifier must be used in order to make a model valid. A replaceable class might be used as the
class for a sub-component, therefore plug-compatibility is required not only for replaceable sub-components, but
also for replaceable classes.]

6.5 Function-Compatibility or Function-Subtyping for Functions
[Functions may be called with either named or positional arguments, and thus both the name and order is
significant. If a function is redeclared, see Section 7.3, any new arguments must have defaults (and be at the end)
in order to preserve the meaning of existing calls.]

Definition 7: Function-Compatibility or Function-Subtyping for Functions

A function class A is function-compatible with or a function subtype of function class B iff, [The terms
function-compatible and function subtype of are synonyms and used interchangeably]:
• A is compatible to (subtype of) B.
• All public input components of B have correspondingly named public input components of A in the same

order and preceding any additional public input components of A.
• All public output components of B have correspondingly named public output components of A in the same

order and preceding any additional public output components of A.
• A public input component of A must have a binding assignment if the corresponding named element has a

binding assignment in B.
• A public input component of A not present in B must have a binding assignment.

Based on the above definition the following restriction holds:
• The interface of a redeclared function must be function-compatible with or a function subtype of the

constraining interface of the function being redeclared.

[Example: Demonstrating a redeclaration using a function-compatible function
function GravityInterface
 input Modelica.SIunits.Position position[3];
 output Modelica.SIunits.Acceleration acceleration[3];
end GravityInterface;

function PointMassGravity
 extends GravityInterface;
 input Modelica.SIunits.Mass m;
algorithm
 acceleration:= -Modelica.Constants.G*m*position/(position*position)^1.5;
end PointMassGravity;

model Body
 Modelica.Mechanics.MultiBody.Interface.Frame_a frame_a;

 65

 replaceable function gravity=GravityInterface;
equation
 frame_a.f = gravity(frame_a.r0); // or gravity(position=frame_a.r0);
 frame_a.t = zeros(3);
end Body;

model PlanetSimulation
 function sunGravity = PointMassGravity(m=2e30);
 Body planet1(redeclare function gravity=sunGravity);
 Body planet2(redeclare function gravity=PointMassGravity(m=2e30));
 ...
end PlanetSimulation;

Note: PointMassGravity is not function-compatible with GravityInterface (no default for m), but
sunGravity inside PlanetSimulation is function-compatible with GravityInterface.]

6.6 Type Compatible Expressions
Certain expressions consist of an operator applied to two or more type compatible sub-expressions (A and B),
including binary operators, e.g. A + B, if-expressions, e.g. if x then A else B, and array expressions, e.g.
{A,B}. The resulting type of the expression in case of two type compatible subexpressions A and B is defined as
follows:

• If A is a record-expression B must also be a record-expression with the same named elements. The type
compatible expression is a record comprised of named elements that are compatible with the corresponding
named elements of both A and B.

• If A is an array expression then B must also be an array expression, and ndims(A)=ndims(B). The type
compatible expression an array expression with elements compatible with the elements of both A and B. If
both size(A) and size(B) are known and size(A)=size(B) then this defines the size of the type
compatible expression, otherwise the size of the expression is not known until the expression is about to be
evaluated. In case of an if-expression the size of the type compatible expression is defined based on the
branch selected, and for other cases size(A)=size(B) must hold at this point..

• If A is a scalar expression of a simple type B must also be a scalar expression of a simple type.
• If A is a Real expression then B must be a Real or Integer expression and the type compatible expression is

Real.
• If A is an Integer expression then B must be a Real or Integer expression and the type compatible

expression is Real or Integer (same as B).
• If A is a Boolean expression then B must be a Boolean expression and the type compatible expression is

Boolean.
• If A is a String expression then B must be a String expression and the type compatible expression is String

.
• If A is an enumeration expression then B must be a enumeration expression and the type compatible

expression is enumeration expression, and all enumeration expressions must be defined in terms of an
enumeration type with the same enumeration literals in the same order.

• If A has an operator record base-class then B must also have an operator record base-class, and it
must be the same, and otherwise neither A nor B may have an operator record base-class. This is also
the operator record base-class for the expression e.g. for ‘if (cond) then A else B’.

66 Modelica Language Specification 3.2 Revision 2

Chapter 7

Inheritance, Modification, and Redeclaration

One of the major benefits of object-orientation is the ability to extend the behavior and properties of an existing
class. The original class, known as the base class, is extended to create a more specialized version of that class,
known as the derived class or subclass. In this process, the data and behavior of the original class in the form of
variable declarations, equations, and certain other contents are reused, or inherited, by the subclass. In fact, the
inherited contents is copied from the superclass into the subclass, but before copying certain operations, such as
type expansion, checking, and modification, are performed on the inherited contents when appropriate. This
chapter describes the inheritance concept in Modelica, together with the related concepts modification and
redeclaration.

7.1 Inheritance—Extends Clause
The extends-clause is used to specify inheritance from a base class into an (enclosing) class containing the
extends-clause. The syntax of the extends-clause is as follows:
extends_clause :
 extends name [class_modification] [annotation]

The name of the base class is looked up in the partially flattened enclosing class (Section 5.2) of the extends-
clause. The found base class is flattened with a new environment and the partially flattened enclosing class of the
extends-clause. The new environment is the result of merging

• arguments of all enclosing class environments that match names in the flattened base class
• the optional class_modification of the extends-clause

in that order.

[Example:
class A
 parameter Real a, b;
end A;

class B
 extends A(b=2);
end B;

class C
 extends B(a=1);
end C;

]

The elements of the flattened base class become elements of the flattened enclosing class, and are added at the
place of the extends-clause [e.g., including equation sections and algorithm sections, but excluding import-
clauses].

 67

[From the example above we get the following flattened class:
class Cinstance
 parameter Real a=1;
 parameter Real b=2;
end Cinstance;

The ordering of the merging rules ensures that, given classes A and B defined above,
class C2
 B bcomp(b=3);
end C2;

yields an instance with bcomp.b=3, which overrides b=2.]

The declaration elements of the flattened base class shall either

• Not already exist in the partially flattened enclosing class [i.e., have different names] .
• The new element is a long form of redeclare or uses the ‘class extends A’ syntax, see Section 7.3.
• Be exactly identical to any element of the flattened enclosing class with the same name and the same level

of protection (public or protected) and same contents. In this case, the first element in order (can be either
inherited or local) is kept. It is recommended to give a warning for this case; unless it can be guaranteed that
the identical contents will behave in the same way.

Otherwise the model is incorrect.

Equations of the flattened base class that are syntactically equivalent to equations in the flattened enclosing class
are discarded. This feature is deprecated, and it is recommend to give a warning when discarding them and for the
future give a warning about all forms of equivalent equations due to inheritance. [Note: equations that are
mathematically equivalent but not syntactically equivalent are not discarded, hence yield an overdetermined
system of equations.]

7.1.1 Multiple Inheritance

Multiple inheritance is possible since multiple extends-clauses can be present in a class.

7.1.2 Inheritance of Protected and Public Elements

If an extends-clause is used under the protected heading, all elements of the base class become protected
elements of the current class. If an extends-clause is a public element, all elements of the base class are inherited
with their own protection. The eventual headings protected and public from the base class do not affect the
consequent elements of the current class (i.e., headings protected and public are not inherited).

7.1.3 Restrictions on the Kind of Base Class

Since specialized classes of different kinds have different properties, see Section 4.6, only specialized classes that
are “in some sense compatible” to each other can be derived from each other via inheritance. The following table
shows which kind of specialized class can be used in an extends clause of another kind of specialized class (the
“grey” cells mark the few exceptional cases, where a specialized class can be derived from a specialized class of
another kind):

68 Modelica Language Specification 3.2 Revision 2

If a derived class is inherited from another type of specialized class, then the result is a specialized class of the
derived class type. [For example, if a block inherits from a record, then the result is a block.]

All specialized classes can be derived from class [provided the resulting class fulfills the restriction of the
specialized class. It is recommended to use the most specific specialized class.]

The specialized classes package, operator, function, type, record, operator record, and expandable
connector can only be derived from their own kind [(e.g. a package can only be base class for packages. All
other kinds of classes can use the import statement to use the contents of a package)] and from class.

[Examples:
record RecordA
 ...
end RecordA;

package PackageA
 ...
end PackageA;

package PackageB
 extends PackageA; // fine
end PackageB;

model ModelA
 extends RecordA; // fine
end ModelA;

model ModelB
 extends PackageA; // error, inheritance not allowed
end ModelB;

]

 Base Class
Derived
Class

package operator function operator
function

type record operator
record

expandable
connector

connector block model

package yes
operator yes
function yes
operator
function

 yes yes

type yes
record yes
operator
record

 yes

expandable
connector

 yes

connector yes yes yes yes
block yes yes
model yes yes yes

 69

7.1.4 Restrictions on Base Classes and Constraining Types to be Transitively
Non-Replaceable

The class name used after extends for base-classes and for constraining classes must use a class reference
considered transitively non-replaceable, see definition in Section 6.2.1. [This formulation excludes the long form
of redeclare, i.e. ‘redeclare model extends M…’ where M must be an inherited replaceable class.] For a
replaceable component declaration without constraining clause the class must use a class reference considered
transitively non-replaceable. [This implies that constraining classes are always transitively non-replaceable –
both if explicitly given or implicitly by the declaration.]

7.2 Modifications
There are three kinds of constructs in the Modelica language in which modifications can occur:

• Variable declarations.
• Short class declarations.
• Extends-clauses.

A modifier modifies one or more declarations from a class by changing some aspect(s) of the declarations. The
most common kind of modifier just changes the default value or the start value in a binding equation; the value
and/or start-value should be compatible with the variable according to Section 6.6.

[Example: Modifying the default start value of the altitude variable:
Real altitude(start= 59404);

]

A more dramatic change is to modify the type and/or the prefixes and possibly the dimension sizes of a declared
element. This kind of modification is called a redeclaration (Section 7.3) and requires the special keyword
redeclare to be used in the modifier in order to reduce the risk for accidental modeling errors. In most cases a
declaration that can be redeclared must include the prefix replaceable (Section 7.3). The modifier value (and
class for redeclarations) is found in the context in which the modifier occurs, see also section 5.3.1.

[Example: Scope for modifiers
model B
 parameter Real x;
 package Medium=Modelica.Media.PartialMedium;
end B;

model C
 parameter Real x=2;
 package Medium=Modelica.Media.PartialMedium;
 B b(x=x, redeclare package Medium=Medium);
 // The ‘x’ and ‘Medium’ being modified are declared in the model B.
 // The modifiers ‘=x’ and ‘=Medium’ are found in the model C.
end C;

model D
 parameter Real x=3;
 package Medium=Modelica.Media.PartialMedium;
 C c(b(x=x, redeclare package Medium=Medium));
 // The ‘x’ and ‘Medium’ being modified are declared in the model B.
 // The modifiers ‘=x’ and ‘=Medium’ are found in the model D.
end D;

]

70 Modelica Language Specification 3.2 Revision 2

7.2.1 Syntax of Modifications and Redeclarations

The syntax is defined in the grammar, Section B.2.5.

7.2.2 Modification Environment

The modification environment contains arguments which modify elements of the class (e.g., parameter changes).
The modification environment is built by merging class modifications, where outer modifications override inner
modifications. [Note: this should not be confused with inner outer prefixes described in Section 5.4]

7.2.3 Merging of Modifications

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hierarchical, and a
value for an entire non-simple overrides value modifiers for all components, and it is an error if this overrides a
final prefix for a component. When merging modifiers each modification keeps its own each-prefix.

 [The following larger example demonstrates several aspects:
class C1
 class C11
 parameter Real x;
 end C11;
end C1;
class C2
 class C21
 ...
 end C21;
end C2;
class C3
 extends C1;
 C11 t(x=3); // ok, C11 has been inherited from C1
 C21 u; // ok, even though C21 is inherited below
 extends C2;
end C3;

The modification environment of the declaration of t is (x=3). The modification environment is built by merging
class modifications, as shown by:
class C1
 parameter Real a;
end C1;
class C2
 parameter Real b,c;
end C2;
class C3
 parameter Real x1; // No default value
 parameter Real x2 = 2; // Default value 2
 parameter C1 x3; // No default value for x3.a
 parameter C2 x4(b=4); // x4.b has default value 4
 parameter C1 x5(a=5); // x5.a has default value 5
 extends C1; // No default value for inherited element a
 extends C2(b=6,c=77); // Inherited b has default value 6
end C3;
class C4
 extends C3(x2=22, x3(a=33), x4(c=44), x5=x3, a=55, b=66);
end C4;

Outer modifications override inner modifications, e.g., b=66 overrides the nested class modification of extends
C2(b=6). This is known as merging of modifications: merge((b=66), (b=6)) becomes (b=66).

A flattening of class C4 will give an object with the following variables:

 71

Variable Default value
x1 none
x2 22
x3.a 33
x4.b 4
x4.c 44
x5.a x3.a
a 55
b 66
c 77

]

7.2.4 Single Modification

Two arguments of a modification shall not designate the same primitive attribute of an element. When using
qualified names the different qualified names starting with the same identifier are merged into one modifier.

[Example:
class C1
 Real x[3];
end C1;
class C2 = C1(x=ones(3), x=ones(3)); // Error: x designated twice
class C3
 class C4
 Real x;
 end C4;
 C4 a(x.unit = "V", x.displayUnit="mV", x=5.0);
// Ok, different attributes designated (unit, displayUnit and value)
// identical to:
 C4 b(x(unit = "V", displayUnit="mV") = 5.0));
end C3;

]

7.2.5 Modifiers for Array Elements

The following holds:

• The each keyword on a modifier requires that it is applied in an array declaration/modification, and the
modifier is applied individually to each element of the array. If the modified element is a vector and the
modifier does not contain the each-prefix, the modification is split such that the first element in the vector
is applied to the first element of the vector of elements, the second to the second element, etc. Matrices and
general arrays of elements are treated by viewing those as a vectors of vectors etc.

• If a nested modifier is split, the split is propagated to all elements of the nested modifier, and if they are
modified by the each-keyword the split is inhibited for those elements. If the nested modifier that is split in
this way contains re-declarations that are split it is illegal.

[Example:
model C
 parameter Real a [3];
 parameter Real d;
end C;

model B
 C c[5](each a ={1,2,3}, d={1,2,3,4,5});
end B;

This implies that c[i].a[j]=j, and c[i].d=i.
]

72 Modelica Language Specification 3.2 Revision 2

7.2.6 Final Element Modification Prevention

An element defined as final by the final prefix in an element modification or declaration cannot be modified by
a modification or by a redeclaration. All elements of a final element are also final. [Setting the value of a
parameter in an experiment environment is conceptually treated as a modification. This implies that a final
modification equation of a parameter cannot be changed in a simulation environment].

[Examples:
type Angle = Real(final quantity="Angle", final unit ="rad",
 displayUnit="deg");
Angle a1(unit="deg"); // error, since unit declared as final!
Angle a2(displayUnit="rad"); // fine

model TransferFunction
 parameter Real b[:] = {1} "numerator coefficient vector";
 parameter Real a[:] = {1,1} "denominator coefficient vector";
 ...
end TransferFunction;

model PI "PI controller";
 parameter Real k=1 "gain";
 parameter Real T=1 "time constant";
 TransferFunction tf(final b=k*{T,1}, final a={T,0});
end PI;

model Test
 PI c1(k=2, T=3); // fine
 PI c2(b={1}); // error, b is declared as final
end Test;

]

7.3 Redeclaration
A redeclare construct in a modifier replaces the declaration of a local class or component with another declaration.
A redeclare construct as an element replaces the declaration of a local class or component with another
declaration. Both redeclare constructs work in the same way. The redeclare construct as an element requires that
the element is inherited, and cannot be combined with a modifier of the same element in the extends-clause. For
modifiers the redeclare of classes uses a special short-class-definition construct; that is a subset of normal class
definitions and semantically behave as the corresponding class-definition.

A modifier with the keyword replaceable is automatically seen as being a redeclare.
In redeclarations some parts of the original declaration is automatically inherited by the new declaration. This

is intended to make it easier to write declarations by not having to repeat common parts of the declarations, and
does in particular apply to prefixes that must be identical. The inheritance only applies to the declaration itself and
not to elements of the declaration.

The general rule is that if no prefix within one of the following groups is present in the new declaration the old
prefixes of that kind are preserved.

The groups that are valid for both classes and components:

• public, protected
• inner, outer
• constraining type according to rules in Section 7.3.2.

The groups that are only valid for components:

• flow, stream
• discrete, parameter, constant
• input, output
• array dimensions

 73

Note that if the old declaration was a short class definition with array dimensions the array dimensions are not
automatically preserved, and thus have to be repeated in the few cases they are used.

[Note: The inheritance is from the original declaration. In most cases replaced or original does not matter. It
does matter if a user redeclares a variable to be a parameter and then redeclares it without parameter.]

[Example of modifiers:
class A
 parameter Real x;
end A;

class B
 parameter Real x=3.14, y; // B is a subtype of A
end B;

class C
 replaceable A a(x=1);
end C;

class D
 extends C(redeclare B a(y=2));
end D;

which is equivalent to defining D as
class D
 B a(x=1, y=2);
end D;

model HeatExchanger
 replaceable parameter GeometryRecord geometry;
 replaceable input Real u[2];
end HeatExchanger;

HeatExchanger(
 /*redeclare*/ replaceable /*parameter */ GeoHorizontal geometry,
 redeclare /* input */ Modelica.SIunits.Angle u /*[2]*/);
// The semantics ensure that parts in /*.*/ are automatically added
// from

]

7.3.1 The class extends Redeclaration Mechanism

A class declaration of the type ‘class extends B(…)’ , where class as usual can be replaced by any other
specialized class, replaces the inherited class B with another declaration that extends the inherited class where the
optional class-modification is applied to the inherited class. [Since this implies that all declarations are inherited
with modifications applied there is no need to apply modifiers to the new declaration.]

For ‘class extends B(…)’ the inherited class is subject to the same restrictions as a redeclare of the
inherited element, and the original class B should be replaceable, and the new element is only replaceable if the
new definition is replaceable. In contrast to normal extends it is not subject to the restriction that B should be
transitively non-replaceable (since B should be replaceable).

The syntax rule for class extends construct is in the definition of the class_specifier nonterminal (see
also class declarations in Section 4.5):
class_definition :
 [encapsulated]
 [partial]
 (class | model | record | block | [expandable] connector | type |
 package | function)
 class_specifier

class_specifier : long_class_specifier | ...
long_class_specifier : ...
 | extends IDENT [class_modification] string_comment composition end IDENT

74 Modelica Language Specification 3.2 Revision 2

The nonterminal class_definition is referenced in several places in the grammar, including the following
case which is used in some examples below, including package extends and model extends:
element :
 import_clause |
 extends_clause |
 [redeclare]
 [final]
 [inner] [outer]
 ((class_definition | component_clause) |
 replaceable (class_definition | component_clause)
 [constraining_clause comment])

 [Example to extend from existing packages:
package PowerTrain // library from someone else
 replaceable package GearBoxes
 ...
 end GearBoxes;
end PowerTrain;

package MyPowerTrain
 extends PowerTrain; // use all classes from PowerTrain

 package extends GearBoxes // add classes to sublibrary
 ...
 end GearBoxes;
end MyPowerTrain;

Example for an advanced type of package structuring with constraining types:
partial package PartialMedium ″Generic medium interface″
 constant Integer nX ″number of substances″;

 replaceable partial model BaseProperties
 Real X[nX];
 ...
 end BaseProperties;

 replaceable partial function dynamicViscosity
 input Real p;
 output Real eta;...
 end dynamicViscosity;

end PartialMedium;

package MoistAir ″Special type of medium″
 extends PartialMedium(nX = 2);

 redeclare model extends BaseProperties (T(stateSelect=StateSelect.prefer))
 // replaces BaseProperties by a new implementation and
 // extends from Baseproperties with modification
 // note, nX = 2 (!)
 equation
 X = {0, 1};
 ...
 end BaseProperties;

 redeclare function extends dynamicViscosity
 // replaces dynamicViscosity by a new implementation and
 // extends from dynamicViscosity
 algorithm
 eta = 2*p;
 end dynamicViscosity;
end MoistAir;

Note, since MostAir extends from PartialMedium, constant nX=2 in package MoistAir and the model
BaseProperties and the function dynamicViscosity is present in MoistAir. By the following definitions,

 75

the available BaseProperties model is replaced by another implementation which extends from the
BaseProperties model that has been temporarily constructed during the extends of package MoistAir from
PartialMedium. The redeclared BaseProperties model references constant nX which is 2, since by
construction the redeclared BaseProperties model is in a package with nX = 2.

This definition is compact but is difficult to understand. At a first glance an alternative exists that is more
straightforward and easier to understand:

package MoistAir2 "Alternative definition that does not work"
 extends PartialMedium(nX = 2,
 redeclare model BaseProperties = MoistAir_BaseProperties,
 redeclare function dynamicViscosity = MoistAir_dynamicViscosity);

 model MoistAir_BaseProperties // wrong model since nX has no value
 extends PartialMedium.BaseProperties;
 equation
 X = {1,0};
 end MoistAir_BaseProperties;

 model MoistAir_dynamicViscosity
 extends PartialMedium.dynamicViscosity;
 algorithm
 eta :=p;
 end MoistAir_dynamicViscosity;
end MoistAir2;

Here, the usual approach is used to extend (here from PartialMedium) and in the modifier perform all
redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of
PartialMedium have to be given under a different name, such as MoistAir2.MoistAir_BaseProperties,
since the name BaseProperties already exists due to “extends PartialMedium”. Then it is possible in the
modifier to redeclare PartialMedium.BaseProperties to MoistAir2.MoistAir_BaseProperties. Besides
the drawback that the namespace is polluted by elements that have different names but the same implementation
(e.g. MoistAir2.BaseProperties is identical to MoistAir2.MoistAir_BaseProperties) the whole
construction does not work if arrays are present that depend on constants in PartialMedium, such as X[nX]:
The problem is that MoistAir_BaseProperties extends from PartialMedium.BaseProperties where the
constant nX does not yet have a value. This means that the dimension of array X is undefined and model
MoistAir_BaseProperties is wrong. With this construction, all constant definitions have to be repeated whenever
these constants shall be used, especially in MoistAir_BaseProperties and MoistAir_dynamicViscosity.
For larger models this is not practical and therefore the only practically useful definition is the complicated
construction in the previous example with “redeclare model extends BaseProperties”.

To detect this issue the rule on lookup of composite names (Section 5.3.2) ensure that
‘PartialMedium.dynamicViscosity’ is incorrect in a simulation model.
]

7.3.2 Constraining Type

In a replaceable declaration the optional constraining_clause defines a constraining type. Any modifications
following the constraining type name are applied both for the purpose of defining the actual constraining type and
they are automatically applied in the declaration and in any subsequent redeclaration. The precedence order is that
declaration modifiers override constraining type modifiers. If the constraining_clause is not present in the
original declaration (i.e., the non-redeclared declaration), the type of the declaration is also used as a constraining
type and modifications affect the constraining type and are applied in subsequent redeclarations.

The syntax of a constraining_clause is as follows:
constraining_clause :
 constrainedby name [class_modification]

[Example:

76 Modelica Language Specification 3.2 Revision 2

A modification of the constraining type is automatically applied in subsequent redeclarations:
model ElectricalSource
 replaceable SineSource constrainedby MO(final n=5);
 ...
end ElectricalSource;

model TrapezoidalSource
 extends ElectricalSource(
 redeclare Trapezoidal source); // source.n=5
end TrapezoidalSource;

A modification of the base type without a constraining type is automatically applied in subsequent redeclarations:
model Circuit
 replaceable model NonlinearResistor = Resistor(R=100);
 ...
end Circuit;

model Circuit2
 extends Circuit(
 redeclare replaceable model NonlinearResistor
 = ThermoResistor(T0=300));
 // As a result of the modification on the base type,
 // the default value of R is 100
end Circuit2;

model Circuit3
 extends Circuit2(
 redeclare replaceable model NonlinearResistor
 = Resistor(R=200));
 // The T0 modification is not applied because it did not
 // appear in the original declaration
end Circuit3;

Circuit2 is intended to illustrate that a user can still select any resistor model, including the original one - as is
done in Circuit3, since the constraining type is kept from the original declaration if not specified in the redeclare.
Thus it is easy to select an advanced resistor model, without limiting the possible future changes.

A redeclaration can redefine the constraining type:
model Circuit4
 extends Circuit2(
 redeclare replaceable model NonlinearResistor
 = ThermoResistor constrainedby ThermoResistor);
end Circuit4;

model Circuit5
 extends Circuit4(
 redeclare replaceable model NonlinearResistor = Resistor); // illegal
end Circuit5;

]

The class or type of component shall be a subtype of the constraining type. In a redeclaration of a replaceable
element, the class or type of a component must be a subtype of the constraining type. The constraining type of a
replaceable redeclaration must be a subtype of the constraining type of the declaration it redeclares. In an element
modification of a replaceable element, the modifications are applied both to the actual type and to the constraining
type.

In an element redeclaration of a replaceable element the modifiers of the replaced constraining type are merged
to both the new declaration and to the new constraining type, using the normal rules where outer modifiers
override inner modifiers.

When a class is flattened as a constraining type, the flattening of its replaceable elements will use the
constraining type and not the actual default types.

 77

The number of dimension in the constraining type should correspond to the number of dimensions in the type-
part. Similarly the type used in a redeclaration must have the same number of dimensions as the type of redeclared
element.

[Examples:
 replaceable T1 x[n] constrainedby T2;
 replaceable type T=T1[n] constrainedby T2;
 replaceable T1[n] x constrainedby T2;

In these examples the number of dimensions must be the same in T1 and T2, as well as in a redeclaration.
Normally T1 and T2 are scalar types, but both could also be defined as array types – with the same number of
dimensions. Thus if T2 is a scalar type (e.g. type T2= Real) then T1 must also be a scalar type; and if T2 is
defined as vector type (e.g. type T2=Real[3]) then T1 must also be vector type.]

7.3.3 Restrictions on Redeclarations

The following additional constraints apply to redeclarations (after prefixes are inherited, Section 7.3):
Only classes and components declared as replaceable can be redeclared with a new type, which must have an

interface compatible with the constraining interface of the original declaration, and to allow further redeclarations
one must use “redeclare replaceable”

• an element declared as constant cannot be redeclared
• an element declared as final may not be modified, and thus not redeclared
• Modelica does not allow a protected element to be redeclared as public, or a public element to be redeclared

as protected.
• Array dimensions may be redeclared.

7.3.4 Annotation Choices for Suggested Redeclarations and Modifications

A declaration can have an annotation “choices” containing modifiers on choice, where each of them indicates
a suitable redeclaration or modifications of the element.

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations of the
choices. The annotation is not restricted to replaceable elements but can also be applied to non-replaceable
elements, enumeration types, and simple variables. For a Boolean variable, a choices annotation may contain the
definition checkbox = true, meaning to display a checkbox to input the values false or true in the graphical
user interface.

Choices menus of replaceable elements can be automatically constructed showing the names of all classes that
are either directly or indirectly derived by inheritance from the constraining class of the declaration. This can be
recommended by having annotation choicesAllMatching = true; and disabled by having annotation
choicesAllMatching = false.

[Example:
replaceable model MyResistor=Resistor
 annotation(choices(
 choice(redeclare model MyResistor=lib2.Resistor(a={2}) "…"),
 choice(redeclare model MyResistor=lib2.Resistor2 "…")));

replaceable Resistor Load(R=2) constrainedby TwoPin
 annotation(choices(
 choice(redeclare lib2.Resistor Load(a={2}) "…"),
 choice(redeclare Capacitor Load(L=3) "…")));

replaceable FrictionFunction a(func=exp) constrainedby Friction
 annotation(choices(
 choice(redeclare ConstantFriction a(c=1) "…"),

78 Modelica Language Specification 3.2 Revision 2

 choice(redeclare TableFriction a(table="…") "…"),
 choice(redeclare FunctionFriction a(func=exp) "…"))));

replaceable package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater
 constrainedby Modelica.Media.Interfaces.PartialMedium
 annotation (choicesAllMatching=true);

It can also be applied to nonreplaceable declarations, e.g. to describe enumerations.
type KindOfController=Integer(min=1,max=3)
 annotation(choices(
 choice=1 "P",
 choice=2 "PI",
 choice=3 "PID"));

model A
 KindOfController x;
end A;
A a(x=3 "PID");

It can also be applied to Boolean variables to define a check box.
parameter Boolean useHeatPort=false annotation(choices(checkBox=true));

]

79

Chapter 8

Equations

8.1 Equation Categories
Equations in Modelica can be classified into different categories depending on the syntactic context in which they
occur:

• Normal equality equations occurring in equation sections, including connect-equations and other equation
types of special syntactic form (Section 8.3)

• Declaration equations, which are part of variable, parameter, or constant declarations (Section 4.4.2.1).
• Modification equations, which are commonly used to modify attributes of classes (Section 7.2)
• Binding equations, include both declaration equations and modification equations (for the value itself).
• Initial equations, which are used to express equations for solving initialization problems (Section 8.6)

8.2 Flattening and Lookup in Equations
A flattened equation is identical to the corresponding nonflattened equation.

Names in an equation shall be found by looking up in the partially flattened enclosing class of the equation.

8.3 Equations in Equation Sections
The following kinds of equations may occur in equation sections. The syntax is defined as follows:
equation :
 (simple_expression "=" expression

 | if_equation
 | for_equation
 | connect_clause
 | when_equation
 | name function_call_args)

 comment

No statements are allowed in equation sections, including the assignment statement using the := operator.

8.3.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations known from mathematics that express an equality
relation between two expressions. There are two syntactic forms of such equations in Modelica. The first form
below is equality equations between two expressions, whereas the second form is used when calling a function
with several results. The syntax for simple equality equations is as follows:
simple_expression "=" expression

80 Modelica Language Specification 3.2 Revision 2

The types of the left-hand-side and the right-hand-side of an equation need to be compatible in the same way as
two arguments of binary operators (Section 6.6).

Three examples:

• simple_expr1 = expr2;
• (if pred then alt1 else alt2) = expr2;
• (out1, out2, out3) = function_name(inexpr1, inexpr2);

[Note: According to the grammar the if-then-else expression in the second example needs to be enclosed in
parentheses to avoid parsing ambiguities. Also compare with Section 11.2.1.1 about calling functions with several
results in assignment statements.]

8.3.2 For-Equations – Repetitive Equation Structures

The syntax of a for-equation is as follows:
for for_indices loop
 { equation ";" }
end for ";"

For-equations may optionally use several iterators (for_indices), see Section 11.2.2.3 for more information:

for_indices:
 for_index {"," for_index}

for_index:
 IDENT [in expression]

The following is one example of a prefix of a for-equation:
 for IDENT in expression loop

The expression of a for-equation shall be a vector expression. It is evaluated once for each for-equation, and is
evaluated in the scope immediately enclosing the for-equation. The expression of a for-equation shall be a
parameter expression. The loop-variable (IDENT) is in scope inside the loop-construct and shall not be assigned
to. The loop-variable has the same type as the type of the elements of the vector expression.

[Example:
for i in 1:10 loop // i takes the values 1,2,3,...,10
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5
for i in {1,3,6,7} loop // i takes the values 1, 3, 6, 7
for i in TwoEnums loop // i takes the values TwoEnums.one, TwoEnums.two
 // for TwoEnums = enumeration(one,two)

The loop-variable may hide other variables as in the following example. Using another name for the loop-
variable is, however, strongly recommended.
 constant Integer j=4;
 Real x[j];
equation
 for j in 1:j loop // The loop-variable j takes the values 1,2,3,4
 x[j]=j; // Uses the loop-variable j
 end for;

]

8.3.2.1 Implicit Iteration Ranges of For-Equations

The iteration range of a loop variable may sometimes be inferred from its use as an array index. See Section
11.2.2.1 for more information.

[Example:
Real x[n],y[n];

 81

for i loop // Same as: for i in 1:size(a,1) loop
 x[i] = 2*y[i];
end loop;

]

8.3.3 Connect-Equations

A connect-equation has the following syntax:
connect "(" component_reference "," component_reference ")" ";"

These can be placed inside for-equations and if-equations; provided the indices of the for-loop and conditions of
the if-clause are parameter expressions that do not depend on cardinality, rooted, Connections.rooted, or
Connections.isRoot. The for-equations/if-equations are expanded. Connect-equations are described in detail in
Section 9.1.

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot; which after
expansion are handled according to section 9.4.

8.3.4 If-Equations

If-equations have the following syntax:
 if expression then
 { equation ";" }
 { elseif expression then
 { equation ";" }
 }
 [else
 { equation ";" }
]
 end if ";"

The expression of an if- or elseif-clause must be a scalar Boolean expression. One if-clause, and zero or more
elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies of these if-,
elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses sequentially until a
condition that evaluates to true is found. If none of the conditions evaluate to true the body of the else-clause is
selected (if an else-clause exists, otherwise no body is selected). In an equation section, the equations in the body
are seen as equations that must be satisfied. The bodies that are not selected have no effect on that model
evaluation.

If-equations in equation sections which do not have exclusively parameter expressions as switching conditions
shall have the same number of equations in each branch (a missing else is counted as zero equations and the
number of equations is defined after expanding the equations to scalar equations). [If this condition is violated, the
single assignment rule would not hold, because the number of equations may change during simulation although
the number of unknowns remains the same].

8.3.5 When-Equations

When-equations have the following syntax:
 when expression then
 { equation ";" }
 { elsewhen expression then
 { equation ";" } }
 end when ";"

The expression of a when-equation shall be a discrete-time Boolean scalar or vector expression. The statements
within a when-equation are activated when the scalar expression or any of the elements of the vector expression
becomes true.

82 Modelica Language Specification 3.2 Revision 2

[Example:

The order between the equations in a when-equation does not matter, e.g.

equation
 when x > 2 then
 y3 = 2*x +y1+y2; // Order of y1 and y3 equations does not matter
 y1 = sin(x);
 end when;
 y2 = sin(y1);

]

8.3.5.1 Defining When-Equations by If-Expressions in Equality Equations

A when-equation:
equation
 when x>2 then
 v1 = expr1 ;
 v2 = expr2 ;
 end when;

is conceptually equivalent to the following equations containing special if-expressions

// Not correct Modelica
 Boolean b(start=x.start>2);
 equation
 b = x>2;
 v1 = if edge(b) then expr1 else pre(v1);
 v2 = if edge(b) then expr2 else pre(v2);

[The equivalence is conceptual since pre() of a non discrete-time Real variable or expression can only be used
within a when-clause. Example:
 /* discrete*/ Real x;
 input Real u;
 output Real y;
equation
 when sample() then
 x = a*pre(x)+b*pre(u);
 end when;
 y = x;

In this example x is a discrete-time variable (whether it is declared with the discrete prefix or not), but u and y
cannot be discrete-time variables (since they are not assigned in when-clauses). However, pre(u) is legal within
the when-clause, since the body of the when-clause is only evaluated at events, and thus all expressions are
discrete-time expressions.]

The start-values of the introduced Boolean variables are defined by the taking the start-value of the when-
condition, as above where b is a parameter variable. The start-values of the special functions initial,
terminal, and sample is false.

8.3.5.2 Restrictions on Equations within When-Equations

• When-equations cannot be nested.

 [Example:

The following when-equation is invalid:
when x > 2 then

 when y1 > 3 then
 y2 = sin(x);
 end when;
end when;

]

 83

The equations within the when-equation must have one of the following forms:

• v = expr;
• (out1, out2, out3, ...) = function_call_name(in1, in2, ...);
• operators assert(), terminate(), reinit()
• For- and if-equations if the equations within the for- and if-equations satisfy these requirements.
• The different branches of when/elsewhen must have the same set of component references on the left-hand

side.
• The branches of an if-then-else clause inside when-equations must have the same set of component

references on the left-hand side, unless the if-then-else have exclusively parameter expressions as switching
conditions.

Any left hand side reference, (v, out1, …), in a when-clause must be a component reference, and any indices
must be parameter expressions.

[The needed restrictions on equations within a when-equation becomes apparent with the following example:
 Real x, y;
equation
 x + y = 5;
 when condition then
 2*x + y = 7; // error: not valid Modelica
 end when;

When the equations of the when-equation are not activated it is not clear which variable to hold constant, either x
or y. A corrected version of this example is:
 Real x,y;
equation
 x + y = 5;
 when condition then
 y = 7 – 2*x; // fine
 end when;

Here, variable y is held constant when the when-equation is deactivated and x is computed from the first equation
using the value of y from the previous event instant.
]

8.3.5.3 Application of the Single-assignment Rule to When-Equations

The Modelica single-assignment rule (Section 8.4) has implications for when-equations:

• Two when-equations may not define the same variable.

[Without this rule this may actually happen for the erroneous model DoubleWhenConflict below, since there
are two equations (close = true; close = false;) defining the same variable close. A conflict between
the equations will occur if both conditions would become true at the same time instant.
model DoubleWhenConflict
 Boolean close; // Erroneous model: close defined by two equations!
equation
 ...
 when condition1 then
 close = true;
 end when;
 when condition2 then
 close = false;
 end when;
 ...
end DoubleWhenConflict

One way to resolve the conflict would be to give one of the two when-equations higher priority. This is possible by
rewriting the when-equation using elsewhen, as in the WhenPriority model below or using the statement
version of the when-construct, see Section 11.2.7.]

84 Modelica Language Specification 3.2 Revision 2

• When-equations involving elsewhen-parts can be used to resolve assignment conflicts since the first of the
when/elsewhen parts are given higher priority than later ones:

[Below it is well defined what happens if both conditions become true at the same time instant since
condition1 with associated conditional equations has a higher priority than condition2.
model WhenPriority
 Boolean close; // Correct model: close defined by two equations!
algorithm
 ...
 when condition1 then
 close = true;
 elsewhen condition2 then
 close = false;
 end when;
 ...
end WhenPriority;

]

8.3.6 reinit

The reinit operator can only be used in the body of a when-equation. It has the following syntax:
reinit(x, expr);

The operator reinitializes x with expr at an event instant. x is a Real variable (or an array of Real variables) that
must be selected as a state (resp., states), i.e. reinit on x implies stateSelect=StateSelect.always on x. expr needs
to be type-compatible with x. The reinit operator can for the same variable (resp. array of variables) only be
applied (either as an individual variable or as part of an array of variables) in one equation (having reinit of the
same variable in when and else-when of the same variable is allowed).

The reinit operator does not break the single assignment rule, because reinit(x,expr) in equations evaluates expr to
a value (value), then at the end of the current event iteration step it assigns this value to x (this copying from
values to reinitialized state(s) is done after all other evaluations of the model and before copying x to pre(x)).

 [If a higher index system is present, i.e., constraints between state variables, some state variables need to be
redefined to non-state variables. During simulation, non-state variables should be chosen in such a way that
variables with an applied reinit operator are selected as states at least when the corresponding when-clauses
become active. If this is not possible, an error occurs, since otherwise the reinit operator would be applied on a
non-state variable.

Example for the usage of the reinit operator:

Bouncing ball:
der(h) = v;
der(v) = if flying then -g else 0;
flying = not(h<=0 and v<=0);

when h < 0 then
 reinit(v, -e*pre(v));
end when;

]

8.3.7 assert

An equation or statement of one of the following forms:
 assert(condition, message); // Uses level=AssertionLevel.error
 assert(condition, message, assertionLevel);
 assert(condition, message, level = assertionLevel);

 85

is an assertion, where condition is a Boolean expression, message is a string expression, and level is a built-
in enumeration with a default value. It can be used in equation sections or algorithm sections. [This means that
assert can be called as if it were a function with three formal parameters, the third formal parameter has the
name 'level' and the default value AssertionLevel.error.]

If the condition of an assertion is true, message is not evaluated and the procedure call is ignored. If the
condition evaluates to false different actions are taken depending on the level input:

● level = AssertionLevel.error: The current evaluation is aborted. The simulation may continue
with another evaluation [e.g., with a shorter step-size, or by changing the values of iteration variables]. If
the simulation is aborted, message indicates the cause of the error.
 Failed assertions takes precedence over successful termination, such that if the model first triggers the
end of successful analysis by reaching the stop-time or explicitly with terminate(), but the evaluation
with terminal()=true triggers an assert, the analysis failed.

• level = AssertionLevel.warning: The current evaluation is not aborted. message indicates the
cause of the warning [It is recommended to report the warning only once when the condition becomes false,
and it is reported that the condition is no longer violated when the condition returns to true. The assert(..)
statement shall have no influence on the behavior of the model. For example, by evaluating the condition
and reporting the message only after accepted integrator steps. condition needs to be implicitly treated
with noEvent(..) since otherwise events might be triggered that can lead to slightly changed simulation
results].

[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity; for instance,
a function to compute the saturated liquid temperature cannot be called with a pressure lower than the triple
point value.

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance, a fluid
property model based on a polynomial interpolation curve might give accurate results between temperatures of
250 K and 400 K, but still give reasonable results in the range 200 K and 500 K. When the temperature gets out of
the smaller interval, but still stays in the largest one, the user should be warned, but the simulation should
continue without any further action. The corresponding code would be
assert(T > 250 and T < 400, "Medium model outside full accuracy range",
 AssertionLevel.warning);

assert(T > 200 and T < 500, "Medium model outside feasible region");

]

8.3.8 terminate

The terminate(...) equation or statement [using function syntax] successfully terminates the analysis which
was carried out, see also Section 8.3.7. The termination is not immediate at the place where it is defined since not
all variable results might be available that are necessary for a successful stop. Instead, the termination actually
takes place when the current integrator step is successfully finalized or at an event instant after the event handling
has been completed before restarting the integration.

The terminate clause has a string argument indicating the reason for the success. [The intention is to give more
complex stopping criteria than a fixed point in time. Example:
model ThrowingBall
 Real x(start=0);
 Real y(start=1);
equation
 der(x)=...
 der(y)=...
algorithm
 when y<0 then
 terminate("The ball touches the ground");
 end when;
end ThrowingBall;

86 Modelica Language Specification 3.2 Revision 2

]

8.3.9 Equation Operators for Overconstrained Connection-Based Equation
Systems

See Section 9.4 for a description of this topic.

8.4 Synchronous Data-flow Principle and Single Assignment Rule
Modelica is based on the synchronous data flow principle and the single assignment rule, which are defined in the
following way:

1. All variables keep their actual values until these values are explicitly changed. Variable values can be
accessed at any time instant during continuous integration and at event instants.

2. At every time instant, during continuous integration and at event instants, the active equations express
relations between variables which have to be fulfilled concurrently (equations are not active if the
corresponding if-branch, when-clause or block in which the equation is present is not active).

3. Computation and communication at an event instant does not take time. [If computation or communication
time has to be simulated, this property has to be explicitly modeled].

4. The total number of equations is identical to the total “number of unknown variables” (= single assignment
rule).

8.5 Events and Synchronization
The integration is halted and an event occurs whenever a Real elementary relation, e.g. “x > 2”, changes its
value. The value of such a relation can only be changed at event instants [in other words, Real elementary
relations induce state or time events]. The relation which triggered an event changes its value when evaluated
literally before the model is processed at the event instant [in other words, a root finding mechanism is needed
which determines a small time interval in which the relation changes its value; the event occurs at the right side of
this interval]. Relations in the body of a when-clause are always taken literally. During continuous integration a
Real elementary relation has the constant value of the relation from the last event instant.

[Example:
 y = if u > uMax then uMax else if u < uMin then uMin else u;

During continuous integration always the same if-branch is evaluated. The integration is halted whenever u-
uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration is
restarted.

Numerical integration methods of order n (n>=1) require continuous model equations which are differentiable
up to order n. This requirement can be fulfilled if Real elementary relations are not treated literally but as defined
above, because discontinuous changes can only occur at event instants and no longer during continuous
integration.
]

[It is a quality of implementation issue that the following special relations
 time >= discrete expression
 time < discrete expression

trigger a time event at “time = discrete expression”, i.e., the event instant is known in advance and no iteration is
needed to find the exact event instant.
]

 87

Relations are taken literally also during continuous integration, if the relation or the expression in which the
relation is present, are the argument of the noEvent(..) function. The smooth(p,x) operator also allows
relations used as argument to be taken literally. The noEvent feature is propagated to all subrelations in the scope
of the noEvent function. For smooth the liberty to not allow literal evaluation is propagated to all subrelations,
but the smooth-property itself is not propagated.

[Example:
x = if noEvent(u > uMax) then uMax elseif noEvent(u < uMin) then uMin else u;
y = noEvent(if u > uMax then uMax elseif u < uMin then uMin else u);
z = smooth(0, if u > uMax then uMax elseif u < uMin then uMin else u);

In this case x=y=z, but a tool might generate events for z. The if-expression is taken literally without inducing
state events.

The smooth function is useful, if e.g. the modeler can guarantee that the used if-clauses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event iterations
occur during integration. The noEvent function is used to guard against “outside domain” errors, e.g. y = if
noEvent(x >= 0) then sqrt(x) else 0.]

All equations and assignment statements within when-clauses and all assignment statements within function
classes are implicitly treated with the noEvent function, i.e., relations within the scope of these operators never
induce state or time events. [Using state events in when-clauses is unnecessary because the body of a when-clause
is not evaluated during continuous integration.]

[Example:
Limit1 = noEvent(x1 > 1);
// Error since Limit1 is a discrete-time variable

when noEvent(x1>1) or x2>10 then
 // error, when-conditions is not a discrete-time expression
 Close = true;
end when;

]

Modelica is based on the synchronous data flow principle (Section 8.4).

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique set of
equations. It is not possible that a variable is e.g. defined by two equations, which would give rise to conflicts or
non-deterministic behavior. Furthermore, the continuous and the discrete parts of a model are always
automatically “synchronized”. Example:
equation // Illegal example
 when condition1 then
 close = true;
 end when;

 when condition2 then
 close = false;
 end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown variable
close. If this would be a valid model, a conflict occurs when both conditions become true at the same time instant,
since no priorities between the two equations are assigned. To become valid, the model has to be changed to:
equation
 when condition1 then
 close = true;
 elsewhen condition2 then
 close = false;
 end when;

Here, it is well-defined if both conditions become true at the same time instant (condition1 has a higher
priority than condition2).
]

88 Modelica Language Specification 3.2 Revision 2

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via counters.
Example:
 Boolean fastSample, slowSample;
 Integer ticks(start=0);
equation
 fastSample = sample(0,1);
algorithm
 when fastSample then
 ticks := if pre(ticks) < 5 then pre(ticks)+1 else 0;
 slowSample := pre(ticks) == 0;
 end when;
algorithm
 when fastSample then // fast sampling
 ...
 end when;
algorithm
 when slowSample then // slow sampling (5-times slower)
 ...
 end when;

The slowSample when-clause is evaluated at every 5th occurrence of the fastSample when-clause.
]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow a
certain degree of model verification already at compile time.]

8.6 Initialization, initial equation, and initial algorithm
Before any operation is carried out with a Modelica model [e.g., simulation or linearization], initialization takes
place to assign consistent values for all variables present in the model. During this phase, also the derivatives,
der(..), and the pre-variables, pre(..), are interpreted as unknown algebraic variables. The initialization uses
all equations and algorithms that are utilized in the intended operation [such as simulation or linearization]. The
equations of a when-clause are active during initialization, if and only if they are explicitly enabled with the
initial() operator; and only in one of the two forms when initial() then or when {…,initial(),…}
then. In this case, the when-clause equations remain active during the whole initialization phase. [If a when-
clause equation v = expr; is not active during the initialization phase, the equation v = pre(v) is added for
initialization. This follows from the mapping rule of when-clause equations].

Further constraints, necessary to determine the initial values of all variables, can be defined in the following two
ways:

(1) As equations in an initial equation section or as assignments in an initial algorithm section. The
equations and assignments in these initial sections are purely algebraic, stating constraints between the
variables at the initial time instant. It is not allowed to use when-clauses in these sections.

(2) For all non-discrete (that is continuous-time) Real variables vc, the equation pre(vc) = vc is added to the
initialization equations. [If pre(vc) is not present in the flattened model, a tool may choose not to introduce
this equation, or if it was introduced it can eliminate it (to avoid the introduction of many dummy variables
pre(vc)).]

(3) Implicitly by using the attributes start=value and fixed=true in the declaration of variables:
• For all non-discrete (that is continuous-time) Real variables vc, the equation vc = startExpression

is added to the initialization equations, if start = startExpression and fixed = true.
• For all discrete variables vd, the equation pre(vd) = startExpression is added to the initialization

equations, if start = startExpression and fixed = true.

 89

• For all variables declared as constant and parameter, with fixed = true; no equation is added to the
initialization equations.

For constants and parameters, the attribute fixed is by default true. For other variables fixed is by default false. For
all variables declared as constant it is an error to have fixed = false.

All variables declared as parameter having fixed = false are treated as unknowns during the initialization
phase, i.e. there must be additional equations for them – and the start-value can be used as a guess-value during
initialization.

[In the case a parameter has both a binding equation and fixed = false a diagnostics is recommended, but
the parameter should be solved from the binding equation.

Non-discrete (that is continuous-time) Real variables vc have exactly one initialization value since the rules
above assure that during initialization vc = pre(vc) = vc.startExpression (if fixed= true).

Before the start of the integration, it must be guaranteed that for all variables v, v = pre(v). If this is not the
case for some variables vi, “pre(vi) := vi” must be set and an event iteration at the initial time must follow,
so the model is re-evaluated, until this condition is fulfilled.

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to state
space form. This may require to differentiate equations for index reduction, i.e., additional equations and, in some
cases, additional unknown variables are introduced. This whole set of equations, together with the additional
constraints defined above, should lead to an algebraic system of equations where the number of equations and the
number of all variables (including der(..) and pre(..) variables) is equal. Often, this is a nonlinear system
of equations and therefore it may be necessary to provide appropriate guess values (i.e., start values and
fixed=false) in order to compute a solution numerically.

It may be difficult for a user to figure out how many initial equations have to be added, especially if the system
has a higher index. A tool may add or remove initial equations automatically such that the resulting system is
structurally nonsingular. In these cases diagnostics are appropriate since the result is not unique and may not be
what the user expects. A missing initial value of a discrete variable which does not influence the simulation
result, may be automatically set to the start value or its default without informing the user. For example, variables
assigned in a when-clause which are not accessed outside of the when-clause and where the pre() operator is
not explicitly used on these variables, do not have an effect on the simulation.

Examples:

Continuous time controller initialized in steady-state:
 Real y(fixed = false); // fixed=false is redundant
equation
 der(y) = a*y + b*u;
initial equation
 der(y) = 0;

This has the following solution at initialization:
 der(y) = 0;
 y = -b/a *u;

Continuous time controller initialized either in steady-state or by providing a start value for state y:
 parameter Boolean steadyState = true;
 parameter Real y0 = 0 "start value for y, if not steadyState";
 Real y;
 equation
 der(y) = a*y + b*u;
 initial equation
 if steadyState then
 der(y)=0;
 else
 y = y0;
 end if;

90 Modelica Language Specification 3.2 Revision 2

This can also be written as follows (this form is less clear):
 parameter Boolean steadyState=true;
 Real y (start=0, fixed=not steadyState);
 Real der_y(start=0, fixed=steadyState) = der(y);
 equation
 der(y) = a*y + b*u;

Discrete time controller initialized in steady-state:
 discrete Real y;
 equation
 when {initial(), sampleTrigger} then
 y = a*pre(y) + b*u;
 end when;
 initial equation
 y = pre(y);

This leads to the following equations during initialization:
 y = a*pre(y) + b*u;
 y = pre(y);

With the solution:
 y := (b*u)/(1-a)
 pre(y) := y;

]

8.6.1 The Number of Equations Needed for Initialization

[In general, for the case of a pure ordinary differential equation (ODE) system with n state variables and m
output variables, we will have n+m unknowns in the simulation problem. The ODE initialization problem has n
additional unknowns corresponding to the derivative variables. At initialization of an ODE we will need to find
the values of 2n+m variables, in contrast to just n+m variables to be solved for during simulation.

Example: Consider the following simple equation system:
der(x1) = f1(x1);
der(x2) = f2(x2);
y = x1+x2+u;

Here we have three variables with unknown values: two dynamic variables that also are state variables, x1 and
x2, i.e., n=2, one output variable y, i.e., m=1, and one input variable u with known value. A consistent solution of
the initial value problem providing initial values for x1, x2, der(x1), der(x2), and y needs to be found. Two
additional initial equations thus need to be provided to solve the initialization problem.

Regarding DAEs, only that at most n additional equations are needed to arrive at 2n+m equations in the
initialization system. The reason is that in a higher index DAE problem the number of dynamic continuous-time
state variables might be less than the number of state variables n. As noted in Section 8.6 a tool may add/remove
initial equations to fulfill this requirement, if appropriate diagnostics are given.
]

 91

Chapter 9

Connectors and Connections

This chapter covers connectors, connect-equations, and connections.

The connect-equations (and the special functions for overdetermined connectors) may only be used in equations
and may not be used inside if-equations with non-parametric condition, or in when-equations. [For-equations
always have parameter expressions for the array expression.]

The special functions cardinality, rooted, [deprecated], Connections.isRoot, and Connections.rooted may not be
used to control them.

9.1 Connect-Equations and Connectors
Connections between objects are introduced by connect-equations in the equation part of a class. A connect-
equation has the following syntax:
connect "(" component_reference "," component_reference ")" ";"

The connect-equation construct takes two references to connectors [a connector is an instance of a connector
class], each of which is either of the following forms:

• c1. c2 … cn, where c1 is a connector of the class, n>=1 and ci+1 is a connector element of ci for i=1:(n-1).
• m.c, where m is a non-connector element in the class and c is a connector element of m.

There may optionally be array subscripts on any of the components; the array subscripts shall be parameter
expressions or the special operator “:”. If the connect construct references array of connectors, the array
dimensions must match, and each corresponding pair of elements from the arrays is connected as a pair of scalar
connectors.

[Example of array usage:
 connector InPort = input Real;
 connector OutPort = output Real;

 block MatrixGain
 input InPort u[size(A,2)];
 output OutPort y[size(A,1)];
 parameter Real A[:,:] = [1];

 equation
 y=A*u;
 end MatrixGain;

 Modelica.Blocks.Sources.Sine sinSource[5];
 MatrixGain gain (A = 5*identity(5));
 MatrixGain gain2(A = ones(2,5));
 OutPort x[2];
equation
 connect(sinSource.y, gain.u); // Legal

92 Modelica Language Specification 3.2 Revision 2

 connect(gain.y, gain2.u); // Legal
 connect(gain2.y, x); // Legal

]

The three main tasks are to:
• Elaborate expandable connectors.
• Build connection sets from connect-equations.
• Generate equations for the complete model.

9.1.1 Connection Sets

A connection set is a set of variables connected by means of connect-equations. A connection set shall contain
either only flow variables or only non-flow variables.

9.1.2 Inside and Outside Connectors

In an element instance M, each connector element of M is called an outside connector with respect to M. All other
connector elements that are hierarchically inside M, but not in one of the outside connectors of M, is called an
inside connector with respect to M. This is done before resolving outer elements to corresponding inner ones.

[Example:

The figure visualizes the following connect equations to the connector c in the models mi. Consider the following
connect equations found in the model for component m0:
connect(m1.c, m3.c); // m1.c and m3.c are inside connectors
connect(m2.c, m3.c); // m2.c and m3.c are inside connectors

and in the model for component m3 (c.x is a sub-connector inside c):
connect(c, m4.c); // c is an outside connector, m4.c is an inside connector
connect(c.x, m5.c); // c.x is an outside connector, m5.c is an inside connector
connect(c , d) ; // c is an outside connector, d is an outside connector

and in the model for component m6:
connect(d, m7.c); // d is an outside connector, m7.c is an inside connector

]

m1

m2

m4

c

m3

m5

m0

Figure 2 Example for inside and outside connectors

outer d

m6

inner d

m7

 93

9.1.3 Expandable Connectors

If the expandable qualifier is present on a connector definition, all instances of that connector are referred to as
expandable connectors. Instances of connectors that do not possess this qualifier will be referred to as non-
expandable connectors.

Before generating connection equations non-parameter scalar variables and non-parameter array elements
declared in expandable connectors are marked as only being potentially present. A non-parameter array element
may be declared with array dimensions “:” indicating that the size is unknown. This applies to both variables of
simple types, and variables of structured types.

Then connections containing expandable connectors are elaborated:

• When two expandable connectors are connected, each is augmented with the variables that are only
declared in the other expandable connector (the new variables are neither input nor output). This is repeated
until all connected expandable connector instances have matching variables [i.e. each of the connector
instances is expanded to be the union of all connector variables.]

The following rules apply to expandable connectors

• expandable connectors can only be connected to other expandable connectors.
• The variables introduced in the elaboration follow additional rules for generating connection sets (given in

Section 0).
• If a variable appears as an input in one expandable connector, it should appear as a non-input in at least one

other expandable connector instance in the same augmentation set. An augmentation set is defind as the set
of connected expandable connector instances that through the elaboration will have matching variables.

 [Example:
expandable connector EngineBus
end EngineBus;

block Sensor
 RealOutput speed; // Output, ie., non-input
end Sensor;

block Actuator
 RealInput speed; // Input
end Actuator;

model Engine
 EngineBus bus;
 Sensor sensor;
 Actuator actuator;
equation
 connect(bus.speed, sensor.speed); // provides the non-input from sensor.speed
 connect(bus.speed, actuator.speed);
end Engine;

]

• All components in an expandable connector are seen as connector instances even if they are not declared as
such [i.e. it is possible to connect to e.g. a Real variable].

[Example:
expandable connector EngineBus // has predefined signals
 import SI=Modelica.SIunits;
 SI.AngularVelocity speed;
 SI.Temperature T;
end EngineBus;

block Sensor
 RealOutput speed;
end Sensor;

model Engine

94 Modelica Language Specification 3.2 Revision 2

 EngineBus bus;
 Sensor sensor;
equation
 connect(bus.speed, sensor.speed);
 // connection to non-connector speed is possible
 // in expandable connectors
end Engine;

]

• An expandable connector may not contain a component declared with the prefix flow, but may contain
non-expandable connector components with flow components.

[Example:
import Interfaces=Modelica.Electrical.Analog.Interfaces;

expandable connector ElectricalBus
 Interfaces.PositivePin p12, n12; // OK
 flow Modelica.SIunits.Current i; // not allowed
end ElectricalBus;

model Battery
 Interfaces.PositivePin p42, n42;
 ElectricalBus bus;
equation
 connect(p42, bus.p42); // Adds new electrical pin
 connect(n42, bus.n42); // Adds another pin
end Battery;

]

• One connector in the connect equation must reference a declared component and the (other) undeclared
component is handled as follows:

• The expandable connector instance is automatically augmented with a new component having the
used name and corresponding type.

• If the undeclared component is subscripted, an array variable is created, and a connection to the
specific array element is performed.

• If the variable on the other side of the connect-equation is input or output the new component will be
either input or output to satisfy the restrictions in Section 9.3. [If the existing side refers to an inside
connector (i.e. a connector of a component) the new variable will copy its causality, i.e. input if input
and output if output, since the expandable connector must be an outside connector]. For an array the
input/output property can be deduced separately for each array element.

If a connect equation references a potentially present variable, or variable element, in an expandable connector
the variable or variable element is marked as being present, and due to the paragraph above it is possible to
deduce whether the bus variable shall be treated as input, or shall be treated as output in the connect equation.

[Example:
expandable connector EmptyBus
end EmptyBus;

model Controller
 EmptyBus bus1;
 EmptyBus bus2;
 RealInput speed;
equation
 connect(speed, bus1.speed); // ok, only one undeclared
 // and it is unsubscripted
 connect(bus1.pressure, bus2.pressure);
 // not allowed, both undeclared
 connect(speed, bus2.speed[2]);
 // introduces speed array (with element [2]).
end Controller;

 95

]

After this elaboration the expandable connectors are treated as normal connector instances, and the connections as
normal connections, and all potentially present variables and array elements that are not actually present are
undefined [a tool may remove them or set them to the default value, e.g. zero for Real variables]. It is an error if
there are modifiers for potentially present variables or array elements. It is an error if there are expressions
referring to potentially present variables or array elements that are not actually present [the expressions can only
“read” variables from the bus that are actually declared in the connector, in order that the types of the variables
can be determined in the local scope]. This elaboration implies that expandable connectors can be connected even
if they do not contain the same components.

[Note that the introduction of variables, as described above, is conceptual and does not necessarily impact the
flattening hierarchy in any way. Furthermore, it is important to note that these elaboration rules must consider:

1) Expandable connectors nested hierarchically. This means that both outside and inside connectors must be
included at every level of the hierarchy in this elaboration process.

2) When processing an expandable connector that possesses the inner scope qualifier, all outer instances must
also be taken into account during elaboration.

Example:

Engine system with sensors, controllers, actuator and plant that exchange information via a bus (i.e. via
expandable connectors):
import SI=Modelica.SIunits;
import Modelica.Blocks.Interfaces.*;

// Plant Side
model SparkPlug
 Real spark_advance spark_advance;
 …
end SparkPlug;

expandable connector EngineBus
 // No minimal set
end EngineBus;

expandable connector CylinderBus
 Real spark_advance;
end CylinderBus;

model Cylinder
 CylinderBus cylinder_bus;
 SparkPlug spark_plug;
 ...
equation

 connect(spark_plug.spark_advance, cylinder_bus.spark_advance);
end Cylinder;

model I4
 EngineBus engine_bus;
 Modelica.Mechanics.Rotational.Sensors.SpeedSensor speed_sensor;
 Modelica.Thermal.Sensors.TemperatureSensor temp_sensor;
 parameter Integer nCylinder = 4 "Number of cylinders";
 Cylinder cylinder[nCylinder];
equation
 // adds engine_speed (as output)
 connect(speed_sensor.w, engine_bus.engine_speed);
 // adds engine_temp (as output)
 connect(temp_sensor.T, engine_bus.engine_temp);
 // adds cylinder_bus1 (a nested bus)
 for i in 1:nCylinder loop
 connect(cylinder[i].cylinder_bus, engine_bus.cylinder_bus[i]);
 end for;
end I4;

96 Modelica Language Specification 3.2 Revision 2

Due to the above connection, conceptually a connector consisting of the union of all connectors is introduced.

The engine_bus contains the following variable declarations:
RealOutput engine_speed;
RealOutput engine_temp;
CylinderBus cylinder_bus[1];
CylinderBus cylinder_bus[2];
CylinderBus cylinder_bus[3];
CylinderBus cylinder_bus[4];

]

9.2 Generation of Connection Equations
When generating connection equations, outer elements are resolved to the corresponding inner elements in the
instance hierarchy (see instance hierarchy name lookup 5.4). The arguments to each connect-equation are
resolved to two connector elements.

For every use of the connect-equation
connect(a, b);

the primitive components of a and b form a connection set – together with an indication of whether they are from
an inside or an outside connector; the primitive elements are of simple types – or of types defined as operator
record (i.e. a component of an operator record type is not split into sub-components). The elements of the
connection sets are tuples of primitive variables together with an indication of inside or outside; if the same tuple
belongs to two connection sets those two sets are merged, until every tuple is only present in one set. Composite
connector types are broken down into primitive components. The outer components are handled by mapping the
objects to the corresponding inner components – and the inside indication is not influenced. The outer
connectors are handled by mapping the objects to the corresponding inner connectors – and they are always
treated as outside connectors.

[Rationale: The inside/outside as part of the connection sets ensure that connections from different hierarchical
levels are treated separately. Connection sets are formed from the primitive elements and not from the
connectors; this handles connections to parts of hierarchical connectors and also makes it easier to generate
equations directly from the connection sets. All variables in one connection set will either be flow variables or
non-flow variables due to restriction on connect-equations. The mapping from an outer to an inner element
must occur before merging the sets in order to get one zero-sum equation, and ensures that the equations for the
outer elements are all given for “one side” of the connector, and the inner element can define the other
“side”.]

The following connection sets with just one member are also present (and merged):

• Each primitive flow-variable as inside connector.

• Each flow variable added during augmentation of expandable connectors, both as inside and as outside.
[Note that the flow variable is not directly in the expandable connector, but in a connector inside the
expandable connector.]

[Rationale: If these variables are not connected they will generate a set comprised only of this element, and thus
they will be implicitly set to zero (see below). If connected, this set will be merged and adding this at the start has
no impact.]

Each connection set is used to generate equations for potential and flow (zero-sum) variables of the form
• a1 = a2 = ... = an; // non-flow variables
• z1 + z2 + (-z3) + ... + zn = 0; // flow-variables

The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

 97

For an operator record type this uses the operator '0' – which must be defined in the operator record; and all
of the flow-variables for the operator record must be of the same operator record type. This implies that
in order to have flow variables of an operator record type the operator record must define addition,
negation, and '0'; and these operations should define an additive group.

In order to generate equations for flow variables [using the flow prefix], the sign used for the connector variable
zi above is +1 for inside connectors and -1 for outside connectors [z3 in the example above].

[Example (simple):
 model Circuit
 Ground ground;
 Load load;
 Resistor resistor;
 equation
 connect(load.p , ground.p);
 connect(resistor.p, ground.p);
 end Circuit;

 model Load
 extends TwoPin;
 Resistor resistor;
 equation
 connect(p, resistor.p);
 connect(resistor.n, n);
 end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):
 {<load.p.i, inside>}
 {<load.n.i, inside>}
 {<ground.p.i, inside>}
 {<load.resistor.p.i, inside>}
 {<load.resistor.n.i, inside>}
 {<resistor.p.i, inside>}
 {<resistor.n.i, inside>}
 {<resistor.p.i, inside>, <ground.p.i, inside>}
 {<resistor.p.v, inside>, <ground.p.v, inside>}
 {<load.p.i, inside>, <ground.p.i, inside>}
 {<load.p.v, inside>, <ground.p.v, inside>}
 {<load.p.i, outside>, <load.resistor.p.i, inside>}
 {<load.p.v, outside>, <load.resistor.p.v, inside>}
 {<load.n.i, outside>, <load.resistor.n.i, inside>}
 {<load.n.v, outside>, <load.resistor.n.v, inside>}

After merging this gives:
 {<load.p.i, outside>, <load.resistor.p.i, inside>}
 {<load.p.v, outside>, <load.resistor.p.v, inside>}
 {<load.n.i, outside>, <load.resistor.n.i, inside>}
 {<load.n.v, outside>, <load.resistor.n.v, inside>}
 {<load.p.i, inside>, <ground.p.i, inside>, <resistor.p.i, inside> }
 {<load.p.v, inside>, <ground.p.v, inside>, <resistor.p.v, inside>}
 {<load.n.i, inside>}
 {<resistor.n.i, inside>}

And thus the equations:
 load.p.v = load.resistor.p.v;
 load.n.v = load.resistor.n.v;
 load.p.v = ground.p.v;

98 Modelica Language Specification 3.2 Revision 2

 load.p.v = resistor.p.v;
 0 = (-load.p.i) + load.resistor.p.i;
 0 = (-load.n.i) + load.resistor.n.i;
 0 = load.p.i + ground.p.i + resistor.p.i;
 0 = load.n.i;
 0 = resistor.n.i;

Example (outer component):
 model Circuit
 Ground ground;
 Load load;
 inner Resistor resistor;
 equation
 connect(load.p, ground.p);
 end Circuit;

 model Load
 extends TwoPin;
 outer Resistor resistor;
 equation
 connect(p, resistor.p);
 connect(resistor.n, n);
 end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):
 {<load.p.i, inside>}
 {<load.n.i, inside>}
 {<ground.p.i, inside>}
 {<resistor.p.i, inside>}
 {<resistor.n.i, inside>}
 {<load.p.i, inside>, <ground.p.i, inside>}
 {<load.p.v, inside>, <ground.p.v, inside>}
 {<load.p.i, outside>, < resistor.p.i, inside>}
 {<load.p.v, outside>, <resistor.p.v, inside>}
 {<load.n.i, outside>, <resistor.n.i, inside>}
 {<load.n.v, outside>, <resistor.n.v, inside>}

After merging this gives:
 {<load.p.i, outside>, <resistor.p.i, inside>}
 {<load.p.v, outside>, <resistor.p.v, inside>}
 {<load.n.i, outside>, <resistor.n.i, inside>}
 {<load.n.v, outside>, <resistor.n.v, inside>}
 {<load.p.i, inside>, <ground.p.i, inside>}
 {<load.p.v, inside>, <ground.p.v, inside>}
 {<load.n.i, inside>}

And thus the equations:
 load.p.v = resistor.p.v;
 load.n.v = resistor.n.v;
 load.p.v = ground.p.v;
 0 = (-load.p.i) + resistor.p.i;
 0 = (-load.n.i) + resistor.n.i;
 0 = load.p.i + ground.p.i;
 0 = load.n.i;

This corresponds to a direct connection of the resistor.
]

 99

9.3 Restrictions of Connections and Connectors
• In a connect-equation the primitive components of the two connectors must have the same primitive types,

and flow-variables may only connect to other flow-variables, causal variables (input/output) only to
causal variables (input/output).

• A connector component may not be declared with the prefix parameter or constant. In the connect-equation
the primitive components may only connect parameter variables to parameter variables and constant
variables to constant variables.

• A connection set of causal variables (input/output) may at most contain variables from one inside
output connector or one public outside input connector. [i.e., a connection set may at most contain one
source of a signal.]

• At least one of the following must hold for a connection set containing causal variables generated for a non-
partial model or block:
 (1) the connection set includes variables from an outside public expandable connector, (2) the set contains
variables from protected outside connectors, (3) it contains variables from one inside output connector, or
(4) from one public outside input connector, or (5) the set is comprised solely of one variable from one
inside input connector that is not part of an expandable connector. [i.e., a connection set must – unless the
model or block is partial - contain one source of a signal (the last item (5) covers the case where a
connector of a component is left unconnected and the source given textually).]

• Variables from a protected outside connector must be part of a connection set containing at least one inside
connector or one declared public outside connector (i.e. it may not be an implicitly defined part of an
expandable connector). [Otherwise it would not be possible to deduce the causality for the expandable
connector element.]

• A connect equation may not (directly or indirectly) connect two connectors of outer elements. [indirectly
is similar to them being part of the same connection set – however, connections to outer elements are
“moved up” before forming connection sets. Otherwise the connection sets could contain “redundant”
information breaking the equation count for locally balanced models and blocks.]

• Subscripts in a connector reference shall be parameter expressions or the special operator “:”.
• Constants or parameters in connected components yield the appropriate assert statements to check that they

have the same value; connections are not generated.

9.3.1 Size Restriction on Connectors

For each non-partial connector class the number of flow variables shall be equal to the number of variables that
are neither parameter, constant, input, output, stream nor flow. The “number of variables” is the number
of all elements in the connector class after expanding all records and arrays to a set of scalars of primitive types.
The number of variables of an overdetermined type or record class (see Section 9.4.1) is the size of the output
argument of the corresponding equalityConstraint() function.

[Examples:
connector Pin // a physical connector of Modelica.Electrical.Analog
 Real v;
 flow Real i;
end Pin;

connector Plug // a hierachical connector of Modelica.Electrical.MultiPhase
 parameter Integer m=3;
 Pin p[m];
end Plug;

connector InputReal = input Real; // A causal input connector

connector OutputReal = output Real; // A causal output connector

100 Modelica Language Specification 3.2 Revision 2

connector Frame_Illegal
 Modelica.SIunits.Position r0[3] "Position vector of frame origin";
 Real S[3, 3] "Rotation matrix of frame";
 Modelica.SIunits.Velocity v[3] "Abs. velocity of frame origin";
 Modelica.SIunits.AngularVelocity w[3] "Abs. angular velocity of frame";
 Modelica.SIunits.Acceleration a[3] "Abs. acc. of frame origin";
 Modelica.SIunits.AngularAcceleration z[3] "Abs. angular acc. of frame";
 flow Modelica.SIunits.Force f[3] "Cut force";
 flow Modelica.SIunits.Torque t[3] "Cut torque";
end Frame_Illegal;

The Frame_Illegal connector (intended to be used in a simple MultiBody-package without over-determined
connectors) is illegal since the number of flow and non-flow variables do not match. The solution is to create two
connector classes, where two 3-vectors (e.g., a and z) are acausal Real and the other variables are matching pairs
of input and output. This ensures that the models can only be connected in a tree-structure or require a “loop-
breaker” joint for every closed kinematic loop:

connector Frame_a "correct connector"
 input Modelica.SIunits.Position r0[3];
 input Real S[3, 3];
 input Modelica.SIunits.Velocity v[3];
 input Modelica.SIunits.AngularVelocity w[3];
 Modelica.SIunits.Acceleration a[3];
 Modelica.SIunits.AngularAcceleration z[3];
 flow Modelica.SIunits.Force f[3];
 flow Modelica.SIunits.Torque t[3];
end Frame_a;

connector Frame_b "correct connector"
 output Modelica.SIunits.Position r0[3];
 output Real S[3, 3];
 output Modelica.SIunits.Velocity v[3];
 output Modelica.SIunits.AngularVelocity w[3];
 Modelica.SIunits.Acceleration a[3];
 Modelica.SIunits.AngularAcceleration z[3];
 flow Modelica.SIunits.Force f[3];
 flow Modelica.SIunits.Torque t[3];
end Frame_b;

The subsequent connectors Plug_Expanded and PlugExpanded2 are correct, but Plug_Expanded_Illegal
is illegal since the number of non-flow and flow variables is different if “n” and “m” are different. It is not clear
how a tool can detect in general that connectors such as Plug_Expanded_Illegal are illegal. However, it is
always possible to detect this defect after actual values of parameters and constants are provided in the
simulation model.

connector Plug_Expanded "correct connector"
 parameter Integer m=3;
 Real v[m];
 flow Real i[m];
end Plug_Expanded;

connector Plug_Expanded2 "correct connector"
 parameter Integer m=3;
 final parameter Integer n=m;
 Real v[m];
 flow Real i[n];
end Plug_Expanded2;

connector Plug_Expanded_Illegal "connector is illegal"
 parameter Integer m=3;
 parameter Integer n=m;
 Real v[m];
 flow Real i[n];
end Plug_Expanded_Illegal;

 101

]

9.4 Equation Operators for Overconstrained Connection-Based Equation
Systems

There is a special problem regarding equation systems resulting from loops in connection graphs where the
connectors contain non-flow (i.e., potential) variables dependent on each other. When a loop structure occurs in
such a graph, the resulting equation system will be overconstrained, i.e., have more equations than variables, since
there are implicit constraints between certain non-flow variables in the connector in addition to the connection
equations around the loop. At the current state-of-the-art, it is not possible to automatically eliminate the unneeded
equations from the resulting equation system without additional information from the model designer.

This section describes a set of equation operators for such overconstrained connection-based equation systems,
that makes it possible for the model designer to specify enough information in the model to allow a Modelica
environment to automatically remove the superfluous equations.

[Connectors may contain redundant variables. For example, the orientation between two coordinate systems in 3
dimensions can be described by 3 independent variables. However, every description of orientation with 3
variables has at least one singularity in the region where the variables are defined. It is therefore not possible to
declare only 3 variables in a connector. Instead n variables (n > 3) have to be used. These variables are no
longer independent from each other and there are n-3 constraint equations that have to be fulfilled. A proper
description of a redundant set of variables with constraint equations does no longer have a singularity. A model
that has loops in the connection structure formed by components and connectors with redundant variables, may
lead to a differential algebraic equation system that has more equations than unknown variables. The superfluous
equations are usually consistent with the rest of the equations, i .e., a unique mathematical solution exists. Such
models cannot be treated with the currently known symbolic transformation methods. To overcome this situation,
operators are defined in order that a Modelica translator can remove the superfluous equations. This is
performed by replacing the equality equations of non-flow variables from connection sets by a reduced number of
equations in certain situations.

This section handles a certain class of overdetermined systems due to connectors that have a redundant set of
variables. There are other causes of overdetermined systems, e.g., explicit zero-sum equations for flow variables,
that are not handled by the method described below.]

9.4.1 Overconstrained Equation Operators for Connection Graphs

A type or record declaration may have an optional definition of function “equalityConstraint(..)” that shall
have the following prototype:
type Type // overdetermined type
 extends <base type>;

 function equalityConstraint // non-redundant equality
 input Type T1;
 input Type T2;
 output Real residue[<n>];
 algorithm
 residue := ...
 end equalityConstraint;
end Type;

record Record
 < declaration of record fields>

 function equalityConstraint // non-redundant equality
 input Record R1;
 input Record R2;
 output Real residue[<n>];
 algorithm

102 Modelica Language Specification 3.2 Revision 2

 residue := ...
 end equalityConstraint;
end Record;

The “residue” output of the equalityConstraint(..) function shall have known size, say constant n. The
function shall express the equality between the two type instances T1 and T2 or the record instances R1 and R2,
respectively, with a non-redundant number n ≥ 0 of equations. The residues of these equations are returned in
vector “residue” of size n. The set of n non-redundant equations stating that R1 = R2 is given by the equation (0
characterizes a vector of zeros of appropriate size):
 Record R1, R2;
equation
 0 = Record.equalityConstraint(R1,R2);

[If the elements of a record Record are not independent from each other, the equation “R1 = R2” contains
redundant equations].

A type class with an equalityConstraint function declaration is called overdetermined type. A record class
with an equalityConstraint function definition is called overdetermined record. A connector that contains
instances of overdetermined type and/or record classes is called overdetermined connector. An overdetermined
type or record may neither have flow components nor may be used as a type of flow components.

Every instance of an overdetermined type or record in an overdetermined connector is a node in a virtual
connection graph that is used to determine when the standard equation “R1 = R2” or when the equation “0 =
equalityConstraint(R1,R2)”has to be used for the generation of connect(...) equations. The branches of
the virtual connection graph are implicitly defined by “connect(..)” and explicitly by
Connections.branch(...) statements, see table below. Connections is a built-in package in global scope
containing built-in operators. Additionally, corresponding nodes of the virtual connection graph have to be
defined as roots or as potential roots with functions Connections.root(...) and
Connections.potentialRoot(...), respectively. In the following table, A and B are connector instances that
may be hierarchically structured, e.g., A may be an abbreviation for EnginePort.Frame.

connect(A,B); Defines breakable branches from the overdetermined type or

record instances in connector instance A to the corresponding
overdetermined type or record instances in connector instance B
for a virtual connection graph. The types of the corresponding
overdetermined type or record instances shall be the same.

Connections.branch(A.R,B.R); Defines a non-breakable branch from the overdetermined type
or record instance R in connector instance A to the
corresponding overdetermined type or record instance R in
connector instance B for a virtual connection graph. This
function can be used at all places where a connect(..) statement
is allowed [e.g., it is not allowed to use this function in a when-
clause. This definition shall be used if in a model with
connectors A and B the overdetermined records A.R and B.R
are algebraically coupled in the model, e.g., due to B.R =
f(A.R, <other unknowns>)].

Connections.root(A.R); The overdetermined type or record instance R in connector
instance A is a (definite) root node in a virtual connection
graph. [This definition shall be used if in a model with
connector A the overdetermined record A.R is (consistently)
assigned, e.g., from a parameter expressions]

Connections.potentialRoot(A.R);

Connections.potentialRoot(
A.R, priority = p);

The overdetermined type or record instance R in connector
instance A is a potential root node in a virtual connection graph
with priority “p” (p ≥ 0). If no second argument is provided, the

 103

priority is zero. “p” shall be a parameter expression of type
Integer. In a virtual connection subgraph without a
Connections.root definition, one of the potential roots with the
lowest priority number is selected as root [This definition may
be used if in a model with connector A the overdetermined
record A.R appears differentiated – der(A.R) – together with
the constraint equations of A.R, i.e., a non-redundant subset of
A.R maybe used as states]

b = Connections.isRoot(A.R); Returns true, if the overdetermined type or record instance R in
connector instance A is selected as a root in the virtual
connection graph.

b = Connections.rooted(A.R);
b = rooted(A.R); // deprecated

If the operator Connections.rooted(A.R) is used, or the
equivalent but deprecated operator rooted(A.R), then there
must be exactly one statement
Connections.branch(A.R,B.R) involving A.R (the
argument of Connections.rooted must be the first argument
of Connections.branch). In that case
Connections.rooted(A.R) returns true, if A.R is closer to
the root of the spanning tree than B.R; otherwise false is
returned. [This operator can be used to avoid equation systems
by providing analytic inverses, see
Modelica.Mechanics.MultiBody.Parts.FixedRotation.]

 [Note, that Connections.branch, Connections.root, Connections.potentialRoot do not generate
equations. They only generate nodes and branches in the virtual graph for analysis purposes.]

9.4.2 Converting the Connection Graph into Trees and Generating Connection
Equations

Before connect(...) equations are generated, the virtual connection graph is transformed into a set of spanning
trees by removing breakable branches from the graph. This is performed in the following way:

1. Every root node defined via the “Connections.root(..)” statement is a definite root of one spanning
tree.

2. The virtual connection graph may consist of sets of subgraphs that are not connected together. Every
subgraph in this set shall have at least one root node or one potential root node in a simulation model. If a
graph of this set does not contain any root node, then one potential root node in this subgraph that has the
lowest priority number is selected to be the root of that subgraph. The selection can be inquired in a class
with function Connections.isRoot(..), see table above.

3. If there are n selected roots in a subgraph, then breakable branches have to be removed such that the result
shall be a set of n spanning trees with the selected root nodes as roots.

After this analysis, the connection equations are generated in the following way:

1. For every breakable branch [i.e., a connect(A,B) equation,] in one of the spanning trees, the connection
equations are generated according to Section 0.

2. For every breakable branch not in any of the spanning trees, the connection equations are generated
according to Section 0, except for overdetermined type or record instances R. Here the equations “0 =
R.equalityConstraint(A.R,B.R)” are generated instead of “A.R = B.R”.

104 Modelica Language Specification 3.2 Revision 2

9.4.3 Examples of Overconstrained Connection Graphs

[Example:

Figure 9-2. Example of a virtual connection graph.

]

9.4.3.1 An Overdetermined Connector for Power Systems

[An overdetermined connector for power systems based on the transformation theory of Park may be defined as:

type AC_Angle "Angle of source, e.g., rotor of generator"
 extends Modelica.SIunits.Angle; // AC_Angle is a Real number
 // with unit = "rad"
 function equalityConstraint
 input AC_Angle theta1;
 input AC_Angle theta2;
 output Real residue[0] "No constraints"
 algorithm
 /* make sure that theta1 and theta2 from
 joining branches are identical */
 assert(abs(theta1 – theta2) < 1.e-10);
 end equalityConstraint;
end AC_Angle;

connector AC_Plug "3-phase alternating current connector"
 import SI = Modelica.SIunits;
 AC_Angle theta;
 SI.Voltage v[3] "Voltages resolved in AC_Angle frame";
 flow SI.Current i[3] "Currents resolved in AC_Angle frame";
end AC_Plug;

The currents and voltages in the connector are defined relatively to the harmonic, high-frequency signal of a
power source that is essentially described by angle theta of the rotor of the source. This allows much faster
simulations, since the basic high frequency signal of the power source is not part of the differential equations. For
example, when the source and the rest of the line operates with constant frequency (= nominal case), then
AC_Plug.v and AC_Plug.i are constant. In this case a variable step integrator can select large time steps. An
element, such as a 3-phase inductor, may be implemented as:
model AC_Inductor
 parameter Real X[3,3], Y[3,3]; // component constants
 AC_plug p;
 AC_plug n;
equation

root

potential root

node

nonbreakable branch
(Connections.branch)

breakable branch
(connect)
 removed breakable
branch to get tree

selected root
selected root

selected (potential)
root

 105

 Connections.branch(p.theta,n.theta); //branch in virtual graph
 // since n.theta = p.theta
 n.theta = p.theta; // pass angle theta between plugs
 omega = der(p.theta); // frequency of source
 zeros(3) = p.i + n.i;
 X*der(p.i) + omega*Y*p.i = p.v – n.v;
end AC_Inductor

At the place where the source frequency, i.e., essentially variable theta, is defined, a Connections.root(..)
must be present:
 AC_plug p;
equation
 Connections.root(p.theta);
 der(p.theta) = 2*Modelica.Constants.pi*50 // 50 Hz;

The graph analysis performed with the virtual connection graph identifies the connectors, where the AC_Angle
needs not to be passed between components, in order to avoid redundant equations.

9.4.3.2 An Overdetermined Connector for 3-dimensional Mechanical Systems

An overdetermined connector for 3-dimensional mechanical systems may be defined as:
type TransformationMatrix = Real[3,3];

type Orientation "Orientation from frame 1 to frame 2"
 extends TransformationMatrix;

 function equalityConstraint
 input Orientation R1 "Rotation from inertial frame to frame 1";
 input Orientation R2 "Rotation from inertial frame to frame 2";
 output Real residue[3];
 protected
 Orientation R_rel "Relative Rotation from frame 1 to frame 2";
 algorithm
 R_rel = R2*transpose(R1);
 /* If frame_1 and frame_2 are identical, R_rel must be
 the unit matrix. If they are close together, R_rel can be
 linearized yielding:
 R_rel = [1, phi3, -phi2;
 -phi3, 1, phi1;
 phi2, -phi1, 1];
 where phi1, phi2, phi3 are the small rotation angles around
 axis x, y, z of frame 1 to rotate frame 1 into frame 2.
 The atan2 is used to handle large rotation angles, but does not
 modify the result for small angles.
 */
 residue := { Modelica.Math.atan2(R_rel[2, 3], R_rel[1, 1]),
 Modelica.Math.atan2(R_rel[3, 1], R_rel[2, 2]),
 Modelica.Math.atan2(R_rel[1, 2], R_rel[3, 3])};
 end equalityConstraint;
end Orientation;

connector Frame "3-dimensional mechanical connector"
 import SI = Modelica.SIunits;
 SI.Position r[3] "Vector from inertial frame to Frame";
 Orientation R "Orientation from inertial frame to Frame";
 flow SI.Force f[3] "Cut-force resolved in Frame";
 flow SI.Torque t[3] "Cut-torque resolved in Frame";
end Frame;

A fixed translation from a frame A to a frame B may be defined as:
model FixedTranslation
 parameter Modelica.SIunits.Position r[3];
 Frame frame_a, frame_b;
equation
 Connections.branch(frame_a.R, frame_b.R);

106 Modelica Language Specification 3.2 Revision 2

 frame_b.r = frame_a.r + transpose(frame_a.R)*r;
 frame_b.R = frame_a.R;
 zeros(3) = frame_a.f + frame_b.f;
 zeros(3) = frame_a.t + frame_b.t + cross(r, frame_b.f);
end FixedTranslation;

Since the transformation matrix frame_a.R is algebraically coupled with frame_b.R, a branch in the virtual
connection graph has to be defined. At the inertial system, the orientation is consistently initialized and therefore
the orientation in the inertial system connector has to be defined as root:
model InertialSystem
 Frame frame_b;
equation
 Connections.root(frame_b.R);
 frame_b.r = zeros(3);
 frame_b.R = identity(3);
end InertialSystem;

]

 107

Chapter 10

Arrays

An array can be regarded as a collection of values, all of the same type. Modelica arrays can be multidimensional
and are “rectangular,” which in the case of matrices has the consequence that all rows in a matrix have equal
length, and all columns have equal length.

Each array has a certain dimensionality, i.e., number of dimensions. The degenerate case of a scalar variable is
not really an array, but can be regarded as an array with zero dimensions. Vectors have one dimension, matrices
have two dimensions, etc. [So-called row vectors and column vectors do not exist in Modelica and cannot be
distinguished since vectors have only one dimension. If distinguishing these is desired, row matrices and column
matrices are available, being the corresponding two-dimensional entities. However, in practice this is seldom
needed since the usual matrix arithmetic and linear algebra operations have been defined to give the expected
behavior when operating on Modelica vectors and matrices.]

Modelica is a strongly typed language, which also applies to array types. The number of dimensions of an
array is fixed and cannot be changed at run-time [in order to permit strong type checking and efficient
implementation.] However, the sizes of array dimensions can be computed at run-time, [allowing fairly generic
array manipulation code to be written as well as interfacing to standard numeric libraries implemented in other
programming languages.]

An array is allocated by declaring an array variable or calling an array constructor. Elements of an array can be
indexed by Integer, Boolean, or enumeration values.

10.1 Array Declarations
The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and arrays of
more than two dimensions. [There is no distinguishing between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is a
placeholder for any class, including the built-in type classes Real, Integer, Boolean, String, and enumeration
types. The type of a dimension upper bound expression, e.g. n, m, p,... in the table below, need to be a subtype of
Integer or the name E for an enumeration type E, or Boolean. Colon (:) indicates that the dimension upper bound
is unknown and is a subtype of Integer.

Upper and lower array dimension index bounds are described in Section 10.1.1.
An array indexed by Boolean or enumeration type can only be used in the following ways:

• Subscripted using expressions of the appropriate type (i.e. Boolean or the enumerated type)
• Binding equations of the form x1 = x2 as well as declaration assignments of the form x1 := x2 are allowed

for arrays independent of whether the index types of dimensions are subtypes of Integer, Boolean, or
enumeration types.

Table 10-1. General forms of declaration of arrays.

108 Modelica Language Specification 3.2 Revision 2

Modelica form 1 Modelica form 2 # dimensions Designation Explanation
C x; C x; 0 Scalar Scalar
C[n] x; C x[n]; 1 Vector n – Vector
C[E] x; C x[E] 1 Vector Vector index by enumeration type E
C[n, m] x; C x[n, m]; 2 Matrix n x m Matrix
C[n1, n2, …, nk] x; C x[n1, n2, …, nk]; k Array Array with k dimensions (k>=0).

 [The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example at
redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 is the
traditional way of array declarations in languages such as Fortran, C, C++.

Real[:] v1, v2 // vectors v1 and v2 have unknown sizes. The actual sizes may be different.
It is possible to mix the two declaration forms although it might be confusing.

Real[3,2] x[4,5]; // x has type Real[4,5,3,2];

The reason for this order is given by examples such as:

type R3=Real[3];
R3 a;
R3 b[1]={a};
Real[3] c[1]=b;

Using a type for “a” and “b” in this way is normal, and substituting a type by its definition allow “c”.

A vector y indexed by enumeration values
type TwoEnums = enumeration(one,two);
Real[TwoEnums] y;

]

Zero-valued dimensions are allowed, so: C x[0]; declares an empty vector and: C x[0,3]; an empty matrix.

[Special cases:

Table 10-2. Declaration of arrays as 1-vectors, row-vectors, or column-vectors of arrays.

Modelica form 1 Modelica form 2 # dimensions Designation Explanation
C[1] x; C x[1]; 1 Vector 1 – Vector, representing a scalar
C[1,1] x; C x[1, 1]; 2 Matrix 1 x 1 – Matrix, representing a scalar
C[n,1] x; C x[n, 1]; 2 Matrix n x 1 – Matrix, representing a column
C[1,n] x; C x[1, n]; 2 Matrix 1 x n – Matrix, representing a row
]

The type of an array of array is the multidimensional array which is constructed by taking the first dimensions
from the component declaration and subsequent dimensions from the maximally expanded component type. A
type is maximally expanded, if it is either one of the built-in types (Real, Integer, Boolean, String, enumeration
type) or it is not a type class. Before operator overloading is applied, a type class of a variable is maximally
expanded.

[Example:
type Voltage = Real(unit = "V");
type Current = Real(unit = "A");
connector Pin
 Voltage v; // type class of v = Voltage, type of v = Real
 flow Current i; // type class of i = Current, type of i = Real
end Pin;
type MultiPin = Pin[5];

MultiPin[4] p; // type class of p is MultiPin, type of p is Pin[4,5];

 109

type Point = Real[3];
Point p1[10];
Real p2[10,3];

The components p1 and p2 have identical types.
p2[5] = p1[2]+ p2[4]; // equivalent to p2[5,:] = p1[2,:] + p2[4,:]
Real r[3] = p1[2]; // equivalent to r[3] = p1[2,:]

]

[Automatic assertions at simulation time:

Let A be a declared array and i be the declared maximum dimension size of the di-dimension, then an assert
statement assert(i>=0, ...) is generated provided this assertion cannot be checked at compile time. It is a
quality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index of the di-dimension. Then for every such
index-access an assert statement assert(i>=1 and i<=size(A,di), ...) is generated, provided this
assertion cannot be checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.]

10.1.1 Array Dimension Lower and Upper Index Bounds

The lower and upper index bounds for a dimension of an array indexed by Integer, Boolean, or enumeration
values are as follows:

• An array dimension indexed by integers has a lower bound of 1 and an upper bound being the size of the
dimension.

• An array dimension indexed by Boolean values has the lower bound false and the upper bound true.
• An array dimension indexed by enumeration values of the type E=enumeration(e1, e2, ..., en) has the

lower bound E.e1 and the upper bound E.en.

10.2 Flexible Array Sizes
Regarding flexible array sizes and resizing of arrays in functions, see Section 12.4.5.

10.3 Built-in Array Functions
Modelica provides a number of built-in functions that are applicable to arrays.

The following promote function cannot be used in Modelica, but is utilized below to define other array operators
and functions:

promote(A,n) Fills dimensions of size 1 from the right to array A upto dimension n, where "n >=

ndims(A)" is required. Let C = promote(A,n), with nA=ndims(A), then ndims(C)
= n, size(C,j) = size(A,j) for 1 <= j <= nA, size(C,j) = 1 for nA+1 <= j <= n,
C[i_1, ..., i_nA, 1, ..., 1] = A[i_1, ..., i_nA]

[The function promote cannot be used in Modelica, because the number of dimensions of the returned array
cannot be determined at compile time if n is a variable. Below, promote is only used for constant n.

Some examples of using the functions defined in the following Section 10.3.1 to Section 10.3.5:
Real x[4,1,6];
size(x,1) = 4;
size(x); // vector with elements 4, 1, 6
size(2*x+x) = size(x);
Real[3] v1 = fill(1.0, 3);

 Real[3,1] m = matrix(v1);

110 Modelica Language Specification 3.2 Revision 2

Real[3] v2 = vector(m);
Boolean check[3,4] = fill(true, 3, 4);

]

10.3.1 Array Dimension and Size Functions

The following built-in functions for array dimensions and dimension sizes are provided:

Table 10-3. Built-in array dimension and size functions.

Modelica Explanation
ndims(A) Returns the number of dimensions k of array expression A, with k >= 0.
size(A,i) Returns the size of dimension i of array expression A where i shall be > 0 and <=

ndims(A).
size(A) Returns a vector of length ndims(A) containing the dimension sizes of A.

10.3.2 Dimensionality Conversion Functions

The following built-in conversion functions convert scalars, vectors, and arrays to scalars, vectors, or matrices by
adding or removing 1-sized dimensions.

Table 10-4. Built-in dimensionality conversion functions.

Modelica Explanation
scalar(A) Returns the single element of array A. size(A,i) = 1 is required for 1 <= i <=

ndims(A).
vector(A) Returns a 1-vector, if A is a scalar and otherwise returns a vector containing all

the elements of the array, provided there is at most one dimension size > 1.
matrix(A) Returns promote(A,2), if A is a scalar or vector and otherwise returns the elements

of the first two dimensions as a matrix. size(A,i) = 1 is required for 2 < i <=
ndims(A).

10.3.3 Specialized Array Constructor Functions

An array constructor function constructs and returns an array computed from its arguments. Most of the
constructor functions in the table below construct an array by filling in values according to a certain pattern, in
several cases just giving all array elements the same value. The general array constructor with syntax array (…)
or {…} is described in Section 10.4.

Table 10-5. Specialized array constructor functions.

Modelica Explanation
identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at

the other places.
diagonal(v) Returns a square matrix with the elements of vector v on the diagonal and all other

elements zero.
zeros(n1,n2,n3,...
)

Returns the n1 x n2 x n3 x ... Integer array with all elements equal to zero (ni >= 0).

ones(n1,n2,n3,...) Return the n1 x n2 x n3 x ... Integer array with all elements equal to one (ni >=0).
fill(s,n1,n2,n3,
...)

Returns the n1 x n2 x n3 x ... array with all elements equal to scalar or array
expression s (ni >= 0). The returned array has the same type as s.
Recursive definition: fill(s,n1,n2,n3, ...) = fill(fill(s,n2,n3, ...), n1);

 111

fill(s,n)={s,s,…, s}
linspace(x1,x2,n) Returns a Real vector with n equally spaced elements, such that

v=linspace(x1,x2,n),
v[i] = x1 + (x2-x1)*(i-1)/(n-1) for 1 <= i <= n. It is required that n >= 2. The
arguments x1 and x2 shall be numeric scalar expressions.

10.3.4 Reduction Functions and Operators

A reduction function “reduces” an array (or several scalars) to one value (normally a scalar). Note that none of
these operators (particularly min and max) generate events themselves (but arguments could generate events). The
restriction on the type of the input in section 10.3.4.1 for reduction expressions also apply to the array
elements/scalar inputs for the reduction operator with the same name. The following reduction functions are
available:

Table 10-6. Array reduction functions and operators.

Modelica Explanation
min(A) Returns the smallest element of array expression A.
min(x,y) Returns the smallest element of the scalars x and y.
min(
 e(i, ..., j) for
 i in u, ...,
 j in v)

Also described in Section 10.3.4.1
Returns the smallest value of the scalar expression e(i, ..., j) evaluated for all
combinations of i in u, ..., j in v:

max(A) Returns the largest element of array expression A.
max(x,y) Returns the largest element of the scalars x and y.
max(
 e(i, ..., j) for
 i in u, ...,
 j in v)

Also described in Section 10.3.4.1
Returns the largest value of the scalar expression e(i, ..., j) evaluated for all
combinations of i in u, ..., j in v:

sum(A) Returns the scalar sum of all the elements of array expression:
A[1,...,1]+A[2,...,1]+....+A[end,...,1]+A[end,...,end]

sum(
 e(i, ..., j) for
 i in u, ...,
 j in v)

Also described in Section 10.3.4.1
Returns the sum of the expression e(i, ..., j) evaluated for all combinations of i in
u, ..., j in v: e(u[1],... ,v[1])+e(u[2],... ,v[1])+... +e(u[end],...
,v[1])+...+e(u[end],... ,v[end])
The type of sum(e(i, ..., j) for i in u, ..., j in v) is the same as the type of e(i,...j).

product(A) Returns the scalar product of all the elements of array expression A.
A[1,...,1]*A[2,...,1]*....*A[end,...,1]*A[end,...,end]

product(
 e(i, ..., j) for
 i in u, ...,
 j in v)

Also described in Section 10.3.4.1.
Returns the product of the scalar expression e(i, ..., j) evaluated for all
combinations of i in u, ..., j in v: e(u[1],...,v[1])*e(u[2],...,v[1])*...
(u[end],...,v[1])...*e(u[end],...,v[end])
The type of product(e(i, ..., j) for i in u, ..., j in v) is the same as the type of
e(i,...j).

10.3.4.1 Reduction Expressions

An expression:
function-name "(" expression1 for iterators ")"

112 Modelica Language Specification 3.2 Revision 2

is a reduction-expression. The expressions in the iterators of a reduction-expression shall be vector expressions.
They are evaluated once for each reduction-expression, and are evaluated in the scope immediately enclosing the
reduction-expression.

For an iterator:
IDENT in expression2

the loop-variable, IDENT, is in scope inside expression1. The loop-variable may hide other variables, as in for-
clauses. The result depends on the function-name, and currently the only legal function-names are the built-in
operators array, sum, product, min, and max. For array, see Section 10.4. If function-name is sum,
product, min, or max the result is of the same type as expression1 and is constructed by evaluating
expression1 for each value of the loop-variable and computing the sum, product, min, or max of the
computed elements. For deduction of ranges, see Section 11.2.2.1; and for using types as ranges see Section
11.2.2.2.

Function-name Restriction on expression1 Result if expression2 is empty
sum Integer or Real zeros(…)

product Scalar Integer or Real 1

min Scalar enumeration,
Boolean, Integer or Real

Maximum value of type (
Modelica.Constants.inf
for Real)

max Scalar enumeration,
Boolean, Integer or Real

Minimum value of type (
-Modelica.Constants.inf
for Real)

[Example:

sum(i for i in 1:10) // Gives =∑ =

10

1i
i 1+2+...+10=55

// Read it as: compute the sum of i for i in the range 1 to 10.

sum(i^2 for i in {1,3,7,6}) // Gives { } =∑∈

2

6731i
i 1+9+49+36=95

{product(j for j in 1:i) for i in 0:4} // Gives {1,1,2,6,24}

max(i^2 for i in {3,7,6}) // Gives 49
]

10.3.5 Matrix and Vector Algebra Functions

The following set of built-in matrix and vector algebra functions are available. The function transpose can be
applied to any matrix. The functions outerProduct, symmetric, cross and skew require Real/Integer vector(s) or
matrix as input(s) and returns a Real vector or matrix:

Table 10-7. Matrix and vector algebra functions.

Modelica Explanation
transpose(A) Permutes the first two dimensions of array A. It is an error, if array A does not

have at least 2 dimensions.
outerProduct(v1,v2
)

Returns the outer product of vectors v1 and v2 (= matrix(v1)*transpose(
matrix(v2))).

symmetric(A) Returns a matrix where the diagonal elements and the elements above the
diagonal are identical to the corresponding elements of matrix A and where the
elements below the diagonal are set equal to the elements above the diagonal of
A, i.e., B := symmetric(A) -> B[i,j] := A[i,j], if i <= j, B[i,j] := A[j,i], if i > j.

 113

cross(x,y) Returns the cross product of the 3-vectors x and y, i.e.
cross(x,y) = vector([x[2]*y[3]-x[3]*y[2]; x[3]*y[1]-x[1]*y[3]; x[1]*y[2]-
x[2]*y[1]]);

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e.,
cross(x,y) = skew(x)*y; skew(x) = [0, -x[3], x[2]; x[3], 0, -x[1]; -x[2], x[1], 0];

10.4 Vector, Matrix and Array Constructors
The constructor function array(A,B,C,...) constructs an array from its arguments according to the following
rules:

• Size matching: All arguments must have the same sizes, i.e., size(A)=size(B)=size(C)=...
• All arguments must be type compatible expressions (Section 6.6) giving the type of the elements. The data

type of the result array is the maximally expanded type of the arguments. Real and Integer subtypes can be
mixed resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

• Each application of this constructor function adds a one-sized dimension to the left in the result compared to
the dimensions of the argument arrays, i.e., ndims(array(A,B,C)) = ndims(A) + 1 = ndims(B) +
1, ...

• {A, B, C, ...} is a shorthand notation for array(A, B, C, ...).
• There must be at least one argument [i.e., array() or {} is not defined].

[Examples:
{1,2,3} is a 3-vector of type Integer.
{{11,12,13}, {21,22,23}} is a 2x3 matrix of type Integer
{{{1.0, 2.0, 3.0}}} is a 1x1x3 array of type Real.
Real[3] v = array(1, 2, 3.0);
type Angle = Real(unit="rad");
parameter Angle alpha = 2.0; // type of alpha is Real.
// array(alpha, 2, 3.0) or {alpha, 2, 3.0} is a 3-vector of type Real.
Angle[3] a = {1.0, alpha, 4}; // type of a is Real[3].

]

10.4.1 Array Constructor with Iterators

An expression:
"{" expression for iterators "}"

or
array "(" expression for iterators ")"

is an array constructor with iterators. The expressions inside the iterators of an array constructor shall be vector
expressions. They are evaluated once for each array constructor, and is evaluated in the scope immediately
enclosing the array constructor.

For an iterator:
IDENT in array_expression

the loop-variable, IDENT, is in scope inside expression in the array construction. The loop-variable may hide other
variables, as in for-clauses. The loop-variable has the same type as the type of the elements of array_expression.
For deduction of ranges, see Section 11.2.2.1; and for using types as range see Section 11.2.2.2.

114 Modelica Language Specification 3.2 Revision 2

10.4.1.1 Array Constructor with One Iterator

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of the loop-
variable and forming an array of the result.

[Example:
array(i for i in 1:10)
// Gives the vector 1:10={1,2,3,...,10}

{r for r in 1.0 : 1.5 : 5.5}
// Gives the vector 1.0:1.5:5.5={1.0, 2.5, 4.0, 5.5}

{i^2 for i in {1,3,7,6}}
// Gives the vector {1, 9, 49, 36}

10.4.1.2 Array Constructor with Several Iterators

The notation with several iterators is a shorthand notation for nested array constructors. The notation can be
expanded into the usual form by replacing each ',' by '} for' and prepending the array constructor with a '{'.

[Example:
Real hilb[:,:]= {(1/(i+j-1) for i in 1:n, j in 1:n};
Real hilb2[:,:]={{(1/(i+j-1) for j in 1:n} for i in 1:n};

10.4.2 Array Concatenation

The function cat(k,A,B,C,...) concatenates arrays A,B,C,... along dimension k according to the following
rules:

• Arrays A, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...
• Arrays A, B, C, ... must be type compatible expressions (Section 6.6) giving the type of the elements of the

result. The maximally expanded types should be equivalent. Real and Integer subtypes can be mixed
resulting in a Real result array where the Integer numbers have been transformed to Real numbers.

• k has to characterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C); k shall be an
integer number.

• Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of
dimension k, i.e., size(A,j) = size(B,j), for 1 <= j <= ndims(A) and j <> k.

[Examples:
Real[2,3] r1 = cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});
Real[2,6] r2 = cat(2, r1, 2*r1);

]

Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) =, then
size(R,k) = size(A,k) + size(B,k) + size(C,k) + ...
size(R,j) = size(A,j) = size(B,j) = size(C,j) =, for 1 <= j <= n and j <> k.
R[i_1, ..., i_k, ..., i_n] = A[i_1, ..., i_k, ..., i_n], for i_k <= size(A,k),
R[i_1, ..., i_k, ..., i_n] = B[i_1, ..., i_k - size(A,i), ..., i_n], for i_k <= size(A,k) + size(B,k),

where 1 <= i_j <= size(R,j) for 1 <= j <= n.

10.4.2.1 Array Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation along the first and second dimensions.
• Concatenation along first dimension:

[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where

 115

n = max(2, ndims(A), ndims(B), ndims(C),). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, in order that the operands have the same number of dimensions
which will be at least two.

• Concatenation along second dimension:
[A, B, C, ...] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where
n = max(2, ndims(A), ndims(B), ndims(C),). If necessary, 1-sized dimensions are added to the right of A,
B, C before the operation is carried out, especially that each operand has at least two dimensions.

• The two forms can be mixed. [...,...] has higher precedence than [...;...], e.g., [a, b; c, d] is parsed as [[a,b];
[c,d]].

• [A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a matrix with the
elements of A, if A is a scalar or a vector.

• There must be at least one argument (i.e. [] is not defined)

 [Examples:
Real s1, s2, v1[n1], v2[n2], M1[m1,n],
 M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k], K2[m2,n,k];

[v1;v2] is a (n1+n2) x 1 matrix
[M1;M2] is a (m1+m2) x n matrix
[M3,M4] is a n x (m1+m2) matrix
[K1;K2] is a (m1+m2) x n x k array
[s1;s2] is a 2 x 1 matrix
[s1,s1] is a 1 x 2 matrix
[s1] is a 1 x 1 matrix
[v1] is a n1 x 1 matrix
Real[3] v1 = array(1, 2, 3);
Real[3] v2 = {4, 5, 6};
Real[3,2] m1 = [v1, v2];
Real[3,2] m2 = [v1, [4;5;6]]; // m1 = m2
Real[2,3] m3 = [1, 2, 3; 4, 5, 6];
Real[1,3] m4 = [1, 2, 3];
Real[3,1] m5 = [1; 2; 3];

]

10.4.3 Vector Construction

Vectors can be constructed with the general array constructor, e.g., Real[3] v = {1,2,3}.

The range vector operator or colon operator of simple-expression can be used instead of or in combination with
this general constructor to construct Real, Integer, Boolean or enumeration type vectors. Semantics of the colon
operator:

1. j : k is the Integer vector {j, j+1, ..., k}, if j and k are of type Integer.
• j : k is the Real vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real.
• j : k is a Real, Integer, Boolean, or enumeration type vector with zero elements, if j > k.
• j : d : k is the Integer vector {j, j+d, ..., j+n*d}, with n = div(k – j, d), if j, d, and k are of type Integer.
• j : d : k is the Real vector {j, j+d, ..., j+n*d}, with n = floor((k-j)/d), if j, d, or k are of type Real.
• j : d : k is a Real or Integer vector with zero elements, if d > 0 and j > k or if d < 0 and j < k.
• false : true is the Boolean vector {false, true}.
• j:j is {j} if j is Real, Integer, Boolean, or enumeration type.
• E.ei : E.ej is the enumeration type vector { E.ei, ... E.ej} where E.ej> E.ei, and ei and ej belong to some

enumeration type E=enumeration(...ei,...ej,...).

[Examples:

116 Modelica Language Specification 3.2 Revision 2

Real v1[5] = 2.7 : 6.8;
Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7}; // = same as v1
Boolean b1[2] = false:true;
Colors = enumeration(red,blue,green);
Colors ec[3] = Colors.red : Colors.green;

]

10.5 Array Indexing
The array indexing operator name[...] is used to access array elements for retrieval of their values or for

updating these values. An indexing operation is subject to upper and lower array dimension index bounds (Section
10.1.1). [An indexing operation is assumed to take constant time, i.e., largely independent of the size of the array.]
The indexing operator takes two or more operands, where the first operand is the array to be indexed and the rest
of the operands are index expressions:
arrayname[indexexpr1, indexexpr2, ...]

A colon is used to denote all indices of one dimension. A vector expression can be used to pick out selected rows,
columns and elements of vectors, matrices, and arrays. The number of dimensions of the expression is reduced by
the number of scalar index arguments.

It is also possible to use the array access operator to assign to element/elements of an array in algorithm
sections. If the index is an array the assignments take place in the order given by the index array. For assignments
to arrays and elements of arrays, the entire right-hand side and the index on the left-hand side is evaluated before
any element is assigned a new value.

 [Examples:

a[:, j] is a vector of the j-th column of a,
a[j : k] is {[a[j], a[j+1], ... , a[k]}

a[:,j : k] is [a[:,j], a[:,j+1], ... , a[:,k]],

v[2:2:8] = v[{2,4,6,8}] .

v[{j,k}]:={2,3}; // Same as v[j]:=2; v[k]:=3;

v[{1,1}]:={2,3}; // Same as v[1]:=3;

if x is a vector, x[1] is a scalar, but the slice x[1:5] is a vector (a vector-valued or colon index expression
causes a vector to be returned).

]

[Examples given the declaration x[n,m], v[k], z[i,j,p]:

Table 10-8. Examples of scalars vs. array slices created with the colon index.

Expression # dimensions Type of value
x[1, 1] 0 Scalar
x[:, 1] 1 n – Vector
x[1, :] 1 m – Vector
v[1:p] 1 p – Vector
x[1:p, :] 2 p x m – Matrix
x[1:1, :] 2 1 x m - "row" matrix
x[{1, 3, 5}, :] 2 3 x m – Matrix
x[: , v] 2 n x k – Matrix
z[: , 3, :] 2 i x p – Matrix
x[scalar([1]), :] 1 m – Vector
x[vector([1]), :] 2 1 x m - "row" matrix

 117

]

10.5.1 Indexing with Boolean or Enumeration Values

Arrays can be indexed using values of enumeration types or the Boolean type, not only by integers.

[Example:
 type ShirtSizes = enumeration(small, medium, large, xlarge);
 Real[ShirtSizes] w;
 Real[Boolean] b2;
algorithm
 w[ShirtSizes.large] := 2.28; // Assign a value to an element of w
 b2[true] := 10.0;

]

10.5.2 Indexing with end

The expression end may only appear inside array subscripts, and if used in the i:th subscript of an array
expression A it is equivalent to size(A,i) provided indices to A are a subtype of Integer. If used inside nested
array subscripts it refers to the most closely nested array.

[Examples:
A[end-1,end] is A[size(A,1)-1,size(A,2)]

A[v[end],end] is A[v[size(v,1)],size(A,2)] // since the first end is referring to end of v.
]

10.6 Scalar, Vector, Matrix, and Array Operator Functions
The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype of
Integer can also be used; the Integer expression is automatically converted to Real.

The term numeric or numeric class is used below for a subtype of the Real or Integer type classes.

10.6.1 Equality and Assignment

Equality a=b and assignment a:=b of scalars, vectors, matrices, and arrays is defined element-wise and require
both objects to have the same number of dimensions and corresponding dimension sizes. The operands need to be
type equivalent. This is legal for the simple types and all types satisfying the requirements for a record, and is in
the latter case applied to each component-element of the records.

Table 10-9. Equality and assignment of arrays and scalars.

Type of a Type of b Result of a = b Operation (j=1:n, k=1:m)
Scalar Scalar Scalar a = b
Vector[n] Vector[n] Vector[n] a[j] = b[j]
Matrix[n, m] Matrix[n, m] Matrix[n, m] a[j, k] = b[j, k]
Array[n, m, …] Array[n, m, …] Array[n, m, …] a[j, k, …] = b[j, k, …]

118 Modelica Language Specification 3.2 Revision 2

10.6.2 Array Element-wise Addition, Subtraction, and String Concatenation

Addition a+b and subtraction a-b of numeric scalars, vectors, matrices, and arrays is defined element-wise and
require size(a)=size(b) and a numeric type for a and b. Addition a+b of string scalars, vectors, matrices, and
arrays is defined as element-wise string concatenation of corresponding elements from a and b, and require
size(a)=size(b).

Table 10-10. Array addition, subtraction, and string concatenation.

Type of a Type of b Result of a +/- b Operation c := a +/- b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a +/- b
Vector[n] Vector[n] Vector[n] c[j] := a[j] +/- b[j]
Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j, k] := a[j, k] +/- b[j, k]
Array[n, m, …] Array[n, m, …] Array[n, m, …] c [j, k, …] := a[j, k, …] +/- b[j, k, …]

Element-wise addition a.+b and subtraction a.-b of numeric scalars, vectors, matrices or arrays a and b requires
a numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b. Element-wise addition a.+b of
string scalars, vectors, matrices, and arrays is defined as element-wise string concatenation of corresponding
elements from a and b, and require either size(a) = size(b) or scalar a or scalar b.

Table 10-11 Array element-wise addition, subtraction, and string concatenation.

Type of a Type of b Result of a .+/.- b Operation c := a .+/.- b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a +/- b
Scalar Array[n, m, …] Array[n, m, …] c[j, k, …] := a +/- b[j, k, …]
Array[n, m, …] Scalar Array[n, m, …] c[j, k, …] := a[j, k, …] +/- b
Array[n, m, …] Array[n, m, …] Array[n, m, …] c [j, k, …] := a[j, k, …] +/- b[j, k, …]

10.6.3 Array Element-wise Multiplication

Scalar multiplication s*a or a*s with numeric scalar s and numeric scalar, vector, matrix or array a is defined
element-wise:

Table 10-12. Scalar and scalar to array multiplication of numeric elements

Type of s Type of a Type of s* a and a*s Operation c := s*a or c := a*s (j=1:n, k=1:m)
Scalar Scalar Scalar c := s * a
Scalar Vector [n] Vector [n] c[j] := s* a[j]
Scalar Matrix [n, m] Matrix [n, m] c[j, k] := s* a[j, k]
Scalar Array[n, m, ...] Array [n, m, ...] c[j, k, ...] := s*a[j, k, ...]

Element-wise multiplication a.*b of numeric scalars, vectors, matrices or arrays a and b requires a numeric type
class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10-13 Array element-wise multiplication

Type of a Type of b Type of a .* b Operation c:=a .* b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a * b
Scalar Array[n, m, …] Array[n, m, …] c[j, k, …] := a* b[j, k, …]
Array[n, m, …] Scalar Array[n, m, …] c[j, k, …] := a[j, k, …]* b
Array[n, m, …] Array[n, m, ...] Array [n, m, ...] c[j, k, …] := a[j, k, …]* b[j, k, …]

 119

10.6.4 Matrix and Vector Multiplication of Numeric Arrays

Multiplication a*b of numeric vectors and matrices is defined only for the following combinations:

Table 10-14. Matrix and vector multiplication of arrays with numeric elements.

Type of a Type of b Type of a* b Operation c := a*b
Vector [n] Vector [n] Scalar c := sumk(a[k]*b[k]), k=1:n
Vector [n] Matrix [n, m] Vector [m] c[j] := sumk(a[k]*b[k, j]), j=1:m, k=1:n
Matrix [n, m] Vector [m] Vector [n] c[j] := sumk(a[j, k]*b[k])
Matrix [n, m] Matrix [m, p] Matrix [n, p] c[i, j] = sumk(a[i, k]*b[k, j]), i=1:n, k=1:m, j=1:p

[Example:
Real A[3,3], x[3], b[3], v[3];
A*x = b;
x*A = b; // same as transpose([x])*A*b
[v]*transpose([v]) // outer product
v*A*v // scalar
tranpose([v])*A*v // vector with one element

]

10.6.5 Division of Scalars or Numeric Arrays by Numeric Scalars

Division a/s of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-wise. The
result is always of real type. In order to get integer division with truncation use the function div.

Table 10-15. Division of scalars and arrays by numeric elements.

Type of a Type of s Result of a / s Operation c := a / s (j=1:n, k=1:m)
Scalar Scalar Scalar c := a / s
Vector[n] Scalar Vector[n] c[k] := a[k] / s
Matrix[n, m] Scalar Matrix[n, m] c[j, k] := a[j, k] / s
Array[n, m, …] Scalar Array[n, m, …] c[j, k, …] := a[j, k, …] / s

10.6.6 Array Element-wise Division

Element-wise division a./b of numeric scalars, vectors, matrices or arrays a and b requires a numeric type class
for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10-16 Element-wise division of arrays

Type of a Type of b Type of a ./ b Operation c:=a ./ b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a / b
Scalar Array[n, m, …] Array[n, m, …] c[j, k, …] := a / b[j, k, …]
Array[n, m, …] Scalar Array[n, m, …] c[j, k, …] := a[j, k, …] / b
Array[n, m, …] Array[n, m, ...] Array [n, m, ...] c[j, k, …] := a[j, k, …] / b[j, k, …]

[Element-wise division by scalar (./) and division by scalar (/) are identical: a./s = a/s.

Example:
 2./[1,2;3,4] // error, since 2.0/[1,2;3,4]
 2 ./[1,2;3,4] // fine, element-wise division

120 Modelica Language Specification 3.2 Revision 2

This is a consequence of the parsing rules, since 2. is a lexical unit. Using a space after the literal solves the
problem.]

10.6.7 Exponentiation of Scalars of Numeric Elements

Exponentiation "a^b" is defined as pow(double a,double b) in the ANSI C library if both "a" and "b" are Real
scalars. A Real scalar value is returned. If "a" or "b" are Integer scalars, they are automatically promoted to
"Real". Consequences of exceptional situations, such as (a==0.0 and b<=0.0, a<0 and b is not an integer) or
overflow are undefined

Element-wise exponentiation a.^b of numeric scalars, vectors, matrices, or arrays a and b requires a numeric type
class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10-17 Element-wise exponentiation of arrays

Type of a Type of b Type of a .^ b Operation c:=a .^ b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a ^ b
Scalar Array[n, m, …] Array[n, m, …] c[j, k, …] := a ^ b[j, k, …]
Array[n, m, …] Scalar Array[n, m, …] c[j, k, …] := a[j, k, …] ^ b
Array[n, m, …] Array[n, m, ...] Array [n, m, ...] c[j, k, …] := a[j, k, …] ^ b[j, k, …]

[Example:
 2.^[1,2;3,4] // error, since 2.0^[1,2;3,4]
 2 .^[1,2;3,4] // fine, element wise exponentiation

This is a consequence of the parsing rules, i.e. since 2. could be a lexical unit it seen as a lexical unit; using a
space after literals solves the problem.]

10.6.8 Scalar Exponentiation of Square Matrices of Numeric Elements

Exponentiation a^s is defined if a is a square numeric matrix and s is a scalar as a subtype of Integer with s>=0.
The exponentiation is done by repeated multiplication

(e.g.:
a^3 = a*a*a; a^0 = identity(size(a,1));
assert(size(a,1)==size(a,2),"Matrix must be square");
a^1 = a;

[Non-Integer exponents are forbidden, because this would require to compute the eigenvalues and eigenvectors of
“a” and this is no longer an elementary operation].

10.6.9 Slice Operation

The following holds for slice operations:

• If a is an array containing scalar components and m is a component of those components, the expression
a.m is interpreted as a slice operation. It returns the array of components {a[1].m, …}.

• If m is also an array component, the slice operation is valid only if size(a[1].m)=size(a[2].m)=…
• The slicing operation can be combined with indexing, e.g. a.m[1]. It returns the array of components

{a[1].m[1], a[2].m[1], …}, and does not require that size(a[1].m)=size(a[2].m). The number of subscripts
on m must exactly correspond to the number of array dimension for m, and is only valid if
size(a[1].m[…])=size(a[2].m[…])..

 121

 [Example: The size-restriction on the operand is only applicable if the indexing on the second operand uses
vectors or colon as in the example:

 constant Integer m=3;
 Modelica.Blocks.Continuous.LowpassButterworth tf[m](n=2:(m+1));
 Real y[m];
 Real y2,y3;
 equation
 // Extract the x1 slice even though different x1's have different lengths
 y=tf.x1[1] ; // Legal, ={tf[1].x1[1], tf[2].x1[1], … tf[m].x1[1]};

 y2=sum(tf.x1[:]); // Illegal to extract all elements since they have
 // different lengths. Does not satisfy:
 // size(tf[1].x1[:])=size(tf[2].x1[:])=… =size(tf[m].x1[:])

 y3=sum(tf.x1[1:2]); // Legal.
 // Since x1 has at least 2 elements in all tf, and
 // size(tf[1].x1[1:2])=size(tf[2].x1[1:2])=… =size(tf[m].x1[1:2])={2}

In this example the different x1 vectors have different lengths, but it is still possible to perform some operations on
them.]

10.6.10 Relational Operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types, not for arrays, see
Section 3.5

10.6.11 Boolean Operators

The operators, and and or take expressions of Boolean type, which are either scalars or arrays of matching
dimensions. The operator not takes an expression of Boolean type, which is either scalar or an array. The result is
the element-wise logical operation. For short-circuit evaluation of and and or see Section 3.3.

10.6.12 Vectorized Calls of Functions

See Section 12.4.6.

10.7 Empty Arrays
Arrays may have dimension sizes of 0. E.g.
Real x[0]; // an empty vector
Real A[0, 3], B[5, 0], C[0, 0]; // empty matrices

Empty matrices can be constructed with the fill function. E.g.
Real A[:,:] = fill(0.0, 0, 1); // a Real 0 x 1 matrix
Boolean B[:, :, :] = fill(false, 0, 1, 0); // a Boolean 0 x 1 x 0 matrix

It is not possible to access an element of an empty matrix, e.g. v[j,k] cannot be evaluated if v=[] because the
assertion fails that the index must be bigger than one.

Size-requirements of operations, such as +, -, have also to be fulfilled if a dimension is zero. E.g.
Real[3,0] A, B;
Real[0,0] C;
A + B // fine, result is an empty matrix
A + C // error, sizes do not agree

122 Modelica Language Specification 3.2 Revision 2

Multiplication of two empty matrices results in a zero matrix of corresponding numeric type if the result matrix
has no zero dimension sizes, i.e.,
Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)
Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)
Real[m,0]*Real[0,n] = fill(0.0, m, n) (non-empty matrix, with zero elements).

 [Example:
Real u[p], x[n], y[q], A[n,n], B[n,p], C[q,n], D[q,p];
der(x) = A*x + B*u
 y = C*x + D*u

Assume n=0, p>0, q>0: Results in y = D*u
]

123

Chapter 11

Statements and Algorithm Sections

Whereas equations are very well suited for physical modeling, there are situations where computations are more
conveniently expressed as algorithms, i.e., sequences of statements. In this chapter we describe the algorithmic
constructs that are available in Modelica.

Statements are imperative constructs allowed in algorithm sections.

11.1 Algorithm Sections
Algorithm sections is comprised of the keyword algorithm followed by a sequence of statements. The formal
syntax is as follows:
algorithm_section :
 [initial] algorithm { statement ";" | annotation ";" }

Equation equality = or any other kind of equation (see Chapter 8) shall not be used in an algorithm section.

11.1.1 Initial Algorithm Sections

See Section 8.6 for a description of both initial algorithm sections and initial equation sections.

11.1.2 Execution of an algorithm in a model

An algorithm section is conceptually a code fragment that remains together and the statements of an algorithm
section are executed in the order of appearance. Whenever an algorithm section is invoked, all variables appearing
on the left hand side of the assignment operator ":=" are initialized (at least conceptually):

• A non-discrete variable is initialized with its start value (i.e. the value of the start-attribute).
• A discrete variable v is initialized with pre(v).
• If at least one element of an array appears on the left hand side of the assignment operator, then the

complete array is initialized in this algorithm section.

[Initialization is performed, in order that an algorithm section cannot introduce a "memory" (except in the case of
discrete states which are explicitly given), which could invalidate the assumptions of a numerical integration
algorithm. Note, a Modelica tool may change the evaluation of an algorithm section, provided the result is
identical to the case, as if the above conceptual processing is performed.

An algorithm section is treated as an atomic vector-equation, which is sorted together with all other equations.
Conceptually the algorithm can be viewed as (lhs1, lhs2, …) = someFunction(nonLhs1, nonLhs2, …), where lhs
are the variables assigned and nonLhs are other appearing variables. For the sorting process (BLT), every
algorithm section with N different left-hand side variables, is treated as an atomic N-dimensional vector-equation
containing all variables appearing in the algorithm section. This guarantees that all N equations end up in an
algebraic loop and the statements of the algorithm section remain together.

Example:

124 Modelica Language Specification 3.2 Revision 2

model Test // wrong Modelica model (has 4 equations for 2 unknowns)
 Real x[2](start={-11, -22});
algorithm // conceptually: x = {1,-22}
 x[1] := 1;
algorithm // conceptually: x = {-11,2}
 x[2] := 2;
end Test;

]

11.1.3 Execution of the algorithm in a function

See section 12.4.4 “Initialization and Declaration Assignments of Components in Functions”.

11.2 Statements
Statements are imperative constructs allowed in algorithm sections. A flattened statement is identical to the
corresponding nonflattened statement.
Names in statements are found as follows:

• If the name occurs inside an expression: it is first found among the lexically enclosing reduction functions
(see Section 10.3.4) in order starting from the inner-most, and if not found it proceeds as if it were outside
an expression:

• Names in a statement are first found among the lexically enclosing for-statements in order starting from the
inner-most, and if not found:

• Names in a statement shall be found by looking up in the partially flattened enclosing class of the algorithm
section.

The syntax of statements is as follows:
statement :
 (component_reference (":=" expression | function_call_args)
 | "(" output_expression_list ")" ":=" component_reference function_call_args
 | break
 | return
 | if_statement
 | for_statement
 | while_statement
 | when_statement)
 comment

11.2.1 Simple Assignment Statements

The syntax of simple assignment statement is as follows:
component_reference ":=" expression

The expression is evaluated. The resulting value is stored into the variable denoted by
component_reference.

11.2.1.1 Assignments from Called Functions with Multiple Results

There is a special form of assignment statement that is used only when the right-hand side contains a call to a
function with multiple results. The left-hand side contains a parenthesized, comma-separated list of variables
receiving the results from the function call. A function with n results needs m<=n receiving variables on the left-
hand side.
(out1, out2, out3) := function_name(in1, in2, in3, in4);

It is possible to omit receiving variables from this list:

 125

(out1,, out3) := function_name(in1, in2, in3, in4);

[Example: The function f called below has three results and two inputs:
(a, b, c) := f(1.0, 2.0);
(x[1], x[2], x[3]) := f(3,4);

]

The syntax of an assignment statement with a call to a function with multiple results is as follows:
"(" output_expression_list ")" ":=" component_reference function_call_args

[Also see Section 8.3.1 regarding calling functions with multiple results within equations.]

11.2.2 For-statement

The syntax of a for-statement is as follows:
 for for_indices loop
 { statement ";" }
 end for

For-statements may optionally use several iterators (for_indices), see Section 11.2.2.3 for more information:

for_indices:
 for_index {"," for_index}

for_index:
 IDENT [in expression]

The following is an example of a prefix of a for-statement:
 for IDENT in expression loop

The expression of a for-statement shall be a vector expression. It is evaluated once for each for-statement, and
is evaluated in the scope immediately enclosing the for-statement. The loop-variable (IDENT) is in scope inside
the loop-construct and shall not be assigned to. The loop-variable has the same type as the type of the elements of
the vector expression.

[Example:
for i in 1:10 loop // i takes the values 1,2,3,...,10
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5
for i in {1,3,6,7} loop // i takes the values 1, 3, 6, 7
for i in TwoEnums loop // i takes the values TwoEnums.one, TwoEnums.two
 // for
TwoEnums = enumeration(one,two)

The loop-variable may hide other variables as in the following example. Using another name for the loop-
variable is, however, strongly recommended.
 constant Integer j=4;
 Real x[j];
equation
 for j in 1:j loop // The loop-variable j takes the values 1,2,3,4
 x[j]=j; // Uses the loop-variable j
 end for;

]

11.2.2.1 Implicit Iteration Ranges

An iterator IDENT in range-expr without the in range-expr requires that the IDENT appears as the subscript
of one or several subscripted expressions. The dimension size of the array expression in the indexed position is
used to deduce the range-expr as 1:size(array-expression,indexpos) if the indices are a subtype of
Integer, or as E.e1:E.en if the indices are of an enumeration type E=enumeration(e1, …, en), or as

126 Modelica Language Specification 3.2 Revision 2

false:true if the indices are of type Boolean. If it is used to subscript several expressions, their ranges must be
identical. The IDENT may also, inside a reduction-expression, array constructor expression, for-statement, or for-
equation, occur freely outside of subscript positions, but only as a reference to the variable IDENT, and not for
deducing ranges.

[Example:
 Real x[4];
 Real xsquared[:]={x[i]*x[i] for i};
 // Same as: {x[i]*x[i] for i in 1:size(x,1)}
 Real xsquared2[size(x,1)];
 Real xsquared3[size(x,1)];
equation
 for i loop // Same as: for i in 1:size(x,1) loop ...
 xsquared2[i]=x[i]^2;
 end for;
algorithm
 for i loop // Same as: for i in 1:size(x,1) loop ...
 xsquared3[i] := x[i]^2;
 end for;

type FourEnums=enumeration(one,two,three,four);
 Real xe[FourEnums]= x;
 Real xsquared3[FourEnums]={xe[i]*xe[i] for i};
 Real xsquared4[FourEnums]={xe[i]*xe[i] for i in FourEnums};
 Real xsquared5[FourEnums]={x[i]*x[i] for i};

]
The size of an array – the iteration range is evaluated on entry to the for-loop and the array size may not

change during the execution of the for-loop.

11.2.2.2 Types as Iteration Ranges

The iteration range can be specified as Boolean or as an enumeration type. This means iteration over the type
from min to max, i.e. for Boolean it is the same as false:true and for an enumeration E it is the same as
E.min:E.max. This can be used for for loops and reduction expressions.

[Example:

 type FourEnums=enumeration(one,two,three,four);
 Real xe[FourEnums];
 Real xsquared1[FourEnums];
 Real xsquared2[FourEnums]={xe[i]*xe[i] for i in FourEnums};
equation
 for i in FourEnums loop
 xsquared1[i]=xe[i]^2;
 end for;

]

11.2.2.3 Nested For-Loops and Reduction Expressions with Multiple Iterators

The notation with several iterators is a shorthand notation for nested for-statements or for-equations (or reduction-
expressions). For for-statements or for-equations it can be expanded into the usual form by replacing each “,” by
‘loop for’ and adding extra ‘end for’. For reduction-expressions it can be expanded into the usual form by
replacing each ‘,’ by ‘) for’ and prepending the reduction-expression with ‘function-name(‘.

[Example:
 Real x[4,3];
algorithm
 for j, i in 1:2 loop
 // The loop-variable j takes the values 1,2,3,4 (due to use)
 // The loop-variable i takes the values 1,2 (given range)
 x[j,i] := j+i;

 127

 end for;

]

11.2.3 While-Statement

The while-statement has the following syntax:
while expression loop
 { statement ";" }
end while

The expression of a while-statement shall be a scalar Boolean expression. The while-statement corresponds to
while-statements in programming languages, and is formally defined as follows:

1. The expression of the while-statement is evaluated.
2. If the expression of the while-statement is false, the execution continues after the while-statement.
3. If the expression of the while-statement is true, the entire body of the while-statement is executed

(except if a break-statement, see Section 11.2.4, or a return-statement, see Section 11.2.4, is executed), and
then execution proceeds at step 1.

11.2.4 Break-Statement

The break-statement breaks the execution of the innermost while or for-loop enclosing the break-statement and
continues execution after the while- or for-loop. It can only be used in a while- or for-loop in an algorithm section.
It has the following syntax:
break;

[Example (note this could alternatively use return):
function findValue "Returns position of val or 0 if not found"
 input Integer x[:];
 input Integer val;
 output Integer index;
algorithm
 index := size(x,1);
 while index >= 1 loop
 if x[index]== val then
 break;
 else
 index := index – 1;
 end if;
 end while;
end findValue;

]

11.2.5 Return-Statements

Can only be used inside functions, see Section 12.1.2.

11.2.6 If-Statement

If-statements have the following syntax:
 if expression then
 { statement ";" }
 { elseif expression then
 { statement ";" }
 }
 [else

128 Modelica Language Specification 3.2 Revision 2

 { statement ";" }
]
 end if;

The expression of an if- or elseif-clause must be scalar Boolean expression. One if-clause, and zero or more
elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies of these if-,
elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses sequentially until a
condition that evaluates to true is found. If none of the conditions evaluate to true the body of the else-clause is
selected (if an else-clause exists, otherwise no body is selected). In an algorithm section, the selected body is then
executed. The bodies that are not selected have no effect on that model evaluation.

11.2.7 When-Statements

A when-statement has the following syntax:
 when expression then
 { statement ";" }
 { elsewhen expression then
 { statement ";" } }
 end when

The expression of a when-statement shall be a discrete-time Boolean scalar or vector expression. The
algorithmic statements within a when-statement are activated when the scalar or any one of the elements of the
vector-expression becomes true.

[Example:

Algorithms are activated when x becomes > 2:
when x > 2 then
 y1 := sin(x);
 y3 := 2*x + y1+y2;
end when;

The statements inside the when-statement are activated when either x becomes > 2 or sample(0,2) becomes
true or x becomes less than 5:
when {x > 2, sample(0,2), x < 5} then
 y1 := sin(x);
 y3 := 2*x + y1+y2;
end when;

For when-statements in algorithm sections the order is significant and it is advisable to have only one assignment
within the when-statement and instead use several algorithm sections having when-statements with identical
conditions, e.g.:
algorithm
 when x > 2 then
 y1 := sin(x);
 end when;

equation
 y2 = sin(y1);

algorithm
 when x > 2 then
 y3 := 2*x +y1+y2;
 end when;

Merging the when-statements can lead to less efficient code and different models with different behavior
depending on the order of the assignment to y1 and y3 in the algorithm.
]

11.2.7.1 Restrictions on When-Statements

• A when-statement shall not be used within a function.

 129

• When-statements cannot be nested.
• When-statements may not occur inside while, if, and for-clauses in algorithms.

[Example:

The following nested when-statement is invalid:
when x > 2 then

 when y1 > 3 then
 y2 := sin(x);
 end when;
end when;

]

11.2.7.2 Defining When-Statements by If-Statements

A when-statement:
algorithm
 when {x>1, ..., y>p} then
 ...
 elsewhen x > y.start then

 ...
 end when;

is similar to the following special if-statement, where Boolean b1[N]; and Boolean b2; are necessary
because the edge() operator can only be applied to variables
 Boolean b1[N](start={x.start>1, ..., y.start>p});
 Boolean b2(start=x.start>y.start);
algorithm
 b1:={x>1, ..., y>p};
 b2:=x>y.start;

 if edge(b1[1]) or edge(b1[2]) or ... edge(b1[N]) then
 ...
 elseif edge(b2) then
 ...
 end if;

with edge(A)= A and not pre(A) and the additional guarantee, that the statements within this special if-
statement are only evaluated at event instants. The difference compared to the when-statements is that e.g. ‘pre’
may only be used on continuous-time real variables inside the body of a when-clause and not inside these if-
statements.

11.2.8 Special Statements

These special statements have the same form and semantics as the corresponding equations, apart from the general
difference in semantics between equations and statements.

11.2.8.1 Assert Statement

See Section 8.3.7. A failed assert stops the execution of the current algorithm.

11.2.8.2 Terminate Statement

See Section 8.3.8. The terminate statement may not be in functions; In an algorithm outside a function it does not
stop the execution of the current algorithm.

130 Modelica Language Specification 3.2 Revision 2

131

Chapter 12

Functions

This chapter describes the Modelica function construct.

12.1 Function Declaration
A Modelica function is a specialized class (Section 12.2) using the keyword function. The body of a Modelica
function is an algorithm section that contains procedural algorithmic code to be executed when the function is
called, or alternatively an external function specifier (Section 12.9). Formal parameters are specified using the
input keyword, whereas results are denoted using the output keyword. This makes the syntax of function
definitions quite close to Modelica class definitions, but using the keyword function instead of class.

[The structure of a typical function declaration is sketched by the following schematic function example:

function functionname
 input TypeI1 in1;
 input TypeI2 in2;
 input TypeI3 in3 := default_expr1 "Comment" annotation(...);
 ...
 output TypeO1 out1;
 output TypeO2 out2 := default_expr2;
 ...
protected
 <local variables>
 ...
algorithm
 ...
 <statements>

 ...
end functionname;

]

Optional explicit default values can be associated with any input or output formal parameter through declaration
assignments. [Such defaults are shown for the third input parameter and the second output parameter in our
example.] Comment strings and annotations can be given for any formal parameter declaration, as usual in
Modelica declarations.

[All internal parts of a function are optional; i.e., the following is also a legal function:

function functionname
end functionname;

]

132 Modelica Language Specification 3.2 Revision 2

12.1.1 Ordering of Formal Parameters

The relative ordering between input formal parameter declarations is significant since that determines the
matching between actual arguments and formal parameters at function calls with positional parameter passing.
Likewise, the relative ordering between the declarations of the outputs is significant since that determines the
matching with receiving variables at function calls of functions with multiple results. However, the declarations of
the inputs and outputs can be intermixed as long as these internal orderings are preserved. [Mixing declarations in
this way is not recommended, however, since it makes the code hard to read.]

[Example:

function <functionname>
 output TypeO1 out1; // Intermixed declarations of inputs and outputs
 input TypeI1 in1; // not recommended since code becomes hard to read
 input TypeI2 in2;
 ...
 output TypeO2 out2;
 input TypeI3 in3;
 ...
end <functionname>;

]

12.1.2 Function Return-Statement

The return-statement terminates the current function call, see Section 12.4. It can only be used in an algorithm
section of a function. It has the following form:
return;

[Example (note this could alternatively use break):
function findValue "Returns position of val or 0 if not found"
 input Integer x[:];
 input Integer val;
 output Integer index;
algorithm
 for i in 1:size(x,1) loop
 if x[i] == val then
 index := i;
 return;
 end if;
 end for;
 index := 0;
 return;
end findValue;

]

12.1.3 Inheritance of Functions

It is allowed for a function to inherit and/or modify another function following the usual rules for inheritance of
classes (Chapter 7). [For example, it is possible to modify and extend a function class to add default values for
input variables.]

12.2 Function as a Specialized Class
The function concept in Modelica is a specialized class (Section 4.6). [The syntax and semantics of a function
have many similarities to those of the block specialized class. A function has many of the properties of a general
class, e.g. being able to inherit other functions, or to redeclare or modify elements of a function declaration.]

Modelica functions have the following restrictions compared to a general Modelica class:

 133

• Each input formal parameter of the function must be prefixed by the keyword input, and each result formal
parameter by the keyword output. All public variables are formal parameters.

• Input formal parameters are read-only after being bound to the actual arguments or default values, i.e., they
may not be assigned values in the body of the function.

• A function may not be used in connections, may have no equations, may have no initial algorithm, and can
have at most one algorithm section, which, if present, is the body of the function.

• A function may only contain components of the restricted classes type, record, operator record, and
function; i.e. no model or block components.

• The elements of a function may not have prefixes inner, or outer.
• A function may have zero or one external function interface, which, if present, is the external definition of

the function.
• For a function to be called in a simulation model, it must have either an algorithm section or an external

function interface as its body, or be defined as a function partial derivative and it may not be partial.
• A function cannot contain calls to the Modelica built-in operators der, initial, terminal, sample,

pre, edge, change, reinit, delay, cardinality, inStream, actualStream, to the operators of the
built-in package Connections, and is not allowed to contain when-statements.

• The dimension sizes not declared with (:) of each array result or array local variable [i.e., a non-input
components] of a function must be either given by the input formal parameters, or given by constant or
parameter expressions, or by expressions containing combinations of those (Section 12.4.4).

• The local variables of a function are not automatically initialized to the implicit default values of the data
type (Section 12.4.4) [(e.g. 0.0 for Real) for performance reasons. It is the responsibility of the user to
provide explicit defaults or to define the values of such variables before they are referenced.]

• Components of a function will inside the function behave as though they had discrete-time variability.

Modelica functions have the following enhancements compared to a general Modelica class:

• A function may be called using the conventional positional calling syntax for passing arguments.
• A function can be recursive.
• A formal parameter or local variable may be initialized through an assignment (:=) of a default value in its

declaration. Initialization through an equation is not possible.
• A function is dynamically instantiated when it is called rather than being statically instantiated by an

instance declaration, which is the case for other kinds of classes.
• A function may have an external function interface specifier as its body.
• A function may have a return statement in its algorithm section body.
• A function allows dimension sizes declared with (:) to be resized for non-input array variables, see Section

12.4.5.
• A function may be defined in a short function definition to be a function partial derivative.

12.3 Pure Modelica Functions
Modelica functions are pure, i.e., are side-effect free with respect to the Modelica state (the set of all Modelica
variables in a total simulation model), apart from the exceptional case specified further below. This means that:

• Modelica functions are mathematical functions, i.e. calls with the same input argument values always give
the same results.

• A Modelica function is side-effect free with respect to the internal Modelica simulation state. Specifically,
the ordering of function calls and the number of calls to a function shall not influence the simulation state.

•

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes it possible for
Modelica compilers to freely perform algebraic manipulation of expressions containing function calls while still
preserving their semantics.]

134 Modelica Language Specification 3.2 Revision 2

[Comment 2: The Modelica translator is responsible for maintaining this property for pure non-external
functions. Regarding external functions, the external function implementor is responsible. Note that external
functions can have side-effects as long as they do not influence the internal Modelica simulation state, e.g.
caching variables for performance or printing trace output to a log file.]

• Exception: An impure function is either an impure external function or a Modelica function calling an
impure function. An impure function (that may return different values at different calls despite having the
same input argument values), may be called from within an impure function, from within a when-equation
or when-statement, and during initialization.

[Comment: The semantics are undefined if the function call is part of an algebraic loop.
This exceptional case allows, e.g. calling impure external functions at events in when-equations or when-

statements during hardware-in-the-loop simulation, to obtain input from the external hardware component,
and/or provide output to be communicated to such a component.

The above implies that if all external functions that are used are pure then all Modelica functions are pure.]

12.4 Function Call
Function classes and record constructors can be called as described in this section.

12.4.1 Positional or Named Input Arguments of Functions

A function call has optional positional arguments followed by zero, one or more named arguments, such as
f(3.5, 5.76, arg3=5, arg6=8.3);

The formal syntax of a function call:
primary :
 name function_call_args

function_call_args :
 "(" [function_arguments] ")"

function_arguments :
 function_argument ["," function_arguments]
 | named_arguments

named_arguments: named_argument ["," named_arguments]

named_argument: IDENT "=" function_argument

function_argument : function name "(" [named_arguments] ")" | expression

The interpretation of a function call is as follows: First, a list of unfilled slots is created for all formal input
parameters. If there are N positional arguments, they are placed in the first N slots, where the order of the
parameters is given by the order of the component declarations in the function definition. Next, for each named
argument identifier = expression, the identifier is used to determine the corresponding slot. This slot
shall be not filled [otherwise an error occurs] and the value of the argument is placed in the slot, filling it. When
all arguments have been processed, the slots that are still unfilled are filled with the corresponding default value of
the function definition. There shall be no remaining unfilled slots [otherwise an error occurs] and the list of filled
slots is used as the argument list for the call.

The type of each argument must agree with the type of the corresponding parameter, except where the standard
type coercions can be used to make the types agree. (See also Section 12.4.6 on applying scalar functions to
arrays.)

[Example.

Assume a function RealToString is defined as follows to convert a Real number to a String:

 135

function RealToString
 input Real number;
 input Real precision := 6 "number of significantdigits";
 input Real length := 0 "minimum length of field";
 output String string "number as string";
 ...
end RealToString;

Then the following applications are equivalent:
RealToString(2.0);
RealToString(2.0, 6, 0);
RealToString(2.0, 6);
RealToString(2.0, precision=6);
RealToString(2.0, length=0);
RealToString(2.0, 6, precision=6); // error: slot is used twice

]

12.4.2 Functional Input Arguments to Functions

A functional input argument to a function is an argument of function type. The declared type of such an input
formal parameter in a function can be the class-name of a partial function that has no replaceable elements. It
cannot be the class-name of a record [i.e., record constructor functions are not allowed in this context.] Such an
input formal parameter of function type can also have an optional functional default value.

[Example:
function quadrature "Integrate function y=integrand(x) from x1 to x2"
 input Real x1;
 input Real x2;
 input Integrand integrand; // Integrand is a partial function, see below
 // With default: input Integrand integrand := Modelica.Math.sin;
 output Real integral;
algorithm
 integral :=(x2-x1)*(integrand(x1) + integrand(x2))/2;
end quadrature;

partial function Integrand
 input Real x;
 output Real y;
end Integrand;

]

A functional argument can be provided in one of the following forms to be passed to a scalar formal parameter of
function type in a function call:

a) as a function name [Parabola example below],
b) as a function partial application (Section 12.4.2.1 below),
c) as a function that is a component,
d) as a function partial application of a function that is a component (example in Section 12.4.2.1 below).

In all cases the provided function must be “function type compatible” (Section 6.5) to the corresponding formal
parameter of function type.

[Example:

A function as a positional input argument according to case (a)
function Parabola
 extends Integrand;
algorithm
 y = x*x;
end Parabola;

area = quadrature(0, 1, Parabola);

136 Modelica Language Specification 3.2 Revision 2

The quadrature2 example below uses a function integrand that is a component as input argument according
to case (c):
function quadrature2 "Integrate function y=integrand(x) from x1 to x2"
 input Real x1;
 input Real x2;
 input Integrand integrand; // Integrand is a partial function type
 output Real integral;
algorithm
 integral := quadrature(x1, (x1+x2)/2, integrand)+
 quadrature((x1+x2)/2, x2, integrand);
end quadrature2;

12.4.2.1 Function Partial Application

A function partial application is a function call with certain formal parameters bound to expressions. A function
partial application returns a partially evaluated function that is also a function, with the remaining not bound
formal parameters still present in the same order as in the original function declaration. A function partial
application is specified by the function keyword followed by a function call to func_name giving named
formal parameter associations for the formal parameters to be bound, e.g.:
function func_name(..., formal_parameter_name = expr, ...)

[Note that the keyword function in a function partial application differentiates the syntax from a normal
function call where some parameters have been left out, and instead supplied via default values.]

The function created by the function partial application acts as the original function but with the bound formal
input parameters(s) removed, i.e., they cannot be supplied arguments at function call. The binding occurs when
the partially evaluated function is created. A partially evaluated function is “function compatible” (see section 6.5)
to the same function where all bound arguments are removed [thus, for checking function type compatibility,
bound formal parameters are ignored].

[Example of function partial application as argument, positional argument passing, according to case (b) above:
model Test
 parameter Integer N;
 Real area;
algorithm
 area := 0;
 for i in 1:N loop
 area := area + quadrature(0, 1, function Sine(A=2, w=i*time));
 end for;
end Test;

function Sine "y = Sine(x,A,w)"
 extends Integrand;
 input Real A;
 input Real w;
algorithm
 y:=A*Modelica.Math.sin(w*x);
end Sine;

Call with function partial application as named input argument:
area := area + quadrature(0, 1, integrand = function Sine(A=2, w=i*time));

]

 [Example showing that function types are matching after removing the bound arguments A and w in a function
partial application:

function Sine2 "y = Sine2(A,w,x)"
 input Real A;
 input Real w;
 input Real x; // Note: x is now last in argument list.

 137

 output Real y;
algorithm
 y:=A*Modelica.Math.sin(w*x);
end Sine2;

area = quadrature(0, 1, integrand = function Sine2(A=2, w=3));

The partially evaluated Sine2 has only one argument: x – and is thus type compatible with Integrand.
]

[Example of a function partial application of a function that is a component, according to case (d) above:

partial function SurfaceIntegrand
 input Real x;
 input Real y;
 output Real z;
end SurfaceIntegrand;

function quadratureOnce
 input Real x;
 input Real y1;
 input Real y2;
 input SurfaceIntegrand integrand;
 output Real z;
algorithm
 z := quadrature(y1, y2, function integrand(y=x));
 // This is according to case (d) and needs to bind the 2nd argument
end quadratureOnce;

function surfaceQuadrature
 input Real x1;
 input Real x2;
 input Real y1;
 input Real y2;
 input SurfaceIntegrand integrand;
 output Real integral;
algorithm
 integral := quadrature(x1, x2,
 function quadratureOnce(y1=y1, y2=y2, integrand=integrand);
 // Case (b) and (c)
end surfaceQuadrature;

]

12.4.3 Output Formal Parameters of Functions

A function may have more than one output component, corresponding to multiple return values. The only way to
use more than the first return value of such a function is to make the function call the right hand side of an
equation or assignment. In this case, the left hand side of the equation or assignment shall contain a list of
component references within parentheses:
(out1, out2, out3) = f(...);

The component references are associated with the output components according to their position in the list. Thus
output component i is set equal to, or assigned to, component reference i in the list, where the order of the output
components is given by the order of the component declarations in the function definition. The type of each
component reference in the list must agree with the type of the corresponding output component.

A function application may be used as expression whose value and type is given by the value and type of the
first output component, if at least one return result is provided.

It is possible to omit left hand side component references and/or truncate the left hand side list in order to
discard outputs from a function call.

 [Optimizations to avoid computation of unused output results can be automatically deduced by an optimizing
compiler].

138 Modelica Language Specification 3.2 Revision 2

[Example:

Function "eigen" to compute eigenvalues and optionally eigenvectors may be called in the following ways:
 ev = eigen(A); // calculate eigenvalues
 x = isStable(eigen(A)); // used in an expression
 (ev, vr) = eigen(A) // calculate eigenvectors
 (ev,vr,vl) = eigen(A) // and also left eigenvectors
 (ev,,vl) = eigen(A) // no right eigenvectors

The function may be defined as:
function eigen "calculate eigenvalues and optionally eigenvectors"
 input Real A[:, size(A,1)];
 output Real eigenValues[size(A,1),2];
 output Real rightEigenVectors[size(A,1),size(A,1)];
 output Real leftEigenVectors [size(A,1),size(A,1)];
algorithm
 // The output variables are computed separately (and not, e.g., by one
 // call of a Fortran function) in order that an optimizing compiler can remove
 // unnecessary computations, if one or more output arguments are missing
 // compute eigenvalues
 // compute right eigenvectors using the computed eigenvalues
 // compute left eigenvectors using the computed eigenvalues
end eigen;

]

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it is used as
the left hand side of an equation or assignment where the right hand side is an application of a function.

[Example. The following are illegal:
(x+1, 3.0, z/y) = f(1.0, 2.0); // Not a list of component references.
(x, y, z) + (u, v, w) // Not LHS of suitable eqn/assignment.

]

12.4.4 Initialization and Declaration Assignments of Components in Functions

Components in a function can be divided into three groups:

• Public components which are input formal parameters.
• Public components which are output formal parameters.
• Protected components which are local variables, parameters, or constants.

When a function is called components of a function do not have start-attributes. However, a declaration
assignment (:= expression) with an expression may be present for a component.

A declaration assignment for a non-input component initializes the component to this expression at the start
of every function invocation (before executing the algorithm section or calling the external function). These
bindings must be executed in an order where a variable is not used before its declaration assignment has been
executed; it is an error if no such order exists (i.e. the binding must be acyclic).

Declaration assignments can only be used for components of a function. If no declaration assignment is given
for a non-input component its value at the start of the function invocation is undefined. It is a quality of
implementation issue to diagnose this for non-external functions. Declaration assignments for input formal
parameters are interpreted as default arguments, as described in Section 12.4.1.

[The properties of components in functions described in this section are also briefly described in Section 12.2.]

12.4.5 Flexible Array Sizes and Resizing of Arrays in Functions

[Flexible setting of array dimension sizes of arrays in functions is also briefly described in Section 12.2.]

A dimension size not specified with colon(:) for a non-input array component of a function must be given by the
inputs or be constant.

 139

[Example:
function joinThreeVectors
 input Real v1[:],v2[:],v3[:];
 output Real vres[size(v1,1)+size(v2,1)+size(v3,1)];
algorithm
 vres := cat(1,v1,v2,v3);
end joinThreeVectors;

]

Non-input arrays [i.e., function array result variables or local variables] declared in functions can be resized
according the following rules:

• A non-input array component declared in a function with a dimension size specified by colon(:) and no
declaration assignment, can change size according to these special rules:

• Prior to execution of the function algorithm the dimension size is zero.
• The entire array (without any subscripts) may be assigned with a corresponding array with arbitrary

dimension size (the array variable is re-sized).

These rules also apply if the array component is an element of a record component in a function.

[Example: A function to collect the positive elements in a vector:
function collectPositive
 input Real x[:];
 output Real xpos[:];
algorithm
 for i in 1:size(x,1) loop
 if x[i]>0 then
 xpos:=cat(1,xpos,x[i:i]);
 end if;
 end for;
end collectPositive;

]

12.4.6 Scalar Functions Applied to Array Arguments

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A is a vector of reals, then
sin(A) is a vector where each element is the result of applying the function sin to the corresponding element in
A. Only function classes that are transitively non-replaceable (Section 6.2.1 and 7.1.4) may be called vectorized.

Consider the expression f(arg1,...,argn), an application of the function f to the arguments arg1, ...,
argn is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding formal
parameter of the function.

1. If the types match, nothing is done.
2. If the types do not match, and a type conversion can be applied, it is applied. Continue with step 1.
3. If the types do not match, and no type conversion is applicable, the passed argument type is checked to see

if it is an n-dimensional array of the formal parameter type. If it is not, the function call is invalid. If it is,
we call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, the
function call is invalid.

5. If no foreach argument exists, the function is applied in the normal fashion, and the result has the type
specified by the function definition.

6. The result of the function call expression is an n-dimensional array with the same dimension sizes as the
foreach arguments. Each element ei,..,j is the result of applying f to arguments constructed from the
original arguments in the following way:

140 Modelica Language Specification 3.2 Revision 2

• If the argument is not a foreach argument, it is used as-is.
• If the argument is a foreach argument, the element at index [i,...,j] is used.

If more than one argument is an array, all of them have to be the same size, and they are traversed in parallel.

[Examples:
sin({a, b, c}) = {sin(a), sin(b), sin(c)} // argument is a vector
sin([a,b,c]) = [sin(a),sin(b),sin(c)] // argument may be a matrix
atan({a,b,c},{d,e,f}) = {atan(a,d), atan(b,e), atan(c,f)}

This works even if the function is declared to take an array as one of its arguments. If pval is defined as a
function that takes one argument that is a vector of Reals and returns a Real, then it can be used with an actual
argument which is a two-dimensional array (a vector of vectors). The result type in this case will be a vector of
Real.
pval([1,2;3,4]) = [pval([1,2]); pval([3,4])]
sin([1,2;3,4]) = [sin({1,2}); sin({3,4})]
 = [sin(1), sin(2); sin(3), sin(4)]
function Add
 input Real e1, e2;
 output Real sum1;
algorithm
 sum1 := e1 + e2;
end Add;

Add(1, [1,2,3]) adds one to each of the elements of the second argument giving the result [2,3,4].
However, it is illegal to write 1 + [1,2,3], because the rules for the built-in operators are more restrictive.]

12.4.7 Empty Function Calls

An “empty” function call is a call that does not return any results. [An empty call is of limited use in Modelica
since a function call without results does not contribute to the simulation, and is not allowed to have side-effects
that influence the simulation state.]

An empty call can occur either as a kind of “null” equation or “null” statement, [e.g. as in the empty calls to
eigen() in the example below:
equation
 Modelica.Math.Matrices.eigen(A); // Empty function call as an equation
algorithm
 Modelica.Math.Matrices.eigen(A); // Empty function call as a statement

]

12.5 Built-in Functions
There are basically four groups of built-in functions in Modelica:

• Intrinsic mathematical and conversion functions, see Section 3.7.1.
• Derivative and special operators with function syntax, see Section 3.7.2.
• Event-related operators with function syntax, see Section 3.7.3.
• Built-in array functions, see Section 10.3.

12.6 Record Constructor Functions
Whenever a record is defined, a record constructor function with the same name and in the same scope as the
record class is implicitly defined according to the following rules:

The declaration of the record is partially flattened including inheritance, modifications, redeclarations, and
expansion of all names referring to declarations outside of the scope of the record to their fully qualified names [in

 141

order to remove potentially conflicting import statements in the record constructor function due to flattening the
inheritance tree].

All record elements [i.e., components and local class definitions] of the partially flattened record declaration
are used as declarations in the record constructor function with the following exceptions:

• Component declarations which do not allow a modification [such as constant Real c=1 or final
parameter Real] are declared as protected components in the record constructor function.

• Prefixes (constant, parameter, final, discrete,...) of the remaining record components are removed.
• The prefix input is added to the public components of the record constructor function.

An instance of the record is declared as output parameter [using a name, not appearing in the record] together
with a modification. In the modification, all input parameters are used to set the corresponding record variables.

A record constructor can only be called if the referenced record class is found in the global scope, and thus
cannot be modified.

[This allows to construct an instance of a record, with an optional modification, at all places where a function
call is allowed. Examples:
record Complex "Complex number"
 Real re "real part";
 Real im "imaginary part";
end Complex;

function add
 input Complex u, v;
 output Complex w(re=u.re + v.re, im=u.im+v.re);
end add;

 Complex c1, c2;
equation
 c2 = add(c1, Complex(sin(time), cos(time));

In the following example, a convenient data sheet library of components is built up:
package Motors
 record MotorData "Data sheet of a motor"
 parameter Real inertia;
 parameter Real nominalTorque;
 parameter Real maxTorque;
 parameter Real maxSpeed;
 end MotorData;

 model Motor "Motor model" // using the generic MotorData
 MotorData data;
 ...
 equation
 ...
 end Motor;

 record MotorI123 = MotorData(// data of a specific motor
 inertia = 0.001,
 nominalTorque = 10,
 maxTorque = 20,
 maxSpeed = 3600) "Data sheet of motor I123";

 record MotorI145 = MotorData(// data of another specific motor
 inertia = 0.0015,
 nominalTorque = 15,
 maxTorque = 22,
 maxSpeed = 3600) "Data sheet of motor I145";

end Motors

model Robot
 import Motors.*;
 Motor motor1(data = MotorI123()); // just refer to data sheet

142 Modelica Language Specification 3.2 Revision 2

 Motor motor2(data = MotorI123(inertia=0.0012));
 // data can still be modified (if no final declaration in record)
 Motor motor3(data = MotorI145());
 ...
end Robot;

Example showing most of the situations, which may occur for the implicit record constructor function creation.
With the following record definitions
package Demo;
 record Record1;
 parameter Real r0 = 0;
 end Record1;

 record Record2
 import Modelica.Math.*;
 extends Record1;
 constant Real c1 = 2.0;
 constant Real c2;
 parameter Integer n1 = 5;
 parameter Integer n2;
 parameter Real r1 "comment";
 parameter Real r2 = sin(c1);
 final parameter Real r3 = cos(r2);
 Real r4;
 Real r5 = 5.0;
 Real r6[n1];
 Real r7[n2];
 end Record2;
end Demo;

the following record constructor functions are implicitly defined
package Demo;
 function Record1
 input Real r0 := 0;
 output Record1 'result'(r0 = r0);
 end Record1;

 function Record2
 input Real r0 := 0;
 input Real c2;
 input Integer n1 := 5;
 input Integer n2;
 input Real r1 "comment"; // the comment also copied from record
 input Real r2 := Modelica.Math.sin(c1);
 input Real r4;

 input Real r5 := 5.0;
 input Real r6[n1];
 input Real r7[n2];
 output Record2 'result'(r0=r0,c2=c2,n1=n1,n2=n2,r1=r1,r2=r2,
 r4=r4,r5=r5,r6=r6,r7=r7);
 protected
 constant Real c1 = 2.0; // referenced from r2
 final parameter Real r3 = Modelica.Math.cos(r2);
 end Record2;
end Demo;

and can be applied in the following way
 Demo.Record2 r1 = Demo.Record2(r0=1, c2=2, n1=2, n2=3, r1=1, r2=2,
 r4=5, r5=5, r6={1,2}, r7={1,2,3});
 Demo.Record2 r2 = Demo.Record2(1,2,2,3,1,2,5,5,{1,2},{1,2,3});
 parameter Demo.Record2 r3 = Demo.Record2(c2=2, n2=1, r1=1, r4=4,
 r6=1:5, r7={1});

The above example is only used to show the different variants appearing with prefixes, but it is not very
meaningful, because it is simpler to just use a direct modifier.
]

 143

12.7 Declaring Derivatives of Functions
Derivatives of functions can be declared explicitly using the derivative annotation, see Section 12.7.1, whereas
a function can be defined as a partial derivative of another function using the der-operator in a short function
definition, see Section 12.7.2.

12.7.1 Using the Derivative Annotation

A function declaration can have an annotation derivative specifying the derivative function. This can influence
simulation time and accuracy and can be applied to both functions written in Modelica and to external functions.
A derivative annotation can state that it is only valid under certain restrictions on the input arguments. These
restrictions are defined using the following optional attributes: order (only a restriction if order>1, the default
for order is 1), noDerivative, and zeroDerivative. The given derivative-function can only be used to
compute the derivative of a function call if these restrictions are satisfied. There may be multiple restrictions on
the derivative, in which case they must all be satisfied. The restrictions also imply that some derivatives of some
inputs are excluded from the call of the derivative (since they are not necessary). A function may supply multiple
derivative functions subject to different restrictions.

[Example:
function foo0 annotation(derivative=foo1); end foo0;
function foo1 annotation(derivative(order=2)=foo2); end foo1;
function foo2 end foo2;

]

The inputs to the derivative function of order 1 are constructed as follows:

• First are all inputs to the original function, and after all them we will in order append one derivative for
each input containing reals.

• The outputs are constructed by starting with an empty list and then in order appending one derivative for
each output containing reals.

• If the Modelica function call is a nth derivative (n>=1), i.e. this function call has been derived from an (n-
1)th derivative, an annotation(order=n+1)=…, specifies the (n+1)th derivative, and the (n+1)th
derivative call is constructed as follows:

• The input arguments are appended with the (n+1)th derivative, which are constructed in order from the nth
order derivatives.

• The output arguments are similar to the output argument for the nth derivative, but each output is one higher
in derivative order.

[Example: Given the declarations
 function foo0
 ...
 input Real x;
 input Boolean linear;
 input ...;
 output Real y;
 ...
 annotation(derivative=foo1);
 end foo0;

 function foo1
 ...
 input Real x;
 input Boolean linear;
 input ...;
 input Real der_x;
 ...
 output Real der_y;
 ...

144 Modelica Language Specification 3.2 Revision 2

 annotation(derivative(order=2)=foo2);
 end foo1;

 function foo2
 ...
 input Real x;
 input Boolean linear;
 input ...;
 input Real der_x;
 ...;
 input Real der_2_x;
 ...
 output Real der_2_y;
 ...

the equation

(...,y(t),...)=foo0(...,x(t),b,...);

implies that:

(...,d y(t)/dt,...)=foo1(...,x(t),b,..., ...,d x(t)/dt,...);

(...,d^2 y(t)/dt^2,...)=foo2(...,x(t),b,...,d x(t)/dt,..., ...,d^2 x(t)/dt^2,...);

]

An input or output to the function may be any simple type (Real, Boolean, Integer, String and enumeration types)
or a record, provided the record does not contain both reals and non-reals predefined types. The function must
have at least one input containing reals. The output list of the derivative function may not be empty.

• zeroDerivative=input_var1

The derivative function is only valid if input_var1 is independent of the variables the function call is
differentiated with respect to (i.e. that the derivative of input_var1 is “zero”). The derivative of input_var1 is
excluded from the argument list of the derivative-function.

[Assume that function f takes a matrix and a scalar. Since the matrix argument is usually a parameter expression
it is then useful to define the function as follows (the additional derivative = f_general_der is optional and can
be used when the derivative of the matrix is non-zero).
function f "Simple table lookup"
 input Real x;
 input Real y[:, 2];
 output Real z;
 annotation(derivative(zeroDerivative=y) = f_der,
 derivative=f_general_der);
algorithm
 ...
end f;

function f_der "Derivative of simple table lookup"
 input Real x;
 input Real y[:, 2];
 input Real x_der;
 output Real z_der;
algorithm
 ...
end f_der;

function f_general_der "Derivative of table lookup taking into account varying tables"
 input Real x;
 input Real y[:, 2];
 input Real x_der;
 input Real y_der[:, 2];
 output Real z_der;
algorithm
 ...

 145

end f_general_der;

]

• noDerivative=input_var1

The derivative of input_var1 is excluded from the argument list of the derivative-function. This relies on
assumptions on the arguments to the function; and the function should document these assumptions (it is not
always straightforward to verify them). In many cases even the undifferentiated function will only behave
correctly under these assumptions.

[Assume that function fg is defined as a composition f(x, g(x)). When differentiating f it is useful to give the
derivative under the assumption that the second argument is defined in this way:
function fg
 input Real x;
 output Real z;
algorithm
 z := f(x, g(x));
end fg;

function f
 input Real x;
 input Real y;
 output Real z;
 annotation(derivative(noDerivative=y)) = f_der);
algorithm
 ...
end f;

function f_der
 input Real x;
 input Real x_der;
 input Real y;
 output Real z_der;
algorithm
 ...
end f_der;

This is useful if g represents the major computational effort of fg.]

12.7.2 Partial Derivatives of Functions

A class defined as:
 IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

is the partial derivative of a function, and may only be used as declarations of functions.

The semantics is that a function [and only a function] can be specified in this form, defining that it is the partial
derivative of the function to the right of the equal sign (looked up in the same way as a short class definition - the
looked up name must be a function), and partially differentiated with respect to each IDENT in order (starting from
the first one). The IDENT must be Real inputs to the function.

The comment allows a user to comment the function (in the info-layer and as one-line description, and as icon).

[Example: The specific enthalphy can be computed from a Gibbs-function as follows:
function Gibbs
 input Real p,T;
 output Real g;
algorithm
 ...
end Gibbs;

function Gibbs_T=der(Gibbs, T);

146 Modelica Language Specification 3.2 Revision 2

function specificEnthalpy
 input Real p,T;
 output Real h;
algorithm
 h:=Gibbs(p,T)-T*Gibbs_T(p,T);
end specificEnthalpy;

]

12.8 Declaring Inverses of Functions
Every function with one output formal parameter may have one or more “inverse” annotations to define inverses
of this function:
function f1
 input A1 u1;
 ...
 input T1 uk;
 ...
 input Am um := am;
 ...
 input An un;
 output T2 y;
 annotation(inverse(uk = f2(..., y,), ui = f3(..., y, ...), ...));
algorithm
 ...
end f1;

The meaning is that function "f2" is one inverse to function "f1" where the previous output "y" is now an input and
the previous input "uk" is now an output. More than one inverse can be defined within the same inverse
annotation. Several inverses are separated by commas. [The inverse requires that for all valid values of the input
arguments of f2(...,y, ...) and uk being calculated as uk := f2(..., y, ...) implies the equality y = f1(..., uk, ...,) up to a
certain precision.]

Function "f1" can have any number and types of formal parameters with and without default value. The
restriction is that the “number of unknown variables” (see section 4.7) in the output formal parameter of both "f1"
and "f2" must be the same and that "f2" must have exactly the same formal parameters as "f1" (with the same
defaults, if a formal parameter um has a default), but the order of the formal parameters may be permuted.

[Example:
function h_pTX
 input Real p "pressure";
 input Real T "temperature";
 input Real X[:] "mass fractions";
 output Real h "specific enthalpy";
 annotation(inverse(T = T_phX(p,h,X)));
algorithm
 ...
end h_pTX;

function T_phX
 input Real p "pressure";
 input Real h "specific enthalpy";
 input Real X[:] "mass fractions";
 output Real T "temperature";
algorithm
 ...
end T_phX;

]

 147

12.9 External Function Interface
Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has a return
value or returns its result via output parameters (or both). The Modelica external function call interface provides
the following:

• Support for external functions written in C and FORTRAN 77. Other languages, e.g. C++ and Fortran 90,
may be supported in the future.

• Mapping of argument types from Modelica to the target language and back.
• Natural type conversion rules in the sense that there is a mapping from Modelica to standard libraries of the

target language.
• Handling arbitrary parameter order for the external function.
• Passing arrays to and from external functions where the dimension sizes are passed as explicit integer

parameters.
• Handling of external function parameters which are used both for input and output.

The format of an external function declaration is as follows.
function IDENT string_comment
 { component_clause ";" }
 [protected { component_clause ";" }]
 external [language_specification] [external_function_call]
 [annotation] ";"
 [annotation ";"]
end IDENT;

Components in the public part of an external function declaration shall be declared either as input or output. [This
is just as for any other function. The components in the protected part allows local variables for temporary
storage to be declared.]

The language_specification must currently be one of "builtin", "C" or "FORTRAN 77". Unless the
external language is specified, it is assumed to be "C".

The "builtin" specification is only used for functions that are defined to be built-in in Modelica. The external-
function call mechanism for "builtin" functions is implementation-defined. [Typically, for functions from the
standard C-library, the prototype of the function is provided but no library annotation. Currently, there are no
other builtin functions defined in Modelica.]

[Example:
package Modelica
 package Math
 function sin
 input Real x;
 output Real y;
 external "builtin" y=sin(x);
 end sin;
 end Math;
end Modelica;

model UserModel
 parameter Real p=Modelica.Math.sin(2);
end UserModel;

]

The external-function-call specification allows functions whose prototypes do not match the default assumptions
as defined below to be called. It also gives the name used to call the external function. If the external call is not
given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressions in the argument list are identifiers, scalar constants, and the function
size applied to an array and a constant dimension number. The annotations are used to pass additional information
to the compiler when necessary.

148 Modelica Language Specification 3.2 Revision 2

12.9.1 Argument type Mapping

The arguments of the external function are declared in the same order as in the Modelica declaration, unless
specified otherwise in an explicit external function call. Protected variables (i.e. temporaries) are passed in the
same way as outputs, whereas constants and size-expression are passed as inputs.

12.9.1.1 Simple Types

Arguments of simple types are by default mapped as follows for C:

Modelica C

Input Output
Real double double *
Integer int int *
Boolean int int *
String const char * const char **
Enumeration type int int *

An exception is made when the argument is of the form size(…, …). In this case the corresponding C-type is
size_t.

Strings are NUL-terminated (i.e., terminated by '\0') to facilitate calling of C functions. When returning a non-
literal string, the memory for this string must be allocated with function ModelicaAllocateString (see
Section 12.9.6) [It is not suitable to use malloc, because a Modelica simulation environment may have its own
allocation scheme, e.g., a special stack for local variables of a function]. After return of the external function, the
Modelica environment is responsible for the memory allocated with ModelicaAllocateString (e.g., to free this
memory, when appropriate). It is not allowed to access memory that was allocated with
ModelicaAllocateString in a previous call of this external function. [Memory that is not passed to the
Modelica simulation environment, such as memory that is freed before leaving the function, or in an
ExternalObject, see section 12.9.7, should be allocated with the standard C-mechanisms, like calloc(..)].

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output

Real DOUBLE PRECISION DOUBLE PRECISION

Integer INTEGER INTEGER

Boolean LOGICAL LOGICAL

Enumeration type INTEGER INTEGER

Passing strings to FORTRAN 77 subroutines/functions is currently not supported.
Enumeration types used as arguments are mapped to type int when calling an external C function, and to type

INTEGER when calling an external FORTRAN function. The i:th enumeration literal is mapped to integer value i,
starting at one.

Return values are mapped to enumeration types analogously: integer value 1 is mapped to the first enumeration
literal, 2 to the second, etc. Returning a value which does not map to an existing enumeration literal for the
specified enumeration type is an error.

12.9.1.2 Arrays

Unless an explicit function call is present in the external declaration, an array is passed by its address followed by
n arguments of type size_t with the corresponding array dimension sizes, where n is the number of dimensions.
[The type size_t is a C unsigned integer type.]

Arrays are by default stored in row-major order when calling C functions and in column-major order when
calling FORTRAN 77 functions. These defaults can be overridden by the array layout annotation. See the
example below.

 149

The table below shows the mapping of an array argument in the absence of an explicit external function call
when calling a C function. The type T is allowed to be any of the simple types which can be passed to C as
defined in Section 12.9.1.1 or a record type as defined in Section 12.9.1.3 and it is mapped to the type T’ as
defined in these sections for input arguments.

Modelica C
Input and Output

T[dim1] T’ *, size_t dim1

T[dim1,dim2] T’ *, size_t dim1, size_t dim2

T[dim1, …, dimn] T’ *, size_t dim1, …, size_t dimn

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit external
function call is similar to the one defined above for C: first the address of the array, then the dimension sizes as
integers. See the table below. The type T is allowed to be any of the simple types which can be passed to
FORTRAN 77 as defined in Section 12.9.1.1 and it is mapped to the type T’ as defined in that section.

Modelica FORTRAN 77
Input and Output

T[dim1] T’, INTEGER dim1

T[dim1,dim2] T’, INTEGER dim1, INTEGER dim2

T[dim1, …, dimn] T’, INTEGER dim1, …, INTEGER dimn

[The following two examples illustrate the default mapping of array arguments to external C and FORTRAN 77
functions.
function foo
 input Real a[:,:,:];
 output Real x;
 external;
end foo;

The corresponding C prototype is as follows:
double foo(double *, size_t, size_t, size_t);

If the external function is written in FORTRAN 77, i.e.:
function foo
 input Real a[:,:,:];
 output Real x;
 external "FORTRAN 77";
end foo;

the default assumptions correspond to a FORTRAN 77 function defined as follows:
FUNCTION foo(a, d1, d2, d3)
 DOUBLE PRECISION(d1,d2,d3) a
 INTEGER d1
 INTEGER d2
 INTEGER d3
 DOUBLE PRECISION foo
 ...
END

]

When an explicit call to the external function is present, the array and the sizes of its dimensions must be passed
explicitly.

[This example shows how to arrays can be passed explicitly to an external FORTRAN 77 function when the
default assumptions are unsuitable.
function foo

150 Modelica Language Specification 3.2 Revision 2

 input Real x[:];
 input Real y[size(x,1),:];
 input Integer i;
 output Real u1[size(y,1)];
 output Integer u2[size(y,2)];
 external "FORTRAN 77" myfoo(x, y, size(x,1), size(y,2),
 u1, i, u2);
end foo;

The corresponding FORTRAN 77 subroutine would be declared as follows:
SUBROUTINE myfoo(x, y, n, m, u1, i, u2)
 DOUBLE PRECISION(n) x
 DOUBLE PRECISION(n,m) y
 INTEGER n
 INTEGER m
 DOUBLE PRECISION(n) u1
 INTEGER i
 DOUBLE PRECISION(m) u2
 ...
END

This example shows how to pass an array in column major order to a C function.
function fie
 input Real[:,:] a;
 output Real b;
 external;
 annotation(arrayLayout = "columnMajor");
end fie;

This corresponds to the following C-prototype:
double fie(double *, size_t, size_t);

]

12.9.1.3 Records

Mapping of record types is only supported for C. A Modelica record class that contains simple types, other record
elements, or arrays with fixed dimensions thereof, is mapped as follows:

• The record class is represented by a struct in C.
• Each element of the Modelica record is mapped to its corresponding C representation.
• The elements of the Modelica record class are declared in the same order in the C struct.
• Arrays cannot be mapped.

Records are passed by reference (i.e. a pointer to the record is being passed).

[For example:
record R
 Real x;

 Real z;
end R;

is mapped to:
struct R {
 double x;

 double z;
};

]

 151

12.9.2 Return Type Mapping

If there is a single output parameter and no explicit call of the external function, or if there is an explicit external
call in the form of an equation, in which case the LHS must be one of the output parameters, the external routine
is assumed to be a value-returning function. Mapping of the return type of functions is performed as indicated in
the table below. Storage for arrays as return values is allocated by the calling routine, so the dimensions of the
returned array are fixed at call time. Otherwise the external function is assumed not to return anything; i.e., it is
really a procedure or, in C, a void-function. [In this case, argument type mapping according to Section 12.9.1 is
performed in the absence of any explicit external function call.]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica C FORTRAN 77
Real double DOUBLE PRECISION

Integer int INTEGER

Boolean int LOGICAL

String const char* Not allowed.
T[dim1, …, dimn] Not allowed. Not allowed.
Enumeration type int INTEGER

Record See Section 12.9.1.3. Not allowed.

The element type T of an array can be any simple type as defined in Section 12.9.1.1 or, for C, a record type is
returned as a value of the record type defined in Section 12.9.1.3.

12.9.3 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An external
function is not allowed to internally change the inputs (even if they are restored before the end of the function).

[Example:
function foo
 input Real x;
 input Real y;
 output Real z:=x;
 external "FORTRAN 77" myfoo(x,y,z);
end foo;

The following Modelica function:
function f
 input Real a;
 output Real b;
algorithm
 b:=foo(a,a);
 b:=foo(b,2*b);
end f;

can on most systems be transformed into the following C function:
double f(double a) {
 extern void myfoo_(double*,double*,double*);
 double b,temp1,temp2;
 myfoo_(&a,&a,&b);
 temp1=2*b;
 temp2=b;
 myfoo_(&b,&temp1,&temp2);
 return temp2;
}

152 Modelica Language Specification 3.2 Revision 2

The reason for not allowing the external function to change the inputs is to ensure that inputs can be stored in
static memory and to avoid superfluous copying (especially of matrices). If the routine does not satisfy the
requirements the interface must copy the input argument to a temporary. This is rare but occurs e.g. in dormlq in
some Lapack implementations. In those special cases the writer of the external interface have to copy the input to
a temporary. If the first input was changed internally in myfoo the designer of the interface would have to change
the interface function “foo” to:
function foo
 input Real x;
 protected Real xtemp:=x; // Temporary used because myfoo changes its input
 public input Real y;
 output Real z;
 external "FORTRAN 77" myfoo(xtemp,y,z);
end foo;

Note that we discuss input arguments for Fortran-routines even though Fortran 77 does not formally have input
arguments and forbid aliasing between any pair of arguments to a function (Section 15.9.3.6 of X3J3/90.4). For
the few (if any) Fortran 77 compilers that strictly follow the standard and are unable to handle aliasing between
input variables the tool must transform the first call of foo into
temp1=a; /* Temporary to avoid aliasing */
myfoo_(&a,&temp1,&b);

The use of the function foo in Modelica is uninfluenced by these considerations.
]

12.9.4 Annotations for External Libraries and Include Files

The following annotations are useful in the context of calling external functions from Modelica:
• The annotation(Library="libraryName"), used by the linker to include the library file where the

compiled external function is available.
• The annotation(Library={"libraryName1","libraryName2"}), used by the linker to include the

library files where the compiled external function is available and additional libraries used to implement it.
• The annotation(Include="includeDirective"), used to include source files, [e.g., header files or

source files that contain the functions referenced in the external function declaration], needed for calling
the external function in the code generated by the Modelica compiler.

• The annotation(IncludeDirectory="modelica://LibraryName/Resources/Include"), used
to specify a location for header files. The preceding one is the default and need not be specified; but another
location could be specified by using an URI name for the include directory, see section 13.2.3.

• The annotation(LibraryDirectory="modelica://LibraryName/Resources/Library"), used
to specify a location for library files. The preceding one is the default and need not be specified; but another
location could be specified by using an URI name for the library directory, see section 13.2.3. Different
versions of one object library can be provided [e.g. for Windows and for Linux] by providing a “platform”
directory below the “LibraryDirectory”. If no “platform” directory is present, the object library must be
present in the “LibraryDirectory”. The following “platform” names are standardized:
o win32 [Microsoft Windows 32 bit]
o win64 [Microsoft Windows 64 bit]
o linux32 [Linux Intel 32 bit]
o linux64 [Linux Intel 64 bit]

[Example: to show the use of external functions and of object libraries:

package ExternalFunctions
 model Example
 Real x(start=1.0),y(start=2.0);
 equation
 der(x)=-ExternalFunc1(x);
 der(y)=-ExternalFunc2(y);

 153

 end Example;

 function ExternalFunc1
 input Real x;
 output Real y;
 external "C"
 y=ExternalFunc1_ext(x) annotation(Library="ExternalLib11",
 Include="#include \"ExternalFunc1.h\"");
 end ExternalFunc1;

 function ExternalFunc2
 input Real x;
 output Real y;
 external "C" annotation(Include="#include \"ExternalFunc3.c\"");
 end ExternalFunc2;

 function ExternalFunc3
 input Real x;
 output Real y;
 external
 y=ExternalFunc3_ext(x) annotation(Library="ExternalLib11",
 Include="#include \"ExternalFunc1.h\"");
 end ExternalFunc3;
end ExternalFunctions;

Directory structure:
ExternalFunctions
 package.mo // contains the Modelica code from above
 Resources
 Include // contains the include files
 ExternalFunc1.h // C-header file
 ExternalFunc2.h // C-header file
 ExternalFunc3.c // C-source file
 Library // contains the object libraries for different platforms
 win32
 ExternalLib1.lib // static link library for VisualStudio
 ExternalLib2.lib // statically linking the dynamic link library
 ExternalLib2.dll // dynamic link library (with manifest)
 linux32
 libExternalLib1.a // static link library
 libExternalLib2.so // shared library

Header file for the function in the dynamic link / shared library ExternalLib2 so that the desired functions are
defined to be exported for Microsoft VisualStudio and for GNU C-compiler (note, for Linux it is recommended to
use the compiler option “-fPIC” to build shared libraries or object libraries that are later transformed to a
shared library):
// File ExternalFunc2.h
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _MSC_VER
#ifdef EXTERNAL_FUNCTION_EXPORT
define EXTLIB2_EXPORT __declspec(dllexport)
#else
define EXTLIB2_EXPORT __declspec(dllimport)
#endif
#elif __GNUC__ >= 4
 /* In gnuc, all symbols are by default exported. It is still often useful,
 to not export all symbols but only the needed ones */
define EXTLIB2_EXPORT __attribute__ ((visibility("default")))
#else
define EXTLIB2_EXPORT
#endif

EXTLIB2_EXPORT void ExternalFunc2(<function arguments>);

154 Modelica Language Specification 3.2 Revision 2

#ifdef __cplusplus
}
#endif

]

The Library name and the LibraryDirectory name in the function annotation are mapped to a linkage directive in a
compiler-dependent way thereby selecting the object library suited for the respective computer platform.

12.9.5 Examples

12.9.5.1 Input Parameters, Function Value

[Here all parameters to the external function are input parameters. One function value is returned. If the external
language is not specified, the default is "C", as below.
function foo
 input Real x;
 input Integer y;
 output Real w;
 external;
end foo;

This corresponds to the following C-prototype:
double foo(double, int);

Example call in Modelica:
z = foo(2.4, 3);

Translated call in C:
z = foo(2.4, 3);

]

12.9.5.2 Arbitrary Placement of Output Parameters, No External Function Value

[In the following example, the external function call is given explicitly which allows passing the arguments in a
different order than in the Modelica version.
function foo
 input Real x;
 input Integer y;
 output Real u1;
 output Integer u2;
 external "C" myfoo(x, u1, y, u2);
end foo;

This corresponds to the following C-prototype:
void myfoo(double, double *, int, int *);

Example call in Modelica:
(z1,i2) = foo(2.4, 3);

Translated call in C:
myfoo(2.4, &z1, 3, &i2);

]

12.9.5.3 External Function with Both Function Value and Output Variable

[The following external function returns two results: one function value and one output parameter value. Both are
mapped to Modelica output parameters.

 155

function foo
 input Real x;
 input Integer y;
 output Real funcvalue;
 output Integer out1;
 external "C" funcvalue = myfoo(x, y, out1);
end foo;

This corresponds to the following C-prototype:
double myfoo(double, int, int *);

Example call in Modelica:
(z1,i2) = foo(2.4, 3);

Translated call in C:
z1 = myfoo(2.4, 3, &i2);

]

12.9.6 Utility Functions

The following utility functions can be called in external Modelica functions written in C. These functions are
defined in file ModelicaUtilities.h:

ModelicaMessage void ModelicaMessage(const char* string)
Output the message string (no format control).

ModelicaFormatMessage void ModelicaFormatMessage(const char* string,...)
Output the message under the same format control as the
C-function printf.

ModelicaVFormatMessage void ModelicaVFormatMessage(const char*string, va_list)
Output the message under the same format control as the
C-function vprintf.

ModelicaError void ModelicaError(const char* string)
Output the error message string (no format control). This
function never returns to the calling function, but handles
the error similarly to an assert in the Modelica code.

ModelicaFormatError void ModelicaFormatError(const char* string, ...)
Output the error message under the same format control as
the C-function printf. This function never returns to the
calling function, but handles the error similarly to an assert
in the Modelica code.

ModelicaVFormatError void ModelicaVFormatError(const char* string, va_list)
Output the error message under the same format control as
the C-function vprintf. This function never returns to the
calling function, but handles the error similarly to an assert
in the Modelica code.

ModelicaAllocateString char* ModelicaAllocateString(size_t len)
Allocate memory for a Modelica string which is used as
return argument of an external Modelica function. Note,
that the storage for string arrays (= pointer to string array)
is still provided by the calling program, as for any other
array. If an error occurs, this function does not return, but
calls "ModelicaError".

ModelicaAllocateStringWithErrorReturn char* ModelicaAllocateStringWithErrorReturn(size_t len)

156 Modelica Language Specification 3.2 Revision 2

Same as ModelicaAllocateString, except that in case
of error, the function returns 0. This allows the external
function to close files and free other open resources in case
of error. After cleaning up resources use ModelicaError
or ModelicaFormatError to signal the error.

12.9.7 External Objects

External functions may have internal memory reported between function calls. Within Modelica this memory is
defined as instance of the predefined class ExternalObject according to the following rules:

• There is a predefined partial class ExternalObject [since the class is partial, it is not possible to define an
instance of this class].

• An external object class shall be directly extended from ExternalObject, shall have exactly two function
definitions, called "constructor" and "destructor", and shall not contain other elements.

• The constructor function is called exactly once before the first use of the object. For each completely
constructed object, the destructor is called exactly once, after the last use of the object, even if an error
occurs. The constructor shall have exactly one output argument in which the constructed
ExternalObject is returned. The destructor shall have no output arguments and the only input
argument of the destructor shall be the ExternalObject. It is not legal to call explicitly the
constructor and destructor functions.

• Classes derived from ExternalObject can neither be used in an extends-clause nor in a short class
definition.

• External functions may be defined which operate on the internal memory of an ExternalObject. An
ExternalObject used as input argument or return value of an external C-function is mapped to the C-type
"void*".

[Example:

A user-defined table may be defined in the following way as an ExternalObject
(the table is read in a user-defined format from file and has memory for the last used table interval):
class MyTable
 extends ExternalObject;
 function constructor
 input String fileName := "";
 input String tableName := "";
 output MyTable table;
 external "C" table = initMyTable(fileName, tableName);
 end constructor;

 function destructor "Release storage of table"
 input MyTable table;
 external "C" closeMyTable(table);
 end destructor;
end MyTable;

and used in the following way:
model test "Define a new table and interpolate in it"
 MyTable table=MyTable(fileName ="testTables.txt",
 tableName="table1"); // call initMyTable
 Real y;
equation
 y = interpolateMyTable(table, time);
end test;

This requires to provide the following Modelica function:
function interpolateMyTable "Interpolate in table"
 input MyTable table;

 157

 input Real u;
 output Real y;
 external "C" y = interpolateMyTable(table, u);
end interpolateTable;

The external C-functions may be defined in the following way:

typedef struct { /* User-defined datastructure of the table */
 double* array; /* nrow*ncolumn vector */
 int nrow; /* number of rows */
 int ncol; /* number of columns */
 int type; /* interpolation type */
 int lastIndex; /* last row index for search */
} MyTable;

void* initMyTable(const char* fileName, const char* tableName) {
 MyTable* table = malloc(sizeof(MyTable));
 if (table == NULL) ModelicaError("Not enough memory");
 // read table from file and store all data in *table
 return (void*) table;
};

void closeMyTable(void* object) { /* Release table storage */
 MyTable* table = (MyTable*) object;
 if (object == NULL) return;
 free(table->array);
 free(table);
}

double interpolateMyTable(void* object, double u) {
 MyTable* table = (MyTable*) object;
 double y;
 // Interpolate using "table" data (compute y)
 return y;
};

]

158 Modelica Language Specification 3.2 Revision 2

159

Chapter 13

Packages

13.1 Package as Specialized Class
The package concept is a specialized class (Section 4.6), using the keyword package.

13.2 Motivation and Usage of Packages
[Packages in Modelica may contain definitions of constants and classes including all kinds of specialized classes,
functions, and subpackages. By the term subpackage we mean that the package is declared inside another
package, no inheritance relationship is implied. Parameters and variables cannot be declared in a package. The
definitions in a package should typically be related in some way, which is the main reason they are placed in a
particular package. Packages are useful for a number of reasons:

• Definitions that are related to some particular topic are typically grouped into a package. This makes those
definitions easier to find and the code more understandable.

• Packages provide encapsulation and coarse-grained structuring that reduces the complexity of large
systems. An important example is the use of packages for construction of (hierarchical) class libraries.

• Name conflicts between definitions in different packages are eliminated since the package name is implicitly
prefixed to names of definitions declared in a package.

• Information hiding and encapsulation can be supported to some extent by declaring protected classes,
types, and other definitions that are available only inside the package and therefore inaccessible to outside
code.

• Modelica defines a method for locating a package by providing a standard mapping of package names to
storage places, typically file or directory locations in the file system.

]

13.2.1 Importing Definitions from a Package

The import-clause makes public classes and other public definitions declared in some package available for use by
shorter names in a class or a package. It is the only way of referring to definitions declared in some other package
for use inside an encapsulated package or class.

[Import-clauses in a package or class fill the following two needs:

• Making definitions from other packages available for use (by shorter names) in a package or class.
• Explicit declaration of usage dependences on other packages.

]

An import-clause can occur in one of the following five syntactic forms:

import packagename; (qualified import)

160 Modelica Language Specification 3.2 Revision 2

import [packagename.]definitionname; (single definition import)
import packagename.*; (unqualified import)
import shortpackagename = packagename; (renaming import)
import shortpackagename = [packagename.]definitionname; (renaming single def. import)

Here packagename is the fully qualified name of the imported package including possible dot notation and
definitioname is the name of an element in a package

13.2.1.1 Lookup of Imported Names

This section only defines how the imported name is looked up in the import clause. For lookup in general –
including how import clauses are used, see Section 5.3.

Lookup of the name of an imported package or class, e.g. A.B.C in the clauses import A.B.C; import
D=A.B.C; import A.B.C.*, deviates from the normal lexical lookup by starting the lexical lookup of the first
part of the name at the top-level.

Qualified import clauses may only refer to packages or elements of packages, i.e., in import A.B.C; or
import D=A.B.C;, A.B must be a package. Unqualified import clauses may only import from packages, i.e., in
import A.B.*;, A.B must be a package. [Note: in import A; the class A can be any class which is an element
of the unnamed top-level package]

[For example, if the package ComplexNumbers would have been declared as a subpackage inside the
package Modelica.Math, its fully qualified name would be Modelica.Math.ComplexNumbers.
Definitionname is the simple name without dot notation of a single definition that is imported. A
shortpackagename is a simple name without dot notation that can be used to refer to the package after import
instead of the presumably much longer packagename.

The forms of import are exemplified below assuming that we want to access the addition operation of the
hypothetical package Modelica.Math.ComplexNumbers:
import Modelica.Math.ComplexNumbers; // Accessed by ComplexNumbers.Add
import Modelica.Math.ComplexNumbers.Add; // Accessed by Add
import Modelica.Math.ComplexNumbers.*; // Accessed by Add
import Co = Modelica.Math.ComplexNumbers; // Accessed by Co.Add

]

13.2.1.2 Summary of Rules for Import Clauses

The following rules apply to import-clauses:

• Import-clauses are not inherited.
• Import-clauses are not named elements of a class or package. This means that import-clauses cannot be

changed by modifiers or redeclarations.
• The order of import-clauses does not matter.
• One can only import from packages, not from other kinds of classes. Both packages and classes can be

imported into i.e., they may contain import-clauses.
• An imported package or definition should always be referred to by its fully qualified name in the import-

clause.
• Multiple qualified import-clauses may not have the same import name.

13.2.2 Mapping Package/Class Structures to a Hierarchical File System

Packages/classes may be represented in the hierarchical structure of the operating system [the file system or a
database]. For classes with version information see also Section 17.7.3. The nature of such an external entity falls
into one of the following two groups:

• Structured entities [e.g. a directory in the file system]
• Nonstructured entities [e.g. a file in the file system]

 161

Each Modelica file in the file-system is stored in UTF-8 format (defined by The Unicode Consortium;
http://www.unicode.org) and may start with the UTF-8 encoded byte order mark (0xef 0xbb 0xbf); this is
treated as white-space in the grammar.

13.2.2.1 Mapping a Package/Class Hierarchy into a Directory Hierarchy (Structured Entity)

A structured entity [e.g. the directory A] shall contain a node. In a file hierarchy, the node shall be stored in the
file package.mo. The node shall contain a stored-definition that defines a class [A] with a name matching the
name of the structured entity. [The node typically contains documentation and graphical information for a
package, but may also contain additional elements of the class A.]

A structured entity may also contain one or more sub-entities (structured or non-structured). The sub-entities
are mapped as elements of the class defined by their enclosing structured entity. [For example, if directory A
contains the three files package.mo, B.mo and C.mo the classes defined are A, A.B, and A.C.] Two sub-entities
shall not define classes with identical names [for example, a directory shall not contain both the sub-directory A
and the file A.mo].

In order to preserve the order of sub-entities it is advisable to create a file package.order where each line
contains the name of one class or constant. If a package.order is present when reading a structured entity the
classes and constants are added in this order; if the contents does not exactly match the classes and constants in
the package, the result is tool specific. Classes and constants that are stored in package.mo are also present in
package.order but their relative order should be identical to the one in package.mo (this ensures that the
relative order between classes and constants stored in different ways is preserved).

13.2.2.2 Mapping a Package/Class Hierarchy into a Single File (Nonstructured Entity)

A nonstructured entity [e.g. the file A.mo] shall contain only a stored-definition that defines a class [A] with a
name matching the name of the nonstructured entity. In a file hierarchy the files shall have the extension “.mo”.

13.2.2.3 The within Clause

A within-clause has the following syntax:
within [packageprefixname] ";"

A non-top-level entity shall begin with a within-clause which for the class defined in the entity specifies the
location in the Modelica class hierarchy. A top-level class may contain a within-clause with no name.

For a sub-entity of an enclosing structured entity, the within-clause shall designate the class of the enclosing
entity; and this class must exist and must not have been defined using a short class definition.

[Example: The subpackage Rotational declared within Modelica.Mechanics has the fully qualified name
Modelica.Mechanics.Rotational, which is formed by concatenating the packageprefixname with the short
name of the package. The declaration of Rotational could be given as below:
within Modelica.Mechanics;
package Rotational // Modelica.Mechanics.Rotational
...

]

13.2.3 External resources

In order to reference external resources from documentation (such as links and images in html-text) and/or to
reference images in the Bitmap annotation (see section 17.5.5.6). URIs should be used, for example file:///
and the URI scheme modelica:// which can be used to retrieve resources associated with a package. [Note
scheme names are case-insensitive, but the lower-case form should be used, that is ‘Modelica://’ is allowed but
‘modelica://’ is the recommended form.]

The Modelica-scheme has the ability to reference a hierarchical structure of resources associated with
packages. The same structure is used for all kind of resource references, independent of use (external file, image

162 Modelica Language Specification 3.2 Revision 2

in documentation, bitmap in icon layer, and link to external file in the documentation), and regardless of the
storage mechanism.

Any Modelica-scheme URI containing a slash after the package-name is interpreted as a reference to a
resource. The ‘authority’ portion of the URI is interpreted as a fully qualified package name and the path portion
of the URI is interpreted as the path (relative to the package) of the resource. Each storage scheme can define its
own interpretation of the path (but care should be taken when converting from one storage scheme or when
restructuring packages that resource references resolve to the same resource). Any storage scheme should be
constrained such that a resource with a given path should be unique for any package name that precedes it. The
first part of the path may not be the name of a class in the package given by the authority.

In case the class-name contains quoted identifiers, the single-quote "‘" and any reserved characters (“:”, “/”,
“?”, “#”, “[“, “]”, “@”, “!”, “$”, “&”, “(“, “)”, “*”, “+”, “,”, “;”, “=”) should be percent-encoded as normal in
URIs.

[Example:

Consider a top-level package Modelica and a class Mechanics inside it, a reference such as
modelica://Modelica.Mechanics/C.jpg is legal, while modelica://Modelica/Mechanics/C.jpg is
illegal. The reference modelica://Modelica.Mechanics/C.jpg must also refer to a different resource
than modelica://Modelica/C.jpg.]

13.2.4 The Modelica Library Path—MODELICAPATH

The top-level scope implicitly contains a number of classes stored externally. If a top-level name is not found at
global scope, a Modelica translator shall look up additional classes in an ordered list of library roots, called
MODELICAPATH. [The implementation of MODELICAPATH is tool dependent. In order that a user can work in
parallel with different Modelica tools, it is adviceable to not have this list as environment variable, but as a
setting in the respective tool. Since MODELICAPATH is tool dependent, it is not specified in which way the list of
library roots is stored. Typically, on a Windows system MODELICAPATH is a string with path names separated
by “;” whereas on a Linux system it is a string with path names separated by a “:”.]

In addition a tool may define an internal list of libraries, since it is in general not advisable for a program
installation to modify global environment variables. The version information for a library (as defined in Section
17.7) may also be used during this search to search for a specific version of the library (e.g. if Modelica library
version 2.2 is needed and the first directory in MODELICAPATH contain Modelica library version 2.1, whereas
the second directory contains Modelica version 2.2, then Modelica library version 2.2 is loaded from the second
directory.).

 [The first part of the path A.B.C (i.e., A) is located by searching the ordered list of roots in MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path is located in A; if
that fails, the entire lookup fails without searching for A in any of the remaining roots in MODELICAPATH.]

13.2.4.1 Example of Searching MODELICAPATH

If during lookup a top-level name is not found in the unnamed top-level scope, the search continues in the package
hierarchies stored in these directories. [Figure 13-1 below shows an example MODELICAPATH =
"C:\library;C:\lib1;C:\lib2", with three directories containing the roots of the package hierarchies
Modelica, MyLib, and ComplexNumbers. The first two are represented as the subdirectories
C:\library\Modelica and C:\lib1\MyLib, whereas the third is stored as the file
C:\lib2\ComplexNumbers.mo.

 163

Interfaces

Modelica

Mechanics

Rotational

Translational

Blocks Electrical

MODELICAPATH

ComplexNumbers MyLib

Math
Pack2 Pack1

C:\library C:\lib1 C:\lib2

Figure 13-1. Roots of package hierarchies, e.g., Modelica, MyLib, and ComplexNumbers in MODELICAPATH
= "C:\library;C:\lib1;C:\lib2".

Assume that we want to access the package MyLib.Pack2 in Figure 13-1 above, e.g. through an import clause
import MyLib.Pack2;. During lookup we first try to find a package MyLib corresponding to the first part of
the import name. It is not found in the top-level scope since it has not previously been loaded into the
environment.

Since the name was not found in the top-level scope the search continues in the directories in the
MODELICAPATH in the specified order. For the search to succeed, there must be a subdirectory MyLib or a file
MyLib.mo in one of the directories mentioned in the MODELICAPATH. If there is no such subdirectory or file, the
lookup fails. If MyLib is found in one of the directories, the rest of the name, in this case Pack2, is located in
MyLib. If that fails, the entire lookup fails without continuing the search in possibly remaining directories.

In this example the name matches the subdirectory named MyLib in the second directory “C:\lib1”
mentioned in the MODELICAPATH. This subdirectory must have a file package.mo containing a definition of the
package MyLib, according to the Modelica rules on how to map a package hierarchy to the file system. The
subpackage Pack2 is stored in its own subdirectory or file in the subdirectory MyLib. In this case the search
succeeds and the package MyLib.Pack2 is loaded into the environment.]

164 Modelica Language Specification 3.2 Revision 2

165

Chapter 14

Overloaded Operators

A Modelica operator record can define the behavior for operations such as constructing, adding, multiplying
etc. This is done using the specialized class operator (a restricted class similar to package, see section 4.6)
comprised of functions implementing different variants of the operation for the record class in which the
respective operator definition resides. [The overloading is defined in such a way that ambiguities are not
allowed and give an error. Furthermore, it is sufficient to define overloading for scalars. Overloaded array
operations are automatically deduced from the overloaded scalar operations.] The operator keyword is
followed by the name of the operation:

Overloaded constructors, see section 14.2:
′constructor′, ′0’

Overloaded string conversions, see section 14.3:
′String′

Overloaded binary operations, see section 14.4:
′+′, ′-′ (subtraction), ′*′, ′/′, ′^′,
′==′, ′<>′, ′>′, ′<′, ′>=′, ′<=′, ′and′, ′or′

Overloaded unary operations, see section 14.5:
′-′ (negation), ′not′

The functions defined in the operator-class must take at least one component of the record class as input, except
for the constructor-functions which instead must return one component of the record class. All of the functions
shall return exactly one output.

The functions can be either called as defined in this section, or they can be called directly using the
hierarchical name (since the functions must be encapsulated).

The operator record may also contain additional functions, and declarations of components of the record.
It is not legal to extend from an operator record, except as a short class definition modifying the default
attributes for the component elements directly inside the operator record.

If an operator record was derived by a short class definition, the overloaded operators of this operator record
are the operators that are defined in its base class, for subtyping see Chapter 6.

The precedence and associativity of the overloaded operators is identical to the one defined in Table 3-1 in
section 3.2.

[Note, the operator overloading as defined in this section is only a short hand notation for function calls.]

14.1 Matching Function
All functions defined inside the operator class must return one output (based on the restriction above), and may
include functions with optional arguments, i.e. functions of the form

166 Modelica Language Specification 3.2 Revision 2

function f
 input A1 u1;
 ...
 input Am um := am;
 ...
 input An un;
 output B y;
algorithm
 ...
end f;

The vector P indicates whether argument m of f has a default value (true for default value, false otherwise). A
call f(a1, a2,…, ak, b1 = w1 ,…, bp= wp) with distinct names bj is a valid match for the function f, provided (treating
Integer and Real as the same type)

• Ai = typeOf(ai) for 1 ≤ i ≤ k,

• the names bj = uQj, Qj > k, AQj =typeOf(wi) for 1 ≤ j ≤ p, and

• if the union of {i: 1 ≤ i ≤ k }, {Qj: 1 ≤ j ≤ p}, and {m: Pm true and 1 ≤ m ≤ n } is the set {i: 1 ≤ i ≤ n}.

[This corresponds to the normal treatment of function calls with named arguments, requiring that all inputs have
some value given by a positional argument, named argument, or a default value (and that positional and named
arguments do not overlap). Note, that this only defines a valid call, but does not explicitly define the set of
domains.]

14.2 Overloaded Constructors
Let C denote an operator record class and consider an expression C(a1, a2,…, ak, b1= w1 ,…, bp= wp).

1. If there exists a unique function f in C.′constructor′ such that (a1, a2,…, ak, b1= w1 ,…, bp= wp) is a valid
match for the function f, then C(a1, a2,…, ak, b1= w1 ,…, bp= wp) is resolved to
C.′constructor′.f(a1, a2,…, ak, b1= w1 ,…, bp= wp).

2. If there is no operator C. ′constructor′ the automatically generated record constructor is called.

3. Otherwise the expression is erroneous.

Restrictions:

• The operator C.′constructor′ shall only contain functions that declare one output component, which shall
be of the operator record class C.

• For an operator recordclass there shall not exist any potential call that lead to multiple matches in (1)
above. [How to verify this is not specified.]

• For a pair of operator record classes C and D and components c and d of these classes both of
C.′constructor′ (d) and D.′constructor′ (c) shall not both be legal [, so one of the two definitions must be
removed].

[By the last restriction the following problem for binary operators is avoided:

Assume there are two operator record classes C and D that both have a constructor from Real. If we want to
extend c+c and d+d to support mixed operations, one variant would be to define c+d and d+c; but then c+2
becomes ambiguous (since it is not clear which instance should be converted to). Without mixed operations
expressions such as c+d are only ambiguous if both conversion from C to D and back from D to C are both
available, and this possibility is not allowed by the restriction above.]

Additionally there is an operator ‘0’ defining the zero-value which can also be used to construct an element. The
operator ‘0’ for an operator record C can contain only one function, having zero inputs and one output – of class C
(the called function is therefore unambiguous). It should return the identity element of addition, and is used for
generating flow-equations for connect-equations and zero elements for matrix-multiplication.

 167

14.3 Overloaded String Conversions
Consider an expression String(a1, a2,…, ak, b1= w1 ,…, bp= wp), k ≥ 1 where a1 is an element of class A.

1. If A is a predefined type, i.e., Boolean, Integer, Real, String or an enumeration, or a type derived from them,
then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.′String′ such that (a1, a2,…, ak, b1= w1
,…, bp= wp) is a valid match for f, then String(a1, a2,…, ak, b1= w1 ,…, bp= wp) is evaluated to
A.′String′.f(a1, a2,…, ak, b1= w1 ,…, bp= wp).

3. Otherwise the expression is erroneous.

Restrictions:

• The operator A.′String′ shall only contain functions that declare one output component, which shall be of
the String type, and the first input argument shall be of the operator record class A.

• For an operator record class there shall not exist any call that lead to multiple matches in (2) above. [How
to verify this is not specified.]

14.4 Overloaded Binary Operations
Let op denote a binary operator and consider an expression a op b where a is an instance of class A and b is an
instance of class B.

1. If A and B are predefined types or arrays of such, then the corresponding built-in operation is performed.

2. Otherwise, if there exists exactly one function f in the union of A.op and B.op such that f(a,b) is a valid
match for the function f , then a op b is evaluated using this function. It is an error, if multiple functions
match. If A is not an operator record class, A.op is seen as the empty set, and similarly for B. [Having a
union of the operators ensures that if A and B are the same, each function only appears once.]

3. Otherwise, consider the set given by f in A.op and an operator record class C (different from B) with a
constructor, g, such that C.′constructor′.g(b) is a valid match, and f(a, C.′constructor′.g(b)) is a valid
match; and another set given by f in B.op and an operator record class D (different from A) with a
constructor, h, such that D.′constructor′.h(a) is a valid match and f(D.′constructor′.h(a), b) is a valid
match. If the sum of the sizes of these sets is one this gives the unique match. If the sum of the sizes is
larger than one it is an error.
[Informally, this means: If there is no direct match of “a op b”, then it is tried to find a direct match by
automatic type casts of “a” or “b”, by converting either “a” or “b” to the needed type using an
appropriate constructor function from one of the operator record classes used as arguments of the
overloaded “op” functions. Example using the Complex-definition below:
 Real a;
 Complex b;
 Complex c = a*b; // intepreted as:
 // Complex.’*’.multiply(Complex.’constructor’.fromReal(a),b);
]

4. If A or B is an array type, then the expression is conceptually evaluated according to the rules of section
10.6 with the following exceptions concerning Section 10.6.4:

(a) vector*vector should be left undefined [as the scalar product of Table 10-14 does not
generalize to the expected linear and conjugate linear scalar product of complex numbers].

(b) vector*matrix should be left undefined [as the corresponding definition of Table 10-14
does not generalize to complex numbers in the expected way].

(c) If the inner dimension for matrix*vector or matrix*matrix is zero, this uses the
overloaded '0' operator of the result array element type. If the operator '0' is not defined for
that class it is an error.

168 Modelica Language Specification 3.2 Revision 2

[For array multiplication it is assumed that the scalar elements form a non-commutative ring that
does not necessarily have a multiplicative identity.]

5. Otherwise the expression is erroneous.

Restrictions:

• A function is allowed for a binary operator if and only if it has at least two inputs; at least one of which is
of the operator record class, and the first two inputs shall not have default values, and all inputs after the
first two must have default values.

• For an operator record class there shall not exist any [potential] call that lead to multiple matches in (2)
above.

14.5 Overloaded Unary Operations
Let op denote a unary operator and consider an expression op a where a is an instance of class A. Then op a is
evaluated in the following way.

1. If A is a predefined type, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.op such that A.op.f(a) is a valid match,
then op a is evaluated to A.op.f(a). It is an error, if there are multiple valid matches.

3. If A is an array type, then the expression is conceptually evaluated according to the rules of section 10.6.

4. Otherwise the expression is erroneous.

Restrictions:

• A function is allowed for a unary operator if and only if it has least one input; which is of the record type,
and the first input shall not have default values, and all inputs after the first one must have default values.

• For an operator record class there shall not exist any [potential] call that lead to multiple matches in (2)
above.

• A binary and/or unary operator-class may only contain functions that are allowed for this binary and/or
unary operator-class; and in case of ‘-‘ it is the union of these sets, since it may define both a unary
(negation) and binary (subtraction) operator.

14.6 Example of Overloading for Complex Numbers
[The rules in the previous subsections are demonstrated at hand of a record class to work conveniently with
complex numbers:
operator record Complex "Record defining a Complex number"
 Real re "Real part of complex number";
 Real im "Imaginary part of complex number";

 encapsulated operator ′constructor′
 import Complex;
 function fromReal
 input Real re;
 input Real im := 0;
 output Complex result(re=re, im=im);
 annotation(Inline=true);
 algorithm
 end fromReal;
 end ′constructor′;

 encapsulated operator function ′+′ // short hand notation, see section 4.6
 import Complex;
 input Complex c1;

 169

 input Complex c2;
 output Complex result "= c1 + c2";
 algorithm
 result := Complex(c1.re + c2.re, c1.im + c2.im);
 annotation(Inline=true);
 end ′+′;

 encapsulated operator ′-′
 import Complex;
 function negate
 input Complex c;
 output Complex result "= - c";
 algorithm
 result := Complex(-c.re, -c.im);
 annotation(Inline=true);
 end negate;

 function subtract
 input Complex c1;
 input Complex c2;
 output Complex result "= c1 – c2";
 algorithm
 result := Complex(c1.re - c2.re, c1.im - c2.im);
 annotation(Inline=true);
 end subtract;
 end ′-′;

 encapsulated operator function ′*′
 import Complex;
 input Complex c1;
 input Complex c2;
 output Complex result "= c1 * c2";
 algorithm
 result := Complex(c1.re*c2.re - c1.im*c2.im, c1.re*c2.im + c1.im*c2.re);
 annotation(Inline=true);
 end ′*′;

 encapsulated operator function ′/′
 import Complex; input Complex c1;
 input Complex c2;
 output Complex result "= c1 / c2";
 algorithm
 result := Complex((c1.re*c2.re + c1.im*c2.im)/(c2.re^2 + c2.im^2),
 (-c1.re*c2.im + c1.im*c2.re)/(c2.re^2 + c2.im^2));
 annotation(Inline=true);
 end ′/′;

 encapsulated operator function ′==′
 import Complex;
 input Complex c1;
 input Complex c2;
 output Boolean result "= c1 == c2";
 algorithm
 result := c1.re == c2.re and c1.im == c2.im;
 annotation(Inline=true);
 end ′==′;

 encapsulated operator function ′String′
 import Complex;
 input Complex c;
 input String name := "j" "Name of variable representing sqrt(-1) in the string";
 input Integer significantDigits=6 "Number of significant digits to be shown";
 output String s;
 algorithm
 s := String(c.re, significantDigits=significantDigits);
 if c.im <> 0 then
 s := if c.im > 0 then s + " + " else s + " - ";
 s := s + String(abs(c.im), significantDigits=significantDigits) + name;

170 Modelica Language Specification 3.2 Revision 2

 end if;
 end ′String′;

 encapsulated function j
 import Complex;
 output Complex c;
 algorithm
 c := Complex(0,1);
 annotation(Inline=true);
 end j;

 encapsulated operator function ′0′
 import Complex;
 output Complex c;
 algorithm
 c := Complex(0,0);
 annotation(Inline=true);
 end ′0′;

end Complex;

function eigenValues
 input Real A [:,:];
 output Complex ev[size(A, 1)];
protected
 Integer nx=size(A, 1);
 Real eval[nx,2];
 Integer i;
algorithm
 eval := Modelica.Math.Matrices.eigenValues(A);
 for i in 1:nx loop
 ev[i] := Complex(eval[i, 1], eval[i, 2]);
 end for;
end eigenValues;

// Usage of Complex number above:
 Complex j = Complex.j();
 Complex c1 = 2 + 3*j;
 Complex c2 = 3 + 4*j;
 Complex c3 = c1 + c2;
 Complex c4[:] = eigenValues([1,2; -3,4]);
algorithm
 Modelica.Utilities.Streams.print("c4 = " + String(c4));
 // results in output:
 // c4 = {2.5 + 1.93649j, 2.5 - 1.93649j}

How overloaded operators can be symbolically processed. Example:
 Real a;
 Complex b;
 Complex c = a + b;

Due to inlining of functions, the equation for “c” is transformed to:
 c = Complex.′+′.add(Complex.′constructor′.fromReal(a), b);
 = Complex.′+′.add(Complex(re=a,im=0), b)
 = Complex(re=a+b.re, im=b.im);

or
 c.re = a + b.re;
 c.im = b.im;

These equations can be symbolically processed as other equations.

 171

Complex can be used in a connector:
operator record ComplexVoltage = Complex(re(unit="V"), im(unit="V"));
operator record ComplexCurrent = Complex(re(unit="A"), im(unit="A"));

connector ComplexPin
 ComplexVoltage v;
 flow ComplexCurrent i;
end ComplexPin;

 ComplexPin p1,p2,p3;
equation
 connect(p1,p2);
 connect(p1,p3);

The two connect equations result in the following connection equations:
p1.v = p2.v;
p1.v = p3.v;
p1.i + p2.i + p3.i = Complex.’0’();

// Complex.’+’(p1.i, Complex.’+’(p2.i, p3.i)) = Complex.’0’();

The restrictions on extends are intended to avoid combining two variants inheriting from the same operator
record, but with possibly different operations; thus ComplexVoltage and ComplexCurrent still use the operations
from Complex. The restriction that it is not legal to extend from any of its enclosing scopes implies that:

package A
 extends Icon; //Ok.
 operator record B … end B;
 end A;
 package A2
 extends A(…); // Not legal
 end A2;
 package A3=A(…); // Not legal

]

173

Chapter 15

Stream Connectors

The two basic variable types in a connector – “potential” (or across) variable and “flow” (or through) variable –
are not sufficient to describe in a numerically sound way the bi-directional flow of matter with convective
transport of specific quantities, such as specific enthalpy and chemical composition. The values of these specific
quantities are determined from the upstream side of the flow, i.e., they depend on the flow direction. When using
across and through variables, the corresponding models would include nonlinear systems of equations with
Boolean unknowns for the flow directions and singularities around zero flow. Such equation systems cannot be
solved reliably in general. The model formulations can be simplified when formulating two different balance
equations for the two possible flow directions. This is not possible with across and through variables though.

This fundamental problem is addressed in Modelica by introducing a third type of connector variable, called
stream variable, declared with the prefix stream. A stream variable describes a quantity that is carried by a flow
variable, i.e., a purely convective transport phenomenon. The value of the stream variable is the specific property
inside the component close to the boundary, assuming that matter flows out of the component into the connection
point. In other words, it is the value the carried quantity would have if the fluid was flowing out of the connector,
irrespective of the actual flow direction.

The rationale of the definition and typical use cases are described in Appendix D.

15.1 Definition of Stream Connectors
If at least one variable in a connector has the stream prefix, the connector is called “stream connector” and the
corresponding variable is called “stream variable”. The following definitions hold:

• The stream prefix can only be used in a connector declaration.

• A stream connector must have exactly one scalar variable with the flow prefix. [The idea is that all
stream variables of a connector are associated with this flow variable].

• For every outside connector [see section 9.1.2], one equation is generated for every variable with the
stream prefix [to describe the propagation of the stream variable along a model hierarchy]. For the exact
definition, see the end of section 15.2.

• For inside connectors [see section 9.1.2], variables with the stream prefix do not lead to connection
equations.

• Connection equations with stream variables are generated in a model when using the inStream()
operator or the actualStream() operator, see sections 15.2 and 15.3.

[Example:
connector FluidPort
 replaceable package Medium = Modelica.Media.Interfaces.PartialMedium;
 Medium.AbsolutePressure p "Pressure in connection point";
 flow Medium.MassFlowRate m_flow "> 0, if flow into component";
 stream Medium.SpecificEnthalpy h_outflow "h close to port if m_flow < 0";
 stream Medium.MassFraction X_outflow[Medium.nX] "X close to port if m_flow < 0";
end FluidPort;

174 Modelica Language Specification 3.2 Revision 2

FluidPort is a stream connector, because some connector variables have the stream prefix. The Medium
definition and the stream variables are associated with the only flow variable (m_flow) that defines a fluid stream.
The Medium and the stream variables are transported with this flow variable. The stream variables h_outflow and
X_outflow are the stream properties inside the component close to the boundary, when fluid flows out of the
component into the connection point. The stream properties for the other flow direction can be inquired with the
built-in operator inStream(). The value of the stream variable corresponding to the actual flow direction can
be inquired through the built-in operator actualStream(), see section 15.3.]

15.2 Stream Operator inStream and Connection Equations
In combination with the stream variables of a connector, the inStream() operator is designed to describe in a
numerically reliable way the bi-directional transport of specific quantities carried by a flow of matter.

inStream(v) is only allowed on stream variables v and is informally the value the stream variable has, assuming
that the flow is from the connection point into the component. This value is computed from the stream connection
equations of the flow variables and of the stream variables.

For the following definition it is assumed that N inside connectors mj.c (j=1,2,...,N) and M outside
connectors ck (k=1,2,...,M) belonging to the same connection set [see definition in section 9.1.2] are
connected together and a stream variable h_outflow is associated with a flow variable m_flow in connector c.
connector FluidPort
 ...
 flow Real m_flow "Flow of matter; m_flow > 0 if flow into component";
 stream Real h_outflow "Specific variable in component if m_flow < 0"
end FluidPort

model FluidSystem
 ...
 FluidComponent m1, m2, ..., mN;
 FluidPort c1, c2, ..., cM;
equation
 connect(m1.c, m2.c);
 connect(m1.c, m3.c);
 ...
 connect(m1.c, mN.c);
 connect(m1.c, c1);
 connect(m1.c, c2);
 ...
 connect(m1.c, cM);
 ...
end FluidSystem;

Figure: Examplary FluidSystem with N=3 and M=2

[The connection set represents an infinitesimally small control volume, for which the stream connection equations
are equivalent to the conservation equations for mass and energy.]

m1 C

m2 C

m3 C

Cq,1

Cq,2

...

...

m1 C

m2 C

m3 C

Cq,1

Cq,2

...

...

 175

With these prerequisites, the semantics of the expression inStream(mi.c.h_outflow)is given implicitly by
defining an additional variable h_mix_ini, and by adding to the model the conservation equations for mass and
energy corresponding to the infinitesimally small volume spanning the connection set. The connection equation
for the flow variables has already been added to the system according to the connection semantics of flow
variables defined in section 0.

// Standard connection equation for flow variables
0 = sum(mj.c.m_flow for j in 1:N) + sum(-ck.m_flow for k in 1:M);

Whenever the inStream() operator is applied to a stream variable of an inside connector, the balance equation
of the transported property must be added under the assumption of flow going into the connector

// Implicit definition of the inStream() operator applied to inside connector i
0 = sum(mj.c.m_flow*(if mj.c.m_flow > 0 or j==i then h_mix_ini else mj.c.h_outflow)
 for j in 1:N) +
 sum(-ck.m_flow* (if –ck.m_flow > 0 then h_mix_ini else inStream(ck.h_outflow)
 for k in 1:M);
inStream(mi.c.h_outflow) = h_mix_ini;

Note that the result of the inStream(mi.c.h_outflow) operator is different for each port i, because the
assumption of flow entering the port is different for each of them.

Additional equations need to be generated for the stream variables of outside connectors.
// Additional connection equations for outside connectors
for q in 1:M loop
 0 = sum(mj.c.m_flow*(if mj.c.m_flow > 0 then h_mix_outq
 else mj.c.h_outflow) for j in 1:N) +
 sum(-ck.m_flow* (if –ck.m_flow > 0 or k==q then h_mix_outq
 else inStream(ck.h_outflow)
 for k in 1:M);
 cq.h_outflow = h_mix_outq;
end for;

Neglecting zero flow conditions, the solution of the above-defined stream connection equations for inStream
values of inside connectors and outflow stream variables of outside connectors is (for a derivation, see Appendix
D):

inStream(mi.c.h_outflow) :=
 (sum(max(-mj.c.m_flow,0)*mj.c.h_outflow for j in cat(1,1:i-1, i+1:N) +
 sum(max(ck.m_flow ,0)*inStream(ck.h_outflow) for k in 1:M))/
 (sum(max(-mj.c.m_flow,0) for j in cat(1,1:i-1, i+1:N) +
 sum(max(ck.m_flow ,0) for k in 1:M));

// Additional equations to be generated for outside connectors q
for q in 1:M loop
 cq.h_outflow :=
 (sum(max(-mj.c.m_flow,0)* mj.c.h_outflow for j in 1:N) +
 sum(max(ck.m_flow,0)*inStream(ck.h_outflow) for k in cat(1,1:q-1, q+1:M))/
 (sum(max(-mj.c.m_flow,0) for j in 1:N) +
 sum(max(ck.m_flow ,0) for k in cat(1,1:q-1, q+1:M)));
end for;

Note, that inStream(ck.h_outflow) is computed from the connection set that is present one hierarchical level
above. At this higher level ck.h_outflow is no longer an outside connector, but an inside connector and then the
formula from above for inside connectors can be used to compute it.

If the argument of inStream() is an array, the implicit equation system holds elementwise, i.e., inStream() is
vectorizable.

The stream connection equations have singularities and/or multiple solutions if one or more of the flow variables
become zero. When all the flows are zero, a singularity is always present, so it is necessary to approximate the

176 Modelica Language Specification 3.2 Revision 2

solution in an open neighbourhood of that point. [For example assume that mj.c.m_flow = ck.m_flow = 0,
then all equations above are identically fulfilled and inStream(..) can have any value]. It is required that the
inStream() operator is appropriately approximated in that case and the approximation must fulfill the following
requirements:

1. inStream(mi.c.h_outflow) and inStream(ck.h_outflow) must be unique with respect to all
values of the flow and stream variables in the connection set, and must have a continuous dependency on
them.

2. Every solution of the implicit equation system above must fulfill the equation system identically [upto the
usual numerical accuracy], provided the absolute value of every flow variable in the connection set is
greater as a small value (|m1.c.m_flow| > eps and |m2.c.m_flow| > eps and ... and
|cM.m_flow| > eps).

[Based on the above requirements, the following implementation is recommended:

N = 1, M = 0:
inStream(m1.c.h_outflow) = m1.c.h_outflow;

N = 2, M = 0:
inStream(m1.c.h_outflow) = m2.c.h_outflow;
inStream(m2.c.h_outflow) = m1.c.h_outflow;

N = 1, M = 1:
inStream(m1.c.h_outflow) = inStream(c1.h_outflow);
// Additional equation to be generated
c1.h_outflow = m1.c.h_outflow;

N = 0, M = 2:
// Additional equation to be generated
c1.h_outflow = inStream(c2.h_outflow);
c2.h_outflow = inStream(c1.h_outflow);

All other cases:
if mj.c.m_flow.min >= 0 for all j = 1:N with j <> i and
 ck.m_flow.max <= 0 for all k = 1:M
then
 inStream(mi.c.h_outflow) = mi.c.h_outflow;
else
 si = sum(max(-mj.c.m_flow,0) for j in cat(1,1:i-1, i+1:N) +
 sum(max(ck.m_flow ,0) for k in 1:M);
 inStream(mi.c.h_outflow) =
 (sum(positiveMax(-mj.c.m_flow,si)*mj.c.h_outflow) +
 sum(positiveMax(ck.m_flow,si) *inStream(ck.h_outflow)))/
 (sum(positiveMax(-mj.c.m_flow,si)) +
 sum(positiveMax(ck.m_flow,si)))
 for j in 1:N and i <> j and mj.c.m_flow.min < 0,
 for k in 1:M and ck.m_flow.max > 0

// Additional equations to be generated
for q in 1:M loop
 if mj.c.m_flow.min >= 0 for all j = 1:N and
 ck.m_flow.max <= 0 for all k = 1:M and k <> q
 then
 cq.h_outflow = 0;
 else
 sq = (sum(max(-mj.c.m_flow,0) for j in 1:N) +
 sum(max(ck.m_flow ,0) for k in cat(1,1:q-1, q+1:M)));
 cq.h_outflow = (sum(positiveMax(-mj.c.m_flow,sq)* mj.c.h_outflow) +
 sum(positiveMax(ck.m_flow,sq) * inStream(ck.h_outflow)))/
 (sum(positiveMax(-mj.c.m_flow,sq)) +
 sum(positiveMax(ck.m_flow,sq)))
 for j in 1:N and mj.c.m_flow.min < 0,

 177

 for k in 1:M and k <> q and ck.m_flow.max > 0
end for;

The operator positiveMax(-mj.c.m_flow,si) should be such that:

• positiveMax(-mj.c.m_flow,si) = -mj.c_m_flow if -mj.c.m_flow>eps1j>=0, where eps1j are small
flows, compared to typical problem-specific value,

• all denominators should be > eps2 > 0, where eps2 is also a small flow, compared to typical
problem-specific values.

Trivial implementation of positiveMax guarantees continuity of inStream():
positiveMax(-mj.c.m_flow, si) = max(-mj.c.m_flow, eps1); // so si is not needed

More sophisticated implementation, with smooth approximation, applied only when all flows are small:
// Define a "small number" eps (nominal(v) is the nominal value of v)
eps := relativeTolerance*min(nominal(mj.c.m_flow));

// Define a smooth curve, such that alpha(si>=eps)=1 and alpha(si<=0)=0
alpha := smooth(1, if si > eps then 1 else
 if si > 0 then (si/eps)^2*(3-2*(si/eps)) else 0);

// Define function positiveMax(v,si) as a linear combination of max(v,0)
// and of eps along alpha
positiveMax((-mj.c.m_flow,si) := alpha*max(-mj.c.m_flow,0) + (1-alpha)*eps;

The derivation of this implementation is discussed in Appendix D. Note that in the cases N = 1, M =0
(unconnected port, physically corresponding to a plugged-up flange), and N = 2, M=0 (one-to-one connection),
the result of inStream() is trivial and no non-linear equations are left in the model, despite the fact that the
original definition equations are nonlinear.

The following properties hold for this implementation:
• inStream(..) is continuous (and differentiable), provided that mj.c.h_outflow, mj.c.m_flow,

ck.h_outflow, and ck.m_flow are continuous and differentiable.
• A division by zero can no longer occur (since sum(positiveMax(-mj.c.m_flow,si))>=eps2 > 0), so

the result is always well-defined.
• The balance equations are exactly fulfilled if the denominator is not close to zero

(since the exact formula is used, if sum(positiveMax(-mj.c.m_flow,si)) > eps).
• If all flows are zero, inStream(mi.c.h_outflow) = sum(mj.c.h_outflow for j<>i and

mj.c.m_flow.min < 0)/Np, i.e., it is the mean value of all the Np variables mj.c.h_outflow, such that
j<>i and mj.c.m_flow.min < 0. This is a meaningful approximation, considering the physical
diffusion effects that are relevant at small flow rates in a small connection volume (themal conduction for
enthalpy, mass diffusion for mass fractions).

The value of relativeTolerance should be larger than the relative tolerance of the nonlinear solver used to solve
the implicit algebraic equations.

As a final remark, further symbolic simplifications could be carried out by taking into account equations that
affect the flows in the connection set (i.e., equivalent to mj.c.m_flow = 0, which then implies mj.c.m_flow.min >=
0). This is interesting, e.g., in the case of a valve when the stem position is set identically to closed by its
controller.

]

15.3 Stream Operator actualStream
The actualStream(v) operator is provided for convenience, in order to return the actual value of the stream
variable, depending on the actual flow direction. The only argument of this built-in operator needs to be a
reference to a stream variable. The operator is vectorizable, in the case of vector arguments. For the following

178 Modelica Language Specification 3.2 Revision 2

definition it is assumed that an (inside or outside) connector c contains a stream variable h_outflow which is
associated with a flow variable m_flow in the same connector c:

actualStream(port.h_outflow) = if port.m_flow > 0 then inStream(port.h_outflow)
 else port.h_outflow;

[The actualStream(v) operator is typically used in two contexts:
 der(U) = c.m_flow*actualStream(c.h_outflow); // (1)energy balance equation
 h_port = actualStream(port.h); // (2)monitoring the enthalpy at a port

In the case of equation (1), although the actualStream() operator is discontinuous, the product with the flow
variable is not, because actualStream() is discontinuous when the flow is zero by construction. Therefore, a tool
might infer that the expression is smooth(0, ...) automatically, and decide whether or not to generate an event. If
a user wants to avoid events entirely, he/she may enclose the right-hand side of (1) with the noEvent() operator.
Equations like (2) might be used for monitoring purposes (e.g. plots), in order to inspect what the ‘actual’
enthalpy of the fluid flowing through a port is. In this case, the user will probably want to see the change due to
flow reversal at the exact instant, so an event should be generated. If the user doesn’t bother, then he/she should
enclose the right-hand side of (2) with noEvent(). Since the output of actualStream() will be discontinuous, it
should not be used by itself to model physical behaviour (e.g., to compute densities used in momentum balances)
- inStream() should be used for this purpose.The operator actualStream() should be used to model physical
behaviour only when multiplied by the corresponding flow variable (like in the above energy balance equation),
because this removes the discontinuity.

]

 179

Chapter 16

Mapping of Models to Execution Environments

[This functionality has been removed in Modelica 3.2 revision 2, since it is replaced in Modelica Specification 3.3
by a much better approach and no tool vendor has released an implementation of this feature.]

180 Modelica Language Specification 3.2 Revision 2

Chapter 17

Annotations

Annotations are intended for storing extra information about a model, such as graphics, documentation or
versioning, etc. A Modelica tool is free to define and use other annotations, in addition to those defined here,
according to section 17.1. The only requirement is that any tool shall save files with all annotations from this
chapter and all vendor-specific annotations intact. To ensure this, annotations must be represented with constructs
according to the Modelica grammar. The specification in this document defines the semantic meaning if a tool
implements any of these annotations.

17.1 Vendor-Specific Annotations
A vendor may – anywhere inside an annotation – add specific, possibly undocumented, annotations which are not
intended to be interpreted by other tools. Two variants of vendor-specific annotations exist; one simple and one
hierarchical. Double underscore concatenated with a vendor name as initial characters of the identifier are used to
identify vendor-specific annotations.

[Example:
annotation (
 Icon(coordinateSystem(extent={{-100,-100}, {100,100}}),
 graphics={__NameOfVendor(Circle(center={0,0}, radius=10))})
);

This introduces a new graphical primitive Circle using the hierarchical variant of vendor-specific annotations.

annotation (
 Icon(coordinateSystem(extent={{-100,-100}, {100,100}}),
 graphics={Rectangle(extent={{-5,-5},{7,7}}, __NameOfVendor_shadow=2)})
);

This introduces a new attribute __NameOfVendor_shadow for the Rectangle primitive using the simple
variant of vendor-specific annotations.]

17.2 Annotations for Documentation
documentation_annotation:
 annotation"(" Documentation "(" "info" "=" STRING
 ["," "revisions" "=" STRING] ")" ")"

The “Documentation” annotation can contain the “info” annotation giving a textual description, the
“revisions” annotation giving a list of revisions and other annotations defined by a tool [The “revisions”
documentation may be omitted in printed documentation]. How the tool interprets the information in
“Documentation” is unspecified. Within a string of the “Documentation” annotation, the tags <HTML> and

 181

</HTML> or <html> and </html> define optionally begin and end of content that is HTML encoded. For
external links see section 13.2.3. Links to Modelica classes may be defined with the HTML link command using
scheme “Modelica”, e.g.,
MultiBody.Tutorial

Together with scheme “Modelica” the (URI) fragment specifiers #diagram, #info, #text, #icon may be
used to reference different layers. Example:
Revolute

preferred view_annotation:
 annotation"(" preferredView "=" ("info" | "diagram" | "text") ")"

The preferredView annotation defines the default view when selecting the class. info means info layer, i.e.,
the documentation of the class, diagram means diagram layer and text means the Modelica text layer.

documentation class_annotation:
 annotation"(" DocumentationClass "=" true ")"

Only allowed as class annotation on any kind of class and implies that this class and all classes within it are
treated as having the annotation preferredView="info". If the annotation preferredView is explicitly set for a class,
it has precedence over a DocumentationClass annotation [A tool may display such classes in special ways. For
example, the description texts of the classes might be displayed instead of the class names, and if no icon is
defined, a special information default icon may be displayed in the package browser.]

17.3 Annotations for Code Generation
code_annotation:
 annotation"(" codeGenerationFlag "=" (false | true) ")"

codeGenerationFlag :
 "Evaluate" | "HideResult" | "Inline" | "LateInline"

These annotations can influence the code generation. The details are defined in the next table:

Evaluate The annotation Evaluate can occur in the component declaration,

its type declaration, or a base-class of the type-declaration. In the
case of multiple conflicting annotations it is handled similarly to
modifiers (e.g., an Evaluate-annotation on the component
declaration takes precedence). The annotation Evaluate only has
effect for a component declared with the prefix parameter.
If Evaluate = true, the model developer proposes to utilize the
value for the symbolic processing. In that case, it is not possible to
change the parameter value after symbolic pre-processing.

If Evaluate = false, the model developer proposes to not
utilize the value of the corresponding parameter for the symbolic
processing.

[Evaluate is for example used for axis of rotation parameters in
the Modelica.Mechanics.MultiBody library in order to
improve the efficiency of the generated code]

HideResult HideResult = true defines that the model developer proposes
to not show the simulator results of the corresponding component
[e.g., it will not be possible to plot this variable].

HideResult = false defines that the developer proposes to

182 Modelica Language Specification 3.2 Revision 2

show the corresponding component [if a variable is declared in a
protected section, a tool might not include it in a simulation result.
By setting HideResult = false, the modeler would like to have
the variable in the simulation result, even if in the protected
section].

 [HideResult is for example used in the connectors of the
Modelica.StateGraph library to not show variables to the
modeler that are of no interest to him and would confuse him]

Inline Has only an effect within a function declaration.
If “Inline = true”, the model developer proposes to inline the
function. This means, that the body of the function is included at
all places where the function is called.

If “Inline = false”, the model developer proposes to not
inline the function.

[Inline = true is for example used in
Modelica.Mechanics.MultiBody.Frames and in functions of
Modelica.Media to have no overhead for function calls such as
resolving a vector in a different coordinate system and at the same
time the function can be analytically differentiated, e.g., for index
reduction needed for mechanical systems.]

LateInline Has only an effect within a function declaration.
If “LateInline = true”, the model developer proposes to
inline the function after all symbolic transformations have been
performed [especially differentiation and inversion of functions;
for efficiency reasons it is then useful to replace all function calls
with identical input arguments by one function call, before the
inlining].

If “LateInline = false”, the model developer proposes to not
inline the function after symbolic transformations have been
performed.

“Inline=true, LateInline=false” is identical to
“Inline=true”
“Inline=true, LateInline=true” is identical to
“LateInline=true”
“Inline=false, LateInline=true” is identical to
“LateInline=true”

[This annotation is for example used in
Modelica.Media.Water.IF97_Utilities.T_props_ph to
provide in combination with common subexpression elimination
the automatic caching of function calls. Furthermore, it is used in
order that a tool is able to propagate specific enthalpy over
connectors in the Modelica_Fluid library.]

InlineAfterIndexReduction Has only an effect within a function declaration.
If true, the model developer proposes to inline the function after
the function is differentiated for index reduction, and before any
other symbolic transformations are performed. This annotation
cannot be combined with annotations Inline and LateInline.
[This annotation is for example used in
Modelica.Mechanics.Rotational.Sources.Move to define

 183

that an input signal is the derivative of another input signal.]

smoothOrder_annotation:
 annotation"(" smoothOrder "=" UNSIGNED_NUMBER ")" |
 annotation"(" smoothOrder "(" normallyConstant=NAME ["," normallyConstant=NAME] ")"
 "=" UNSIGNED_NUMBER ")"

This annotation has only an effect within a function declaration. smoothOrder defines the number of
differentations of the function, in order that all of the differentiated outputs are continuous provided all input
arguments and their derivatives up to order smoothOrder are continuous [This means that the function is at least
CsmoothOrder. smoothOrder = 1 means that the function can be differentiated at least once in order that all output
arguments are still continuous, provided the input arguments are continuous. If a tool needs the derivative of a
function, e.g. for index reduction or to compute an analytic Jacobian, the function can be differentiated
analytically at least smoothOrder times].

The optional argument normallyConstant of smoothOrder defines that the function argument NAME is
usually constant [A tool might check whether the actual argument to NAME is a parameter expression at the place
where the function is called. If this is the case, the derivative of the function might be constructed under the
assumption that the corresponding argument is constant, to enhance efficiency. Typically, a tool would generate
at most two different derivative functions of a function: One, under the assumption that all normallyConstant
arguments are actually constant. And one, under the assumption that all input arguments are time varying. Based
on the actual arguments of the function call either of the two derivative functions is used.
This annotation is used by many functions of the Modelica.Fluid library, such as
Modelica.Fluid.Dissipation.PressureLoss.StraightPipe.dp_laminar_DP, since geometric
arguments to these functions are usually constant]

17.4 Annotations for Simulation Experiments
experiment_annotation:
 annotation"(" "experiment" "(" [experimentOption] {, experimentOption}] ")"

experimentOption:
 StartTime "=" ["+" | "-"] UNSIGNED_NUMBER |
 StopTime "=" ["+" | "-"] UNSIGNED_NUMBER |
 Interval "=" UNSIGNED_NUMBER
 Tolerance "=" UNSIGNED_NUMBER

The experiment annotation defines the default start time (StartTime) in [s], the default stop time (StopTime) in
[s], the suitable time resolution for the result grid (Interval) in [s], and the default relative integration tolerance
(Tolerance) for simulation experiments to be carried out with the model or block at hand.

17.5 Annotations for Graphical Objects
A graphical representation of a class consists of two abstraction layers, icon layer and diagram layer showing
graphical objects, component icons, connectors and connection lines. The icon representation typically visualizes
the component by hiding hierarchical details. The hierarchical decomposition is described in the diagram layer
showing icons of subcomponents and connections between these.

Graphical annotations described in this chapter ties into the Modelica grammar as follows.
graphical_annotations :
 annotation "(" [layer_annotations] ")"

layer_annotations :
 (icon_layer | diagram_layer) ["," layer_annotations]

184 Modelica Language Specification 3.2 Revision 2

Layer descriptions (start of syntactic description):
icon_layer :
 "Icon" "(" [coordsys_specification ","] graphics ")"

diagram_layer :
 "Diagram" "(" [coordsys_specification ","] graphics ")"

[Example:
annotation (
 Icon(coordinateSystem(extent={{-100,-100}, {100,100}}),
 graphics={Rectangle(extent={{-100,-100}, {100,100}}),
 Text(extent={{-100,-100}, {100,100}}, textString="Icon")}));

]

The graphics is specified as an ordered sequence of graphical primitives, which are described below. [Note that
the ordered sequence is syntactically a valid Modelica annotation, although there is no mechanism for defining an
array of heterogeneous objects in Modelica.]

These Icon, Diagram, and Documentation annotations are only allowed directly in classes (e.g. not on
components or connections). The allowed annotations for a short class definition is the union of the allowed
annotations in classes and on extends-clauses.

17.5.1 Common Definitions

The following common definitions are used to define graphical annotations in the later sections.
type DrawingUnit = Real(final unit="mm");
type Point = DrawingUnit[2] "{x, y}";
type Extent = Point[2]
 "Defines a rectangular area {{x1, y1}, {x2, y2}}";

The interpretation of "unit" is with respect to printer output in natural size (not zoomed).

All graphical entities have a visible attribute which indicates if the entity should be shown.

partial record GraphicItem
 Boolean visible = true;
 Point origin = {0, 0};
 Real rotation(quantity="angle", unit="deg")=0;
end GraphicItem;

The origin attribute specifies the origin of the graphical item in the coordinate system of the layer in which it is
defined. The origin is used to define the geometric information of the item and for all transformations applied to
the item. All geometric information is given relative the origin attribute, which by default is {0, 0}.

The rotation attribute specifies the rotation of the graphical item around the point defined by the origin
attribute.

17.5.1.1 Coordinate Systems

Each of the layers has its own coordinate system. A coordinate system is defined by the coordinates of two points,
the lower left corner and the upper right corner, where the coordinates of the first point shall be less than the
coordinates of the second point [a first quadrant coordinate system].

The attribute preserveAspectRatio specifies a constraint on the shape of components of the class. If
preserveAspectRatio is true, changing the extent of components shall preserve the aspect ratio of the
coordinate system of the class.

The attribute initialScale specifies the default component size as initialScale times the size of the
coordinate system of the class. An application may use a different default value of initialScale.

 185

The attribute grid specifies the spacing between grid points which can be used by tools for alignment of points in
the coordinate system [e.g. “snap-to-grid”]. Its use and default value is tool-dependent.

record CoordinateSystem
 Extent extent;
 Boolean preserveAspectRatio=true;
 Real initialScale = 0.1;
 DrawingUnit grid[2];
end CoordinateSystem;

[Example: A coordinate system for an icon could for example be defined as:
CoordinateSystem(extent = {{-10, -10}, {10, 10}});

i.e. a coordinate system with width 20 units and height 20 units.]

The coordinate systems for the icon and diagram layers are by default defined as follows; where the array of
GraphicsItem represents an ordered list of graphical primitives.
record Icon "Representation of the icon layer"
 CoordinateSystem coordinateSystem(extent = {{-100, -100}, {100, 100}});
 GraphicItem[:] graphics;
end Icon;

record Diagram "Representation of the diagram layer"
 CoordinateSystem coordinateSystem(extent = {{-100, -100}, {100, 100}});
 GraphicItem[:] graphics;
end Diagram;

17.5.1.2 Graphical Properties

Properties of graphical objects and connection lines are described using the following attribute types.
type Color = Integer[3](min=0, max=255) "RGB representation";

constant Color Black = zeros(3);

type LinePattern = enumeration(None, Solid, Dash, Dot, DashDot, DashDotDot);

type FillPattern = enumeration(None, Solid, Horizontal, Vertical,
 Cross, Forward, Backward, CrossDiag, HorizontalCylinder,
 VerticalCylinder, Sphere);

type BorderPattern = enumeration(None, Raised, Sunken, Engraved);

type Smooth = enumeration(None, Bezier);

The FillPattern attributes Horizontal, Vertical, Cross, Forward, Backward and CrossDiag specify
fill patterns drawn with the line color over the fill color.

The attributes HorizontalCylinder, VerticalCylinder and Sphere specify gradients that represent a
horizontal cylinder, a vertical cylinder and a sphere, respectively. The gradient goes from line color to fill color.

The border pattern attributes Raised, Sunken and Engraved represent
frames which are rendered in a tool-dependent way.

The smooth attribute specifies that a line can be drawn as straight line
segments (None) or using a spline (Bezier), where the line’s points specify
control points of a quadratic Bezier curve.

For lines with only two points, the smooth attribute has no effect.

For lines with three or more points (P1, P2, …, Pn), the middle point of each
line segment (P12, P23, …, P(n-1)n) becomes the starting point and ending
points of each quadratic Bezier curve. For each quadratic Bezier curve, the common point of the two line segment
becomes the control point. For instance, point P2 becomes the control point for the Bezier curve starting at P12 and

186 Modelica Language Specification 3.2 Revision 2

ending at P23. A straight line is drawn between the starting point of the line and the starting point of the first
quadratic Bezier curve, as well as between the ending point of the line and the ending point of the last quadratic
Bezier curve.
In the illustration above, the square points (P1, P2, P3, and P4) represent the points that define the line, and the
circle points (P12, P23, and P34) are the calculated middle points of each line segment. Points P12, P2, and P23 define
the first quadratic Bezier curve, and the points P23, P3, and P34 define the second quadratic Bezier curve. Finally a
straight line is drawn between points P1 and P12 as well as between P34 and P4.
type Arrow = enumeration(None, Open, Filled, Half);

type TextStyle = enumeration(Bold, Italic, UnderLine);

type TextAlignment = enumeration(Left, Center, Right);

Filled shapes have the following attributes for the border and interior.
record FilledShape "Style attributes for filled shapes"
 Color lineColor = Black "Color of border line";
 Color fillColor = Black "Interior fill color";
 LinePattern pattern = LinePattern.Solid "Border line pattern";
 FillPattern fillPattern = FillPattern.None "Interior fill pattern";
 DrawingUnit lineThickness = 0.25 "Line thickness";
end FilledShape;

17.5.2 Component Instance

A component instance can be placed within a diagram or icon layer. It has an annotation with a Placement
modifier to describe the placement. Placements are defined in term of coordinate systems transformations:
record Transformation
 Point origin = {0, 0};
 Extent extent;
 Real rotation(quantity="angle", unit="deg")=0;
end Transformation;

The origin attribute defines the position of the component in the coordinate system of the enclosing class. The
extent defines the position, size and flipping of the component, relative to the origin attribute. The extent is
defined relative to the origin attribute of the component instance. Given an extent {{x1, y1}, {x2, y2}}, x2<x1
defines horizontal flipping and y2<y1 defines vertical flipping around the point defined by the origin attribute.

The rotation attribute specifies rotation of the extent around the point defined by the origin attribute.

The graphical operations are applied in the order: scaling, flipping and rotation.
record Placement
 Boolean visible = true;
 Transformation transformation "Placement in the dagram layer";
 Transformation iconTransformation "Placement in the icon layer";
end Placement;

If no iconTransformation is given the transformation is also used for placement in the icon layer.

[A connector can be shown in both an icon layer and a diagram layer of a class. Since the coordinate systems
typically are different, placement information needs to be given using two different coordinate systems. More
flexibility than just using scaling and translation is needed since the abstraction views might need different visual
placement of the connectors. The attribute transformation gives the placement in the diagram layer and
iconTransformation gives the placement in the icon layer. When a connector is shown in a diagram layer, its
diagram layer is shown to facilitate opening up a hierarchical connector to allow connections to its internal
subconnectors.]

For connectors, the icon layer is used to represent a connector when it is shown in the icon layer of the
enclosing model. The diagram layer of the connector is used to represent it when shown in the diagram layer of
the enclosing model. Protected connectors are only shown in the diagram layer. Public connectors are shown in
both the diagram layer and the icon layer. Non-connector components are only shown in the diagram layer.

 187

17.5.3 Extends clause

Each extends clause may have layer specific annotations which describe the rendering of the base class’ icon and
diagram layers in the subclass.
record IconMap
 Extent extent = {{0, 0}, {0, 0}};
 Boolean primitivesVisible = true;
end IconMap;

record DiagramMap
 Extent extent = {{0, 0}, {0, 0}};
 Boolean primitivesVisible = true;
end DiagramMap;

All graphical primitives are inherited from a base class. If the primitivesVisible attribute is false,
components and connections are by default visible but graphical primitives are not. The base class coordinate
system is mapped to the region specified by the attribute extent. If the extent defines a null region (the
default), the base class coordinate system shall be fitted to the derived class coordinate system with center
alignment and respected preserveAspectRatio of the base class.

[Example:
model A

 extends B annotation(
 IconMap(extent={{-100,-100}, {100,100}},primitivesVisible=false),
 DiagramMap(extent={{-50,-50}, {0,0}},primitivesVisible=true)
);
end A;

]

17.5.4 Connections

A connection is specified with an annotation containing a Line primitive and optionally a Text-primitive, as
specified below. [Example:
connect(a.x, b.x)
 annotation(Line(points={{-25,30}, {10,30}, {10, -20}, {40,-20}}));

]

The optional Text-primitive defines a text that will be written on the connection line. It has the following
definition (it is not equal to the Text-primitive as part of graphics – the differences are marked as bold lines):
record Text
 extends GraphicItem;
 extends FilledShape;
 Extent extent;
 String string;
 Real fontSize = 0 "unit pt";
 String fontName;
 TextStyle textStyle[:];
 TextAlignment horizontalAlignment = if index<0 then TextAlignment.Right
 else TextAligment.Left;
 Integer index;
end Text;

The index is one of the points of Line (numbered 1, 2, 3, … where -1 can be used to indicate the last one). The
string may use the special symbols “%first” and “%second” to indicate the connectors in the the connect-equation.

[Example:

 connect(controlBus.axisControlBus1, axis1.axisControlBus) annotation (
 Text(string="%first", index=-1, extent=[-6,3; -6,3]),

188 Modelica Language Specification 3.2 Revision 2

 Line(points={{-80,-10},{-80,-14.5},{-79,-14.5},{-79,-17},{-65,-17},{-65,-65},
 {-25,-65}}));

Draws a connection line and adds the text ”axisControlBus1” ending at {-6, 3}+{-25, -65}.
]

17.5.5 Graphical primitives

This section describes the graphical primitives that can be used to define the graphical objects in an annotation.

17.5.5.1 Line

A line is specified as follows:
record Line
 extends GraphicItem;
 Point points[:];
 Color color = Black;
 LinePattern pattern = LinePattern.Solid;
 DrawingUnit thickness = 0.25;

 Arrow arrow[2] = {Arrow.None, Arrow.None}; "{start arrow, end arrow}"
 DrawingUnit arrowSize=3;
 Smooth smooth = Smooth.None "Spline";
end Line;

Note that the Line primitive is also used to specify the graphical representation of a connection.

17.5.5.2 Polygon

A polygon is specified as follows:
record Polygon
 extends GraphicItem;
 extends FilledShape;
 Point points[:];
 Smooth smooth = Smooth.None "Spline outline";
end Polygon;

The polygon is automatically closed, if the first and the last points are not identical.

17.5.5.3 Rectangle

A rectangle is specified as follows:
record Rectangle
 extends GraphicItem;
 extends FilledShape;
 BorderPattern borderPattern = BorderPattern.None;
 Extent extent;
 DrawingUnit radius = 0 "Corner radius";
end Rectangle;

The extent attribute specifies the bounding box of the rectangle. If the radius attribute is specified, the
rectangle is drawn with rounded corners of the given radius.

17.5.5.4 Ellipse

An ellipse is specified as follows:
record Ellipse
 extends GraphicItem;
 extends FilledShape;
 Extent extent;
 Real startAngle(quantity="angle", unit="deg")=0;

 189

 Real endAngle(quantity="angle", unit="deg")=360;
end Ellipse;

The extent attribute specifies the bounding box of the ellipse.

For elliptic arcs, startAngle and endAngle specify the arc prior to the stretch and rotate operations. The arc is
drawn counter-clockwise from startAngle to endAngle, where startAngle and endAngle are defined
counter-clockwise from “3 o’clock”.

17.5.5.5 Text

A text string is specified as follows:
record Text
 extends GraphicItem;
 extends FilledShape;
 Extent extent;
 String textString;
 Real fontSize = 0 "unit pt";
 String fontName;
 TextStyle textStyle[:];
 TextAlignment horizontalAlignment = TextAlignment.Center;
end Text;

There are a number of common macros that can be used in the text, and they should be replaced when displaying
the text as follows:

• %par replaced by the value of the parameter par. The intent is that the text is easily readable, thus if par is
of an enumeration type, replace %par by the item name, not by the full name.
[Example: if par="Modelica.Blocks.Types.Enumeration.Periodic", then %par should be displayed as
"Periodic"]

• %% replaced by %

• %name replaced by the name of the component (i.e. the identifier for it in in the enclosing class).

• %class replaced by the name of the class.

The style attribute fontSize specifies the font size. If the fontSize attribute is 0 the text is scaled to fit its
extent. Otherwise, the size specifies the absolute size. The text is vertically centered in the extent.

If the string fontName is empty, the tool may choose a font.

The style attribute textStyle specifies variations of the font.

17.5.5.6 Bitmap

A bitmap image is specified as follows:
record Bitmap
 extends GraphicItem;
 Extent extent;
 String fileName "Name of bitmap file";
 String imageSource "Base64 representation of bitmap";
end Bitmap;

The Bitmap primitive renders a graphical bitmap image. The data of the image can either be stored on an external
file or in the annotation itself. The image is scaled to fit the extent. Given an extent {{x1, y1}, {x2, y2}}, x2<x1
defines horizontal flipping and y2<y1 defines vertical flipping around the point defined by the origin attribute.

When the attribute fileName is specified, the string refers to an external file containing image data. The mapping
from the string to the file is specified for some URIs in section 13.2.3. The supported file formats include PNG,
BMP and JPEG, other supported file formats are unspecified.

190 Modelica Language Specification 3.2 Revision 2

When the attribute imageSource is specified, the string contains the image data. The image is represented as a
Base64 encoding of the image file format (see RFC 4648, http://tools.ietf.org/html/rfc4648).

The image is uniformly scaled [to preserve aspect ratio] so it exactly fits within the extent [touching the extent
along one axis]. The center of the image is positioned at the center of the extent.

17.5.6 Variable Graphics and Schematic Animation

Any value (coordinates, color, text, etc) in graphical annotations can be dependent on class variables using the
DynamicSelect expression. DynamicSelect has the syntax of a function call with two arguments, where the
first argument specifies the value of the editing state and the second argument the value of the non-editing state.
The first argument must be a literal expression. The second argument may contain references to variables to
enable a dynamic behavior.

[Example: The level of a tank could be animated by a rectangle expanding in vertical direction and its color
depending on a variable overflow:

annotation (
 Icon(graphics={Rectangle(
 extent=DynamicSelect({{0,0},{20,20}},{{0,0},{20,level}}),
 fillColor=DynamicSelect({0,0,255},
 if overflow then {255,0,0} else {0,0,255}))}
);

]

17.5.7 User input

It is possible to interactively modify variables during a simulation. The variables may either be parameters,
discrete variables or states. New numeric values can be given, a mouse click can change a Boolean variable or a
mouse movement can change a Real variable. Input fields may be associated with a GraphicItem or a
component as an array named interaction. The interaction array may occur as an attribute of a graphic
primitive, an attribute of a component annotation or as an attribute of the layer annotation of a class.

17.5.7.1 Mouse input

A Boolean variable can be changed when the cursor is held over a graphical item or component and the selection
button is pressed if the interaction annotation contains OnMouseDownSetBoolean:
record OnMouseDownSetBoolean
 Boolean variable "Name of variable to change when mouse button pressed";
 Boolean value "Assigned value";
end OnMouseDownSetBoolean;

[Example: A button can be represented by a rectangle changing color depending on a Boolean variable on and
toggles the variable when the rectangle is clicked on:

annotation (Icon(graphics={Rectangle(extent=[0,0; 20,20]),
 fillColor=if on then {255,0,0} else {0,0,255},
 interaction={ OnMouseDownSetBoolean (on, not on)})});

]

In a similar way, a variable can be changed when the mouse button is released:
record OnMouseUpSetBoolean
 Boolean variable "Name of variable to change when mouse button released";
 Boolean value "Assigned value";
end OnMouseUpSetBoolean;

http://tools.ietf.org/html/rfc4648

 191

Note that several interaction objects can be associated with the same graphical item or component.

[Example:
 interaction={ OnMouseDownSetBoolean(on, true), OnMouseUpSetBoolean(on, false)};
]

The OnMouseMoveXSetReal interaction object sets the variable to the position of the cursor in X direction in the
local coordinate system mapped to the interval defined by the minValue and maxValue attributes.
record OnMouseMoveXSetReal
 Real xVariable "Name of variable to change when cursor moved
 in x direction";
 Real minValue;
 Real maxValue;
end OnMouseMoveXSetReal;

The OnMouseMoveYSetReal interaction object works in a corresponding way as the OnMouseMoveXSetReal
object but in the Y direction.
record OnMouseMoveYSetReal
 Real yVariable "Name of variable to change when cursor moved
 in y direction";
 Real minValue;
 Real maxValue;
end OnMouseMoveYSetReal;

17.5.7.2 Edit input

The OnMouseDownEditInteger interaction object presents an input field when the graphical item or component
is clicked on. The field shows the actual value of the variable and allows changing the value. If a too small or too
large value according to the min and max parameter values of the variable is given, the input is rejected.
record OnMouseDownEditInteger
 Integer variable "Name of variable to change";
end OnMouseDownEditInteger;

The OnMouseDownEditReal interaction object presents an input field when the graphical item or component is
clicked on. The field shows the actual value of the variable and allows changing the value. If a too small or too
large value according to the min and max parameter values of the variable is given, the input is rejected.

record OnMouseDownEditReal
 Real variable "Name of variable to change";
end OnMouseDownEditReal;

The OnMouseDownEditString interaction object presents an input field when the graphical item or component
is clicked on. The field shows the actual value of the variable and allows changing the value.
record OnMouseDownEditString
 String variable "Name of variable to change";
end OnMouseDownEditString;

17.6 Annotations for the Graphical User Interface
A class may have the following annotations to define properties of the graphical user interface:
annotation(defaultComponentName = "name")

When creating a component of the given class, the recommended component name is name.
annotation(defaultComponentPrefixes = "prefixes")

When creating a component, it is recommended to generate a declaration of the form

192 Modelica Language Specification 3.2 Revision 2

prefixes class-name component-name

The following prefixes may be included in the string prefixes: inner, outer, replaceable, constant,
parameter, discrete. [In combination with defaultComponentName it can be used to make it easy for users
to create inner components matching the outer declarations; see also example below]
annotation(missingInnerMessage = "message")

When an outer component of the class does not have a corresponding inner component, the string message
may be used as a diagnostic message. [The tool may also temporarily automatically add the corresponding inner
component during translation visible to all of the outer components.]

[Example:
model World
 annotation(defaultComponentName = "world",
 defaultComponentPrefixes = "inner replaceable",
 missingInnerMessage = "The World object is missing");
 ...
end World;

When an instance of model World is dragged in to the diagram layer, the following declaration is generated:
inner replaceable World world;

]
A simple type or component of a simple type may have:

 annotation(absoluteValue=false);

If false, then the variable defines a relative quantity, and if true an absolute quantity. [When converting between
units (in the user-interface for plotting and entering parameters), the offset must be ignored, for a variable
defined with annotation absoluteValue = false. This annotation is used in the Modelica Standard Library for
example in Modelica.SIunits for the type definition TemperatureDifference.]

A model or block definition may contain:

annotation(defaultConnectionStructurallyInconsistent=true);

If true, it is stated that a default connection will result in a structurally inconsistent model or block4. A “default
connection” is constructed by instantiating the respective model or block and for every input u providing an
equation 0=f(u), and for every (potential,flow) pair of the form (v,i), providing an equation of the form
0=f(v,i).

[It is useful to check all models/blocks of a Modelica package in a simple way. One check is to default connect
every model/block and to check whether the resulting class is structurally consistent (= a stronger requirement as
“balanced”). It is rarely needed; but is for example used in Modelica.Blocks.Math.InverseBlockConstraints, in
order to prevent a wrong error message. Additionally, when a user defined model is structurally inconsistent, a
tool should try to pinpoint in which class the error is present. This annotation avoids then to show a wrong error
message.]A class may have the following annotation:
annotation(obsolete = "message");

It indicates that the class ideally should not be used anymore and gives a message indicating the recommended
action.

A declaration may have the following annotations:
annotation(unassignedMessage = "message");

4 For the precise definition of „structurally inconsistent“ see the article: Pantelides C.C.: The Consistent Initialization of Differential-

Algebraic Systems, SIAM J. Sci. and Stat. Comput. Volume 9, Issue 2, pp. 213–231 (March 1988)

http://epubs.siam.org/doi/abs/10.1137/0909014
http://epubs.siam.org/doi/abs/10.1137/0909014

 193

When the variable to which this annotation is attached in the declaration cannot be computed due to the structure
of the equations, the string message can be used as a diagnostic message. [When using BLT partitioning, this
means if a variable “a” or one of its aliases “b = a”, “b = -a”, cannot be assigned, the message is displayed.
This annotation is used to provide library specific error messages.]

[Example:
connector Frame "Frame of a mechanical system"
 ...
 flow Modelica.SIunits.Force f[3] annotation(unassignedMessage =
 "All Forces cannot be uniquely calculated. The reason could be that the
 mechanism contains a planar loop or that joints constrain the same motion.
 For planar loops, use in one revolute joint per loop the option
 PlanarCutJoint=true in the Advanced menu.
 ");
end Frame;

]

annotation(Dialog(enable = true, tab = "General",
 group = "Parameters",
 showStartAttribute = false,
 colorSelector = false,
groupImage="modelica://MyPackage/Resources/Images/switch.png",

 connectorSizing = false));

The annotations tab and group define the placement of the component or of variables in a dialog with optional
tab and group specification. If enable = false, the input field may be disabled [and no input can be given]. If
showStartAttribute = true the dialog should allow the user to set the start-value and the fixed attribute for
the variable instead of the value-attribute [this is primarily intended for non-parameter values and avoids
introducing a separate parameter for the start-value of the variable].

If colorSelector=true, it indicates that an rgb-value selector can be presented for a vector of three elements and
generate values 0..255 (the annotation should be useable both for vectors of Integers and Reals).

The annotation groupImage references an image using an URI (see section 13.2.3), and the image is intended to
be shown together with the parameter-group (only one image per group is supported). Disabling the input field
will not disable the image.

The value of the connectorSizing annotation must be a literal false or true value [since if the value is an
expression, the connectorSizing functionality is conditional and this will then lead easily to wrong models]. If
connectorSizing = false, this annotation has no effect. If connectorSizing = true, the corresponding
variable must be declared with the parameter prefix, must be a subtype of a scalar Integer and must have a
literal default value of zero [since this annotation is designed for a parameter that is used as vector dimension and
the dimension of the vector should be zero when the component is dragged or redeclared; furthermore, when a
tool does not support the connectorSizing annotation, dragging will still result in a correct model].

If connectorSizing = true, a tool may set the parameter value in a modifier automatically, if used as
dimension size of a vector of connectors. [The connectorSizing annotation is used in cases where connections to a
vector of connectors shall be made and a new connection requires to resize the vector and to connect to the new
index (unary connections). The annotation allows a tool to perform these two actions in many cases
automatically. This is, e.g., very useful for state machines and for certain components of fluid libraries.]

Annotation “Dialog” is defined as:
record Dialog
 parameter String tab = "General";
 parameter String group = "Parameters";
 parameter Boolean enable = true;
 parameter Boolean showStartAttribute = false;
 parameter Boolean colorSelector = false;
 parameter Selector loadSelector;
 parameter Selector saveSelector;

194 Modelica Language Specification 3.2 Revision 2

 parameter String groupImage = "";
 parameter Boolean connectorSizing = false;
end Dialog;

record Selector
 parameter String filter=””;
 parameter String caption=””;
end Selector;

A parameter dialog is a sequence of tabs with a sequence of groups inside them.
A Selector displays a file dialog to select a file. Setting filter only shows files that fulfill the given pattern
defined by “text1 (*.ext1);;text2 (*.ext2)” to show only files *.ext1 and *.ext2 and displaying a description text
“text1” and “text2”, respectively. Parameter caption is the text displayed in the dialog menu. Parameter
loadSelector is used to select an existing file for reading, whereas parameter saveSelector is used to define
a file for writing.

[Example:

model DialogDemo
 parameter Boolean b = true "Boolean parameter";
 parameter Modelica.SIunits.Length length "Real parameter with unit";
 parameter Integer nInports=0 annotation(Dialog(connectorSizing=true));
 parameter Real r1 "Real parameter in Group 1" annotation(Dialog(group="Group 1"));
 parameter Real r2 "Disabled Real parameter in group 1"
 annotation(Dialog(group="Group 1", enable = not b));
 parameter Real r3 "Real parameter in Tab 1" annotation(Dialog(tab="Tab 1"));
 parameter Real r4 "Real parameter in Tab 1 and Group 2"
 annotation(Dialog(tab="Tab 1", group="Group 2"));
 StepIn stepIn[nInports];
 ...
end DialogDemo;

When clicking on an instance of model DialogDemo, a menu pops up that may have the following layout (other
layouts are also possible, this is vendor specific). Note, parameter nInports is not present in the menu since it has
the “connectorSizing” annotation and therefore it should not be modified by the user (an alternative is to show
parameter nInports in the menu but with disabled input field):

The following part is non-normative text and describes a useful way to handle the connectorSizing annotation in a
tool (still a tool may use another strategy and/or may handle other cases than described below). The
recommended rules are clarified at hand of the following example which represents a connector and a model from
the Modelica.StateGraph library:
connector StepIn // Only 1:1 connections are possible since input used
 output Boolean occupied;
 input Boolean set;
end StepIn;

model Step
 // nIn cannot be set in the parameter dialog (but maybe shown)
 parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
 StepIn inPorts[nIn];
 ...
end Step;

 195

If the parameter is used as dimension size of a vector of connectors, it is automatically updated according to the
following rules:

1. If a new outside connection line is drawn to the connector dimensioned with the (connectorSizing)

parameter, the parameter is incremented by one and the connection is performed for the new highest
index. Example: Assume that 3 connections are present and a new connection is performed. The result is:
 Step step1(nIn=4); // index changed from nIn=3 to nIn=4
 equation
 connect(.., step1.inPorts[4]); // new connect equation
In some applications, like state machines, the vector index is used as a priority, e.g., to define which
transition is firing if several transitions become active at the same time instant. It is then not sufficient to
only provide a mechanism to always connect to the last index. Instead, some mechanism to select an
index conveniently should be provided.

2. If an existing outside connection line is deleted, then the (connectorSizing) parameter is decremented by
one and all connections with index above the deleted connection index are also decremented by one.
Example: Assume there are 4 connections:
 Step step1(nIn=4);
 equation
 connect(a1, step1.inPorts[1]);
 connect(a2, step1.inPorts[2]);
 connect(a3, step1.inPorts[3]);
 connect(a4, step1.inPorts[4]);
and the connection from a2 to step1. inPorts[2] is deleted. This results in
 Step step1(nIn=3);
 equation
 connect(a1, step1.inPorts[1]);
 connect(a3, step1.inPorts[2]);
 connect(a4, step1.inPorts[3]);

3. If a new inside connection line is drawn between two vectors of connectors dimensioned with
(connectorSizing) parameters, a connection between the two vectors is performed and the
(connectorSizing) parameter is propagated. Other types of inside connections do not lead to an automatic
update of a (connectorSizing) parameter. Example: Assume there is a connector inPorts and a component
step1:
 parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
 StepIn inPorts[nIn];
 Step step1(nIn=0);
Drawing a connection line between connectors inPorts and step1.inPorts results in:
 parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
 StepIn inPorts[nIn];
 Step step1(nIn=nIn); // nIn=0 changed to nIn=nIn
 equation
 connect(inPorts, step1.inPorts); // new connect equation

4. If an inside connection line between two vectors of connectors dimensioned with (connectorSizing)
parameters is deleted, the connect equation is removed and the (connectorSizing) parameter of the
component is set to zero or the modifier is removed. Example: Assume the connection line in (3) is
removed. This results in:
 parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));
 StepIn inPorts[nIn];

196 Modelica Language Specification 3.2 Revision 2

 Step step1; // modifier nIn=nIn is removed

5. If a new inside or outside connection line is drawn to the connector dimensioned with the
(connectorSizing) parameter and this connector is defined in a superclass, then rules (1) and (3) are
correspondingly applied in the subclass. Example: Assume that step1 is defined in superclass
CompositeStep with 3 connections, and a new connection is performed in a subclass. The result is:
 extends CompositeStep(step1(nIn=4)); // new modifier nIn=4
 equation
 connect(.., step1.inPorts[4]); // new connect equation

]

17.7 Annotations for Version Handling
A top-level package or model can specify the version of top-level classes it uses, its own version number, and if
possible how to convert from previous versions. This can be used by a tool to guarantee that consistent versions
are used, and if possible to upgrade usage from an earlier version to a current one.

17.7.1 Version Numbering

Version numbers are of the forms:
• Main release versions: """ UNSIGNED_INTEGER { "." UNSIGNED_INTEGER } """ [Example: "2.1"]
• Pre-release versions: """ UNSIGNED_INTEGER { "." UNSIGNED_INTEGER } " " {S-CHAR} """ [Example:

"2.1 Beta 1"]
• Un-ordered versions: """ NON-DIGIT {S-CHAR} """

[Example: "Test 1"]

The main release versions are ordered using the hierarchical numerical names, and follow the corresponding pre-
release versions. The pre-release versions of the same main release version are internally ordered alphabetically.

17.7.2 Version Handling

In a top-level class, the version number and the dependency to earlier versions of this class are defined using one
or more of the following annotations:

• version = CURRENT-VERSION-NUMBER
Defines the version number of the model or package. All classes within this top-level class have this version
number.

• conversion (noneFromVersion = VERSION-NUMBER)
Defines that user models using the VERSION-NUMBER can be upgraded to the CURRENT-VERSION-NUMBER
of the current class without any changes.

• conversion (from (version = VERSION-NUMBER, script = "…"))
Defines that user models using the VERSION-NUMBER can be upgraded to the CURRENT-VERSION-NUMBER
of the current class by applying the given script. The semantics of the conversion script is not defined.

• uses(IDENT (version = VERSION-NUMBER))
Defines that classes within this top-level class uses version VERSION-NUMBER of classes within the top-
level class IDENT.

The annotations uses and conversion may contain several different sub-entries.

[Example:
package Modelica

 197

 annotation(version="2.1",
 conversion(noneFromVersion="2.1 Beta 1",
 noneFromVersion="2.1 Beta 2",
 from(version="1.5",
 script="convertFromModelica1_5.mos")));
 ...
end Modelica;

model A
 annotation(version="1.0",
 uses(Modelica(version="1.5")));
 ...
end A;

model B
 annotation(uses(Modelica(version="2.1 Beta 1")));
 ...
end B;

In this example the model A uses an older version of the Modelica library and can be upgraded using the given
script, and model B uses an older version of the Modelica library but no changes are required when upgrading.
]

17.7.3 Mapping of Versions to File System

A top-level class, IDENT, with version VERSION-NUMBER can be stored in one of the following ways in a
directory given in the MODELICAPATH:

• The file IDENT ".mo" [Example: Modelica.mo]
• The file IDENT " " VERSION-NUMBER ".mo" [Example: Modelica 2.1.mo]
• The directory IDENT [Example: Modelica] with the file package.mo directly inside it
• The directory IDENT " " VERSION-NUMBER [Example: Modelica 2.1] with the file package.mo

directly inside it

This allows a tool to access multiple versions of the same package.

17.7.4 Version Date and Build Information

Besides version information, a top level class can have additionally the following top-level annotations to specify
associated information to the version number:
String versionDate "UTC date of first version build (in format: YYYY-MM-DD)";
Integer versionBuild "Larger number is a more recent maintenance update";
String dateModified "UTC date and time of the latest change to the package in the
 following format (with one space between date and time):
 YYYY-MM-DD hh:mm:ssZ";
String revisionId "Revision identifier of the version management system used
 to manage this library. It marks the latest submitted change to
 any file belonging to the package";

[Example:
package Modelica
 annotation(version = "3.0.1",
 versionDate = "2008-04-10",
 versionBuild = 4,
 dateModified = "2009-02-15 16:33:14Z",
 revisionId = "$Id:: package.mo 2566 2009-05-26 13:25:54Z #$");
 ...
end Modelica;

model M1
 annotation(uses(Modelica(version = "3.0.1"))); // Common case

198 Modelica Language Specification 3.2 Revision 2

end M1

model M2
 annotation(uses(Modelica(version = "3.0.1", versionBuild = 4)));
end M2

]

The meaning of these annotation is:

• “version” is the version number of the released library, see section 17.7.2.

• “versionDate” is the date in UTC format (according to ISO 8601) when the library was released. This
string is updated by the library author to correspond with the version number.

• “versionBuild” is the optional build number of the library. When a new version is released
“versionBuild” should be omitted or “versionBuild = 1”. There might be bug fixes to the library that do not
justify a new library version. Such maintenance changes are called a “build” release of the library. For every
new maintenance change, the “versionBuild” number is increased. A “versionBuild” number A that is
higher as “versionBuild” number B, is a newer release of the library. There are no conversions between the
same versions with different build numbers.
 Two releases of a library with the same “version” but different “versionBuild” are in general assumed to
be compatible. In special cases, the uses clause of a model may specify “versionBuild” and/or
“dateModified” [in such a case the tool is expected to give a warning if there is a mismatch between library
and model].

• “dateModified” is the UTC date and time (according to ISO 8601) of the last modification of the
package. [The intention is that a Modelica tool updates this annotation whenever the package or part of it
was modified and is saved on persistent storage (like file or database system).]

• “revisionId” is a tool specific revision identifier possibly generated by a source code management
system (e.g. Subversion or CVS). This information allows to exactly identify the library source code in the
source code management system.

The versionBuild and dateModified annotations can also be specified in the “uses” annotation (together with the
version number). [The recommendation is that they are not stored in the uses annotation automatically by a tool.]

17.8 Annotations for Access Control to Protect Intellectual Property
This section presents annotations to define the protection and the licensing of packages. The goal is to unify basic
mechanisms to control the access to a package in order to protect the intellectual property contained in it. This
information is used to encrypt a package and bind it optionally to a particular target machine, and/or restrict the
usage for a particular period of time.

[Protecting the intellectual property of a Modelica package is considerably more difficult than protecting code
from a programming language. The reason is that a Modelica tool needs the model equations in order that it can
process the equations symbolically, as needed for acausal modeling. Furthermore, if a Modelica tool generates C-
code of the processed equations, this code is then potentially available for inspection by the user. Finally, the
Modelica tool vendors have to be trusted, that they do not have a backdoor in their tools to store the (internally)
decrypted classes in human readable format. The only way to protect against such misuse are legally binding
warranties of the tool vendors.

The intent of this section is to enable a library vendor to maintain one source version of their Modelica library
that can be encrypted and used with several different Modelica tools, using different encryption formats.]

Definitions:

Term Description

Protection Define what parts of a class are visible.

 199

Obfuscation Changing a Modelica class or generated code so that it is difficult to inspect by a user [(e.g.
by automatically renaming variables to non-meaningful names).]

Encryption Encoding of a model or a package in a form so that the modeler cannot inspect any content
of a class without an appropriate key. An encrypted package that has the Protection
annotation is read-only; the way to modify it is to generate a new encrypted version.

Licensing Restrict the use of an encrypted package for particular users for a specified period of time.

In this section annotations are defined for “Protection” and “Licensing”. Obfuscation and encryption are not
standardized. “Protection” and “Licensing” are both defined inside the “Protection” annotation:

annotation(Protection(...));

17.8.1 Protection of Classes

A class may have the following annotations to define what parts of a class are visible (if a class is encrypted and
no Protection annotation is defined, the access annotation has the default value Access.documentation):
type Access = enumeration(hide, icon, documentation,
 diagram, nonPackageText, nonPackageDuplicate,
 packageText, packageDuplicate);

annotation(Protection(access = Access.documentation));

The items of the Access enumeration have the following meaning:

1. Access.hide
Do not show the class anywhere (it is not possible to inspect any part of the class).

2. Access.icon
The class can be instantiated and public parameter, constant, input, output variables as well as public
connectors can be accessed, as well as the icon annotation, as defined in section 17.5 (the declared
information of these elements can be shown). Additionally, the class name and its description text can be
accessed.

3. Access.documentation
Same as Access.icon and additionally the documentation annotation (as defined in section 17.2) can be
accessed. HTML-generation in the documentation annotation is normally performed before encryption, but
the generated HTML is intended to be used with the encrypted package. Thus the HTML-generation should
use the same access as the encrypted version– even before encryption.

4. Access.diagram
Same as Access.documentation and additionally, the diagram annotation, and all components and
connect equations that have a graphical annotation can be accessed.

5. Access.nonPackageText
Same as Access.diagram and additionally if it is not a package: the whole class definition can be accessed
(but cannot be copied).

6. Access.nonPackageDuplicate
Same as Access.nonPackageText and additionally if it is not a package: the class, or part of the class, can
be copied and pasted.

7. Access.packageText
Same as Access.diagram (note: not including all rights of Access.nonPackageDuplicate) and
additionally the whole class definition can be accessed (but cannot be copied).

8. Access.packageDuplicate
Same as Access.packageText and additionally the class, or part of the class, can be copied and pasted.

200 Modelica Language Specification 3.2 Revision 2

The “access” annotation holds for the respective class and all classes that are hierarchically on a lower level,
unless overriden by a Protection annotation with “access” [e.g. if the annotation is given on the top level of a
package and at no other class in this package, then the annotation holds for all classes in this package].
Overriding “access=Access.hide” and “access=Access.packageDuplicate” has no meaningful effect.

[It is currently not standardized which result variables are accessible for plotting. It seems natural to not
introduce new flags for this, but reuse the Access.XXX definition, e.g., for Access.icon only the variables can
be stored in a result file that can also be inspected in the class, and for Access.nonPackageText all public and
protected variables can be stored in a result file, because all variables can be inspected in the class.

package CommercialFluid // Access icon, documentation, diagram
 package Examples // Access icon, documentation, diagram
 model PipeExample // Access everything, can be copied
 end PipeExample;
 package Circuits // Access icon, documentation, diagram
 model ClosedCircuit // Access everything, can be copied
 end ClosedCircuit;
 end Circuits;
 model SecretExample // No access
 annotation(Protection(access=Access.hide));
 end SecretExample;
 annotation(Protection(access=Access.nonPackageDuplicate));
 end Examples;

 package Pipe // Access icon
 model StraightPipe // Access icon
 end StraightPipe;
 annotation(Protection(access=Access.icon));
 end Pipe;

 package Vessels // Access icon, documentation, diagram
 model Tank // Access icon, documentation, diagram, text
 end Tank;
 end Vessels;

 annotation(Protection(access=Access.nonPackageText));
end CommercialFluid;

]

17.8.2 Licensing

In this section annotations within the “Protection” annotation are defined to restrict the usage of the encrypted
package:
record Protection
 ...
 String features[:]=fill("", 0) "Required license features";
 record License
 String libraryKey;
 String licenseFile="" "Optional, default mapping if empty";
 end License;
end Protection;

The License annotation has only an effect on the top of an encrypted class and is then valid for the whole class
hierarchy. [Usually the licensed class is a package]. The libraryKey is a secret string from the library vendor
and is the protection mechanism so that a user cannot generate his/her own authorization file since the
libraryKey is unknown to him/her.

The features annotation defines the required license options. If the features vector has more than one element,
then at least a license feature according to one of the elements must be present. As with the other annotations, the

 201

“features” annotation holds for the respective class and for all classes that are hierarchically on a lower level, unless
further restricted by a corresponding annotation. If no license according to the “features” annotation is provided in
the authorization file, the corresponding classes are not visible and cannot be used, not even internally in the package.

[Examples:
// Requires license feature "LicenseOption"
annotation(Protection(features={"LicenseOption"}));

// Requires license features "LicenseOption1" or "LicenseOption2"
annotation(Protection(features={"LicenseOption1", "LicenseOption2"}));

// Requires license features ("LicenseOption1" and "LicenseOption2") or "LicenseOption3"
annotation(Protection(features={"LicenseOption1 LicenseOption2", "LicenseOption3"}));

]

In order that the protected class can be used either a tool specific license manager, or a license file (called
“licenseFile”) must be present. The license file is standardized. It is a Modelica package without classes that
has a Protection annotation of the following form which specifies a sequence of target records, which makes it
natural to define start/end dates for different sets of targets individually:
record Authorization
 String licensor="" "Optional string to show information about the licensor";
 String libraryKey "Matching the key in the class. Must be encrypted and not visible";
 License license[:] "Definition of the license options and of the access rights";
end Authorization;

record License
 String licensee ="" "Optional string to show information about the licensee";
 String id[:] "Unique machine identifications, e.g. MAC addresses";
 String features[:] =fill("", 0) "Activated library license features";
 String startDate ="" "Optional start date in UTCformat YYYY-MM-DD";
 String expirationDate="" "Optional expiration date in UTCformat YYYY-MM-DD"
end License;

The format of the strings used for “libraryKey” and “id” are not specified (they are vendor specific). The
“libraryKey” is a secret of the library developer. To protect the “libraryKey” and the target definitions, the
authorization file must be encrypted and must never show the libraryKey. [All other information, especially
licensor and license should be visible, in order that the user can get information about the license. It is useful to
include the name of the tool in the authorization file name with which it was encrypted. Note, it is not useful to
store this information in the annotation, because only the tool that encrypted the Authorization package can also
decrypt it.]

[Example (before encryption):
// File MyLibrary\package.mo
package MyLibrary
 annotation(Protection(License(libraryKey="15783-A39323-498222-444ckk4ll",
 licenseFile="MyLibraryAuthorization_Tool.mo_lic"), …));
end MyLibrary;

// File MyLibrary\MyLibraryAuthorization_Tool.mo
// (authorization file before encryption)
package MyLibraryAuthorization_Tool
 annotation(Authorization(
 libraryKey="15783-A39323-498222-444ckk4ll",
 licensor ="Organization A\nRoad, Country",
 License(licensee="Organization B, Mr.X",
 id ={"lic:1269"}), // tool license number
 License(licensee="Organization C, Mr. Y",
 id ={"lic:511"}, expirationDate="2010-06-30"),
 License(licensee="Organization D, Mr. Z",
 id ={"mac:0019d2c9bfe7"}) // MAC address
)));
end MyLibraryAuthorization_Tool;

202 Modelica Language Specification 3.2 Revision 2

]

17.9 Annotations for Functions

17.9.1 Function Derivative Annotations

See Section 12.7.1

17.9.2 Inverse Function Annotation

See Section 12.8.

17.9.3 External Function Annotations

See Section 12.9.4.

17.10 Annotation Choices for Modifications and Redeclarations
See Section 7.3.4.

17.11 Annotation for External Libraries and Include Files
See Section 12.9.4.

 203

205

Chapter 18

Unit Expressions

Unless otherwise stated, the syntax and semantics of unit expressions in Modelica are conform with the
international standards ISO 31/0-1992 "General principles concerning quantities, units and symbols" and ISO
1000-1992 "SI units and recommendations for the use of their multiples and of certain other units". Unfortunately,
neither these two standards nor other existing or emerging ISO standards define a formal syntax for unit
expressions. There are recommendations and Modelica exploits them.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2" "1/rad",
"mm/s".

18.1 The Syntax of Unit Expressions
unit_expression:
 unit_numerator ["/" unit_denominator]

unit_numerator:
 "1" | unit_factors | "(" unit_expression ")"

unit_denominator:
 unit_factor | "(" unit_expression ")"

The unit of measure of a dimension free quantity is denoted by "1". The ISO standard does not define any
precedence between multiplications and divisions. The ISO recommendation is to have at most one division,
where the expression to the right of "/" either contains no multiplications or is enclosed within parentheses. It is
also possible to use negative exponents, for example, "J/(kg.K)" may be written as "J.kg-1.K-1".
unit_factors:
 unit_factor [unit_mulop unit_factors]

unit_mulop:
 "."

The ISO standard allows that a multiplication operator symbol is left out. However, Modelica enforces the ISO
recommendation that each multiplication operator is explicitly written out in formal specifications. For example,
Modelica does not support "Nm" for newtonmeter, but requires it to written as "N.m".

The preferred ISO symbol for the multiplication operator is a "dot" a bit above the base line: "·". Modelica
supports the ISO alternative ".", which is an ordinary "dot" on the base line.

unit_factor:
 unit_operand [unit_exponent]

unit_exponent:
 ["+" | "-"] integer

206 Modelica Language Specification 3.2 Revision 2

The ISO standard does not define any operator symbol for exponentiation. A unit_factor consists of a
unit_operand possibly suffixed by a possibly signed integer number, which is interpreted as an exponent. There
must be no spacing between the unit_operand and a possible unit_exponent.
unit_operand:
 unit_symbol | unit_prefix unit_symbol

unit_prefix:
 Y | Z | E | P | T | G | M | k | h | da | d | c | m | u | p | f | a | z | y

A unit_symbol is a string of letters. A basic support of units in Modelica should know the basic and derived
units of the SI system. It is possible to support user defined unit symbols. In the base version Greek letters is not
supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second alternative
assuming a prefixed operand should be exploited. There must be no spacing between the unit_symbol and a
possible unit_prefix. The value of the prefixes are according to the ISO standard. The letter "u" is used as a
symbol for the prefix micro.

18.2 Examples
The unit expression "m" means meter and not milli (10-3), since prefixes cannot be used in isolation. For
millimeter use "mm" and for squaremeter, m2, write "m2".

The expression "mm2" means mm2 = (10-3m)2 = 10-6m2. Note that exponentiation includes the prefix.

The unit expression "T" means Tesla, but note that the letter "T" is also the symbol for the prefix tera which has
a multiplier value of 1012.

 207

Chapter 19

The Modelica Standard Library

In order that a modeler can quickly build up system models, it is important that libraries of the most commonly
used components are available, ready to use, and sharable between applications. For this reason, the Modelica
Association develops and maintains a growing Modelica Standard Library called package Modelica. This is a
free library that can be used without essential restrictions, e.g., in commercial Modelica simulation environments.
Furthermore, other people and organizations are developing free and commercial Modelica libraries. For
information about these libraries and for downloading the free libraries see www.modelica.org/libraries/.

Version 3.2.1 of the Modelica standard library from August 2013 contains about 1340 models and blocks, and
1000 functions in the following sublibraries:

Modelica.Electrical.Analog
Analog electrical and electronic components such as
resistor, capacitor, transformers, diodes, transistors,
transmission lines, switches, sources, sensors

Modelica.Electrical.Digital
Digital electrical components based on VHDL with nine
valued logic. Contains delays, gates, sources, and
converters between 2-, 3-, 4-, and 9-valued logic.

Modelica.Electrical.Machines
Uncontrolled, electrical machines, such as asynchronous,
synchronous and direct current motors and generators.

Modelica.Electrical.MultiPhase
Electrical multiphase componennts to ease the modeling of
multiphase circuits. This package has basically the same
components as Modelica.Electrical.Analog, but with
multiphase connectors.

Modelica.Electrical.QuasiStationary
Very efficient components for electrical circuits with
purely sinusoidal voltages and currents. Transients are
neglected. The internal description is with Complex
numbers

Modelica.Electrical.Spice3
Detailed semiconductor models, such as MOS, BJT,
transformed from Spice3 level 1 and level 2 to Modelica.

https://www.modelica.org/libraries/

208 Modelica Language Specification 3.2 Revision 2

Modelica.Magnetic.FluxTubes
Modeling of lumped magnetic networks with the fluxtubes
concept, especially to model translatory electromagnetic
and electrodynamic actuators

Modelica.Magnetic.FundamentalWave
Modeling of electromagnetic fundamental wave models
for the application in multi phase electric machines.

Modelica.Mechanics.Rotational
1-dim. rotational mechanical systems, such as drive trains,
planetary gear. Contains inertia, spring, gear box, bearing
friction, clutch, brake, backlash, torque, etc.

Modelica.Mechanics.Translational
1-dim. translational mechanical systems, such as mass,
stop, spring, backlash, force

Modelica.Mechanics.MultiBody
3-dim. mechanical systems consisting of joints, bodies,
force and sensor elements. Joints can be driven by
elements of the Rotational library. Every element has a
default animation.

Modelica.Fluid
Components for 1-dimensional thermo-fluid flow in
networks of vessels, pipes, fluid machines, valves and
fittings. All components are implemented such that they
can be used for media from the Modelica.Media library.

Modelica.Media
Large media library for single and multiple substance
fluids with one and multiple phases:
• High precision gas models based on the NASA Glenn

coefficients + mixtures between these gas models
• Simple and high precision water models (IAPWS/IF97)
• Dry and moist air models
• Table based incompressible media.
• Simple liquid models with linear compressibility

Modelica.Thermal
Simple thermo-fluid pipe flow, especially for machine
cooling systems with water or air fluid. Contains pipes,
pumps, valves, sensors, sources etc.
Furthermore, lumped heat transfer components are present,
such as heat capacitor, thermal conductor, convection,
body radiation, etc.

Modelica.Blocks
Continuous and discrete input/output blocks. Contains
transfer functions, linear state space systems, non-linear,
mathematical, logical, table, source blocks.

 209

Modelica.ComplexBlocks
Continuous input/output blocks with Complex signals.
Contains algebraic blocks and sources for Complex
signals.

Modelica.StateGraph
Hierarchical state diagrams with similar modeling power
as Statecharts. Modelica is used as synchronous “action”
language. Deterministic behavior is guaranteed.

import Modelica.Math.Matrices;
A = [1,2,3;
 3,4,5;
 2,1,4];
b = {10,22,12};
x = Matrices.solve(A,b);
Matrices.eigenValues(A);

Modelica.Math / Modelica.Utilities
Functions operating on scalars, vectors and matrices, e.g.
to solve linear systems and compute eigen and singular
values, or solve Riccati equations. Functions to operate on
nonlinear equations to solve algebraic loops and for
adaptive quadrature computation. Also functions are
provided to operate on strings, streams and files

import Modelica.ComplexMath;
Complex j = ComplexMath.j;
Complex a = 2 + 3*j;
Complex b = 4 – 5*j;
Complex c = 2*a + b;

Modelica.ComplexMath
Functions operating on complex numbers, such as sin, cos,
conjugate, as well as vectors of complex numbers.

type Angle = Real (
 final quantity = "Angle",
 final unit = "rad",
 displayUnit = "deg");

Modelica.Constants, Modelica.Icons, Modelica.SIunits
Utility libraries to provide

• often used constants such as e, π, R
• a library of icons that can be used in models
• about 450 predefined types, such as Mass, Angle,

Time, based on the international standard on units

The Modelica standard library defines the most important elementary connectors in various domains. If any
possible, a user should utilize these connectors in order that components from the Modelica Standard Library and
from other libraries can be combined without problems. The following elementary connectors are defined
(potential variables are connector variables without the flow prefix, flow variables are connector variables that
have the flow prefix):

210 Modelica Language Specification 3.2 Revision 2

Domain Potential

variables
Flow Variables Connector Definition Icons

electrical
analog

electrical potential electrical current Modelica.Electrical.Analog.Interfaces
 .Pin, .PositivePin, .NegativePin

electrical
multi-phase

vector of electrical pins Modelica.Electrical.MultiPhase.Interfaces
 .Plug, .PositivePlug, .NegativePlug

electrical
sphace
phasor

2 electrical
potentials

2 electrical
currents

Modelica.Electrical.Machines.Interfaces
SpacePhasor

quasi stat.
single-phase

complex electrical
potential

complex
electrical current

Modelica.Electrical.QuasiStationary.
SinglePhase.Interfaces.Pin, .PositivePin

quasi stat.
multi-phase

vector of quasi stationary single phase
pins

Modelica.Electrical.QuasiStationary.
MultiPhase.Interfaces.Pin, .PositivePin

electrical
digital

Integer (1..9) --- Modelica.Electrical.Digital.Interfaces
 .DigitalSignal, .DigitalInput, .DigitalOutput

magnetic
flux tubes

magnetic potential magnetic flux Modelica.Magnetic.FluxTubes.Interfaces
.MagneticPort, .PositiveMagneticPort

magnetic
fundamental
wave

complex magnetic
potential

complex
magnetic flux

Modelica.Magnetic.FundamentalWave.
Interfaces.MagneticPort, .PositiveMagneticPort

translational distance cut-force Modelica.Mechanics.Translational.Interfaces
 .Flange_a, .Flange_b

rotational angle cut-torque Modelica.Mechanics.Rotational.Interfaces
 .Flange_a, .Flange_b

3-dim.
mechanics

position vector
orientation object

cut-force vector
cut-torque vector

Modelica.Mechanics.MultiBody.Interfaces
 .Frame, .Frame_a, .Frame_b, .Frame_resolve

simple
fluid flow

pressure
specific enthalpy

mass flow rate
enthalpy flow
rate

Modelica.Thermal.FluidHeatFlow.Interfaces
 .FlowPort, .FlowPort_a, .FlowPort_b

thermo fluid
flow

pressure mass flow
rate

Modelica.Fluid.Interfaces
 .FluidPort, .FluidPort_a, .FluidPort_b

stream variables (if mflow < 0):
spec. enthalpy,
mass fractions (mi/m)
extra property fractions (ci/m)

heat
transfer

temperature heat flow rate Modelica.Thermal.HeatTransfer.Interfaces
 .HeatPort, .HeatPort_a, .HeatPort_b

block
diagram

Real, Integer, Boolean

Modelica.Blocks.Interfaces
 .RealSignal, .RealInput, .RealOutput
 .IntegerSignal, .IntegerInput, .IntegerOutput
 .BooleanSignal, .BooleanInput,
.BooleanOutput

state
machine

Boolean variables
(occupied, set, available, reset)

Modelica.StateGraph.Interfaces
 .Step_in, .Step_out,
 .Transition_in, .Transition_out

In all domains, usually 2 connectors are defined. The variable declarations are identical, only the icons are
different in order that it is easy to distinguish connectors of the same domain that are attached at the same
component.

 211

213

Appendix A

Glossary
algorithm section: part of a class definition consisting of the keyword algorithm followed by a sequence of

statements. Like an equation, an algorithm section relates variables, i.e. constrains the values that these
variables can take simultaneously. In contrast to an equation section, an algorithm section distinguishes inputs
from outputs: An algorithm section specifies how to compute output variables as a function of given input
variables. A Modelica processor may actually invert an algorithm section, i.e. compute inputs from given
outputs, e.g by search (generate and test), or by deriving an inverse algorithm symbolically. (See Chapter 11.)

array or array variable: a component whose components are array elements. For an array, the ordering of its
components matters: The kth element in the sequence of components of an array x is the array element with
index k, denoted x[k]. All elements of an array have the same type. An array element may again be an array,
i.e. arrays can be nested. An array element is hence referenced using n indices in general, where n is the
number of dimensions of the array. Special cases are matrix (n=2) and vector (n=1). Integer indices start with
1, not zero. (See Chapter 10.)

array constructor: an array can be built using the array-function – with the shorthand {a, b, …}, and can also
include an iterator to build an array of expressions. (See Section 10.4.)

array element: a component contained in an array. An array element has no identifier. Instead they are referenced
by array access expressions called indices that use enumeration values or positive integer index values. (See
Chapter 10.)

assignment: a statement of the form x := expr. The expression expr must not have higher variability than x.
(See Section 11.2.1.)

attribute: a component contained in a scalar component, such as min, max, and unit. All attributes are
predefined and attribute values can only be defined using a modification, such as in Real x(unit="kg").
Attributes cannot be accessed using dot notation, and are not constrained by equations and algorithm sections.
E.g. in Real x(unit="kg") = y; only the values of x and y are declared to be equal, but not their unit
attributes, nor any other attribute of x and y. (See Section 4.8.)

base class: class A is called a base class of B, if class B extends class A. This relation is specified by an extends
clause in B or in one of B's base classes. A class inherits all elements from its base classes, and may modify all
non-final elements inherited from base classes. (See Section 7.1.)

binding equation: Either a declaration equation or an element modification for the value of the variable. A
component with a binding equation has its value bound to some expression. (See Section 8.1.)

class: a description that generates an object called instance. The description consists of a class definition, an
modification environment that modifies the class definition, an optional list of dimension expressions if the
class is an array class, and a lexically enclosing class for all classes. (See Section 4.5.)

class type or inheritance interface: property of a class, consisting of a number of attributes and a set of public or
protected elements consisting of element name, element type, and element attributes. (See Section 6.2.2.)

component or variable: an instance (object) generated by a component declaration. Special kinds of components
are scalar, array, and attribute. (See Section 4.4.)

component declaration: an element of a class definition that generates a component. A component declaration
specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order to generate the
component, and (3) an optional Boolean parameter expression. Generation of the component is suppressed if

214 Modelica Language Specification 3.2 Revision 2

this parameter expression evaluates to false. A component declaration may be overridden by an element
redeclaration. (See Section 4.4.)

component reference: An expression containing a sequence of identifiers and indices. A component reference is
equivalent to the referenced object, which must be a component. A component reference is resolved
(evaluated) in the scope of a class (or expression for the case of a local iterator variable). A scope defines a set
of visible components and classes. Example reference: Ele.Resistor.u[21].r (See Sections 4.4 and
10.6.9.)

declaration assignment: assignment of the form x := expression defined by a component declaration. This is
similar to a declaration equation. In contrast to a declaration equation, a declaration assignment is allowed only
when declaring a component contained in a function. (See Section 12.4.4.)

declaration equation: Equation of the form x = expression defined by a component declaration. The
expression must not have higher variability than the declared component x. Unlike other equations, a
declaration equation can be overridden (replaced or removed) by an element modification. (See Section
4.4.2.1.)

derived class or subclass or extended class: class B is called derived from A, if B extends A. (See Chapter 7.)

element: part of a class definition, one of: class definition, component declaration, or extends clause. Component
declarations and class definitions are called named elements. An element is either inherited from a base class
or local.

element modification: part of a modification, overrides the declaration equation in the class used by the instance
generated by the modified element. Example: vcc(unit="V")=1000. (See Section 7.2.)

element redeclaration: part of a modification, replaces one of the named elements possibly used to build the
instance generated by the element that contains the redeclaration. Example: redeclare type Voltage =
Real(unit="V") replaces type Voltage. (See Section 7.3.)

encapsulated: a class that does not depend on where it is placed in the package-hierarchy, since its lookup is
stopped at the encapsulated boundary. (See Section 5.3.1).

equation: part of a class definition. A scalar equation relates scalar variables, i.e. constrains the values that these
variables can take simultaneously. When n-1 variables of an equation containing n variables are known, the
value of the nth variable can be inferred (solved for). In contrast to a statement in an algorithm section, an
equation does not define for which of its variable it is to be solved. Special cases are: initial equations,
instantaneous equations, declaration equations. (See Chapter 8.)

event: something that occurs instantaneously at a specific time or when a specific condition occurs. Events are for
example defined by the condition occurring in a when clause, if clause, or if expression. (See Section 8.5.)

expression: a term built from operators, function references, components, or component references (referring to
components) and literals. Each expression has a type and a variability. (See Chapter 3.)

extends clause: an unnamed element of a class definition that uses a name and an optional modification to specify
a base class of the class defined using the class definition. (See Chapter 7.)

flattening: the computation that creates a flattened class of a given class, where all inheritance, modification, etc.
has been performed and all names resolved, consisting of a flat set of equations, algorithm sections, component
declarations, and functions. (See Section 5.6.)

function: a class of the specialized class function. (See Chapter 12.)

function subtype or function compatible interface: A is a function subtype of B iff A is a subtype of B and the
additional arguments of function A that are not in function B are defined in such a way (e.g. additional
arguments need to have default values), that A can be called at places where B is called. (See Section 6.5.)+

identifier or ident: an atomic (not composed) name. Example: Resistor (See Section 2.3.)

 215

index or subscript: An expression, typically of Integer type or the colon symbol (:), used to reference a
component (or a range of components) of an array. (See Section 10.5.)

inheritance interface or class type: property of a class, consisting of a number of attributes and a set of public or
protected elements consisting of element name, element type, and element attributes. (See Section 6.2.2.)

instance: the object generated by a class. An instance contains zero or more components (i.e. instances),
equations, algorithms, and local classes. An instance has a type. Basically, two instances have same type, if
their important attributes are the same and their public components and classes have pair wise equal identifiers
and types. More specific type equivalence definitions are given e.g. for functions.

instantaneous: An equation or statement is instantaneous if it holds only at events, i.e., at single points in time.
The equations and statements of a when-clause are instantaneous. (See Sections 8.3.5 and 11.2.7.)

interface: see type. (See Section 6.2.)

literal: a real, integer, boolean, enumeration, or string literal. Used to build expressions. (See Section 2.4.)

matrix: an array where the number of dimensions is 2. (See Chapter 10.)

modification: part of an element. Modifies the instance generated by that element. A modification contains
element modifications and element redeclarations. (See Section 7.2.)

modification environment: the modification environment of a class defines how to modify the corresponding
class definition when flattening the class. (See Section 7.2.2.)

name: Sequence of one or more identifiers. Used to reference a class. A class name is resolved in the scope of a
class, which defines a set of visible classes. Example name: "Ele.Resistor". (See Section 2.3.2.)

operator record: A record with user-defined operations; defining e.g. multiplication and addition see Chapter 14.

partial: a class that is incomplete and cannot be instantiated in a simulation model; useful e.g. as a base-class.
(See Section 4.4.2.)

partial flattening: first find the names of declared local classes and components. Modifiers, if present, are
merged to the local elements and redeclarations are performed. Then base-classes are looked up, flattened and
inserted into the class. See also flattening, which additionally flattens local elements and performs
modifications. (See Section 5.6.1.)

plug-compatibility: see restricted subtyping and Section 6.4.

predefined type: one of the types Real, Boolean, Integer, String and types defined as enumeration types.
The component declarations of the predefined types define attributes such as min, max, and unit. (See
Section 4.8.)

prefix: property of an element of a class definition which can be present or not be present, e.g. final, public,
flow. (See Section 4.4.2.2.)

primitive type: one of the built-in types RealType, BooleanType, IntegerType, StringType, EnumType.
The primitive types are used to define attributes and value of predefined types and enumeration types. (See
Section 4.8.)

redeclare: the modifier that changes a replaceable element. (See Section 7.3)

replaceable: an element that can be replaced by a different element having a compatible interface. (See Section
7.3)

restricted subtyping or plug-compatibility: a type A is a restricted subtype of type B iff A is a subtype of B, and
all public components present in A but not in B must be default-connectable. This is used to avoid introducing,
via a redeclaration, an un-connected connector in the object/class of type A at a level where a connection is not
possible. (See Section 6.4.)

scalar or scalar variable: a variable that is not an array.

216 Modelica Language Specification 3.2 Revision 2

simple type: Real, Boolean, Integer, String and enumeration types

specialized class: one of: model, connector, package, record, block, function, type. The class restriction of a class
represents an assertion regarding the content of the class and restricts its use in other classes. For example, a
class having the package class restriction must only contain classes and constants. (See Section 4.6.)

subtype or interface compatible: relation between types. A is a subtype of (interface compatible with) B iff a
number of properties of A and B are the same and all important elements of B have corresponding elements in
A with the same names and their types being subtypes of the corresponding element types in B. See also
restricted subtyping and function restricted subtyping. (See Section 6.3.)

supertype: relation between types. The inverse of subtype. A is a subtype of B means that B is a supertype of A.
(See Section 6.3.)

transitively nonreplaceable: a class reference is considered transitively non-replaceable if there are no
replaceable elements in the referenced class, or any of its base classes or constraining types transitively at any
level. (See Section 6.2.1.)

type or interface: property of an instance, expression, consisting of a number of attributes and a set of public
elements consisting of element name, element type, and element attributes. Note: The concept of class type is a
property of a class definition. (See Section 6.2.)

variability: property of an expression: one of
• continuous: an expression that may change its value at any point in time.
• discrete: may change its value only at events during simulation.
• parameter: constant during the entire simulation, recommended to change for a component.
• constant: constant during the entire simulation (can be used in a package) .
Assignments x := expr and binding equations x = expr must satisfy a variability constraint: The expression
must not have a higher variability than component x. (See Section 3.8.)

variable: synonym for component. (See Section 4.4.)

vector: an array where the number of dimensions is 1. (See Chapter 10.)

 217

Appendix B

Modelica Concrete Syntax

B.1 Lexical conventions
The following syntactic meta symbols are used (extended BNF):
[] optional
{ } repeat zero or more times
| or
"text" The text is treated as a single token (no whitespace between any characters)

The following lexical units are defined (the ones in boldface are the ones used in the grammar, the rest are just
internal to the definition of other lexical units):
IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT
Q-IDENT = "’" (Q-CHAR | S-ESCAPE) { Q-CHAR | S-ESCAPE } "’"
NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z"
STRING = """ { S-CHAR | S-ESCAPE } """
S-CHAR = any member of the Unicode character set (http://www.unicode.org; see section 13.2.2 for storing as UTF-8
 on files) except double-quote """, and backslash "\"
Q-CHAR = NONDIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" | "+" | "," |
 "-" | "." | "/" | ":" | ";" | "<" | ">" | "=" | "?" | "@" | "[" | "]" | "^" |
 "{" | "}" | "|" | "~" | " "
S-ESCAPE = "\’" | "\"" | "\?" | "\\" |
 "\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"
DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
UNSIGNED_INTEGER = DIGIT { DIGIT }
UNSIGNED_NUMBER = UNSIGNED_INTEGER ["." [UNSIGNED_INTEGER]]
 [("e" | "E") ["+" | "-"] UNSIGNED_INTEGER]

[The single quotes are part of an identifier. E.g. ’x’ and x are different IDENTs].

Note:

• Whitespace and comments can be used between separate lexical units and/or symbols, and also separates
them. Whitespace and comments cannot be used inside other lexical units, except for STRING and Q-
IDENT where they are treated as part of the STRING or Q-IDENT lexical unit.

• String constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the "+" operator in
Modelica.

• Modelica uses the same comment syntax as C++ and Java (i.e., // signals the start of a line comment and
/* */ is a multi-line comment); comments may contain any Unicode character. Modelica also has
structured comments in the form of annotations and string comments.

• Description strings (= production “string_comment” in the grammar) and strings in annotations (= STRING
with production annotation in the grammar) may contain any member of the Unicode character set. All
other strings have to contain only the sub-set of Unicode characters identical with the 7-bit US-ASCII
character set. [As a consequence, operators like “>” or “<”, and external functions only operate on ASCII
strings and not on Unicode-strings. Within a description string the tags <HTML> and </HTML> or <html>
and </html> define optionally begin and end of content that is HTML encoded.]

• Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used
as identifiers.

http://www.unicode.org/

218 Modelica Language Specification 3.2 Revision 2

B.2 Grammar

B.2.1 Stored Definition – Within
stored_definition:
 [within [name] ";"]
 { [final] class_definition ";" }

B.2.2 Class Definition
class_definition :
 [encapsulated] class_prefixes
 class_specifier

class_prefixes :
 [partial]
 (class | model | record | block | [expandable] connector | type |
 package | function | operator | operator function | operator record)

class_specifier :
 long_class_specifier | short_class_specifier | der_class_specifier

long_class_specifier :
 IDENT string_comment composition end IDENT
 | extends IDENT [class_modification] string_comment composition
 end IDENT

short_class_specifier :
 IDENT "=" base_prefix name [array_subscripts]
 [class_modification] comment
 | IDENT "=" enumeration "(" ([enum_list] | ":") ")" comment

der_class_specifier:
 IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

base_prefix :
 type_prefix

enum_list : enumeration_literal { "," enumeration_literal}

enumeration_literal : IDENT comment

composition :
 element_list
 { public element_list |
 protected element_list |
 equation_section |
 algorithm_section
 }
 [external [language_specification]
 [external_function_call] [annotation] ";"]
 [annotation ";"]

language_specification :
 STRING

external_function_call :
 [component_reference "="]
 IDENT "(" [expression_list] ")"

element_list :
 { element ";" }

element :

 219

 import_clause |
 extends_clause |
 [redeclare]
 [final]
 [inner] [outer]
 ((class_definition | component_clause) |
 replaceable (class_definition | component_clause)
 [constraining_clause comment])

import_clause :
 import (IDENT "=" name | name ["." "*"]) comment

B.2.3 Extends
extends_clause :
 extends name [class_modification] [annotation]

constraining_clause :
 constrainedby name [class_modification]

B.2.4 Component Clause
component_clause:
 type_prefix type_specifier [array_subscripts] component_list

type_prefix :
 [flow | stream]
 [discrete | parameter | constant] [input | output]

type_specifier :
 name

component_list :
 component_declaration { "," component_declaration }

component_declaration :
 declaration [condition_attribute] comment

condition_attribute:
 if expression

declaration :
 IDENT [array_subscripts] [modification]

B.2.5 Modification
modification :
 class_modification ["=" expression]
 | "=" expression
 | ":=" expression

class_modification :
 "(" [argument_list] ")"

argument_list :
 argument { "," argument }

argument :
 element_modification_or_replaceable
 | element_redeclaration

element_modification_or_replaceable:
 [each] [final] (element_modification | element_replaceable)

220 Modelica Language Specification 3.2 Revision 2

element_modification :
 name [modification] string_comment

element_redeclaration :
 redeclare [each] [final]
((short_class_definition | component_clause1) | element_replaceable)

element_replaceable:
 replaceable (short_class_definition | component_clause1)
 [constraining_clause]

component_clause1 :
 type_prefix type_specifier component_declaration1

component_declaration1 :
 declaration comment

short_class_definition :
 class_prefixes short_class_specifier

B.2.6 Equations
equation_section :
 [initial] equation { equation ";" }

algorithm_section :
 [initial] algorithm { statement ";" }

equation :
 (simple_expression "=" expression
 | if_equation
 | for_equation
 | connect_clause
 | when_equation
 | name function_call_args)
 comment

statement :
 (component_reference (":=" expression | function_call_args)
 | "(" output_expression_list ")" ":=" component_reference function_call_args
 | break
 | return
 | if_statement
 | for_statement
 | while_statement
 | when_statement)
 comment

if_equation :
 if expression then
 { equation ";" }
 { elseif expression then
 { equation ";" }
 }
 [else
 { equation ";" }
]
 end if

if_statement :
 if expression then
 { statement ";" }
 { elseif expression then
 { statement ";" }

 221

 }
 [else
 { statement ";" }
]
 end if

for_equation :
 for for_indices loop
 { equation ";" }
 end for

for_statement :
 for for_indices loop
 { statement ";" }
 end for

for_indices :
 for_index {"," for_index}

for_index:
 IDENT [in expression]

while_statement :
 while expression loop
 { statement ";" }
 end while

when_equation :
 when expression then
 { equation ";" }
 { elsewhen expression then
 { equation ";" } }
 end when

when_statement :
 when expression then
 { statement ";" }
 { elsewhen expression then
 { statement ";" } }
 end when

connect_clause :
 connect "(" component_reference "," component_reference ")"

B.2.7 Expressions
expression :
 simple_expression
 | if expression then expression { elseif expression then expression }
 else expression

simple_expression :
 logical_expression [":" logical_expression [":" logical_expression]]

logical_expression :
 logical_term { or logical_term }

logical_term :
 logical_factor { and logical_factor }

logical_factor :
 [not] relation

relation :
 arithmetic_expression [rel_op arithmetic_expression]

222 Modelica Language Specification 3.2 Revision 2

rel_op :
 "<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic_expression :
 [add_op] term { add_op term }

add_op :
 "+" | "-" | ".+" | ".-"

term :
 factor { mul_op factor }

mul_op :
 "*" | "/" | ".*" | "./"

factor :
 primary [("^" | ".^") primary]

primary :
 UNSIGNED_NUMBER
 | STRING
 | false
 | true
 | (name | der | initial) function_call_args
 | component_reference
 | "(" output_expression_list ")"
 | "[" expression_list { ";" expression_list } "]"
 | "{" function_arguments "}"
 | end

name :
 ["."] IDENT { "." IDENT }

component_reference :
 ["."] IDENT [array_subscripts] { "." IDENT [array_subscripts] }

function_call_args :
 "(" [function_arguments] ")"

function_arguments :
 function_argument ["," function_arguments | for for_indices]
 | named_arguments

named_arguments: named_argument ["," named_arguments]

named_argument: IDENT "=" function_argument

function_argument :
 function name "(" [named_arguments] ")" | expression

output_expression_list:
 [expression] { "," [expression] }

expression_list :
 expression { "," expression }

array_subscripts :
 "[" subscript { "," subscript } "]"

subscript :
 ":" | expression

comment :
 string_comment [annotation]

string_comment :
 [STRING { "+" STRING }]

 223

annotation :
 annotation class_modification

224 Modelica Language Specification 3.2 Revision 2

Appendix C

Modelica DAE Representation
In this appendix, the mapping of a Modelica model into an appropriate mathematical description form is
discussed.

In a first step, a Modelica translator transforms a hierarchical Modelica simulation model into a “flat” set of
Modelica “statements”, consisting of the equation and algorithm sections of all used components by:

• expanding all class definitions (flattening the inheritance tree) and adding the equations and assignment
statements of the expanded classes for every instance of the model.

• replacing all connect-equations by the corresponding equations of the connection set (see Section 0).
• mapping all algorithm sections to equation sets.
• mapping all when-clauses to equation sets (see Section 8.3.5).

As a result of this transformation process, a set of equations is obtained consisting of differential, algebraic and
discrete equations of the following form where (]);(;;;;;[: pmpremyxxv t=):

),()c1(
),(:)b1(

))((:)a1(

cvf0
cvfm

vfc

x

m

c relation

=
=
=

and where
p Modelica variables declared as parameter or constant, i.e., variables without any time-

dependency.
t Modelica variable time, the independent (real) variable.
x(t) Modelica variables of type Real, appearing differentiated.
m(te) Modelica variables of type discrete Real, Boolean, Integer which are unknown. These

variables change their value only at event instants te. pre(m) are the values of m
immediately before the current event occurred.

y(t) Modelica variables of type Real which do not fall into any other category (= algebraic
variables).

c(te) The conditions of all if-expressions generated including when-clauses after conversion,
see Section 8.3.5).

relation(v) A relation containing variables vi, e.g. v1 > v2, v3 >= 0.

For simplicity, the special cases of the noEvent() operator and of the reinit() operator are not contained in
the equations above and are not discussed below.

The generated set of equations is used for simulation and other analysis activities. Simulation means that an
initial value problem is solved, i.e., initial values have to be provided for the states x, Section 8.6. The equations
define a DAE (Differential Algebraic Equations) which may have discontinuities, a variable structure and/or
which are controlled by a discrete-event system. Such types of systems are called hybrid DAEs. Simulation is
performed in the following way:

1. The DAE (1c) is solved by a numerical integration method. In this phase the conditions c of the if- and
when-clauses, as well as the discrete variables m are kept constant. Therefore, (1c) is a continuous
function of continuous variables and the most basic requirement of numerical integrators is fulfilled.

2. During integration, all relations from (1a) are monitored. If one of the relations changes its value an event
is triggered, i.e., the exact time instant of the change is determined and the integration is halted. As

 225

discussed in Section 8.5, relations which depend only on time are usually treated in a special way, because
this allows to determine the time instant of the next event in advance.

3. At an event instant, (1) is a mixed set of algebraic equations which is solved for the Real, Boolean and
Integer unknowns.

4. After an event is processed, the integration is restarted with 1.

Note, that both the values of the conditions c as well as the values of m (all discrete Real, Boolean and
Integer variables) are only changed at an event instant and that these variables remain constant during
continuous integration. At every event instant, new values of the discrete variables m and of new initial values for
the states x are determined. The change of discrete variables may characterize a new structure of a DAE where
elements of the state vector x are disabled. In other words, the number of state variables, algebraic variables and
residue equations of a DAE may change at event instants by disabling the appropriate part of the DAE. For clarity
of the equations, this is not explicitly shown by an additional index in (1).

At an event instant, including the initial event, the model equations are reinitialized according to the following
iteration procedure:
 known variables: x, t, p
 unkown variables: dx/dt, y, m, pre(m), c

 // pre(m) = value of m before event occured
 loop
 solve (1) for the unknowns, with pre(m) fixed
 if m == pre(m) then break
 pre(m) := m
 end loop

Solving (1) for the unknowns is non-trivial, because this set of equations contains not only Real, but also Boolean
and Integer unknowns. Usually, in a first step these equations are sorted and in many cases the Boolean and
Integer unknowns can be just computed by a forward evaluation sequence. In some cases, there remain systems
of equations (e.g. for ideal diodes, Coulomb friction elements) and specialized algorithms have to be used to solve
them.

Due to the construction of the equations by "flattening" a Modelica model, the hybrid DAE (1) contains a huge
number of sparse equations. Therefore, direct simulation of (1) requires sparse matrix methods. However, solving
this initial set of equations directly with a numerical method is both unreliable and inefficient. One reason is that
many Modelica models, like the mechanical ones, have a DAE index of 2 or 3, i.e., the overall number of states of
the model is less than the sum of the states of the sub-components. In such a case, every direct numerical method
has the difficulty that the numerical condition becomes worse, if the integrator step size is reduced and that a step
size of zero leads to a singularity. Another problem is the handling of idealized elements, such as ideal diodes or
Coulomb friction. These elements lead to mixed systems of equations having both Real and Boolean unknowns.
Specialized algorithms are needed to solve such systems.

To summarize, symbolic transformation techniques are needed to transform (1) in a set of equations which can
be numerically solved reliably. Most important, the algorithm of Pantelides should to be applied to differentiate
certain parts of the equations in order to reduce the index. Note, that also explicit integration methods, such as
Runge-Kutta algorithms, can be used to solve (1c), after the index of (1c) has been reduced by the Pantelides
algorithm: During continuous integration, the integrator provides x and t. Then, (1c) is a linear or nonlinear
system of equations to compute the algebraic variables y and the state derivatives dx/dt and the model returns
dx/dt to the integrator by solving these systems of equations. Often, (1c) is just a linear system of equations in
these unknowns, so that the solution is straightforward. This procedure is especially useful for real-time
simulation where usually explicit one-step methods are used.

226 Modelica Language Specification 3.2 Revision 2

Appendix D

Derivation of Stream Equations
This appendix contains a derivation of the equation for stream connectors from Chapter 15.

D.1 Reasons for avoiding the actual mixing enthalpy in connector
definitions

Consider a connection set with n connectors. The mixing enthalpy is defined by the mass balance

∑
=

=
nj

jm
...1

0 

and the energy balance

∑
=

=
nj

jH
...1

0 

with







≤
>

= 0if
0if

jjoutflow

jmix
jj mh

mh
mH









Herein, mass flow rates im are positive when entering models (exiting the connection set). The specific enthalpy
outflowh represents the specific enthalpy inside the component, close to the connector, for the case of outflow.

Expressed with variables used in the balance equations we arrive at:









≥

<
=

0ifarbitrary

0if
,

j

j
j

j

joutflow

m

m
m
H

h








While these equations are suitable for device-oriented modeling, the straightforward usage of this definition leads
to models with discontinuous residual equations, which violates the prerequisites of several solvers for nonlinear
equation systems. This is the reason why the actual mixing enthalpy is not modelled directly in the model
equations. The stream connectors provide a suitable alternative.

Figure 5: Exemplary connection set with three connected components and a common mixing enthalpy

 227

D.2 Rationale for the formulation of the inStream() operator
For simplicity, the derivation of the inStream() operator is shown at hand of 3 model components that are
connected together. The case for N connections follows correspondingly.

The energy and mass balance equations for the connection set for 3 components are (see above):





≤
>

⋅+





≤
>

⋅+





≤
>

⋅=

0if
0if

0if
0if

0if
0if

0

33,

3
3

22,

2
2

11,

1
1

mh
mh

m

mh
mh

m

mh
mh

m

outflow

mix

outflow

mix

outflow

mix



















 (1a)

3210 mmm  ++= (1b)

The balance equations are implemented using a max() operator in place of the piecewise expressions, taking care
of the different flow directions:

() ()
() ()
() () 3,33

2,22

1,11

0,max0,max

0,max0,max

0,max0,max0

outflowmix

outflowmix

outflowmix

hmhm
hmhm

hmhm







−−+

−−+

−−=

 (2a)

() ()
() ()
() ()0,max0,max

0,max0,max
0,max0,max0

33

22

11

mm
mm

mm







−−+
−−+
−−=

 (2b)

Equation (2a) is solved for mixh

() () ()
() () ()0,max0,max0,max

0,max0,max0,max

321

3,32,21,1

mmm
hmhmhm

h outflowoutflowoutflow
mix





++

−+−+−
=

Using (2b), the denominator can be changed to:

() () ()
() () ()0,max0,max0,max

0,max0,max0,max

321

3,32,21,1

mmm
hmhmhm

h outflowoutflowoutflow
mix





−+−+−

−+−+−
=

Above it was shown that an equation of this type does not yield properly formulated model equations. In the
streams concept we therefore decide to split the energy balance, which consists of different branches depending
on the mass flow direction. Consequently, separate energy balances are the result; each valid for specific flow
directions.

In a model governing equations have to establish the specific enthalpy ioutflowh , of fluid leaving the model
based on the specific enthalpy of fluid flowing into it. Whenever the mixing enthalpy is used in a model it is
therefore the mixing enthalpy under the assumption of fluid flowing into said model.

We establish this quantity using a dedicated operator () ()0, ≥= imixioutflow mhhinStream  . This leads to three

different incarnations of mixh (n in the general case). This is illustrated in the figure below. For the present
example of three components in a connection set, this means the following.

() () ()
() ()0,max0,max

0,max0,max

32

3,32,2
1, mm

hmhm
hinStream outflowoutflow

outflow




−+−

−+−
=

228 Modelica Language Specification 3.2 Revision 2

() () ()
() ()0,max0,max

0,max0,max

31

3,31,1
2, mm

hmhm
hinStream outflowoutflow

outflow




−+−

−+−
=

() () ()
() ()0,max0,max

0,max0,max

21

2,21,1
3, mm

hmhm
hinStream outflowoutflow

outflow




−+−

−+−
=

In the general case of a connection set with n components, similar considerations lead to the following.

()
()

()∑

∑

≠=

≠=

−

−
=

ijnj
j

ijnj
joutflowj

outflow

m

hm
hinStream

;,...,1

;,...,1
,

1,

0,max

0,max





D.3 Special cases covered by the inStream() operator definition

D.3.1 Stream connector is not connected (N=1):

For this case, the return value of the inStream() operator is arbitrary. Therefore, it is set to the outflow value.

D.3.2 Connection of 2 stream connectors, one to one connections (N=2):

() ()
() 2,

2

2,2
1, 0,max

0,max
outflow

outflow
outflow h

m
hm

hinStream =
−

−
=





() ()
() 1,

1

1,1
2, 0,max

0,max
outflow

outflow
outflow h

m
hm

hinStream =
−

−
=





Figure 6: Exemplary connection set with three connected components

 229

In this case, inStream() is continuous (contrary to mixh) and does not depend on flow rates. The latter result
means that this transformation may remove nonlinear systems of equations, which requires that either
simplifications of the form “a*b/a = b” must be provided, or that this case is treated directly.

D.3.3 Connection of 3 stream connectors where one mass flow rate is identical to
zero (N=3 and 03 =m):

This case occurs, when a one-port sensor (like a temperature sensor) is connected to two connected components.
For the sensor, the min attribute of the mass flow rate has to be set to zero (no fluid exiting the component via this
connector). The suggested implementation results in the following equations, and as indicated the last formula can
be simplified further by using 03 =m :

() 2,1, outflowoutflow hhinStream =

() 1,2, outflowoutflow hhinStream =

() () ()
() () 




=<
≥

=
−+−
−+−

=
0 and 0if

0if
0,max0,max
0,max0,max

311,

12,

21

2,21,1
3, mmh

mh
mm

hmhm
hinStream

outflow

outflowoutflowoutflow
outflow









For the two components with finite mass flow rates (not the sensor), the properties discussed for two connected
components still hold. The connection set equations reflect that the sensor does not any influence by discarding
the flow rate of the latter. In several cases a non-linear equation system is removed by this transformation.
However, inStream(..) results in a discontinuous equation for the sensor, which is consistent with modeling the
convective phenomena only. The discontinuous equation is uncritical, if the sensor variable is not used in a
feedback loop with direct feedthrough, since the discontinuous equation is then not part of an algebraic loop.
Otherwise, it is advisable to regularize or filter the sensor signal.

D.3.4 Connection of 3 stream connectors where two mass flow rates are positive
(ideal splitting junction for uni-directional flow)

If uni-directional flow is present and an ideal splitter is modelled, the required flow direction should be defined in
the connector instance with the “min” attribute (the “max” attribute could be also defined, however it does not
lead to simplifications):
model m2
 Fluidport c(m_flow(min=0));
 ...
end m2;

Figure 3: Example series connection of multiple models with stream connectors

230 Modelica Language Specification 3.2 Revision 2

Consider the case of 01 <m and all other mass flow rates positive (with the min attribute set accordingly).
Connecting m1.c with m2.c and m3.c, such that

m2.c.m_flow.min = 0; // max(-m2.c.m_flow,0) = 0
m3.c.m_flow.min = 0; // max(-m3.c.m_flow,0) = 0

results in the following equation:

() () ()
() () 0

0
0,max0,max
0,max0,max

32

3,32,2
1, =

−+−

−+−
=

mm
hmhm

hinStream outflowoutflow
outflow





The inStream() operator cannot be evaluated for a connector, on which the mass flow rate has to be negative by
definition. The reason is that the value is arbitrary, which is why it is defined as follows.

() 1,1, : outflowoutflow hhinStream =

For the remaining connectors the inStream() operator reduces to a simple result.

() () ()
() () 1,

31

3,31,1
2, 0,max0,max

0,max0,max
outflow

outflowoutflow
outflow h

mm
hmhm

hinStream =
−+−

−+−
=





() () ()
() () 1,

21

2,21,1
3, 0,max0,max

0,max0,max
outflow

outflowoutflow
outflow h

mm
hmhm

hinStream =
−+−

−+−
=





Again, the previous non-linear algebraic system of equations is removed. This means that utilizing the information
about uni-directional flow is very important.

To summarize, if all mass flow rates are zero, the balance equations for stream variables (1) and for flows (2) are
identically fulfilled. In such a case, any value of h_mix fulfills (1), i.e., a unique mathematical solution does not
exist. This specification only requires that a solution fulfills the balance equations. Additionally, a
recommendation is given to compute all unknowns in a unique way, by providing an explicit formula for the
inStream operator. Due to the definition, that only flows where the corresponding “min” attribute is neither zero
nor positive enter this formula, a meaningful physcial result is always obtained, even in case of zero mass flow
rate. As a side effect, non-linear equation systems are automatically removed in special cases, like sensors or uni-
directional flow, without any symbolic transformations (no equation must be analyzed; only the “min”-attributes
of the corresponding flow variables).

 231

233

Appendix E

Modelica Revision History
This appendix describes the history of the Modelica Language Design, and its contributors. The current version of
this document is available from https://www.modelica.org/documents.

E.1 Modelica 3.2 Revision 2
Modelica 3.2 Revision 2 was released 2013. The Modelica 3.2 Revision 2 specification was edited by Hans
Olsson and Martin Otter.

E.1.1 Main changes in Modelica 3.2 Revision 2

The Modelica language was slightly adapted (in a backwards compatible way – except as listed below) in order
that the Modelica Standard Library (MSL) version 3.2.1 is fully compliant to Modelica Language 3.2 Revision 2.
This required the following improvements:

• Possible to call a function through an instance name, section 5.3.2
(used in MSL 3.2 to compute the gravity acceleration in Modelica.Mechanics.MultiBody.World; this
feature was also introduced in Modelica Language version 3.3 in May 2012).

• New built-in operator Connections.rooted(A.R) to inquire whether an overdetermined type or record
instance A.R in a call to Connections.branch(A.R,B.R) is closer to the root of the spanning tree than B.R,
section 9.4.1 (used in MSL 3.2 to avoid algebraic loops in several components such as in
Modelica.Mechanics.MultiBody.Joints.Revolute).

• Several new annotations where vendor-specific variants were used in MSL 3.2; sections 7.3.4, 17.2, 17.3,
17.4, 17.5.4, and 17.6.

• Specified that Evaluate can also occur in types, since this is used in MSL and important for performance;
section 17.3. Ticket #925.

• Macros in graphical text items, section 17.5.5.5. Ticket #659.
• Initial equations are discrete – used in MSL for initialization of pre-variables, section 3.8.3. Ticket #853.
• Updated noDerivative to be consistent with MSL, section 12.7.1. This is an incompatibility – but the other

variant was not used. Ticket #1035.
• Clarified handling of component with missingInnerMessage; section 17.6. Ticket #891.
• Clarified definition of protected; section 4.1. Ticket #975, #1123.

 In addition several issues with the specification text were corrected:
• Clarified an unclear sequence regarding functions as input arguments in section 4.4.2.2. Ticket #1182.
• Clarified allowed binding equations for redeclarations, section 4.7. Ticket #1111.
• Unspecified enumerations now have defined semantics, section 4.8.5.3. Ticket #834.
• Transitively non-Replaceable, section 6.2.1. Ticket #854.
• Modification text improved to not refer to inherited class, section 7.2. Ticket #1042.
• Precedence for modifiers on constraining-clause clarified, section 7.3.2. Ticket #1128.
• Clarified arrays for constraining type, 7.3.2. Ticket #1148.

https://www.modelica.org/documents
https://trac.modelica.org/Modelica/ticket/925
https://trac.modelica.org/Modelica/ticket/659
https://trac.modelica.org/Modelica/ticket/853
https://trac.modelica.org/Modelica/ticket/1035
https://trac.modelica.org/Modelica/ticket/891
https://trac.modelica.org/Modelica/ticket/975
https://trac.modelica.org/Modelica/ticket/1123
https://trac.modelica.org/Modelica/ticket/1182
https://trac.modelica.org/Modelica/ticket/834
https://trac.modelica.org/Modelica/ticket/854
https://trac.modelica.org/Modelica/ticket/1042
https://trac.modelica.org/Modelica/ticket/1128
https://trac.modelica.org/Modelica/ticket/1148

234 Modelica Language Specification 3.2 Revision 2

• Avoid all forms of connections depending on connections, section 8.3.3. Ticket #828.
• Clarified equation count for if-equations, section 8.3.4. Ticket #888.
• Complete definition of reinit, section 8.3.6. Ticket #578. This forbids reinit in algorithms – but it was

previously not well-defined.
• Clarified initializaton of pre(vc) for a non-discrete (that is continuous-time) Real variable vc, section 8.6.

Ticket #1195.
• Only one way of handling arrays of connectors is now defined, Chapter 9. Ticket #757.
• Example now use correct sine-source, section 9.1. Ticket #750.
• Restricted parameters in connectors, section 9.3. Ticket #768.
• Clarified type restrictions for some operators, section 10.3.4, 10.3.5. Ticket #622.
• Clarified that if at least one array element is used on the left hand side of the assignment operator in an

algorithm section, then the complete array is initialized in this section, section 11.1.2. Ticket #1190.
• Record constructor corrected to not refer to keywords that should not occur, section 12.6. Ticket #907.
• External storage of classes, sections 13.2.2.2, 13.2.2.3 and 17.7.3. Tickets #1019, #892, #887.
• Added example and explanation for inheritance restriction on operator record; section 14.6. Ticket #1065.
• Contents of Chapter 16 was removed; this change was already decided for Modelica 3.3 and no tool had

released an implementation of this feature. Ticket #1015.
• Corrected license-example in section 17.8.2. Ticket #1127.
• Grammar was internally restructured for short_class_definition, section 4.5,B.2.2. Ticket #1140.

E.1.2 Contributors to the Modelica Language, Version 3.2 Revision 2

The following members of the Modelica Association contributed to the Modelica 3.2 Revision 2 specification
(alphabetical list):

Peter Aronsson, MathCore AB, Linköping, Sweden
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden
Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Christoph Höger, Technical University of Berlin, Berlin, Germany
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Jesper Mattsson, Modelon AB, Lund, Sweden
Hans Olsson, Dassault Systèmes, Lund, Sweden
Martin Otter, DLR, Oberpfaffenhofen, Germany
Adrian Pop, Linköping University, Linköping, Sweden
Elena Shmoylova, Maplesoft, Waterloo, Canada
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden
Stefan Vorkoetter, Maplesoft, Waterloo, Canada

E.2 Modelica 3.2 Revision 1
Modelica 3.2 Revision 1 was released on Feb. 29, 2012. The Modelica 3.2 Revision 1 specification was edited by
Hans Olsson and Peter Fritzson.

E.2.1 Main changes in Modelica 3.2 Revision 1

The Modelica language was not changed with respect to the previous version 3.2. Only issues with the
specification text have been fixed. In particular:

• Corrected typos and improved formatting.

https://trac.modelica.org/Modelica/ticket/828
https://trac.modelica.org/Modelica/ticket/888
https://trac.modelica.org/Modelica/ticket/578
https://trac.modelica.org/Modelica/ticket/1195
https://trac.modelica.org/Modelica/ticket/757
https://trac.modelica.org/Modelica/ticket/750
https://trac.modelica.org/Modelica/ticket/768
https://trac.modelica.org/Modelica/ticket/622
https://trac.modelica.org/Modelica/ticket/1190
https://trac.modelica.org/Modelica/ticket/907
https://trac.modelica.org/Modelica/ticket/1019
https://trac.modelica.org/Modelica/ticket/892
https://trac.modelica.org/Modelica/ticket/887
https://trac.modelica.org/Modelica/ticket/1065
https://trac.modelica.org/Modelica/ticket/1015
https://trac.modelica.org/Modelica/ticket/1127
https://trac.modelica.org/Modelica/ticket/1140

 235

• Section 2.2 Comments:
There are 2 and not 3 kinds of comments and comments are treated as white space character.
Added definition of white space character.

• Section 2.3.1 Identifiers:
The single quotes are part of the identifier, e.g., 'x'.

• Section 3.6.7 Built-in Variable time:
Variable "time" is only available in models and blocks and not in the other classes.

• Section 3.7.1.2 Built-in Mathematical Functions
Definition of "atan2" corrected.

• Section 3.7.2 Special Purpose Operators
Included definition of inStream and actualStream operators from Chapter 15.

• Section 3.7.3 Event-Related Operators
Clarified, that the first argument of "smooth" is a scalar.
Improved the definition of "reinit".

• Section 3.8.3 Discrete-Time Expressions
Improved definition of ordered relations (>,<,>=,<=).

• Section 4.4.5 Conditional Component Declaration
Clarified redeclaration of a component.

• Section 4.6 Specialized Classes
Clarified that "stream" cannot be used in a record.
Clarified restrictions on elements in a "connector".
Errors in example of operator record Complex corrected.

• Section 4.8.5 Enumeration Types
Error in example corrected.

• Section 5.5 Simulataneous Inner/Outer Declarations
Clarified inner/outer declarations.

• Section 7.1 Inheritance
Clarified that the elements of a flattened base class are added at the place of the extends clause.
Equations of the flattened base class that are syntactically equivalent to equations in the flattened enclosing
class are deprecated.

• Section 7.2 Modifications
Element modifiers are no longer part of language, reference grammar instead of duplicating it.

• Section 7.3 Redeclaration
Improved redeclarations definition and moved an example from 7.3.1 at the right place.

• Section 8.3.6 reinit
Improved reinit definition.

• Section 8.6 Initialization
Clarified that initial() can only be used in a restricted form as condition in a when-clause.

• Section 10.3.4.1 Reduction Expressions
Improved definition

• Section 11.2.2.2 Types as iteration ranges
Newly introduced section to improve the definition of iteration ranges

• Section 12.2 Function
Added missing restrictions that model, block, inner, outer cannot be used in a function.

236 Modelica Language Specification 3.2 Revision 2

• Section 12.4.1 Positional or Named Input Arguments of Functions
Corrected formal syntax of a function call

• Section 12.4.4 Initialization and Declaration Assignments of Components in Functions
Added the restriction of acylic bindings.

• Section 2.9.1.4 Records
Mapping of arrays in records to C-structs is removed.

• Section 17.5.5.6 Bitmap
Defined flipping more precisely.

• Appendix B.1 Lexical conventions
More precisely defined whitespace and comments.

• Appendix B2 Grammar
Improved/corrected grammar definition

E.2.2 Contributors to the Modelica Language, Version 3.2 Revision 1

The following members of the Modelica Association contributed to the Modelica 3.2 Revision 1 specification
(alphabetical list):

Peter Aronsson, MathCore AB, Linköping, Sweden
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden
Christoph Höger, Technical University of Berlin, Berlin, Germany
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Jesper Mattsson, Modelon AB, Lund, Sweden
Hans Olsson, Dassault Systèmes, Lund, Sweden
Adrian Pop, Linköping University, Linköping, Sweden
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden
Stefan Vorkoetter, Maplesoft, Waterloo, Canada

E.3 Modelica 3.2
Modelica 3.2 was released on March 24, 2010. The Modelica 3.2 specification was edited by Hans Olsson, Martin
Otter and others.

E.3.1 Main changes in Modelica 3.2

The following backward compatible extensions have been introduced with Modelica 3.2:

• Homotopy function for making it easier to solve initialization problems (see section 3.7.2).
• Functions as formal inputs to functions (see new section 12.4.2).
• Overloaded operators have been refined (see Chapter 14):

o A new specialized class “operator record” is introduced – with specialized typing rules (the type
is identified by the class name; all other Modelica classes have a structural type system where the
type is only defined by the public elements). Overloaded operators can only be defined inside an
“operator record”. This change fixes a flaw in Modelica 3.1, since the look-up of overloaded
operators is performed by the record class name.

o Inheritance of an “operator record” is allowed if defined via a short class definition. This removes a
restriction of operator overloading in Modelica 3.1, e.g., to define derived classes with units for the
record elements, like deriving ComplexVoltage from Complex.

 237

o New overloaded element ‘0’ in order that operator record classes can be used as flow variables in
connectors.

• Unicode support in description strings, strings in annotations and in comments in order to improve
Modelica, e.g., for Arabian, Asian or Indian users (see grammar changes in section B.1). Modelica files are
UTF-8 encoded, and can start with the UTF-8 encoded byte order mark (0xef 0xbb 0xbf) to indicate that it
may contain UTF-8 characters; this is treated as white-space in the grammar (see section 13.2.2.2).

• Constants can once again be modified unless declared final – as this is already used in packages.
(see section 3.8.1).

• Global name lookup has been introduced (e.g. “.Modelica.Constants.pi”), see section 5.3.3.
• New C-functions ModelicaVFormatMessage and ModelicaVFormatError, to simplify message

formatting in external functions (see section 12.9.6)
• Additional annotations allowing:

o Inclusion of C-header and object library files in packages and referencing them with URIs.
(new annotations IncludeDirectory, LibraryDirectory, and standardized platform names like
win32; see section 12.9.4; resolves ticket #297).

o Images in parameter dialogs (new annotation groupImage; see section 17.6).
o Start and fixed attributes for variables in parameter dialogs

(new annotation showStartAttribute; see section 17.6).
o Access control for packages to protect intelectual property.

(new annotations Protection, and License; see new section 17.8).

The following changes in Modelica 3.2 are not backwards compatible:

• The new built-in operator name “homotopy”. In rare cases this might give name clashes in existing models.
• Records with overloaded operations must be declared as “operator record” instead of as “record”.

This is uncritical because tools that already support operator overloading will support the Modelica 3.1 form
still for some time.

E.3.2 Contributors to the Modelica Language, Version 3.2

The initial version of “functions as formal inputs to functions” was proposed by Peter Fritzson.
The definition of header-files and object-libraries with the “IncludeDirectory” and “LibraryDirectory”

annotations was mainly developed by Hans Olsson.
The Protection annotation used for access control is an improved version of existing annotations from Dymola.

The License annotation was mainly developed by Dag Brück with improvements from Magnus Gäfvert.
The flaw in the operator overloading concept was detected by Sébastien Furic. He also proposed the basic fix,

by using a nominal type system for records with overloaded operations.
The global name lookup was proposed by Stefan Vorkoetter.
The support for Unicode was initiated by Rui Gao and Hoyoun Kim.

The "homotopy" operator was proposed by Martin Otter, Michael Sielemann and Francesco Casella. Michael
Sielemann demonstrated with benchmark problems that non-linear solvers are not able to solve reliably
initialization problems and that the homotopy operator is therefore needed. He provided a prototype
implementation of the homotopy-operator and demonstrated its use on a vehicle dynamics example. Utilizing the
prototype implementation, Francesco Casella demonstrated with a model of a thermal power plant with 390
iteration variables of the initialization problem, that an appropriate usage of the homotopy operator allows to
reliably initialize the system without providing guess values for the iteration variables. This was a strong
indication that the homotopy operator will indeed improve initialization in Modelica significantly.

The following members of the Modelica Association participated at design meetings and contributed to the
Modelica 3.2 specification:

Johan Åkesson, Lund University and Modelon AB, Lund, Sweden
Peter Aronsson, MathCore AB, Linköping, Sweden
Bernhard Bachmann, University of Applied Sciences, Bielefeld, Germany

238 Modelica Language Specification 3.2 Revision 2

Jonathan Beck, Dassault Systèmes, Paris, France
Torsten Blochwitz, ITI GmbH, Dresden, Germany
David Broman, PELAB, Linköping University, Sweden
Dag Brück, Dassault Systèmes, Lund, Sweden
Francesco Casella, Politecnico di Milano, Milano, Italy
Mike Dempsey, Claytex Services Limited, Leamington Spa, U.K.
Karin Dietl, TU Hamburg-Harburg, Germany
Filippo Donida, Politecnico di Milano, Milano, Italy
Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Peter Fritzson, PELAB, Linköping University, Sweden
Sébastien Furic, LMS International, Roanne. France
Manuel Gräber, TU Braunschweig, Germany
Peter Harmann, deltatheta uk limited, U.K.
Anton Haumer, AIT, Vienna, Austria
Carsten Heinrich, Institut für Luft- und Kältetechnik, Dresden, Germany
Dan Henriksson, Dassault Systèmes, Lund, Sweden
Fredrik Karlsson, PELAB, Linköping University, Sweden
Christian Kral, AIT, Vienna, Austria
Imke Krüger, TU Hamburg-Harburg, Hamburg, Germany
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Kilian Link, Siemens AB, Erlangen, Germany
Sven Erik Mattsson, Dassault Systèmes, Lund, Sweden
Eric Neuber, ITI GmbH, Dresden, Germany
Hans Olsson, Dassault Systèmes, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Adrian Pop, Linköping University, Linköping, Sweden
Katrin Prölß, Modelon AB, Lund, Sweden
Michael Sielemann, German Aerospace Center, Oberpfaffenhofen, Germany
Bernhard Thiele, German Aerospace Center, Oberpfaffenhofen, Germany
Thorben Vahlenkamp, XRG Simulation, Hamburg, Germany
Eric Thomas, Dassault Aviation, Paris, France
Michael Tiller, Emmeskay, Plymouth, MI, U.S.A
Hubertus Tummescheit, Modelon AB, Lund, Sweden
Stefan Vorkoetter, Maplesoft, Waterloo, Canada
Hans-Jürg Wiesmann, ABB Switzerland, Corporate Research, Baden, Switzerland
Dietmar Winkler, Telemark University College, Porsgrunn, Norway

E.3.3 Acknowledgments

Partial financial support for the development of Modelica 3.2 by the following funding agencies has been
received:

• The German Ministry BMBF has partially funded DLR, Fraunhofer and Siemens (BMBF Förderkennzeichen:
01IS07022F) within the ITEA2 project EUROSYSLIB (http://www.eurosyslib.com).

• The German Ministry BMBF has partially funded ITI GmbH (BMBF Förderkennzeichen: 01IS08002K), and
the Swedish funding agency VINNOVA has partially funded Dynasim (2008-02291), within the ITEA2
project MODELISAR (http://www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf).

• The Swedish funding agency VINNOVA has partially funded Linköping University (PELAB) within the
ITEA2 project OPENPROD (http://www.openprod.org).

• The Swedish Research Council has partially funded Linköping University (PELAB) within the project “High-
Level Debugging of Equation-Based System Modeling & Simulation Languages”.

http://www.eurosyslib.com/
http://www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf

 239

• The German Ministry BMBF has partially funded FH Bielefeld (BMBF Förderkennzeichen: 01IS09029C)
within the ITEA2 project OPENPROD (http://www.openprod.org).

E.4 Modelica 3.1
Modelica 3.1 was released on May 27, 2009. The Modelica 3.1 specification was edited by Francesco Casella,
Rüdiger Franke, Hans Olsson, Martin Otter, and Michael Sielemann.

E.4.1 Main changes in Modelica 3.1

The following backward compatible extensions have been introduced with Modelica 3.1:
• Overloading of operators like ‘+’ or ‘*’ to allow convenient usage of user-defined data structures like

complex numbers, polynomials, transfer functions. Usually, only scalar operations for one data type need
to be overloaded. All other needed operations, like operations between different data types or on arrays of
the new data type, can be automatically constructed by the tool.

• Stream connector concept to ensure efficient and reliable simulation of fluid systems.
• Partitioning models in parts and mapping these parts to execution environments. This allows convenient

definition of, e.g., Model-in-the-Loop, Software-in-the-Loop, Hardware-in-the-Loop Simulation, from the
same “logical” system, by inheriting from the logical system and setting configuration options.

• Arrays in buses (expandable connector) are much better supported. Furthermore, variables declared in an
expandable connector need not to be referenced in the model and are then not available in the simulation
model.

• The order of classes stored in separate files can be given.
• A restriction of balanced models was removed, so that modifiers to connector and record instances can be

used and are considered for the equation count. This allows, e.g., a much easier implementation of the
support connector of the Modelica.Mechanics.Rotational/Translational libraries.

• A tool that uses missingInnerMessage to give information may also automatically use the corresponding
inner-component.

• URIs can be used for links in html-documentation and for the Bitmap annotation (such as:
“modelica://Modelica.Mechanics/C.jpg” for image “C.jpg” that is stored in the directory of package
Modelica.Mechanics). This allows to store resources in a package on persistent storage and to reference
resources via package and resource names.

• Annotation “connectorSizing” to automatically enlarge a vector of connectors and connect to a free
element of this vector when a connection line is drawn. This allows to improve the user convenience,
especially for state machine and fluid models.

• Annotation “inverse” to define inverses of functions. This allows a tool to solve non-linear algebraic
loops by using the user-provided inverse function.

• Annotations “versionDate”, “versionBuild”, “dateModified”, “revisionId” to improve version handling.
For example, this allows handling of maintenance (bug-fix) releases and gives a library developer the
possibility to state that a particular “build” is needed for a used library.

The following defects have been fixed in the Modelica specification:
• Modifier with subscripts were previously allowed, but not clearly defined, not implemented in many

tools, and not used in libraries. They were thus removed.
• Modelica keywords (section 2.3.3) updated.
• Clarification: Exponentiation and array range operator are non-associative

(x^y^z or a:b:c:d:e:f are not allowed; parentheses are required)
• Clarification: Restrictions on combining base classes (section 4.5.2).
• Clarification: Execution of an algorithm (new section 11.1.2).
• The default type for arrays sent to external functions has been clarified.
• The “iconTransformation” defaults to the (diagram) “transformation”, as was originally the intention.

http://www.openprod./

240 Modelica Language Specification 3.2 Revision 2

• The Connection set section was rewritten:
o Connection set is clearly defined including examples.
o The handling of connections involving outer components was rewritten to ensure that models

that seem to have the same connection structure generate the same equations from the connect
equations. Previously a connection between an outer component and an outside connector
would move the connection upwards. The implication of this movement was unclear: if it turned
the connector into an inside connector (as was likely the intention) it would prohibit default-
connection of this normal connector leading to counter-intuitive results; and otherwise it would
have no impact.

• Example of using fields was corrected.
• Example with MatrixGain was corrected.
• Ambiguous annotations after external-declarations were corrected (as already used).
• The reinit-operator can be used multiple times in one algorithm, and the semantics clarified.
• Made clearer that acyclic parameters also hold for one parameter equation.
• Changed in the text “attributes” to “prefix”, if a prefix is meant.

The following changes in Modelica 3.1 are not backwards compatible:
• A class-level annotation can only be placed before the end-statement. This is uncritical because tools can

easily fix incorrect models (ignore this new rule when reading a model and use this rule when storing the
model).

• New Modelica keywords “stream” and “operator”, a new built-in package “Subtask” and new-built-in
operators “inStream” and “actualStream” have been introduced. In rare cases this might give name
clashes in existing models.

• Modifiers on declared variables in expandable connectors are no longer allowed. This should be
uncritical, because expandable connectors are usually used for signal buses where the signal is
communicated to the bus from a block with a connect equation.

E.4.2 Contributors to the Modelica Language, Version 3.1

The concept of operator overloading was developed by Hans Olsson, based on work of Dag Brück, Peter Fritzson,
and Martin Otter.

The streams concept was developed by Rüdiger Franke based on work from Francesco Casella and with
contributions especially from Hilding Elmqvist, Sven Erik Mattson, Hans Olsson, Martin Otter and Michael
Sielemann.

The concept to map models to execution environments was developed by Hilding Elmqvist, Dan Henriksson,
Martin Otter, Bernhard Thiele and Sven Erik Mattson.

The following members of the Modelica Association participated at design meetings and contributed to the
Modelica 3.1 specification:

Johan Akesson, Lund University and Modelon AB, Lund, Sweden
Johan Andreasson, Modelon AB, Lund, Sweden
Peter Aronsson, MathCore AB, Linköping, Sweden
Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany
David Broman, Linköping University, Linköping, Sweden
Dag Brück, Dynasim, Lund, Sweden
Francesco Casella, Politecnico di Milano, Milano, Italy
Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Karin Dietl, TU Hamburg-Harburg, Germany
Filippo Donida, Politecnico di Milano, Milano, Italy
Thomas Doumenc, Dassault Systèmes, Paris, France
Jonas Eborn, Modelon AB, Lund, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden

 241

Rüdiger Franke, ABB Power Generation, Mannheim, Germany
Peter Fritzson, Linköping University, Sweden
Magnus Gäfvert, Modelon AB, Lund, Sweden
Manuel Gräber, TU Braunschweig, Germany
Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria
Carsten Heinrich, Institut für Luft- und Kältetechnik, Dresden, Germany
Dan Henriksson, Dynasim, Lund, Sweden
Roland Kossel, TLK Thermo GmbH, Braunschweig, Germany
Christian Kral, arsenal research, Vienna, Austria
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Kilian Link, Siemens AB, Erlangen, Germany
Sven Erik Mattsson, Dynasim, Lund, Sweden
Ramine Nikoukhah, INRIA, Paris, France
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Adrian Pop, Linköping University, Linköping, Sweden
Katrin Prölß, Technical University Hamburg-Harburg, Germany
Christoph Richter, TU Braunschweig, Germany
Michael Sielemann, German Aerospace Center, Oberpfaffenhofen, Germany
Bernhard Thiele, German Aerospace Center, Oberpfaffenhofen, Germany
Michael Tiller, Ford Motor Company/Emmeskay, Dearborn/Plymouth, MI, U.S.A
Hubertus Tummescheit, Modelon AB, Lund, Sweden
Stefan Vorkoetter, Maplesoft, Waterloo, Canada
Hans-Jürg Wiesmann, ABB Switzerland, Corporate Research, Baden, Switzerland
Dietmar Winkler, TU Berlin, Germany

E.4.3 Acknowledgments

Partial financial support for the development of Modelica 3.1 by the following funding agencies has been
received:

• The German Ministry BMBF has partially funded ABB, DLR, Fraunhofer and Siemens (BMBF
Förderkennzeichen: 01IS07022F) within the ITEA2 project EUROSYSLIB
(http://www.itea2.org/public/project_leaflets/EUROSYSLIB_profile_oct-07.pdf).

• The German Ministry BMBF has partially funded ITI GmbH (BMBF Förderkennzeichen: 01IS08002K), and
the Swedish funding agency VINNOVA has partially funded Dynasim (2008-02291), within the ITEA2
project MODELISAR (http://www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf).

• The Swedish funding agency VINNOVA has partially funded Linköping University (PELAB) within the
project “Safe and Secure Modeling and Simulation”.

• The Swedish funding agency VR has partially funded Linköping University (PELAB) within the project
“High-Level Debugging of Equation-Based System Modeling & Simulation Languages”.

E.5 Modelica 3.0
Modelica 3.0 was released Sept. 5, 2007. The Modelica 3.0 specification was edited by Peter Fritzson, Hans
Olsson, and Martin Otter.

http://www.itea2.org/public/project_leaflets/EUROSYSLIB_profile_oct-07.pdf
http://www.itea2.org/public/project_leaflets/MODELISAR_profile_oct-08.pdf

242 Modelica Language Specification 3.2 Revision 2

E.5.1 Contributors to the Modelica Language, Version 3.0

The Modelica 3.0 specification was newly structured and written by Peter Fritzson using text from the previous
specification and also adding new explanatory text. This draft specification was afterwards improved by members
of the Modelica Association.

The concept of “balanced models” (which is the major change of the language) was developed by Hans Olsson
with contributions from Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. The original inspiration was
from Mike Tiller.

This goes together with making the type interface and sub-typing cleaner and stricter (the new Chapter 6). This
concept fixes flaws of the language that have been pointed out by Sébastien Furic.

The graphical annotations have been redesigned and improved by Daniel Hedberg, Erik Areskog, Dag Brück,
and Hilding Elmqvist with contributions from Peter Aronsson and Gerd Kurzbach.

The following members of the Modelica Association participated at design meetings and contributed to the
Modelica 3.0 specification:

Peter Aronsson, MathCore AB, Linköping, Sweden
Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany
John Batteh, Ford Motor Company, Dearborn, MI, U.S.A.
David Broman, Linköping University, Linköping, Sweden
Peter Bunus, Linköping University, Linköping, Sweden
Dag Brück, Dynasim, Lund, Sweden
Francesco Casella, Politecnico di Milano, Milano, Italy
Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Thomas Doumenc, Dassault Systèmes, Paris, France
Jonas Eborn, Modelon AB, Lund, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden
Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany
Peter Fritzson, Linköping University, Sweden
Sebastien Furic, Imagine, Roanne, France
Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria
Daniel Hedberg, MathCore AB, Linköping, Sweden
Carsten Heinrich, Institut für Luft- und Kältetechnik gGmbH, Dresden, Germany
Olof Johansson, Linköping University, Linköping, Sweden
Christian Kral, arsenal research, Vienna, Austria
Roland Kossel, TLK Thermo GmbH, Braunschweig, Germany
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Christian Kral, arsenal research, Vienna, Austria
Kilian Link, Siemens AB, Erlangen, Germany
José Diaz Lopez, Dynasim AB, Lund, Sweden
Karin Lund, Fachhochschule Ulm, Germany
Håkan Lundvall, Linköping University, Linköping, Sweden
Ludwig Marvan, VA TECH ELIN EBG Elektronik GmbH & Co, Vienna, Austria
Sven Erik Mattsson, Dynasim, Lund, Sweden
Jakob Mauss, Qtronic GmbH, Berlin, Germany
Chuck Newman, Ford Motor Company, Dearborn, MI, U.S.A.
Kaj Nyström, Linköping University, Linköping, Sweden
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Markus Plainer, Arsenal Research, Vienna, Austria
Adrian Pop, Linköping University, Linköping, Sweden
Katrin Prölß, Technical University Hamburg-Harburg, Germany
Christoph Richter, Technical University of Braunschweig, Braunschweig, Germany
Anders Sandholm, Linköping University, Linköping, Sweden

 243

Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany
Michael Tiller, Ford Motor Company/Emmeskay, Dearborn, MI, U.S.A
Hubertus Tummescheit, Modelon AB, Lund, Sweden
Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.5.2 Main Changes in Modelica 3.0

Modelica 3.0 is a “clean-up” version of the Modelica language. For example, the specification is newly written to
define the language in a better way, errors in the language are fixed, unclear or undefined items are more precisely
described, and mild restrictions are introduced into the language in order that a Modelica translator can much
earlier and more precisely detect modeling errors. Automated conversion of models to Modelica 3.0 is possible.
Furthermore, a tool can potentially handle much larger models.

This Modelica version is for the first time (slightly) not backward compatible to previous versions (all
previous versions have been backward compatible with exception of tiny issues as newly introduced keywords).
As a result, e.g., “unsafe” models of previous Modelica versions are no longer valid. It is expected that Modelica
tool vendors provide (semi-) automatic mechanisms for conversion of models and libraries.

The following main changes in Modelica 3.0 are not backwards compatible:

• Restrictions to connectors (see Section 9.3): For each non-partial connector class the number of flow
variables shall be equal to the number of variables that are neither parameter, constant, input, output, nor
flow. For example, the following connector is illegal in Modelica 3:
 connector notValid // illegal connector
 Real r1;
 Real r2;
 flow Real r3;
 end notValid;

• In a non-partial model or block, all non-connector inputs of model or block components must have binding
equations.

• A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

• Modifiers for components shall only contain redeclarations of replaceable elements and binding equations
for parameters, constants, inputs and variables having a default binding equation.

• All non-partial model and block classes must be locally balanced (see Section 4.7). This means that the
local number of unknowns equals the local equation size. Together with other restrictions, this leads to the
strong property that a simulation model is always globally balanced (i.e., the number of unknowns is equal
to the number of equations).

• Prefixes input, output, inner, outer, flow are not allowed in a record
• The built-in operators “abs(...)” and “sign(...)” do no longer generate events but are implicitly defined

with a noEvent(...) operator.
• The constraining clause of a replaceable class or component is changed from keyword extends to the new

keyword constrainedby (since the extends keyword could lead to the wrong impression that the
redeclared model must inherit from the constraining class, but this is not the case).

• The isPresent(...) construct, which was not implemented in tools, was removed.

The following changes in the Modelica 3.0 graphical annotations are also not backwards compatible:

• Changed the definition of icon placement (record Transformation), so that the actual coordinates of the icon
of a model instance are defined in the class where the instance is defined and no longer in the class where
the icon is defined (this was a flaw in the Modelica 2.0 graphical annotations).

• Improved the definition of the rotation of a graphical primitive.
• Change fontSize unit from DrawingUnit to pt (since this is the usual unit for fonts).

244 Modelica Language Specification 3.2 Revision 2

The following main changes in Modelica 3.0 are backwards compatible:

• New element-wise operators: .+, .-, .*, ./, .^.
• A third argument AssertionLevel to built-in function assert(...) in order that warnings can optionally

be defined.
• New annotations section 17.1 “Vendor-Specific Annotations”:

In this section it is precisely defined how vendor-specific annotations should be marked. Any tool shall save
files with all standard annotations (defined in Chapter 17) and all vendor-specific annotations intact. The
advantage is that a typo in non-vendor annotations can now be detected and marked as an error, whereas in
previous versions this had to be ignored.

• New annotation in section 17.2 “Annotations for Documentation”:
 preferredView = info, diagram or text

• New annotations section 17.3 “Annotations for Code Generation”:
 Evaluate, HideResult, Inline, LateInline, smoothOrder

• New annotation section 17.4 “Annotations for Simulation Experiments”:
 StartTime, StopTime, Tolerance to define important parameters of an experiment setup.

• New annotations for graphical annotations in section 17.5:
New attribute Smooth = enumeration(None, Bezier) for graphical objects and connection lines
(Bezier defines a Bezier spline).
New attribute visible in record Placement allows to make a graphical annotation invisible (e.g. after
inheritance).
New attributes startAngle, endAngle in record ellipse to define part of an ellipse.
New layer specific annotations IconMap and DiagramMap for extends.
New attribute horizontalAlignment to the Text record to define the horizontal alignment of text.

• New annotations for schematic animation and interactive user input in section 17.5:
DynamicSelect(..) to modify annotation literals by the actual values of variables.
OnMouseDownSetBoolean, OnMouseUpSetBoolean, OnMouseMoveXSetReal,
OnMouseMoveYSetReal, OnMouseDownEditReal, OnMouseDownEditString to interactively set the
variable of a class during simulation.

The following errors have been fixed in the Modelica specification:

• Syntax rule for a function call (e.g., according to the grammar in Modelica 2.2 a function call of the form
Modelica.Math.Matrices.eig(...) was invalid because the function name could not have “.”.
However, all Modelica tools supported the desired “full Modelica name” also for function calls).

E.6 Modelica 2.2
Modelica 2.2 was released February 2, 2005. The Modelica 2.2 specification was edited by Hans Olsson, Michael
Tiller and Martin Otter.

E.6.1 Contributors to the Modelica Language, Version 2.2

Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany
John Batteh, Ford Motor Company, Dearborn, MI, U.S.A.
Dag Brück, Dynasim, Lund, Sweden
Francesco Casella, Politecnico di Milano, Milano, Italy
Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Jonas Eborn, Modelon AB, Lund, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden
Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany
Peter Fritzson, Linköping University, Sweden

 245

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria
Christian Kral, arsenal research, Vienna, Austria
Sven Erik Mattsson, Dynasim, Lund, Sweden
Chuck Newman, Ford Motor Company, Dearborn, MI, U.S.A.
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Markus Plainer, Arsenal Research, Vienna, Austria
Adrian Pop, Linköping University, Sweden
Katrin Prölß, Technical University Hamburg-Harburg, Germany
André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, Modelon AB, Lund, Sweden
Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.6.2 Main Changes in Modelica 2.2

The main changes in Modelica 2.2 are:

• Conditional component declarations to ignore component declarations depending on a parameter
expression. Connection equations that reference a component that is no longer present, are ignored.

• In redeclarations some parts of the original declaration are automatically inherited by the new declaration.
This is intended to make it easier to write declarations by not having to repeat common parts of the
declarations, and does in particular apply to attributes that must be identical.

• Recursive inner/outer definitions to define hierarchically structured inner/outer declarations that can
communicate with each other: An element declared with both the prefixes inner and outer conceptually
introduces two declarations with the same name, one that follows the rules for inner and another that
follows the rules for outer.

• A non-input array component declared in a function with a dimension size specified by colon(:) and no
declaration assignment, can change size in the function in a simple and convenient way.

• A new type of connector, called “expandable connector” was introduced. This connector has less strict
requirements about name matching of connected connectors and can be used conveniently in situations that
required replaceable connectors previously. One main application area is to construct signal buses of
complex systems.

• The derivative operator der(expr) may have an expression as argument and not only a variable name as
previously, e.g., der(m*h) is interpreted as der(m)*h + m*der(h).

• A function can be defined as partial derivative of another function, e.g.:
• ”function Gibbs_T = der(Gibbs,T)” is a function that computes the partial derivative of function

Gibbs with respect to its input argument T.
• External functions may have the new attribute "builtin", additionally to “C” or ”FORTRAN 77”. The

"builtin" specification is only used for functions that are defined to be built-in in the Modelica language.
The external-function call mechanism for "builtin" functions is implementation-defined.

The language changes are backward compatible.

E.7 Modelica 2.1
Modelica 2.1 was released January 30, 2004. The Modelica 2.1 specification was edited by Hans Olsson and
Martin Otter.

246 Modelica Language Specification 3.2 Revision 2

E.7.1 Contributors to the Modelica Language, Version 2.1

Mikael Adlers, MathCore, Linköping, Sweden
Peter Aronsson, Linköping University, Sweden
Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany
Peter Bunus, Linköping University, Sweden
Jonas Eborn, United Technologies Research Center, Hartford, U.S.A.
Hilding Elmqvist, Dynasim, Lund, Sweden
Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany
Peter Fritzson, Linköping University, Sweden
Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria
Olof Johansson, Linköping University, Sweden
Karin Lunde, R.O.S.E. Informatik GmbH, Heidenheim, Germany
Sven Erik Mattsson, Dynasim, Lund, Sweden
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Levon Saldamli, Linköping University, Sweden
Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, United Technologies Research Center, Hartford, U.S.A.
Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.7.2 Main Changes in Modelica 2.1

The main changes in Modelica 2.1 are:

• Arrays and array indices of Enumerations (needed, e.g., in the Electrical.Digital library currently
under development).

• Connections into hierarchical connectors (needed, e.g., for convenient implementation of buses).
• Optional output arguments of Modelica functions. The presence of actual input and/or output arguments can

be inquired with the new built-in function isPresent(..). The previous built-in function and attribute
enable was removed.

• Making the default constraining type more useful by inheriting the base constraining type automatically to
modifications.

• Enhanced redeclaration as needed, e.g., in the Modelica.Media library under development (e.g.
“redeclare model name” or “model extends name (<modifications>)”).

• Handling of overdetermined connectors (needed, e.g., for multi-body systems and electrical power systems)
including the new built-in package Connections with operators Connections.branch,
Connections.root, Connections.potentialRoot, Connections.isRoot.

• Statement break in the while loop of an algorithm section.
• Statement return in a Modelica function.
• Built-in function String(..) to provide a string representation of Boolean, Integer, Real and

Enumeration types.
• Built-in function Integer(..) to provide the Integer representation of an Enumeration type.
• Built-in function semiLinear(..) to define a characteristics with two slopes and a set of rules for

symbolic transformations, especially when the function becomes underdetermined (this function is used in
the Modelica Fluid library under development to define reversing flow in a mathematically clean way).

• More general identifiers by having any character in single quotes, e.g. ′+′ or ′123.456#1′ are valid
identifiers. ′x′ and x are different identifiers. This is useful for a direct mapping of product identifiers to
model names and for having the usual symbols for digital electrical signals as enumerations (such as ′+′,
′-′, ′0′, ′1′).

 247

• New annotations:
- For version handling of libraries and models (version, uses, conversion),
- for revision logging (revisions),
- for using a Modelica name as link in a HTML documentation text,
- for convenient “inner” declaration in a GUI (defaultComponentName,
defaultComponentPrefixes),

- for parameter menu structuring (Dialog, enable, tab, group), and
- for library specific error messages (missingInnerMessage, unassignedMessage).

Fixing some minor errors in the grammar and semantic specification.

The language changes are backward compatible, except for the introduction of the new keywords break and
return, the new built-in package Connections and the removing of built-in function and attribute enable.

E.8 Modelica 2.0
Modelica 2.0 was released January, 30 2002, and the draft was released on December 18 in 2001. The Modelica
2.0 specification was edited by Hans Olsson. Modelica is a registered trademark owned by the Modelica
Association since November 2001.

E.8.1 Contributors to the Modelica Language, Version 2.0

Peter Aronsson, Linköping University, Sweden
Bernhard Bachmann , University of Applied Sciences, Bielefeld
Peter Beater, University of Paderborn, Germany
Dag Brück, Dynasim, Lund, Sweden
Peter Bunus, Linköping University, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden
Vadim Engelson, Linköping University, Sweden
Peter Fritzson, Linköping University, Sweden
Rüdiger Franke, ABB Corporate Research, Ladenburg
Pavel Grozman, Equa, Stockholm, Sweden
Johan Gunnarsson, MathCore, Linköping
Mats Jirstrand, MathCore, Linköping
Sven Erik Mattsson, Dynasim, Lund, Sweden
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Levon Saldamli, Linköping University, Sweden
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.8.2 Main Changes in Modelica 2.0

A detailed description of the enhancements introduced by Modelica 2.0 is given in the papers

• M. Otter, H. Olsson: New Features in Modelica 2.0. 2nd International Modelica Conference, March 18-19,
DLR Oberpfaffenhofen, Proceedings, pp. 7.1 - 7.12, 2002. This paper can be downloaded from
http://www.Modelica.org/Conference2002/ papers/p01_Otter.pdf

• Mattsson S. E., Elmqvist H., Otter M., and Olsson H.: Initialization of Hybrid Differential-Algebraic
Equations in Modelica 2.0. 2nd International Modelica Conference, March 18-19, DLR Oberpfaffenhofen,

248 Modelica Language Specification 3.2 Revision 2

Proceedings, pp. 9 - 15, 2002. This paper can be downloaded from
http://www.Modelica.org/Conference2002/papers/p02_Mattsson.pdf

The main changes in Modelica 2.0 are:

• Full specification of initialization in order to compute consistent initial values of all variables appearing in a
model before performing an operation, such as simulation or linearization.

• Specified the graphical appearance of Modelica object diagrams, thereby ensuring portability of model
topology information and improving the previous informal graphical description, e.g., with separate icon
and diagram positions.

• Enumeration types to allow the definition of options and properties in an understandable, safe and efficient
way.

• Support for (optional) explicit preference in state-selection in order that a modeler can incorporate
application specific knowledge to guide the solution process, e.g., for real-time simulation.

• Iterators in array constructors and reduction operators, to support more powerful expressions, especially in
declarations, in order to avoid inconvenient and less efficient local function definitions.

• Support for generic formulation of blocks applicable to both scalar and vector connectors, connection of
(automatically) vectorized blocks, and simpler input/output connectors. This allows significant
simplifications of the input/output block library of Modelica, e.g., since only scalar versions of all blocks
have to be provided. Furthermore, new library components can be incorporated more easily.

• Record constructor to allow, e.g., the construction of data sheet libraries.
• Functions with mixed positional and named arguments. Optional results and default arguments make the

same function fit for beginners and expert users.
• Additional utilities for external C-functions that are interfaced to Modelica models, especially supporting

external functions returning strings and external functions with internal memory (e.g., to interface user-
defined tables, property databases, sparse matrix handling, hardware interfaces).

• Added an index, and specification of some basic constructs that had previously not formally be defined,
such as while-clauses, if-clauses.

The language changes are backward compatible, except for the introduction of the new keyword enumeration and
the removal of the operator analysisType(). The library change of the block library which will become available
soon requires changes in user-models.

E.9 Modelica 1.4
Modelica 1.4 was released December 15, 2000. The Modelica Association was formed in Feb. 5, 2000 and is now
responsible for the design of the Modelica language. The Modelica 1.4 specification was edited by Hans Olsson
and Dag Brück.

E.9.1 Contributors to the Modelica Language, Version 1.4

Bernhard Bachmann, Fachhochschule Bielefeld, Germany
Peter Bunus, MathCore, Linköping, Sweden
Dag Brück, Dynasim, Lund, Sweden
Hilding Elmqvist, Dynasim, Lund, Sweden
Vadim Engelson, Linköping University, Sweden
Jorge Ferreira, University of Aveiro, Portugal
Peter Fritzson, Linköping University, Linköping, Sweden
Pavel Grozman, Equa, Stockholm, Sweden
Johan Gunnarsson, MathCore, Linköping, Sweden
Mats Jirstrand, MathCore, Linköping, Sweden
Clemens Klein-Robbenhaar, Germany

 249

Pontus Lidman, MathCore, Linköping, Sweden
Sven Erik Mattsson, Dynasim, Lund, Sweden
Hans Olsson, Dynasim, Lund, Sweden
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
Tommy Persson, Linköping University, Sweden
Levon Saldamli, Linköping University, Sweden
André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans-Jürg Wiesmann, ABB Corporate Research Ltd., Baden, Switzerland

E.9.2 Contributors to the Modelica Standard Library

Peter Beater, University of Paderborn, Germany
Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany
André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Hubertus Tummescheit, Lund Institute of Technology, Sweden

E.9.3 Main Changes in Modelica 1.4

• Removed declare-before-use rule. This simplifies graphical user environments, because there exists no
order of declarations when components are graphically composed together.

• Refined package concept by introducing encapsulated classes and import mechanism. Encapsulated classes
can be seen as "self-contained units": When copying or moving an encapsulated class, at most the import
statements in this class have to be changed.

• Refined when-clause: The nondiscrete keyword is removed, equations in when-clauses must have a
unique variable name on left hand side variable and the exact mapping of when-clauses to equations is
defined. As a result, when-clauses are now precisely defined without referring to a sorting algorithm and it
is possible to handle algebraic loops between when-clauses with different conditions and between when-
clauses and the continuous-time part of a model. The discrete keyword is now optional, simplifying the
library development because only one type of connector is needed and not several types which do contain or
do not contain the discrete prefix on variables. Additionally, when-clauses in algorithm sections may have
elsewhen-clauses which simplifies the definition of priorities between when-clauses.

• For replaceable declarations: allowed constraining clauses, and annotations listing suitable redeclarations.
This allows a graphical user environment to automatically build menus with meaningful choices.

• Functions can specify their derivative. This allows, e.g., the application of the Pantelides algorithm to
reduce the index of a DAE also for external functions.

• New built-in operator "rem" (remainder) and the built-in operators div, mod, ceil, floor, integer, previously
only allowed to be used in when-clauses can now be used everywhere, because state events are
automatically generated when the result value of one of these operator changes discontinuously.

• Quantity attribute also for base types Boolean, Integer, String (and not only for Real), in order to allow
abstracted variables to refer to physical quantities (e.g. Boolean i(quantity="Current") is true if current is
flowing and is false if no current is flowing).

• final keyword also allowed in declaration, to prevent modification. Example:
 model A
 Real x[:];
 final Integer n=size(x,1);
 end A;

• Several minor enhancements, such as usage of dot-notation in modifications
(e.g.: "A x(B.C=1,B.D=2)" is the same as "A x(B(C=1,D=2));").

250 Modelica Language Specification 3.2 Revision 2

• Internally restructured specification.

Modelica 1.4 is backwards compatible with Modelica 1.3, with the exception of (1) some exotic cases where
different results are achieved with the removed "declare-before-use-rule" and the previous declaration order, (2)
when-clauses in equations sections, which use the general form "expr1 = expr2" (now only "v=expr" is allowed +
some special cases for functions), (3) some exotic cases where a when-clause may be no longer evaluated at the
initial time, because the initialization of the when-condition is now defined in a more meaningful way (before
Modelica 1.4, every condition in a when-clause has a "previous" value of false), and (4) models containing the
nondiscrete keyword which was removed.

E.10 Modelica 1.3 and Older Versions.
Modelica 1.3 was released December 15, 1999.

E.10.1 Contributors up to Modelica 1.3

The following list contributors and their affiliations at the time when Modelica 1.3 was released.

Hilding Elmqvist, Dynasim AB, Lund, Sweden

Bernhard Bachmann, ABB Corporate Research Center Heidelberg
Francois Boudaud, Gaz de France, Paris, France
Jan Broenink, University of Twente, Enschede, Netherlands
Dag Brück, Dynasim AB, Lund, Sweden
Thilo Ernst, GMD FIRST, Berlin, Germany
Ruediger Franke, ABB Network Partner Ltd. Baden, Switzerland
Peter Fritzson, Linköping University, Sweden
Alexandre Jeandel, Gaz de France, Paris, France
Pavel Grozman, Bris Data AB, Stockholm, Sweden
Kaj Juslin, VTT, Espoo, Finland
David Kågedal, Linköping University, Sweden
Mattias Klose, Technical University of Berlin, Germany
Nathalie Loubere, Gaz de France, Paris, France
Sven-Erik Mattsson, Dynasim AB, Lund, Sweden
Peter J. Mosterman, DLR Oberpfaffenhofen, Germany
Henrik Nilsson, Linköping University, Sweden
Hans Olsson, , Dynasim AB, Lund, Sweden
Martin Otter, DLR Oberpfaffenhofen, Germany
Per Sahlin, Bris Data AB, Stockholm, Sweden
Andrée Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.
Hubertus Tummescheit, Lund Institute of Technology, Sweden
Hans Vangheluwe, University of Gent, Belgium

E.10.2 Main Changes in Modelica 1.3

Modelica 1.3 was released December 15, 1999.

• Defined connection semantics for inner/outer connectors.
• Defined semantics for protected element.
• Defined that least variable variability prefix wins.
• Improved semantic definition of array expressions.
• Defined scope of for-loop variables.

 251

E.10.3 Main Changes in Modelica 1.2

Modelica 1.2 was released June 15, 1999.

• Changed the external function interface to give greater flexibility.
• Introduced inner/outer for dynamic types.
• Redefined final keyword to only restrict further modification.
• Restricted redeclaration to replaceable elements.
• Defined semantics for if-clauses.
• Defined allowed code optimizations.
• Refined the semantics of event-handling.
• Introduced fixed and nominal attributes.
• Introduced terminate and analysisType.

E.10.4 Main Changes in Modelica 1.1

Modelica 1.1 was released in December 1998.

Major changes:

• Specification as a separate document from the rationale.
• Introduced prefixes discrete and nondiscrete.
• Introduced pre and when.
• Defined semantics for array expressions.
• Introduced built-in functions and operators (only connect was present in Modelica 1.0).

E.10.5 Modelica 1.0

Modelica 1, the first version of Modelica, was released in September 1997, and had the language specification as
a short appendix to the rationale.

252 Modelica Language Specification 3.2 Revision 2

Index
abs 19
access control 31
access operator 18
acos 20
actualStream 22, 177
algorithm sections 123
algorithms 123
and 15, 16
annotation 11

function 202
annotations

function derivative 202
arithmetic operators 16
array 107, 109, 110, 139

dimension 110
indexing with boolean values 117
indexing with enumeration values

117
reduction 111

array dimension
index bounds 109

asin 20
assert function 11, 84, 129
assignment 124
atan 20
atan2 20
balammodel

balanced 41
balanced models 41
block 11

specialized class 40
Boolean 12, 48
break 127
built-in

array functions 109
functions 140
operators 14
time variable 18
types 14, 31, 59

cardinality 21, 133
ceil 20
change 26
change function 133
character set 10
class

base class restrictions 67
declaration 37
definition 31
enclosing 52
nested 40
restricted and enhanced 40
short definition 38
specialized 40

class extends 61, 73
class type 61
comments 10
component 9

conditional declaration 36
declaration 32

conditional declaration 36
connect equation 81
connection

equations 103
graphs See

Connection Graphs 101
connections 91
connector

specialized class 40
connectors 91
constant 32, 35
constrainedby 11, 75
constraining type 75
constructor functions 110
conversion functions 110
cos 20
cosh 21
cross 113
declaration equations 33, 79
declarations 8
default connectable 63
delay 21, 133
der 21, 133
diagonal 110
discrete 32, 35
div 20
edge 26
edge function 133
element 9
else 11, 15
elsewhen 83
empty function calls 140
encapsulation 159
Enumeration 48
equality equations 79
equation 79, 80

categories 79
equation operators 86, 101
equations 79
escape codes 12
evaluation order 15
event-related operators 26
expressions

parameter 28
expressions 14

constant 27
expressions

discrete-time 28
expressions

continuous-time 29
extends 66

class extends 73
fill 110
fixed 50
flattening 57

partial 57
floating point numbers 12
floor 20
for 80, 125, 126
formal parameters 132
fully qualified name 160
function 124, 131, 134

definition 132
mathematical 20
numeric 19
return 132
specialized class 40

function declaration 131
functions 123

assert 11, 84, 129
change 133
edge 133
initial 133
matrix 33, 107
sample 133
terminal 133
terminate 85, 129

generics 66
guard expressions 15
homotopy 21, 23
identifiers 11
identity 110
if 15, 81, 82, 127, 129
if-expression 17
indexing

enumeration 117
information hiding 159
inheritance 66

multiple 67
initial 26
initial algorithm 123
initial equation 88
initial function 133
initialization 88

number of equations needed 90
inner 56
input 32, 40, 133
instance 31
instantiation 9
inStream 22, 174
integer 20
Integer 12, 48
interface 58
intrinsic operators 18
iteration ranges 80, 125

enumeration 126
keyword

annotation 11
block 11
break 127
else 11, 15
elsewhen 83

 253

equation 79, 80
for 80, 125, 126
function 124, 131, 134
if 15, 81, 82, 127, 129
input 133
protected 31
public 31
return 132
then 15
when 81, 128
while 127
within 161

keywords 11
linspace 111
literal constants 12
literals

Boolean 12
Integer 12
Real 12
record 13
String 12

local class definitions 40
matrices 107
matrix 110
matrix algebra 112
matrix function 33, 107
max 111
min 111
mod 20
model

specialized class 40
model extends 73
MODELICAPATH 162
modification 69
modification environment 70
modification equations 79
modifications 66
multiple inheritance 67
name lookup 52
names 11
ndims 110
nested classes 40
noEvent 26
nominal 50
nondeclarative constructs 133
normal equations 79
not 15, 16
notation and grammar 9
number of unknown variables 86
number of unknown variables 42
ones 110
operators 14

* 15, 16
. 14
/ 15, 16

[] 14
^ 14, 16
+ 15, 16
< 15, 16
<= 15, 16
<> 16
== 15, 16
> 15, 16
>= 15, 16
and 15, 16
associativity 14
delay 133
der 133
equality 16
logical 16
miscellaneous 17
not 15, 16
or 15, 16
pre 133
precedence 14
reinit 133
relational 16

operators: 16
or 15, 16
outer 56
outerProduct 112
output 32, 40
overconstrained 86, 101
overconstrained connection loop 104
package 159–79

specialized class 40
parameter 32, 35
plug-compatibility 63
pre 26, 133
prefix rules 33
product 111
protected 31
public 31
real 48
record

specialized class 40
redeclaration 66
Redeclaration 72
reinit 26, 84, 133
rem 20
reserved words 11
restricted and enhanced classes 40
return 132
sample 26
sample function 133
scalar 110
scalar functions 139
scoping 52
semiLinear 22, 25
ShirtSizes 117

short class definition 38
sign 19
sin 20
sinh 21
size 110
skew 113
smooth 26
specialized classes 40
sqrt 19
start 50
Statements 124
StateSelect 51
stream 173
String 12, 48

concatenation 118
string concatenation 17
subtype 59

function 64
restricted 63

sum 111
symmetric 112
synchronous data-flow principle 86
tan 20
tanh 21
terminal 26
terminal function 133
terminate function 85, 129
then 15
time 18
transitively non-replaceable 60, 69
type 58, 59

constraining 75
specialized class 40

types
Boolean 12, 48
built-in 14, 31, 59
Enumeration 48
Integer 12, 48
predefined 47
String 12, 48

variability 27
variable declarations 32
vector 110
vector algebra 112
vectors 107
when 81
when-equations

restrictions 82
single-assignment rule 83

when-statements 128
restrictions 128

while 127
within 161
zeros 110

	Chapter 1 Introduction
	1.1 Overview of Modelica
	1.2 Scope of the Specification
	1.3 Some Definitions
	1.4 Notation and Grammar

	Chapter 2 Lexical Structure
	2.1 Character Set
	2.2 Comments
	2.3 Identifiers, Names, and Keywords
	2.3.1 Identifiers
	2.3.2 Names
	2.3.3 Modelica Keywords

	2.4 Literal Constants
	2.4.1 Floating Point Numbers
	2.4.2 Integer Literals
	2.4.3 Boolean Literals
	2.4.4 Strings

	2.5 Operator Symbols

	Chapter 3 Operators and Expressions
	3.1 Expressions
	3.2 Operator Precedence and Associativity
	3.3 Evaluation Order
	3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

	3.4 Arithmetic Operators
	3.5 Equality, Relational, and Logical Operators
	3.6 Miscellaneous Operators and Variables
	3.6.1 String Concatenation
	3.6.2 Array Constructor Operator
	3.6.3 Array Concatenation Operator
	3.6.4 Array Range Operator
	3.6.5 If-Expressions
	3.6.6 Member Access Operator
	3.6.7 Built-in Variable time

	3.7 Built-in Intrinsic Operators with Function Syntax
	3.7.1 Numeric Functions and Conversion Functions
	3.7.1.1 Event Triggering Mathematical Functions
	3.7.1.2 Built-in Mathematical Functions and External Built-in Functions

	3.7.2 Derivative and Special Purpose Operators with Function Syntax
	3.7.2.1 delay
	3.7.2.2 cardinality (deprecated)
	3.7.2.3 homotopy
	3.7.2.4 semiLinear

	3.7.3 Event-Related Operators with Function Syntax
	3.7.3.1 pre
	3.7.3.2 noEvent and smooth

	3.8 Variability of Expressions
	3.8.1 Constant Expressions
	3.8.2 Parameter Expressions
	3.8.3 Discrete-Time Expressions
	3.8.4 Continuous-Time Expressions

	Chapter 4 Classes, Predefined Types, and Declarations
	4.1 Access Control – Public and Protected Elements
	4.2 Double Declaration not Allowed
	4.3 Declaration Order and Usage before Declaration
	4.4 Component Declarations
	4.4.1 Syntax and Examples of Component Declarations
	4.4.2 Component Declaration Static Semantics
	4.4.2.1 Declaration Equations
	4.4.2.2 Prefix Rules

	4.4.3 Acyclic Bindings of Constants and Parameters
	4.4.4 Component Variability Prefixes discrete, parameter, constant
	4.4.4.1 Variability of Structured Entities

	4.4.5 Conditional Component Declaration

	4.5 Class Declarations
	4.5.1 Short Class Definitions
	4.5.2 Restriction on combining base-classes and other elements
	4.5.3 Local Class Definitions – Nested Classes

	4.6 Specialized Classes
	4.7 Balanced Models
	4.8 Predefined Types
	4.8.1 Real Type
	4.8.2 Integer Type
	4.8.3 Boolean Type
	4.8.4 String Type
	4.8.5 Enumeration Types
	4.8.5.1 Attributes of Enumeration Types
	4.8.5.2 Type Conversion of Enumeration Values to String or Integer
	4.8.5.3 Unspecified enumeration

	4.8.6 Attributes start, fixed, and nominal
	4.8.7 Other Predefined Types
	4.8.7.1 StateSelect
	4.8.7.2 ExternalObject
	4.8.7.3 Graphical Annotation Types

	Chapter 5 Scoping, Name Lookup, and Flattening
	5.1 Flattening Context
	5.2 Enclosing Classes
	5.3 Static Name Lookup
	5.3.1 Simple Name Lookup
	5.3.2 Composite Name Lookup
	5.3.3 Global Name Lookup
	5.3.4 Lookup of Imported Names

	5.4 Instance Hierarchy Name Lookup of Inner Declarations
	5.4.1 Example of Field Functions using Inner/Outer

	5.5 Simultaneous Inner/Outer Declarations
	5.6 Flattening Process
	5.6.1 Partial Flattening
	5.6.2 Flattening
	5.6.3 Check of Flattening

	Chapter 6 Interface or Type Relationships
	6.1 The Concepts of Type, Interface and Subtype
	6.2 Interface or Type
	6.2.1 Transitively non-Replaceable
	6.2.2 Inheritance Interface or Class Type

	6.3 Interface Compatibility or Subtyping
	6.4 Plug-Compatibility or Restricted Subtyping
	6.5 Function-Compatibility or Function-Subtyping for Functions
	6.6 Type Compatible Expressions

	Chapter 7 Inheritance, Modification, and Redeclaration
	7.1 Inheritance—Extends Clause
	7.1.1 Multiple Inheritance
	7.1.2 Inheritance of Protected and Public Elements
	7.1.3 Restrictions on the Kind of Base Class
	7.1.4 Restrictions on Base Classes and Constraining Types to be Transitively Non-Replaceable

	7.2 Modifications
	7.2.1 Syntax of Modifications and Redeclarations
	7.2.2 Modification Environment
	7.2.3 Merging of Modifications
	7.2.4 Single Modification
	7.2.5 Modifiers for Array Elements
	7.2.6 Final Element Modification Prevention

	7.3 Redeclaration
	7.3.1 The class extends Redeclaration Mechanism
	7.3.2 Constraining Type
	7.3.3 Restrictions on Redeclarations
	7.3.4 Annotation Choices for Suggested Redeclarations and Modifications

	Chapter 8 Equations
	8.1 Equation Categories
	8.2 Flattening and Lookup in Equations
	8.3 Equations in Equation Sections
	8.3.1 Simple Equality Equations
	8.3.2 For-Equations – Repetitive Equation Structures
	8.3.2.1 Implicit Iteration Ranges of For-Equations

	8.3.3 Connect-Equations
	8.3.4 If-Equations
	8.3.5 When-Equations
	8.3.5.1 Defining When-Equations by If-Expressions in Equality Equations
	8.3.5.2 Restrictions on Equations within When-Equations
	8.3.5.3 Application of the Single-assignment Rule to When-Equations

	8.3.6 reinit
	8.3.7 assert
	8.3.8 terminate
	8.3.9 Equation Operators for Overconstrained Connection-Based Equation Systems

	8.4 Synchronous Data-flow Principle and Single Assignment Rule
	8.5 Events and Synchronization
	8.6 Initialization, initial equation, and initial algorithm
	8.6.1 The Number of Equations Needed for Initialization

	Chapter 9 Connectors and Connections
	9.1 Connect-Equations and Connectors
	9.1.1 Connection Sets
	9.1.2 Inside and Outside Connectors
	9.1.3 Expandable Connectors

	9.2 Generation of Connection Equations
	9.3 Restrictions of Connections and Connectors
	9.3.1 Size Restriction on Connectors

	9.4 Equation Operators for Overconstrained Connection-Based Equation Systems
	9.4.1 Overconstrained Equation Operators for Connection Graphs
	9.4.2 Converting the Connection Graph into Trees and Generating Connection Equations
	9.4.3 Examples of Overconstrained Connection Graphs
	9.4.3.1 An Overdetermined Connector for Power Systems
	9.4.3.2 An Overdetermined Connector for 3-dimensional Mechanical Systems

	Chapter 10 Arrays
	10.1 Array Declarations
	10.1.1 Array Dimension Lower and Upper Index Bounds

	10.2 Flexible Array Sizes
	10.3 Built-in Array Functions
	10.3.1 Array Dimension and Size Functions
	10.3.2 Dimensionality Conversion Functions
	10.3.3 Specialized Array Constructor Functions
	10.3.4 Reduction Functions and Operators
	10.3.4.1 Reduction Expressions

	10.3.5 Matrix and Vector Algebra Functions

	10.4 Vector, Matrix and Array Constructors
	10.4.1 Array Constructor with Iterators
	10.4.1.1 Array Constructor with One Iterator
	10.4.1.2 Array Constructor with Several Iterators

	10.4.2 Array Concatenation
	10.4.2.1 Array Concatenation along First and Second Dimensions

	10.4.3 Vector Construction

	10.5 Array Indexing
	10.5.1 Indexing with Boolean or Enumeration Values
	10.5.2 Indexing with end

	10.6 Scalar, Vector, Matrix, and Array Operator Functions
	10.6.1 Equality and Assignment
	10.6.2 Array Element-wise Addition, Subtraction, and String Concatenation
	10.6.3 Array Element-wise Multiplication
	10.6.4 Matrix and Vector Multiplication of Numeric Arrays
	10.6.5 Division of Scalars or Numeric Arrays by Numeric Scalars
	10.6.6 Array Element-wise Division
	10.6.7 Exponentiation of Scalars of Numeric Elements
	10.6.8 Scalar Exponentiation of Square Matrices of Numeric Elements
	10.6.9 Slice Operation
	10.6.10 Relational Operators
	10.6.11 Boolean Operators
	10.6.12 Vectorized Calls of Functions

	10.7 Empty Arrays

	Chapter 11 Statements and Algorithm Sections
	11.1 Algorithm Sections
	11.1.1 Initial Algorithm Sections
	11.1.2 Execution of an algorithm in a model
	11.1.3 Execution of the algorithm in a function

	11.2 Statements
	11.2.1 Simple Assignment Statements
	11.2.1.1 Assignments from Called Functions with Multiple Results

	11.2.2 For-statement
	11.2.2.1 Implicit Iteration Ranges
	11.2.2.2 Types as Iteration Ranges
	11.2.2.3 Nested For-Loops and Reduction Expressions with Multiple Iterators

	11.2.3 While-Statement
	11.2.4 Break-Statement
	11.2.5 Return-Statements
	11.2.6 If-Statement
	11.2.7 When-Statements
	11.2.7.1 Restrictions on When-Statements
	11.2.7.2 Defining When-Statements by If-Statements

	11.2.8 Special Statements
	11.2.8.1 Assert Statement
	11.2.8.2 Terminate Statement

	Chapter 12 Functions
	12.1 Function Declaration
	12.1.1 Ordering of Formal Parameters
	12.1.2 Function Return-Statement
	12.1.3 Inheritance of Functions

	12.2 Function as a Specialized Class
	12.3 Pure Modelica Functions
	12.4 Function Call
	12.4.1 Positional or Named Input Arguments of Functions
	12.4.2 Functional Input Arguments to Functions
	12.4.2.1 Function Partial Application

	12.4.3 Output Formal Parameters of Functions
	12.4.4 Initialization and Declaration Assignments of Components in Functions
	12.4.5 Flexible Array Sizes and Resizing of Arrays in Functions
	12.4.6 Scalar Functions Applied to Array Arguments
	12.4.7 Empty Function Calls

	12.5 Built-in Functions
	12.6 Record Constructor Functions
	12.7 Declaring Derivatives of Functions
	12.7.1 Using the Derivative Annotation
	12.7.2 Partial Derivatives of Functions

	12.8 Declaring Inverses of Functions
	12.9 External Function Interface
	12.9.1 Argument type Mapping
	12.9.1.1 Simple Types
	12.9.1.2 Arrays
	12.9.1.3 Records

	12.9.2 Return Type Mapping
	12.9.3 Aliasing
	12.9.4 Annotations for External Libraries and Include Files
	12.9.5 Examples
	12.9.5.1 Input Parameters, Function Value
	12.9.5.2 Arbitrary Placement of Output Parameters, No External Function Value
	12.9.5.3 External Function with Both Function Value and Output Variable

	12.9.6 Utility Functions
	12.9.7 External Objects

	Chapter 13 Packages
	13.1 Package as Specialized Class
	13.2 Motivation and Usage of Packages
	13.2.1 Importing Definitions from a Package
	13.2.1.1 Lookup of Imported Names
	13.2.1.2 Summary of Rules for Import Clauses

	13.2.2 Mapping Package/Class Structures to a Hierarchical File System
	13.2.2.1 Mapping a Package/Class Hierarchy into a Directory Hierarchy (Structured Entity)
	13.2.2.2 Mapping a Package/Class Hierarchy into a Single File (Nonstructured Entity)
	13.2.2.3 The within Clause

	13.2.3 External resources
	13.2.4 The Modelica Library Path—MODELICAPATH
	13.2.4.1 Example of Searching MODELICAPATH

	Chapter 14 Overloaded Operators
	14.1 Matching Function
	14.2 Overloaded Constructors
	14.3 Overloaded String Conversions
	14.4 Overloaded Binary Operations
	14.5 Overloaded Unary Operations
	14.6 Example of Overloading for Complex Numbers

	Chapter 15 Stream Connectors
	15.1 Definition of Stream Connectors
	15.2 Stream Operator inStream and Connection Equations
	15.3 Stream Operator actualStream

	Chapter 16 Mapping of Models to Execution Environments
	Chapter 17 Annotations
	17.1 Vendor-Specific Annotations
	17.2 Annotations for Documentation
	17.3 Annotations for Code Generation
	17.4 Annotations for Simulation Experiments
	17.5 Annotations for Graphical Objects
	17.5.1 Common Definitions
	17.5.1.1 Coordinate Systems
	17.5.1.2 Graphical Properties

	17.5.2 Component Instance
	17.5.3 Extends clause
	17.5.4 Connections
	17.5.5 Graphical primitives
	17.5.5.1 Line
	17.5.5.2 Polygon
	17.5.5.3 Rectangle
	17.5.5.4 Ellipse
	17.5.5.5 Text
	17.5.5.6 Bitmap

	17.5.6 Variable Graphics and Schematic Animation
	17.5.7 User input
	17.5.7.1 Mouse input
	17.5.7.2 Edit input

	17.6 Annotations for the Graphical User Interface
	17.7 Annotations for Version Handling
	17.7.1 Version Numbering
	17.7.2 Version Handling
	17.7.3 Mapping of Versions to File System
	17.7.4 Version Date and Build Information

	17.8 Annotations for Access Control to Protect Intellectual Property
	17.8.1 Protection of Classes
	17.8.2 Licensing

	17.9 Annotations for Functions
	17.9.1 Function Derivative Annotations
	17.9.2 Inverse Function Annotation
	17.9.3 External Function Annotations

	17.10 Annotation Choices for Modifications and Redeclarations
	17.11 Annotation for External Libraries and Include Files

	Chapter 18 Unit Expressions
	18.1 The Syntax of Unit Expressions
	18.2 Examples

	Chapter 19 The Modelica Standard Library
	Word-Lesezeichen
	OLE_LINK3
	OLE_LINK4
	OLE_LINK43
	OLE_LINK44
	OLE_LINK45
	OLE_LINK46
	OLE_LINK23
	OLE_LINK24
	OLE_LINK37
	OLE_LINK38
	OLE_LINK82
	OLE_LINK83
	OLE_LINK33
	OLE_LINK34
	OLE_LINK100
	OLE_LINK101
	OLE_LINK9
	OLE_LINK10
	OLE_LINK102
	OLE_LINK103
	OLE_LINK41
	OLE_LINK42
	OLE_LINK39
	OLE_LINK40
	OLE_LINK11
	OLE_LINK12
	OLE_LINK29
	OLE_LINK30
	OLE_LINK49
	OLE_LINK50
	OLE_LINK31
	OLE_LINK32
	OLE_LINK51
	OLE_LINK52
	OLE_LINK5
	OLE_LINK6
	OLE_LINK1
	OLE_LINK2
	OLE_LINK25
	OLE_LINK26
	OLE_LINK15
	OLE_LINK16
	OLE_LINK17
	OLE_LINK18
	OLE_LINK27
	OLE_LINK28
	Ch10Packages
	OLE_LINK7
	OLE_LINK8
	OLE_LINK21
	OLE_LINK22
	OLE_LINK13
	OLE_LINK14
	OLE_LINK47
	OLE_LINK48
	OLE_LINK19
	OLE_LINK20

